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New Approaches Indicate Constant Viral Diversity despite Shifts in
Assemblage Structure in an Australian Hypersaline Lake

Joanne B. Emerson,a* Brian C. Thomas,a Karen Andrade,b Karla B. Heidelberg,c Jillian F. Banfielda,b

Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USAa; Department of Environmental Science, Policy, and Management,
University of California, Berkeley, Berkeley, California, USAb; Department of Biological Sciences, University of Southern California, Los Angeles, California, USAc

It is widely stated that viruses represent the most significant source of biodiversity on Earth, yet characterizing the diversity of
viral assemblages in natural systems remains difficult. Viral diversity studies are challenging because viruses lack universally
present, phylogenetically informative genes. Here, we developed an approach to estimate viral diversity using a series of func-
tional and novel conserved genes. This approach provides direct estimates of viral assemblage diversity while retaining resolu-
tion at the level of individual viral populations in a natural system. We characterized viral assemblages in eight samples from
hypersaline Lake Tyrrell (LT), Victoria, Australia, using 39,636 viral contigs. We defined viral operational taxonomic units
(OTUs) in two ways. First, we used genes with three different functional predictions that were abundantly represented in the
data set. Second, we clustered proteins of unknown function based on sequence similarity, and we chose genes represented by
three clusters with numerous members to define OTUs. In combination, diversity metrics indicated between 412 and 735 sam-
pled populations, and the number of populations remained relatively constant across samples. We determined the relative repre-
sentation of each viral OTU in each sample and found that viral assemblage structures correlate with salinity and solution chem-
istry. LT viral assemblages were near-replicates from the same site sampled a few days apart but differed significantly on other
spatial and temporal scales. The OTU definition approach proposed here paves the way for metagenomics-based analyses of viral
assemblages using ecological models previously applied to bacteria and archaea.

Viruses are abundant and ubiquitous, and they influence nutri-
ent cycling, host evolution, and community structure (1). De-

spite an appreciation for their enormous diversity, viruses are the
least well characterized biological entities (2). All-inclusive molec-
ular surveys commonly applied to microbial systems are not pos-
sible for viruses, owing to the lack of a universal marker gene, so
other techniques have been employed to characterize the diversity
and dynamics of viral assemblages. For example, viral counts and
pulsed-field gel electrophoresis (PFGE) have demonstrated sea-
sonal shifts in viral abundance and genome size diversity in Ches-
apeake Bay sediments and surface waters (3, 4). The amplification
of target genes known to be conserved within specific viral groups
has shown, for example, that single-stranded DNA (ssDNA) viral
diversity generally changes on a time scale of months in marine
systems (5), that cyanophage genetic diversity varied over 3 years
in marine coastal waters (6), and that marine myoviral assem-
blages near the coast of California exhibited seasonal dynamics
(7). However, the inherently high conservation of some genes
chosen for such surveys may limit the extent to which ecologically
relevant parameters, such as host range or habitat, can be corre-
lated with viral biogeography and dynamics (8). In addition, the
biggest limitations of such studies are amplification biases that
may preclude accurate representation of natural abundances (9)
and the fact that these analyses can only be used to estimate the
diversity of relatively small groups of known viruses.

Statistical modeling of assembly success, developed for analy-
ses of Sanger viral metagenomic data (10, 11), has been used to
estimate the structure and alpha- and beta-diversity of viral as-
semblages from metagenomic data. However, given that the algo-
rithm uses a relatively computationally intensive overlap-layout-
consensus assembly approach, it is not designed to handle the
large data sets generated from new sequencing technologies (par-
ticularly Illumina). The models also require average genome size

as input, which can be estimated from another model (12) but
cannot be directly assessed. Most importantly, without a means to
more directly estimate viral assemblage diversity, it is impossible
to validate the models. For the relatively small portion of viral
metagenomic data with similarity to sequences in public databases
(2), BLAST searches have been used to infer taxonomy and/or
generate functional predictions, which can then be used to com-
pare samples, estimate richness, and/or estimate functional diver-
sity (13, 14). However, many such studies rely on analyses of short
reads that can potentially yield inaccurate BLAST results (15, 16),
and our previous work showed that BLAST searches from single
reads can result in false-positive identification of viral types (17).
One recently reported approach, based on protein clustering, of-
fers the potential for quantitative comparisons of viral functional
diversity from metagenomic data (18, 19). However, since this
approach is based on protein sequences, it cannot resolve popu-
lations at the nucleotide level, so a complementary approach with
resolution at the level of viral operational taxonomic units
(OTUs) is necessary.

Hypersaline environments are ideal model systems for study-
ing viral assemblages, because geochemical conditions remain rel-
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atively constant, and the community is strictly microbial, elimi-
nating complex interactions with higher (metazoan) trophic
levels. Many studies of haloviral isolates and assemblages have
been conducted previously (reviewed in references 20 to 23),
showing, for example, a decrease in the diversity and an increase in
the abundance of viruses with increasing salinity (24, 25). Previ-
ously, we tracked 35 complete and near-complete virus and virus-
like genomes in hypersaline Lake Tyrrell (LT), Victoria, Australia,
and we showed that most populations were stable over days but
dynamic over years (17). Here, we comprehensively investigated
the diversity, genetic composition, and dynamics of LT viral as-
semblages (hundreds of populations, relative to 35 in our previous
analysis of the same samples). We developed new methods for
characterizing and comparing viral assemblages of unknown phy-
logeny and genetic composition, including the identification of
common genes to represent OTUs, and we investigated the influ-
ence of environmental parameters on LT viral assemblage com-
position.

MATERIALS AND METHODS
LT sample collection and DNA extraction, sequencing, and assembly.
As described previously, eight viral concentrates were recovered from
10-liter surface water samples collected from hypersaline Lake Tyrrell
(LT), Victoria, Australia, from two sites (A and B) between 2007 and 2010
(Table 1 and reference 17). Sampling, DNA extraction, and sequencing
methods were described previously (17, 26–28). Briefly, water samples
were sequentially filtered through 3.0-, 0.8-, and 0.1-�m polyethersulfone
filters, and filtrates that had been put through 0.1-�m filters were concen-
trated through tangential flow filtration for virome recovery.

In this study, we use the same eight viral concentrate libraries and
assemblies from our previous publication (17), and we expand our anal-
yses to include all contigs � 500 bp (39,636 contigs, relative to 35 contigs
analyzed previously). Assembly parameters and assembly verification
were discussed in detail in reference 17, but briefly, 454-sequenced sam-
ples were assembled with Newbler (29) (samples 2010Bt1 and 2010Bt4),
and two assemblers were tested on each of the Illumina-sequenced sam-
ples, with the best assembly chosen for each sample (briefly, the best
assembly retained a balance between a large number of long contigs and
relatively uniform coverage depth across contigs, as described in detail in
reference 17). Samples 2007At1, 2007At2, 2010Bt2, 2010Bt4, and 2010A
were assembled with ABySS (30), and sample 2009B was assembled with
Velvet (31). Because fragment recruitment to all assemblies was used for
each sample (see below), differences in assembly parameters should not

significantly affect the results. Unless otherwise noted, all analyses beyond
assembly, beginning with pulling contigs � 500 bp, are new and specific to
this study. Sequencing reads were uploaded to GenBank previously (Bio-
Project identification [ID] PRJNA81851), and the 30,525 gene sequences
from the current analysis (described shortly) are available through
MG-RAST (ID 4529512.3) (32).

Statistical analyses. Unless otherwise noted, statistical analyses were
performed in the R programming language, and the software functions
mentioned for each analysis (i.e., anosim, hclust, bioenv, mantel, and
rarefy) are part of the vegan package (33). Unless otherwise mentioned, all
protein and nucleic acid sequence-based clustering was performed using
UCLUST version 4.2.66 (34), with identity for proteins set at 0.4 and
nucleic acids set at 0.95.

Generation of reference gene sequences and estimates of viral abun-
dance. In order to generate reference gene sequences for fragment recruit-
ment, we used Prodigal (35) to predict genes on all contigs � 500 bp. To
increase the possibility that genes present in the system would be detected
through fragment recruitment in downstream analyses, we removed all
predicted genes � 300 bp. We recognize that small viral genes would be
excluded from this analysis. We then made the gene sequences nonredun-
dant by clustering at 95% nucleotide identity, yielding 30,525 genes. For
abundance estimates, reads from each sample were recruited to these ref-
erence gene sequences, and the number of reads recruited to a given gene
in a given sample was retained as the “mapping count.” In accordance
with the cutoff used for clustering, fragment recruitment was carried out
using gsMapper (29) with a minimum of 95% nucleotide identity and an
overlap length of at least 70 bp. We chose the 95% nucleotide identity
threshold for clustering and fragment recruitment to be representative of
a viral population, based on tests across 70, 80, 90, and 95% nucleotide
identity (see supplemental material). However, we acknowledge that,
without isolates, we cannot accurately define a nucleotide threshold for a
viral population, and the threshold likely differs across genes and viral
groups. Therefore, we use the terms “population” and “OTU” loosely to
mean a group of viruses that we expect to be genetically similar, based on
high (95%) nucleotide sequence identity across a single gene.

Functional predictions and selection of signature gene groups. We
used InterProScan (36) to predict functional domains in predicted pro-
tein sequences. Additionally, all predicted protein sequences were clus-
tered at 40% amino acid identity, under the assumption that each cluster
would be likely to contain proteins of similar function. It is generally
accepted that �30% amino acid identity tends to yield robust protein
alignments and indicate similar protein function (37), and as one specific
example, �20 to 40% amino acid identity suggests similar function in
reoviruses (38). Using this as a guideline, we chose 40% as an amino acid

TABLE 1 Description of Lake Tyrrell (Victoria, Australia) samples

Sample
Sample collection
date (mo/day/yr)

Sample
collection
time Sitea

TDSb

(% [by wt])
Temp
(°C) pH

Sequencing
type

Sequencing
(Mb)

Viral richness
(no. of viral
populations
per sample)

% abundance
of the most
abundant
population

No. of populations
at 0.1% abundance
or higher

2007At1 1/23/2007 15:00 A 31 22 7.23 Illumina PE 356 502 2.3 294
2007At2 1/25/2007 15:00 A 31 28 7.09 Illumina PE 845 589 1.8 308
2009Bc 1/5/2009 7:21 B 24 18 6.86 Illumina PE 2,162 652 3.8 236

12:37 26 30 7.13
18:00 27 36 7.02

2010Bt1 1/7/2010 7:45 B 32 20 7.23 454-Ti 248 562 3.4 314
2010Bt2 1/7/2010 20:00 B 36 32 7.25 Illumina PE 425 628 2.4 294
2010Bt3 1/8/2010 8:00 B 34 21 7.2 454-Ti 239 588 2.4 336
2010Bt4 1/10/2010 0:36 B 32 33 7.16 Illumina PE 1,039 672 3.4 296
2010A 1/10/2010 12:50 A 35 37 7.05 Illumina PE 1,103 663 2.1 312
a Sites A and B are isolated pools �300 m apart.
b TDS, total dissolved solids (salinity).
c 2009B is a combination of three samples collected on the same day, pooled after DNA extraction.
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identity threshold, which is on the conservative end of these previous reports.
However, it should be noted that no reoviruses—or members of any previ-
ously recognized viral group—were detected in the LT system, and we ac-
knowledge that this cutoff does not guarantee similar function. In fact, 0.3%
of our clusters contained mixtures of predicted functions, and it is likely that
more mixtures exist in clusters of unknown function.

In lieu of a universal marker gene, seven sets of viral genes (seven
“signature gene groups”) were chosen for analyses of diversity and dy-
namics, with sequences in each signature gene group representing indi-
vidual OTUs (viral populations). Specific descriptions of each signature
gene group are given in the next two paragraphs, but in general, although
no gene is present in each viral population, we consider sequence variants
within each signature gene group to be representative of individual pop-
ulations. We chose seven signature gene groups under the assumption
that the combination of these groups would (i) maximize the number of
viruses included in community analyses and (ii) minimize biases associ-
ated with each signature gene group. In order to accomplish these goals,
we did not require all signature gene groups to be functionally or phylo-
genetically cohesive.

The first signature gene group includes all 30,525 genes from the LT
metagenomes, and as such, it is the best signature gene group for maxi-
mizing the number of viruses included. However, because there is no limit
to the number of genes from a given genome that can be present in the
30,525 genes (“all genes”) signature gene group, this group contains mul-
tiple genes per genome (up to whole genomes in some cases). The second
signature gene group includes all LT genes annotated as any type of
“methyltransferase,” including amino acid, nucleic acid, and other meth-
yltransferases. This group was chosen because methyltransferase is the
most common annotation in the data set and is therefore likely to repre-
sent a large number of viruses. Methyltransferase is also the most common
annotation in the seven complete viral genomes previously reported from
LT (17). However, we know from our previous work that some LT viral
genomes contain multiple methyltransferases, whereas others contain no
methyltransferases (there were two copies in two genomes, one copy in
two genomes, and no copies in three genomes, with an average of 6/7
methyltransferases per genome), so this group will sample some viruses
more than once and others not at all. The third and fourth signature gene
groups (concanavalin A-like glucanases/lectins, henceforth referred to as
“glucanases,” and “major capsid proteins”) were similarly defined based
on common annotation and relatively high abundance and because they
are functions likely to be associated with viruses (glucanases are predicted
to be involved in host cell binding and entry [39], while major capsid
proteins are structural components of the virion).

The final three signature gene groups were chosen as the largest clus-
ters of unknown function (clusters 261, 667, and 1435), grouped by amino
acid identity. Together with the 30,525-gene group, these three groups
were chosen in order to ensure that our OTU-based analyses were not
biased to include only viral genes with representatives in public databases.
Within each signature gene group, a threshold of 95% nucleotide similar-
ity was used to define OTUs, according to the clustering and fragment
recruitment approaches described above. The presence/absence and rela-
tive abundance of each OTU were calculated for each sample through
fragment recruitment as described above.

Hierarchical clustering. Several normalizations and transformations
were tested in order to determine the most reasonable parameters for
generating distance matrices (see the supplemental material). Based on
the results of these tests, mapping counts were normalized by gene length
(dividing the average length of all genes by a given gene length and using
that as a multiplier for all mapping counts for that gene) and by the
sequencing effort (dividing the average number of reads in all samples by
the number of reads in a given sample and using that as a multiplier for all
mapping counts for that sample). For each signature gene group, normal-
ized mapping counts for each OTU and sample are provided in the sup-
plemental material as Tables S1 to S7. We generated Bray-Curtis dissim-
ilarity matrices from the normalized mapping counts and used ANOSIM

(40) with 1,000 permutations to test for statistically significant differences
between sample groups. Samples were grouped for ANOSIM analysis by
year and location, i.e., four groups, group 2007A (two samples), 2009B
(one sample), 2010B (four samples), and 2010A (one sample). Hierarchi-
cal clusters were generated for each signature gene group, using the pro-
gram MeV (41) with a Pearson correlation and average linkage clustering.

Diversity measurements. Using the normalized mapping counts, we
calculated Shannon’s diversity index (42), Simpson’s diversity index (43),
richness (number of OTUs detected), and Pielou’s evenness (44) for LT
samples, and we ranked samples for each index and signature gene group
(Fig. 1). We also developed richness and dominance estimates based on
our data. For one estimate, we divided the total number of genes (30,525
genes) by the average number of predicted genes (74 genes) in the seven
viral genomes from our previous work (17). To generate the richness
values in Table 1, we multiplied the number of methyltransferases in each
sample by 7/6, based on the representation of methyltransferases in the
seven previously reported genomes. That calculation was also applied to
all methyltransferases in the data set to predict total richness across sam-
ples. Those calculations were not applied to any of the other signature
gene groups because of the relatively low representation (or nondetec-
tion) of the other groups in the seven sequenced LT genomes, preventing
normalization according to genomic representation. On the basis of the
relative abundance of each methyltransferase gene within each sample, we
also estimated the percent abundance of the most dominant OTU and the
number of populations at 0.1% abundance or higher in each sample (Ta-
ble 1).

Correlations with environmental data. We correlated LT viral as-
semblage structures with environmental parameters (temperature, total
dissolved solids, pH, and solution chemistry; see Table 1 and previously
reported geochemical data [17]). 2009B is a pool of DNA from three
samples collected on the same day, so we used the average of three mea-
surements for each environmental variable for that sample. Using nor-
malized mapping counts for each viral OTU, we used the bioenv function
(33) to do the following: (i) calculate a Bray-Curtis community dissimi-
larity matrix, (ii) select all possible combinations of up to 6 subsets of the
13 environmental variables, (iii) calculate a Euclidean distance matrix for
each subset of environmental variables across samples, and (iv) use Spear-
man correlations to identify the subset of environmental variables with
the best rank correlation with the viral community dissimilarity matrix.
To generate P values, we tested 1,000 permutations of the distance matrix
for environmental data, using the mantel function (33).

RESULTS
Annotation and protein cluster analyses. Methyltransferases
were the most abundant annotation in the data set, and gluca-
nases, predicted to be involved in archaeal host cell recognition
(39), were also relatively abundant (Fig. 2). Integrases, which are
common markers for temperate viruses, were relatively rare
(0.02% of LT viral concentrate reads mapped to integrases). Of the
11 largest protein clusters, 10 are of unknown function (Table 2).
However, only one large cluster had no match in the GenBank nr
database. Nine had highly significant BLAST hits to proteins of
unknown function predicted from other hypersaline systems, and
one is a putative terminase with significant BLAST hits to termi-
nases from five different haloviruses from Spain (45).

We also compared our protein clusters to existing protein clus-
ters reported in an analysis of Pacific Ocean Virome (POV) data,
which included protein clusters from Global Ocean Sampling
(GOS) data (46, 47), proteins from complete phage genomes, and
new clusters from POV metagenomes (18). Because the UCLUST
algorithm was updated between our LT analyses and this compar-
ison of LT and POV protein clusters, we used the updated version
(v6) (34) for the comparison. There were originally 4,238,638
clusters in the POV data set (18). To make the POV data compa-
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rable to ours, we first removed any protein sequences less than 100
amino acids in length, which reduced the number of clusters to
1,912,551. We then reclustered the sequences at 40% amino acid
identity, resulting in 637,619 POV clusters for our analysis. We
then clustered these POV clusters with our 14,927 LT protein clus-
ters (for consistency, these LT clusters were regenerated from the
original 30,525 LT protein sequences, using UCLUST v6). In total,
we generated 651,107 clusters, representing an overlap of only
1,439 clusters between the two data sets and an addition of 13,488
new clusters from LT, meaning that 90% of the LT protein clusters
are novel.

Viral assemblages across LT samples. We found significant
correlations between the structures of LT viral assemblages and
environmental factors, particularly salinity and potassium con-
centration (Table 3). Comparisons of the viral assemblages via
hierarchical clustering resulted in the same sample groupings, re-
gardless of which signature gene group was chosen to define the
OTUs (Fig. 3; see Fig. S1 in the supplemental material). Samples
from the same site and year consistently grouped together and
separately from samples collected during different years and/or
from the other site (of the two sites). Specifically, the two samples
from the 2007 2-day time series (2007At1 and 2007At2) grouped
together, as did the four samples from the 2010 4-day series
(2010Bt1 to 2010Bt4), and samples 2009B and 2010A grouped
separately from the other two groups. These groups were sup-
ported by ANOSIM analyses, which revealed high within-group
similarity (r � 0.93 to 1) and highly significant P values (�0.006)

for all signature gene groups, except for cluster 261 (r � 0.5; P
value, 0.06). Within the 2010 4-day time series at site B, the sam-
ples grouped in different orders, depending on the signature gene
group analyzed, so any patterns in viral assemblage structures on
the time scale of days could not be resolved.

The methyltransferase hierarchical cluster is representative of
hierarchical clustering analyses across signature gene groups and
is shown in Fig. 3 (clustering of other signature gene groups is
shown in Fig. S1 in the supplemental material). In addition to
relationships among viral assemblages across samples, which are
shown in the tree topology at the top of Fig. 3, the presence/ab-
sence and relative abundance of individual viral OTUs can be
inferred from each horizontal row of the heat map. Importantly,
this hierarchical cluster is a visual representation of viral assem-
blage structure that retains resolution of the behavior of individ-
ual populations. While overarching differences at the viral assem-
blage level could not be resolved on the time scale of days, as
described above, dynamics are clearly visible at the level of indi-
vidual populations on all temporal and spatial scales included in
this study (days to years, two sites separated by �300 m).

Diversity of LT viral assemblages. We calculated four univar-
iate diversity indices for each of the seven LT viral signature gene
groups and ranked samples for each index and gene group (Fig. 1).
Sample rankings were highly variable across both gene groups and
indices, and for each index, the range of values for each gene group
was different, particularly for Shannon’s diversity index (42). Few
patterns were discernible, though sample 2007At1 was consis-

All Genes Meth. Gluc. Capsids C667 C261 C1435
8.596 5.288 4.411 2.289 3.615 3.152 3.146
8.960 5.511 4.491 2.638 3.673 3.737 3.178
8.979 5.566 4.548 2.901 3.675 3.766 3.575
8.983 5.590 4.554 3.040 3.677 3.791 3.617
9.054 5.609 4.962 3.065 3.681 3.802 3.677
9.131 5.669 5.090 3.114 3.707 3.817 3.709
9.144 5.716 5.110 3.124 3.748 3.825 3.724
9.365 5.749 5.163 3.556 3.785 3.836 3.753

0.9997 0.9906 0.9654 0.8004 0.9556 0.9344 0.9196
0.9998 0.9935 0.9698 0.8496 0.9611 0.9656 0.9503
0.9995 0.9936 0.9723 0.8819 0.9633 0.9708 0.9637
0.9997 0.9938 0.9732 0.9247 0.9652 0.9712 0.9648
0.9997 0.9944 0.9989 0.9268 0.9667 0.9715 0.969
0.9998 0.9946 0.9903 0.9296 0.9668 0.9723 0.9698
0.9998 0.9948 0.9905 0.9298 0.9673 0.9738 0.9701
0.9998 0.9953 0.9908 0.9603 0.9675 0.9745 0.9705

0.8489 0.834 0.7816 0.559 0.8481 0.7607 0.7795
0.8956 0.890 0.7822 0.697 0.8754 0.9125 0.8525
0.9001 0.897 0.7907 0.711 0.8809 0.9243 0.8946
0.9008 0.900 0.8185 0.760 0.8833 0.9248 0.9096
0.9068 0.903 0.8780 0.761 0.8853 0.9267 0.9139
0.9085 0.905 0.8839 0.773 0.8909 0.9285 0.9165
0.9163 0.908 0.9040 0.809 0.8976 0.9293 0.9174
0.9198 0.917 0.9305 0.849 0.9028 0.9296 0.9261

18101 434 207 41 59 57 50
20900 487 259 47 60 59 53
21284 510 281 51 64 60 55
22621 510 285 56 65 62 57
23618 546 293 60 69 62 57
24991 566 317 61 69 62 59
25819 575 339 64 70 62 60
26403 583 358 66 71 63 60

2007At1
2007At2
2009B
2010Bt1
2010Bt2
2010Bt3
2010Bt4
2010A

Shannon's

Simpson's

Pielou's Evenness

Richness

0.9995
0.9997
0.9997
0.9997
0.9998
0.9998
0.9998
0.9998

FIG 1 Lake Tyrrell (LT) (located in Victoria, Australia) viral diversity index calculations and sample rankings. Viral signature gene groups are shown in columns, and
indices are shown in four horizontal blocks. The viral signature gene groups are all genes, methylases (Meth.), glucanases (Gluc.), major capsid proteins (capsids), and
protein clusters 667 (C667), 261 (C261), and 1435 (C1435). There is one calculation per sample (eight samples) per index (four indices) per viral gene group (seven
groups), and these calculations are the numbers in the table. Richness is a measure of the number of OTUs detected, and the other indices are measured according to the
references provided in the text. Colors indicate specific samples (legend on the left), ranked in ascending vertical order within each index and signature gene group.
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tently the least rich and sample 2009B was often the least diverse
and least even, despite being among the most rich. However, for
the glucanase group, sample 2009B was among the most diverse
and most even, so the significance of these trends is unclear.

Richness and dominance calculations developed specifically
for this study, as described in Materials and Methods, are in Table
1. Richness estimates ranged from 502 to 672 viral populations per
sample, and estimates of dominance (the number of OTUs at
0.1% abundance or higher) ranged from 236 to 336 per sample.
For the entire LT viral community (all samples), the all-genes
signature gene group calculation predicted 412 viral populations,
and the methyltransferase signature gene group predicted 735
populations. Together with the richness data from Table 1, this
suggests that 68 to 91% of the total viral richness that we were able
to capture across the eight samples was present in each sample. We

also used rarefaction curves from the methyltransferase signature
gene group (Fig. 4), the all-genes group (see Fig. S2a in the sup-
plemental material), and across protein clusters (Fig. S2b) to as-
sess the amount of diversity that we were able to capture across LT
samples. Curves for all samples, except for 2009B, become nearly
flat as they approach an asymptote, suggesting that we have sam-
pled most of the diversity in the LT system. 2009B is the only
pooled sample, representing three samples collected on the same
day, which could explain the difference in its rarefaction curve. It
should be noted that these analyses do not account for reads that
may belong to genes that were not assembled, so they are estimates
of the amount of diversity captured for moderate- to high-abun-
dance viral populations. Interestingly, despite the population and
assemblage dynamics just described, the diversity remained rela-
tively constant across samples (between 434 and 583 methyltrans-
ferase genes per sample, Fig. 1 and 4; also see the richness values in
Table 1).

DISCUSSION

In this study, we developed new metagenomic assembly-based
techniques for comparing viral assemblages, and we used these

FIG 2 Abundance of predicted functions in Lake Tyrrell (Victoria, Australia) viral concentrates. The most common predicted functions in Lake Tyrrell are
shown on the x axis in order of their abundance. The percentage of total genes (all 30,525 genes, including genes with no annotation) is on the y axis. Asterisks
along the x axis indicate viral signature gene groups. NTP, nucleoside triphosphate; acyl-CoA, acyl coenzyme A.

TABLE 2 Largest LT protein clusters (40% amino acid identity) and
BLAST hits

Clustera

No. of
proteins Top BLAST hit E valueb

No. of
halovirus
hitsb

667* 71 eHP-36 halovirus 2.00E�28 2
261* 63 eHP-32 halovirus 1.00E�39 6
1435* 60 eHP-36 halovirus 6.00E�77 1
214 50 eHP-36 halovirus 2.00E�40 1
342 49 eHP-36 halovirus 9.00E�72 1
271 45 eHP-36 halovirus 8.00E�83 5
369 42 Uncultured halovirus 4.00E�42 3
356 41 None N/A N/A
157 41 eHP-32 halovirus,

terminase
3.00E�71 5

210 41 eHP-36 halovirus 3.00E�68 5
24 40 eHP-36 halovirus 3.00E�80 5
a Clusters with an asterisk are also LT viral signature gene groups.
b N/A, not applicable.

TABLE 3 Correlations between LT viral community structure and
environmental factors

Viral gene group Environmental factorsa

Spearman’s
correlation
coefficient P value

All 30,525 genes TDS, pH, K, F 0.6716 0.068
Methyltransferases TDS, K, Mg, F, Br, SO4 0.7252 0.038
Glucanases TDS, temp, pH, K, F 0.5534 0.052
Capsid proteins F, Br, SO4 0.8079 0.095
a Subset of factors with the most significant correlations in bioenv analysis. TDS, total
dissolved solids (% by weight); temp, temperature (°C); SO4, sulfate concentration. The
chemical symbols (K, F, Mg, etc.) indicate the concentration of that ion in solution.
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techniques to do the following: (i) provide direct, high-resolution
estimates of viral assemblage diversity in a natural system, (ii)
provide a means of resolving and visualizing viral assemblage and
population dynamics simultaneously, (iii) correlate viral assem-
blage dynamics with environmental parameters, and (iv) identify
viral proteins of unknown function that are likely to be adapted to
hypersaline systems. The techniques that we describe for estimat-

ing diversity and comparing viromes can easily be applied to other
deeply sequenced viral metagenomes by identifying signature
gene groups from assembled data, based on common functional
annotation and protein clustering, and then counting OTUs in
each sample (e.g., through fragment recruitment to gene se-
quences). Matrices of counts of OTUs across samples can be used
for a variety of ecological analyses, including those presented in
this study. We have shown that these analyses work for a reason-
ably diverse system that contains hundreds of viral populations.
Given that there is already precedent for scaling metagenomic
assembly-based approaches to microbial systems of increasing
complexity (48, 49), we suspect that our approaches can be ap-
plied to deeply sequenced viromes across a range of ecosystems.

We identified OTUs directly from our metagenomic data,
avoiding reliance on public databases and on models that are de-
signed for much lower sequencing throughput (10). This enabled
the characterization of the diversity and dynamics of viral assem-
blages with simultaneous resolution of individual population be-
havior. This is a significant advance, as these analyses are typically
decoupled. For example, viral assemblage diversity could be esti-
mated from models or through PFGE and compared across sam-
ples, but the behavior of individual populations would be lost.
Alternatively, a specific population or group of viruses could be
followed through PCR amplification across samples, but the di-
versity and dynamics of the rest of the assemblage would be un-
known.

De novo analyses of virome functional diversity have recently
been reported through protein clusters (18, 19), and we provide a
means for increasing the resolution of these analyses. In previous
viral protein cluster analyses, each cluster represented a single
OTU (a single entity for counting), with abundances for that OTU
drawn from the number of proteins contained in the cluster. In
this study, each sequence recruited to a cluster is a separate OTU.
We achieve this by using the corresponding gene sequence for
each protein sequence and then measuring the abundance of each
gene sequence (OTU) through read recruitment. In addition to
protein clustering, read clustering has been used previously as a
measure of virome diversity (16). Relative to read clustering, our

FIG 3 Hierarchical clustering of Lake Tyrrell (Victoria, Australia) viral meth-
yltransferase OTUs. Hierarchical clustering analysis (Pearson correlation, av-
erage linkage clustering) of the relative abundances (normalized mapping
counts; scale bar at top) of LT viral methyltransferase OTUs. The samples are
clustered across the top, and methyltransferase gene sequences (OTUs) are
clustered on the left.
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FIG 4 Methyltransferase rarefaction curves. Rarefaction curves were gener-
ated, using the function “rarefy” from the vegan package in the R program-
ming language (33), using a matrix of normalized mapping counts from the
methyltransferase gene group as input (converted to integers, as required by
the program). For each sample, we display the cumulative number of new
methyltransferase genes identified, as reads were selected at random from the
matrix.
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analyses add organization into genes and OTUs to give more con-
text to the measurements, and we add longer reference sequence
lengths (�300 bp, as opposed to 100 bp) for more robust cluster-
ing and read recruitment.

We appreciate, particularly for all the genes and methyltrans-
ferase signature gene groups, that we may be counting an individ-
ual (in this case, a viral genome) more than once while using
ecological techniques that assume that each individual will be
counted only once. Where possible, we have accounted for this by
normalizing by the average number of genes (all-genes group) or
copies of methyltransferases per genome. Similarly, we acknowl-
edge that we will not be able to account for all individuals in all
signature gene analyses because not all signature genes will be
present in all viruses. We have attempted to account for this by
choosing a variety of signature gene groups and comparing results
across groups. Presumably, our most robust results are those that
are consistent across signature gene groups and are therefore likely
to represent most of the viral assemblage.

We acknowledge that metagenomic assembly algorithms are
not perfect, and our assemblies could contain errors, even after the
careful manual assembly curation that we reported previously for
these samples (17, 50, 51). However, we stress a number of points
in support of this approach. (i) Metagenomic libraries were pre-
pared without multiple-displacement amplification, reducing bi-
ases in the sequencing data prior to assembly (9, 52). (ii) Because
no reference haloviral genomes were detected in LT metag-
enomes, a de novo method for characterizing these assemblages
was required. (iii) Our assemblies were carefully manually curated
(17), and similar manual curation methods have resulted in sig-
nificant metagenomic assembly of bacteria and archaea in a vari-
ety of systems (i.e., genomes have been accurately reconstructed,
based on coverage and the presence of single-copy marker genes,
among other measures) (48, 49, 53–56). (iv) Longer reads (and, by
inference, contigs) allow for more reliable BLAST searches and
annotation (15), and the annotation supports the identification of
virus-like genes (Fig. 2). (v) Any assembly errors will be the same
across samples, because the assemblies were not directly com-
pared (reads were recruited to a nonredundant set of genes col-
lated from all assemblies), and because we are “splitting” the as-
semblies into individual genes, any contig-scale assembly errors
should be minimized.

It should be noted that we cannot rule out the possibility of a
small amount of contamination from plasmids and other free
DNA in our viral concentrate libraries, due to the lack of a DNase
treatment prior to virion lysis (a DNase treatment was attempted
but resulted in complete degradation of all DNA [17]). Through
comparisons to 16S rRNA gene sequences and known plasmid
sequences, along with searches for plasmid genes in our libraries,
we demonstrated previously that our libraries are dominated by
viruses and that any such contamination is likely to be minimal
(17). All of our viral signature gene groups are consistent with viral
sequences, and two groups (glucanases and major capsid pro-
teins) were chosen specifically because they are likely to contain
viral sequences exclusively.

Diversity and dynamics of LT viral assemblages. Persistence
of viral populations over days but variation over the 3-year study
period and between isolated pools separated by �300 m is consis-
tent with our previous report of dynamics in most virus and virus-
like populations from the same LT samples on the same temporal
and spatial scales (17). Together, these two studies indicate that

the LT viral populations that were abundant enough to assemble
into contigs � 500 bp (the cutoff for this study) tended to exhibit
similar dynamics to populations that assembled into contigs � 10
kb (the cutoff for the previous study, presumed to represent the
most abundant populations in these assemblages, given their sig-
nificant assembly). We take this to mean that viral populations of
both moderate and high abundance exhibit similar dynamics in
the LT system.

The timescales on which LT viral assemblages tended to be
stable (days) or dynamic (years) are generally consistent with pre-
vious studies of both viral and microbial communities in other
systems. For example, marine myoviruses off the California coast
exhibited both dynamics and persistence, with myoviral assem-
blages most similar during adjacent months (the shortest time
scale in the study) (7). Similarly, at a nearby site, the dominant
members of myoviral and bacterial assemblages tended to remain
dominant on the time scale of days to weeks (57). However, inter-
estingly, nearly all microbial OTUs found across 72 16S rRNA
gene amplicon samples collected over 6 years in the western Eng-
lish Channel (and many from sites throughout the global oceans)
were present in a single, very deeply sequenced sample, suggesting
that most bacterial taxa are always present but shift in relative
abundance (58, 59). This suggests that, while most LT viral pop-
ulations appear absent (below detection limits) in at least some
samples over 3 years, it is possible that they are actually present at
low abundance. Spatially, our results are consistent with a study of
32 samples from two freshwater lakes, which revealed high within-
lake similarity relative to between-lake similarity (60). We also
observed similarities at the same site (across the four 2010B as-
semblages) and differences between sites (between the 2010A and
2010B assemblages).

Since viral diversity within LT remained relatively constant
throughout the 3-year study (e.g., see the richness calculations in
Table 1), we infer that viral population and assemblage dynamics
occur over relatively short timescales (�3 years), while the total
diversity of the system remains relatively constant over time and
space. In model form, this would be conceptually similar to the
constant diversity dynamics model (61) and other similar models
(14, 62), which predict stability of viral and microbial populations
with dynamics at the subpopulation (strain) level. However, we
would change the scale to indicate constant diversity at the viral
assemblage level with dynamics at the level of individual viral pop-
ulations.

Although analyses of viral assemblage structure grouped sam-
ples collected at similar times from the same location (regardless
of which of the seven LT viral signature gene groups was used), the
four univariate diversity indices indicate that samples collected
from the same location over days have somewhat different diver-
sity levels. However, it is concerning that the diversity level rank-
ings varied, based on which signature gene group was used for the
analysis. This suggests that these widely used univariate diversity
indices (designed originally for macroecological data and more
recently applied to microbial ecological data [for example, refer-
ence 63]) may not be appropriate for comparing viral assem-
blages. This may be because the LT samples are from the same
ecosystem and have relatively constant diversity, and/or because
these indices were designed for use with phylogenetic marker
genes, which are lacking in viruses. For viruses, we are necessarily
restricted to functional genes, each of which potentially provides a
different measure of functional diversity that does not necessarily
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equate to phylogenetic diversity. To reduce potential biases asso-
ciated with analyses based on functional genes, we included a nor-
malization factor in our richness and dominance estimates, based
on the relative representation of our OTU genes in sequenced
genomes from LT. Although this correction factor can only be
used in systems from which representative whole-genome se-
quences can be reconstructed, viral genome assembly is becoming
more facile in a variety of systems through Illumina metagenomic
sequencing (17, 64).

Functional predictions in LT viral assemblages. Although
only �15% of the 30,525 genes from LT could be assigned a func-
tion, and the most abundant functional annotation (methyltrans-
ferase) represented only �2% of LT reads (Fig. 2), some infer-
ences can be made from the functional annotation. The
prevalence and diversity of glucanases in LT suggest that halovi-
ruses, probably targeting the abundant archaea (75 to 95% of the
microbial community across LT samples [65]), have evolved a
variety of surface receptors for host cell recognition (39). The
presence of a number of twin-arginine translocation (TAT) signal
sequences, which likely serve to target proteins for secretion in an
already folded state (66), suggests that haloviruses have evolved
means of ensuring that proteins rapidly folded under high intra-
cellular salt concentrations can still be embedded in or secreted
from host membranes (e.g., in preparation for the generation of
viral envelopes). The identification of relatively few capsid pro-
teins suggests either that haloviral structural genes are poorly rep-
resented in public databases and/or that such proteins are highly
conserved across diverse viral groups. In the case of the latter, we
would expect to encounter stability in major capsid proteins
across time and space in the LT system, which we did not see, so we
hypothesize that many more haloviral structural genes remain to
be discovered and therefore are likely to be good targets for future
proteomic studies. Consistent with some other studies (for in-
stance, reference 67), the relatively small number of integrases
(less than 0.02% of LT reads) suggests that temperate viruses may
not be abundant members of planktonic haloviral assemblages,
though given the novelty of LT viruses, we cannot discount the
possibility that novel integrase genes were not recognized or that
temperate viruses could be abundant under conditions not sam-
pled by this study.

Correlations between LT viral assemblages and environmen-
tal factors. Significant correlations with LT viral assemblage
structures were identified for various combinations of environ-
mental factors, with the most highly correlated factors generally
differing by viral signature gene group (Table 3). Environmental
factors may indirectly drive shifts in specific viral populations,
presumably by influencing the relative abundances of their hosts
(68, 69). It is also conceivable that some environmental factors
could directly select for different viral groups, for example, by
promoting or reducing viral decay (68, 70–72). Significant corre-
lations with LT viral assemblage structure were associated with
subtle shifts in both salinity (total dissolved solids [TDS]) and
potassium concentrations for three viral gene groups (all 30,525
genes, methyltransferases, and glucanases), consistent with previ-
ous observations across more extreme differences in salinity (25).
These observations likely reflect different adaptations of host pop-
ulations to solution chemistry, which changes with the extent of
evaporative concentration.

Conclusions. In this direct estimate of viral assemblage diver-
sity in a natural system, we show that viral assemblages in hyper-

saline Lake Tyrrell, Victoria, Australia, are diverse, containing
�412 to 735 populations at moderate-to-high abundance. Al-
though some LT viral populations were dynamic over days, viral
assemblages were generally stable at the same site over days and
dynamic over years, and viral assemblage diversity remained rel-
atively constant throughout the study. Salinity was shown to cor-
relate with viral assemblage structure, and we infer that salinity
may be a driver of host population dynamics. The techniques that
we describe for estimating diversity, comparing viromes, and de-
termining potential environmental influences on viral assem-
blages should be broadly applicable to deeply sequenced viromes
across ecosystems. In addition, we provide a means of counting
viral OTUs across samples to generate a simple data matrix that
can be used as the foundation for many ecological analyses, po-
tentially linking environmental virologists to tools from the well-
developed fields of macroecology and microbial ecology.
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