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Abstract

Purpose of Review: Technical advances have facilitated high-throughput measurements of the 

genome in the context of cardiovascular biology. These techniques bring a deluge of gargantuan 

datasets, which in turn present two fundamentally new opportunities for innovation—data 

processing and knowledge integration—toward the goal of meaningful basic and translational 

discoveries.

Recent findings: Big data, integrative analyses, and machine learning have brought cardiac 

investigations to the cutting edge of chromatin biology, not only to reveal basic principles of gene 

regulation in the heart, but also to aid in the design of targeted epigenetic therapies.

Summary: Cardiac studies using big data are only beginning to integrate the millions of recorded 

data points and the tools of machine learning are aiding this process. Future experimental design 

should take into consideration insights from existing genomic datasets, thereby focusing on 

heretofore unexplored epigenomic contributions to disease pathology.
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Introduction

Heart failure remains one of the most common causes of death [1]. The syndrome is 

characterized by a cardiac myocyte transcriptome that becomes deranged, recapitulating 

some aspects of a developmentally primitive myocyte [2]. To uncover mechanisms 
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underpinning the transcriptional disarray observed in heart failure, recent investigations have 

investigated changes in chromatin organization after cardiac insult. Structure dictates 

function in biology, so it can be instructive to consider the levels of structural regulation of 

the epigenome: chemical modifications to the sequence of DNA; posttranslational 

modification of histone octamers that comprise nucleosomes; accessibility of chromatin 

fibers composed DNA wrapped around nucleosomes, chromatin structural proteins and 

modifiers; chromatin compartmentalization; and gene localization with respect to the nuclear 

periphery (reviewed in [3]). A recurring observation in the study of gene regulation is the 

genome-wide nature of chromatin structural features—that is, reorganization of chromatin 

occurs seemingly simultaneously (from a developmental or disease perspective) at multiple 

specific locations across the genome. Precise measurement of the loci at which these 

changes occur requires genome-wide high-throughput sequencing based techniques, which 

are now widely available. However, these technical advances have led to a proliferation in 

large datasets, the biological meaning of which can be understood through close 

collaboration with data scientists and computational biologists working as equal partners in 

the experimental design and data analysis stages of research (Figure 1).

Mechanisms of Gene Regulation Revealed by Early Forays into Cardiac 

Transcriptomics

Initial work in transcriptomics laid the foundation for how we think about gene regulation in 

the heart: we now understand that thousands of genes undergo transcriptional changes with 

pathological perturbation. Each dataset came with challenges and required some creativity to 

make sense of the big data tables that, until a scientist framed a question and tested a 

hypothesis, were inert. In 2009, one lab used array-based techniques to reveal an RNA 

expression paradigm wherein the transcription of differentially expressed microRNAs with 

heart failure becomes normalized after mechanical unloading, but transcription of 

differentially expressed mRNAs does not, suggesting a distinct regulatory rubric for non-

protein coding RNA species in cardiac disease [4]. These findings were important for 

spurring the study of cardiac gene regulation forward, however they relied on array-based 

data. Early open source statistical methods to determine differentially expressed genes were 

developed for microarrays [5], and were further honed for RNA-seq approaches to examine 

both known and novel transcripts [6–9], with important considerations made to correct for 

multiple testing [10, 11]. To this end, the same lab published a 2010 RNA-seq study using 

these tools to elucidate transcriptional changes in a murine Gαq transgenic model that 

results in cardiac pathology [12]. Notably, this RNA-seq experiment detected low-abundance 

transcripts that were not detected in a side-by-side microarray comparison of the same 

samples [12]. In 2012, another group integrated mRNA and microRNA deep sequencing 

experiments in mice to reveal that the protective effect of increased PI3Kα signaling during 

cardiac hypertrophy is mediated by a decrease in TGF-β signaling and reduction miR-21 

expression, which results in less fibrosis [13]. In early 2014, the same group then performed 

deep mRNA and microRNA sequencing experiments in human hearts to understand how 

noncoding RNA signature differentiate failing vs. nonfailing hearts [14]. This study shines a 

light on long noncoding RNAs (lncRNAs) as a subset of differentially expressed RNAs 

during heart failure whose expression recovers after mechanical unloading in patients, 
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suggesting a role for noncoding RNA in shaping the regulatory logic for disease gene 

expression regimes [14]. A question that persisted during these investigations was how these 

transcripts were regulated during disease, from a chromatin structural perspective, and 

measurements were already taking place.

Chromatin as a Target in the Heart

Early studies of histone deacetylase (HDAC) inhibition led to FDA approved therapies [15], 

and their use in the heart looks promising [16]. However, to date little is known about where 

along the genome individual HDAC isoforms localize, and whether this is altered during the 

development of disease. On the other hand, histone marks themselves, have been studied by 

several labs (reviewed in [3] and examples described in the next section). Nevertheless, 

studies measuring phenotypic outcomes continue to highlight a rationale not only for casting 

a wider net to discover other chromatin players in heart failure and developing therapeutic 

modulators of chromatin structure, but also for investigating how chromatin is disrupted in 

disease. In measuring global chromatin features, big data and computation interrogation of 

datasets are essential for gaining mechanistic understanding of pathological cardiovascular 

processes.

Individual configurations of chromatin features contribute to gene regulation differently, 

depending on how entrenched they are before disease. For example, mutations in a 

noncoding region near the human PITX2 locus are associated with atrial fibrillation [17], 

and a 2019 study showed chromatin interaction between an enhancer from an orthologous 

region and the mouse Pitx2c promoter [18]. Notably, disruption of this interaction by 

deleting the enhancer—or by independent disruption of a binding site for the chromatin 

structural protein CTCF within Pitx2c—results in increased susceptibility to atrial 

fibrillation [18]. Thus, we could hypothesize that different levels of chromatin organization 

likely contribute to cardiac pathology with varying temporal and/or pathological impact. 

Accordingly, we pursue knowledge of how each level of chromatin organization fits into the 

context of the global cardiac gene regulation, with the end goal of designing better therapies 

for heart failure.

New Genomic Tools Advance the Cardiac Chromatin Field

Each level of chromatin organization, when measured with genomics approaches, reveals a 

huge breadth of biological information. As a result, initial studies examined individual 

datasets from a single type of epigenomic experiment (e.g. ChIP-seq for a given protein or 

histone mark) to make conclusions about chromatin in the heart. Early work examining 

DNA methylation shed light on gene regulation in failing hearts. In 2011, one group used a 

methylated DNA immunoprecipitation approach followed by deep sequencing and observed 

DNA methylation dynamics in the promoters of upregulated, but not in downregulated, 

genes in failing human hearts [19]. In 2016, our lab evaluated DNA methylation dynamics in 

mouse strains susceptible or resistant to isoproterenol-induced heart failure and revealed 

strain-specific methylation patterns in the basal, unstressed heart, that presaged the cardiac 

phenotype following adrenergic stress [20]. These studies distilled big datasets composed of 

millions of DNA methylation measurements to reveal a role for the DNA methylome (in 
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addition to genetic sequence) in determining susceptibility to heart failure and subsequently 

established a rationale for studying the modulation of DNA methylation as a treatment for 

heart failure. Interestingly, in 2018, a group showed that chemical inhibition of DNA 

methyltransferases blunts the cardiac hypertrophy observed with pressure overload in mice, 

suggesting that global chromatin treatment may be a therapy for heart failure, although this 

specific perturbation of chromatin did not result in widespread changes in DNA methylation 

[21].

Individual examinations of polymerase, histone mark and transcription factor occupancy in 

the genome showed modest success in understanding how transcription of diseased hearts 

becomes dysregulated after pathological stimulus. A 2013 study revealed that RNA 

Polymerase II undergoes transcriptional pause release at a subset of housekeeping genes 

modulated by pressure overload hypertrophy or de novo recruitment at “specialized genes” 

[22]. A 2015 follow-up study from the same lab highlighted TFIIB (a member of the 

preinitiation complex) as a possible therapeutic target in heart failure when they 

demonstrated that antisense oligo-mediated inhibition of TFIIB transcripts resulted in 

abolished transcription of cardiac disease genes after pressure overload [23]. As of yet, no 

one has repeated this strategy to prevent transcription of heart failure genes, but the 

technique may prove useful in future studies.

A 2013 examination of cardiac histone marks—post-translational modifications that affect 

accessibility of nucleosomes—demonstrated that enhancers are occupied by H3K27ac 

(histone 3 lysine 27 acetylation) in health and disease [24]. In 2015, another study showed 

that pressure overload induced H3K9/K14 acetylation is abrogated when mice are treated 

with the HDAC inhibitor trichostatin A, suggesting that global treatment at the chromatin 

level modulates transcriptional readouts to ameliorate cardiac pathology [25]. These studies 

defined gene regulatory landscapes in both control and pressure overloaded murine hearts 

and established a rationale for examining regulatory regions in the context of transcription 

factor binding in cardiac cells, and for examining chromatin accessibility—a direct readout 

of the possibility for transcription factor binding—in the heart.

Cardiac transcription factors are technically challenging to immunoprecipitate from 

chromatin, but they may provide clues as to which cardiac enhancers are active at a given 

developmental or pathological stage. In 2011 a cardiac gene regulation lab overcame this 

barrier by expressing biotinylated cardiac transcription factor constructs in the HL1 

cardiomyocyte cell line and performing streptavidin-based pulldowns followed by deep 

sequencing [26]. This approach revealed a subset of active enhancers that are occupied by 

multiple transcription factors independent of the enhancer associated protein p300, a newly 

identified class of cardiac enhancers [26]. In 2014, the same lab went on to establish an in 
vivo knock-in based method where they used streptavidin to pull down biotinylated GATA4 

from mouse hearts [27]. This technique built on their 2011 study and revealed distinct 

GATA4 binding sites found only in pressure overload hearts—in addition to GATA4 sites 

that are found in both banded and developing hearts—and may hold clues regarding the 

logic for transcription factor based pathological gene activation during heart failure [27]. In 

2019, the group used this in vivo biotinylated factor approach to measure occupancy of 

seven cardiac transcription factors in murine hearts, and the data suggested that there exist a 
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subset of enhancers co-occupied by multiple cardiac transcription factors that do not have 

H3K27ac binding (a marker of active enhancers) [28]. Moreover, this study demonstrated a 

higher chromatin accessibility in multi- vs. single-factor bound enhancers, suggesting that 

multi-factor bound regions are likely to be functional in the heart [28]. Taken together, this 

lab has overcome technical and conceptual challenges to examine pathological gene 

expression in the heart. Not only did the group develop a creative method to 

immunoprecipitate cardiac transcription factors, but they also generated in vivo models and 

integrated complex datasets downstream of challenging analytical pipelines to bring the field 

into a new mindset that embraces the complexity of gene regulatory programs during 

pathology. Increasingly, chromatin studies are integrating several datasets, similar to the 

example described above, to make sense of what is going on at distinct levels of chromatin 

organization in a given disease model.

Integrating Datasets: Data Gets Bigger and Biological Insights More 

Impactful

A piecemeal approach works for understanding individual components of chromatin 

organization in cardiac cells, however more recently the field has appreciated integration of a 

variety of massive datasets to more powerfully illustrate the global picture of chromatin 

organization. A challenge with epigenomics is not how many data points exist within a 

dataset, but the statistical determination of which ones are important for biological inference. 

For example, a ChIP-seq experiment requires straightforward processing of millions of reads 

to determine occupancy of an immunoprecipitated factor at thousands of loci. Although this 

is straightforward for a computer to calculate, a statistical determination of significant 

changes in occupancy requires biological replicates and clever methods to process the 

thousands of data points and to perform statistical tests within a reasonable timeframe. As 

multiple factors can be immunoprecipitated during a given investigation, including at several 

time points, the complexity of an experiment requires increasing computational 

sophistication to integrate datasets. In addition, data analysis becomes even more complex as 

orthogonal experiments are integrated into the workflow.

In the context of heart disease, measuring chromatin architecture along with other features of 

chromatin structure is as a more comprehensive method to examine the dynamic nucleus 

during heart failure, especially in tandem with a pathological stimulus that disrupts global 

chromatin architecture as a positive control for genomic disorganization. In 2017, we 

showed that chromatin structure, as measured by high throughput chromatin conformation 

capture (Hi-C), is globally disrupted with pressure overload in mice, as well as in a cardiac-

specific CTCF depletion model [29]. The chromatin structural protein CTCF is important for 

mediating stable interaction landscapes in the healthy cardiac myocyte: our study revealed 

that depletion of CTCF had a minor overall effect on genome structure, but was sufficient to 

induce pathologic gene activation and heart failure [29]. This investigation required 

generation of large chromatin interaction matrices comprised of millions of data points, 

followed by use of statistical techniques to determine which represented bona fide structural 

features. The results enabled determination of which regions of the genome physically 

interact with each other in the three-dimensional context of the nucleus, a key insight for 
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understanding gene regulation in vivo. This information was then integrated with gene 

expression and protein binding data, allowing us to distill billions of measurements into a 

comprehensible set of biologically meaningful observations. This heart failure phenotype, 

along with several of the conclusions about the changes to chromatin structure during 

pressure overload, were reproduced using similar molecular approaches but with a distinct 

CTCF depletion strategy [30].

In 2017, a Hi-C and DNA methylation study was reported in which it was shown that 

compartmentalization of the nucleus into active and inactive structural compartments occurs 

during differentiation while DNA methylation patterns take longer and are established 

slowly during development [31]. Although not chromatin structure based in nature, a 2017 

study identified two classes of enhancers in three fetal human cardiac cells types and their 

induced pluripotent cell counterparts: one class with H3K4me1 and H3K4me3 deposition in 

all cell types, and another with cell-specific histone mark deposition [32]. This study showed 

a utility in studying chromatin interactions between distal regulatory regions and gene 

promoters in the future, because most genetic variation associated with disease in humans 

occurs in non-coding regions and thus may be regulatory in nature. To understand single 

nucleotide polymorphisms (SNPs) associated with cardiovascular disease, which are 

typically localized to non-coding regions, one lab published a 2018 promoter capture Hi-C 

experiment that demonstrates physical contact of ~2000 disease associated SNPs to 

hundreds of genes along the genome of human induced pluripotent stem cell derived cardiac 

myocytes [33]. The integration of chromatin structural data with SNP data was a powerful 

approach to reveal that the majority of SNP-gene interactions (greater than 90%) do not 

occur with the closest gene to a given SNP [33].

An innovative approach to recover endogenous structural information from epigenomic 

experiments involves 3D chromatin modeling using Hi-C contacts, which employs statistical 

learning techniques to optimize 3D positioning of pairwise contacts [34]. This technique 

contextualizes pairwise interactions into a 3D reconstruction of genomic structure, which 

can provide clues about chromatin structural regulation beyond the 2D maps generated from 

traditional Hi-C analyses. In 2018, we collaborated with the Alber lab to generate 3D 

models from cardiac myocytes and liver cells and demonstrated distinct chromatin structural 

strategies underlying organ-specific gene expression patterns [35]. This class of modeling is 

powerful because it takes pairwise contact data from a population of cells, uses statistical 

methods to predict thousands of structures that would likely occur within single cells, and 

then allows for prediction of how chromatin is organized in a cell population. In our study, 

we investigated relative radial positioning of cardiac and liver specific genes within the 

nucleus, as well as interchromosomal chromatin interactions, to understand the chromatin 

structural logic underlying organ-specific transcription [35]. Such an approach helps drive 

hypothesis generation within cardiac biology and can easily be applied to other organ 

systems. For example, during pathology down-regulated genes might be pushed towards the 

nuclear periphery or heterochromatin centers (as has been shown in microscopy experiments 

[36]), regions associated with inactivation. Access to a 3D model of the entire genome 

allows for direct testing of this phenomenon across all genes—an exercise that would be 

presently impossible with microscopy approaches.
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Machine Learning in Cardiac Chromatin

The field of machine learning is vast, with innumerable discoveries and algorithmic 

improvements being made each year. A major utility of machine learning over manual 

statistical methods is the leveraging of computational mathematics to perform three types of 

tasks with minimal interference from humans: supervised, unsupervised, and reinforcement 

learning [37]. During supervised learning, input vectors and their outcomes from a training 

dataset are used to perform classification or regression techniques on new input data [37]. 

For example, a clinical data vector can be used to predict whether a new patient has heart 

failure using a model built from clinical data and outcomes from thousands of previous 

patients. Unsupervised learning allows for pattern recognition via clustering, density 

estimation, and/or dimensionality reduction [37]. For instance, patterns indicative of a 

pathological state could be mathematically untangled from a series of epigenomic or other 

large datasets, after using unsupervised clustering techniques on the datasets from healthy 

and sick patients. Reinforcement learning makes use of a positive and negative reward 

system to optimize an outcome without knowing what it should look like a priori [37]. An 

example of this would be an algorithm learning to beat an expert player at chess.

Some of the most cutting-edge cardiac machine learning work is being done with a clinical 

measurement used daily by the cardiologist: the electrocardiogram (ECG). A 2019 study 

used a deep learning approach to classify 12 subsets of cardiac rhythm using single-lead 

ECGs from over 53,000 patients [38]. The astounding conclusion was that the F1 score, a 

readout of the precision and recall, for their classifier was better than the one calculated 

using annotations from board certified cardiologists [38]. Notably, this study had high 

patient enrollment, which allowed for an adequate training set and a separate cohort as a test 

set. Altogether, this machine learning approach could impact the clinic by helping healthcare 

providers prioritize certain classes arrhythmias over others or by detecting potentially life-

threatening ones faster than currently available technologies.

Computational investigators tend to deposit their work on preprint servers—internet 

databases of unpublished work—before sending manuscripts to journals so that the world 

can evaluate studies in tandem with reviewers. Platforms such as arXiv, bioRxiv, medRxiv, 

and ChemRxiv are useful for dissemination of scientific work and for nucleation of scientific 

discussion in their respective fields (Table 1). Despite the utility of preprint servers, 

uploaded manuscripts must be taken with a grain of salt since preprints are not yet evaluated 

by expert reviewers (discussed in the cardiovascular context in [39]), although online 

discussion of cutting-edge work has brough a novel speed to incorporation of new datasets 

into experimental workflows and has fostered more open communication between 

investigators.

One example of the utility of machine learning in chromatin is a 2013 single author 

publication by Steve Horvath that describes a statistical model to predict biological age 

using DNA methylation status of cytosines across the genome [40]. This investigation 

revealed that “DNA methylation age”, or biological age as predicted by epigenomic features 

from the model, becomes accelerated in cancer [40]. In other words, predicted DNA 

methylation age is significantly higher than actual chronological age in cancer samples [40]. 
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Although the original model building did not test cardiac hypotheses, a follow up study from 

2016 showed no relationship between epigenetic age and coronary heart disease incidence 

[41], suggesting that coronary heart disease may have other epigenetic markers—

independent of DNA methylation-based epigenetic age—that predict disease incidence. In 

2019, Horvath used data from the Framingham Heart Study [42] to refine his epigenetic 

aging models and predict lifespan (a unit called GrimAge) and age acceleration 

(AgeAccelGrim), in addition to seven DNA methylation based surrogate biomarkers such as 

a smoking pack years [43]. Strikingly, in a validation dataset made up of diverse patient 

cohorts, predicted age acceleration and several surrogate biomarkers including smoking pack 

years are predictive of time-to-coronary heart disease [43], which illustrates the power of 

statistical learning in evaluating cardiovascular health. Another study that shed light on the 

diagnostic potential of machine learning in the cardiac field was a 2018 examination of 

genotype and cytosine methylation to predict five year incidence of coronary heart disease 

[44]. In this investigation, authors used a random forest approach (a task that makes use of 

many decision trees to optimize a set of candidate predictors that do not necessarily need to 

have a linear relationship) [45] to discover 4 genetic loci and 4 cytosines whose respective 

genotype and methylation status together predict coronary heart disease [44]. The training 

and test datasets for this retrospective study consisted of 1180 and 524 individuals, 

respectively, and while the model performs well on a large sample size, it relies on published 

data [44]. A more powerful future approach would be to perform a prospective study, 

enrolling thousands of patients and measuring their genotype and DNA methylation status to 

determine whether this strategy can work in a predictive manner.

An elephant in the room of computational biology is that machine learning techniques 

require sufficient sample size to perform model training and subsequent testing. Low n 
results in poor model performance on new datasets, typically due to overfitting. The above-

mentioned studies used thousands of patients in their experimental workflow, however 

sometimes this is not a possibility in the basic research realm. Despite this, in the cardiac 

chromatin field, millions of measurements can be made in thousands of cells during a given 

sequencing experiment, and these cells could comprise a large enough n to produce training 

and test datasets for machine learning applications.

Cellular diversity in the heart is now being quantitatively deciphered during cardiac 

genomics investigations. In 2017, one group performed RNA-seq on four FACS-sorted cell 

types from healthy and infarcted hearts and revealed that adult cardiac myocytes and 

endothelial cells do not revert to a “fetal-like” transcriptional program after myocardial 

infarction, but that fibroblasts and leukocytes do [46]. This investigation addressed cell type 

heterogeneity in the heart by examining a sorted, pre-defined subset of cell types, yet other 

cell types were missing in addition to any assessment of cell-to-cell variability. To address 

this, single-cell sequencing approaches—although not machine learning per se—use 

advanced dimensionality reduction and statistical classification techniques to garner insights 

about cellular diversity in the heart. In 2017, a single-cell RNA-seq experiment from mouse 

and human left ventricles showed that distinct subpopulations of cardiac myocytes undergo 

different transcriptional regulation with heart failure, and that long intergenic noncoding 

RNAs may play a role in the regulatory landscape engendered by pathological processes 

[47]. This approach relied on weighted gene correlation network analysis [48] and 
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traditional principal component analysis for dimensionality reduction [47]. A single-cell 

strategy provides advantages over bulk sequencing techniques because it reveals the extent 

of differential gene expression across a cell type within an organ. To help with this 

determination, a relatively new machine learning technique that is gaining popularity in the 

genomics realm is t-SNE, or t-distributed stochastic neighbor embedding [49]. This 

nonlinear dimensionality reduction technique condenses high dimensional data into two 

dimensions and works well for data interpretation across many disciplines. The utility of the 

technique is that it provides two-dimensional visualization of sample clusters, meaning one 

could use this strategy to tease out a transcriptional behavior within a subpopulation of cells 

in a visually comprehensible manner [50]. In 2018, a single-cell RNA-seq study in mice 

used t-SNE as part of a bioinformatics toolkit to reveal cytoskeleton associated protein 4 as a 

previously unknown activated fibroblast marker [51]. UMAP, or Uniform Manifold 

Approximation and Projection, is a more powerful dimensionality reduction technique for 

single cell experiments because it outperforms t-SNE with larger datasets while preserving 

global dataset structure, thereby allowing visual comparison between clusters on a lower 

dimensional space [52]. A 2019 study used UMAP to reduce the dimensionality of a single 

cell RNA-seq experiment measuring dissected cardiogenic regions from three stages of 

mouse embryonic development with the end goal of better understanding the subpopulation 

structures of mesodermal and neural crest cells over time [53]. Notably, t-SNE and UMAP 

are easily deployable on transcriptomic data via a variety of software resources such as 

updated versions of Monocle [54], CellRanger [55] and Seurat [56, 57] which all make 

single-cell data analysis accessible to dry lab novices and experts alike. These and other 

useful tools for computational biology are outlined in Table 2.

In 2019, one lab combined single-cell RNA-seq, ATAC-seq (a measure of chromatin 

accessibility in the heart using high-throughput sequencing), and ChIP-seq of three 

transcription factors to build a machine learning model that predicts which transcription 

factors are important for early fibroblast reprogramming into cardiac myocytes [58]. Also in 

2019, another group published their single-cell RNA-seq on CD45+ cells from sham and 

pressure overloaded mouse hearts and garnered a new appreciation for the diversity of 

immune cell types that become activated during heart disease—it was far more cell types 

than previously thought [59]. In 2020, a single-nucleus RNA-seq study of almost 300,000 

nuclei demonstrated between-chamber and sex differences of transcriptional programs in the 

human heart [60]. Another examination of single-cell and -nucleus RNA-seq data from adult 

human heart revealed 5 respective subpopulations of ventricular and atrial cardiac myocytes, 

in addition to subpopulations of fibroblasts, immune, and vascular cells, among other cell 

types [61]. A single-nucleus and -cell RNA-seq study of fetal gene expression revealed 77 

cell types across human fetal tissues (including the heart), 54 of which exist in only one 

organ [62]. In addition to common cell type markers, this investigation used unbiased 

statistical approaches to identify novel cell type markers, which will enable biological roles 

of these cells to be interrogated in future [62]. Importantly, these datasets serve as resources 

for understanding the landscape of druggable targets given the cell type diversity in human 

cardiac biology. Taken together, single-cell sequencing approaches have provided ample data 

for deployment of machine learning approaches, and investigation of single cells after 
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pathological stimulus will continue revealing the extent to which gene regulatory 

environments in distinct cell types work together or antagonistically during disease.

Conclusions and Future Directions

Making use of established datasets to integrate published information with new 

measurements will help investigators to paint a more comprehensive picture of chromatin in 

disease. A goal for computational biology is near real-time integration of epigenomic 

datasets, independent of the lab in which they were acquired—similar to a blood pressure 

measurement, ECG or troponin test. Furthermore, modeling of epigenomes needs to become 

dynamic, taking into account cell-to-cell variability and changes over time due to normal 

physiological development or pathologic stimuli. Probabilistic modeling and machine 

learning can facilitate such model building, while also identifying (and quantifying) 

previously unrecognized emergent properties in chromatin that correspond to changes in 

heart health. For example, a 3D representation of the genome may reveal a structural or 

accessibility feature corresponding to health or disease that cannot be identified by any 

single epigenomic measurement alone. Such approaches can advance basic biology as well 

as our understanding of disease.

We advocate for incorporation of wet and dry lab training components to training regimens 

to foster the cultivation of more diverse technical repertoires. Data mining and new dataset 

generation will shape how we answer chromatin questions in the coming years. Importantly, 

understanding how computers solve problems (differently from the way humans do), and 

how to frame questions computationally, will foment a shared vocabulary that brings 

projects to completion. Team members need not have all the big data skills, but a 

collaborative environment is key to success in large-scale epigenomic investigations. The 

QCBio Collaboratory at UCLA stands out as an exemplary resource that provides training to 

non-programmers and offers collaboration to answer biological questions [63]. Moreover, 

the Collaboratory advocates for use of open source tools, which makes genomics datasets 

accessible to the lay scientist. Many bioinformatics tools already exist—and others will be 

developed to usher in new understanding—but fundamental knowledge of how computers 

work and how to answer questions with big data will continue to empower scientists to test 

the most meaningful hypotheses with the appropriate tools to reveal novel insights about 

cardiac biology.
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Figure 1. Strategies to examine gene regulation in the heart.
The utility of bioinformatics approaches to understand cardiac gene regulation comes from 

incorporation of data from: epigenomic measurements linked to phenotype (pink) to shed 

light on one aspect of the nucleus; data integration and modeling tools to paint a more 

comprehensive picture of distinct gene regulatory levels (green); incorporation of published 

data and non-genomics techniques (yellow); and machine learning approaches (orange) to 

understand which genomic features predict cardiac pathology.
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Table 1.

Overview of common preprint servers in biomedical sciences

Server Subfield Website

arXiv Physics, Math, Computer Science, Economics arxiv.org

bioRxiv Biology biorxiv.org

medRxiv Health Sciences medrxiv.org

ChemRxiv Chemistry chemrxiv.org

Dissemination of scientific discoveries occurs at a fast pace. Preprint servers are increasingly popular because they offer an opportunity to share 
manuscripts before acceptance into peer reviewed journals. A caveat of preprints is their lack of peer review, and a layperson may not possess the 
skillset to evaluate them. Contrastingly, preprint servers provide new data to researchers to move fields forward without the delay of peer review. 
Corresponding authors individually decide whether to upload unpublished work to these servers.
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Table 2.

Selected software packages for epigenomics research

Software Utility Reference

bedtools Operations (e.g., overlap analysis) on genomic features [64]

CellRanger Single-cell RNA-seq tool maintained by 10X Genomics [55]

Cufflinks Classic RNA-seq tool for quantifying transcripts [6]

DESeq2 Robust differential expression analysis software [9]

DiffBind Differential occupancy analysis for ChIP-seq, ATAC-seq [65]

HiCExplorer Galaxy-based web server for analyzing Hi-C data [66]

HiC-Pro Strong pipeline for analyzing Hi-C data [67]

Monocle Single-cell RNA-seq analysis package [54]

PGS 3D genome modeling from Hi-C data [34]

scikit-learn Machine learning library for Python users [68]

Seurat Single-cell RNA-seq analysis package [56, 57]
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