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Abstract

Forwarding and Routing Algorithms for Information Centric and Mobile Ad hoc

Networks

by

Maziar Mirzazad Barijough

It has been shown that the current Internet architecture is not well suited to

current and emerging traffic demands. Many content distribution technologies such

as content delivery networks (CDN), and peer-to-peer systems have emerged to al-

low content access by name rather than server location or address. Furthermore, to

respond to the increasing volumes of traffic for such applications as video on demand

and cloud computing, many efforts have been undertaken to enable caching, content

replication, and processing within the network. Such technologies are highly depen-

dent on the distribution channel and perform as an overlay on the current Internet

architecture, which results in a number of inefficiencies.

Information Centric Network (ICN) architectures have been proposed as an

alternative to the current Internet architecture. The focus of ICN architectures is on

caching, replicating, and distributing data by name, independently of their locations.

In this dissertation, the most popular ICN architectures, Named Data Net-

working (NDN) and Content-Centric Networking (CCNx) are evaluated and problems

of such designs in different aspects such as caching, forwarding, and security are in-

troduced. To address the weaknesses of these architectures, we propose a new ICN

viii



architectures and compare it with NDN and CCNx using simulation experiments.

The results of these experiments show that the proposed new architectures improve

network performance in terms of loop detection, forwarding table size, routing table

size, processing overhead, and scalability.

Although the aggregation of packets which is used in some ICN architectures

might not be very helpful in presence of in-network caching, we show that it can be

highly effective where the amount of signaling overhead plays a major role in the

performance of the protocol. We propose a new routing algorithm for mobile ad hoc

networks, called ADARA, which improves the performance of on-demand routing

protocols by aggregating route request packets. Results indicate that aggregating

route requests can make on-demand routing more efficient than existing proactive or

on-demand routing protocols.

ix



To the love of my life Sara,

To my amazing parents Leili and Ismaeil,

To my magnificent sisters Saharnaz and Sanam.

x



Acknowledgments

I would like to send my special thanks to Prof. JJ, Garcia-Luna-Aceves, for trusting me

and giving me the unrivaled opportunity to work with him as a PhD student. His extreme

support, guidance and encouragement, made this journey a lot easier for me. JJ’s deep

insight and knowledge helped me at every stage of my research and PhD and his sense of

humor gave an amazing energy to continue the path I started. It was a pleasure to work

with such a smart, motivated, passionate and knowledgeable person. Muchsimas Gracias!

I would like to also thank Prof. Katia Obracazka and Prof. Brad Smith, for participating

in my dissertation committee and for their helpful advise and feedback.

Also I would like to thank Prof. Djamshid Tavangarian, Dave Oran, and Zbigniew Sufleta

who helped me with their extraordinary guidance and support during my education and

career.

I thank my fellow labmates and friends in Computer Communication Research Group

(CCRG), Ehsan Hemmati, Turhan Karadeniz, Spencer Sevilla, and James Mathewson,

who have been very kind and helpful during my years of PhD.

I would also like to thank my parents Leili, Ismaeil, and my sisters Saharnaz, Sanam for

their love, support and encouragement.

Most of all I would like to thank my amazing wife, Sara, for her unconditional support and

patience.

xi



Chapter 1

Introduction

Information Centric Networks (ICN) initially introduced by Van Jacobson [14] to

address the current Internet traffic requirements. The goal of ICN architecture is to address

content distribution and delivery opposed to host-to-host communication done by IP. Also

in Information Centric Network, content are requested by their names rather than their

address or location.

Information Centric Networks has gained attention of many Internet and Networking re-

searchers and many projects have been defined to address different aspects of such networks.

In-network caching is one of the most important features of ICNs. In these net-

works, all of the routers are capable of caching content to satisfy users demand using local

cache, instead of fetching data from the main producer. Storing contents in limited sized

caches in different nodes efficiently to improved performance is the main goal of research in

this field.

Routing is another aspect which is different in Information Centric Networks compared to

1



IP world. In ICNs, routing is done based on Data object Names, not addresses and packets

are sent on a hop-by-hop basis rather than end-to-end conversation. Populating routing ta-

bles to address replicas of content with different names and maintaining a scalable routing

table is the main issue in this context. Furthermore, hop-by-hop forwarding of data pack-

ets using routing tables and making decision to choose between different paths to address

looping problem, load balancing, efficiency, and etc is one of the major research agendas.

Congestion Avoidance and Control problem in Information Centric Networks is very differ-

ent compared to IP networks. In ICNs, congestion control, load balancing, rate control, and

etc can be done in a hop-by-hop basis rather than end-to-end which makes it more efficient

compared to end-to-end congestion control.

In this thesis we evaluate different aspects of current ICN architectures along with

protocols defined to perform on them. We show that, current architectures and proto-

cols, face different problems in specific situations. To address such problems, we introduce

new architecture and protocols that perform much better in different aspects, compared to

current methods.

In section 2, we present different architectural proposals made in literature for

information Centric Networks. Problems with current forwarding strategies are discussed

in chapter 3 and our proposal, SIFAH for correct forwarded strategy is presented later.

In chapter 4 we evaluate advantages and disadvantages of Pending Interest Tables using

simulation, and propose a different architecture to perform the same tasks with much higher

efficiency. In chapter 5 we propose CCN-GRAM, an interest based forwarding strategy

which uses anonymous datagrams for interest and data messages.

2



In chapter 6 we present an efficient interest based multicasting strategy based

on Datagram Content Centric Networking approach, which doesn’t maintain per interest

forwarding state in forwarding tables. In chapter 7 we propose CCN-RAMP, an architecture

based on CCN-GRAM which enables higher performance at Internet Scale by integrating

name resolution and routing. An On-demand routing protocol for Mobile Ad hoc networks

in proposed in chapter 8, which improves performance of routing protocols by reduces

signaling overhead mainly by aggregating the route requests .

3



Chapter 2

Related Works

In recent years many architectures have been proposed for Information Centric

Networks which were pioneered by Translating Relaying Internet Architecture integrating

Active Directories (TRAID) project [129]. Named Data Networking [17] and Content Cen-

tric Networking [14] are two of the most popular ones. In next section we are going to

briefly discuss some of the architectures and their forwarding strategies.

2.1 Directed Diffusion for Sensor Networks

Directed diffusion is probably the first data centric architecture, proposed by C.

Intanagowiwat and et. al. for wireless sensor networks [13]. As shown in figure 2.1 [13], in

this architecture, a sink node sends a request for a task, called interest packet toward the

source node. The interest packet is leaves breadcrumbs in the cache of every hop that it

traverse while being propagated to the source node. When node receives an interest packet,

it adds an entry in the cache or updates an existing entry. An existing entry indicates that a

4



similar interest has already traversed this node and probably has been propagated. Current

node may decide to propagate such interest to all or subset or none of the neighbors based

on cache entry. By receiving the interest packet, source node will perform the task and

send the data packets toward the sink node, using the breadcrumbs. A node that receives

the data, will check the cache for entry of the interest. If no such entry exists, it will drop

the data packet. If such entry exists, it will check the data cache. Existence of same data

in the data cache, can be an indication of loop in data path.

Figure 2.1: Data Propagation in Directed Diffusion [13]

2.2 Data Oriented Network Architecture

The Data Oriented Network Architecture (DONA) proposed by Koponen, et al.

[8], is a clean-slate redesign of Internet naming and name resolution. As shown in figure

2.2 [8], DONA includes a flat naming system with a hierarchical name resolution: Content

names in DONA are in the form of P:L in which P is the globally unique principal field, which

is the hash of publisher’s public key. Publisher and cache nodes, register to the resolution

infrastructure which consists of Resolution Handlers (RHs). Each RH table includes entries

5



with three fields of name, next hop and hop count. Each entry points to the next hop toward

the publisher of the requested name. These tables are filled by REGISTER messages that

are generated by publisher nodes. When a RH receives a REGISTER message, it either

creates new entry in the RH or updates the existing entry in case the REGISTER message

introduces a shorter distance to the content. After updating the table the RH will forward

the REGISTER message to the parent RH, until the content is registered in the root RH.

Request for content are sent by consumers in the form of FIND packets toward the RH that

has the path to the content. When a RH receive a FIND message, it will lookup the table,

in case there is a route toward that name, the FIND message is sent to the next hop RH.

Otherwise it will be forwarded to the parent RH.

Figure 2.2: DONA Architecture [8]

2.3 Publish Subscribe Internet Routing Paradigm

Publish Subscribe Internet Routing Paradigm (PSIRP) is a publish/subscribe

model for ICN architecture [28]. In PSIRP, every content has a flat name in the form

6



of P:L as in DONA, which is called Resource Identifier. In addition to that, for every

content a Scope Identifier is also assigned. SId, describes the different information about

data including access rights, availability, reachability, replication and etc. All data request

packets and data packets include the pair of RId and SId. In PSIRP the whole network

is divided into domains. As shown in figure 2.3 [28] nodes in each domain will be one of

the these types: RendezVous Nodes (RN), Topology Node (TN), Branching Node (BN),

Forwarding Node (FN). Each domain has one RN, one TN, one BN, and many FNs.

• RN nodes are responsible for matching the publishers and subscribers, and resolution

of the names, which can be different for RNs of different domains. But all of RN

nodes are connected with Distributed Hash Tables (DHTs), which makes their scope

global.

• TN nodes are responsible for keeping and exchanging the topology information with

other TN nodes in other domains. Furthermore routing information is also handled

by TNs.

• BN nodes are responsible for routing protocol implementation. These nodes basically

build up the routing map.

• FN nodes, are responsible for forwarding the content objects from publishers to the

subscriber nodes. These nodes keep track of the request for content packets in a

bloom filter based structure, which is then used to forward the data packets to the

subscribers.

7



Figure 2.3: PSRIP Architecture [28]

2.4 Named Data Networking

Named Data Networking is a project supported by NSF which aims at defining

architecture for Information Centric Networks. In this architecture, information fetching is

done in a publish/subscribe model.

2.4.1 Main Components of NDN Architecture

Main components of Named Data Networking architecture includes:

• Consumer: An application over node which sends requests for content

• Producer: An application which is the publisher of content

8



• Interest Message: Type of message generated by consumer which includes information

about requested content

• Data Object: Type of message which includes content requested by consumer

• Routers: Intermediate nodes which propagate Interest Messages and Data Objects.

Further more each router include different components:

• Forwarding Information Base (FIB): This table is used by router to forward interest

packets toward the producer of data. Each entry of the FIB table includes a name

prefix and a set of faces which show the next hop toward producer.

• Pending Interest Table (PIT): Pending Interest Table is used to keep track of path

taken by interest message toward the producer. Each entry of the PIT table includes

the name of the interest, set of incoming faces which show the previous hops, and

set of outgoing faces which show the next hops taken by interests of that name. PIT

table can also be used for other purposes such as aggregation of Interest Messages,

Congestion Control, and etc.

• Content Store (CS): Content Store is used to in-network caching of Data Objects.

Content Stores can satisfy Interest Messages on behalf of producers in case they have

cached Data Objects previously.

Consumer, which is an application over a node in network, will send request for a Data

Object using Interest Messages. This Interest Message will be forwarded by routers toward

the publisher of the content which is called Producer. Producer will reply to the interest

message by sending the Data Object related to the requested name and routers will forward
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the Data Object toward the consumer. As shown in figure 2.4 [18] Each Interest Messages

consists of different fields:

• Name: Refers to the requested Data Object name.

• Nounce: A random number generated by consumer to make unique Interest Packets

with equal names in network.

• MetaInfo: Includes different information about requested object and Interest itself,

like interest life time which shows the validity period of the interest.

Also data packet has different fields, as shown in figure 2.4 which includes:

• Name: Unique Name of Data Object

• Content: Payload of the Data Object

• Signature: Used to verify Data Objects by routers and consumers

• MetaInfo: Includes different information about Data Object including Freshness,

Chunk Number, Content Type, ...

2.4.2 Forwarding Strategy of NDN Architecture

As shown in figure 2.5 [18] and algorithms 1 and refalgo-ndn-forward, each router

consists of three main components: Forwarding Information Base (FIB), Content Store

(CS), and Pending Interest Table (PIT). The Upper figure shows the functions performed

when an Interest Message is received by a router: It will first check the Content Store. If

the requested content is available in CS, it will return the Data Object to the previous node.
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Figure 2.4: Interest Packet and Data Packet format [18]

If CS has not cached the Data Objects, router will check the PIT table for the requested

Name. If no match found, it will create a PIT entry which includes the incoming interface,

Nounce, and Name of the interest. But if an entry found with the same Name, it will check

the related nonces. If nonces match too, router will detect a loop and discard the Interest

Message. If nonces do not match, router will aggregate the Interest Message and add the

incoming face and nonce to the PIT entry.

In case, no PIT entry found for that name prefix, as mentioned previously, router will create

a PIT entry for the Interest and then will check the FIB table by performing a Longest

Prefix Match and find the next hop for the interest message. Interest message will be

forwarded toward the producer using Interest Forwarding Strategy.

The second part of figure 2.5 shows the propagation of data back to the consumer node.

When a Data Object is received by a router, it will first check the Pending Interest Table

and satisfy the pending interest entry. If there is none, it will discard the data object. Then

it will add the Data Object to the Content Store to be used by future requests.
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In the rest of the thesis, we use the term name data object (NDO) or content

object interchangeably, and use the term neighbor instead of interface or face. We denote

the name of NDO j by n(j), and the name prefix that includes that NDO name by n(j)∗.

We denote the existence of an entry for a prefix n(j)∗ or NDO with name n(j) in the FIB,

PIT or CS of router i by n(j)∗ ∈ FIBi, n(j) ∈ PIT i, and n(j) ∈ CSi, respectively.

We use I[n(j), idj(s)] to denote an Interest that requests NDO with name n(j)

and that is originated by consumer s, who assigns nonce idj(s) to the Interest. A content-

object message (or NDO message) sent in response to an Interest I[n(j), idj(s)], denoted

D[n(j), idj(s), sig(j)], states the name and nonce of the Interest, a signature payload sig(j)

used to validate the content object, and the object itself.

The entry in FIBi for name prefix n(j)∗ is denoted by FIBi
n(j)∗ and consists of

n(j)∗ and the list of neighbors that can be used to reach the NDO. If neighbor k is listed

in FIBi
n(j)∗ , then we state k ∈ FIBi

n(j)∗ . In NDN [24], the FIB entry for an NDO also

contains a stale time after which the entry could be deleted; the round-trip time through

the neighbor; a rate limit; and status information stating whether it is known or unknown

that the neighbor can bring data back, or is known that the neighbor cannot bring data

back.

The entry in PIT i for NDO with name n(j) is denoted by PIin(j) and consists

of a vector of one or multiple tuples, one for each nonce processed for the same NDO

name. The tuple for a given NDO states the nonce used, the incoming and the outgoing

neighbor(s). The tuple created as a result of processing Interest I[n(j), idj(s)] received from

k and forwarded to a set of neighbors OUTSET is denoted by PIin(j)[idj(s), in : k, out :
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OUTSET ], and the set of outgoing neighbors in PIin(j) is denoted by OUTSET (PIin(j)).

Each PIT entry PIin(j)[idj(s), in : k, out : OUTSET ] has a lifetime, which should

be larger than the estimated round-trip time to a site where the requested NDO can be

found.

We denote by NI[n(j), idj(s),CODE] the NACK sent in response to I[n(j), idj(s)],

where CODE states the reason why the NACK is sent.

Algorithms 1 and 2 illustrate the NDN Interest processing approach [23, 24] using

the notation we have introduced, and correspond to Interest-processing and forwarding-

strategy algorithms in [24]. Algorithm 2 does not include the probing of neighbors proposed

in NDN, given that this aspect of NDN is still being defined [24]. Routers forward NACKs

received from those neighbors to whom they sent Interests, unless the PIT entries have

expired or do not match the information provided in the NACKs. The NDN forwarding

strategy augments the original CCN strategy by introducing negative acknowledgements

(NACK) sent in response to Interests for a number of reasons, including: routers identifying

congestion, routers not having routes in their FIBs to the requested content, or Interest

loops being detected. Algorithms 1 and 2 indicate the use of NACKs that is not part of the

original CCN design by “[NDN].”

A number of ICN (information-centric networking) architectures that are not based

on Interests adopt a push-based approach to multicasting using mechanisms that are much

the same as those introduced for PIM-SM [106] for the IP Internet. A good example of

this case is COPSS [105]. Users subscribe to content on a content descriptor (CD), which

can be any legal content name, and each CD is associated with a Rendezvous Point (RP).
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Algorithm 1 NDN Processing of Interest at router i
1: function Process Interest

2: INPUT: PIT i, CSi, FIBi;

3: INPUT: I[n(j), idj(s)] received from k;

4: if n(j) ∈ CSi then

5: send D[n(j), idj(s), sig(j)] to k

6: else

7: if n(j) 6∈ PIT i then

8: create PIi
n(j)

[idj(s), in : k, out : ∅];

call Forwarding Strategy(PIi
n(j)

)

9: else

10: % There is a PIT entry for n(j)

11: if ∃ PIi
n(j)

[idj(x)] with idj(x) = idj(s) then

12: % A duplicate Interest is detected

[NDN] send NI[n(j), idj(s), duplicate] to k;

drop I[n(j), idj(s)]

13: else

14: % Interest can be aggregated

create PIi
n(j)

[idj(s), in : k, out : ∅];

15: if RTi(I[n(j), idj(s)]) is exprired then

16: call Forwarding Strategy(PIi
n(j)

);

17: end if

18: end if

19: end if

20: end if

The number of RPs may be as large as the number of ICN nodes. Routers maintain CD-

based subscription tables to provide the same functionality as IP multicast, and COPSS

supports sparse-mode multicasting at the content layer. The RP’s receive content from

one or more publishers and send it over the multicast trees established by routers for the

multicast groups.

A major selling point for maintaining per-Interest forwarding state using PITs in

CCNx and NDN [4, 17] has been that it enables “native” support for multicasting in the
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Algorithm 2 NDN forwarding of Interest at router i
1: function Forwarding Strategy

2: INPUT: PIT i, CSi, FIBi;

3: INPUT: PIi
n(j)

[idj(s), in : k, out : OUTSET ]

4: if n(j)∗ ∈ FIBi then

5: for each neighbor m in FIBi
n(j)∗ by rank do

6: if m 6= in : k for all in : k ∈ PIi
n(j)
∧

m 6∈ SET for all out : SET ∈ PIi
n(j)

then

7: if m is available then

8: OUTSET (PIi
n(j)

) = OUTSET (PIi
n(j)

) ∪m;

start RTi(I[n(j), idj(s)]);

forward I[n(j), idj(s)] to neighbor m;

return

9: end if

10: end if

11: end for

12: [NDN] send NI[n(j), idj(s), congestion] to k;

drop I[n(j), idj(s)]; delete PIi
n(j)

13: else

14: send NI[n(j), idj(s), no data] to k;

drop I[n(j), idj(s)]; delete PIi
n(j)

15: end if

data plane with no additional signaling required in the control plane. In short, multicast

receivers simply send Interests towards the multicast source. As Interests from receivers

and previous-hop routers are aggregated in the PITs on their way to the multicast source,

a multicast forwarding tree (MFT) is formed and maintained in the data plane. Multicast

Interest are forwarded using the same forwarding information base (FIB) entries used for

unicast traffic, and multicast data packets are sent using reverse path forwarding (RPF)

over the paths traversed by aggregated Interests. If Interests can be forwarded without

incurring loops, then MFTs can be created and multicast data can be disseminated without

requiring the use of complex multicast routing protocols operating in the control plane (e.g.,
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Figure 2.5: Forwarding Strategy in Named Data Networking [18]

[106, 110]. Using PITs is appealing in this context; however, we show that native support

of multicasting in the data plane can be easily done using anonymous datagrams.

2.5 Mobile Ad hoc Routing Protocols

Many Mobile Ad hoc Networks (MANET) routing protocols have been proposed

since the introduction of the routing protocol for the DARPA packet-radio network [88] and

excellent surveys and comparative studies of this prior work have been presented over the

years [79, 80, 87, 90, 94, 96, 99, 103].

Optimized Link State Routing (OLSR) is the best-known example of proactive

routing for MANETs [82]. It uses HELLO messages to maintain neighbor connectivity,

and Topology Control (TC) messages to disseminate link-state information throughout the

network. To reduce signaling overhead, OLSR takes advantage of connected dominating
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sets. Some nodes are elected as multipoint relays (MPRs) and only MPRs forward TC

messages, and only link-state information needed to connect MPRs is advertised in the

network.

Ad hoc On-Demand Distance Vector (AODV) [94] is the most popular example

of the on-demand routing approach. To find a route to an intended destination, a source

broadcasts a Route Request (RREQ) stating the source and destination nodes, the most

recent sequence number known for each, a a broadcast ID, and a hop count to the source.

A router that forwards a RREQ for the first time creates a record for the RREQ stating

the source and broadcast-ID pair of the RREQ; and a a reverse route to the source of the

RREQ stating the next hop and hop count to the source, and the sequence number of the

source. It maintains any RREQ record and reverse route for a finite time. A router discards

any received RREQ that states a source and broadcast-ID pair for which it has a RREQ

record.

The intended destination or a router with a valid route to the destination responds

to the RREQ by sending a Route Reply (RREP) over the reverse route from which the

RREQ was received. The RREP states the destination and the source of the RREQ, the

destination sequence number, and the hop count to the destination. A router receiving a

RREP establishes a route record to the destination stating the destination sequence number,

the next hop to it, and the neighbors using the route (precursors). A router forwards only

the first copy of a RREP (based on the destination sequence number) and increments by

one the hop count to the destination when it forwards a RREP.

Link failures can be recognized in AODV by the absence of HELLO messages sent
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periodically between neighbors. When a node detects a link failure, it sends a Route Error

(RERR) to all neighbor nodes that are precursors of a route that is broken because of the

link failure. Nodes receiving a RERR message invalidate all routes that were using the

failed link and propagate the RERR message to their precursor nodes.

Hybrid routing protocols attempt to reduce the signaling overhead of proactive

and on-demand schemes by combining the two. This has been done by either using clusters

within which routes to destinations are maintained proactively and using on-demand routing

across clusters (e.g., ZRP [94]), or by maintaining routes to certain destinations proactively

and using on-demand routing for the rest of destinations [98].

Interestingly, all prior approaches proposed for on-demand and hybrid routing

have assumed that a router that receives route-requests (RREQ) regarding destinations for

which it does not have valid routes forwards each new RREQ it receives, and replicas of

the same RREQ are silently dropped. This constitutes a major performance limitation for

all on-demand and hybrid routing schemes proposed to date. Intuitively, as the number of

destinations increase, the failure of just a few links may cause many sources to engage in the

discovery of new routes to those destinations, with each source flooding RREQs. Because

a router forwards each RREQ it receives as long as it does not state the same source and

request ID pair, the flooding of RREQs grows linearly with the number of sources, even if

the sources are seeking the same few destinations.

The following section describes our approach to address this problem crated by

too many RREQs. We use a specific protocol as an example of the basic approach.
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Chapter 3

Enabling Correct Forwarding and

Retransmission in ICNs

3.1 Undetected Interest Loops in CCN an NDN

The use of nonces in NDN and the original CCN approach can be extrapolated to

include the case in which an Interest states a nonce and the path traversed by the Interest

by assuming that idj(s) equals the tuple (idj(s)[nonce], idj(s)[path]). If a nonce and path

traversed by the Interest are used, deciding whether an Interest has not traversed a loop can

be based on whether idj(x)[nonce] 6= idj(s)[nonce] ∨ i 6∈ idj(s)[path]. However, including

path information in Interests reveals the identity of originators of Interests.

The key aspect of the forwarding strategies that have been proposed for NDN

and CCN is that a router determines whether or not an Interest is a duplicate Interest

based solely on the content name and Interest-identification data for the Interest (a nonce
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in NDN’s case). To discuss the correctness of the forwarding strategy and other strategies,

we define an Interest loop as follows.

Interest Loop: An Interest loop of h hops for NDO with name n(j) occurs when

one or more Interests asking for n(j) are forwarded and aggregated by routers along a cycle

L = {v1, v2, ..., vh, v1} such that router vk receives an Interest for NDO n(j) from vk−1

while waiting for a response to the Interest it has forwarded to vk+1 for the same NDO,

with 1 ≤ k ≤ h, vh+1 = v1, and v0 = vh.

According to the NDN forwarding strategy, a router can select a neighbor to

forward an Interest if it is known that it can bring content and its performance is ranked

higher than other neighbors that can also bring content. The ranking of neighbors is done

by a router independently of other routers, which can result in long-term routing loops

implied by the FIBs if the routing protocol used in the control plane does not guarantee

instantaneous loop freedom (e.g., NLSR [125]).

Figure 3.1: Undetected Interest loops in NDN and CCN

Figure 3.1 illustrates Interest looping in NDN. Arrowheads in the figure indicate

the next hops to content advertised by router j according to the FIB entries stored in

routers. Thick lines indicate that the perceived performance of a neighbor is better than

neighbors shown with thinner lines. Dashed lines indicate the traversal of Interests over links
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and paths. The time when an event is processed at a router is indicated by ti. Figure 3.1(a)

shows the case of a long-term Interest loop formed because the multi-paths implied in FIBs

are not loop-free, even though all routing tables are consistent. Figure 3.1(b) shows the

case of a temporary Interest loop when single-path routing is used and FIBs are inconsistent

due to a topology change at time t1 (link (b, q) fails). In both cases, router a aggregates

the Interest from x at time t3, router x aggregates the Interest from c at time t4, and the

combined steps preclude the detection of Interest looping. This results in x and y having

to wait for their Interests to time out, before they can retransmit. Furthermore, there is no

guarantee that their retransmissions will elicit a response (content or NACK).

As Theorem 7 proves, the CCN and NDN forwarding strategies specified in [14,

24, 27] cannot ensure that Interest loops are detected when Interests are aggregated, even

if nonces were to denote Interests uniquely. The theorem assumes that all messages are

sent correctly and that no routing-table changes occur to show that the NDN forwarding

strategy can fail to return any content or NACK in response to Interests independently

of network dynamics. Furthermore, Theorem 2 shows that no forwarding strategy can be

correct if it allows Interest aggregation and attempts Interest-loop detection by the matching

of Interest-identification data.

Theorem 1. Interest loops can go undetected in a stable, error-free network in which NDN

or CCN is used, even if nonces were to denote Interests uniquely.

Proof. Consider the NDN or CCN forwarding strategy running in a network in which no

two nonces created by different nodes for the same content are equal, all transmissions

are received correctly, and no topology or routing-table changes occur after time t0. Let
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LT vk(I[n(j), idj(s)]) denote the lifetime of I[n(j), idj(s)] at router vk.

Assume that Interests may traverse loops when they are forwarded according to the

forwarding strategy, and let a loop L = {v1, v2, ..., vh, v1} exist for NDO j, and let Interest

I[n(j), idj(x)] start traversing the chain of nodes {v1, v2, ..., vk} ∈ L (with 1 < k < h) at

time t1 > t0.

Assume that I[n(j), idj(x)] reaches router vk at time t3 > t1 and that router vk

forwards Interest I[n(j), idj(y)] to its next hop vk+1 ∈ L at time t2, where t1 ≤ t2 < t3,

idj(x) 6= idj(y), and vk+1 may be v1.

According to the Interest processing strategy in NDN and CCN, router vk cre-

ates an entry in its PIT for I[n(j), idj(y)] at time t2, and perceives any Interest for name

n(j) and a nonce different than idj(y) received after time t2, and before its PIT entry for

I[n(j), idj(y)] is erased, as a subsequent Interest.

Let |t2 − t3| < LT vk(I[n(j), idj(y)]) when router vk receives I[n(j), idj(x)] from

router vk−1 ∈ L at time t3, where 1 < k − 1. According to the Interest processing strategy

in NDN and CCN, router vk must treat I[n(j), idj(x)] as a subsequent Interest for content

n(j) that is aggregated, because vk is waiting for D[n(j), idj(y)] at time t3.

Because of the existence of L, Interest I[n(j), idj(y)] must be forwarded from vk to

v1. Let t4 denote the time when I[n(j), idj(y)] reaches v1, where t4 > t2 ≥ t1, and assume

that |t1 − t4| < LT v1(I[n(j), idj(x)]). According to NDN’s Interest processing strategy, v1

must treat I[n(j), idj(y)] as a subsequent Interest, because it is waiting for D[n(j), idj(x)]

at time t4.

Given the Interest aggregation carried out by nodes vk and v1, nodes in the chain
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{v1, v2, ..., vk−1} ∈ L process only I[n(j), idj(x)], nodes in the chain {vk+1, vk+2, ..., vh} ∈ L

process only I[n(j), idj(y)], and no Interest loop detection can take place. Therefore, no

content can be submitted in response to I[n(j), idj(x)] and I[n(j), idj(y)].

Similar results to Theorem 1 can be proven for NDN and the original CCN oper-

ating in a network in which routing tables are inconsistent as a result of network or content

dynamics. In this case, Interest loops can go undetected even if the control plane supports

only single-path forwarding of Interests.

Theorem 2. No correct forwarding strategy exists with Interest aggregation and Interest

loop detection based on the matching of Interest-identification data.

Proof. Assume any forwarding strategy in which a router remembers an Interest it has

forwarded as long as necessary to detect Interest loops, and detects the occurrence of an

Interest loop by matching the Interest-identification data carried in an Interest it receives

with the Interest-identification data used in the Interest it forwarded previously asking

for the same content. Let I[n(j), idj(s)] denote the Interest asking for n(j) with Interest-

identification data idj(s) created by router s.

Assume that an Interest loop L = {v1, v2, ..., vh, v1} for NDO with name n(j) exists

in a network using the forwarding strategy. Let Interest I[n(j), idj(x)] start traversing the

chain of nodes {v1, v2, ..., vk} ∈ L (with 1 < k < h) at time t1.

Assume that I[n(j), idj(x)] reaches router vk at time t3 > t1 and that router vk

forwards Interest I[n(j), idj(y)] to its next hop vk+1 ∈ L at time t2, where t1 ≤ t2 < t3,

idj(x) 6= idj(y). Let I[n(j), idj(y)] traverse the chain of nodes {vk, vk+1, ..., v1} ∈ L,

reaching v1 at time t4, where t4 > t2 ≥ t1.
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By assumption, Interest aggregation occurs, and hence vk aggregates I[n(j), idj(x)]

at time t3, and v1 aggregates I[n(j), idj(y)] at time t4. Therefore, independently of the

amount of information contained in idj(x) and idj(y), v1 cannot receive I[n(j), idj(x)] from

vh and vk cannot receive I[n(j), idj(y)] from vk−1. It thus follows that no node in L can

successfully use the matching of Interest-identification data to detect that Interests for n(j)

are being sent and aggregated along L and the theorem is true.

The results in Theorems 1 and 2 can also be proven by mapping the Interest

processing strategy of NDN, and any forwarding strategy that attempts to detect Interest

loops by matching Interest-identification data, to the problem of distributed termination

detection over a cycle, where Interests serve as the tokens of the algorithm [7, 16]. Because

Interest aggregation erases a token traversing the ring (Interest loop) when any node in the

ring has previously created a different token, correct termination detection over the ring

(i.e., Interest loop detection) cannot be guaranteed in the presence of Interest aggregation.

Obviously, a loop traversed by an Interest can be detected easily if each Interest

is identified with the route it should traverse. This is easy to implement but requires

routers in the network to have complete topology information (e.g., [125, 19, 21]) or at least

path information or partial topology information (e.g., [3, 19]). Similarly, carrying the path

traversed by an Interest in its header also ensures that an Interest loop is detected if it occurs.

In these two cases, however, there is no need for using nonces to detect Interest loops. More

importantly, path information reveals the identity of the source router requesting content

and hence defeats one of the key objectives of the NDN and CCN forwarding strategies.

Another view of the problem would be to say that Interest aggregation is not
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common and hence undetected Interest loops should be too rare to cause major performance

problems. However, if Interests need not be aggregated, then very different architectures

could be designed for content-centric networking that do not require using PITs.

3.2 SIFAH

3.2.1 Design Rationale

It is clear from the results in the previous section that using nonces or identifying

Interests uniquely is useless for Interest-loop detection when Interests are aggregated, and

that source routing of Interests or including the path traversed by an Interest are not

desirable. Accordingly, for an Interest forwarding strategy to be correct in the presence of

Interest aggregation, it must be the case that, independently of the identity of an Interest

or how Interests for the same content are aggregated, at least one router detects that it is

traversing a path that is not getting the Interest closer to a node that has advertised the

requested content.

Ensuring that at least one router in an Interest loop detects the incorrect forward-

ing of the Interest can be attained if Interests were to carry any type of ordering information

that cannot be erased by the use of Interest aggregation. Fortunately, distance information

for advertised name prefixes is exactly this type of ordering information.

Given that forwarding information bases (FIB) are populated from the routing

tables maintained in the control plane of a network, they constitute a readily-available tool

to establish the proper interaction between the forwarding strategy operating in the data

plane and the distances to advertised content prefixes maintained by the routing protocol
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operating in the control plane. This is the basis of the Strategy for Interest Forwarding and

Aggregation with Hop-Counts (SIFAH).

3.2.2 Information Stored and Exchanged

A router maintains a FIB, a PIT, and an optional content store. FIBi is indexed

using content name prefixes. The FIB entry for prefix n(j)∗ is denoted by FIBi
n(j)∗ , and

consists of a list of one or more tuples. Each tuple states a next hop to n(j)∗ and a hop

count to the prefix. The set of next hops to n(j)∗ listed in FIBi
n(j)∗ is denoted by Si

n(j)∗ .

The hop count to n(j)∗ through neighbor q ∈ Si
n(j)∗ is denoted by h(i, n(j)∗, q).

An Interest sent by node k requesting NDO n(j) is denoted by I[n(j), hI(k)], and

states the name n(j), and the hop count (hI(k)) from node k to the name prefix n(j)∗ that

is the best match for NDO name n(j) when k forwards the Interest.

An NDO message sent in response to the Interest I[n(j), hI(k)] is denoted by

D[n(j), sig(j)], and states the name of the Interest, a signature payload sig(j) used to

validate the content object, and the object itself.

The NACK sent by router i in response to an Interest is denoted byNI[n(j),CODE]

where CODE states the reason why the NACK is sent. Possible reasons for sending a NACK

include: (a) an Interest loop is detected, (b) a route failed towards the requested content,

(c) no content is found, and (d) the PIT entry expired.

PIT i is indexed using NDO names. PIin(j) denotes the entry created in PIT i for

NDO with name n(j), and specifies: the name of the NDO; the hop count hI(i) assumed

by router i when it forwards Interest I[n(j), hI(i)]; the set of incoming neighbors from

which Interests for n(j) are received (INSET (PIin(j))); the set of outgoing neighbor(s)
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(OUTSET (PIin(j))) to whom router i forwards its Interest; and the remaining lifetime for

the Interest (RT (PIin(j))).

3.2.3 Interest Loop Detection

To define a correct forwarding strategy, special attention must be paid to the fact

that updates made to the FIBs stored at routers occur independently of and concurrently

with the updates made to their PITs. For example, once a router has forwarded an Interest

that assumed a given distance to content prefix n(i)∗ and waits for its Interest to return

a data object, its distance to the same content may change based on updated to its FIB.

Hence, simply comparing the minimum distance from a router to content against a distance

to content stated in an Interest is not enough to ensure that Interests are not incorrectly

forwarded to routers that are farther away form the requested content.

SIFAH takes into account the fact that FIBs and PITs are updated independently

by requiring that a router that forwards an Interest for a given piece of content remembers

in its PIT entry the value of the distance to content assumed when it issues its Interest.

The following rule is then used for a given router to determine whether an Interest may be

propagating over an Interest loop.

The number of hops to requested content is used as the metric for the invariant

condition. This is done for two reasons, storing hop-count distances in the FIB incurs less

storage overhead than storing complex distance values, and the next hops to a prefix stored

in the FIB can be ranked based on the actual distances to content.

HFAR–Hop-Count Forwarding with Aggregation Rule: Router i can ac-
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cept I[n(j), hI(k)] from router k if one of the following two conditions is satisfied:

1. n(j) 6∈ PIT i ∧ ∃ v( v ∈ Si
n(j)∗ ∧ h

I(k) > h(i, n(j)∗, v) )

2. n(j) ∈ PIT i ∧ hI(k) > hI(i)

The first condition ensures that router i accepts an Interest from neighbor k only

if i determines that is closer to n(j)∗ through at least one neighbor than k was when it sent

its Interest. The second condition ensures that router i accepts an Interest from neighbor

k only if i was closer to n(j)∗ than k when i and k sent their Interests.

Section 7.1 proves that using HFAR is sufficient to ensure that an Interest loop

cannot occur without a router in the loop detecting that the Interest has been forwarded

incorrectly. This result is independent of whether Interests are aggregated or sent over one

or multiple paths, or how Interests are retransmitted.

Similar forwarding rules based on more sophisticated lexicographic orderings could

be defined based on the same general approach stated in HFAR. The requirement for such

forwarding rules is that more information needs to be maintained in the FIBs, such as

distance values to name prefixes that take into account such factors as end-to-end delay,

reliability, cost, or bandwidth available.

HFAR is very similar to sufficient conditions for loop-free routing introduced in the

past, in particular sufficient conditions for loop-free routing based on diffusing computations

[9, 21, 26]. Indeed, the approach we introduce for Interest-loop detection in SIFAH can be

viewed as a case of termination detection based on diffusing computations [6].

It should be pointed out that, because HFAR is not necessary to detect loops,

there are cases in which HFAR is not satisfied even though no Interest loops exist. How-
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ever, prior results on multi-path routing based on diffusing computations [25] indicate that

this does not constitute a performance problem. Given that FIBs are updated to reflect

correct hop counts, or correct complex distance values in general, a sufficient condition for

loop detection operating with multi-path routing is a good baseline for an Interest-based

forwarding strategy.

3.2.4 SIFAH Operation

Algorithms 3 to 8 specify the steps taken by routers to process Interests, forward

Interests, return NDOs, process perceived link failures, handle Interest-lifetime expirations,

and send NACKs according to SIFAH. Optional steps and data in algorithms are indicated

by “[o]”.

The algorithms used to describe SIFAH were not designed to take into account

such issues as load balancing of available paths, congestion-control, or the forwarding of

an Interest over multiple concurrent paths. For simplicity, it is assumed that all Interest

retransmissions are carried out on an end-to-end basis (i.e., by the consumers of content)

rather than routers. Hence, routers do not attempt to provide any “local repair” when a

neighbor fails or a NACK to an Interest is received; the origin of an Interest is in charge

of retransmitting it after receiving a NACK for any reason. Interest retransmissions could

also be done by routers. The design and analysis of Interest retransmission strategies

implemented by routers or by content consumers is a topic deserving further study.

Algorithm 3 implements HFAR. Router i determines that an Interest can be

forwarded because Condition 1 in HFAR is satisfied (Line 9 of Algorithm 3), or an Interest

can be aggregated because Condition 2 of HFAR is satisfied (Line 17 of Algorithm 3).
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Content requests from local content consumers are sent to the router in the form of Interests

stating infinite hop counts to content, and each router knows which neighbors are remote

and which are local.

The Maximum Interest Life-time (MIL) assumed by a router before it deletes an

Interest from its PIT should be large enough to preclude an excessive number of retrans-

missions. On the other hand, MIL should not be too large to cause the PITs to store

too many Interests for which no NDO messages or NACKs will be sent due to failures or

transmission errors. A few seconds would be a viable value for MIL. In practice, however,

the consumer submitting an Interest to its local router could provide an initial value for the

Interest lifetime estimated over a number of Interests submitted for NDOs in the same NDO

group corresponding to a large piece of content (e.g., a movie). This is specially the case

given our assumption that Interest retransmissions are carried out by content consumers,

rather than by routers.

Algorithm 4 describes a simple forwarding strategy in which router i simply

selects the first neighbor v in the ranked list of neighbors stored in the FIB for prefix n(j)∗

that satisfies the first condition in HFAR (Line 4 of the algorithm). More sophisticated

strategies can be devised that attain load balancing among multiple available routes towards

content and can be close to optimum (e.g., [21]). In addition, the same Interest could be

forwarded over multiple paths concurrently, in which case content could be sent back over

some or all the paths that the Interest traversed successfully. To be effective, however,

these approaches should require the adoption of a loop-free multi-path routing protocol in

the control plane (e.g., [10, 12]). In this context, the control plane establishes valid multi-
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paths to content prefixes using long-term performance measures, and the data plane exploits

those paths using HFAR and short-term performance measurements, without risking the

long delays associated with backtracking due to looping.

Algorithm 5 outlines the processing of NDO messages received in response to

Interests. A router accepts an NDO received from a neighbor if it has a PIT entry waiting

for the content and the NDO message came from one of the neighbors over which the Interest

was sent (Line 5 of the algorithm). The router forwards the valid NDO to any neighbor

that requested it and deletes the corresponding PIT entry. A router stores an NDO it

receives optionally (Step 7 of Algorithm 5). The caching of NDOs is done according to

the caching strategy used in the network, which can be path-based or edge-based [5], for

example. However, SIFAH works independently of the caching strategy adopted in the

network.

Algorithm 6 shows a simple approach to handle the case when a PIT entry ex-

pires with no NDO or NACK being received. Given that routers do not initiate Interest

retransmissions, router i simply sends NACKs to all neighbors from which it received Inter-

ests for n(j). A more sophisticated approach would be needed for the case in which routers

must provide Interest retransmissions in a way similar to on-demand routing protocols that

support local repair of route requests.

Algorithm 7 states the steps taken to handle NACKs. Router i forwards the

NACK it receives for n(j) to all those neighbors from whom it received Interests for n(j)

and deletes the Interest entry after that. Supporting Interest retransmissions by routers

would require a more complex approach for the handling of NACKs.

Algorithm 8 lists the steps taken by a router in response to the failure of con-
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nectivity with a neighbor. Reacting to the failure of perceived connectivity with a neighbor

over which Interests have been forwarded could be simply to wait for the life-times of those

Interests to expire. However, such an approach can be very slow reacting to link failures

compared to using Algorithm 8. The algorithm assumes that the control plane updates

FIBi to reflect any changes in hop counts to name prefixes resulting from the loss of con-

nectivity to one or more neighbors. For each Interest that was forwarded over the failed

link, router i sends a NACK to all neighbors whose Interests were aggregated.

3.2.5 Examples of SIFAH Operation

Figures 4.5(a) to (d) illustrate how SIFAH operates using the same example used

in Figure 3.1. Figures 4.5(a) and (b) address the case in which the control plane establishes

multiple paths to each name prefix but does not guarantee loop-free routing tables. Figures

4.5(c) and (d) illustrate how SIFAH operates when single-path routing is used.

The pair of numbers next to each link outgoing from a node in Figure 4.5(a)

indicates the hop count to n(j) through a neighbor and the ranking of the neighbor in

the FIB. The example assumes that: (a) routers execute a routing protocol that does not

enforce loop-free FIBs; and (b) the ranking of neighbors is determined independently at

each router using some data-plane strategy based on the perceived performance of each

path and interface. It should be noted that the distance value of a path need not be

directly proportional to the hop-count value of the path shown in the figure.

Let the tuple (v: h, r) indicate a neighbor, its hop count and its ranking. In

Figure 4.5(a), FIBa lists (b: 7, 1), (p: 7, 2), and (x: 9, 3), which is shown in green font.

Similarly, FIBy states (a: 8, 1); FIBb states (c: 10, 2), (a: 8, 1), and (q: 6, 3); FIBc
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states (b: 7, 1), (x: 9, 2), and (r: 9, 3); and FIBx states (a: 8, 1) and (c: 8, 2). Some of

the FIB entries for p, q and r are shown in black font.

Figure 3.2: Interest looping is avoided or detected with SIFAH

In Figure 4.5(b), router y originates an Interest for n(j) and sends I[n(j), hI(y) =

8] to a. Router a receives the Interest from router y at time t1 and, given that 8 = hI(y) >

h(a, n(j)∗, b) = 7, it accepts the Interest because it has at least one neighbor that satisfies

HFAR. Router a sends I[n(j), hI(a) = 7] to b because it is the highest-ranked neighbor

satisfying HFAR. Router a aggregates I[n(j), hI(x) = 8] at time t3 > t1, because it sent

I[n(j), hI(a) = 7] at time t1 and 8 = hI(x) > hI(a) = 7. Router b receives the Interest

from a at time t2 > t1; accepts it because it has at least one neighbor that satisfies HFAR

(7 = hI(a) > h(b, n(j)∗, q) = 6); and sends I[n(j), hI(b) = 6] to q because q is the highest-

ranked neighbor of b that satisfies HFAR. This is an example that Interests are forwarded

along loop-free paths if SIFAH is used and the FIBs maintained by routers have consistent

information, even if some of the multi-paths implied in the FIBs involve loops. The next

section proves this result in the general case.

Figure 4.5(c) shows the hop count values stored in the FIBs for name prefix n(j)
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when single-path routing is used. Each router has a single next hop and one hop count for

each prefix listed in its FIB. Router b updates its FIB to reflect the failure of link (b, q)

at time t1, while router y sends an Interest to router a requesting n(j). Routers have

inconsistent FIB states for n(j) while routing updates propagate and Interests are being

forwarded.

As shown in Figure 4.5(d), router b must send NI[n(j), loop] to a, because 7 =

hI(a) 6> h(b, n(j)∗, c) = 10 and HFAR is not satisfied. In turn, when a receives the NACK

from b, it must forward NI[n(j), loop] to y and to x. Eventually, the routing protocol

running in the control plane makes routers a and y change the hop count to n(j)∗ in their

FIBs to reflect the failure of link (b, q). At that point, a retransmission of the Interest from

y would state hI(y) = 9 and would make a forward I[n(j), hI(a) = 8] to p.

3.3 Correctness of SIFAH

The following theorems show that SIFAH enforces correct Interest forwarding and

aggregation, and constitutes a safe Interest forwarding strategy. The results are independent

of whether the network is static or dynamic, the specific caching strategy used in the network

(e.g., at the edge or along paths traversed by NDO messages [5]), or the retransmission

strategy used by content consumers after experiencing g a timeout or receiving a NACK

from attached routers. SIFAH ensures that Interests cannot be incorrectly propagated and

aggregated along loops without meeting routers that detect the incorrect forwarding and

hence send NACKs in return.

Theorem 3. Interest loops cannot occur and be undetected in a network in which SIFAH
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is used.

Proof. Consider a network in which SIFAH is used. Assume for the sake of contradiction

that nodes in a loop L of h hops {v1, v2, ..., vh, v1} send and possibly aggregate Interests for

n(j) along L, with no node in L detecting the incorrect forwarding of any of the Interests

sent over the loop.

Given that L exists by assumption, vk ∈ L must send I[n(j), hI(vk)] to node

vk+1 ∈ L for 1 ≤ k ≤ h − 1, and vh ∈ L must send I[n(j), hI(vh)] to node v1 ∈ L. For

1 ≤ k ≤ h−1, let h(vk, n(j)∗)L denote the value of hI(vk) when node vk sends I[n(j), hI(vk)]

to node vk+1, with h(vk, n(j)∗)L = h(vk, n(j)∗, vk+1). Let h(vh, n(j)∗)L denote the value

of hI(vh) when when node vh sends I[n(j), hI(vh)] to node v1 ∈ L, with h(vh, n(j)∗)L =

h(vh, n(j)∗, v1).

Because no node in L detects the incorrect forwarding of an Interest, each node in

L must aggregate the Interest it receives from the previous hop in L or it must send its own

Interest as a result of the Interest it receives from the previous hop in L. This implies that

vk ∈ L must accept I[n(j), hI(vk−1)] before RT (PIvkn(j)) expires for 1 ≤ k < h, and v1 ∈ L

must accept I[n(j), hI(vh)] before RT (PIv1

n(j)) expires.

According to SIFAH, if vk aggregates I[n(j), hI(vk−1)], then it must be true that

hI(vk−1) > hI(vk). Similarly, if v1 aggregates I[n(j), hI(vh)], then it must be the case that

hI(vh) > hI(v1).

On the other hand, if vk sends I[n(j), hI(vk)] to vk+1 as a result of receiving

I[n(j), hI(vk−1)] from vk−1, then it must be true that hI(vk−1) > h(vk, n(j)∗)L = hI(vk) for

1 < k ≤ h. Similarly, if v1 sends I[n(j), hI(v1)] to v2 as a result of receiving I[n(j), hI(vh)]
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from vh, then hI(vh) > h(v1, n(j)∗)L = hI(v1).

It follows from the above argument that, for L to exist when each node in the loop

follows SIFAH to send Interests asking for n(j), it must be true that hI(vh) > hI(v1) and

hI(vk−1) > hI(vk) for 1 < k ≤ h. However, this is a contradiction, because it implies that

hI(vk) > hI(vk) for 1 ≤ k ≤ h. Therefore, the theorem is true.

The proof of Theorem 3 can be augmented to account for Interest forwarding

strategies based on complex distance values rather than hop counts.

To be safe, an Interest forwarding strategy must ensure that either an NDO mes-

sage with the requested content or a NACK is received within a finite time by the consumer

who issues an Interest. The following theorem shows that this is the case for SIFAH, inde-

pendently of the state of the topology or the fate of messages.

Theorem 4. SIFAH ensures that an NDO message for name n(j) or a NACK is received

within a finite time by any consumer who issues an Interest for NDO with name n(j).

Proof. Consider I[n(j), hI(s)] being issued by consumer s at time t1. The forwarding of

Interests assumed in SIFAH is based on the best match of the requested NDO name with

the prefixes advertised in the network. Furthermore, according to Algorithm 3, a router

sends back an NDO message to a neighbor that sent an Interest for NDO n(j) only if has an

exact match of the name n(j) in its content store. According to Algorithm 5, a router that

receives an NDO message in response to an Interest it forwarded must forward the same

NDO message. Hence, the wrong NDO message cannot be sent in response to an Interest.

There are three cases to consider next: (a) there are no routes to the name prefix n(j)∗ of

the requested NDO, (b) the Interest traverses an Interest loop, or (c) the Interest traverses
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a simple path towards a router d that can reply to the Interest.

Case 1: If there is no route to n(j)∗, then it follows from the operation of SIFAH

(Algorithm 4) that a router issues a NACK stating that there is no route. That NACK is

either forwarded successfully back to s or is lost due to errors or faults. In the latter case,

it follows from Algorithms 6 and 8 that a router must send a NACK back towards s stating

that the Interest expired or the route failed.

Case 2: If I[n(j), hI(s)] is forwarded along an Interest loop and does not reach

any node with a copy of n(j), then it follows from Theorem 5 that the Interest must either

reach some router k that detects the incorrect forwarding of the Interest and must issue a

NACK NI[n(j), loop] in response, or the Interest is dropped due to faults or transmission

errors before reaching such router k.

If NI[n(j), loop] reaches a router k that detects the loop and issues NI[n(j), loop],

then according to SIFAH (Algorithm 7), every router receiving the NACK NI[n(j), loop]

originated by router k from the neighbor to whom the Interest was sent must relay the

NACK towards s. Hence, if no errors or faults prevent the NACK from reaching s, the

consumer receives a NACK stating that an Interest loop was found.

On the other hand, if either the Interest traversing an Interest loop or the NACK

it induces at some router k is lost, it follows from Algorithms 6 and 8 that a router between

s and router k must send a NACK towards s indicating that the Interest expired or that

the route failed. Accordingly, consumer s must receive a NACK within a finite time after

issuing its Interest in this case.

Case 3: If the Interest traverses a simple path towards a router d that advertises
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n(j)∗ or has a content store containing n(j), then the Interest must either reach d or not.

If the Interest is lost and does not reach d, then it follows from Algorithms 6 and

8 that a router between s and router d must send a NACK towards s indicating that the

Interest expired or that the route failed. As a result, s must receive a NACK originated by

some router between s and d.

If the Interest reaches d, then that router must either send the requested NDO

back, or (in the case that d advertises n(j)∗ and n(j) does not exist) issue a NACK stating

that n(j) does not exist. According to Algorithms 5 and 7, the NDO message or NACK

originated by d is forwarded back towards s along the reversed simple path traversed by

the Interest. If no fault or errors occur between d and s, it follows that the theorem is true

for this case. Alternatively, if the NDO or NACK originated by d is lost due to faults or

errors, it follows from Algorithms 6 and 8 that a router between s and router d must send

a NACK towards s indicating that the Interest expired or that the route failed.

3.4 Performance Comparison

We compare SIFAH with NDN and the original CCN forwarding strategy in terms

of the storage complexity of the approaches; the average time that a PIT entry remains

in the PIT waiting for an NDO message or a NACK to be received in response, which we

call PIT entry pending time; the end-to-end delay experienced by content consumers in

receiving either the content they request or negative feedback; and the number of entries in

the PITs maintained by content routers.

The storage complexity of each approach provides an indication of the storage
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overhead induced by the type of information required for routers to detect Interests loops.

The simulation results we present on PIT entry pending times, end-to-end delays, and PIT

sizes should be viewed simply as indications of the negative effects that undetected Interest

loops have on the performance of NDN and CCN, and the fact that they can be completely

avoided using SIFAH.

3.4.1 Storage Complexity

There is a large difference in the storage overhead incurred with the NDN forward-

ing strategy compared to SIFAH.

In SIFAH, router i uses only the value of hI(i) to determine whether the Interest

it receives from k may be traversing an Interest loop, and does not store hI(k). Hence, the

PIT storage size for SIFAH is

SSSIFAH = O((INT + |mh|)|PIT i|SIFAH)

where |PIT i|SIFAH is the number of pending Interests in PIT i when SIFAH is used, |mh| is

the number of bits used to store hI(i), and INT is the average storage required to maintain

information about the incoming and outgoing neighbors for a given Interest. For a given

NDO with name n(j), the amount of storage needed to maintain the incoming and outgoing

neighbors is

INSET (PIin(j)) +OUTSET (PIin(j)).

The NDN forwarding strategy requires each router to store the list of different

nonces used to denote valid Interests for a given NDO name n(j). With each nonce being

of size |id| and router i having up to I neighbors that send valid Interests for an NDO, the
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PIT storage size for NDN is

SSNDN = O((INT + |id|I) |PIT i|NDN )

where |PIT i|NDN is the number of pending Interests in PIT i when NDN is used. Hence,

even if |PIT i|NDN is the same as |PIT i|SIFAH , the amount of additional PIT storage

needed in NDN over SIFAH is

SSNDN − SSSIFAH ≥

(|id|I)(|PIT i|NDN )− (|mh|)(|PIT i|NDN ).

A maximum hop count of 255 for an Interest is more than enough. Hence, with

the size of a nonce in NDN of four bytes, the savings in PIT storage obtained with SIFAH

compared to NDN is (32I − 8) |PIT i|NDN . This represents enormous savings of RAM in

large networks. Furthermore, because the NDN forwarding strategy may not detect loops

when Interests are aggregated, many Interest entries in PITs may have to be stored until

their lifetimes expire. Accordingly, |PIT i|SIFAH can be much smaller than |PIT i|NDN .

This is confirmed by the simulation results presented subsequently.

The additional FIB storage overhead in SIFAH compared to the NDN forwarding

strategy consists of storing the hop count information for each prefix n(j)∗ from each neigh-

bor. This amounts to (|mh|)(|FIBi|)Di at router i, where Di is the number of neighbors

of router i and |FIBi| is the number of entries in FIBi. Given that Di and I are of the

same order and O(|FIBi|) < O(|PIT i|), this is far smaller than the additional PIT storage

needed by the NDN forwarding strategy compared to SIFAH.
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3.4.2 Performance Impact of Undetected Interest Loops

Implementation of Forwarding Strategies in ndnSIM We implemented SIFAH in

ndnSIM, an open-source NS-3 based simulator for Named Data Networks and Information

Centric Networks [1]. Following the NDN architecture, ndnSIM is implemented as a new

network-layer protocol model, which can run on top of any available link-layer protocol

model, as well as on top of network-layer and transport-layer protocols.

We used the NDN implementation of its data plane from ndnSIM without any

modifications. The ndnSIM NDN implementation is capable of detecting simple loops by

matching nonces. The PIT entry expiration time for NDN is set to the default of one

second. It should be pointed out that, in the default NDN implementation, a router that

receives a duplicate Interest simply drops the Interest without sending a NACK back. This

corresponds to the original CCN forwarding strategy. The ndnSIM NDN implementation

also allows the use of NACKs after Interest loop detection. The results presented in this

section for “CCN” correspond to the ndnSIM implementation of NDN without NACKs,

and the results presented for “NDN” correspond to the ndnSIM implementation of NDN

with NACKs enabled.

To implement Algorithms 3 to 8 defining SIFAH in ndnSIM, we had to make

some modifications on the basic structures of ndnSIM, namely: the FIBs, Interest packets,

NACKs, and the forwarding strategy. A new field “rank” is added to every entry of the

FIB. Unlike ndnSIM in which the next hop selection for requested prefixes is based on hop

count, in SIFAH next hops are sorted based on rank of each FIB entry. The field h(k) was

added to each Interest message, which determines the hop count from forwarding node k
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to the prefix requested by the Interest. A new type of NACK for loop detection is added

and the behavior of forwarding strategy for NACKs is modified based on SIFAH definitions.

Furthermore, a new class of forwarding strategy is added to ndnSIM that implements SIFAH

functions.

Simulation Scenarios To isolate the operation of the data plane from the performance

of different routing protocols operating in the control plane, we used static routes and

manually configured routing loops for specific prefixes.

Given the use of static routes and configured loops, we used a simple grid topology

of sixteen nodes with two consumers producing Interests with different prefixes and one

producer announcing the content requested in the Interests. Interest traffic is generated at

a constant bit rate with a frequency of 2000 Interests per second. The delay over each link

of the topology is set t to 10 msec and PIT entry expiration time is set to only 1000 msec,

which is too short for real networks but is large enough to illustrate the consequences of

undetected Interest loops.

Five different scenarios, each lasting 90 seconds of simulation time, were used to

compare SIFAH with NDN and CCN. Each scenario is defined by the percentage of Interests

traversing loops, which was set to equal 0%, 10%, 20%, 50%, and 100% of the Interests

generated by consumers. In practice, it should be the case that only a small fraction of

Interests traverse loops, assuming a correct routing protocol is used in the control plane

and sensible policies are used to rank the available routes in the FIBs. The scenarios we

present illustrate that just a few Interests traversing undetected loops cause performance

degradation, and that network performance is determined by the PIT entry expiration times
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as the fraction of Interests traveling loops increases.

Figure 3.3: Initial Routes and Custom Loop Scenario

Figure 3.3 shows the topology and scenario we used in our simulations. Consumer

C1, produces Interests for prefix1 and prefix2, and consumer C2 produces Interests only

for prefix2. Blue arrows and green arrows shows initial routes for prefix1 and prefix2,

respectively. We assume that the route between nodes A and D, and the route between

nodes B and E for prefix2 are disconnected. Therefore, Interests requesting prefix2 use

alternate paths from node A to node B and from node B to node C2, which causes the

looping of such Interests.

Interests for prefix2 generated by C1 and C2, request the same content at ap-

proximately the same time, so that aggregation can take place at routers along the paths

traversed by Interests. This results in the aggregation of Interests at node C1 for Interests

generated by C2, and the aggregation of Interests at node C2 for Interests generated by C1.

Our simple scenarios provide enough insight on the negative impact of undetected Interest

loops in the presence of Interest aggregation using NDN and the original CCN design.

Simulation results are shown for three different forwarding strategies: The original

CCN, NDN, and SIFAH. The difference between CCN and NDN is that CCN does not send
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NACKs when duplicate Interests are detected. On the other hand, NDN sends NACK when

simple loops are detected by receiving duplicate Interests.

Impact on PIT Entry Duration Figure 3.4 shows the average value of the PIT entry

pending time for all PIT entries. When no Interest loops are present, NDN, CCN and

SIFAH exhibit the same performance, with each having an average PIT entry pending time

of 60 msec. This should be expected, given that Interests and NDO messages traverse

shortest paths between consumers and producers or caches.

The average PIT entry pending time in SIFAH does not increase as he percentage

of Interests that encounter Interest loops increases. The reason for this is that SIFAH

ensures that an Interest must elicit either an NDO message or a NACK to be sent back

from some router along the route it traverses back to the consumer that originates the

Interest. Hence, the average amount of time an Interest entry spends in the PIT is a

function of the round-trip time it takes for either an NDO message or a NACK to evict it

from the PIT. This is proportional to a round-trip time between a consumer and a router

with the content or a router at which HFAR is not satisfied, which is a few milliseconds in

the grid topology.

Figure 3.4: Average PIT entry pending time for CCN, NDN, and SIFAH
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By contrast, the average PIT entry pending time in CCN and NDN increases

dramatically with the percentage of Interests that encounter Interest loops. The percentage

of Interests that traverse loops need not be large to have negative performance consequences.

For the scenario in which 10% of the Interests encounter Interest loops, we observe that

the average PIT entry pending time increases dramatically in NDN and CCN, with the

average PIT entry pending time being 113 msec, which is about twice the average PIT

entry pending time in SIFAH.

The results for NDN and CCN can be easily explained. CCN simply deletes and

drops duplicate Interests, each Interest that encounters an Interest loop is discarded by

the router that detects a duplicate Interest, and this action forces the corresponding PIT

entries in the routers traversed by the Interest to remain in those PITs, until their PIT entry

expiration timers expire. In NDN, Interest loops can go undetected with aggregation and

therefore no NACKs are sent in those cases. As a result, the time an Interest entry spends

in the PIT equals the PIT entry expiration time if the Interest traverses an undetected loop.

The results are almost the same for CCN and NDN. The reason for observing slightly lower

values for NDN compared to CCN, is that some of the Interests for content in prefix2 are

not generated by C1 and C2 with sufficient time correlation to enable Interest aggregation,

which results in detection of Interest loops in NDN and Interests being discarded in CCN.

The PIT entry pending times in NDN and CCN are many orders of magnitude

larger for Interests that traverse undetected Interest loops. This is unavoidable, given that

the PIT entry pending time is proportional to a PIT entry expiration time, which by design

must be set conservatively to values that are far longer than average round-trip times
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between consumers and producers. In the simulations, the PIT entry expiration time is just

one second.

Impact on PIT Size Figure 3.5 shows the average size of PIT tables in terms of number

of entries for a router included in Interest flows for five different scenarios comparing CCN,

NDN, and SIFAH. CCN, NDN and SIFAH have exactly the same PIT size in the absence

of Interest loops, which is expected. As the percentage of Interests that encounter loops

increases, the average number of entries in the PITs increases dramatically for CCN and

NDN. For the case in which only 10% of Interests encounter loops, the number of entries

doubles in NDN and CCN compared to SIFAH. For the case in which 100% of Interests

encounter loops, the average number of PIT entries in CCN and NDN is 1889 and 1884,

respectively, while the number of PIT entries in SIFAH actually decreases.

Figure 3.5: Average PIT table size for CCN, NDN, and SIFAH

The reason for the decrease in average number of PIT entries for SIFAH as the

percentage of Interests that encounter loops increases is a consequence of the shorter round-

trip times between the consumers submitting Interests and the routers sending NACKs

compared to the round-trip times of paths to the producers of requested content.
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Impact on Round-Trip Times Figure 3.6 shows the average round-trip time (RTT)

for all five scenarios for CCN, NDN and SIFAH. In the simulation experiments, the round-

trip time is considered to be the time elapsed from the instant when an Interest is first sent

to the instant when an NDO message or a NACK is received by the consumer who created

the Interest.

For the case of no loops, CCN, NDN, and SIFAH have the same average RTT.

When the percentage of Interests traversing loops is 10%, the average RTT in CCN and

NDN increases to almost two times the average RTT in SIFAH, and some Interests have

much larger RTTs than the average. As the percentage of Interests that loop increases,

the average RTT becomes proportional to the PIT entry expiration time, which is to be

expected. The average RTT in SIFAH decreases as more Interests traverse loops, which is

a result of the shorter RTTs between consumers and routers sending the NACKs.

Figure 3.6: Average round trip time (RTT) for CCN, NDN, and SIFAH

3.4.3 Design Implications

The simulation experiments we have presented are meant only to help illustrate

the negative impact of undetected Interest loops when they occur, rather than to provide
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representative scenarios of the performance of Interest-based forwarding strategies in large

networks. Our results illustrate that loops in FIBs need not be long lasting or impact a

large percentage of Interest to cause the number of stored PIT entries and end-to-end delays

to increase quickly.

As we have shown, the PIT storage requirements for SIFAH are smaller than

those for the original CCN and NDN forwarding strategies. Thus, SIFAH is more efficient

than CCN and NDN even in the absence of Interest loops. Given that SIFAH is so easy

to implement in the context of CCN and NDN, it makes practical sense to eliminate the

current practice in NDN and CCN of attempting to detect Interest loops by the matching

of nonces and Interest names, which does not work.

3.5 Conclusions

We showed that the forwarding strategies in NDN and the original CCN archi-

tectures may fail to detect Interest loops when they occur, and that a correct forwarding

strategy that supports Interest aggregation cannot be designed simply by identifying each

Interest uniquely and deciding that there is an Interest loop based on the matching of

Interest names and nonces.

We introduced the Strategy for Interest Forwarding and Aggregation with Hop-

counts (SIFAH). It is the first Interest-based forwarding strategy shown to be correct in the

presence of Interest loops, Interest aggregation, faults, and the forwarding of Interests over

multiple paths. SIFAH operates by requiring that FIBs store the next hops and the hop

count through such hops to named content, and by having each Interest state the name of
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the content requested and the hop count from the relaying router to the content.

We showed that SIFAH incurs less storage overhead than using nonces to identify

Interests. We also showed that, if NDN or the original CCN design is used in a network,

the number of PIT entries and end-to-end delays perceived by consumers can increase

substantially with just a fraction of Interests traversing undetected loops. Although our

simulation experiments assumed a very small network, our results provide sufficient insight

on the negative effects of undetected Interest loops in NDN and the original CCN design.

This work is just a first step in the definition of correct Interest-based forwarding

strategies, and it is applicable to any Interest retransmission approach. For simplicity, we

assumed that content consumers are in charge of Interest retransmissions and that routers

do not provide local repair of Interests after receiving NACKs or detecting link failures.

The design of an efficient Interest retransmission strategy and determining whether Interest

retransmissions by routers improves performance are arguably the most important next

steps. However, SIFAH provides the necessary foundation to define a correct retransmission

strategy, because it guarantees that each Interest results in an NDO message or a NACK

being sent to the consumer who originated the Interest.

More work is also needed to understand the performance of SIFAH in large net-

works, the effect of PIT entry expiration timers on performance, the effect of load balancing

of Interests over multiple available routes to content, the impact of local repairs in Inter-

est forwarding, and the performance implications of the interaction between SIFAH and

a routing protocol that guarantees loop-free routing tables (and hence FIBs) at all times

[10, 11, 12] compared to one that does not [125].
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Algorithm 3 SIFAH Processing of Interest at router i
1: function Process Interest

2: INPUT: PIT i, CSi, FIBi, I[n(j), hI(k)];

3: if n(j) ∈ CSi then send D[n(j), sig(j)] to k

4: if n(j) 6∈ CSi then

5: if n(j) 6∈ PIT i then

6: if n(j)∗ 6∈ FIBi then

7: % Route failed for n(j)∗:

send NI[n(j), no route] to k; drop I[n(j), hI(k)]

8: else

9: if ∃ v ∈ Si
n(j)∗ ( hI(k) > h(i, n(j)∗, v) ) then

10: % Interest can be forwarded:

call Forwarding Strategy(PIi
n(j)

)

11: else

12: % Interest may be traversing a loop:

send NI[n(j), loop] to k; drop I[n(j), hI(k)]

13: end if

14: end if

15: else

16: % There is a PIT entry for n(j):

17: if hI(k) > hI(i) then

18: % Interest can be aggregated:

INSET (PIi
n(j)

) = INSET (PIi
n(j)

) ∪ k

19: else

20: % Interest may be traversing a loop:

send NI[n(j), loop] to k; drop I[n(j), hI(k)]

21: end if

22: end if

23: end if

24: end function
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Algorithm 4 SIFAH Interest forwarding at router i
1: function Forwarding Strategy

2: INPUT: PIT i, FIBi, MIL, I[n(j), hI(k)];

3: for each v ∈ Si
n(j)∗ by rank do

4: if hI(k) > h(i, n(j)∗, v) then

5: create PIi
n(j)

;

INSET (PIi
n(j)

) = {k}; OUTSET (PIi
n(j)

) = {v};

RT (PIi
n(j)

) = MIL; hI(i) = h(i, n(j)∗, v);

forward I[n(j), hI(i)] to v; return

6: end if

7: end for

8: % No neighbor can be used in Si
n(j)∗ :

for each k ∈ INSET (PIi
n(j)

) send NI[n(j), no route] to k

9: end function

Algorithm 5 Process NDO message from q at router i
1: function Process NDO message

2: INPUT: PIT i, CSi, FIBi, D[n(j), sig(j)] received from q;

3: [o] verify sig(j);

4: [o] if verification fails then drop D[n(j), sig(j)]

5: if n(j) ∈ PIT i ∧ q ∈ OUTSET (PIi
n(j)

) then

6: for each p ∈ INSET (PIi
n(j)

) do

send D[n(j), sig(j)] to p;

7: [o] store the content with name n(j) in CSi;

8: delete PIi
n(j)

9: else

10: drop D[n(j), sig(j)]

11: end if

12: end function

Algorithm 6 Process Interest life-time expiration
1: function Process Interest Life-time Expiration

2: INPUT: PIT i, RT (P i
n(j)

) = 0;

3: for each p ∈ INSET (PIi
n(j)

) do

send NI[n(j), Interest expired]

4: delete PIi
n(j)

5: end function
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Algorithm 7 Process NACK at router i
1: function Process NACK

2: INPUT: PIT i, NI[n(j),CODE];

3: if n(j) 6∈ PIT i then

4: drop NI[n(j),CODE]

5: else

6: if k 6∈ OUTSET (PIi
n(j)

) then drop NI[n(j),CODE];

7: if k ∈ OUTSET (PIi
n(j)

) then

8: for each p ∈ INSET (PIi
n(j)

) do

send NI[n(j),CODE];

9: delete PIi
n(j)

10: end if

11: end if

12: end function

Algorithm 8 Process failure of link (i, k) at router i
1: function Process Link Failure

2: INPUT: PIT i;

3: for each n(j) ∈ PIT (i) do

4: if k ∈ INSET (PIi
n(j)

) then

5: INSET (PIi
n(j)

) = INSET (PIi
n(j)

)− {k};

if INSET (PIi
n(j)

) = ∅ then delete PIi
n(j)

;

6: end if

7: if k ∈ OUTSET (PIi
n(j)

) then

8: OUTSET (PIi
n(j)

) = OUTSET (PIi
n(j)

)− {k};

9: if OUTSET (PIi
n(j)

) = ∅ then

10: for each p ∈ INSET (PIi
n(j)

) do

11: send NI[n(j), route failed]

12: end for

13: delete PIi
n(j)

14: end if

15: end if

16: end for

17: end function
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Chapter 4

Content Centric Networks without

Pending Interest Tables

The leading approach in information-centric networking (ICN) architectures can

be characterized as Interest-based, and consists of: populating forwarding information bases

(FIB) maintained by routers with routes to name prefixes denoting content, sending content

requests (called Interests) for specific content objects (CO) over paths implied by the FIBs,

and delivering Data packets with content objects along the reverse paths traversed by

Interests. Today, named data networking (NDN) [17] and CCNx [4] are the most prominent

Interest-based ICN approaches.

Since the introduction of CCN [14], it has been assumed [4, 17, 24] that: (a)

Interest loops can be detected by stating a content name or a content name and a nonce;

(b) per-Interest forwarding state maintained in Pending Interest Tables (PIT) is required

for Interests and responses to them to be forwarded without revealing the identities of the
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sources of Interests; and (c) Interests requesting the same content need to be aggregated

in the PITs to attain efficiency. Several results have been reported regarding the PIT sizes

required for NDN or CCN to operate at Internet scale, and several approaches have been

proposed to reduce the large storage requirements of PITs [33, 41, 42, 43]. However, no

prior work explores alternatives that eliminate PITs and per-Interest forwarding state.

The main contributions of this chapter consist of showing by example that the

premises stated above are not true; and introducing a far more efficient alternative for

content-centric networking than NDN and the original CCN proposal.

Section 4.1.1 addresses the impact of Interest aggregation in NDN by means of

simulation experiments ran using the implementation of NDN in ndnSIM [1] without mod-

ifications. The experiments assume networks with on-path caching and average round trip

times (RTT) that are representative of recent IP latency statistics. The results show that

the percentage of Interests that are aggregated and the performance benefits derived from

Interest aggregation become negligible as the storage capacity per cache increases.

Section 7.1.1 introduces CCN-DART, which replaces PITs with data answer

routing tables (DART). A DART stores forwarding state regarding the routes traversing

the router, rather than the Interests forwarded by the router. An Interest in CCN-DART

states the name of the requested content, a hop count, and a destination-and-return token

(dart). The hop count is used to avoid forwarding loops. The dart leaves a trace of the

path traversed by the Interest using local identifiers of the previous hop and the current

hop, without revealing the identity of the source of the Interest.

Section 7.1 proves that no forwarding loops can occur in CCN-DART and that
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responses to Interests are forwarded correctly. Section 7.2 compares the performance of

CCN-DART with NDN when routes to name prefixes are loop-free and static, and either

on-path caching or edge caching is used in a 200-router network. CCN-DART attains similar

or better end-to-end latencies and incurs very similar Interest traffic than NDN to retrieve

content, even though Interests are not aggregated in CCN-DART. However, at high Interest

rates, NDN requires 10 to 20 times the number of forwarding entries needed in CCN-DART.

4.1 Interest Aggregation

4.1.1 Impact of Interest Aggregation in NDN

We analyze the impact of interest aggregation on the performance of NDN using

simulations carried out with the ndnSIM simulation tool [1]. We used the implementation

of NDN in ndnSIM without modifications. Our study is independent of the Interest re-

transmission strategy. For simplicity, we assume that routers use exact Interest matching

to decide whether an Interest can be answered. We consider the percentage of aggregated

Interests in the network and the average number of PIT entries created per second per

router as the performance metrics.

Scenario Parameters and Scenarios The simulation parameters we consider include

the average latencies between routers, the storage capacity of caches, the Interest request

rates from routers, the popularity of content, and the temporal correlation of content re-

quests.

The scenarios we use consist of random networks with 200 nodes corresponding to
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routers distributed uniformly in a 100m×100m area. Routers with 12m or shorter distance

are connected to each other with a point-to-point link, which results in a topology with 1786

edges. Each router acts as a producer of content and also has local consumers generating

Interests.

Producers are assumed to publish 1,000,000 different content objects that are

uniformly distributed among routers. For simplicity, we assume that all routers have the

same storage capacity in their caches, which depending on the experiment ranges from 0 to

up to 100,000 cache entries per router, or 10% of the published objects.

The distribution of object requests determines how many Interests from different

users request the same content.

It has been argued [34, 35] that Internet traffic follows a Zipf distribution with a

parameter (α) value close to 1. A smaller Zipf parameter value results in a lower Interest

aggregation amount. Accordingly, we model object popularity using a Zipf distribution

with values of α equal to 0.7 and 1.

We considered different values of the total Interest rate per router, corresponding

to the sum of Interests from all local users. Increasing values of Interest rates can be viewed

as higher request rates from a constant user population of local active users per router, or

an increasing population of active users per router. For example, 50 to 500 Interests per

second per router can be just 10 Interests per second per active user for a local population

of 5 to 50 concurrently active users per router. The Interest rates we assume per router are

not large compared to recent results on the size that PITs would have in realistic settings

[33, 42, 43, 41].
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The percentage of Interests that benefit from Interest aggregation is a function

of the time elapsed from the time when a router receives an Interest, until the time the

requested CO or a NACK is received by that router. In turn, this time is a function of the

RTT between the router originating the Interest and the site with the requested content, as

well as the PIT entry expiration time when the Interest is not answered with a Data packet

or a NACK.

Recent Internet latency statistics [123, 32] show that Internet traffic latency varies

from 11ms for regional European traffic to 160ms for long-distance traffic. Accordingly, we

consider point-to-point delays of 10ms between neighbor routers in many of our simulations,

which leads to RTTs of about 200ms. We also carried our experiments varying the RTT of

the network below and above 200ms.

Simulation Results The following simulation results can be viewed as applicable to the

steady-state behavior of a network using NDN.

Figure 4.1 shows the percentage of aggregated Interests for four different total

request rates per router from 50 to 500 Interests per second, and seven different storage

capacities of the caches, ranging from 100 to 10,000 objects (i.e., up to 1% of the published

objects). The Zipf parameter value assumed is α = 1, which is the best case for Interest

aggregation.

The impact of in-network caching on Interest aggregation is very clear. Interest

aggregation is useful when caches have insignificant capacities and request rates are high.

However, as the capacity of a cache in each router increases, the percentage of Interests that

are aggregated drops quickly. The percentage of aggregated Interests drops to less than 5%
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for a request rate per router of 500 requests per second when a cache can store only 0.1%

of the published objects.

Figure 4.1: Interest aggregation as a function of the storage capacity per content store
(α = 1).

Figure 4.2 shows the effect of the α parameter and RTTs when the total request

rate per router is only 50 Interests per second. The latencies between neighbor routers are

set to 5 and 15 ms, which produce RTTs of 66 to 70 ms and 193 to 200 ms, respectively.

It is clear that Interest aggregation is far less important when consumers are less likely to

request similar content (α = 0.7). It is also clear that the benefits of Interest aggregation

vanish as caches are allowed to cache more content. When caches can store up to 1% of the

total number of objects published, the percentage of Interests that are aggregated is less

than 2% for α = 1 and less than 0.8% for α = 0.7.

Figure 4.2: Interest aggregation as a function of the values of Zipf parameter, storage
capacity, and RTTs
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Figure 4.3 shows the average number and variance of PIT entries created per

second per router with total requests rates per router varying from 50 Interests per second

to 500 Interests per second. Results are presented for six different values of cache capacity

ranging from no caching to 10% of the published objects. In all cases, the average number

of PIT entries created grows proportionally with the request rate per router. The large

variance indicates that only some routers benefit from Interest aggregation. Furthermore,

orders of magnitude increases in the storage capacity of content stores do not produce a

similar reduction in the number of PIT entries created per second per router, which is a

function of the total request rates after caches are large enough.

Figure 4.3: Average number of PIT entries created per second at each router

In theory, Interest aggregation is most useful when Interests exhibit temporal

correlation, such as when popular live events take place. Figure 4.4 shows the impact of

caching on Interest aggregation when Interests have temporal correlation and either no

caching is used or caches with capacity for 1000 objects are used (only 0.1% of total objects

published in the network). Localized Interests are generated using the model proposed

by Dabirmoghaddam et al [5] with a Zipf parameter value of α = 0.7 and results for

59



three total Interest rates per router and four temporal localization factors for Interests are

shown. A higher temporal locality factor indicates a higher degree of popularity of objects

in the same time period. The results in Figure 4.4 show that, without caching, Interest

aggregation is very important for all values of temporal locality of Interest popularity, and

is more important when Interest locality is high (large localization factor). However, once

caching is allowed and even if caches can store only up to 0.1% of the published objects, the

percentage of aggregated Interests is minuscule and actually decreases with the temporal

correlation of Interests. This experiment further illustrates the overlapping nature of PITs

and caches in NDN.

Figure 4.4: Impact of caching on the aggregation of Interests with temporal locality

4.2 CCN-DART

4.2.1 Design Rationale and Assumptions

The design of CCN-DART is based on three observations. First, the results in

Section 4.1.1 show that content caching—which is essential for content-centric networking—

makes the occurrence of Interest aggregation extremely rare an obviates the need for PITs
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as a means of reducing the number of Interests being forwarded. In-network caching tends

to make popular content available locally before subsequent requests for the same content

arrive. This is important, because using PITs comes at a big price. PITs enable users

to mount Interest flooding attacks aimed at overflowing PITs [114, 43], and the storage

overhead they incur is significant [33, 41, 42].

Second, the number of routers in a network is orders of magnitude smaller than

the number of COs accessed through them. Hence, maintaining forwarding state based

on the routes going through a router–each used by many Interests–is by nature orders of

magnitude smaller than forwarding state based on the Interests traversing a router.

Third, preventing Interests from traversing loops when Interest aggregation is

allowed cannot be attained by identifying Interests uniquely using names of content objects

and nonces [36, 37]. However, it can be done based on an ordering of the routers that

forward the Interests, and content routing protocols [10, 125] can provide all the needed

information to attain proper ordering in the forwarding plane.

We make the following assumptions in the description of CCN-DART, none of

which should be considered design requirements for the basic approach we introduce.

Interests are retransmitted only by the users that originated them, rather than

routers that relay Interests. Of course, “local repair” mechanisms can be used in CCN-

DART to react more quickly to congestion or topology changes.

We assume that routers use exact Interest matching. Given the name of a CO, a

router can determine whether or not the exact same CO is stored locally.

The COs corresponding to a name prefix could be stored in subsets of the prefix at
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multiple sites, with each site announcing that the entire prefix is local. However, resolving

an Interest for a given CO in this case would require contacting all the sites where the

prefix is local. For simplicity, in our description of CCN-DART we assume that a router

that announces being an origin of a name prefix stores all the COs in that prefix locally,

and call such a router an anchor of the prefix. If all the COs of a prefix are mirrored at

multiple sites, each router connected to the site storing the COs is an anchor of the prefix.

Routers know which interfaces are neighbor routers and which are local consumers,

and forward Interests on a best-effort basis. For convenience, a request for content from

a local user is sent to its router in the form of an Interest stating an empty hop count to

content and an empty dart.

4.2.2 Information Exchanged and Stored

CCN-DART uses Interests, NACKs and Data packets to support content exchange

among routers. Our description of these messages addresses only that information needed to

attain correct forwarding, which consists of the names of COs, the hop counts to prefixes,

and destination-and-return tokens (darts). The terms neighbor and interface are used

interchangeably. The name of CO j is denoted by n(j), the name prefix that is the best

match for n(j) in a FIB is denoted by n(j)∗, and Si
n(j)∗ denotes the set of neighbors of router

i considered to be next hops to prefix n(j)∗. Darts are local identifiers used to uniquely

denote routes established between source and destination routers over which Interests, Data

packets, and NACKs are sent. Accordingly, darts can be very small (e.g., 32 bits).

An Interest forwarded by router k requesting CO j is denoted by I[n(j), hI(k)

, dartI(k)]. It states the name of the requested CO (n(j)), the hop count (hI(k)) from k

62



to prefix n(j)∗, and the dart (dartI(k)) used to establish an anonymous route back to the

router that originates the Interest.

A Data packet sent in response to an Interest is denoted by DP [n(j), sp(j),

dartI(i)], and states the name of the CO requested in the Interest being answered (n(j)), a

security payload (sp(j)) used optionally to validate the content object, the dart (dartI(i))

from the Interest being answered, and the CO itself.

A NACK to an Interest is denoted by NA[n(j), CODE, dartI(i)] and states the

name of the CO (n(j)), a code (CODE) indicating the reason why the NACK is sent, and

the dart (dartI(i)) from the Interest being answered. Reasons for sending a NACK include:

an Interest loop is detected, no route is found towards requested content, and no content is

found.

Router i maintains three tables: a forwarding information base (FIBi), a data-

answer routing table (DART i), and an optional requested-content table (RCT i). All

routers must maintain FIBs and DARTs, and only those routers with local users and routers

supporting content caching need to maintain an RCT.

A predecessor of router i for Interests related to name prefix n(j)∗ is a router

that forwards Interest for COs with names that are best matched by n(j)∗. Similarly, a

successor of router i for Interests related to n(j)∗ is a router to whom router i forwards

Interest regarding COs with names that are best matched by name prefix n(j)∗.

FIBi is indexed using name prefixes. The entry for prefix n(j)∗ consists of a set of

tuples, one for each next hop to prefix n(j)∗. The tuples for prefix n(j)∗ are ranked based

on their utility for forwarding. As a minimum, the tuple for next hop q ∈ Si
n(j)∗ states:

1. h(i, n(j)∗, q): The distance to n(j)∗ through q.
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2. a(i, n(j)∗, q): The nearest anchor of n(j)∗ through q.

DART i stores the mappings of predecessors to successors along loop-free paths

to name prefixes. The entry created for Interests received from router p (predecessor) and

forwarded to router s (successor) towards a given anchor a of a name prefix is denoted by

DART i(a, p) and specifies:

1. ai(a, p): The anchor a for which the entry is set.

2. pi(a, p): The predecessor p of the path to ai(a, p).

3. pdi(a, p): The predecessor dart, which equals the dart received in Interests from p forwarded

towards ai(a, p).

4. si(a, p): The successor s selected by router i to forward Interests received from p towards

ai(a, p).

5. sdi(a, p): The successor dart included in Interests sent by router i towards ai(a, p) through

the successor.

6. hi(a, p): The hop-count distance to prefix a through successor s when i establishes the DART

entry.

DART entries can be removed using a least-recently used policy or a maximum

lifetime, for example. An entry in a DART can remain in storage for long periods of time

in the absence of topology changes. The removal of a DART entry simply causes a router

to compute a new entry for Interests flowing towards an anchor of prefixes.

RCT i serves as an index of local content as well as local requests for remote

content. It is indexed by the CO names that have been requested by the router. The entry

for CO name n(j) states the name of the CO (n(j)), a pointer to the local storage where

the CO (p[n(j)]) is stored, and a list of zero or more identifiers of local consumers (lc[n(j)])
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that have requested the CO. The RCT could be implemented as two separate indexes, one

for local content and one for requests for remote content.

If router i is an anchor of name prefix n(j)∗ then it stores all the COs with names

that match the name prefix. This is denoted by n(j)∗ ∈ RCT i. If CO n(j) has been

requested by one ore more local consumers and no copy of the CO is yet available, then

n(j) ∈ RCT i, p[n(j)] = nil, and lc[n(j)] 6= φ. On the other hand, if router i caches CO

n(j), then n(j) ∈ RCT i, p[n(j)] 6= nil, and lc[n(j)] = φ.

4.2.3 Preventing Forwarding Loops

We have shown [36, 37] that undetected Interest loops can occur in NDN and CCNx

when Interests are aggregated while traversing routing loops resulting from inconsistencies

in FIB entries or inconsistent rankings of routes at different routers. CCN-DART uses the

same approach we proposed for the elimination of undetected Interest loops in the context

of NDN and CCNx to prevent forwarding loops when DART entries are created.

Dart Entry Addition Rule (DEAR):

Router i accepts I[n(j), hI(k), dartI(k)] from router k and creates a DART entry for prefix

n(j)∗ with k as its predecessor and a router v 6= k as its successor if:

∃ v ∈ Si
n(j)∗( h

I(k) > h(i, n(j)∗, v) )

The distance information that must be stored in the FIBs to implement DEAR

can be obtained easily from the control plane. Such content routing protocols as DCR [10]

and NLSR [125] are able to compute the required minimum-hop distances, which can then

be copied into the FIBs.
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Figure 4.5: CCN-DART avoids forwarding loops

Figures 4.5(a) and (b) illustrate how using DEAR prevents Interests from travers-

ing loops when a multi-path routing protocol is used and FIB entries are consistent but

local rankings of multiple routes available at each router (e.g., NLSR [125]) cause routing

loops. The pair of numbers next to a node in Figure 4.5(a) indicate the hop count from

that router to n(j)∗ over an interface and the ranking of the interface according to the FIB

of the router.

Let the triplet (v, h, r) denote an interface, its hop count and its ranking. In

Figure 4.5(a), FIBa states (b, 4, 1), (p, 4, 2), (x, 6, 3), and (y, 6, 4); FIBb states (x, 6, 1),

(a, 5, 2), and (q, 3, 3); and FIBx states (a, 5, 2) and (b, 5, 1). As Figure 4.5(b) shows, router a

receives I[n(j), hI(y) = 5, dartI(y)] from router y at time t1 and forwards I[n(j), hI(a) = 4,

dartI(a)] to b because 5 = hI(y) > h(a, n(j)∗, b) = 4 and b is ranked above p. Similarly,

router b receives the Interest at time t2 and accepts it because 4 = hI(a) > h(b, n(j)∗, q) = 3.

Router b uses router q as the next hop for the Interest, because q is the highest ranked

neighbor satisfying DEAR. This example illustrates that, independently of local rankings of

multiple routes to prefixes, Interests traverse simple paths by requiring each relaying router
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to satisfy DEAR.

Figures 4.5(c) to (e) illustrate how DEAR operates when FIBs are inconsistent due

to topology changes. Routers a and b update their FIBs at time times t0 and t1, respectively.

We assume that the routing updates have not been processed at routers y and a when they

forward Interests at time t1 and t2, respectively. As shown in Figure 4.5(d), router b must

send a NACK to router a because it does not have a neighbor with a shorter hop count

to prefix n(j)∗ than hI(a) = 4. In turn, router a forwards a NACK to router y, and the

Interest from x also prompts a NACK from b because DEAR is not satisfied. Within a

finite time after t1, the FIBs of routers are updated to show that prefix n(j)∗ cannot be

reached and Interests from local users for COs in that prefix cannot forwarded by routers

a, b, x and y.

By contrast, assuming NDN or CCNx in the same example results in the Interests

sent by y and x to be forwarded along the forwarding loop involving a, b and x. Router a

aggregates the Interest from x, and router x aggregates the Interest from y. Those Interests

must then “wait to infinity” in the PITs until their lifetimes expire or they are otherwise

evicted from the PITs. Using nonces in Interests incurs considerable PIT storage overhead.

However, denoting Interests using only CO names as in CCNx can result in even more

Interest-looping problems. Given the speed with which FIBs are updated to reflect correct

distances computed in the control plane, false loop detection using DEAR should be rare,

and it is preferable by far than storing PIT entries that expire only after many seconds

without receiving responses.
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4.2.4 Maintaining Forwarding State

Algorithms 9 to 4 specify the steps taken by routers to process and forward Inter-

ests, Data packets, and NACKs. The algorithms we present assume that the control plane

updates FIBi to reflect any changes in hop counts to name prefixes and anchors resulting

from the loss of connectivity to one or more neighbors or link-cost changes. In addition, a

DART entry is silently deleted when connectivity with the successor or predecessor of the

entry is lost, or it is not used for a prolonged period of time.

Algorithm 9 shows the steps taken by router i to process Interests received from

local consumers. For convenience, content requests from local consumers are assumed to be

Interests stating the name of a CO, together with an empty hop count to content and an

empty dart.

Router i first looks up its RCT to determine if the requested CO is stored locally

or a request for the CO is pending. If the CO is stored locally, a Data packet is sent back

to the user requesting it. If a request for the same content is pending, the name of the user

is added to the list of customers that have requested the CO. Router i sends back a NACK

if it is an anchor of name prefix n(j)∗ and the specific CO is not found locally, or the CO

is remote and no FIB entry exists for a name prefix that can match n(j).

If possible, router i forwards the Interest through the highest ranked neighbor in

its FIB for the name prefix matching n(j). How such a ranking is done is left unspecified,

and can be based on a distributed or local algorithm.

If a DART entry exists for the selected successor that should receive the Interest,

the existing route is used; otherwise, a new DART entry is created before the Interest is
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sent. The successor dart assigned to the new DART entry is a locally unique identifier that

must be different from all other successor darts being used by router i.

Algorithm 9 Processing Interest from user c at router i
function Interest Source

INPUT: RCT i, FIBi, DART i, I[n(j), nil, nil];

if n(j) ∈ RCT i then

if p[n(j)] 6= nil then

retrieve CO n(j); send DP [n(j), sp(j), nil] to c

else

lc[n(j)] = lc[n(j)] ∪ c; p[n(j)] = nil (% Interest is aggregated)

end if

else

if n(j)∗ ∈ RCT i then

send NA[n(j), no content, nil] to c (% n(j) does not exist)

else

if n(j)∗ 6∈ FIBi then

send NA[n(j), no route, nil] to c (% No route to n(j)∗ exists)

else

create entry for n(j) in RCT i: (% Interest from c is recorded)

lc[n(j)] = lc[n(j)] ∪ c; p[n(j)] = nil;

for each v ∈ Si
n(j)∗ by rank in FIBi do

a = a(i, n(j)∗, v);

if ∃DART i(a, i) ( si(a, i) = v ) then

hI (i) = hi(a, i); dartI (i) = sdi(a, i);

send I[n(j), hI (i), dartI (i)] to v; return

else

create entry DART i(a, i):

compute SD 6= sdi(p, q) ∀ DART i(p, q);

pdi(a, i) = SD; sdi(a, i) = SD;

pi(a, i) = i; si(a, i) = v; hi(a, i) = h(i, n(j)∗, v);

hI (i) = hi(a, i); dartI (i) = sdi(a, i);

send I[n(j), hI (i), dartI (i)] to v; return

end if

end for

end if

end if

end if

Algorithm 10 outlines the processing of Data packets. If the router has local

consumers that requested the content, the Data packet is sent to those consumers based on

the information stored in RCT i. If the Data packet is received in response to an Interest

that was forwarded from router k, router i forwards the Data packet after swapping the
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successor dart received in the Data packet for the predecessor dart stored in DART i. Router

i stores the data object if caching is supported.

Algorithm 10 Processing Data packet at router i
function Data Packet Handling

INPUT: DART i, RCT i, DP [n(j), sp(j), dartI (q)];

[o] verify sp(j);

[o] if verification fails then discard DP [n(j), sp(j), dartI (q)]

if ∃DART i(a, k) ( dartI (q) = sdi(a, k) ∧ pi(a, k) = i )

(% router i was the origin of the Interest) then

for each c ∈ lc[n(j)] do

send DP [n(j), sp(j), nil] to c; lc[n(j)] = lc[n(j)]− {c}

end for

end if

if ∃DART i(a, k) ( dartI (q) = sdi(a, k) ∧ pi(a, k) = k ∈ Ni ) then

(% Data packet can be forwarded to k:)

dartI (i) = pdi(a, k); send DP [n(j), sp(j), dartI (i)] to k

end if

[o] if no entry for n(j) exists in RCT i then

create RCT i entry for n(j): lc[n(j)] = ∅

end if

[o] store CO in local storage; p[n(j)] = address of CO in local storage

Algorithm 11 states the steps taken to handle NACKs, which are similar to the

forwarding steps taken after receiving a Data packet. Router i forwards the NACK to local

consumers if it was the origin of the Interest, or to a neighbor router k if it has a DART

entry with a successor dart matching the dart stated in the NACK.

Algorithm 11 Process NACK at router i
function NACK Handling

INPUT: DART i, RCT i, NA[n(j), CODE, dartI (q)];

if ∃DART i(a, k) ( dartI (q) = sdi(a, k) ∧ pi(a, k) = i )

(% router i was the origin of the Interest) then

for each c ∈ lc[n(j)] do

send NA[n(j), CODE, nil] to c; lc[n(j)] = lc[n(j)]− {c}

end for

delete entry for n(j) in RCT i

end if

if ∃DART i(a, k) ( dartI (q) = sdi(a, k) ∧ pi(a, k) = k ∈ Ni ) then

(% NACK can be forwarded to router k:)

dartI (i) = pdi(a, k); send NA[n(j), CODE, dartI (i)] to k

end if
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Algorithm 12 shows the steps taken by router i to process an Interest received

from a neighbor router k. If the requested content is cached locally, a Data packet is sent

back. As in Algorithm 9, router i sends back a NACK if it is an anchor of n(j)∗ and the

CO with name n(j) is not found locally, or the CO is remote and no FIB entry exists for

n(j)∗. In contrast to Algorithm 9, Interests received from other routers are not aggregated.

If the Interest must be forwarded and an entry exists in DART i with router k as

the predecessor and dartI(k) as the predecessor dart, then DEAR has been satisfied by a

previous Interest from k over the existing path that k is requesting to use. Accordingly,

router i simply swaps dartI(k) for the successor dart stated in the entry in DART i and

forwards the Interest.

Alternatively, if no DART entry exists with k as a predecessor and dartI(k) as the

predecessor dart, router i tries to find a neighbor that satisfies DEAR. The highest-ranked

router v satisfying DEAR is selected as the successor for the Interest and router i creates

a successor dart different from any other successor darts in DART i, stores an entry with v

and the new successor dart, and forwards the Interest to v. If DEAR is not satisfied, then

router i sends a NACK back to router k.

4.2.5 Supporting Multipoint Communication

NDN and CCNx support multicasting by the reverse path forwarding (RPF) of

Data packets over paths traversed by aggregated Interests. Interests serve the dual purpose

of maintaining multicast forwarding trees (MFT) and pacing multicast sources. CCN-

DART also supports multipoint communication using the RPF approach, but separates

the establishment of an MFT from the mechanisms used to pace a source or disseminate
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multicast data over the tree.

CCN-DART uses RCTs and multicast data answer routing tables (MDART) to

maintain MFTs. A single dart is used to denote all the predecessors and successors in the

MFT of a group at each router . This means that a single dart must be used to label all the

branches of the MFT of a multicast group. The dart used for multicast group name g(j) is

denoted by d[g(j)], and can be made part of the group name to simplify its dissemination.

A router with local receivers of a multicast group maintains the mapping of the

names of local receivers to the name of the multicast group in its RCT. The MDART at

router i is denoted by MDART i and is indexed by the names of the multicast groups

for which the router forwards traffic. The entry for multicast group with name g(j) in

MDART i states: the dart of the group (d[g(j)]), the successor selected by router i to join

the group, the set of routers (predecessors) that requested to join g(j) through router i, and

the hop-count distance to the anchor of g(j) when router i established the MDART entry

for the group (hi(g(j))).

If router i has local receivers for group g(j), then it sends a join request (JR),

denoted by JR[g(j), hJ(i), dartJ(i)], stating the name of the group, hJ(i) = hi(g(j)), and

dartJ(i) = d[g(j)]. The forwarding of JRs is based on FIB entries and is similar to the

forwarding of Interests. A relay router can forward a JR towards the anchor of g(j) in

two cases. If no MDART entry exists and DEAR is satisfied, an MDART entry is created

for the group. If an MDART entry exists, then the router simply adds a new predecessor

for the group in the existing MDART entry. Negative acknowledgments may be sent if no

routes to g(j) are found, DEAR is not satisfied, or MDART entries become invalid due to
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topology changes.

The design of algorithms for multicast data dissemination or pacing of multicast

sources is outside the scope of this dissertation. However, similar approaches to those

designed to address the ACK implosion problem in reliable multicasting [38] can be used

to pace sources and pull or push data over multicast trees. Multicast data packets have the

same format of Data packets and are forwarded from sources towards receivers based on

the darts of the multicast groups.

4.2.6 CCN-DART Forwarding Example

Figure 4.6 illustrates how darts are used to label Interests and associate Interests

with Data packets and NACKs. In the example, routers a , b, and x have local consumers

originating Interests, and those Interests are assumed to request COs with names that are

best matched with name prefixes for which router d is an anchor.

The arrowheads in the links of the figure denote the next hops stored in the FIBs

of routers, and y(i) denotes the ith dart in DART y. The figure shows the DART entries

maintained at all routers for name prefixes for which router d is an anchor, and the RCT

entries stored at routers a, b, and x. Consumers A, C, N, and P request the same CO with

name n(j), and router a aggregates their requests and needs to send only one Interest for

n(j) towards d. Similarly, it aggregates the Interests from consumers A, C, and Q. Similar

Interest aggregation of local requests occur at routers b and x.
Router a forwards Interests intended for anchor d to neighbor r, and routers b and

x forwards their Interests to neighbors s and c, respectively. Routers a, r, and s establish

the following mappings in their DARTs: [a; a(k)] ↔ [r; a(k)] at a, [a; a(k)] ↔ [s; r(m)] at
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Figure 4.6: Interest forwarding in CCN-DART.

r, and [r; r(m)] ↔ [d; s(j)] at s. These mappings denote the route (a, r, s, d) uniquely.

Similarly, routers establish the DART mappings shown in the figure that denote the routes

(x, b, c, d) and (b, c, d).

All the Interests from consumers local to routers a, b, and x regarding COs with

names in prefixes for which d is an anchor can be routed towards d using the same few darts

shown. Given that a Data packet or NACK specifies the successor dart stated the Interest

it answers, Data packets and NACKs can be forwarded correctly from d (or a router caching

the requested CO along the way to d) to routers a, b, or x unambiguously. In turn, routers

a, b, and x can determine how to deliver the responses to local consumers based on the the

RCT entries mapping each CO requested with the names of the customers that requested

them.

4.3 Correctness of CCN-DART

The following two theorems show that CCN-DART operates correctly. Theorem 5

shows that CCN-DART prevents Interests from being propagated along loops, indepen-

dently of whether the topology is static or dynamic or the FIBs are consistent or not.
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To discuss the correctness of Interest forwarding in CCN-DART, we say that a

forwarding loop of h hops for a CO with name n(j) occurs when Interests requesting the CO

are forwarded by routers along a cycle L = {v1, v2, ..., vh, v1}, such that router vk receives

an Interest for CO n(j) from vk−1 and forwards the Interest to vk+1, with 1 ≤ k ≤ h,

vh+1 = v1, and v0 = vh.

Theorem 5. Interests cannot traverse forwarding loops in a network in which CCN-DART

is used.

Proof. Consider a network in which CCN-DART is used. Assume for the sake of contradic-

tion that routers in a forwarding loop L of h hops {v1, v2, ..., vh, v1} send Interests for n(j)

along L, with no router in L detecting the incorrect forwarding of any of the Interests sent

over the loop.

Given that L exists by assumption, vk ∈ L must send I[n(j), hI(vk), dartI(vk)] to

router vk+1 ∈ L for 1 ≤ k ≤ h − 1, and vh ∈ L must send I[n(j), hI(vh), dartI(vh)] to

router v1 ∈ L.

For 1 ≤ k ≤ h − 1, let h(vk, n(j)∗)L denote the value of hI(vk) when router vk

sends I[n(j), hI(vk), dartI(vk)] to router vk+1, with h(vk, n(j)∗)L = h(vk, n(j)∗, vk+1). Let

h(vh, n(j)∗)L denote the value of hI(vh) when router vh sends I[n(j), hI(vh), dartI(vh)] to

router v1 ∈ L, with h(vh, n(j)∗)L = h(vh, n(j)∗, v1).

Because no router in L detects the incorrect forwarding of an Interest and for-

warded Interests are not aggregated in CCN-DART, each router in L must send its own

Interest as a result of the Interest it receives from the previous hop in L. This implies that

router vk ∈ L must accept I[n(j), hI(vk−1), dartI(vk−1)] for 1 ≤ k < h, and router v1 ∈ L
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must accept I[n(j), hI(vh), dartI(vh)].

According to DEAR, if router vk sends Interest I[n(j), hI(vk), dartI(vk)] to router

vk+1 as a result of receiving I[n(j), hI(vk−1), dartI(vk−1)] from router vk−1, then it must

be true that hI(vk−1) > h(vk, n(j)∗)L = hI(vk) for 1 < k ≤ h. Similarly, if router v1 sends

I[n(j), hI(v1), dartI(v1)] to router v2 as a result of receiving I[n(j), hI(vh), dartI(vh)] from

router vh, then hI(vh) > h(v1, n(j)∗)L = hI(v1).

It follows from the above argument that, for L to exist and be undetected when

each router in the loop uses DEAR to create DART entries, it must be true that hI(vh) >

hI(v1) and hI(vk−1) > hI(vk) for 1 < k ≤ h. However, this is a contradiction, because it

implies that hI(vk) > hI(vk) for 1 ≤ k ≤ h. Therefore, the theorem is true.

Theorem 2 addresses the ability for routers to send Data packets and NACKs

correctly to the consumers who issued the corresponding Interests using only the infor-

mation stated in messages and stored in DARTs and RCTs. The theorem assumes that

transmissions are sent correctly.

Theorem 6. CCN-DART ensures that, in the absence of failures, Data packets and NACKs

are sent correctly to the consumers that submitted the corresponding Interests.

Proof. If a router can resolve an Interest from a local consumer, it follows from Algorithm

1 that the result is true. Let router s be the origin of an Interest and let router d 6= s be

the router that replies to the Interest from s with a Data packet or a NACK.

As Theorem 1 shows, Interests cannot traverse forwarding loops. Accordingly, if

router d receives the Interest originated by s, then router d and all routers in the simple

path from s to d must have established forwarding state according to Algorithm 4. Each

76



router uses a different successor dart for each path traversing the router and defined by a

predecessor name and a predecessor dart; therefore, each DART entry at a router uniquely

denotes a different route traversing the router. Accordingly, given that router d can respond

to an Interest only it it receives the Interest correctly, the proof can assume that the

routers along the path from the source s to router d have established correct forwarding

state in their DARTs. The rest of the proof must show that each router from d to s is

able to demultiplex correctly the Data packets and NACKs that traverse the reverse path

established by Interests delivered from s to d.

Let h be the number of hops in the path traversed by a Data packet or a NACK in

response to an Interest originated at router s and answered by router d, and let fi denote

the router at the ith hop in such a path.

Basis Case: Let h = 1, then s = f1. Router s labels its Interest with a dart

assigned uniquely for its one-hop route to d, and remembers the user(s) that requested any

CO in its RCT. According to Algorithm 4, router d responds to the Interest from s directly

and includes the dart from the Interest in its response. According to Algorithms 2 and 3,

router s associates the CO name in the response with the local consumer(s) that submitted

requests for that CO. It follows that the basis case is true.

Inductive Step: Assume that each router up to k − 1 hops away from router d

in the path from router d to router s receives and forwards a Data packet or NACK from

router d correctly over the path to s. We need to show hat the result is true for the router

that is k hops away from router d in the path to router s, with 1 ≤ k ≤ h.

When router fk receives a Data packet or NACK from router fk−1 containing
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dartI(fk−1), it uses Algorithm 2 or 3, respectively. Given that routers have established

correct forwarding state in their DARTs, fk−1 and dartI(fk−1)) must be the successor and

successor dart in an entry in DART fk , respectively. Furthermore, the predecessor of the

entry in DART fk must equal either fk or fk+1. In the first case (k = h and s = fk), router

fk was the origin of the Interest being answered. In the second case (k < h), router fk

forwards the response to router fk+1 swapping dartI(fk−1) for the predecessor dart listed

in the DART entry, which is the dart that router fk+1 included in the Interest it sent to

router fk. Hence, router fk must forward its response correctly to either the previous hop

in the path from d to s or the origin of the Interest.

It follows by induction that a Data packet or NACK traverses correctly the path

of length h hops from router d to router s. Furthermore, the name of the CO in the Data

packet or NACK is the one stated in the Interest originated by router s on behalf of one

or multiple local consumers. Because s uses its RCT to associate each CO name stated in

a Data packet or NACK with the correct set of local consumers that requested the CO,

router s can forward the response to the correct local consumers. Therefore, the theorem

is true.

4.4 Performance Comparison

We compare the performance of CCN-DART and NDN using simulation experi-

ments based on implementations of NDN and CCN-DART in the ndnSIM simulation tool

[1].

The NDN implementation was used without modifications, and CCN-DART was
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implemented based on Algorithms 1 to 4. The performance metrics used to compare NDN

with CCN-DART are the number of entries needed in PITs and DARTs, the number of

Interests handled by routers, and the delay incurred in obtaining a Data packet or a NACK

in response to an Interest.

The simulation parameters used for this study are the same as those presented

in Section 4.1.1. We set the data rates of the links to 1Gbps to minimize the effects that

link congestion or a sub-optimal implementation of CCN-DART or NDN may have on the

results, especially for the case of end-to-end delays. The assumption that each router is

locally attached to a content producer and local users requesting content constitutes the

worst-case scenario for CCN-DART compared to NDN, because it results in many more

DART entries. In a realistic deployment, only a small subset of the total number of routers

in the network are attached to local producers of content. We consider on-path caching and

edge caching. For the case of on-path caching, every router on the path traversed by a Data

packet from the producer to the consumer caches the CO. On the other hand, with edge

caching, only the router directly connected to the requesting consumer caches the resulting

CO.

4.4.1 Size of PITs and DARTs

Figure 4.7 shows the average size and standard deviation of the number of entries

in PITs used in NDN and the number of entries in DARTs and RCTs used in CCN-DART

as a function of the total content-request rates per router. The vales shown for RCTs rep-

resent only the number of local pending Interests; the number of COs cached locally is not

shown, given that the number of such entries would be very large and would be the same
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for NDN and CCN-DART.

Figure 4.7: Size of PITs, DARTs and RCTs

As the figure shows, the size of PITs grows dramatically as the rate of content

requests increases, which is expected given that PITs maintain per-Interest forwarding

state. By contrast, the size of DARTs remains constant with respect to the content-request

rates. The small average size of RCTs compared to the average size of PITs indicates that

the average size of a PIT is dominated by the number of Interests a router forwards from

other routers.

For low request rates, the average number of entries in a DART is actually larger

than in a PIT. This is a direct consequence of the fact that a PIT entry is deleted imme-

diately after an Interest is satisfied, while a DART entry is kept for long periods of time

(seconds) in our implementation, independently of whether or not it is used to forward

Interests. Given the small sizes of DARTs, the cost of maintaining DART entries that

may not be used at light loads is more than compensated by the significant reduction in

forwarding state derived from many Interests being forwarded using existing DART entries

at higher request rates. This should be the case in real deployments, where the number
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of routers that are origins of routes to prefixes is much smaller than the total number of

routers. However, optimizing the length of time that a DART entry lasts as a function of

its perceived utility for content forwarding is an area that deserves further study.

As the total content-request rate per router increases, the size of a PIT can be

more than 10 to 20 times the size of a DART, because a given DART entry is used for many

Interests in CCN-DART, while NDN requires a different PIT entry for each Interest. It is

also interesting to see the effect of on-path caching compared to edge-caching. The average

size of DARTs is independent of where content is being cached, and on-path caching in

NDN does not make a significant difference in the size of a PIT compared to edge-caching.

4.4.2 Interest Traffic and End-to-End Delays

Figure 4.8 shows the average number of interests received by each router in NDN

and CCN-DART as a function of the content request rates for on-path caching and edge

caching. The number of Interests received in CCN-DART is larger than the corresponding

number for NDN. However, it is clear from the figure that the average numbers of Interests

received by each router in NDN and CCN-DART are almost the same for all request rates.

The benefit of on-path caching is apparent for both NDN and CCN-DART, but

appears slightly more pronounced for the case of CCN-DART. This should be expected,

because CCN-DART does not aggregate Interests and on-path caching results in fewer

Interests being forwarded.

Figure 4.9 shows the average end-to-end delay for NDN and CCN-DART as a

function of content-request rates for on-path caching and edge caching. As the figure shows,

the average delays for NDN and CCN-DART are essentially the same for all content-request

81



Figure 4.8: Number of Interests received by routers

rates. This should be expected, given that in the experiments the routes in the FIBs are

static and loop-free, and the number of Interests processed by routers is similar.

Figure 4.9: Average end-to-end delays

4.4.3 Impact of Interest Flooding Attacks

Information Centric Networks can be a target for attacks known as Interest Flood-

ing which is a type of Distributed Denial of Service attacks. In this kind of attack, attackers

generate interests messages for valid prefixes in a high rate. The goal of such attacks is to

overwhelm PIT of routers, preventing them from handle legitimate interests. The other

goal would be to swamp content producers [78]. Generated interests can be for existing or

non-existent data objects. For the first case, where interests can be satisfied, PIT entries
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will not remain for long time, and they will be satisfied by data objects. For the requetes

generated repeatedly for same objects, attack will not be effective since requests will be sat-

isfied by the content stores. For the case of non-existent data objects, generated interests

are routed toward content producers, resulting in creation of PIT entries, which will remain

in PIT tables till they get expired, which can affect all routers from acting properly since

loose state of traffic and can not serve legitimate traffic due to occupancy of PIT by non-

legitimate entries. Looseing state will result defeat of other protocols such as forwarding,

congestion control, and etc which perform based on state of routers and traffic.

We ran simulations for three cases. The first case serves as the baseline; all routers

receive 200 valid Interests per second from local users. In the second case, each router with

local attackers receives 2000 invalid Interests per second. The resulting average size of the

PITs almost doubles with respect to the case of no attacks, and the average size of DARTs

does not change. In the third case, each router with local attackers receives 4000 invalid

Interests per second, the average size of the PIT table increases dramatically, and the size

of the DART still remains the same.

Interest flooding attacks in NDN translate into PITs that can easily be over-

whelmed and much more traffic (Interests and NACKs). It is important to note that, by

the very nature of Interest flooding attacks, Interest aggregation is not useful. Given the

results from the other experiments and Section 4.1.1, it is clear that using PITs to maintain

forwarding state is to the detriment of the system.

It is clear from the results of this experiment that the size of DARTs is not affected
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by the presence of Interest flooding attacks. The size of RCTs grows for those routers with

local attackers in the presence of Interest flooding attacks, because RCTs maintain per-

Interest state to enable the aggregation of local requests. However, limiting the size of

RCTs can be done by limiting the rate at which any one local consumer is allowed to

submit content requests, which impacts only that specific local user.

CCN-DART eliminates a major vulnerability of NDN, because forwarding tables

cannot be attacked. However, an approach is still needed to address Interest flooding

attacks in CCN-DART, given that invalid Interests still consume valuable bandwidth and

can overwhelm content providers. Any viable solution to Interest flooding attacks requires

RCTs (or Content Stores in the NDN case) to act as filters of valid requests.

Figure 4.10: Table Sizes under DDoS Attack

4.4.4 Implementation and Deployment

The mappings stored in DARTs are equivalent to the label mappings first intro-

duced for packet switching based on virtual circuits [39] and used today in high-performance

routers running multiprotocol label switching (MPLS). The small fixed-size darts and the

relatively small number of DART entries needed for CCN-DART to operate at Internet
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scale are preferable by far to the long variable-length names (plus large nonces for the case

of NDN) and the large number of PIT entries needed to maintain forwarding state in NDN

and CCNx [33, 42].

Both DARTs and PITs must be updated when the paths traversed by Interests and

their responses must change due to congestion, topology changes, or mobility of consumers

and providers. Yi et al [24] argue that a stateful forwarding plane enables a fast response

to topology changes and congestion. However, the existence of MPLS fast rerouting mecha-

nisms demonstrate that maintaining per-Interest forwarding state is not necessary to enable

fast restoration of paths in the data plane. Similar mechanisms can be adopted in CCN-

DART with much less signaling overhead than attempting to update forwarding tables with

forwarding state for each Interest. Furthermore, approaches similar to those introduced in

the past for congestion-oriented multipath routing and dynamic load balancing [21, 44] can

be used in the context of CCN-DART, taking advantage of the fact that Interests cannot

traverse loops.

CCN-DART provides native support for single-source multicasting. However, it

separates the maintenance of multicast forwarding trees from the mechanisms used for

source pacing and data dissemination over such trees. The benefit of this separation is that

both pull and push-based mechanisms for multipoint communication can be used, and both

are important for content-centric networking [31].

End users cannot mount Interest flooding attacks [114, 43] to overflow DARTs

in the same way that PITs can be attacked. A DART entry can be added only for valid

anchors of name prefixes and for routes that satisfy the ordering constraint imposed with
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DEAR. Given that both conditions are managed in the control plane, mounting attacks on

DARTs must be much more sophisticated than simply having users send Interests for COs

corresponding to valid prefixes.

Countermeasures to DART attacks can be implemented based on configuration

data or information protected in the control plane. For example, a neighbor router can be

designated as an edge router and be limited to creating one dart per anchor. Similarly,

Interests from neighbors must satisfy DEAR or be rejected, and an upper bound on the

number of darts allowed from each neighbor for any prefix can be set based on the network

size and the maximum number of routes to an anchor that can flow through that neighbor.

The performance results for edge and on-path caching we have presented have

important consequences for CCN-DART deployments. An efficient deployment of CCN-

DART could consist of using full content routers with FIBs, DARTs and RCTs only at the

edge, and using “dart routers” elsewhere, which are are dedicated to content forwarding

and maintain only FIBs and DARTs.

4.5 Conclusions

We introduced CCN-DART, the first approach to Interest-based content-centric

networking that supports Interest forwarding without revealing the sources of Interest and

with no need to maintain forwarding state on a per-Interest basis.

CCN-DART replaces PITs with Data Answer Routing Tables (DART) that es-

tablish forwarding state for each route traversing the router over which many Interests are

multiplexed, rather than establishing state for each different Interest using routes traversing
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the router.

We proved that forwarding loops cannot occur in CCN-DART, even if routing

loops exist in the FIBs maintained by routers, and that Data packets and NACKs are

forwarded over the correct paths to consumers. The results of simulation experiments

based on implementations of NDN and CCN-DART in ndnSIM show that CCN-DART is

far more efficient than NDN. Compared to NDN, CCN-DART rendered the same end-to-end

delays, incurred similar signaling overhead in the data plane, and resulted in a forwarding

state with a number of entries smaller than one order of magnitude the number required in

NDN.
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Algorithm 12 Processing Interest from router k at router i
function Dart Swapping

INPUT: RCT i, FIBi, DART i, I[n(j), hI (k), dartI (k)];

if n(j) ∈ RCT i ∧ p[n(j)] 6= nil then

retrieve CO n(j); send DP [n(j), sp(j), dartI (k)] to k

else

(% n(j) 6∈ RCT i ∨ p[n(j)] = nil )

if n(j)∗ ∈ RCT i then

send NA[n(j), no content, dartI (k)] to k

else

if n(j)∗ 6∈ FIBi then

send NA[n(j), no route, dartI (k)] to k

else

if ∃DART i(a, k) ( pdi(a, k) = dartI (k) ) then

hI (i) = hi(a, k); dartI (i) = sdi(a, k);

send I[n(j), hI (i), dartI (i)] to si(a, k)

else

for each v ∈ Si
n(j)∗ by rank in FIBi do

if hI (k) > h(i, n(j)∗, v) (% DEAR is satisfied) then

a = a(i, n(j)∗, v);

create entry DART i(a, k):

compute SD 6= sdi(p, q) ∀ DART i(p, q);

hi(a, k) = h(i, n(j)∗, v);

pi(a, k) = k; pdi(a, k) = dartI (k);

si(a, k) = v; sdi(a, k) = SD;

create Interest:

hI (i) = hi(a, k); dartI (i) = sdi(a, k);

send I[n(j), hI (i), dartI (i)] to v;

return

end if

end for (% Interest may be traversing a loop)

send NA[n(j), loop, dartI (k)] to k

end if

end if

end if

end if
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Chapter 5

Content Centric Networking Using

Anonymous Datagrams

The leading approach in content-centric networking consists of: populating for-

warding information bases (FIB) maintained by routers with routes to name prefixes de-

noting content, sending content requests (called Interests) for specific content objects (CO)

over paths implied by the FIBs, and delivering data packets with content objects along the

reverse paths traversed by Interests.

The main advantages that such Interest-based content-centric networking approach

offers compared to the IP Internet are that: (a) content providers and caching sites do

not know the identity of the consumers requesting content; (b) content can be obtained

by name from those sites that are closer to consumers; (c) data packets carrying content

cannot traverse loops, because they are sent over the reverse paths traversed by Interests;

and (d) content-oriented security mechanisms can be implemented as part of the content
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delivery mechanisms.

Named data networking (NDN) [17] and CCNx [4] are the two prominent Interest-

based content-centric networking approaches. Routers in NDN and CCNx maintain a

“stateful forwarding plane” [24] (i.e., per-Interest forwarding state) by means of Pending

Interest Tables (PIT). The PIT of a router maintains information regarding the incoming

interfaces from which Interests for a CO were received and the interfaces where the Interest

for the same CO was forwarded.

Since the inception of CCNx and NDN, PITs have been viewed as necessary in

order to maintain routes to the origins of Interests while preserving the anonymity of those

sources, aggregate Interests requesting the same content in order to attain efficient Interest

and content forwarding, and support multicasting without additional support in the control

plane.

However, using PITs at Internet scale comes at a big price. PITs grow very

large [33, 41, 42] as the number of Interests from users increases, which results from PITs

having to store per-Interest forwarding state. Furthermore, PITs make routers vulnerable

to Interest-flooding attacks [78, 43, 112, 113] in which adversaries send malicious Interests

aimed at making the size of PITs explode. Known countermeasures to these attacks [114]

attempt to reduce the rates at which suspected routers can forward Interests. However,

these solutions cannot prevent all flooding attacks and can actually be used to mount other

types of denial-of-service attacks.

Section 4.1.1 analyzes the effectiveness of Interest aggregation in NDN by means

of simulations based on the implementation of NDN in ndnSIM [1] without modifications.
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The results show that the percentage of Interests that are aggregated is negligible when

in-network caching is enabled, even when Interests exhibit temporal or spatial correlation.

Given that in-network caching obviates the need for Interest aggregation, and

given the vulnerability of NDN and CCNx to Interest-flooding attacks, it is clear that a

new Interest forwarding approach is needed for content-centric networking.

We present CCN-GRAM (Gathering of Routes for Anonymous Messengers),

which provides all the benefits of content-centric networking, including native support for

multicasting in the data plane, and eliminates the need to maintain per-Interest forwarding

state by forwarding Interests and responses to them using anonymous datagrams.

Section 7.1.1 describes the operation of CCN-GRAM. Like NDN and CCNx, CCN-

GRAM uses Interests, data packets, and replies to Interests. Similar to IP datagrams, the

messages sent in CCN-GRAM specify a source and a destination. For an Interest, the source

of an Interest is an anonymous identifier with local context and the destination is the name

of a content object. For data packets and replies to Interests, the source is the name of a

content object and the destination is an anonymous identifier. A novel on-demand routing

approach is used to maintain routes to the anonymous routers that originate Interests for

specific content on behalf of local content consumers. Only the local router serving a

user knows the identity of the user; no other router, content provider, or caching site can

determine the consumer that originated an Interest, without routers collaborating along the

path traversed by the Interests to establish the provenance of the Interest.

In contrast to NDN and CCNx in which Interests may traverse forwarding loops

[36, 37, 120], forwarding loops cannot occur in CCN-GRAM for either Interests or responses
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sent to Interests, even if the FIBs maintained by routers contain inconsistent forwarding

state involving routing-table loops. Furthermore, the anonymous datagram forwarding of

CCN-GRAM is much simpler than the label-swapping approach we have advocated before

[108].

Forwarding of Interests and responses to them in CCN-GRAM uses four tables: a

LIGHT (Local Interests GatHered Table), a FIB, an ART (Anonymous Routing Table) and

a LIST (Local Interval Set Table). The LIGHT of a router is an index listing content that

is locally available and content that is remote and has been requested by local users. The

FIB of each router states the next hops to each name prefix and the distance to the name

prefix reported by each next hop. The ART is maintained using Interests and states the

paths to destinations denoted with local identifiers from which routers cannot discern the

origin of Interests. The LIST states the intervals of local identifiers that a router assigns to

its neighbors and that each neighbor assigns to the router.

Section 7.2 compares the performance of CCN-GRAM with NDN when routes

to name prefixes are static and loop-free, which is the best case for NDN. The network

consists of 150 routers, with 10 being connected to content producers and 50 being connected

to consumers. CCN-GRAM attains similar end-to-end latencies than NDN in retrieving

content. However, depending on the rate at which Interests are submitted, CCN-GRAM

requires an average number of forwarding entries per router that is 5 to more than150 times

smaller than the number of PIT entries needed in NDN.
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5.1 CCN-GRAM

We assume that Interests are retransmitted only by the consumers that originated

them. We assume that routers use exact Interest matching, and that a router that advertises

being an origin of a name prefix stores all the content objects associated with that prefix

at a local content store. Routers know which interfaces are neighbor routers and which are

local users, and forward Interests on a best-effort basis. For convenience, it is assumed that

a request for content from a local user is sent to its local router in the form of an Interest.

5.1.1 Information Exchanged and Stored

The name of content object (CO) j is denoted by n(j) and the name prefix that

is the best match for name n(j) is denoted by n(j)∗. The set of neighbors of router i is

denoted by N i.

An Interest forwarded by router k requesting CO n(j) is denoted by I[n(j), AIDI(k),

DI(k)], and states the name of the requested CO (n(j)), an anonymous identifier (AIDI(k))

used to denote the origin of the Interest, and the distance from k to the requested content.

A data packet sent by router i in response to an Interest is denoted by DP [n(j),

AIDR(i), sp(j)], and states the name of the CO being sent (n(j)), an anonymous identifier

(AIDR(i)) that states the intended recipient of the data packet, and a security payload

(sp(j)) used optionally to validate the CO.

A reply sent by router i in response to an Interest is denoted by REP [n(j),

AIDR(i), CODE] and states the name of a CO (n(j)), an anonymous identifier (AIDR(i))

that states the intended recipient of the reply, and a code (CODE) indicating the reason why
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the reply is sent. Possible reasons for sending a reply include: an Interest loop is detected,

no route is found towards requested content, and no content is found.

Router i maintains four tables for forwarding: an optional Local Interests Gath-

ered Table (LIGHT i), a forwarding information base (FIBi), an anonymous routing table

(ART i), and a Local Interval Set Table (LIST i).

LIGHT i lists the names of the COs requested by router i or already stored at

router i. It is indexed by the CO names that have been requested by the router on behalf of

local customers. The entry for CO name n(j) states the name of the CO (n(j)), a pointer

to the content of the CO (p[n(j)]), and a list of zero or more identifiers of local consumers

(lc[n(j)]) that have requested the CO while the content is remote.

FIBi is indexed using known content name prefixes. The entry for prefix n(j)∗

states the distance reported by each next-hop neighbor router for the prefix. The distance

stored for neighbor q for prefix n(j)∗ in FIBi is denoted by D(i, n(j)∗, q). Each entry in

FIBi is stored for a maximum time determined by the lifetime of the corresponding entry

in the routing table of the router.

LIST i maintains the intervals of anonymous identifiers used by router i. It states

the local interval of identifiers accepted by router i (denoted by LIi(i)), and the local

interval of identifiers accepted by each neighbor router k (denoted by LIi(k)) . Clearly,

LIi(k) = LIk(k). All local intervals have the same length |LI|.

ART i is indexed using the anonymous identifiers taken from LIi(i). Each entry

states an anonymous identifier of a destination (AID(ART i)), a next hop to the destination,

(s(ART i)), and an identifier mapping used to handle identifier collisions (map(ART i)).
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ART i[AID, s,map] is used to denote a given entry in ART i.

Routers can exchange local intervals with their neighbors in a number of ways.

The exchange can be done in the data plane using Interests and data packets. An example

would be having a router send an Interest stating a common name denoting that a local

interval is requested, and an empty AID. Given the succinct way in which local intervals

can be stated (an identifier denotes its interval), the exchange can also be easily done as

part of the routing protocol running in the control plane. Routers could exchange interval

identifiers in HELLO messages, link-state advertisements or distance updates. To simplify

our description of CCN-GRAM, we assume that routers have exchanged their local intervals

with one another and have populated their LISTs accordingly. We also assume that local

intervals do not change for extended periods of time after they are assigned.

5.1.2 Eliminating Forwarding Loops

Let Si
n(j)∗ denote the set of next-hop neighbors of router i for prefix n(j)∗. The

following rule is used to ensure that Interests cannot traverse routing loops, even if the

routing data stored in FIBs regarding name prefixes is inconsistent and leads to routing-

table loops.

Loop-Free Forwarding Rule (LFR):

Router i accepts I[n(j), AIDI(k), DI(k)] from router k if:

∃ v ∈ Si
n(j)∗( D

I(k) > D(i, n(j)∗, v) ) (5.1)

LFR is based on the same invariants we have proposed previously to eliminate

Interest looping in NDN and CCNx [36, 120] and avoid forwarding loops in more efficient
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forwarding planes for content-centric networks [108]. As we explain in [36, 108, 120], the

approach is a simple application of diffusing computations that ensures loop-free forwarding

of Interests with or without aggregation.

5.1.3 Forwarding to Anonymous Destinations

The header of a datagram needs to denote its origin and destination, so that the

datagram can be forwarded to the intended destination and responses to the datagram can

be forwarded back to the source. Since the introduction of datagram packet switching by

Baran [117], the identifiers used to denote the sources and destinations of datagrams have

had global scope, and routers maintain FIBs with entries towards those sources. However,

this need not be the case!

It is trivial to add information in Interests about the paths they traverse to allow

responses to be sent back without the need for FIBs maintaining routes to the sources of

Interests. However, this would negate the anonymity of Interests advocated in NDN and

CCNx.

CCN-GRAM uses local identifiers to denote the sources of Interests in a way that

responses to Interests (data packets or replies) can be forwarded correctly to the sources of

Interests, without their identity being revealed to relaying routers, caching sites, or content

producers.

Given that all local intervals have the same length |LI|, the local interval LIi(i)

is uniquely defined by the smallest identifier of the interval, which we denote by LIi(i)[s].

If router p sends Interest I[n(j), AIDI(p), DI(p)] to router i, AIDI(p) must be in

LIp(i) = LIi(i). Similarly, if router i forwards Interest I[n(j), AIDI(i), DI(i)] to router n,
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AIDI(i) must be in LIi(n) = LIn(n). Hence, to forward an Interest from p to n, router

i must map the AID received in the Interest from p to an AID that belongs to the local

interval accepted by its neighbor n. Router i can accomplish this mapping with the following

bijection, where ε is a constant known only to router i:

AIDI(i) = ε+AIDI(p)− LIi(i)[s] + LIi(n)[s] mod |LI| (5.2)

We denote the mapping of identifiers from LIi(i) to LIi(n) by fi(n) : LIi(i) →

LIi(n). The image of identifier a ∈ LIi(i) under fi(n) is denoted by fi(n)[a] and fi(n)[a] ∈

LIi(n). The reverse mapping from LIi(n) to LIi(i) is denoted by f−1
i (n) and of course

f−1
i (n)[fi(n)[a]] = a.

Algorithms 17 to 16 specify the steps taken by routers to process and forward

Interests, and return data packets or replies. We assume that each router is initialized

properly, knows the identifiers used to denote local consumers, knows all its neighbors, and

knows the local identifier intervals associated with each neighbor. We assume that a routing

protocol (e.g., DCR [10], NLSR [125]) operating in the control plane updates the entries of

routing tables listing one or multiple next hops towards name prefixes. Routers populate

their FIBs with routes to name prefixes based on the data stored in their routing tables.

How long FIB entries are maintained is determined by the operation of the routing protocol.

We assume that router i uses a single anonymous identifier in LIi(i) to denote

itself in its ART i, and denote it by AIDi.

Algorithm 17 shows the steps taken by router i to process Interests received from

local consumers. For convenience, content requests from local consumers are assumed to be
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Algorithm 13 Processing Interest from user c at router i
function Interest Source

INPUT: LIGHT i, LIST i, FIBi, ART i, AIDi, I[n(j), c, nil];

if n(j) ∈ LIGHT i then

if p[n(j)] 6= nil (% CO is local) then

retrieve CO n(j); send DP [n(j), c, sp(j)] to consumer c

else

p[n(j)] = nil; lc[n(j)] = lc[n(j)] ∪ c (% Interest is aggregated)

end if

else

if n(j)∗ ∈ LIGHT i (%All content in n(j)∗ is local and n(j) is not) then

send REP [n(j), c, no content] (% n(j) does not exist)

else

if n(j)∗ 6∈ FIBi then

send REP [n(j), no route, c] to c (% No route to n(j)∗ exists)

else

create entry for n(j) in LIGHT i: (% Interest from c is recorded)

lc[n(j)] = lc[n(j)] ∪ c; p[n(j)] = nil;

if AIDi = nil then

select identifier a ∈ LIi(i) that is not used in any entry in ART i;

AIDi = a; create entry ART i[AIDi, i, AIDi]

end if

for each v ∈ Ni by rank in FIBi do

AIDI(i) = fi(v)[AIDi]; DI(i) = D(i, n(j)∗, v);

send I[n(j), AIDI(i), DI(i)] to v; return

end for

end if

end if

end if

Interests stating the name of a CO, the name of the consumer, and an empty distance to the

content assumed to denote infinite. Similarly the same format of data packets and replies

used among routers is used to denote the responses a router sends to local consumers.

After receiving an Interest from a local consumer, router i first searches its LIGHT

to determine if the content is stored locally or a request for the same content is pending. If

the content is stored locally, a data packet is sent back to the user requesting the CO. If a

request for the same content is pending, the name of the user is simply added to the list of
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users that have requested the CO.

In our description of CCN-GRAM, a router that advertises being an origin of a

prefix must have all the COs associated with the prefix stored locally. If router i states that

it is an origin of the name prefix n(j)∗ and a specific CO with a name that is in that prefix

is not found locally, a reply must be sent back to the consumer stating that the content does

not exist. Additional steps could be taken to address the case of Interests sent maliciously

for content that does not exist.

If the CO is remote and no FIB entry exists for a name prefix that can match n(j),

a reply is sent back stating that no route to the CO could be found. Otherwise, router i

forwards the Interest through the highest ranked neighbor v in its FIB for the name prefix

matching n(j), which is denoted by n(j)∗. How such a ranking is done is left unspecified,

and can be based on a distributed or local algorithm [10, 125, 111].

When router i originates an Interest on behalf of a local consumer and forwards

Interest I[n(j), AIDI(i), DI(i)] to neighbor router n towards name prefix n(j)∗, router i

selects an identifier a ∈ LIi(i) that is not used to denote any other source of Interests

in ART i, sets AIDI(i) = fi(n)[a] ∈ LIi(n), and stores the entry ART i[a, i, a]. Router i

can use the same anonymous identifier for all the Interests it originates on behalf of local

consumers and forwards to neighbor n.

If no ART entry exists with router i as the origin of Interests (AIDi = nil), AIDi

is selected from the set of AIDs in LIi(i) that are not being used for other Interest sources,

and a new ART entry is created for AIDi. The Interest is forwarded to the selected next

hop for the Interest by first mapping AIDi into an AID in LIi(v) using the bijection in Eq.
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5.2.

Algorithm 18 shows the steps taken by router i to process an Interest received

from a neighbor router p. The main differences in the steps taken by router i compared

to Interests received from local users are that no Interest aggregation is done for Interests

received from neighbor routers, and router i maps the AID it receives in the Interest from

the previous hop to the AID it should use in the Interest it sends to the next hop using a

simple mapping function.

When router i forwards Interest I[n(j), AIDI(p), DI(p)] from predecessor router p

to successor router n towards name prefix n(j)∗, router i makes sure that AIDI(p) ∈ LIi(i)

is not listed in an ART i entry with a next hop other than p. If that is the case, router i stores

ART i[AIDI(p), p, AIDI(p)], and sets AIDI(i) = fi(n)[AIDI(p)] ∈ LIi(n). Otherwise,

router selects an AID b ∈ LIi(n) that is not used to denote any other source of Interests in

ART i, stores ART i[b, p, AIDI(p)], and sets AIDI(i) = fi(n)[b] ∈ LIi(n).

If the requested content is cached locally, a data packet is sent back. If router i

is an origin of n(j)∗ and the CO with name n(j) is not found locally, a reply is sent back

stating that the content could not be found. Additional steps can be taken to address the

case of malicious Interests requesting non-existing content. If the CO is remote and no FIB

entry exists for n(j)∗, then router sends a reply stating that no route could be found for

the CO.

Router i tries to forward the Interest to a next hop s for the best prefix match

for n(j) that satisfies LFR. The highest-ranked router satisfying LFR is selected as the

successor for the Interest and router i. If no neighbor is found that satisfies LFR, a reply
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is sent stating that a loop was found.

Algorithm 19 outlines the processing of data packets. If local consumers requested

the content in the data packet, it is sent to those consumers based on the information stored

in LIGHT i. If the data packet is received in response to an Interest that was forwarded

from router p, router i forwards the data packet doing the proper mapping of AIDs. Router

i stores the data object if edge or on-path caching is supported.

When router i receives DP [n(j), AIDR(n), sp(j)] from neighbor n, it obtains the

AID of of the destination where the packet should be forwarded by computing f−1
i (n)[AIDR(n)].

Router i uses entry ART i[f−1
i (n)[AIDR(n)], p,m] to determine the next-hop neighbor p that

should receive the data packet, and sets AIDR(i) = m.

Algorithm 16 states the steps taken to handle replies, which are similar to the

forwarding steps taken after receiving a data packet. Router i forwards the reply to local

consumers if it was the origin of the Interest, or to a neighbor router p if it has an ART

entry with p as the next hop towards the destination denoted by the AID stated in the

reply.

5.1.4 Example

Figure 5.1 illustrates the swapping of AIDs used by routers to forward Interests

and responses to them. The local intervals used in the figure are small for simplicity, and the

figure focuses on the forwarding state needed to forward Interests from p to name prefixes

announced by router y, as well as the responses to such Interests. Interests are forwarded

based on FIB entries, and responses to Interests (data packets or replies) are forwarded

based on ART entries.
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Figure 5.1: Forwarding of Interests and responses to them in CCN-GRAM

As illustrated in Figure 5.1, router i takes into account the possibility of collisions

in the AIDs stated in Interests received from different neighbors by means of the identifier-

mapping filed of ART entries. The bijection in Eq. 5.2 is used to map either the AID

specified in the Interest received from neighbor p or the AID created by router i to handle

collisions to the AID stated by router i in the Interest it forwards to a next-hop router

s. In the example, router i has an exiting entry ART i[15, q, 15] when it receives Interest

I[n(j), 15, 3] from router p 6= q. Accordingly, router i selects AID = 40, creates entry

ART i[40, p, 15], and sets AIDI(i) = fi(s)[40] = 550 before forwarding Interest I[n(j), 550, 2]

to router s. When router i receives data packet DP [n(j), 550, sp(j)] from router s, it

computes f−1
i (s)[550] = 40. Using AID = 40 as the key in ART i, router i obtains the next

hop p, sets AIDR(i) = 15, and forwards DP [n(j), 15, sp(j)] to router p.

It is clear from the example that a router sending an Interest is unaware of collisions

of AIDs at the next hop. The identifier mapping field of ARTs allows routers to multiplex

Interests from different neighbors stating the same AID values.

Even when a very small number of routers is involved, only the router that orig-

inates an Interest is able to determine that fact, because the identifiers used for Interest
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forwarding are assigned by the next hops.

5.1.5 Native Support for Multicasting

Support of multicast communication in the data plane with no additional signaling

required in the control plane is viewed as an important benefit derived from maintaining per-

Interest forwarding state using PITs. In short, multicast receivers send Interests towards

the multicast source. As Interests from receivers are aggregated in the PITs on their way to

the multicast source, a multicast forwarding tree (MFT) is formed and maintained in the

data plane. Multicast Interest are forwarded using the same FIB entries used for unicast

traffic, and multicast data packets are sent using reverse path forwarding (RPF) over the

paths traversed by aggregated Interests. Using PITs is appealing in this context; however,

as we show below, native support of multicasting in the data plane can be easily done with

no need for per-Interest forwarding state!

Information Stored and Exchanged We assume that the name stated in an Interest

created to request content from a multicast source denotes a multicast source uniquely,

and call such an Interest a multicast Interest. We also assume that consumers and routers

differentiate between a multicast Interest and an Interest originated from a single consumer

(unicast Interest).

A multicast Interest MI[g(j), DI(i),mcI(i)] sent by router i to router n states:

the name of a multicast group g(j), the distance from router i to the source of the multicast

group DI(i), and a multicast counter (mcI(i)) used for pacing.

A multicast data packet MP [g(j), sp(j),mcR(i)] states the name of the multicast
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group g(j), a security payload sp(j), a multicast counter mcR(i), plus the content payload.

A multicast reply MR[g(j), CODE,mcR(i)] states the reason for the reply and the current

value of the multicast counter.

Router i maintains a multicast anonymous routing table (MART i) that contains

the forwarding state to the receivers of multicast groups. Each entry in MART i specifies

a multicast group name, the value of the multicast counter (mc), and a list of next hops to

the group of receivers who have sent Interests for the group. If router i has local receivers

for group g(j), the entry for the group in MART i includes router i as a next hop to the

receivers of the group.

Router i also maintains a group membership table (GMT i) that lists the mappings

of multicast group names to the lists of local receivers that requested to join the groups.

The GMT entries allow the router to deliver multicast content to local receivers of specific

groups.

Multicast Content Dissemination The key difference of the way in which CCN-GRAM

forwards multicast traffic compared to NDN or CCNx is that a MART maintains per-group

forwarding state, while a PIT maintains per-Interest forwarding state. Figure 5.2 illustrates

the forwarding of multicast Interests and multicast content in CCN-GRAM. There is no

need for anonymous identifiers for multicast content forwarding, because all consumers of

a group must receive the same multicast COs, which are forwarded using multicast group

names.

A content consumer c requests to join a multicast group g(j) as a receiver by

sending a multicast Interest MI[g(j), DI(c),mcI(c)] with DI(c) = nil.
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Figure 5.2: Native multicast support in CCN-GRAM

If router i has multiple local receivers or neighbor routers requesting to join the

same multicast group g(j), router i forwards multicast Interest MI[g(j), DI(i),mcI(i)] only

once towards the source of the multicast group g(j) based on the information in its FIB.

Router i simply adds new local consumers to the entry for g(j) in GMT i or new next hops

to multicast receivers in MART i.

Router i forwards multicast data packets based on the group names stated in

the packets and the next hop stored in its MART entries, and discards the data packet if

no MART entry exists for the multicast group. A similar approach is used for replies to

Interests regarding multicast groups.

The dissemination of multicast data packets over the MFT of a multicast group

can be of two types. A multicast source can push multicast data towards the receivers, or

the receivers can pull data from the source by submitting Interests.

Push-based dissemination: The only forwarding state needed in CCN-GRAM

for push-based multicast dissemination consists of the name of a multicast group and the

names of the next hops towards the group receivers. In this mode, the mc value of an entry

in a MART is updated with each multicast data packet forwarded by the router towards
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the receivers.

Pull-based dissemination: CCN-GRAM can also support pull-based multicast

dissemination with no need for per-Interest forwarding state. An exemplary approach con-

sists of a source-pacing algorithm based on the mc values carried in Interests and data

packets. Each receiver increments the mc value of Interests it sends for the group asking

for the next piece of multicast content from the source. When router i receives multicast

Interest MI[g(j), DI(p),mcI(p)] from a neighbor router or a local content consumer p, it

forwards the Interest only if mc = 1 + v, where v is the current mc value stored in MART i

for the multicast group. Router i updates the mc value in MART i as it forwards the In-

terest, and subsequent Interests with the same mc value of 1 + v are simply dropped. As

a result, each router in an MFT forwards a single copy of any Interest asking for the next

multicast content object towards the source. This is like aggregating Interests for a multi-

cast group over the MFT of the group, but with no need to store per-Interest forwarding

state.

5.2 Performance Comparison

We compare the forwarding entries needed to forward Interests and responses

in NDN and CCN-GRAM, as well as the end-to-end delays incurred, using simulation

experiments based on implementations of NDN and CCN-GRAM in the ndnSIM simulation

tool [1]. The NDN implementation was used without modifications, and CCN-GRAM was

implemented in the ndnSIM tool following Algorithms 1 to 4.

The network topology consists of 150 routers distributed uniformly in a 100m ×
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100m area and routers with distance of 15m or less are connected with point-to-point links

of delay 15ms. The data rates of the links are set to 1Gbps to eliminate the effects that

a sub-optimal implementation of CCN-GRAM or NDN may have on the results. Only 10

routers chosen randomly are connected to local content producers of multiple name prefixes,

50 other routers are connected to local content consumers, and all routers act as relays. This

choice was made to illustrate the existence of a “network edge” and the fact that only a

relatively small number of sites host content producers. Interests are generated with a

Zipf distribution with parameter α = 0.7 and producers are assumed to publish 1,000,000

different COs. Each cache can store up to 1000 objects, or 0.1% of the content published

in the network. This caching capacity was selected to compare on-path caching with edge

caching when Interests must be forwarded in the network, rather than being answered with

locally cached content.

We considered total Interest rates per router of 50, 100, 500, and 2000 objects

per second corresponding to the sum of Interests from the local consumers connected to a

router. The increasing values of total request rates can be viewed as higher request rates

from a constant user population of local active users per router, or an increasing population

of active users per router. The Interest rates we assume are actually very low according

to recent results addressing the size that PITs would have under realistic Internet settings

[33, 42, 43, 41].

We considered on-path caching and edge caching. For the case of on-path caching,

every router on the path traversed by a data packet from the producer to the consumer

caches the CO in its local cache. On the other hand, with edge caching, only the router
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directly connected to the requesting consumer caches the resulting CO. All caches are LRU.

5.2.1 Size of Forwarding Tables

Figure 5.3 shows the average size and standard deviation of the sizes of PITs,

ARTs and LIGHTs on a logarithmic scale as functions of Interest rates. The size of LIGHTs

corresponds only to the number of local Interests pending responses. The number of entries

corresponding to content cached locally can be up to 1000 for both NDN and CCN-GRAM.

Figure 5.3: Average size of forwarding tables

Figure 5.4: Average end-to-end delays

As the figure shows, the size of PITs grows dramatically as the rate of content

requests increases, which is expected given that PITs maintain per-Interest forwarding state.
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By contrast, the size of ARTs, which is the only forwarding state stored by relay routers, is

only a small fraction of the total number of routers and remains fairly constant with respect

to the content request rates, which is always one or multiple orders of magnitude smaller

than the average PIT size. The size of LIGHTs is a function of the number of COs requested

locally or cached on path, but the average size of a LIGHT is an order of magnitude smaller

than the average size of a PIT. The size of a ART is independent of where content is being

cached, given that an ART entry is stored independently of how many Interests traverse

the route. Interestingly, edge-caching renders only slightly larger PIT sizes than on-path

caching in NDN.

5.2.2 Average Delays

Figure 5.4 shows the average end-to-end delay for NDN and CCN-GRAM as a

function of content request rates for on-path caching and edge caching. As the figure

shows, the average delays for NDN and CCN-GRAM are comparable for all values of the

content request rates. This should be expected, given that the static, loop-free routes in

the FIBs prevent Interests to “wait to infinity” in PITs, the signaling overhead incurred

by NDN and CCN-GRAM is similar, and in-network caching obviates the need for Interest

aggregation.

5.3 Conclusions

We presented simulation results showing that Interest aggregation rarely occurs

when in-network caching is used. Our analysis is limited; however, our detailed character-
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ization of Interest aggregation via analytical modeling and simulation analysis renders the

same conclusion.

We introduced CCN-GRAM to eliminate the performance limitations associated

with PITs. CCN-GRAM is the first approach to Interest-based content-centric networking

that supports the forwarding of Interests and responses to them using datagrams that do not

reveal the identity of their origins to forwarding routers, caching sites, or content providers.

Simulation experiments were used to show that end-to-end delays incurred in CCN-

GRAM and NDN are similar when either edge caching or on-path caching is used, but the

storage requirements for CCN-GRAM are orders of magnitude smaller than for NDN. The

results for CCN-GRAM indicate that it could be deployed with only routers at the edge

maintaining LIGHTs and caches. Additional work is needed to make the forwarding of

Interests in CCN-GRAM as efficient as the forwarding of responses to Interests using ARTs.

The goal is to enable Interest forwarding at Internet scale that does not require routers to

look up FIBs with billions of name-prefix entries as is the case in NDN and CCNx.

Both ARTs and PITs must be updated when the paths traversed by Interests and

their responses must change due to congestion, topology changes, or mobility of consumers

and providers. Yi et al [24] argue that per-Interest forwarding state enables faster response

to topology changes and congestion, because local repair mechanisms can be used. However,

multipath routing, and dynamic load balancing schemes based on datagram forwarding have

been shown to attain results very close to optimal routing [21] and can be easily applied to

CCN-GRAM in the future.

CCN-GRAM can use the same content security features adopted in CCNx and
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NDN to limit or eliminate cache poisoning attacks, because it makes no modifications to

the way in which content is protected in data packets or how a name can be securely linked

to the payload of a CO. However, CCN-GRAM enjoys an enormous advantage over CCNx

and NDN in that it eliminates the ability for malicious users to mount Interest-flooding

attacks aimed at overwhelming the forwarding tables of routers [78, 43]. An ART entry

can be added only for valid local identifiers at each router and for routes that satisfy the

ordering constraint imposed with LFR. Given that both conditions are managed in the

control plane, mounting attacks on ARTs is much more difficult than simply having users

send Interests for COs corresponding to valid name prefixes.
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Algorithm 14 Processing Interest from router p at router i
function Interest Forwarding

INPUT: LIGHT i, LIST i, FIBi, ART i, I[n(j), AIDI(p), DI(p)];

AIDR(i) = AIDI(p);

if n(j) ∈ LIGHT i then

if p[n(j)] 6= nil then

retrieve CO n(j); send DP [n(j), AIDR(i), sp(j)] to p

end if

else

if n(j)∗ ∈ LIGHT i then

send REP [n(j), AIDR(i), no content] to p (% n(j) does not exist)

else

if n(j)∗ 6∈ FIBi then

send REP [n(j), AIDR(i), no route] to p (% No route to n(j)∗ exists)

else

for each s ∈ Ni by rank in FIBi do

if DI(p) > D(i, n(j)∗, s) (% LFR is satisfied) then

SET = ∅; AIDI(i) = nil; collision = 0;

for each entry ART i[AID, s,map] do

SET = SET ∪ {AID};

if AID(ART i) = AIDI(p) then

if s(ART i) = p then

AIDI(i) = fi(s)[AID(ART i)]

else

collision = 1

end if

end if

if map(ART i) = AIDI(p) ∧ s(ART i) = p then

AIDI(i) = fi(s)[AID(ART i)]

end if

end for

if collision = 0 ∧ AIDI(i) = nil then

create entry ART i[AIDI(p), p, AIDI(p)];

AIDI(i) = fi(s)[AIDI(p)]

end if

if collision = 1 ∧ AIDI(i) = nil then

select a ∈ LIi(i)− SET ;

create entry ART i[a, p, AIDI(p)]; AIDI(i) = fi(v)[a]

end if

DI(i) = D(i, n(j)∗, s);

send I[n(j), AIDI(i), DI(i)] to s; return

end if

end for (% LFR is not satisfied; Interest may be traversing a loop)

send REP [n(j), AIDR(i), loop] to p

end if

end if

end if
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Algorithm 15 Processing data packet from router s at router i
function Data Packet

INPUT: LIGHT i, LIST i, ART i, DP [n(j), AIDR(s), sp(j)];

[o] verify sp(j);

[o] if verification with sp(j) fails then discard DP [n(j), AIDR(s), sp(j)];

a = f−1
i (s)[AIDR(s)]; retrieve entry ART i[a, p,m];

if ART i[a, p,m] does not exist then drop DP [n(j), AIDR(s), sp(j)];

if p = i (% router i was the origin of the Interest) then

for each c ∈ lc[n(j)] do

send DP [n(j), c, sp(j)] to c; lc[n(j)] = lc[n(j)]− {c}

end for

else

if p ∈ Ni then

AIDR(i) = m; send DP [n(j), AIDR(i), sp(j)] to p

end if

end if

if no entry for n(j) exists in LIGHT i then

create LIGHT i entry for n(j): lc[n(j)] = ∅

end if

store CO in local storage; p[n(j)] = address of CO in local storage

Algorithm 16 Process reply from router s at router i
function REPLY

INPUT: LIGHT i, LIST i, ART i, REP [n(j), AIDR(s),CODE];

a = f−1
i (s)[AIDR(s)]; retrieve entry ART i[a, p,m];

if ART i[a, p,m] does not exist then drop REP [n(j), AIDR(s),CODE];

if p = i (% router i was the origin of the Interest) then

for each c ∈ lc[n(j)] do

send REP [n(j), c,CODE] to c

end for

delete entry for n(j) in LIGHT i

else

if p ∈ Ni then

AIDR(i) = m; send REP [n(j), AIDR(i),CODE] to p

end if

end if
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Chapter 6

Efficient Multicasting in

Content-Centric Networks Using

Datagrams

6.1 Multicasting in CCN-GRAM

6.2 Preliminaries

CCN-GRAM assumes that Interests are retransmitted only by the consumers that

originated them, and that routers use exact Interest matching. A router that advertises

being an origin of a name prefix stores all the content objects associated with that prefix

at a local content store. Routers know which interfaces are neighbor routers and which are

local users within a finite time, and forward Interests on a best-effort basis. For convenience,
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it is assumed that a request for content from a local user is sent to its local router in the

form of an Interest.

The name of content object (CO) j is denoted by n(j) and the name prefix that is

the best match for name n(j) is denoted by n(j)∗. Similarly, the name of a multicast group

j is denoted by g(j) and the name prefix that is the best match for name g(j) is denoted

by g(j)∗. The set of neighbors of router i is denoted by N i.

6.2.1 Information Exchanged and Stored

Like NDN and CCNx, CCN-GRAM uses Interests, data packets, and replies to

Interests. Routers differentiate between unicast and multicast Interests. A unicast Interest

requests a content object (CO) by name, while a multicast Interest requests content from

a multicast group by name.

A multicast Interest MI[g(j), DI(i),mcI(i)] sent by router i to router n states:

the name of the multicast group g(j) from which content is requested, the distance from

router i to the source of the multicast group (DI(i)), and a multicast counter (mcI(i)) used

for pacing.

A multicast data packet MP [g(j), sp(j),mcR(i)] states the name of the multicast

group g(j) from which content is being sent, a security payload (sp(j)) used optionally to

validate the CO, a multicast counter (mcR(i)), plus the content object (CO) corresponding

to the value of the multicast counter.

A reply sent by router i in response to a multicast Interest is denoted by

MR[g(j), CODE,mcR(i)] and contains the name of the multicast group for which the

Interest was sent, a code (CODE) indicating the reason why the reply is sent, and the current
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value of the multicast counter stored at the router sending the repoy. Possible reasons for

sending a reply include: an Interest loop is detected, or no route is found towards requested

content.

Router i uses four tables to forward multicast traffic: a forwarding information

base (FIBi), a multicast anonymous routing table (MART i), and a group membership

table (GMT i).

FIBi is indexed using known content name prefixes. The entry for name prefix

g(j)∗ states the distance reported by each next-hop neighbor router for the prefix. The dis-

tance stored for neighbor q for name prefix g(j)∗ in FIBi is denoted by D(i, g(j)∗, q). Each

entry in FIBi is stored for a maximum time determined by the lifetime of the corresponding

entry in the routing table of the router.

MART i maintains forwarding state to the receivers of multicast groups. Each

entry of the MART specifies a multicast group name, the current value of the multicast

counter (mc) for the group, and a list NH of next hops to the group of receivers who

have sent multicast Interests for the group. MART i[g(j),mc,NH] denotes the entry for

group g(j) in MART i. GMT i lists the mappings of multicast group names to the lists of

local receivers that requested to join the groups. If in-network caching is used as part of

multicsting, the entry for group g(j) also states a pointer p[g(j)] to the content that has

been cached for the group listing each CO by the value of the multicast counter used to

retrieve COs for g(j).
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6.2.2 Multicast Content Dissemination

Multicast content dissemination is based on the forwarding of Interests along mul-

ticast forwarding trees (MFT) to the sources of multicast groups, followed by the forwarding

of multicast data packets on the reverse paths traversed by Interests. Forwarding multicast

Interests is based on the information stored in the FIBs maintained by routers. In contrast

to NDN, CCN-GRAM maintains forwarding state for Interests on a per-group basis rather

than on a per-Interest basis.

Algorithms 17 to 19 outline the steps taken by routers to process and forward

multicast Interests, and return multicast data packets or replies for the case of real-time

multicasting.

To compare multicasting in CCN-GRAM directly with NDN, we assume pull-based

dissemination of real-time multicast content, such that a single CO is sent to multicast

receivers in response to an Interest sent to the source of a multicast group over the MFT.

We assume that each router is initialized properly, knows the identifiers used to

denote local consumers, and knows all its neighbors. We assume that a routing protocol

(e.g., DCR [10, 111]) operating in the control plane updates the entries of routing tables

listing one or multiple next hops towards name prefixes. Routers populate their FIBs with

routes to name prefixes based on the data stored in their routing tables.

The value of the multicast counter for group g(j) in MART i is denoted by

mci[g(j)], and the set of next-hop routers listed in MART i for receivers in g(j) is denoted

by NH i[g(j)]. The local receivers for group g(j) listed in GMT i is denoted by GMT i[g(j)].

The forwarding of multicast Interests towards the sources of multicast groups is
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assumed to rely on the selection of next hops towards name prefixes listed in FIBs that

provide the best matches to the multicast group names stated in the Interests. We assume

that routers with local consumers maintain caches of multicast content. The first content

object (CO) of a multicast group is labeled by the name of the group and a multicast counter

equal to one, and an empty entry for a multicast group is initialized with a multicast-counter

value equal to zero. We assume that all initial requests to join a group state a multicast

counter equal to one, and that forwarding state for a group stored in the MART of a router

is deleted after a timeout if no Interests are received for the group.

For simplicity, we do not include the steps taken by routers to respond to the

failures or additions of interfaces with neighbor routers or local consumers. Furthermore,

we assume that Interests and responses to them are transmitted reliably between any two

neighboring routers. In essence, forwarding state related to a failed interface must be deleted

and the corresponding replies with negative acknowledgments must be sent to previous next

hops to remote receivers or local receivers as needed. Forwarding state associated with new

interfaces is instantiated as a result of new Interests being forwarded.

Algorithm 17 shows the steps taken by router i to process Interests received from

local consumers. For convenience, multicast content requests from local consumers are

assumed to be Interests stating the name of a group, the name of the consumer, and an

empty distance to the content assumed to denote infinite. The same format of data packets

and replies used among routers is used to denote the responses a router sends to local

consumers. Consumers increase the values of their multicast counters by one to request the

next pieces of multicast content from multicast sources.
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Router i adds consumer c as a local receiver in group g(j) by adding an entry

for g(j) in GMT i with c as a local receiver for the group, and indicates that it has local

receivers in MART i by adding itself as a next hop towards receivers of the group. Router

i forwards a single copy of a multicast Interest requesting more content from a multicast

source independently of how many local receivers or neighbor routers send multicast In-

terests to router i. This is done by means of the multicast counter (mc) maintained by

each router and multicast receiver, and the multicast-counter field included in Interests and

responses to them.

A content consumer c asks to join a multicast group g(j) as a receiver by sending

an Interest MI[g(j), DI(c) = nil,mcI(c) = 1]. If the value of the multicast counter for

the group stored by the router is larger, the router responds with the latest multicast data

packet corresponding to the current value of the multicast counter maintained by the routers

for the multicast group. A router sends a negative acknowledgment to an Interest from a

local consumer with a multicast-content value different than the next expected value to

force a retransmission and keep all local consumers in the same multicast group using the

same current value of the multicast counter, while reducing end-to-end latencies incurred in

delivering multicast content to consumers far away from group sources. A consumer requests

more content from a multicast group by sending a multicast Interest after incrementing the

value of the multicast counter for the group.

A router forwards Interest MI[g(j), DI(i),mcI(i)] towards the source of multicast

group g(j) based on the information in its FIB.

Algorithm 18 shows the steps taken by router i to process an Interest received from

a neighbor router p. Router i follows similar steps to those in Algorithm 1 to respond to an
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Interest with a multicast data packet to the neighbor router if the content is local and the

multicast counter in the Interest is smaller than the current value of the multicast counter

at the router. If the Interest requests the next CO from the group and the group source

is local, the multicast data packet is sent to all next hops along the MFT. Alternatively, if

the multicast source is remote, the router forwards the Interest ensuring that no forwarding

loops occur. Let Si
g(j)∗ denote the set of next-hop neighbors of router i for prefix g(j)∗.

The following rule is used to ensure that multicast Interests cannot traverse routing loops,

even if the routing data stored in FIBs regarding name prefixes is inconsistent and leads to

routing-table loops.

Loop-Free Forwarding Rule (LFR):

Router i accepts MI[n(j), DI(k),mcI(k)] from router k if:

∃ v ∈ Si
g(j)∗( D

I(k) > D(i, g(j)∗, v) ) (6.1)

Router i tries to forward the Interest to a next hop s for the best prefix match

for n(j) that satisfies LFR. The highest-ranked router satisfying LFR is selected as the

successor for the Interest and router i. If no neighbor is found that satisfies LFR, a reply

is sent stating that a loop was found.

LFR is based on the same approach proposed previously to eliminate Interest

looping in NDN and CCNx [36, 37]. It ensures loop-free forwarding of Interests by ensuring

that routers forward Interests only to next hops that are closer to the intended name prefix.

Algorithm 19 outlines the processing of multicast data packets. If local consumers

requested the content in the data packet, it is sent to those consumers based on the in-

formation stored in GMT i. If the router has neighbor routers that are next hops towards
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remote receivers of the multicast group, router i forwards the data packet to all neighbors

listed for g(j) in NH i[g(j)] other than router i itself if there are local receivers. Routers

take similar steps in the forwarding of replies to multicast Interests when retransmissions

are done by consumers, i.e., routers simply forward replies back to the consumers along the

MFT created by the forwarding of multicast Interests.

6.3 Example of Multicast Dissemination in CCN-GRAM

Figure 6.1 illustrates the forwarding of multicast Interests and multicast data pack-

ets in CCN-GRAM. As the figure shows, router i maintains a forwarding table (MART i)

specifying the next hops to multicast receivers for each multicast-group name, and a table

(GMT i) listing the local receivers for each multicast-group name. As the figure shows, the

entry for group g(j) in MART i lists router i as a next hop, which indicates the presence of

local receivers; the one local receiver (Ra) for group g(j) is listed in GMT i.

Figure 6.1: Native multicast support in CCN-GRAM

The entries in the MARTs and GMTs maintained by routers define the forwarding

multicast trees (FMT) of all multicast groups created in the network, and are established

by the forwarding of Interests, just as in NDN or CCNx. However, the use of multicast
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counters eliminates the need to maintain per-Interest forwarding state. In the figure, dashed

lines represent links along the path from consumer Rc joining the multicast group after the

source has disseminated CO with mc = 9 to the rest of the MFT. The late joiner is brought

up to the current state of the multicast group by the multicast counter carried in each data

packet.

6.4 Performance Comparison

We compare the average table sizes and end-to-end delays for multicast traffic

in CCN-GRAM and NDN by running experiments based on implementations of CCN-

GRAM and NDN in the ndnSIM simulation tool [1]. The implementation of CCN-GRAM is

based on the algorithms presented, and NDN implementation from ndnSIM is used without

modification. The simulation scenario includes 200 nodes distributed uniformly in a 100m×

100m area. Nodes with a distance of 15 meters or less from each other are connected with

a point-to-point link of 15ms delay. Data rates are set to 1Gbps to eliminate or reduce

the impact of an inefficient implementation of either NDN and CCN-GRAM on the results.

Using on-path caching strategy, each router in these experiments can cache up to 1000

content objects. In each simulation scenario, there are multiple multicast groups, and each

group contains multiple consumers and one producer. Consumer and producer nodes for

each group is selected at random from the 200 routing nodes in the network.

We compared forwarding table sizes in NDN and CCN-GRAM by four different

varying parameters: Multicast groups count, multicast group size, Interest request rate,

and link delay. We also compared average end-to-end delay in NDN and CCN-GRAM for
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different request rates. For this purpose we consider minimum download rate of 1.5 Mbps

for audio/radio streaming, 5 Mbps for HD video streaming, and 25Mbps for Ultra HD video

streaming. Considering the standard packet size of 4KB advocated in NDN, we compared

different scenarios with constant rate of 50 to 800 interests per second from each consumer

application.

6.4.1 Size of Forwarding Tables

Figure 6.2 shows the results of a simulation experiment that includes 20 multicast

groups, each with 20 consumers and one producer.

Figure 6.2: Average size of forwarding tables for varying request rates

The above figure shows the average size of a forwarding table in logarithmic scale

as a function of Interest (request) rates. Given that CCN-GRAM adds a single entry per

multicast group, the number of entries in a MART is independent of request rate. By

contrast, the size of PITs in NDN is a function of the rate at which Interests arrive at

routers. The maximum MART size for this scenario is 20, and the average size of a MART

table is 5.26 independently of the request rates. As the figure shows, the number of PIT

entries is highly affected by the Interest rates from consumers. For the case of a 15ms link
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delay, increasing the Interest rate to 800 results in average PIT size of 408 and tables as

large as 1300 entries for routers.

Figure 6.3: Average size of forwarding tables vs. number of multicast groups

Figure 6.3 shows the average MART size versus the average PIT size for varying

number of multicast groups from 5 to 30 groups, with each group having 20 consumers

with Interest (request) rate of 160 Interests per second, which is enough to support HD

video streaming with each data packet being 4KB. In CCN-GRAM, the number of entries

of MART tables cannot exceed the total number of multicast groups. On the other hand, as

the figure shows, the number of entries in the PIT of a router is directly related to the number

of interests received by the router, which in turn depends on the number multicast groups

and the request rate per group. Accordingly, the average PIT size can grow dramatically.

Figure 6.4 shows the average size of PITs and MARTs for varying multicast group

sizes from 10 to 40 consumers per group. As the size of a multicast group increases, more

routers become involved in forwarding multicast Interests and multicast data packets in

both NDN and CCN-GRAM. This results in larger average sizes of both PITs and MARTs.

However, the grow rate for NDN is higher because of entries are added to PITs on a per

Interest basis.
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Figure 6.4: Average size of forwarding tables for varying size of multicast groups

6.4.2 Average Delays

As Figure 7.8 shows, the average delay for CCN-GRAM is shorter than the delays

incurred in NDN. According to Algorithm 3, the first multicast Interest received by the

producer, results in multicast of data toward current members of multicast group in CCN-

GRAM, even if the Interest from a member or previous hop relay in the MFT has not been

received yet. On the other hand, in NDN, if one consumer node is far from the producer

compared to other consumer nodes such that its interests is not aggregated with the same

interests from other consumers, request of that node for a multicast data will be processed

separate from other group members, which results in lower throughput and higher delays.

The operation of NDN could be modified to mimic the way in which CCN-GRAM forwards

multicast data over MFTs, in which case end-to-end latencies would be similar.

The results shown in Figures 6.3, 6.4, and 7.8 are for link delays of 15ms, which

results in end-to-end delays of around 110 ms. However if higher link delays occur, the

average number of PIT entries can grow to much larger values, because the number of

pending interests in each router increases. As shown in Figure 6.2, link delays of 30ms
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Figure 6.5: Average end-to-end delay for varying number of multicast groups

results in 240 end-to-end delays and much larger PITs. For the case of 800 Interests per

second, the average PIT size in NDN increases to 814 entries some relaying routers storing as

many as as 2700 PIT entries. On the other hand, the average size of MARTs is not affected

by varying link delays and remains constant, which makes CCN-GRAM more scalable and

reliable, and more attractive for real-time streaming applications requiring high throuhput.

6.5 Conclusions

We presented CCN-GRAM, the first approach for multicasting in content-centric

networks that eliminates the need to maintain per-Interest forwarding state and still oper-

ates based on the forwarding of Interests in the data plane, without the need for a multicast

routing protocol in the control plane.

Simulation experiments were used to show that the storage requirements for CCN-

GRAM are orders of magnitude smaller than for NDN, and that end-to-end delays in CCN-

GRAM are similar if not smaller than in NDN, especially when high data rates for multicast

streaming is needed.

126



Additional work is needed to define efficient mechanisms to react to resource fail-

ures with minimum disruption to MFTs, reliable multicasting support, and new flow control

approaches that allow more than one CO to be delivered per multicast Interest. In addi-

tion, CCN-GRAM could be applied when sources disseminate content without the need for

receivers to submit Interests after joining a group [109].
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Algorithm 17 Processing Interest from user c at router i
function Interest Source

INPUT: GMT i, FIBi, MART i, MI[g(j), DI(c) = nil,mcI(c)]

if g(j)∗ ∈ FIBi (% Route to g(j) exists) then

if MART i entry for g(j) does not exist then

mci[g(j)] = 0; NHi[g(j)] = ∅;

create entry MART i[g(j),mc,NH]; GMT i[g(j)] = ∅;

end if

GMT i[g(j)] = GMT i[g(j)] ∪ c; NHi[g(j)] = NHi[g(j)] ∪ i;

if mcI(c) 6= mci[g(j)] + 1 then

if p[g(j)] 6= nil then

retrieve CO for mci[g(j)]; mcR(i) = mci[g(j)];

send MP [g(j), sp(j),mcR(i)] to c

else

mcR(i) = mci[g(j)]; send MR[g(j), Interest error,mcR(i)] to c

end if

else

if i is the source for g(j) then

mcR(i) = mci[g(j)];

send MP [g(j), sp(j),mcR(i)]

to receivers in GMT i[g(j)] and next hops in NHi[g(j)]

else

mcI(i) = mci[g(j)];

DI(i) = Min{D(i, g(j)∗, u) for u ∈ Si
g(j)∗};

for each v ∈ Ni by rank in FIBi do

if D(i, g(j)∗, v) = DI(i) then

send MI[g(j), DI(i),mcI(i)] to v; return

end if

end for

end if

end if

else

mcR(i) = mci[g(j)]; send MR[g(j), no route,mcR(i)] to c

end if
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Algorithm 18 Processing multicast Interest from router p at router i
function Interest Forwarding

INPUT: GMT i, FIBi, MART i, MI[g(j), DI(p),mcI(p)];

if g(j)∗ ∈ FIBi (% Route to g(j) exists) then

if MART i entry for g(j) does not exist then

mci[g(j)] = 0; NHi[g(j)] = ∅;

create entry MART i[g(j),mc,NH]; GMT i[g(j)] = ∅

end if

NHi[g(j)] = NHi[g(j)] ∪ p;

if mcI(p) 6= mci[g(j)] + 1 then

mcR(i) = mci[g(j)];

if p[g(j)] 6= nil then

retrieve CO for mci[g(j)]; send MP [g(j), sp(j),mcR(i)] to p

else

send MR[g(j), Interest error,mcR(i)] to p

end if

else

mci[g(j)] = mci[g(j)] + 1;

if i is the source for g(j) then

retrieve CO for mci[g(j)]; mcR(i) = mci[g(j)];

send MP [g(j), sp(j),mcR(i)] to

receivers in GMT i[g(j)] and next hops in NHi[g(j)]

else

DI(i) = Min{D(i, g(j)∗, u) for u ∈ Si
g(j)∗};

for each v ∈ Ni by rank in FIBi do

if DI(p) > DI(i) (% LFR is satisfied) then

mcI(i) = mci[g(j)]; send MI[g(j), DI(i),mcI(i)] to v;

return

end if

end for

mcR(i) = mci[g(j)]; send MR[g(j), loop,mcR(i)] to p

end if

end if

else

mcR(i) = mci[g(j)]; send MR[g(j), no route,mcR(i)] to p

end if
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Algorithm 19 Processing multicast data packet from router s at router i
function Multicast Data Packet

INPUT: GMT i, MART i, MP [g(j), sp(j),mcR(s)];

[o] verify sp(j);

[o] if verification with sp(j) fails then discard MP [g(j), sp(j),mcR(s)];

if NHi[g(j)] 6= ∅ then

mcR(i) = mcR(s); if mci[g(j)] < mcR(s) then mci[g(j)] = mcR(s);

if GMT i[g(j)] 6= ∅ (% router i has local receivers in group g(j)) then

for each c ∈ GMT i[g(j) do

send MP [g(j), sp(j),mcR(i)] to c

end for

end if

if NHi[g(j)]− {i} 6= ∅ then

for each h ∈ NHi[g(j)]− {i} do

send MP [g(j), sp(j),mcR(i)] to h

end for

end if

[o] store CO in local storage at p[g(j)] indexed with mcR(i)

else

drop MP [g(j), sp(j),mcR(s)]

end if
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Chapter 7

Content-Centric Networking at

Internet Scale through The

Integration of Name Resolution

and Routing

Several Information-Centric Networking (ICN) architectures have been proposed

[116, 118, 137] to improve on the performance of the IP Internet by enabling packet for-

warding based on the names of content or services required, rather than the addresses where

they may be hosted. They attempt to accomplish this by means of new ways to integrate

name resolution (mapping of names to locations) and routing (establishing paths between

locations) functions.

Most architectures keep name resolution and routing independent of each other,
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but offer major improvements over the current use of the Domain Name System (DNS) to

map domain names to IP addresses. By contrast, the Content-Centric Networking (CCNx)

[4] and the Named Data Networking (NDN) [17, 27] architectures merge name resolution

with routing to content and services in order to allow consumers to request content objects

(CO) or services by name. Routers provide this service using three tables. A content store

(CS) lists the COs that are cached locally. A Pending Interest Table (PIT) keeps forwarding

state for each Interest (a request for a CO) processed by a router, such that a single copy

of an Interest for the same CO is forwarded and responses to Interests can be sent over the

reverse paths traversed by the Interests. A forwarding information base (FIB) listing the

next hops to name prefixes is used to forward Interests towards content producers.

The simplicity of merging name resolution with routing is very attractive. How-

ever, it comes at a big price, in terms of storage requirements associated with FIBs and

PITs [33, 132, 41, 42, 43, 113] and additional vulnerabilities to DDoS attacks associated

with PITs [78, 113].

Consider a network in which a name-based routing protocol establishes routes to

all known name prefixes and to those routers that announce name prefixes being locally

available, which we call anchors of the prefixes. Section 7.1 shows that the path traversed

by an Interest when routers maintain FIBs with entries for name prefixes is the same as

the path traversed by the Interest if the first router binds the name prefix that provides the

best match for the CO name to the name of an anchor of that prefix, and routers forward

the Interest towards that anchor.

Section 7.1.1 describes CCN-RAMP, which is based on two key innovations. First,
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CCN-RAMP integrates name resolution with routing to name-prefix anchors using the

name-based content routing protocol running in the control plane (e.g., [10, 124, 125]). The

approach takes advantage of the result presented in Section 7.1, and the consequence is that

routers can forward Interests using forwarding tables that are orders of magnitude smaller

than the FIBs required in NDN and CCNx, and even smaller than the FIBs needed in the IP

Internet. Second, CCN-RAMP extends recent results in [108, 109] to eliminate forwarding

loops, and to replace PITs with small forwarding tables listing the next hops towards the

origins of Interests, without identifying such origins.

Section 7.2 compares the performance of CCN-RAMP with NDN when either no

caching or on-path caching is used in a 153-router network. CCN-RAMP incurs very similar

Interest traffic than NDN to retrieve content, requires orders of magnitude fewer entries in

forwarding tables than NDN, and needs fewer table look ups to retrieve any given CO than

NDN.

A major impediment for the IP Internet to provide efficient access to content

and services by name is the poor interaction between name resolution and routing that it

currently supports. A client must be an integral part of name resolution and is required

to bind the name of the CO or service to be requested to the location where the content

or service is offered. A client first interacts with a local Domain Name System (DNS)

server to obtain the mapping of a domain name to an IP address in order for a request

for content or service can be sent to a specific IP address. Adding to this, the DNS is

based on a hierarchical, static caching structure of servers hosting the mappings of domain

names to addresses built and maintained independently of routing and requiring servers to
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be configured on how to contact other servers over the Internet.

7.0.1 Name Resolution and Routing

TRIAD [122] was one of the first projects to advocate using names for routing

rather than addresses. Since then, many ICN architectures have been proposed that support

name resolution and content routing functionality to enable consumers to ask for content

objects (CO) or services by name. These architectures differ on how a CO name is mapped

to a producer or source that can provide the requested CO or service, and the way in which

paths are established for requests for COs or services and the associated requests.

Some ICN architectures [116, 118, 137], including DONA, PURSUIT, SAIL, COMET,

and MobilityFirst, implement name resolution and routing as independent functions. In

these architectures, name resolution servers (called by different names) are organized hier-

archically, as multi-level DHTs, or along trees spanning the network [118], and consumers

and producers contact such servers to publish and subscribe to content in various ways.

Consumers obtain the locations of publishers from name resolution servers, and send their

content requests to those locations to get the required content or services, and address-based

routing is used to establish paths between consumers and subscribers or between resolution

servers and subscribers or consumers.

A major limitation of keeping name resolution independent of routing stems from

the complexity incurred in keeping name-resolution servers consistent with one another,

and allowing consumers and producers to interact with the name-resolution system. En-

abling the updates of name-to-address mapping is a non-trivial problem using hierarchical

structures, spanning trees, or DHT-based organizations of servers. Another design consid-
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eration in these architectures is that a solution is still needed to preserve the anonymity of

the sources of requests for COs or services, which may induce additional complexity in the

forwarding plane or require the use of the forwarding mechanisms used in NDN and CCNx.

In contrast to most prior ICN architectures, NDN and CCNx merge name resolu-

tion and routing, such that routers are the facto name resolvers by establishing routes to

name prefixes on a hop-by-hop basis. A major advantage of doing this is that it eliminates

the complexity of designing and maintaining a network of name-resolution servers that re-

place the DNS. This merging of functionalities is supported by: (a) a name-based routing

protocol operating in the control plane, which updates the entries in FIBs listing the next

hops to known name prefixes, and (b) forwarding of Interests based on the longest prefix

match (LPM) between the CO name in the Interest and a name prefix listed in the FIBs.

However, as attractive as the simplicity of merging of name resolution with routing

in NDN and CCNx is, it comes at a very big price. Because the name of a CO or service

is bound directly to a route on a hop-by-hop basis, each router along the path traversed

by an Interest must look up a FIB listing the known name prefixes. To operate at Internet

scale, FIB sizes in NDN are acknowledged to eventually reach billions of entries [132]. This

is easy to imagine, given that the number of registered domains in the IP Internet was more

than 300 million by the end of 2015. This is orders of magnitude larger than the largest

FIB size for the IP Internet, which is smaller than 600,000 today.

To make matters worse, the name prefixes assumed in ICN architectures are vari-

able length and much more complex than IP addresses. This means that efficient LPM

algorithms developed for the IP Internet cannot be applied directly to NDN and CCNx. In-
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deed, it has been noted that NDN and CCNx cannot be deployed at Internet scale without

further advances in technology [128].

7.0.2 Limitations of Using PITs

The size of a PIT grows linearly with the number of distinct Interests received by a

router as consumers pipeline Interests (e.g., to support HD video streams) or request more

content, or more consumers request content [33, 41, 42]. Unfortunately, as the following

paragraphs summarize, PITs do not deliver substantial benefits compared to much simpler

Interest-forwarding mechanisms, and can actually be counter-productive.

We have shown [109] that the percentage of aggregated Interests is minuscule when

in-network caching is used, even Interests exhibit temporal correlation. We have also shown

that per-Interest forwarding state is not needed to preserve the privacy of consumers issuing

the Interests [108, 109].

Supporting multicast content delivery efficiently in the data plane has been viewed

as a major reason to use PITs. However, as we demonstrate in [121], maintaining per-

Interest forwarding state is unnecessary to implement pull-based multicast content dis-

semination. In a nutshell, a source-pacing algorithm can be used with routers maintaining

per-source rather than per-Interest forwarding state. Routers forwarding traffic from a given

multicast source maintain the most recent multicast-counter value (mv) for the source. A

router forwards an Interest towards a source only if the mv stated in the Interest is larger

than the value it currently stores for the source and discards the Interest otherwise. The

net effect is the same as Interest aggregation, but without the large overhead of per-Interest

forwarding state [121].
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We have also shown [36, 37, 120] that Interest aggregation combined with the

Interest-loop detection mechanisms used in NDN and CCNx can lead to Interests being

aggregated while traversing forwarding loops without such loops being detected. This results

in aggregated Interests “waiting to infinity” for responses that never come. In addition,

using PITs makes routers vulnerable to Interest-flooding attacks [78, 43, 112, 113] in which

malicious users can send malicious Interests aimed at making the size of PITs explode.

Unfortunately, the countermeasures that have been proposed for these attacks [114] simply

attempt to reduce the rates at which suspected routers can forward Interests, and this can

be used to mount other types of denial-of-service attacks.

7.0.3 Limitations of Using FIBs Listing Name Prefixes

A number of proposals have been advanced to allow Interest forwarding in NDN

based on LPM to keep up with new wire speeds while coping with the required FIB sizes

and name-prefix structures. A big challenge for name-based Interest forwarding is to attain

100 Gbps rates or higher, given that FIBs listing name prefixes at Internet scale are much

too large to fit into SRAM or Ternary Content Access Memory (TCAM) [128].

Several proposals for the implementation of FIBs for NDN rely on the use of

tries and massive parallelism in order to avoid bottlenecks in the encoding process needed

to use the tries [135, 136]. Other approaches are based on hash tables for FIB lookups

[40, 131, 134, 138], which requires larger memory footprints and is not scalable to prefix

names with a large number of name components. Hash-based approaches for name-based

forwarding are based on DRAM technology and rely on massive parallel processing, because

they would require hundreds of MiBs for just a few million prefixes.
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Given the major limitations of using LPM in FIBs containing billions of name

prefixes, a few proposals have been advanced to either reduce the size of FIBs listing name

prefixes or eliminate the use of such FIBs.

Song et al. [132] introduced the concept of “speculative forwarding” based on

longest-prefix classification (LPC) rather than LPM. LPC behaves just like LPM when a

match is found in the FIB for the name stated in an Interest; however, with LPC a packet

is forwarded to a next hop given by the FIB even if no match is found. Unfortunately, as

described in [132], Interests may be forwarded along loops. Although the NDN forwarding

strategy can prevent Interests from traversing the same forwarding loop multiple times, it

cannot guarantee that Interests will not be aggregated while they traverse forwarding loops

[37].

SNAMP [115] and PANINI [130] reduce FIB sizes by means of default routes and

default-free zones. Edge routers resolve and keep track of local name prefixes, and forward

all other interests toward backbone routers that create a default-free zone and map name

prefixes to globally-routed names.

TagNet [127] uses content descriptors and host locators for forwarding. Content

descriptors are variable-length sets represented with fixed-length Bloom filters for forward-

ing. Host locators are routing labels assigned to routers and hosts along one or multiple

spanning trees. The labeling approach used in TagNet to assign locators is due to Thorup

and Zwick [133]. TagNet results in FIBs that are much smaller than the FIBs required in

NDN; however, it has a number of limitations. Content requests (Interests) must state the

locators of their sources, which eliminates the anonymity provided in NDN and CCNx. Like
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any other scheme based on compact-routing, the paths traversed over the labeled spanning

trees can have some stretch over the shortest paths. The Thorup-Zwick labeling used in

TagNet is a depth-first search approach, and entire spanning trees may have to be relabeled

after a single link failure. No prior work exists showing that TagNet or similar routing

schemes based on interval-routing labels are suitable for large networks subject to topology

changes or mobility of hosts and routers.

7.1 Routing to Name prefixes vs. Routing to Anchors

We use the term anchor to denote a router that, as part of the operation of the

name-based routing protocol, announces the content corresponding to a name prefix being

locally available. If multiple mirroring sites host the content corresponding to a name

prefix, then the routers attached to those sites announce the same name prefix. However,

a router simply caching COs from a name prefix does not announce the name prefix in the

name-based routing protocol.

An anchor announcement can be done implicitly or explicitly as part of the oper-

ation of the name-based routing protocol running in the control plane, and routers simply

caching COs are not anchors. For example, in NDN [125] and other name-based routing

protocols based on link-state information [124], routers exchange link-state announcements

(LSA) corresponding to either name prefixes or adjacencies to networks or routers. In this

context, any router that originates an LSA for a name prefix is an anchor of the prefix.

On the other hand, DCR [10] and other name-based content routing protocols (e.g., [111])

based on distance information to name prefixes use the names of anchors to ensure the
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correctness of the multi-path route computation [11].

Figure 7.1 shows an example of a content-centric network in which router y is an

anchor for prefixes P ∗, Q∗, and R∗; and router z is an anchor for prefixes A∗, C∗, and P ∗.

Dark solid arrowheads show the best next hop towards name prefixes. A red arrowhead

indicates the best next hop to name prefixes with COs locally available at router y, and

a dashed arrow head indicates the best next hop towards name prefixes with COs locally

available at router z. The FIB entries at router p are shown when FIB entries are maintained

for all instances of each name prefix, the nearest instances of a name prefix, or only for the

anchors of name prefixes.

Figure 7.1: FIB entries for name prefix instances and FIB entries for anchors of name prefix
instances

This example illustrates the fact that routes to instances of name prefixes must

also be routes to the anchors announcing those instances. Therefore, the paths obtained

from FIB entries listing name prefixes are the same as the paths obtained from FIB entries

listing the anchors of name prefixes.

It is important to note that a router acts as the anchor of a name prefix over

time scales that are many orders of magnitude larger than either the time scale at which

congestion varies in a network due to traffic or even topology changes, or the time needed

for all routers to respond to congestion changes.
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Even though current Internet routing protocols do not handle congestion or multi-

path routing well, the necessary and sufficient conditions for minimum-delay routing (or

minimum-congestion routing) are well known [119] and practical approaches that provide

very good approximations to optimum routing using datagrams have existed for some time

[126, 21]. Given the long time periods over which routers act as anchors of name prefixes,

these approaches can be used in either routing to name prefixes or routing to the anchors

of name prefixes. Furthermore, existing name-based routing protocols can easily apply

mechanisms to react to congestion, namely: multi-path routing, maintaining congestion in-

formation about local interfaces, and path-based measurements of congestion. Accordingly,

it can be safely assumed that congestion-oriented multi-path routing is attained indepen-

dently of whether routes are established for name prefixes or anchors.

The following theorem formalizes the result illustrated in Figure 1 for the case

of shortest-path routing (single path or multi-path) to name prefixes. We show that, if

the same name-based routing protocol is used to establish routes to anchors and to name

prefixes, the paths traversed by Interests are the same or mostly the same.

Theorem 7. The paths to name prefixes obtained using forwarding entries listing the name

prefixes are the same as the paths obtained using forwarding entries listing the anchors of

name prefixes in a stable network in which a correct name-based routing protocol is executed.

Proof. Consider a content-centric network in which forwarding entries list the next hops to

the anchors of name prefixes. Assume that the routing protocol computes the paths to all

the known anchors by time t0 and that no changes occur in the network after that time.

Consider a name prefix P for which router a is an anchor, and assume for the
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sake of contradiction that, at some time t1 > t0, there is a route from a router r to the

instance of prefix P announced by anchor a that is shorter than any of the routes from r to

a implied by the forwarding tables maintained by routers at t1. This is a contradiction to

the definition of an anchor and the assumption that the routing protocol computes correct

routes to all anchors by time t0 and no changes occur after that.

Corollary 1. For any name prefix that has a single anchor, the paths to the name prefix

obtained using forwarding entries listing name prefixes are the same as the paths obtained

using forwarding entries listing the anchors of name prefixes.

Proof. The proof follows from Theorem 1 for the case of a stable topology. If forwarding

tables are inconsistent due to network dynamics, the result follows from the one-to-one

correspondence between a name prefix and its anchor, given that the prefix is hosted at a

single site.

Figure 7.2 illustrates a content-centric network in which name prefix P ∗ is multi-

homed. Assume that router o receives an Interest for a CO with a name in prefix P ∗ from

consumer c, and the nearest anchor of P ∗ to router o is ai. In the example, Dij denotes

the length of the pat from router i to router j, and D∗rai denotes the distance from r to ai

along a path that does not include p.

If routing is based on anchor names, router o binds the CO name to anchor ai.

Assume that the shortest path from o to ai includes router r and that p is the next hop from

r to ai. Consider the case in which, because link (r, p) fails or becomes too congested, router

r must find an alternative path to forward an Interest intended for anchor ai. Anchor aj is

the closest anchor of prefix P ∗ to router r after the change in link (r, p). Routing based on
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name prefixes can provide more efficient forwarding than routing based on anchor names

only if one of the following conditions is true:

D∗rai
<∞ ∧ Draj < D∗rai

(7.1)

D∗rai
=∞ ∧ Draj < Dro +Doaj (7.2)

Only a small number of Interests pertaining to name prefixes that are multi-homed

may be forwarded more efficiently if routing based on name prefixes is used. The reason

for this is that Equations 1 and 2 cannot be satisfied over extended time periods. The

name-based routing protocol operating in the control plane must make router o update

its distances to anchors reflecting the change in link (r, p). Once router o updates its

forwarding table, it must select ai or another anchor as the new nearest anchor for P ∗

and Interests would traverse new shortest paths. We observe that this is the case even if

mobility of hosting sites or consumers occurs, because the efficiency of Interest forwarding

is determined by the distances between the routers attached to consumers and the routers

attached to hosting sites (anchors).

Figure 7.2: Forwarding Interests based on routes to anchors or routes to name prefixes
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7.1.1 CCN-RAMP

7.1.2 Design Overview

CCN-RAMP allows routers to forward Interests by looking up small forwarding

tables listing next hops to anchors. Clearly, for this to work, routers need to first obtain

the mapping of the CO name stated in an Interest to an anchor of the name prefix that

best matches the CO name [139].

CCN-RAMP takes advantage of the fact that existing name-based routing proto-

cols communicate the anchor of a name prefix as part of an LSA or a distance update for

the prefix [10, 124, 125]. Using the information disseminated in the name-based routing

protocol, a router builds and maintains two tables: A Forwarding to Anchors Base (FAB)

listing the routes to anchors, and a Prefix Resolution Table (PRT) listing the anchors of

each name prefix.

A router receiving an Interest from a local consumer (call it origin router) uses its

PRT to bind the CO name to the nearest anchor for the name prefix that is the best match

for the CO name. To allow relaying routers to use only their FABs to forward Interests,

an Interest states the name of the anchor chosen by the origin router. The origin router

and other relaying routers forward the Interest as needed using their FABs and the anchor

name in the Interest.

Routers in CCN-RAMP use exactly the same amount of routing signaling as

routers in NDN and CCNx, and a PRT in CCN-GRAM has as many entries as a FIB

in NDN and CCNx. However, the amount of routing signaling is not a problem, because

anchors of name prefixes change infrequently and the name-based routing protocol can send
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updates regarding anchor-prefix bindings independently of updates regarding how to reach

anchors. The limitation of using a FIB listing name prefixes is not its size but the need to

look up the FIB in real time for each Interest being forwarded, which either requires very

expensive memory or renders very slow lookup times.

In NDN and CCNx, each router forwarding an Interest must look up a FIB based

on name prefixes because name resolution and routing are merged into one operation. By

contrast, name resolution in CCN-RAMP is delegated to the origin routers that receive

Interests from local consumers. Each router is in effect a name resolver. An origin router

that binds a CO name to an anchor by looking up its PRT in response to an Interest from

a local consumer replaces the role of the DNS to resolve a name into an address. However,

consumers are relieved from being involved in name resolution. What can take hundreds

of milliseconds using the DNS takes just a lookup of the PRT, which can be implemented

using tries and slow storage. Once the binding of a CO name to an anchor is done by an

origin router, forwarding an Interest involves fast lookups of FABs that can be even smaller

than the FIBs used in the IP Internet today because only anchors are listed.

The tradeoff made in CCN-RAMP compared to prior approaches that separate

name resolution from address-based routing is the need for each router to store a PRT.

This is acceptable, given the cost of memory today and the infrequency with which PRT

entries must be updated.

The design of CCN-RAMP eliminates forwarding loops by ordering the routers

forwarding Interests based on their distances to destinations [37]. To attain this, each

Interest carries the distance to an anchor and FABs list the next hops and the distances to
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anchors.

CCN-RAMP extends our prior work [108, 109] to eliminate the use of PITs while

providing the same degree of Interest anonymity enabled in NDN and CCNx. A router

maintains a Label Swapping with Anchors Table (LSAT) to remember the reverse paths

traversed by Interests, and uses anonymous identifiers (AID) with local scope to denote the

origins of Interests. The origin of an Interest is denoted with an AID that is swapped at

each hop.

7.1.3 Assumptions

We make a few assumptions to simplify our description of CCN-RAMP; however,

they should not be considered design requirements. For convenience, a request for content

from a local user is sent to its local router in the form of an Interest.

Interests are retransmitted only by the consumers that originated them, rather

than routers that relay Interests, routers forward Interest based on LPM, and a router can

determine whether or not the CO with the exact same CO name is stored locally. Routers

know which interfaces are neighbor routers and which are local consumers, and forward

Interests on a best-effort basis.

Allowing anchors with only subsets of the COs in the name prefixes they announce

requires routers to determine which of the anchors announcing the name prefix actually host

the requested CO. This can be accomplished in CCN-RAMP using the multi-instantiated

destination spanning trees (MIDST) described in [10, 11]. The pros and cons of allowing

anchors to host only subsets of the COs in name prefixes, and the search mechanisms needed

to support it, are the subject of another publication. We assume that each anchor of a name
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prefix is required to have all the COs in the name prefix locally available.

The name of content object (CO) j is denoted by n(j) and the name prefix corre-

sponding to the longest prefix match for name n(j) is denoted by n(j)∗. The set of neighbors

of router i is denoted by N i.

subsectionInformation Exchanged

An Interest forwarded by router k requesting CO with name n(j) is denoted by

I[n(j), AIDI(k), aI(k), DI(k)], and states the name of the CO (n(j)), a fixed-length anony-

mous identifier (AIDI(k)) denoting the origin router of the Interest, the anchor selected by

the first router processing the Interest (aI(k)), and the distance (DI(k)) from k to aI(k).

A data packet sent by router i in response to an Interest is denoted byDP [n(j), AIDR(i), sp(j)]

and states, in addition to a CO, the name of the CO being sent (n(j)), an anonymous iden-

tifier (AIDR(i)) denoting the router that should receive the data packet, and a security

payload (sp(j)) used optionally to validate the CO.

An error message sent by router i in response to an Interest is denoted by ERR[n(j),

AIDR(i), aR(i), CODE] and states the name of a CO (n(j)), an anonymous identifier

(AIDR(i)) that states the intended recipient of the reply, the selected anchor for the name

prefix (aR(i)), and a code (CODE) indicating the reason why the reply is sent. Possible

reasons for sending a reply include: an Interest loop is detected, no route is found towards

requested content, no content is found, and an upstream link is broken.

7.1.4 Information Stored

Router i maintains three tables for packet forwarding: A Prefix Resolution Table

(PRT i), a Forwarding to Anchors Base (FABi), and a Label Swapping with Anchors Table
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(LSAT i). If router i has local consumers, it maintains a Local Request Table (LRT i).

Router i maintains a Content Store (CSi) if it provides content caching locally.

PRT i is indexed by the known name prefixes advertised by their anchors. Each

entry of the PRT i states the names of the selected anchors that advertised the prefix.

Depending on the specific approach, the list may state the nearest anchors or all the anchors

of the name prefix. However, with the assumption that anchors must have all COs of the

name prefixes they announce, listing the nearest anchors for a name prefix suffices.

FABi is indexed by anchor names and each entry in FABi states available next

hops to the anchor. The distance stored for neighbor q for anchor a in FABi is denoted by

D(i, a, q). This information is updated by means of a name-based routing protocol running

in the control plane.

LSAT i is indexed by anonymous identifiers denoting origin routers. An anony-

mous identifier (AID) is simply a fixed-length number. Each entry in LSAT i states an AID

locally created or received in Interests from a previous hop, the previous hop (PH i[AID])

that provided the AID, a next hop (NH i[AID]), the mapped AID (MAP i[AID]) that

should be used for the next hop, and the distance (Di[AID]) to the anchor that should

receive the forwarded Interests.

LRT i lists the names of the COs requested by router i on behalf of local consumers.

The entry for CO name n(j) states the name of the CO (n(j)) and a list of the identifiers of

local consumers (denoted by lc[n(j)]) that have requested the CO. CSi lists the COs cached

locally. The entry for CO name n(j) states a pointer to the content of the CO (denoted by

p[n(j)]).
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7.1.5 Avoiding Forwarding Loops

Let Si
a denote the set of next-hop neighbors of router i for anchor a. Router i

uses the following rule to ensure that Interests cannot traverse forwarding loops, even if the

forwarding data maintained by routers regarding name prefixes and anchors is inconsistent

or contains routing-table loops.

Anchor-Based Loop-Free Forwarding (ALF):

If router i receives I[n(j), AIDI(k), aI(k) = a,DI(k)] from router k, it can forward I[n(j), AIDI(i), aI(i) =

a,DI(i)] if:

1. AIDI(k) 6∈ LSAT i ∧ ∃v ∈ Si
a ( DI(k) > D(i, a, v) )

2. AIDI(k) ∈ LSAT i ∧ ( DI(k) > Di[AIDI(k)] )

Theorem 8. No Interest can traverse a forwarding loop in a content-centric network in

which CCN-RAMP is used.

Proof. Consider a network in which CCN-RAMP is used and assume that, following the

operation of CCN-RAMP, there is a router v0 that originates an Interest for CO n(j), uses

longest match prefix to obtain the name prefix n(j)∗, and binds that name prefix to anchor

a. The Interest sent by v0 is I[n(j), AIDI(v0), aI(v0) = a,DI(v0)].

For the sake of contradiction, assume that routers in a forwarding loop L of h hops

{v1, v2, ..., vh, v1} forward the Interest for CO n(j) originated by v0 along L, with no router

in L detecting that the Interest has traversed loop L.

Given that L exists by assumption, router vk ∈ Lmust forward I[n(j), AIDI(vk), aI(vk) =

a,DI(vk)] to router vk+1 ∈ L for 1 ≤ k ≤ h − 1, and router vh ∈ L must forward I[n(j),
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AIDI(vh), aI(vh) = a,DI(vh)] to router v1 ∈ L. According to ALF, if router vk for-

wards Interest I[n(j), AIDI(vk), a,DI(vk)] to router vk+1 as a result of receiving I[n(j),

AIDI(vk−1), a,DI(vk−1)] from router vk−1, then it must be true that

AIDI(vk−1) 6∈ LSAT vk ∧ [ DI(vk−1) > D(vk, a, vk+1)]

or

AIDI(vk−1) ∈ LSAT vk ∧ [ DI(vk−1) > Dvk [AIDI(vk−1) ].

Similarly, if router v1 forwards Interest I[n(j), AIDI(v1), a,DI(v1)] to router v2

as a result of receiving I[n(j), AIDI(vh), a, DI(vh)] from router vh, then

AIDI(vh) 6∈ LSAT v1 ∧ [ DI(vh) > D(v1, a, v2)]

or

AIDI(vh) ∈ LSAT v1 ∧ [ DI(vh) > Dv1 [AIDI(vh)] ].

Given that each router in loop L that forwards an Interest for a given AID for the

first time must create an entry in its LSAT, it follows from the above argument that, for

loop L to exist and be undetected when each router in the loop uses ALF to forward the

Interest originated by router v0, it must be true that

DI(vk−1) > Dvk [AIDI(vk−1)] for 1 < k ≤ h (7.3)

DI(vh) > Dv1 [AIDI(vh)]. (7.4)
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However, Eqs. (3) and (4) constitute a contradiction, because they imply that

DI(vk) > DI(vk) for 1 ≤ k ≤ h. Therefore, the theorem is true.

Theorem 2 is independent of whether the network is static or dynamic, the specific

caching strategy used in the network, the retransmission strategy used by content consumers

or relay routers after experiencing a timeout or receiving a reply, or whether routers use

multiple paths or a single path to forward Interests towards a given anchor. We should also

point out that ALF is a sufficient condition to ensure loop-free Interest forwarding, and it

is possible that more flexible loop-free forwarding rules could be found. This is the subject

of future work.

7.1.6 Interest Forwarding

Figure 7.3 illustrates the forwarding of Interests in CCN-RAMP showing two an-

chors (y and z) and five name prefixes, one of them (P ∗) is multi-homed at y and z. The

figure shows the forwarding tables used at router k (PRT, FAB and LSAT). Not shown are

the content store and the LRT at router k.

Figure 7.3: Interest forwarding in CCN-RAMP

When router k receives an Interest from a local consumer c for a CO with name
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n(j), it looks up its content store (CSi) to determine if the CO is stored locally. If the

CO is remote, router k adds c to an entry in LRT k stating the list of consumers that have

requested n(j) and proceeds to create Interest I[n(j), AIDI(k), aI(k), DI(k)]. The LRT

entries allow router k to demultiplex responses it receives for AIDs that it originates and

send the responses to the correct consumers.

Router k looks up PRT k for the name prefix that provides the best match and

selects an anchor of that prefix to be included in the Interest (aI(k)). The router then

looks up FABk to obtain the next hop m and the distance to the selected anchor. Router

k includes its distance to the anchor (DI(k)) in its Interest, so that forwarding routers can

apply ALF as described in Section 4.5. If no entry exists in LSAT k with Router k as the

prior hop, it selects an anonymous identifier (AIDI(k)) to denote itself as the origin of

the Interest, such that the identifier is not being used by k to denote any other origin of

Interests in LSAT k. To select new AIDs, router i maintains a hash table or an array of

bits that keeps track of previously used random numbers. An alternative approach could

be using a counter that is increased after creating a new mapped AID (MAP).

In the example of Figure 7.3, router k has forwarded an Interest from a local

consumer and used 15 as the anonymous identifier (AID) to identify itself. Router k can

use the same AID in all Interests it sends towards any anchor on behalf of local consumers,

or use different AIDs.

If router k forwards Interest I[n(j), AIDI(r), aI(r), DI(r)] from neighbor r to

neighbor m, ALF is satisfied, and no entry for AIDI(r) exists in LSAT k, then router k

computes an AID that is not used as the MAP in any entry in LSAT k. Router k then
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creates the entry for AIDI(r) in LSAT k stating: PHk(AIDI(r)) = r, NHk(AIDI(r)) =

m, MAP k (AIDI(r)) = n, and Dk(AIDI(r)) = D(k, aI(r),m).

Note that only the ingress router receiving an Interest from a local consumer (e.g.,

router k receiving an Interest from c in the example) needs to look up its PRT, which is of

the same size as a FIB in NDN and CCNx.

Forwarding routers use only their FABs and LSATs. Furthermore, a router needs

to lookup its FAB only when no forwarding state exists in its LSAT for the AID given

in an Interest received from a neighbor router. A forwarding router receiving an Interest

looks up its LSAT. If forwarding state is already set in its LSAT for the AID stated in an

Interest from a given neighbor, the router forwards the Interest without involving its FAB.

The forwarding state in LSAT k specifies the next hop and AID to be used to

forward an Interest received with a given AID from a previous hop. In the example, router

k maps (AID = 49, prior = r) in the Interests received from r to (AID = 101, next = m)

in the Interests it forwards to m towards anchor z. The dashed green arrows in Figure 7.3

show the flow of Interests from r to anchor z and the flow of responses from z to r.

The AID swapping approach adopted in CCN-RAMP simplifies the approaches

we introduced in [108, 109]. Its intent is to make Interest forwarding as simple and fast as

label swapping in IP networks, without revealing the identities of the consumers or routers

that originate the Interests.

Figure 7.4 helps to illustrate the level of anonymity provided in NDN and CCNx.

Interests in NDN only state the name of the requested CO and a nonce, and the per-

Interest forwarding state stored in PITs is what allows routers to forward responses to

Interests over the reverse paths traversed by the Interests. A third party monitoring traffic
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Figure 7.4: Interest forwarding in NDN

cannot determine the origin of an Interest simply from the information in the headers of

Interests. However, the origin of an Interest can be obtained if routers collaborate and

trace back the path the Interest traversed using the PIT entries listing the CO name in the

Interest.

The same type of anonymity is provided in CCN-RAMP, but without the need for

per-Interest forwarding state. A third party monitoring traffic cannot determine the source

of an Interest simply by reading the information in the header of the Interest, because a

local identifier is used to denote the source of an Interest at each hop. However, routers

can collaborate to trace back the origin of Interests by means of the LSAT entries stored

by the routers.

7.1.7 Updating Forwarding State

Algorithms 1 to 4 show the steps taken by routers to maintain the forwarding state

needed to forward Interests, COs and error messages. The algorithms assume that FABi

and PRT i are initialized and maintained by a routing protocol operating in the control

plane (e.g., NLSR [125] or DCR [10]).

Algorithm 20 shows the steps taken by a router to process an Interest received from
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a local consumer or a neighbor router, which were discussed in Section 4.6. An Interest

from a consumer is assumed to specify the name of a requested CO with the rest of the

information being nil.

Algorithm 21 shows the steps taken when a data packet from router s is received at

router i. Like an interest, a data packet contains an anonymous identifier AIDR(s). Router

looks up LSAT (i) for AIDR(i). If no entry with MAP = AIDR(i) exists, the router does

not forward the packet any further. If a matching entry is found, the router checks if the

previous hop stated in the LSAT (i) entry is a neighbor router or the router itself. If it

is a neighbor node, it forwards the packet to the previous hop PH stated in the matched

entry. Otherwise, the data packet is forwarded to the local consumers listed in lc[n(j)] of

the entry for n(j) in LRT i.

Algorithm 22 shows the steps taken when the link connecting router i to router

s fails. In such a case, for each entry in LSAT i that states the next hop as router s, an

error message including the AID of the entry is created and is sent back to the previous

hop stated in the AID entry. This way, router i informs neighbor routers of the link failure.

Router i also invalidates all the matching entries in LSAT i.

Algorithm 23 shows the steps followed after an error message from router s is

received at router i. The received error message contains an AID set by the neighbor

router. Router i looks up LSAT i and for any entry with MAP = AIDR(s), it creates

an error message containing AID(entry) and sends it to the previous hops or the local

consumers. The router also invalidates the entry found.
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7.2 Performance Comparison

We implemented CCN-RAMP in ndnSIM [1] based on Algorithms 1 to 4 and used

the NDN implementation in ndnSIM without modifications to compare NDN with CCN-

RAMP. We also compare CCN-RAMP against our previous proposal for the elimination

of PITs using datagrams, CCN-GRAM [109], which also relies on name-based routing in

the control plane and uses FIBs listing the next hops to known name prefixes to forward

Interests.

The performance metrics used for comparison are the average sizes of forwarding

tables, the average number of table lookups needed to obtain one CO, the average end-to-

end delays, and the average number of Interests sent by routers. DCR [10] is used in the

control plane to update FIBs listing name prefixes in NDN and CCN-GRAM, or the Prefix

Resolution Tables (PRT) and Forwarding to Anchor Bases (FAB) used in CCN-RAMP.

Accordingly, we do not need to consider the signaling overhead of the name-based routing

protocol, because it is exactly the same in the three approaches we consider.

We considered networks with no caching and with on-path caching, with each

cache being able to store only 1000 COs. We used the AT&T network topology, which

is considered to be a realistic topology for simulations [123]. This topology includes 153

nodes and 184 point-to-point links with 30 ms delay. To reduce the effects derived from

sub-optimal implementations of CCN-RAMP, NDN, or CCN-GRAM, we set the data rate

of point-to-point links to 10Gbps.

We selected 70 nodes randomly to have a consumer application simulating local

consumers. All consumers generate Interests requesting COs from all name prefixes fol-
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lowing a Zipf distribution with parameter α = 0.7. The total number of COs is only 107,

with 1000 COs per name prefix. We used a relatively small content population, because

using larger numbers for COs and name prefixes would just make CCN-RAMP look better

compared to NDN.

We selected 20 of the nodes randomly to be anchors of 500 different name prefixes

each, and each name prefix has a single anchor.

Given that prefixes are not multi-homed in our simulation scenarios, the results

in Section 3 indicate that the paths traversed by Interests should be the same whether

forwarding tables maintain routes to anchors or to prefixes. This is the case for both

single-path and multi-path routing. Accordingly, for simplicity, our simulation experiments

assume single-path routing and static topologies. The difference between CCN-RAMP and

CCN-GRAM [109] (its counter-part based on FIBs listing name prefixes) is that the latter

incurs more forwarding overhead by its use of FIBs.

7.2.1 Average Table Sizes

Figure 7.5 shows the average table sizes for NDN, CCN-RAMP, and CCN-GRAM

on a logarithmic scale as a function of the rate at which Interests arrive at routers with

local consumers, ranging from 100 to 2000 Interests per second.

The number of entries in the PRTs used in CCN-RAMP is the same as the number

of entries in the FIBs used in NDN and CCN-GRAM, because both list an entry for each

known name prefix. Given that the topology contains 20 producer nodes and each node has

500 different name prefixes, each PRT and FIB table is expected to have 10,000 entries.

For CCN-RAMP, the average number of FAB entries for all Interest rates is only
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Figure 7.5: Average number of entries in forwarding tables for NDN, CCN-GRAM, and
CCN-RAMP

20 and the average size of an LSAT, which is used to forward responses to Interests back

to consumers, is only 41 entries for all values of Interest rates. The small sizes of FABs and

LSATs should be expected, because there are only 20 routers acting as anchors, and each

router acts as a relay of only a fraction of the paths to such anchors.

The average size of the forwarding table used in CCN-GRAM to send responses

to Interests towards consumers (called ART) is only 14 entries for all Interest rates.

By contrast, the number of PIT entries depends on network conditions and traffic

load. The average PIT size varies from 23 or 24 to 426 or 435, depending on whether

on-path caching is used. The size of PITs at some core routers can be more than 1000

entries when the request rate at routers with local consumers is 2000 Interests per second.

Interestingly, the average number of PIT entries is not much smaller when on-path caching

is used compared to the case in which no caching is used.

7.2.2 Average Number of Table Lookups

Figure 7.6 shows the average number of table lookups required to retrieve a single

CO, and includes all lookups done in forwarding the Interest for the CO and sending back
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the corresponding CO to the requesting origin router.

Figure 7.6: Average number of table lookups needed to retrieve one CO

In NDN, forwarding an Interest requires a PIT lookup at each hop along the path

from consumer to caching site or anchor. If no PIT entry is found, a FIB lookup is required

to obtain the next hop for the Interest. Forwarding a data packet sent from an anchor or a

caching site requires a PIT lookup at every hop along the way to the consumer.

In CCN-RAMP, retrieving a remote CO includes one PRT lookup at the router

that receives the Interest from a local consumer. That router binds the CO name to an

anchor and each router along the path towards the anchor must do one FAB lookup to

forward the first Interest with an AID that does not exist in the LSAT of the router, and

one LSAT lookup for every Interest being forwarded. Once forwarding state is established

along a path from an originating router to an anchor, no FAB lookups are needed for

Interests that carry AIDs already listed in the LSATs of the relaying routers. As Figure 7.6

shows, the average number of FAB lookups per Interest is a very small fraction, because

only a small fraction of Interests are forwarded without having any forwarding state already

established in the LSATs of routers.

159



In CCN-GRAM, retrieving a remote CO involves one FIB lookup at each hop

along the path from consumer to caching site or anchor, as well as a lookup of the ART

in order to carry out the proper swapping of AIDs. Forwarding a data packet sent from

an anchor or a caching site requires only an ART lookup at each hop along the way to the

consumer.

Compared to NDN and CCN-GRAM, CCN-RAMP results in relay routers doing

fewer lookups of tables that are three orders of magnitude smaller than FIBs listing name

prefixes, even for the small scenario we consider.

It can be inferred from Figure 7.6 that the average hop count for paths traversed by

Interests is around four or five hops, because this is the approximate number of average FIB

lookups needed in NDN and CCN-GRAM when no caching is used. As should be expected,

the average number of table lookups in NDN, CCN-GRAM, and CCN-RAMP is slightly

larger when no on-path caching is available, because the average paths between consumers

requesting COs and the anchors are longer than the average paths between consumers and

caching sites.

Figure 7.7: Average number of Interests forwarded per router
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Figure 7.8: Average end-to-end delays

7.2.3 Average Number of Interests and End-to-End Delays

Figure 7.7 shows the average number of Interests sent by each router. As the

results indicate, the average encumber of Interests sent by each router is essentially the

same for all three approaches and the percentage of Interests that benefit from aggregation

using PITs is insignificant.

Figure 7.8 shows that the average end-to-end delays are very similar in all cases

for NDN and CCN-RAMP. Given that the simulations assume zero delays for table lookups

(i.e., the differences in forwarding table sizes are not taken into account), these simulation

results indicate that the paths traversed by Interests are the same for NDN, CCN-GRAM,

and CCN-RAMP. This confirms that the paths traversed by Interests when routers maintain

FIBs with entries for name prefixes tend to be the same as the paths traversed by Interests if

the origin routers select the anchors of name prefixes and routers forward Interests towards

anchors.
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7.3 Conclusions

Scaling has been identified as a major research problem for content-centric net-

works [71]. We introduced CCN-RAMP, a new approach to content-centric networking that

can be deployed at Internet scale and is able to handle billions of name prefixes, because

it eliminates the need to lookup large FIBs listing name prefixes, and the use of PITs that

make routers vulnerable to DDoS attacks on the routing infrastructure. CCN-RAMP pro-

vides all the benefits sought by NDN and CCNx, including native support of multicasting

without the need for a new multicast routing protocol (see [109, 121]). In contrast to NDN

and CCNx, Interests cannot traverse forwarding loops and no Interest-flooding attacks can

be mounted.

The results of simulation experiments based on implementations of NDN, CCN-

GRAM, and CCN-RAMP in ndnSIM show that CCN-RAMP is more efficient than NDN

and CCN-GRAM. CCN-RAMP rendered similar end-to-end delays, incurred similar Interest

overhead in the data plane, and resulted in forwarding state with a number of entries that

can be orders of magnitude smaller than the forwarding state required in NDN.
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Algorithm 20 Processing Interest from p
function Interest Forwarding

INPUT: LIST i,FABi, PRT i, LSAT i;

INPUT: I[n(j), AIDI (p), anchor,DI (p)];

if p[n(j)] ∈ CS then

retrieve CO n(j); send DP [n(j), AIDR(i), sp(j)] to p

else

if p is consumer then

lc[n(j)] = lc[n(j)] ∪ c;

for each a by rank in PRT i(n(j)) do

anchor = a; break;

end for

aid = f(anchor);

else

aid = AIDI (p);

end if

entry = nil;

for each e ∈ LSAT i
aid(aid) do

if PH(e) = p then

entry = e; break;

end if

end for

loop = true; noRoute = true;

if entry = nil then

for each s ∈ Ni by rank in FABi(anchor) do

NoRoute=false;

if DI (p) > D(i, n(j)∗, s) (% ALF is satisfied) then

loop=false; DI (i) = D(i, n(j)∗, s); NH = s;

break;

end if

end for

select unused random number map;

entry =create entry LSAT i[aid, p,map,NH,D(i, n(j)∗, s)];

end if

if entry 6= nil then

send I[n(j),MAP (entry), anchor,D(entry)] to NH(entry); return;

end if

if noRoute = false ∧ loop = true then

send ERR[n(j), AIDI (p), anchor, loop] to p ;

else

send ERR[n(j), AIDI (p), anchor, no route] to p

(% No route to n(j)∗ exists);

end if

end if

163



Algorithm 21 Processing data packet from router s
function Data Packet

INPUT: LIST i, LST i, DP [n(j), AIDR(s), sp(j)];

[o] verify sp(j);

[o] if verification with sp(j) fails then

discard DP [n(j), AIDR(s), sp(j)];

entry = LSAT i
map(AIDR(s)); ( %LST in case of CCN-RAMP)

if entry = nil then

drop; return;

end if

if preHop(entry) = local (% router i is the origin) then

for each c ∈ lc[n(j)] do

send DP [n(j), nil, sp(j)] to c; lc[n(j)] = lc[n(j)]− {c}

end for

else

send DP [n(j), AID(entry), sp(j)] to preHop(entry);

end if

store CO in CS

Algorithm 22 Failure of link l connected to router i to p
function Data Packet

INPUT: LSAT i;

for each entry ∈ LSAT i with NextHop(entry) = p do

preHop = getNodeID(AID(entry));

send ERR[nil, AID(entry), link failure] to preHop

INVALIDATE(entry);

end for

Algorithm 23 Processing Error Message from Router s at router i
function ERR

INPUT: LSAT i, ERR[n(j), AIDR(s), reason];

for each entry ∈ LSAT i
map(AIDR(s)) do

preHop = getNodeID(AID(entry));

if preHop = local (% router i was the origin of the Interest) then

for each c ∈ lc[n(j)] do

send DP [n(j), c, sp(j)] to c; lc[n(j)] = lc[n(j)]− {c}

end for

else

send ERR[nil, AID(entry), reason] to preHop;

end if

INVALIDATE(entry);

end for
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Chapter 8

Making On-Demand Routing

Efficient with Route-Request

Aggregation

Many routing protocols have been proposed for mobile ad-hoc networks (MANET),

and can be categorized as proactive, reactive, and hybrid routing protocols [79, 80, 90, 94,

99]. Proactive or table-driven routing protocols maintain routes to every network desti-

nation independently of the data traffic being forwarded. Reactive or on-demand routing

protocols maintain routes for only this destinations for which there are data packets to be

forwarded. Hybrid protocols use proactive and on-demand mechanisms.

The proactive routing approach has the potential of high packet-delivery ratios

and shorter end-to-end delays, because routes are established before data packets requiring

those routes are offered to the network. The price paid for such responsiveness is that
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signaling overhead is incurred even for those destinations that are not needed, which may

be too high. In theory, on-demand routing is designed to address this problem by requiring

signaling overhead only for active destinations at the expense of incurring slightly longer

latencies, because some data packets must wait for routes to be found. However, as prior

comparative analysis of the performance of on-demand versus proactive routing schemes

show [81, 83, 87, 96, 103], on-demand routing protocols end up incurring more overhead

than proactive routing protocols in MANETs when topology changes that impact existing

data flows increase.

Many techniques (e.g., see [79, 80, 94]) have been proposed to reduce the overhead

incurred in the dissemination of each route request (RREQ), including clustering, location

information, dominating sets, and virtual coordinates. However, no prior work has ad-

dressed the impact of having relay routers aggregate RREQs they need to forward when

they are intended for the same destinations.

The main contribution of this chapter is the introduction of a fault-tolerant ap-

proach for routers to aggregate RREQs originated by different sources and intended for the

same destinations. The proposed route-request aggregation approach can be applied to any

on-demand routing protocol (e.g., AODV or DSR [94]) and can make any routing protocol

that uses on-demand routing techniques more efficient.

Section 8.1 introduces the Ad-hoc Demand-Aggregated Routing with Adaptation

(ADARA) protocol as a specific example of the RREQ aggregation approach. Like AODV,

ADARA uses destination-based sequence numbers to prevent routing-table loops and re-

quest identifiers to denote each RREQ uniquely as in AODV. ADARA introduces route-

166



request aggregation and the use of broadcast signaling packets (RREQs, route replies and

route errors) to substantially reduce signaling overhead.

Section 8.2 presents an example of the operation of ADARA and how it improves

performance compared to AODV [94]. However, the approach used in ADARA can be

applied with proper modifications to on-demand routing based on source routes (e.g., DSR

[94]) or path information [86]. It can also be used in combination with prior techniques

aimed at reducing signaling overhead, such as the use of geographical coordinates of desti-

nations [89, 102], virtual coordinates, connected dominating sets [101], address aggregation

[100], and clustering [80, 93].

Section 8.3 presents the results of simulation experiments used to compare ADARA

with two routing protocols that are representative of the state of the art in proactive routing

and on-demand routing for MANETs, namely OLSR [82] and AODV. The experiments were

designed to study the impact of node speed, pause times, number of sources, and network

size on the packet-delivery ratio, average end-to-end delay, and signaling overhead. The

results show that ADARA performs better than OLSR and AODV in all cases. The key

reason for this is that ADARA is able to establish routes on demand incurring far less

overhead than AODV and OLSR.

8.1 ADARA

The design rational for ADARA is twofold. First, for the performance of an on-

demand routing protocol to be comparable to or better than the performance of a proactive

routing protocol, the number of RREQs that sources initiate in the route-discovery process
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must be kept to a minimum when the network supports many data flows and experiences

topology changes [140]. Second, if the number of data flows intended for the same destina-

tion node is larger than the number of neighbors of that destination, the routes from the

sources of the flows to the destinations must have some routing relays in common. Accord-

ingly, allowing routers to aggregate RREQs intended for the same destination is bound to

have a positive effect on the overall performance of the network.

ADARA (Ad-hoc Demand-Aggregated Routing with Adaptation) is the first on-

demand routing protocol in which a router aggregates RREQs from different sources in-

tended for the same destination.

ADARA adopts the use of destination-based sequence numbers as in AODV to

avoid routing-table loops, as well as the use of the source address and a request identifier

created by the source to identify each RREQ. Other approaches have been proposed to

avoid routing-table loops when routers maintain routes on-demand [84, 86, 91, 95, 97] and

can be used instead of the specific approach based on destination sequence numbers.

8.1.1 Information Exchanged and Stored

ADARA uses four types of signaling packets, all of which are sent in broadcast

mode.

A Route Request (RREQ) is denoted by REQ[RID, o, on, d, dn, ho, HSN ] and

contains: A request identifier (RID), the address of the origin or source of the RREQ (o), a

sequence number created by the origin (on), the address of the intended destination (d), the

most recent sequence number known from d (dn), a hop count to the origin of the RREQ

(ho), and a HELLO sequence number (HSN).
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A Route Reply (RREP) is denoted by REP [d , dn, hd, LDN, HSN ] and contains:

the address of the destination (d), the most recent sequence number known from d (dn), a

hop count to the destination (hd), a list of designated neighbors (LDN) from which valid

RREQs for destination d have been received, and a HELLO sequence number (HSN).

A Route Error (RERR) is denoted by RE[HSN,LUA] and contains a HELLO

sequence number (HSN) and a list of unreachable addresses (LUA).

A Hello message (HELLO) is denoted by H[HSN ] and contains the sequence

number of the sending node.

Each router i maintains a routing table (RT i) and a pending request table (PRT i).

Each entry ofRT i specifies: the address of the destination, a sequence number created by the

destination, a hop count to the destination, next hop to the destination, a list of precursor

neighbors for the destination, and a lifetime.

PRT i is used to keep track of the RREQs received by router i, aggregate RREQs

received for the same destination, and discard duplicates of the same RREQ. An entry in

PRT i lists a destination address, a list of precursor tuples, and a lifetime. Each precursor

tuple consists of: the address of an origin node, the RID stated by that node, and the

address of the precursor neighbor from which a RREQ was received.

ADARA is a soft-state protocol. Each entry in PRT i and RT i has a finite lifetime

to allow router i to delete entries that become obsolete as a result of topology changes (e.g.,

the network is partitioned or a node fails).
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8.1.2 Updating Neighbor Connectivity

Whenever a router receives a Hello message, a RREQ, a RREP, or a RERR, it

calls the Hello Process function shown in Algorithm 24 to update routes to neighbor routers.

This process uses the HSN included in each signaling packet. The HSN a router includes

in a RREQ, RREP or RERR is simply the value of its current sequence number.

Algorithm 24 Processing Hello
function Process Hello

INPUT: sender, r tablei, HelloSeqNo;

route = r tablei.lookup(sender);

route.setHop(1);

route.SetDes(sender);

route.SetNextHop(sender);

route.SetSeqNum(HelloSeqNo);

route.mark(V alid);

r table.update(route);

8.1.3 Route Discovery Process

A router originates a RREQ when it has no valid route to an intended destination

as a result of topology changes or because a new destination is of interest to the router.

Algorithm 25 shows the steps taken by a router to process a RREQ it receives from a

neighbor.

After the neighbor information is updated according to Algorithm 24, router i

updates its routing information regarding the origin of the RREQ. Router i uses Algorithm

26 to process the RREQ based on its origin, the RID created by the origin, and the entries

in PRT i.

Router i sends back a RREP to the RREQ it receives if it is the intended destina-
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tion or RT i contains a valid entry for the destination stated in the RREQ with a sequence

number that is higher than or equal to the destination sequence number stated in the

RREQ. The RREP is broadcast to all neighbors and states the hop count to the destina-

tion, the destination sequence number, a HELLO sequence number for itself, and the list

of designated neighbors.

If router i has no valid route to the intended destination in the RREQ and there

is no entry in PRT i for that destination, router i creates a PRT i for the destination and

broadcasts the RREQ to its neighbor routers with its own HSN and its own hop count to

the origin of the RREQ. On the other hand, if there is an entry for the destination in PRT i,

there are various cases to consider.

If the RREQ is a replica of a RREQ received from the same origin (i.e., there is

a pending RREQ for the destination from the same origin and with the same RID), the

RREQ is silently dropped. If the RREQ is not a replica of a RREQ already received, but is

a retransmission of a RREQ from one of the origins of the request, it means that the origin

is retransmitting its RREQ due to a timeout expiration. Accordingly, router i updates the

RID of the corresponding precursor tuple and broadcasts the RREQ to its neighbor routers.

Lastly, if the RREQ is from a different source than those listed in PRT i, router i simply

adds a precursor tuple PRT i with the address of the origin, the RID created by the origin,

and the address of the neighbor that sent the RREQ. We say that the RREQ is aggregated

in such a case.

When router i receives a RREP, it updates its neighbor information according to

Algorithm 24. Router i accepts the information in the RREP and updates RT i for the
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Algorithm 25 Process RREQ from router s at router i
function Process RREQ

INPUT: rreq,org, r tablei,Destination;

des = rreq.getDestination();

processHello(s,RREQ.HelloSeqNo);

aggregated = PRT.Aggregate(RREQ);

UpdateReversePath(RREQ, org);

rt = r tablei.lookup(des);

if (rt) ∧ (rt.seq ≥ rreq.Seq) ∧ (rt == V ALID) then

rrep = create rrep(rt);

rrep.SetHelloSeq(LocalSeq)

Broadcast(rrep);

else

if !aggregated then

rreq.SetHelloSeq(LocalSeq)

Broadcast(rreq);

end if

end if

destination stated in the RREP if either the destination sequence number is higher than

the destination sequence number in RT i or the sequence numbers are the same but the hop

count to the destination in the RREP is smaller than the corresponding hop count in RT i.

For the case of a valid RREP, router i creates or updates the entry in RT i for the

destination. The entry states the destination sequence number obtained in the RREP, its

hop count to the destination, and the list of precursor neighbors for the destination. The

precursor neighbors are simply those neighbors listed in precursor tuples for the destination

in PRT i. If the router is a member of LDN of RREP, then the router i broadcasts the RREP

to its neighbors stating its own hop count to the destination, its own HELLO sequence

number, and a list of designated neighbors of router i that need to process and perhaps

forward the RREP. Router i can then delete the entry for the destination in PRT i . In case
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Algorithm 26 Aggregate RREQ i
function Aggregate RREQ

INPUT: rreq, PRT i;

des = rreq.getDestination();

org = rreq.getOrigin();

id = rreq.getId();

if ∃enrty ∈ PRT ∧ entryorg = org ∧ entryid = id then

drop(rreq); //Duplicate RREQ

return true;

end if

if ∃e ∈ PRT ∧ eorg = org ∧ edes = des ∧ eid 6= id then

update(entry, rreq); //Retransmitted RREQ

return false;

end if

if ∃e ∈ PRT ∧ eorg 6= org ∧ edes = des then

PRT.AddEntry(rreq); // Aggregate

return true;

end if

PRT.AddEntry(rreq);

return false;

the router is not in LDN, after updating the routes, router will drop the RREP to limit the

region within which the RREP is re-broadcast.

8.1.4 Handling Errors and Topology Changes

Route error messages are created when no route is found toward a destination

router or a link break is detected. A router assumes that a link with a neighbor is down

when it fails to receive any signaling packet within interval defined for the reception of

signaling packets from a neighbor. An error message states all the destinations for which

routes are broken as a result of the link failure.

Algorithm 28 shows the steps taken by router i to process a RERR from a neighbor.

Router i invalidates all the routes to destinations listed in the RERR that require the router
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Algorithm 27 Processing RREP from router s at router i
function Process RREP

INPUT: rrep,sender, r tablei,Destination;

des = rrep.getDestination();

processHello(sender, rrep.GetHelloSeqNo());

rt = r tablei.lookup(des);

intended = false;

if currentNode ∈ RREP.LDN() then

designated = true;

end if

if (rt des 6= empty) then

if (rrep.seq > rt des.seq) ∨ (rrep.seq = rt des.seq ∧ rrep.hop < rt des.hop) then

rt des.update(rrep);

end if

else

rt des = r tablei.AddRoute(RREP );

end if

if designated 6= true ∧ PRT.lookup(DesRREP ).Count ≤ 1 then

return;

end if

RREP.ClearLDN();

for each entry ∈ PRT.lookup(DesRREP ) do

PRT.remove(des);

rt org = r tablei.lookup(entry.org);

RREP.LDN.Add(entry.PrecursorNeighbor);

rt des.AddPrecursor(entry.PrecursorNeighbor)

end for

RREP.setHelloSeq(LocalSeq);

Broadcast(RREP );

sending the RERR as the next hop. Router i broadcasts a RERR it receives if at least one

precursor neighbor exists for the destinations listed in the RERR. Accordingly, only routers

that established routes to destinations by forwarding RREQs may have to forward RERRs.
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Algorithm 28 Processing RERR from router s at router i
function Process RERR

INPUT: rerr, r tablei,unreachable;

processHello(s);

rtList = Get All entries in r tablei that use s toward unreachable routers;

hasPrecursor = false;

for each rt ∈ rtList do

if rt.precursorCount() > 0 then

hasPrecursor = true;

end if

invalidate(rt);

end for

if hasPrecursor then

RERR.SetHelloSeq(LocalSeq);

Broadcast(RERR);

end if

8.2 ADARA Example

Figure 8.1 shows a small wireless network in which ADARA is used. The network

consists of six relay routers (m, n, o, p, q, and r), three source routers (S, A, and B),

and one destination router D. The example assumes that no router has valid routes for

destination D, and shows router S generating and broadcasting a RREQ for destination D

at time t1. The propagation of this RREQ is indicated by thin arrows in the figure, and the

propagation of RREPs is shown with thick blue arrows. The RREQ from router S states

REQ[RIDS , S, onS , D, dn = 0, ho =∞, HSNS ]

When router m receives the RREQ from source S, it adds a route for destination

router S as a destination in RTm with a hop count of one and S as the next hop. Router m

also creates an entry for D in PRTm listing the precursor tuple [S,RIDS , S], which states

S as the origin of the RREQ with a RID equal to RIDS and source S as the neighbor from
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Figure 8.1: Dissemination of RREQs and RREPs in ADARA

which the RREQ was received.

The example shows routers A and B originating RREQs for destination D at time

t2 > t1. As the figure shows, router r forwards the RREQ at time t3 > t2. However,

when router m receives the RREQ from router B for destination D shortly after time t2, it

simply aggregates the RREQ, because PRTm contains an entry for D. Router m does this

by adding the precursor tuple [B,RIDB, B] to its entry for destination D in PRTm.

Router o creates an entry for D in PRT o after receiving the RREQ forwarded by

router m, and that entry lists the precursor tuple [S,RIDS ,m]. Accordingly, when router o

receives the RREQ forwarded by router r shortly after time t3, it can simply aggregate the

RREQ. It does this by adding the precursor tuple [A,RIDA, r] to the entry for destination D

in PRT o. Similarly, when router r receives the RREQ forwarded by router o (originated by

source S) shortly after time t3, it already has an entry for destination D in PRT r and hence
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aggregates the RREQ received from router o by adding the precursor tuple [S,RIDS , o] to

its list of precursor tuples for destination D.

We note that, shortly after time t3, routers n and o receive the RREQ originated by

source S from each other. Both routers simply ignore the replicas of the RREQ originated

by router S because they each have an entry for destination D in their PRTs listing a

precursor tuple with the same source router and source sequence number than the ones

included in the RREQ they receive from each other.

As the RREQs from sources S, A, and B are disseminated in the network, relaying

routers add precursor tuples to their PRTs for destination D. These tuples allow each relay

router to decide whether to broadcast a RREP for D when it receives a RREP from a

neighbor. Destination D generates a RREP for itself at time t5 when it receives the RREQ

from router q. Starting with router q, the RREP is disseminated back to the sources that

originated RREQs for D along the reverse paths traversed by the RREQs thanks to the

precursor tuples maintained in the PRTs of routers. Each relaying router re-broadcasts

the RREP for destination D if it has at least one precursor tuple for D in its PRT, which

results in RREPs being disseminated along a directed acyclic graph as illustrated in Figure

1. Each router that forwards a RREP copies the precursor neighbors for D to its RT.

A RREP contains the list of designated neighbors (LDN) that may forward the

RREP as needed, and is based on the precursors stated for a given destination in the PRTs

of routers. In the example, the LDN of the RREP from router q lists router o, and the

LDN of the RREP from router o states routers m and r. Accordingly, as shown in Figure 1,

when router n receives the RREP from router o, it does not forward the RREP, given that
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it is not listed in the LDN of the RREP from router o. However, router n adds a routing

entry for D in RTn. Routers m and r forward the RREPs they receive from router o.

Router r forwards the RREP with an LDN listing routers o and A. Router o

simply ignores the RREP from r, and source A is able to start sending data packets to

D. By the same token, routers that receive RREPs from the next hops to the sources of

RREQs can ignore the RREPs because they are not listed in the LDNs of those RREPs.

In contrast to the above, AODV and other on-demand routing protocols would

require the dissemination of the RREQs from S, A and B throughout the entire network,

and for each origin router, a RREP would be sent on the path from source to destination.

Figure 8.2 shows the number of signaling packets sent in the topology of Figure

8.1. The number of RREQs in ADARA is much smaller compared to AODV, which is a

direct result of RREQ aggregation. Using ADARA, the RREQ generated by A is only sent

by routers A and r, and the RREQ from router B is sent once by router B and aggregated

at router m. On the other hand, using AODV, the RREQs from routers S, B, and A are

flooded in the network. The number of RREPs sent over the network in ADARA is also

lower than AODV as a result of the aggregation or RREQs. In ADARA, RREPs are sent

once on the path up to an aggregation point. In AODV, each RREP sent once on each

path. As a result, the number of RREQs and RREPs in AODV is 2.5 times larger than in

ADARA for this example. Furthermore, since all RREPs are broadcast messages, routers on

the path from a source to a destination do not generate Hello messages for a time interval.

For the case of AODV, Hello messages are generated independently of the RREPs being

sent.
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Figure 8.2: Dissemination of RREQs and RREPs in ADARA

Figure 8.3: Performance comparison as a function of router speed.

8.3 Performance Comparison

8.3.1 Simulation Model and Parameters

We implemented ADARA in ns3 and used the ns3 implementations of AODV and

OLSR without modifications to compare their performance. Figure 8.7 shows simulation-

environment settings for AODV, OLSR, and ADARA.

Figure 8.4: Performance comparison as a function of Pause Time.
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Figure 8.5: Performance comparison as a function Number of Sources.

Figure 8.6: Performance comparison as a function Network Size.
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Figure 8.7: Simulation Configuration for ADARA, AODV, and OLSR

The Distributed Coordination Function (DCF) of IEEE 802.11n 2.4 Ghz with

rate of 2Mbps is used as the MAC-layer protocol for unicast data transmission. To avoid

incorrect paths resulting from transmission-range differences between unicast and broadcast

transmissions, we made sure that both broadcast and unicast packets are sent with the same

rate (2Mbps) and range. Transmission power is adjusted to fix the transmission range to

250 meters. Both AODV and ADARA use a sending buffer of 64 packets. These buffers

store packets waiting for RREP message to the desired destination for 30 seconds.

Simulations include 50 routers spread uniformly in a 300m×1500m area. For other

scenarios, 25, 75, and 100 routers are uniformly spread in a 300m× 1500m, 300m× 1500m,

and 300m × 1500m respectively. Routers use the random-waypoint mobility model with

a randomly-chosen moving speed between 0 and 20 m/s and pause time of 0 seconds. A

router chooses a destination location randomly and moves toward that destination with a

randomly chosen speed between zero and the specified maximum speed. When a destination

location is reached, the router remains there for a specified pause time.

The scenarios include 25 data flows from 25 different source routers. The desti-

nation router for each flow is a specific router with probability 0.5 and is chosen randomly

from all routers with probability 0.5. Traffic sources are on-off applications with on and
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off time of 1 second, which generate packets of size 512 bytes and rate of 15 packets per

second. For network sizes of 25 and 50 routers, simulations are run for 900 seconds, and for

networks sizes of 75 and 100 routers, the simulation time is 500 seconds.

The signaling overhead in AODV includes its five types of packets: RREQ, RREP,

RERR, Route Reply Ack, and HELLO messages. In OLSR, the signaling overhead includes,

Topology Control (TC) messages and HELLO messages. In ADARA, the signaling overhead

includes all its different types of signaling packets.

We compared ADARA, AODV and OLSR based on the packet delivery ratios

(PDR), the average end-to-end delay, and the number of signaling packets sent by all routers.

PDR indicates the number of packets received by destination routers divided by number of

packets sent by the source routers. The average end-to-end delay is the time elapsed from

the time a packet is sent by a source until it is received by its destination. For the case of

ADARA and AODV, this delay includes the duration packet is buffered waiting for RREPs.

The scenarios used to compare the three routing protocols were chosen to stress all

three protocols, rather than to attain good performance for either on-demand or proactive

routing.

8.3.2 Effect of Mobility

In this scenario, 50 routers are spread randomly in a 300m× 1500m area, with 25

of the routers generating traffic, each with 15 packets per second. The destination for each

flow is a specific router with probability of 0.5 and is chosen randomly from all routers with

probability of 0.5. We tried different maximum mobility speeds of 5 m/s to 30 m/s with a

zero pause.
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Figure 8.3 shows the PDR, average end-to-end delays, and the signaling overhead

incurred by the three protocols as a function of router speed.

Higher router speed results in more topology changes. The drastic drop in PDR

in all protocols is due to routes breaking due to router mobility and the time needed by

the routing protocols to obtain new routes. OLSR requires routers to detect link failures

and additions based on the absence or reception of HELLO messages, and TC messages to

inform all routers of the topology so that new routes can be established. Given that TC

messages are sent periodically listing one or multiple link states, the signaling overhead in

OLSR remains fairly constant as a function of router speed. However, this means that more

link changes take place between periodic transmissions of TC messages as router speed

increases, which results in more data packets being lost as they traverse paths that are

broken.

Link failures in AODV and ADARA are detected by the absence of a number

of consecutive Hello messages, and a route discovery process is done to inform sources of

new routes to destinations. Because of the delays incurred in detecting link failures and in

establishing new routes after that, as router speed increases more and more data packets

traversing failed routes end up being dropped.

The lower delays obtained with ADARA can be attributed to the aggregation

of RREQs, which reduces the number of RREQs being flooded and hence reduces network

congestion, as well as the fact that each signaling packet is sent in broadcast mode containing

the current sequence number of the transmitting router, which helps routers detect link

failures and repair routes more quickly.
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The enormous impact of RREQ aggregation in ADARA is evident in Figure 8.3.

In OLSR, TC messages must be disseminated by MPRs throughout the network and in

AODV, each RREQ is flooded throughout the network. By contrast, a RREQ in ADARA

is disseminated throughout the network only when no other RREQ asking for a route for

the same destination has been forwarded recently. The size of TC messages in OLSR is

much larger than the size of RREQs in AODV, which accounts for the similarity in signaling

overhead between the two even though routers in OLSR disseminate fewer signaling packets

than in AODV.

Figure 8.4 shows the performance comparison of the three protocols as a function

of mobility pause time. For this simulation runs, we considered 50 routers in a area of

300m× 1500m with 25 flows as described previously. Pause times vary from 0 seconds (i.e.,

constant mobility) to to 900 seconds (i.e., almost static routers). The speed of routers is

chosen randomly between zero and 20 meters per second. As it is can be seen from the

figure, the packet delivery ratio for ADARA is very close to that of OLSR, while AODV

is much lower for all pause times. Average delays in ADARA are much lower than those

attained in OLSR and AODV over all pause times, and AODV renders the higher delays

in all cases. It is also evident that ADARA incurs far less signaling overhead than OLSR

and AODV for all pause times. As should be expected, less signaling overhead is incurred

by all protocols as the pause time increases.

8.3.3 Effect of Number of Flows

Figure 8.5 shows the comparison of the three protocols as a function of number

of sources in the network. For all cases, sources are different routers. For each flow, one
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specific router is selected as the destination with probability 0.5 and a random destination

is selected with probability 0.5.

The PDR decreases and the average end-to-end delays increase for all three pro-

tools as the number of sources increases. These results can be explained from the additional

congestion created in the channel as a result of having more data packets when more sources

are added. The results for signaling overhead as a function of the number of sources clearly

show the benefits of RREQ aggregation in ADARA compared to AODV and OLSR. Al-

though the signaling traffic in ADARA does increase as the number of sources increases,

many of those sources share common destinations and this results in many RREQs be-

ing aggregated, which in turn results in much smaller overhead than with the other two

protocols.

8.3.4 Effect of Network Size

Figure 8.6 shows the performance of the three protocols as a function of the number

of routers. We considered different network sizes of 25, 50, 75, and 100 routers spread

randomly in a area of 300m × 1000m, 300m × 1500, 300m × 2000, and 500m × 2200 with

15, 25, 40 and 50 flows respectively. Similar to the previous scenarios, a destination is a

specific router with probability of 0.5 and it chosen randomly with probability of 0.5.

As we have stated, the scenarios were selected to stress all protocols, rather than to

show likely operating points. For all three protocols, as the network size increases the PDR

drops, end-to-end delays increase, and signaling overhead increases. This is unavoidable,

given that OLSR must send more link states, and AODV and ADARA must send more

route requests as the network size increases. However, it is clear that ADARA is more
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scalable than OLSR and AODV, and is far more efficient than AODV.

8.4 Conclusions

We introduced route-request aggregation as an effective mechanism to significantly

reduce the signaling overhead incurred in route discovery, and presented ADARA as an

example of the basic approach.

ADARA uses destination-based sequence numbers to avoid routing-table loops

like AODV does, and uses RREQ aggregation and broadcast signaling packets to reduce

signaling overhead. We compared the performance of ADARA, AODV, and OLSR and

analyzed the effect of mobility, number of flows, and network size on the performance of

the protocols. The simulation results show that, in terms of packet delivery ratio, ADARA

performs much better than AODV and performs very close to OLSR in all cases. The

signaling overhead incurred with ADARA is much smaller than the overhead in AODV

and OLSR. Furthermore, the use of RREQ aggregation and broadcast signaling packets in

ADARA leads to fewer packets contenting for the channel and results in lower end-to-end

delays for ADARA compared to AODV and OLSR.

As we have stated, the basic approach of using RREQ aggregation can be applied

to any on-demand routing protocol. Accordingly, our results offer a great opportunity to

improve the performance of on-demand routing protocols being considered for standard-

ization. Our results indicate that RREQ aggregation can make AODV, DSR, or other

on-demand routing protocols, far more attractive compared to OLSR and other proactive

routing protocols.
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Our description of ADARA assumed single-path routing. However, multi-path

routing [91, 97] can be easily supported as well. Furthermore, as we we have stated, RREQ

aggregation can be used together with other techniques that have been proposed to improve

the performance of on-demand routing in MANETs.

The next steps for our work on unicast routing include the definition and analysis

of multi-path routing based on ADARA, the use of loop-avoidance techniques other than

destination-based sequence numbers in the context of route-request aggregation, the use of

geographical coordinates as in [89, 102], and the use of clustering techniques. In addition, it

is clear that the use of route-request aggregation can be applied to improve the performance

of on-demand multicast routing [80, 85].
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Chapter 9

Conclusion and Future Work

In this thesis we introduce new architecture and forwarding strategy which im-

proves the performance of the content centric networking in different aspects:

• Loop free interest forwarding Current interest based architecture suffer from un-

detected looping of interest packets when interest aggregation is used at the same

time. Undetected interest loop causes high delays in response time and also results

in higher memory consumption of routers for stateful architectures. The proposed

forwarding strategy eliminates the chance of undetected interest loops by ensuring

that interest is getting closer to the producer at each hop.

• Smaller Forwarding Tables We have shown that PIT tables can get very large

with millions of entries specially for core internet routers. Considering each interest

packet or data packet triggers a lookup and an alteration on this tables, such tables

should be implemented in highly advanced and extremely expensive memories such

as TCAMs which might be capable of handling large volume of traffic with very large
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tables. The proposed architecture in this dissertation, removes the need for stateful

forwarding and PIT tables by introducing label swapping mechanism and anonymous

datagram to forward interest and data packets. This strategy decreases the table size

in orders of magnitude which makes it an efficient and feasible architecture for the

internet with much lower processing overhead.

• Native support for efficient Multicasting The multicasting strategy used in the

proposed architecture, with no need for extra signaling messages, improves the delay

and storage consumption compared to other ICN architectures.

• Scalability The proposed strategy removes the need for large FIB tables listing name

prefixes by early binding of names to content provider anchors. This architecture can

be deployed at Internet scale and handle billions of name prefixes.

We have shown that interest aggregation can decrease the signaling overhead in

networks significantly, when there is no in-network caching. Using this idea, we proposed a

new MANET routing protocol which increases the network performance by decreasing the

signaling overhead using route request aggregation and broadcast signaling messages. This

method can be used in any on-demand routing protocol.

9.1 Future Work

The ideas presented in this dissertation opens new avenues in computer networking

specially for Content Centric Networking. We presented the big picture and general ideas

of the new architecture for content centric networking, although the current methods can
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be improved in various ways such as failure handling and forwarding across AS, much more

research needs to be done to cover different aspects of it:

• Congestion Control Many works have been done to address congestion control in

NDN and CCN. Although the proposed works are handling congestion more efficiently

compared to TCP, but they all suffer from limitation brought by NDN and CCN

architectures such as flow detection and bottle neck problem. We believe that our

proposed architecture introduces great opportunities to address the congestion control

problems and to introduce new techniques to improve the networking performance.

• DDoS Mitigation The anonymity of interests in ICN architectures, makes it difficult

to mitigate DDoS attacks. Also stateful forwarding of NDN and CCN makes the net-

work highly vulnerable to interest flood attacks. The PIT-less architecture presented

in this dissertation makes the network more tolerable to such attacks. Also using the

label swapping technique presented in this architecture, we believe there are more

efficient ways to mitigate DDoS attacks and still preserving the interest anonymity.

• Dynamic Name Based Routing Protocols There is a good opportunity to de-

sign and deploy name based routing protocols which adapt congestion and topology

changes. Analyzing the impact of such protocols on the network performance can be

very helpful.

• Apply the techniques to IP world Ideas presented in this dissertation and in other

ICN approaches can be applied to current IP architecture: Route request aggregation

to multicast on-demand routing protocols, loop-free forwarding using hop count in-
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formation as presented in this dissertation, multipath routing based on ADARA and

hybrid routing protocols that deploy route request aggregation.

The research presented in this dissertation has been published in the following

proceedings:

• ”Understanding optimal caching and opportunistic caching at the edge of information-

centric networks”, ICN ’14

• ”Enabling Correct Interest Forwarding and Retransmissions in a Content Centric Net-

work”, ANCS ’15

• ”A Light-Weight Forwarding Plane for Content-Centric Networks”, ICNC ’16

• ”Content-Centric Networking Using Anonymous Datagrams”, IFIP Networking ’16

• ”Efficient Multicasting in Content-Centric Networks Using Datagrams”, Globecom

’16

• ”Content-Centric Networking at Internet Scale through The Integration of Name Res-

olution and Routing”, ICN ’16

• ”Making On-Demand Routing Efficient with Route-Request Aggregation”, MSWIM

’16

In addition we have submitted the following journal paper:

• ”Content Centric Networks without Pending Interest Tables”, Transactions on Net-

working
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[61] Jelenković, Predrag and Radovanović, Ana,“Least-Recently-Used Caching with Depen-

dent Requests” Theor. Comput. Sci., 2004.

198



[62] Che, Hao and Tung, Ye and Wang, Zhijun,“Hierarchical Web Caching Systems: Mod-

eling, Design and Experimental Results” IEEE J. Sel. Areas Commun., 2002.

[63] Rodriguez, Pablo and Spanner, Christian and Biersack, Ernst,“Analysis of Web

Caching Architectures: Hierarchical and Distributed Caching” IEEE/ACM Trans.

Netw., 2001.

[64] Valentina Martina and Michele Garetto and Emilio Leonardi,“A Unified Approach to

the Performance Analysis of Caching Systems” Proc. IEEE INFOCOM, 2014.

[65] Psaras, Ioannis and Clegg, Richard and Landa, Raul and Chai, Wei and Pavlou,

George,“Modelling and Evaluation of CCN-Caching Trees” IFIP Networking, 2011.

[66] Psaras, Ioannis and Chai, Wei Koong and Pavlou, George,“Probabilistic In-Network

Caching for Information-Centric Networks” Proc. ACM SIGCOMM Workshop on ICN,

2012.

[67] Massimo Gallo and Bruno Kauffmann and Luca Muscariello and Alain Simonian and

Christian Tanguy,“Performance Evaluation of the Random Replacement Policy for

Networks of Caches” Perform. Evaluation, 2014.

[68] Melazzi, N and Bianchi, G and Caponi, A and Detti, A,“A General, Tractable and

Accurate Model for a Cascade of LRU Caches” IEEE Commun. Lett., 2014.

[69] Chai, Wei and He, Diliang and Psaras, Ioannis and Pavlou, George,“Cache “Less for

More” in Information-Centric Networks (Extended Version)” Comput. Commun., 2013.

199



[70] Yonggong Wang and Zhenyu Li and Tyson, G. and Uhlig, S. and Gaogang Xie,“Optimal

Cache Allocation for Content-Centric Networking” Proc. IEEE ICNP, 2013.

[71] Ghodsi, Ali and Shenker, Scott and Koponen, Teemu and Singla, Ankit and Raghavan,

Barath and Wilcox, James,“Information-Centric Networking: Seeing the Forest for the

Trees” Proc. ACM HotNets, 2011.

[72] Rosensweig, Elisha and Menasche, Daniel and Kurose, Jim,“On the Steady-State of

Cache Networks” Proc. IEEE INFOCOM, 2013.

[73] Tyson, Gareth and Kaune, Sebastian and Miles, Simon and El-khatib, Yehia and

Mauthe, Andreas and Taweel, Adel,“A Trace-Driven Analysis of Caching in Content-

Centric Networks” Proc. ICCCN, 2012.

[74] Danzig, Peter and Hall, Richard and Schwartz, Michael,“A Case for Caching File

Objects Inside Internetworks” SIGCOMM Comput. Commun. Rev., 1993.

[75] Rossi, Dario and Rossini, Giuseppe,“Caching Performance of Content Centric Networks

Under Multi-Path Routing (and More)” Telecom ParisTech, 2011.

[76] Fonseca, R. and Almeida, V. and Crovella, M. and Abrahao, B.,“On the Intrinsic

Locality Properties of Web Reference Streams” Proc. IEEE INFOCOM, 2003.

[77] Cherkasova, Ludmila and Gupta, Minaxi,“Analysis of Enterprise Media Server Work-

loads: Access Patterns, Locality, Content Evolution, and Rates of Change” IEEE/ACM

Trans. Netw., 2004.

[78] Gasti, P., Tsudik, G., Uzun, E., Zhang, L.,“Dos and ddos in named data networking”

200



I: International Conference on Computer Communications and Networks (ICCCN),

2013.

[79] M. Abolhasan et al., “A Review of Routing Protocols for Mobile Ad Hoc Networks,”

Ad hoc networks, 2004.

[80] A. Boukersche, Handbook of Algorithms for Wireless and Mobile Computing, Chapman

and Hall, 2006.

[81] J. Broch et al., “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network

Routing Protocols.” Proc. ACM/IEEE MobiCom ‘98, 1998.

[82] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR)” RFC 3626,

2003.

[83] T. Clausen, “Comparative Study of Routing Protocols for Mobile Ad-hoc networks,”

Research Report RR-5135, INRIA, 2004.

[84] S. Dabideen and J.J. Garcia-Luna-Aceves, “Ordering in Time: A New Routing Ap-

proach for Wireless Networks,” Proc. IEEE MASS 2010, San Francisco, CA, November

8-12, 2010.

[85] J.J. Garcia-Luna-Aceves and R. Menchaca-Mendez, “PRIME: An Interest-Driven Ap-

proach to Integrated Unicast and Multicast Routing in MANETs,” IEEE/ACM Trans.

on Networking, March 2011.

[86] J.J. Garcia-Luna-Aceves and S. Roy, “On-Demand Routing in Ad Hoc Networks Using

Link Vectors,” IEEE JSAC, Vol. 23, No. 3, March 2005.

201



[87] H. Jiang and J.J. Garcia-Luna-Aceves, “Performance Comparison of Three Routing

Protocols for Ad Hoc Networks,” Proc. IEEE IC3N ‘01,Oct. 2001.

[88] J. Jubin and J. Tornow, “The DARPA Packet Radio Network Protocols,” Proc. of The

IEEE, january 1987.

[89] Y. Ko and N.Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc Networks,”

Wireless Networks, Vol. 6, No. 4, 2000.

[90] P. Mohapatra et al., Ad Hoc Networks: Technologies and Protocols, Springer, 2005.

[91] M. Mosko and J.J. Garcia-Luna-Aceves, “Multipath Routing in Wireless Mesh Net-

works,” Proc. IEEE WiMesh ‘05, 2005.

[92] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wireless

Networks.” Mobile Networks and Applications, 1996.

[93] G. Pei et al., ”A Wireless Hierarchical Routing Protocol with Group Mobility,” Proc.

IEEE WCNC ‘99, 1999.

[94] C. Perkins et al., Ad Hoc Networkiing, Addison-Wesley, 2008.

[95] H. Rangarajan and J.J. Garcia-Luna-Aceves, “On-demand Loop-Free Routing in Ad

hoc Networks Using Source Sequence Numbers,” Proc. IEEE MASS ‘05, Nov. 2005.

[96] J. Raju and J.J. Garcia-Luna-Aceves, “A Comparison of On-Demand and Table Driven

Routing for Ad-Hoc Wireless Networks,” Proc. IEEE ICC ‘00, June 2000.

[97] J. Raju and J.J. Garcia-Luna-Aceves, “A New Approach to On-Demand Loop-Free

Multipath Routing,” Proc. IEEE IC3N ‘99, Oct. 1999.

202



[98] S. Roy and J.J. Garcia-Luna-Aceves, “Node-Centric Hybrid Routing for Ad Hoc Net-

works,” Proc. 10th IEEE/ACM MASCOTS ‘02, 2002.

[99] E. Royer and C.K. Toh, “A Review of Current Routing Protocols for Ad Hoc Mobile

Wireless Networks,” IEEE Personal Communications, 1999.

[100] C. Shiflet, E. M. Belding-Royer, and C.E. Perkins. ”Address Aggregation in Mobile

Ad Hoc Networks,” Proc. IEEE ICC ‘04, 2004.

[101] J. Wu and H. Li, “On Calculating Connected Dominating Set for Efficient Routing in

Ad Hoc Wireless Networks,” Proc. ACM Int’l Workshop on Discrete Algorithms and

Methods for Mobile Computing and Communications, 1999.

[102] Y. Wang, C. Westphal, and J.J. Garcia-Luna-Aceves, “Using Geographical Coordi-

nates To Attain Efficient Route Signaling in Ad Hoc Networks,” Proc. IEEE WoWMoM

‘13, June 2013.

[103] X. Wu et al., “A Unified Analysis of Routing Protocols in MANETs,” IEEE Trans.

on Communications, March 2010.

[104] IEEE Computer Society. IEEE 802.11 and 802.11n Standards, 1999.

[105] J. Chen et al., “COPSS: An Efficient Content Oriented Publish/Subscribe System,”

Proc. ACM/IEEE ANCS 2011, Oct. 2011.

[106] S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM

Trans. on Networking, Vol. 4, No. 2, April 1996.

203



[107] J.J. Garcia-Luna-Aceves, “New Directions in Content Centric Networking,” Proc.

IEEE CCN‘15, Oct. 19, 2015.

[108] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “A Light-Weight Forwarding

Plane for Content Centric Networks,” Proc. IEEE ICNC ‘16, Feb. 2016.

[109] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Content-Centric Networking

Using Anonymous Datagrams,” Proc. IFIP Networking 2016, May 2016.

[110] M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast

Routing,” IEEE JSAC, April 1997.

[111] J. Raju et al., “System and Method for Information Object Routing in Computer

Networks,” U.S. Patent 7,552,233, June 23, 2009

[112] M. Wahlisch et al., “Lessons from the Past: Why Data-driven States Harm Future

Information-Centric Networking,” IFIP Networking ‘13, May 2013.

[113] M. Wahlisch et al., “Backscatter from The Data Plane Threats to Stability and Secu-

rity in Information-Centric Network Infrastructure,” Computer Networks, Vol. 57, No.

16, Nov. 2013.

[114] A. Afanasyev et al., “Interest-flooding Attack and Countermeasures in Named Data

Networking,” Proc. IFIP Networking ‘13, May 2013.

[115] A. Afanasyev et al., “SNAMP: Secure Namespace Mapping to Scale NDN Forward-

ing,” in Proc. IEEE Global Internet Symposium ‘15, 2015.

204



[116] B. Ahlgren et al., “A Survey of Information-Centric Networking,” IEEE Commun.

Magazine, July 2012, pp. 26–36.

[117] P. Baran, “On Distributed Communications: I. Introduction to Distributed Commu-

nication Networks,” Memorandum RM-3420-PR, The RAND Corporation, Aug. 1964.

[118] M.F. Bari et al., “A Survey of Naming and Routing in Information-Centric Networks,”

IEEE Commun. Magazine, July 2012, pp. 44–53.

[119] R.G. Gallager, “A Minimum delay Routing Algorithm Using Distributed Informa-

tion,” IEEE Trans. Commun., 1977.

[120] J.J. Garcia-Luna-Aceves, “Eliminating Undetected Interest Looping in Content Cen-

tric Networks,” Proc. IEEE NOF ‘15, Sept. 30-Oct. 2, 2015.

[121] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Efficient Multicasting in

Content-Centric Networks Using Datagrams,” IEEE Globecom ‘16, Washington, D.C.,

4–8 Dec. 2016.

[122] M. Gritter and D. Cheriton, “An Architecture for Content Routing Support in The In-

ternet,” Proc. USENIX Symposium on Internet Technologies and Systems, Sept. 2001.

[123] O. Heckmann et al., “On Realistic Network Topologies for Simulation,” Proc. ACM

SIGCOMM MoMeTools ‘03, Aug. 2003.

[124] E. Hemmati and J.J. Garcia-Luna-Aceves, “A New Approach to Name-Based Link-

State Routing for Information-Centric Networks,” Proc. ACM ICN ‘15, Oct. 2015.

205



[125] V. Lehman et al., “A Secure Link State Routing Protocol for NDN,” Technical Report

NDN-0037, Jan. 2016.

[126] S. Murthy and J.J. Garcia-Luna-Aceves, “Congestion-Oriented Shortest Multipath

Routing,” Proc. IEEE INFOCOM ‘96, 1996.

[127] M. Papalini et al., “Scalable Routing for Tag-Based Information Centric Networking,”

Proc. ACM ICN ‘14, Sept. 2014.

[128] D. Perino and M. Varvello, “A Reality Check for Content Centric Networking,” ACM

ICN ‘11, 2011.

[129] “www-dsg.stanford.edu/triad/”

[130] T.C. Schmidt et al., “Let’s Collect Names: How PANINI Limits FIB Tables in Name

Based Routing,” Proc. IFIP Networking ‘16, May 2016.

[131] W. So et al., “Named Data Networking on A Router: Fast and DoS-Resistant For-

warding with Hash Tables,” Proc. ACM ANCS ‘13, 2013.

[132] T. Song et al., “Scalable Name-Based Packet Forwarding: From Millions to Billions,”

Proc. ACM ICN 2015, Sept. 2015.

[133] M. Thorup and U. Zwick, “Compact Routing Schemes,” Proc. ACM Symp. Parallel

Algorithms and Architectures, 2001.

[134] M. Varvello et al., “Caesar: A Content Router for High Speed Forwarding,” Proc.

ACM ICN ‘12, 2012.

206



[135] Y. Wang et al., “Scalable Name Lookup in NDN Using Effective Name Component

Encoding,” Proc. ICDCS ‘12, 2012.

[136] Y. Wang et al., “Wire Speed Name Lookup: A GPU-based Approach,” USENIX

NSDI ‘13, 2013.

[137] G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE

Communication Surveys and Tutorials, July 2013.

[138] H. Yuan and P. Crowley, “Reliably Scalable Name Prefix Lookup,” proc. IEEE ICCCN

‘12, 2012.

[139] Garcia-Luna-Aceves, J. J., Maziar Mirzazad-Barijough, and Ehsan Hemmati.

”Content-Centric Networking at Internet Scale through The Integration of Name Res-

olution and Routing.” proc. ICN 16, 2016.

[140] Mirzazad-Barijough, Maziar, and J. J. Garcia-Luna-Aceves. ”Making On-Demand

Routing Efficient with Route-Request Aggregation.” proc. MSWIM 16, 2016.

207




