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Abstract—Activities of transit buses traveling along arterial
roads and city streets consist of frequent stops and idling
events at many predictable occasions, e.g., loading/unloading
passengers at bus stops, approaching traffic signals or stop
signs, and going through recurrent traffic congestion, etc.
Besides designing transit buses with electric powertrain sys-
tems that can save a noticeable amount of energy thanks
to regenerative breaking, this urban traffic environment
also unfolds a number of opportunities to further improve
their energy efficiency via vehicle connectivity and auton-
omy. Therefore, this paper proposes a complete and novel
simulation framework of integrated vehicle/powertrain eco-
operation system for electric buses (Eco-bus) by co-optimizing
the vehicle dynamics and powertrain (VD&PT) controls. A
comprehensive evaluation of the proposed system on mobility
benefits and energy savings has been conducted over various
traffic conditions. Simulation results are presented to showcase
the superiority of the proposed simulation framework of the
Eco-bus compared to the conventional bus, particularly in
terms of mobility and energy efficiency aspects.

Index Terms—Simulation framework; Connected and auto-
mated vehicles (CAV); Eco-Bus; Vehicle dynamic; powertrain
characteristics; energy efficiency.

I. INTRODUCTION

The advancement towards vehicle connectivity and au-
tonomy offers many potentials and opportunities in devel-
oping innovative eco-driving systems and applications to
leverage the energy efficiency. Specifically, a very promis-
ing example is eco-driving at signalized intersections,
where the signal phase and timing (SPaT) information is
shared with vehicles to optimize the vehicle dynamics,
avoid the unnecessary or abrupt acceleration/deceleration,
and reduce the idling period [1]–[3]. From a broader
perspective, the positive impacts of eco-driving applications
can be attributed to the highly predictable location and the
high penetration of signalized intersections that may require
vehicles to make complete stops.

Within this scope, the energy efficiency of transit buses
have large potentials to improve, as compared to standard
passenger cars, since they are initially designed to make
much more frequent and predictable stops, such as the
loading/unloading of passengers at bus stops. In addition,
the bus routes are commonly designed in densely populated
areas, which also gives rise to a higher probability of

encountering traffic jams. Therefore, a significant amount of
energy savings can be anticipated with the connected eco-
driving, provided that the operating state of the preceding
vehicle can be shared and communicated to effectively
optimize the vehicle dynamics. Moreover, electric vehicles
(EV) generally have better energy efficiency in the urban
areas than the rural areas thanks to the regenerative braking,
which slows down the vehicle via an energy recovery
mechanism to convert the kinetic energy back to the electric
energy. Therefore, an accurate and robust control of the EV
powertrain can maximize the energy restored and further
boost the energy efficiency.

However, early development and deployment of con-
nected eco-driving technology mainly focused on optimiz-
ing vehicle dynamics (VD) [4]–[8] and powertrain (PT)
[9] operation independently, and therefore there exists un-
tapped potential to further improve vehicle fuel efficiency
through a simultaneous optimization of both VD&PT con-
trol. Therefore, this paper proposes an advanced simula-
tion framework of an integrated vehicle-powertrain eco-
operation solution for an electric bus with state-of-the-
art Connected and automated vehicles (CAV) technologies,
aiming at improving vehicle energy efficiency and reducing
tailpipe emissions. The overall simulation framework in-
corporates a two-layer vehicle optimal trajectory planning
module that seamlessly integrates a graph-based trajectory
planning algorithm and a deep neural network, with the
simulation settings and parameters calibrated using real-
world electric bus data from the Riverside Transit Agency
(RTA) bus trajectories. The optimal trajectory can be gen-
erated with the proposed innovative VD&PT eco-operation
control module embedded in a microscopic simulation tool
– PTV Vissim [10], and its energy-saving performance is
validated with different test scenarios against the baseline
driving strategies.

II. SYSTEM FRAMEWORK

Connected and automated vehicles (CAV) have the po-
tential to excel at efficient driving because of their in-
creased situational awareness and ability to execute more
complex maneuvers more precisely [9]. In order to com-
prehensively optimize the operation maneuver of electric
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Fig. 1. System Framework

buses to improve the fuel efficiency, this paper proposes
an advanced electric bus simulation framework integrating
vehicle dynamics and powertrain operations. Specifically,
this framework is established with real-time optimal trajec-
tory planning under (VD&PT) control interacting with a
calibrated environment using real-world data. The overall
simulation framework develops traffic network modeling,
embedded vehicle dynamic control, and real-world data
calibration with PTV Vissim. In the simulation environ-
ment, a programable energy-efficient speed trajectory can
be generated, optimizing with many parameters and data
after the initial calibration process, including signal phase
and timing (SPaT) information from upcoming intersec-
tions, the state variables of the preceding vehicle, and the
vehicles dynamics in the network. The optimized trajectory
is generated with the innovative vehicle-powertrain eco-
operation control module that we developed and embedded
in a VISSIM application programming interface (API).

Fig. 1 illustrates the system framework of the advanced
simulation framework for developing the connected Eco-
Operation system for electric buses. In this framework,
the baseline bus control is based on the embedded car-
following logic in VISSIM, and its acceleration and decel-
eration behavior has been calibrated to match real-world
acceleration/deceleration versus speed profiles of RTA bus
trajectories. In addition, both the powertrain characteristics
and the efficiency map are generated from the real-world
testing data. To evaluate the specific energy consumption,
a simplified electric bus model with a powertrain-related
function of speed, acceleration and road grade is developed
and applied to a built-in graph-based trajectory planning

algorithm. This integrated mechanism will be used to
evaluate the energy consumption of both the baseline bus
trajectory and the integrated Eco-Bus trajectory.

In addition, a signal control module was developed to
implement SPaT messages from signalized intersections
along the simulation corridor based on the real-world signal
timing sheet obtained from the City of Riverside. In the
developed external driver model, the SPaT messages is
obtained within the dedicated short-range communications
(DSRC) range [11] and decoded into signal phase and
countdown information. The vehicle dynamic control mod-
ule contains a two-layer vehicle optimal trajectory planning:
1) a graph-based trajectory planning algorithm and 2) deep
neural networks (DNN) [12]. Specifically, the first layer of
trajectory planning algorithm is based on a graph model,
which takes the energy consumption as the cost function
to optimize the transit path. The second layer employs
a DNN to expedite the calculation of the optimal target
speed of an Eco-bus for the next time step. Then the
output external driver model can effectively reinforce an
energy-efficient trajectory for an electric bus. Similarly,
this advanced simulation framework is able to generate the
optimized output driver model for any user-specified traffic
conditions and vehicle powertrain characteristics, which
makes this framework very convenient to further evaluate
any customized EV eco-operation system interfacing with
the traffic network, via this integrated vehicle-powertrain
approach.

III. SIMULATION STUDY

A detailed description of the simulation setup, traffic
network development, bus characteristic calibration, as well
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Fig. 2. Simulated Network on University Ave with Signal Control and Bus Stops

as other scenario settings are presented in this section.

A. Simulation Tools

In this study, PTV Vissim [10] is employed as a micro-
scopic traffic simulation tool for traffic network modeling,
bus characterization, External Driver Model.dll develop-
ment with integrated vehicle-powertrain optimal trajectory
planning using the Vissim API, as well as Eco-bus mobility
and energy performance evaluation. As a leading-edge
microscopic traffic simulator, Vissim is capable of modeling
private transport, commodity transport and road- or rail-
bound public transport down to pedestrians, simulating the
wireless communication network, and calibrating with real-
world data. In addition, Vissim provides two types of add-
on programming interface, namely the Component Object
Model (COM) and the External Driver Model DLL. Specif-
ically, COM interface is written in script that can be used
to work as an Automation Server, modify the underlying
simulation models, access the model outputs, and provide
advisory longitudinal and lateral maneuvers. However, lim-
itations exists on directly controlling the driving behavior
in the simulation, as well as a high computation load while
accessing a large scaled network with many vehicles under
control. In this study, we used the External Driver Model
DLL Interface of Vissim to replace the inherent driving
behavior model by a fully user-defined behavior embedded
in the vehicle dynamic control module.

The External Driver Model DLL Interface of Vissim is
developed to access signal information and sensor mea-
surements, it is also capable of integrating an innovative
VD&PT control system to obtain the most energy efficient
bus trajectory through multiple signalized intersections. The
vehicle dynamic control module, as shown in Fig. 1, is
implemented in a DLL written in C++. During a simulation
execution, Vissim calls the External Driver Model DLL
code for the targeted electric bus in each simulation time

step, which is able to obtain the current vehicle state,
determine its next optimal speed, and then pass this updated
vehicle state back to Vissim.

B. Simulation Network Model

The real-world traffic network used in this study is a
3-mile signalized corridor along the University Ave with
its westbound beginning from the Riverside Canal and
its eastbound ending in Canyon Crest Dr at Riverside,
CA, USA, as shown in Fig. 2. The simulated network
consists of eleven signalized intersections and seven bus
stops on the eastbound bus route (see Fig. 2). Based on the
real-world signal timing sheets at each intersection from
Riverside City, we decoded the information to design the
Signal Controller with the consistent SPaT message. The
transit buses differ from the private vehicles or heavy-
duty trucks in a sense that their trajectories are not only
associated with the traffic light and the recurrent con-
gestion, but they also need to comply with the specific
bus stop schedule from Riverside Transit Agency (RTA).
Therefore, the arrival time is estimated at each bus stop
along the RTA bus EB route based on its specific schedule
on two main stops. Then, the Public Transport module in
Vissim id calibrated to match the assigned arrival time at
each bus stop along the simulated network. In addition,
the bus acceleration/deceleration profile in the simulation
is also calibrated using real-world data from RTA bus
trajectories. In summary, the network is well calibrated
using the real-world signal controls, traffic inputs and bus
trajectories data. Therefore, the results and observation
from the proposed simulation framework should accurately
represent the mobility and energy efficiency performance
of an Eco-bus with the integrated VD&PT control.

C. Simulation Scenarios

To gain an in-depth insight into the integrated vehicle dy-
namic and powertrain Eco-operation performance, a variety
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TABLE I
ROUTE 14 EB STOPS ALONG UNIVERSITY AVENUE.

Stop Name Latitude Longitude Estimated
Arrival Time

Estimated
Departure Time

Distance from
Previous Stop (m)

Simulated
Arrival Time

University FS Brockton 07:28:00 (Actual)
East University NS Lemon 33.980889 -117.372455 7:30:44 7:30:54 660

University NS Park 33.977343 -117.364859 7:34:02 7:34:12 804 7:31:47
University NS Victoria 33.976519 -117.363105 7:34:55 7:35:05 182 7:33:14

University FS Eucalyptus 33.975493 -117.364859 7:36:35 7:36:45 384 7:34:18
University FS Kansas 33.975538 -117.356839 7:37:36 7:37:46 220 7:35:32
University FS Ottawa 33.875565 -117.349528 7:39:20 7:39:30 404 7:38:00

University NS Chicago 33.975545 -117.349528 7:40:34 7:40:44 276 7:38:46
University FS Cranford 33.975603 -117.343839 7:42:47 7:42:57 528 7:40:40

Iowa FS Blanie 7:48:00 (Actual) 1240

Route travel time 0:08:45 0:08:53
Route travel time (min) 8.8 8.9
Percentage Difference 1.5%

of traffic conditions were simulated under different system
settings. Here, we used v/c ratio to quantify the congestion
level based on Highway Capacity Manual [13]. The traffic
volume with the real-world traffic count is categorized as
the Light Traffic condition with v/c ratio as 0.35. The other
three traffic conditions are No Traffic, Moderate Traffic and
Heavy Traffic condition with v/c ratio as 0.17, 0.7 and 1,
respectively. Note that for Heavy Traffic case the actual
traffic in the network is less than the input traffic demand
in the OD matrix, as vehicles may be blocked out of the
network at the first intersection due to over-saturation. For
each simulation scenario, 10 runs were executed with a
simulation duration of 3,600 seconds. All experiments are
carried out using a computer with Intel i7 CPU with 2.80
GHz and 16 GB RAM.

IV. POWERTRAIN MODEL FOR EVS

In the energy consumption model for the electric bus
powertrain, we assume the instantaneous vehicle speed is
v and it is operating under the traction mode, then the motor
speed ω can be written as

ω = n · v (1)

where n is the “lumped” gear ratio calibrated from the real
world data.

Considering only a vehicles longitudinal motion gov-
erned by Newtons second law of motion [9], the accel-
eration of the vehicle depends on the traction/brake force,
the rolling resistance force impacted by road grade, and the
aerodynamic drag

ma = F −
(
mg sin θ + µmg cos θ +

1

2
CDρaAv

2
i

)
(2)

where m is the vehicle mass (kg), g is the gravity constant,
θ is the road slope (rad), µ is the rolling resistance
coefficient, CD is the aerodynamic drag coefficient, ρa is
the air density (kg/m3) and A is the vehicle frontal area
(m2).

The above equation also indicates the critical acceleration
rate when the vehicle is coasting (i.e. F = 0):

acoast = −g sin θ − µg cos θ − 1

2m
CDρaAv

2
i (3)

When the vehicle is under coasting or braking mode, i.e.
a ≤ acoast, we assume the fuel consumption rate is a
constant Qi which equals to the consumption rate while
idling.

When the vehicle is under traction mode a > acoast,
the traction force based on motor torque τ (in Nm) is
formulated as

F = ητn (4)

where η is the overall efficiency of powertrain. We can
derive the torque expression in the steady-state (a = 0) in
terms of speed and acceleration as:

τ =
1

ηn

(
ma+mg sin θ + µmg cos θ +

1

2
CDρaAv

2

)
(5)

The energy consumption of the electrical motor can
be derived based on the motor speed, torque and motor
efficiency map.

As an electric vehicle is capable of converting kinetic
energy into electric energy that can recharge the battery
during braking, the regenerated braking power is formu-
lated as

Wreg = τv · ηwhηfdηmotηbatt (6)

where ηwh is the wheel drive efficiency, ηfd is final drive
efficiency, ηmot is motor efficiency, and ηbatt is battery
efficiency. The efficiency map is reconstructed from a real-
world electric bus data from the Riverside Transit Agency
(RTA).

V. SIMULATION EVALUATION AND ANALYSIS

This section presents results of the default bus accelera-
tion/deceleration profile, the bus schedule calibration, and
the sensitivity analysis of the VD&PT controlled Eco-Bus
performance in terms of mobility and energy savings under
various traffic conditions.
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Fig. 3. Average acceleration and deceleration before and after calibration.

TABLE II
COMPARATIVE RESULTS ON ENERGY SAVINGS AND MOBILITY BENEFITS.

No Traffic Light Traffic Moderate Traffic Heavy Traffic

Relative Improvement on Energy Consumption 26.68 % 27.34 % 27.08 % 24.69 %
Relative Improvement on Average Speed 46.98 % 41.85 % 33.20 % 23.85 %

A. Calibration Results

The subplots of Fig. 3 compare the bus average acceler-
ation and deceleration profile over speed, before and after
performing calibration with real-world RTA bus data. It is
demonstrated that the simulated acceleration/deceleration
profile under the default bus characteristics in Vissim pretty
much violates the real-world conditions. After fitting the
bus characteristics settings in an iterative manner, much
more acceleration/deceleration profile can be generated
comparing to the real-world bus (see Fig. 3 (b)(c)).

Based on the RTA Route 14 time table available on [14],
we first identified the Time Points (i.e., key bus stop for
planning the schedule) that bracket our test route, which
are University @ Brockton (western) and Iowa @ Blaine
(eastern). By looking up the time table, we realized the
scheduled arrival times at these two Time Points are 07:28
a.m. and 07:48 a.m., respectively, for the simulation period
(i.e., between 07:00 a.m. and 08:00 a.m.). The bus departure
time and average speed (or total route travel time) were then
calibrated to match with the associated bus schedule. Table
I summarizes the calibration results where the difference in
departure time is 10 second and the total route travel time
is off by only 1.5%, which is considered to be acceptable.

B. Energy Consumption Evaluation

The energy consumption factor (EF, energy consumption
in unit distance, KJ/mile) can be obtained by:

EF =
Σn

i=1ΣTi
t=1energyi,t

Σn
i=1ΣTi

t=1VMTi,t
(7)

where energyi,t is the energy consumption rate for vehicle
i at time t, in KJ, and VMTi,t is the vehicle miles traveled
for vehicle i at time zt.

The boxplot and error bars of the average energy con-
sumption of baseline bus and Integrated Vehicle-Powertrain
Eco-bus (VPEO-bus) over different traffic congestion levels
are shown in Fig. 4(a). It illustrates the average energy con-
sumption of the VPEO-bus are 878 KJ/mile, 881 KJ/mile,
887 KJ/mile and 942 KJ/mile under no traffic, light traffic,
moderate traffic and heavy traffic condition, respectively.
However, the average energy consumption of the baseline
bus are all above 1200 under different traffic conditions.
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Fig. 4. Comparative results of at various traffic conditions: (a) the average
energy consumption and (b) the average speed.

C. Mobility Analysis

The mobility benefits are quantified by average travel
time and average speed of vehicle, provided as

v̄ =
Σn

i=1ΣTi
t=1VMTi,t

Σn
i=1ΣTi

t=1V HTi,t
(8)

VMTi,t = vehicle miles traveled for vehicle i at time t,
V HTi,t = vehicle hours traveled for vehicle i at time t.

According to Fig. 4(b), as the traffic congestion level
increases, average speed of the Eco-bus is decreasing with
a larger variance. Overall, the average speed of Eco-bus is
higher than the baseline bus with higher mobility benefits
when traffic condition is lighter.

D. Improvements

Based on the prior analysis, the percentage improvements
of mobility and energy efficiency of the Eco-bus under
VD&PT control are demonstrated in TABLE. II. It is
not surprising to observe that the relative improvement
on vehicle average speed is increased the most under
No Traffic condition with 46.98%, and this improvement
would decrease with the traffic condition getting intensified,
reducing to only 23.85% in the Heavy Traffic condition.
On the contrary, the improvement on energy saving is kept
within a stable range of around 24% to 27%, showcasing
the its robust performance and good adaptability under all
traffic conditions.

VI. CONCLUSION

This paper proposes an advanced simulation framework
of the integrated vehicle/powertrain eco-operation system
for Eco-bus by co-optimizing VD&PT controls. The com-
prehensive results under different traffic scenarios showcase
the superiority of the proposed Eco-bus simulation frame-
work compared to a conventional bus, particularly in terms
of increased mobility and energy efficiency.
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