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BeyondPlanck: end-to-end Bayesian analysis of Planck LFI Special issue
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ABSTRACT

We present cosmological parameter constraints estimated using the Bayesian BeyondPlanck analysis
framework. This method sup- ports seamless end-to-end error propagation from raw time-ordered data
onto final cosmological parameters. As a first demonstration of the method, we analyzed time-ordered
Planck LFI observations, combined with selected external data (WMAP 33–61 GHz, Planck HFI DR4 353 and
857 GHz,  and  Haslam  408 MHz)  in  the  form  of  pixelized  maps  that  are  used  to  break  critical
astrophysical de- generacies. Overall, all the results are generally in good agreement with previously
reported values from  Planck  2018 and WMAP, with the largest relative difference for any parameter
amounting about 1σ when considering only temperature multipoles between
30 e 600. In cases where there are differences, we note that the BeyondPlanck results are generally
slightly closer to the high-e HFI-dominated Planck 2018 results than previous analyses, suggesting slightly
less tension between low and high multipoles. Using low-e polarization information from LFI and WMAP,
we find a best-fit value of τ  =  0.066 0.013, which is higher than the low value of  τ  =  0.052 0.008
derived from Planck 2018 and slightly lower than the value of 0.069 0.011 derived from the joint analysis
of official LFI and WMAP products. Most importantly, however, we find that the uncertainty derived in the
BeyondPlanck processing is about 30 % greater than when analyzing the official products, after taking
into account the different sky coverage. We argue that this uncertainty is due to a marginalization over a
more complete model of instrumental and astrophysical parameters, which results in more reliable and
more rigorously defined uncertainties. We find that about 2000 Monte Carlo samples are required to
achieve  a  robust convergence for a low-resolution cosmic microwave background (CMB) covariance
matrix with 225 independent modes, and producing these samples takes about eight weeks on a modest
computing cluster with 256 cores.
Key words. cosmic background radiation – cosmological parameters – cosmology: observations

1.Introduction

The  cosmic  microwave  background  (CMB)
represents  one  of  the  most  powerful  probes  of
cosmology available today, as small variations in
the intensity  and  polarization  of  this  radi-  ation
impose  strong  constraints  on  cosmological
structure  for-  mation processes in the early
Universe. The first discovery of these fluctuations

is attributed to  Smoot et al. (1992) and over the
past three decades, massive efforts have been
under-

http://orcid.org/0000-0002-2753-5211


taken  to  produce  detailed  maps  with  steadily
increasing  sensi-  tivity and precision (e.g.,
Bennett et al. 2013; de Bernardis et al. 2000;
Louis et al. 2017; Sievers et al. 2013; Ogburn et
al. 2010;  Planck Collaboration I 2020,  and
references  therein).  These  measurements have
led to a spectacularly successful cosmolog-  ical

concordance model  called  ΛCDM that  posits  the
universe was created during a hot Big Bang event
taking place about 13.8 byr ago; along with the
postulate that it was seeded by Gaussian random
density fluctuations during a brief period of
exponential
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expansion called inflation and that  it  consists  of
about 5% baryonic matter, 30% dark matter, and
65% dark energy. This model is able to describe a
host  of  cosmological  observables  with exquisite
precision (see e.g. Planck Collaboration VI 2020),
even though it leaves much to be desired in terms
of the theoreti- cal understanding. Indeed, some
of the biggest questions in mod- ern cosmology
revolve around our understanding of the physical
nature of inflation, dark matter, and dark energy,
with enormous sums of money spent on attempts
to  answer  these  questions.  In  all  these  studies,
CMB observations play a key role.

The current state-of-the-art, in terms of full-
sky CMB observations, is defined by ESA’s Planck

satellite mission (Planck Collaboration I 2014,
2016, 2020), which observed the microwave sky
in nine frequencies, ranging from 30 to 857 GHz,
between 2009 and 2013. These measurements

have imposed strong constraints on the ΛCDM
model, combining information from temperature

and polarization CMB maps with novel gravi-
tational lensing reconstructions (Planck
Collaboration VI 2020). While the Planck

instrument stopped collecting data in 2013, the
final official Planck data release took place as

recently as 2020 (Planck Collaboration Int. LVII
2020), clearly testifying to the significant

analytical challenges associated with these types
of data. Large-scale polarization reconstruction
represents a par- ticularly difficult problem, and

massive efforts have been under- taken in the aim
to control all significant systematic uncertainties

(e.g., Planck Collaboration Int. LVII 2020; Delouis
et al. 2019). The next major scientific endeavor

for the CMB commu- nity is the search for
primordial gravitational waves created during
the inflationary epoch (e.g., Kamionkowski &

Kovetz 2016). Current theories predict that such
gravitational waves should imprint large-scale B-
mode polarization in the CMB anisotropies, with

a map-domain amplitude no larger than a few
tens of nanokelvin on degree angular scales.

Detecting such a faint signal requires at least
one or two orders of magnitude higher

sensitivity than Planck, as well as correspondingly
more

stringent systematics suppression and uncertainty
assessment.

The main operational goal of the BeyondPlanck 
project (BeyondPlanck Collaboration 2023) is to 
translate some of the
main lessons learned from Planck in terms of 
systematics mit-

straints derived in the following are therefore not
in  and  of  themselves  competitive  in  terms  of
absolute uncertainties, as compared with already
published  Planck  constraints.  Rather,  the  present
analysis focuses primarily on general algorithmic
aspects,  and  represents  a  first  real-world
demonstration  of  the  end-to-end  Bayesian
framework that will serve as a platform for further
development and data integration of different
experi- ments (Gerakakis et al., in prep.).

Noting the sensitivity of large-scale polarization
reconstruc-  tion  to  systematic  uncertainties,  we
adopted  the  reionization  optical  depth  τ as  a
particularly  important  probe  of  stability and
performance of the BeyondPlanck  framework and
we aimed to estimate  P(τ d) from Planck  LFI and
WMAP observations. We also constrained a basic
six-parameter ΛCDM  model, combining the
BeyondPlanck low-e  likelihood with a  high-e
Blackwell-Rao CMB temperature likelihood that,
for the  first time, covers the two first acoustic
peaks, or e  600. Eventu-  ally, we also
complement this with the Planck high-e  likelihood
to  extend  the  multipole  range  to  the  full  Planck
resolution, as well as with selected external non-
CMB data sets.

The structure of the rest of the paper is as
follows: In Sect. 2,  we  review  the  global
BeyondPlanck  data  model,  posterior  distribution,
and the CMB likelihood, focusing, in particular, on
how cosmological  parameters are constrained in
this  frame-  work. In Sect. 3, we present ΛCDM
parameter constraints from  BeyondPlanck  alone
and combined with the Planck  high-e likelihood. In
Sect. 4, we assess the impact of systematic uncer-
tainties, adopting τ  as a reference parameter. In
Sect. 5, we pro- vide an assessment of the Monte
Carlo  convergence  of  CMB  samples. Finally, we
summarize our main conclusions in Sect. 6.

2.Cosmological parameters and BeyondPlanck
We start by introducing the global BeyondPlanck
data model  in  order  to  show how it  couples  to
cosmological parameters through the Gibbs loop;
for a detailed discussion, we refer  to
BeyondPlanck Collaboration (2023) and references
therein. Explicitly, the BeyondPlanck  time-ordered
data model is expressed as:

igation into practical computer code that can be 
used for next-



 symm 
I (

j 
) 

c asymm 
( 

orb fsl 
)




generation B-mode experiment analysis. And 
among the most important lessons learned in this
respect from Planck regards

dj,t = g j,t 

Ptp, j

 pp , j M 
jc

c

βp, , 
∆bp

ap, + Bpp,, j s j,t + s j,y

astrophysical component separation. Because any 
CMB satellite
experiment must, in practice, be calibrated with 
in-flight obser-

j,t j,t j,t

(1)

vations of astrophysical sources, the calibration is
limited by our  knowledge  of  the  astrophysical
sources  in  question  –  and  this  must  itself  be
derived from the same data set. Instrument cali-
bration and component separation must therefore
be performed jointly, and a non-negligible fraction
of the full uncertainty bud-  get  arises  from
degeneracies between the two.

The BeyondPlanck project addresses this
challenge by

where j indicates radiometer; t and p denotes time
sample and pixel on the sky, respectively; and c
refers to a given astrophys- ical signal component.
Further,  dj,t denotes  the  measured data  value in
units of V; g j,t denotes the instrumental gain in
units of  V K−1 ;  Ptp, j is  the  NTOD 3Npix pointing
matrix,  where  ψ  is the polarization angle of the
respective detector with respect to the
local meridian; Bpp,, j denotes beam convolution; M
jc βp, , ∆ j

constructing a complete end-to-end analysis pipeline for CMB bpdenotes element ( j, c) of an N × N
observation into one integrated framework that does not require de

t
comp mixing matrix, 
describ-

intermediate human intervention. This is the 
first complete

ing the amplitude of the component c, as seen by
radiometerj relative to some reference frequency j0; ap is theamplitude

approach to support seamless end-to-end error propagation for cof component c in pixel p

+
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t

CMB applications, including full marginalization 
over both
instrumental and astrophysical uncertainties and 
their internal

, measured at the same 
reference frequency as the mixing matrix M, and
expressed in bright-ness temperature units; sorb is the orbital CMB dipole signal

degeneracies. We refer to BeyondPlanck 
Collaboration (2023), in units of K j,t

Colombo et al. (2023) for further 
discussion. sfsl cmb, including relativistic quadrupole 

corrections;

For pragmatic reasons, the current BeyondPlanck
pipeline

has so far only been applied to the Planck LFI
observations,

j,t denotes the contribution from far sidelobes, 
also in units of Kcmb; s1 Hz accounts for electronic 
interference with a 1 Hz

which have significantly lower signal-to-noise ratios (S/N) than period; ncorr denotes correlated instrumental noise; and nw is
j,t j,t

the Planck HFI observations. The cosmological parameter con- uncorrelated (white) noise. The free 
parameters in this equation



{
}

ωc ≡ Ωch2 [0.0001, 0.99]Cold dark matter 

density today
e
m

e e

≡ {

×

×

|

|

| = ∝ L

|

| ≡ L

are g, ∆bp, ncorr, ac, β . All the other quantities are
either pro- vided as intrinsic parts of the original
data sets, or given as a deterministic function of
already available parameters.

Table 1. Overview of cosmological parameters
considered in this anal- ysis in terms of mathematical
symbol, prior range, and short description (see text for
details).

In addition to the parameters explicitly defined by Eq. (1),
                                                                                                        

we include a set of hyperparameters for each free 
stochastic ran- dom field in the model. For 
instance, for the CMB componentmap, aCMB, we define a covariance matrix S, whichis taken to

Parameter Uniform prior Definition

Base params2

be isotropic. Expanding ap 

= 
L

a mY (p) into spherical 
har-

ωb ≡ Ωbh [0.0005, 0.1] Baryon density today

monics, its covariance matrix may be written as:

Sem,e, m, ≡ aemae
∗

, m, = Ceδmm, δee, ,

(2)

where  Ce is  called the angular  power spectrum.
This  function is  itself  a  stochastic  field  to  be
included in  the  model  and fit- ted  to  the  data,
and, indeed, the angular CMB power spec- trum
is one of the most important scientific targets in
the  entire  analysis.  We  note  that  this  spectral-
domain  covariance  matrix  approach  does  not
apply solely to astrophysical components, but also
to  instrumental  stochastic  fields,  such  as
correlated  noise  (Ihle et al. 2023)  and  time-
dependent gain fluctuations (Gjerløw et al. 2023).

In  many  cases,  the  power  spectrum may  be
further mod- elled in terms of a smaller set of free
parameters,  ξ,  defined  through  some
deterministic function,  Ce(ξ). For the CMB case,  ξ
is nothing but the set of cosmological parameters,
and  the  function Ce(ξ) is evaluated using a
standard cosmological Boltz-  mann  solver,  as
implemented,  for  instance,  in  the  CAMB  code
(Lewis et al. 2000). If we now define the full set of
free parame- ters in the data model as ω   g,
∆bp, ncorr, ac, β, Ce(ξ) , the goal
of the current paper is to derive an estimate of thecosmological

100θMC [0.5, 10.0] 100  approximation to r*/DA

τ [0.01, 0.8] Optical depth of reionization
ns [0.9, 1.1] Scalar index (k0 = 0.05 Mpc−1)
ln(1010As) [2.7, 4.0] Log (k0 = 0.05 Mpc−1)

Extensions
r [0, 3] Tensor-to-scalar ratio

Derived params
ΩΛ Dark energy density
t0 Age of the Universe today 

(in Gyr
Ωm Matter density
σ8 RMS matter fluctuation 

today
zre Redshift of half re-ionized
H0 [20, 100] Expansion rate in Km s−1 Mpc−1

109As 109  power at k0 = 0.05 Mpc−1

109Ase−2τ Scalar power amplitude

Notes. The top block lists the base parameters with
uniform priors that are directly sampled in the MCMC
chains. The lower block contains the  main  derived
parameters.

likelihood takes the following form:
L(ω) ∝ P(nw | ω) ∝ e− 

1 (d−stot)t 
(Nw)−1 (d−stot). (4)

parameter posterior distribution P(ξ | d), 
marginalized over all

2 ω ω

relevant  astrophysical  and  instrumental
parameters.  In  practice,  this marginalization is
performed by first mapping the full joint posterior,
P(ω d), as a function of Ce through Monte Carlo
sam- pling, then deriving a Ce-based CMB power
spectrum likelihood  from the resulting power
spectrum samples, and finally mapping  out this
likelihood with respect to cosmological parameters
using  the well-established CosmoMC (Lewis  &
Bridle 2002) code. We  describe in Table 1 the
cosmological parameters included in our analysis.
The rest of this section details the steps involved
in establishing the CMB likelihood for this step.

2.1.BeyondPlanck posterior distribution and Gibbs 
sampler

In order to sample from the full global posterior,
P(ω d), we start with Bayes’ theorem:

P(ω  d)  
P(d   | ω)P(ω)   

(ω)P(ω),

(3)
P(d)

The priors are less well defined, and the current
BeyondPlanck  processing  uses  a  mixture  of
algorithmic  regularization priors (e.g., enforcing
foreground smoothness on small  angular  scales;
Andersen et al. 2023),  instrument  priors  (e.g.,
Gaussian or log-normal priors on the correlated
noise spec- tral parameters; Ihle et al. 2023), and
informative  astrophysical  priors (e.g., AME and
free-free amplitude priors; Andersen et al. 2023;
Colombo et al. 2023). A full summary of all active
priors  is  provided  in  Sect.  8  of  BeyondPlanck
Collaboration (2023).

To  map  out  this  billion-parameter  sized  joint
posterior  dis-  tribution,  we  employed  Gibbs
sampling;  that  is,  rather  than  drawing  samples
directly from the joint  posterior  distribution,  P(ω
d), we drew samples iteratively from all respective
condi- tional distributions, partitioned into suitable
parameter sets. This  sampling scheme may be
formally summarized through the fol- lowing Gibbs
chain,

g ← P(g | d, ξn, ∆bp, a, β, Ce), (5)

where P(d ω)  (ω) is called the likelihood, P(ω)
is  called the  prior  and  P(d)  is  a  normalization
factor that is typically referred as the “evidence”.
Since  the latter  is  independent  of  ω,  we ignore
this factor in the following.

The exact form of the likelihood is defined by
the data model  in Eq. (1), which is given as a
linear sum of various components, all of which are
specified in terms of our free parameters,  ω. The

only term that is not deterministically defined by ω
is the white noise, nw, but this is instead assumed
to be Gaussian dis-  tributed with zero mean and
covariance Nw. We can therefore write d = stot(ω) +
nw,  where  stot(ω)  is  the  sum  of  all  model
components in Eq. (1), irrespective of their origin,
and therefore  d stot(ω) N(0, Nw),  where  N(µ, Σ)
denotes a multivariate Gaussian distribution with



←

mean µ and covariance Σ. Thus, the ncorr ← P(ncorr | d, g, ξn, ∆bp, a, β, Ce), (6)
ξn ← P(ξn | d, g, ncorr, ∆bp, a, β, Ce), (7)

∆bp ← P(∆bp | d, g, ncorr, ξn, a, β, Ce), (8)
β ← P(β | d, g, ncorr, ξn, ∆bp, Ce), (9)
a ← P(a | d, g, ncorr, ξn, ∆bp, β, Ce), (10)

Ce ← P(Ce | d, g, ncorr, ξn, ∆bp, a, β ),

(11)

where indicates drawing a sample from the
distribution on the right-hand side.

Since  the  main  topic  of  this  paper  is
cosmological  param-  eter  estimation,  we
summarize  here  only  the  CMB  amplitude  and
power spectrum sampling steps, as defined by
Eqs. (10) and (11), and we refer to BeyondPlanck
Collaboration (2023)  and  references  therein  for
discussions regarding the other steps.
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ν ν ν ν ν ν This approach is not suitable for a high-
resolution CMB tem- perature analysis, since we 
cannot construct a pixel-pixel covari-

| \

orders of magnitude smaller than producing a full
sample, this

Ce = 
σe/

η2, where 
σe =

|aem|2. The generalization to

polar-i

≤

CMB

≤

≤

As shown by Jewell et al. (2004), Wandelt et al.
(2004), the amplitude distribution P(a d, ω a), i.e.
the probability of a given the data d and the all the
model  parameters  except  a,  is  a  multivariate
Gaussian with a mean given by the so-called
Wiener  filter  and  an  inverse  covariance  matrix
given by S(Ce)−1 + N−1, where S(Ce) and N are, thus,
the total effective signal and noise  covariance
matrices,  respectively.  Samples  from  this
distribution may be drawn by solving the following
system of  linear  equa-  tions,  typically  using  the
Conjugate Gradient method (Shewchuk 1994):
 
S−1 + 

I 
Mt Bt N−1BνMν

 
a =

matrix, the main goal of this stage is simply to
obtain more sam- ples of the same type as above
and to reduce the Monte Carlo uncertainty in the
noise covariance matrix (Sellentin & Heavens
2016).  In this  case, we simply drew  n  additional
samples  from  Eq. (10), fixing both the
instrumental and astrophysical parame-  ters, as
well as the CMB aem’s for e > 64. We effectively
mapped out the local conditional distribution with
respect to white noise for each main sample on
large angular scales. We conservatively drew n  =
50 new samples per main sample in this step, but
after the analysis started, we checked that a set
of  as  few  as  ten  sub-  samples  achieves  an
equivalent  effect.  On  the  other  hand,  since  the
cost of producing one of these subsamples is
almost two

I 
Mt Bt N−1 mν + 

I 
Mt Bt N−1/2ην 

+ S−1/2η0.

additional cost is negligible.

In this expression,  Mν is called the mixing matrix,
and  encodes  the instrument-convolved spectral
energy densities of each astro-  physical
foreground  component,  and  the  ηi results  are
indepen- dent random Gaussian vectors of N(0, 1)
variates.  For  further  details  on  solving  this
equation, see Eriksen et al. (2008), Seljebotn et al.
(2019), BeyondPlanck Collaboration (2023),
Colombo et al. (2023).

Sampling from P(Ce  d, ω  Ce) is much
simpler, as this is an inverse gamma distribution
with  2e  +  1  degrees  of  free-  dom for CMB
temperature measurements (Wandelt et al. 2004)
and a corresponding Wishart distribution for CMB
polariza-  tion (Larson et al. 2007).  The standard
sampling  algorithm  for  the  former  of  these  is
simply  to  draw 2e  − 1 random variates  from a
stLandard Gaussian Ldistribution, ηi ∼ N(0, 1),
and set

ance matrix with millions of pixels. In this case, we
used  the  Gaussianized Blackwell-Rao estimator
instead (Chu et al. 2005;  Rudjord et al. 2009),
which was also used for CMB temperature analysis
up to e 30 by Planck (e.g., Planck Collaboration V
2020). This estimator relies on proper Ce samples
and we there-  fore  resampled  the  main  chains
once  again,  but  this  time  we  applied  the
confidence mask and enable the Ce sampling step;
once  again,  all  instrumental  and  (most  of)  the
astrophysical  parameters are fixed at their main
chain  sample  values.  Thus,  this step includes
solving Eq. (12) with an inverse noise covari- ance
matrix that is zero in the masked pixels and a
non-local  S covariance matrix, and this translates
into  a  very  high  con-  dition  number  for  the
coefficient matrix on the left-hand side (Seljebotn
et al. 2019). In fact, the computational cost of a
sin-

ization is straightforward.
The above Gibbs algorithm only represents  a

formal  sum-  mary of the algorithm and, in
practice, we introduced a few  important
modifications for computational and robust- ness
reasons. The first modification revolves around
Galac- tic plane masking. As shown by Colombo et
al. (2023), the BeyondPlanck CMB reconstruction
is not perfect along  the  Galactic  plane.  To
prevent  these  errors  from  contaminat- ing  the
CMB  power  spectrum  and  cosmological
parameters, we therefore  applied  a  fairly  large
confidence mask for the actual CMB analysis. At
the same time, the Galactic plane does contain
invaluable information regarding important global
instrumental  parameters,  for  instance,  the
detector bandpasses (Svalheim et al. 2023a), and
excluding  these  data  entirely  from  the  analysis
would greatly increase the uncertainties on those
parameters. For this reason, we ran the analysis
in two main
stages; we first ran the above algorithm without a
Galactic mask

4000 of these. Fortunately, as shown in Sect. 5,
this is sufficient to achieve good convergence up
to  e ;S  700.  However,  it  does  not allow us to
explore the low signal-to-noise regime above  e
� 800. For this reason, we conservatively limited
the current BeyondPlanck temperature analysis to
e 600, leaving some buffer, and combined it with
Planck 2018 results at higher mul-  tipoles  when
necessary.

2.2.BeyondPlanck CMB likelihood

The BeyondPlanck CMB power spectrum likelihood
is based  on  two  well-established  techniques,
namely,  brute-force  low-resolution  likelihood
evaluation on large angular scales for polarization
(e.g.,  Page et al. 2007;  Planck Collaboration V
2020)  and  a  Blackwell-Rao  (BR)  estimation  for
intermediate angular scales for temperature (Chu
et al. 2005; Rudjord et al.

and setting S−1 = 0, primarily to estimate the 
instrumental and

2009; Planck Collaboration XI 2016). The main 
variations are

astrophysical parameters; this configuration
corresponds to esti- mating the CMB component
independently in each pixel with- out applying any
smoothness prior over the full sky. The cost of
setting the power spectrum prior to zero is slightly
larger pixel uncertainties than in the optimal case,
as the CMB field is  now allowed to vary almost
independently from pixel to pixel. How- ever, this
also ensures that any potential modeling errors
remain local, and are not spread across the sky.

Then, once this main sampling process is done,
we resam- pled the original chains with respect to
the  CMB  component by  looping  through  each
main sample, fixing all instrumental and (most of
the) astrophysical  parameters,  and sampling the
CMB-related parameters again (see Colombo et al.
2023, for full  details). For the low-resolution CMB

polarization  estimation,  for  which our likelihood
relies on a dense pixel-pixel covariance

ν
(12
)

ν ν

gle CMB temperature power spectrum sample is 
comparable to the cost of a full main sample, and
we therefore only produce



that we employed the signal-to-noise eigenmode
compression technique described by Tegmark et
al. (1997),  Gjerløw et al. (2015)  for  the  low-
resolution  likelihood  (to  reduce  the  dimen-
sionality of the covariance matrix and, thus, the
number  of  Gibbs  samples  required  for
convergence); in addition, we were thus able to
use the BR estimator to e   600, not only e
200, as was done in Planck 2018; the main
reason for this is that in the current scheme
the CMB sky map sam-  ples  are  drawn  from
foreground-subtracted frequency maps (30, 44,
70 GHz. . . ), each with a well-defined white
noise term, while in the Planck analysis they were
generated from component-separated CMB maps
(Commander, NILC, SEVEM,  and  SMICA;  Planck
Collaboration IV 2020) with smoothed white noise
terms.  In  this  section,  we  briefly  review  the
mathematical backgrounds for each of these
two likelihood
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the limited sensitivity of the instrument (Planck 
Collaboration V 2020).
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approximations and we refer to the 
aforementioned papers for further details.

2.2.1.Low-e temperature+polarization likelihood

Starting with the low-resolution case, the 
appropriate expression for a multivariate Gaussian
likelihood is expressed as:

masking  operator,  and  [A]E is  the  set  of
eigenvectors  of  A  with a fractional eigenvalue
larger than a threshold value E. Thus,  P
corresponds  to  a  orthonormal  basis  on  the
masked  sky  that  retains  primarily  multipoles
below et

1, and with a relative S/N higher than E. It
is important to note that this projection opera- tor
results in an unbiased likelihood estimator
irrespective of the  specific values chosen for et
and E, and the only cost of choos-
ing  restrictive  values  for  either  is  just  larger
uncertainties in the

exp (− 1 sˆt (S(Ce) + N)−1 
sˆCMB)

final results. This is fully equivalent to masking 
pixels on the

P(Ce | sˆCMB) 
∝

2 CMB

√
|S(Ce) + N|

,

(13)

sky; as long as the mask definition does not 
exploit informa- tion in the CMB map itself, no 
choice of mask can bias the final

where sˆCMB represents a CMB-plus-noise map and
N is its cor- responding effective noise covariance
map. This expression has  formed  the  basis  of
numerous  exact  CMB likelihood  codes,  going  at
least as far back as COBE-DMR (e.g., Gorski 1994).

The key novel aspect of the current analysis is
simply how to establish  sˆCMB and  N;  in previous
analyses,  sˆCMB has  typically  been estimated by
maximum-likelihood techniques, while N has been
estimated  through  analytic  evaluations  that  are
only able to take into account a rather limited set
of  uncertainties,  such as  white  and  correlated
noise,  a  very  simplified  template-based
foreground  model,  and  simple  instrumental
models of modes that have poorly measured gains
as a consequence of the scan- ning strategy. In
contrast, in the current paper, both these quan-
tities are estimated simply by averaging over all
available Gibbs samples:

results, but only modify the final error bars. In this
paper, we adopt a multipole threshold of emax = 8
and a signal-to-noise threshold of 10−6; we apply
the  R1.8  analysis  mask  defined  by  Planck
Collaboration V (2020; with fsky = 0.68); and we
use  the best-fit Planck 2018 ΛCDM spectrum to
evaluate S. In total,  this leaves 225 modes in P.
Determining how many Monte Carlo samples are
required to robustly map out the likelihood for this
number  of  modes  is  one  of  the  key  results
presented in Sect. 4.

2.2.2.High-e temperature likelihood

For the high-e temperature analysis, we exploited
the Blackwell-  Rao  (BR)  estimator  (Chu et al.
2005),  which  has  been  demon-  strated to work
very well for high S/N data (Eriksen et al. 2004).
This is the case for the BeyondPlanck
temperature power

sˆCMB = si  ,
(14)

spectrum below e ;S 700, whereas the S/N for high-e
polarizationis very low everywhere, even when combining LFI and WMAP

N =
 

(
si

− 
sCMB

i
CMB

− 
sCMB

)t 
,

(15)

data.
In practice, we employed the Gaussianized 
Blackwell-Rao

where  brackets  indicate  Monte  Carlo  averages.
Thus,  in  this  approach,  there  is  no  need  to
explicitly account for each indi-  vidual source of
systematic effects in the covariance matrix, but
they are all  naturally  and seamlessly accounted
for through the Markov chain samples.

The main challenge associated with this
approach is related

estimator (GBR), as presented in Rudjord et al.
(2009) and used by Planck (Planck Collaboration V
2020), in order to reduce the  number of samples
required to achieve good convergence at high
multipoles.  In  this  approach,  the  classical
Blackwell-Rao estima- tor is first used to estimate
the univariate Ce likelihood for each  multipole
separately:

to how many samples are required for N to 
actually converge.

n

exp(

2e+1 σ
i 

)

As discussed by Sellentin & Heavens (2016), a
general require-  ment  is  for  nsamp  nmode,  where
nsamp is  the number of Monte Carlo samples and
nmode is the number of modes in the covari-ance matrix. To establish a robust covariancematrix, one may

P(Ce | sCMB) 
=

sam
p

i=1

−
|Ce|

e

2 
Ce

2  e  +  1      
2

, (17)

therefore either 
increase nsamp (at the cost of increased 

compu-
where 
σi

≡ 
L

m |

si

2/(2e + 1) is the observed power

spec- CMB

tational costs) or decrease nmode (at the cost of 
increased final

trum of the i’th Gibbs sample CMB sky map, s . 
This dis-

uncertainties). It  is therefore of great interest to
compress the relevant information in  sˆCMB into a
minimal set of modes that capture as much of the
relevant information as possible. In our case, the
main cosmological target for the low-resolution
likeli- hood is the optical depth of reionization, τ,
and the main impactof this parameter on the Ce power spectrum forPlanck LFI hap-

tribution is used to define a Gaussianizing change-
of-variables,  xe(Ce),  multipole-by-multipole  by
matching  differential  quan-  tiles  between  the
observed  likelihood  function  and  a  standard
Gaussian distribution. The final likelihood
expression may then be evaluated as follows:

−1

pens in polarization at very low multipoles, e ;S 6 
− 8, due to P(

C | d) ≈ 




n ∂Ce 



e− 1 (x−µ)T C−1 (x−µ), (18)

CMB
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s

I

e

e
e



− −  
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In  practice,  we  compressed  the  information
using the methodology discussed by Tegmark et
al. (1997), which isolates  the useful modes
through Karhunen-Loève (i.e., signal-to-noise
eigenmode)  compression.  Adopting  the  notation
introduced by Gjerløw et al. (2015), we transform
the data into a convenient basis through a linear
operator of the form s¯ = PsCMB, where the
projection operator is defined as:

where x = xe(Ce) is the vector of transformed input
power  spectrum  coefficients;  ∂Ce/∂xe is  the
Jacobian of the transfor- mation; and the mean µ
= µe and covariance matrix Cee, = (xe  µe)(xe,  µe, )
are  estimated  from  the  Monte  Carlo  sam-  ples
after  Gaussianization  with  the  same  change  of
variables. This expression is by construction exact
for the full-sky and uni- form noise case, due to
the diagonal form of the noise covariancematrix, and consequently the full expressionfactorizes in e. For

P = [Ph 

(
S1/2N−1S1/2

) 
Pt ]E M. (16)                                          

Here, Ph is an harmonic space truncation operator 
that retains only spherical harmonics up to a 
truncation multipole et, M is a

1 Note that these modes do have some sensitivity to
higher multipoles  due  to  non-orthogonality  of  the
spherical  harmonics  on  a  masked  sky;  the  quoted
truncation limit is therefore only approximate.
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Fig. 1.  Constraints on the six ΛCDM parameters from the BeyondPlanck likelihood (blue contours) using the low-e
brute-force temperature- plus-polarization likelihood for e ≤ 8 and the high-e Blackwell-Rao likelihood for 9 ≤ e ≤
600. The red contours show corresponding constraints when adding the high-e Planck 2018 TT -only likelihood for
601 ≤ e ≤ 2500, while green contours show the same for the Planck 2018 likelihood.

real-world analyses that include sky cuts,
anisotropic noise, and  systematic uncertainties, it
is strictly speaking an approximation; however, as
shown by  Rudjord et al. (2009), it is an excellent
approximation even for relatively large sky cuts.
Furthermore,  any  differences  induced  by
additional  instrumental  systematic  error
propagation are small compared to the effect of
the Galactic  mask,  which  totally  dominates  the
sample  variance  component  of  the  high-e
temperature likelihood. In this paper, we derived
ΛCDM  cosmological  parameters  using  the
Gaussianized GBR estimator  using  the multipole
range 9 e 600. Additional details can be found
in BeyondPlanck Collaboration (2023) and
Colombo et al. (2023).

2.3.CAMB and CosmoMC

The final cosmological parameters were sampled
with CosmoMC  (Lewis & Bridle 2002),  using  the
above likelihoods as inputs. This code implements
a  Metropolis-Hastings  algorithm  to  effi-  ciently
probe the whole parameter space, using various
speed-up and tuning methods (Neal 2005;  Lewis
2013). In our analysis, we ran eight chains until
they reach convergence, as defined by a Gelman-
Rubin statistic of R − 1 < 0.01 (Gelman & Rubin
1992),

while discarding the first 30 % of each chain as
burn-in. This is due to the way CosmoMC learns an
accurate  orthogonalization  and  proposal
distribution  for  the parameters  from the sample
covariance of the previous samples. In general,
quoted error bars correspond to 68 % confidence
ranges, except in cases for which  a given
parameter is consistent with a hard prior
boundary (such as the tensor-to-scalar ratio, r), in
the  case  of  which  we  report  upper  95  %
confidence limits.

3.Six-parameter ΛCDM constraints

At this point, we are ready to present standardΛCDM cosmolog-  ical  parameter  constraints  as
derived from the BeyondPlanck  likelihood and we
compare them with previous estimates from Planck
2018  (Planck Collaboration VI 2020).  The  main
results are shown in Fig.  1 in terms of one- and
two-dimensional  marginal  posterior  distributions
of  the  six  ΛCDM  base  param-  eters  for  three
different  cases.  The  blue  contours  show  results
derived from BeyondPlanck  alone, using only the
temper- ature information up to e

600  and  polarization
infor- mation between 2   e 8,  while  red
contours  show  corresponding results when the
temperature multipole range is
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Ωc h2 0.130 0.019
−

± 
0.012−0.1

1

−0.0
8

Ωm 0.37 0.08
−

8.8 
−

≤

≤

Table 2. Constraints on the six ΛCDM base parameters with 
confidence intervals at 68% from CMB data alone and adding 
lensing + BAO.

BeyondPlanck + BeyondPlanck +
Parameter BeyondPlanck Planck Planck + Lensing + BAO

Ωb h2 0.0228+0.0011

+
−0.0012

0.028
100θMC

1.043+0.006

0.02224 ± 0.00022 0.02239 ± 0.00020
0.1218 ± 0.0021 0.1189 ± 0.0011
1.0406 ± 0.0005 1.0410 ± 0.0004

τ 0.065 −0.008 0.070 ± 0.012 0.070 ± 0.010
ln(1010As) 3.10+0.10

ns 0.973+0.021
−0.029

ΩΛ 0.63+0.14

t0 13.7+0.3

+
−0.2
0.14

σ8

0.87+0.12

3.078 ± 0.022 3.071 ± 
0.018
0.961 ± 0.006 0.967 ± 

0.004

0.673 ± 0.014 0.691 ± 

0.007
13.83 ± 0.04 13.79 ± 
0.03
0.327 ± 0.014 0.309 ± 
0.007
0.830 ± 0.010 0.819 ± 
0.007

0.020 0.025

bh2
0.10 0.15 0.20

ch2

zre 0.14

± 1.2 9.2 
±

1.1

9.2

± 0.9

H0

65.9+4.3

66.6 ± 0.9 67.8 ± 0.5

109 A e−2τ 1.96+−5.6
1.888  0.010 1.875  0.006

0.17
s −0.22

extended with the Planck 2018 TT likelihood2

between 601
e  2500. Finally, the green contours show the full
Planck 2018 (TT + lowE) posterior distributions. The
BeyondPlanck  results are summarized in terms of
posterior  means  and  stan-  dard  deviations  in
Table  2,  where we also report  constraints  when
including CMB lensing and baryonic acoustic oscil-
lations (BAO). We refer to Planck Collaboration XVI
(2014)  and Planck Collaboration XIII (2016) for
corresponding Planck analyses.

The  combined  BeyondPlanck  +  Planck  2018
likelihood presented in this paper is the direct sum
of the two log-Posteriors.  In general, this
procedure may be affected by e-to-e correlations
arising from masking, noise, systematic effects,
and foreground residuals. Assessing the impact of
such correlations on the final parameter estimates
is not a trivial procedure, as it typically requires
joint simulations of Planck LFI and HFI observations
(in addition to any necessary external dataset)
that are to be ana-

50 60 70 80
H0

2.8 3.0 3.2 3.4

ln(1010As)

0.02 0.04 0.06 0.08 0.10

0.90  0.95  1.00  1.05

ns

lyzed  in  the  same  manner  as  the  actual  data.
However, we can look at the mode coupling within
each individual dataset to have an insight on the
level of correlation between the two parts of the
joint likelihood. Around  e =  600, BeyondPlanck Ce
val-  ues show a correlation level  of few percent
between  the  nearest  and  next-to-nearest
multipoles,  rapidly  falling  off  for  more  dis-  tant
modes.  In  the  same multipole  range,  the  Planck
2018  like-  lihood  shows  correlation  between
nearby bins of order 0.001% for 100 and 143 GHz
and 0.1% for 143x217 and 217 GHz. These
estimates  include  contributions  from  all  the
possible sources of correlations mentioned above.
However, noise and systematics effects are largely
uncorrelated  between  LFI  and  HFI  measure-
ments.  In  addition,  BeyondPlanck CMB  map  is
largely  dom-  inated  by  44  and  70 GHz
measurements,  while  Planck  2018  likelihood is
based on HFI measurements at 100, 143, and
217 GHz. We expect residual foreground
contamination at these  frequency  ranges  to  be
dominated by different astrophysical sources and
to be be only weakly correlated between the two
likelihoods. Finally, BeyondPlanck confidence mask

is differ- ent from Planck  mask, corresponding to a
different  pattern  of  residual  multipole  coupling.
Therefore, we expect correlations between the two
parts of the likelihood to be significantly smaller
than those within a single dataset. This same
argument has been  explored in Gjerløw et al.
(2013) by showing the impact of mul-

2 We adopt the public Planck 2018 likelihood code (PLC;
version 3.0) when extending the BeyondPlanck likelihood
and including lensing and BAO constraints.
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Fig. 2. Comparison between ΛCDM parameters derived
using TT -only between 30  e  600 for BeyondPlanck
(black),  Planck  2018 (blue), and WMAP (red). All these
cases include a Gaussian prior of τ = 0.06 0.015. For
comparison, the full  Planck  2018 estimates are shown
as dot-dashed green distributions.

tipole  correlation  at  e  =  30,  which  further
motivates our choice of uncorrelated likelihoods
at e = 600.

Overall,  we  observe  excellent  agreement
between  the  var-  ious  cases,  and  the  most
discrepant  parameter  is  the  optical  depth of
reionization, for which the BeyondPlanck result
(τ =  0.065 0.012) is higher than the Planck  2018
(TT + lowE)  constraint  (τ  =  0.052 0.008)  by
roughly  1σ.  In  turn,  this  also  translates into a
higher initial amplitude of scalar  perturbations,
As,  by  about  1.5σ.  At  the  same  time,  it  is
important  to  note  that  the  high-e  information
from  the  HFI-dominated  Planck  2018,  likelihood
plays a key role in constraining all parameters
(except  τ), by reducing the width of each
marginal distribution by a fac- tor of typically 5–
10. As such, the good agreement seen in Fig. 1 is
not surprising, but rather expected from the high
level of cor- relations between the input datasets.

It is therefore interesting to assess agreement
between  the  various  likelihood  using  directly
comparable datasets,  and such  a comparison is
shown in Fig. 2. In this case, we show constraints
derived using only TT  information between 30 e
600, com-  bined with a Gaussian prior of τ  =
0.060 0.015. The solid lines  show  results  for
BeyondPlanck  (black),  Planck  2018  (blue),  and
WMAP (red), respectively, while the dashed-
dotted green
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Fig 3.  2D marginal  posterior  distributions for  the
parameter pairs H0–
Ωm (top)  and  σ8–Ωm (bottom)  as  computed  with  the
BeyondPlanck-  only likelihood (red); the BeyondPlanck
likelihood extended with the  Planck  2018 high-e  TT
likelihood (green); the full Planck  2018 likeli-  hood
(yellow); the WMAP likelihood (blue); and, for the bottom
figure,  the joint  cosmic shear  and galaxy  clustering
likelihood from KiDS-1000  and BOSS (Heymans et al.
2021, gray).

line for reference shows the same Planck  2018
constraints as in  Fig.  1 derived  from  the  full
likelihood.

Taken at face value, the agreement between
the three datasets  appears  reasonable  in  this
directly  comparable  regime,  as  the  most
discrepant parameters are Ωbh2 and H0, which both
dif- fer by about 1σ  between BeyondPlanck and
Planck 2018 and WMAP. However, it is important to
note that all three of these datasets are nominally
cosmic variance limited in the multipole  range
between 30 e 600, and therefore we should, in
princi-  ple, expect a perfect agreement between
these distributions  and  that is obviously not the
case. Some of these discrepancies can be
explained in terms of different masking, noting
that the effective  sky fraction of the
BeyondPlanck, Planck 2018, and WMAP

likelihoods are about 63, 65, and 75%,
respectively. However, as  shown  by  Planck
Collaboration V (2020), such small variations  are
not individually large enough to move the main
cosmological parameters by as much as 1σ.

It is therefore likely the actual data processing
pipelines used  to  model  and  propagate
astrophysical and instrumental system- atic errors
play a significant role in explaining these
differences.  In  this  respect,  we  make  two
interesting observations. First of all, we note that
BeyondPlanck pipeline fundamentally differs from
the two previous pipelines from a statistical point
of view, as it is the first pipeline to implement true
end-to-end Bayesian modeling that propagate all
sources of astrophysical and instru-  mental
systematic uncertainties to the final cosmological
param-  eters; in comparison, the other two
pipelines both rely on a mix-  ture of  frequentist
and  Bayesian  techniques  that  are  only  able to
propagate  a subset  of  all  uncertainties.  Second,
we  note  that  the  low-e  LFI-dominated
BeyondPlanck results are for sev- eral parameters
more consistent with the high-e  HFI-dominated
Planck 2018 results than the two previous pipelines;
specifically,  this is the case for  Ωbh2,  Ωch2, and  As,
while  for  H0,  the  Planck  2018 low-e  likelihood is
slightly closer to its high-e  results, while
BeyondPlanck and WMAP are identical. Finally, for
ns all  three pipelines result in comparable
agreement with the high-  e  result  in  terms  of
absolute  discrepancy,  but  with  a  different  sign;
BeyondPlanck prefers  a  stronger  tilt  than  either
Planck  2018 or WMAP. All in all, we conclude that
there  seems  to  be  slightly  less  internal  tension
between low and high multipoles when using the
BeyondPlanck likelihood. Still, the main con-
clusion from this analysis is that all these
differences are indeed small in an absolute sense,
and subtle differences at the 1σ  level  for 30 e
600 do not represent a major challenge for the
over-  all  cosmological  parameters  derived  from
the full Planck 2018 data, as explicitly shown in Fig.
1.

Before concluding this section, we comment on
two  impor-  tant cosmological parameters that
have been the focus of partic-  ularly  intense
discussion  after  the  Planck  2018 release,  namely
the Hubble expansion parameter, H0, and the RMS
amplitude of scalar density fluctuations, σ8. Figure
3 shows two-dimensional  marginal  distributions
for H0–Ωm and σ8–Ωm, respectively, for various data
combinations. Here, we see that BeyondPlanck on
its own is not able to shed new light on the either
of the two controversies, due to its limited angular
range.  When  used  in  combination with high-e
Planck 2018 information, however, we  see  that
BeyondPlanck prefers an even slightly lower mean
value of H0 than Planck 2018, although also with a
slightly larger  uncertainty.  The  net  discrepancy
with  respect  to  Riess et al. (2018)  is,  thus,
effectively unchanged.

The same observation holds for  σ8,  for  which
BeyondPlanck  prefers  a  higher  mean value  than
Planck,  increasing  the  absolute  discrepancy  with
cosmic  shear  and  galaxy clustering
measurements from Heymans et al. (2021).  In
this  case,  we  see  that  BeyondPlanck  prefers  an
even higher  value  than  Planck,  by  about  1.5σ,
further increasing the previously reported tension
with late-time measurements. This difference with
respect to Planck is driven by the higher value of τ,
as already noted in Fig. 1.

4.Large-scale polarization and the optical
depth of reionization

As  discussed  by  BeyondPlanck Collaboration
(2023),  the  main  purpose  of  the  BeyondPlanck
project has not been to derive new state-of-the-art
ΛCDM parameter constraints, for which (as  we
explain above) Planck HFI data are essential.
Rather, the
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Fig. 4. Comparison of marginal posterior distributions of the reionization optical depth from Planck 2018, shown
on the left (red, dotted; Planck Collaboration VI 2020), 9-yr WMAP (green, dot-dashed; Hinshaw et al. 2013), Planck
DR4 (cyan, dotted; Tristram et al. 2022), Planck HFI (purple, dot-dashed; Pagano et al. 2020), WMAP Ka–V and LFI 70
GHz (fitting τ+ As; Natale et al. 2020; blue, dashed); and BeyondPlanck using multipoles e = 2–8, marginalized over
the scalar amplitude  As (black). Corresponding marginal BeyondPlanck tensor-to-scalar ratio pos- teriors derived
using BB multipoles between e = 2–8, marginalized over the scalar amplitude As (gray), and by fixing all the ΛCDM
parameters to their best-fit values, shown on the right (black). The filled region corresponds to the 95% confidence
interval.

Table 3. Summary of cosmological parameters dominated by large-scale polarization and goodness-of-fit statistics.

Analysis name Data sets f pol
BB
95

%

χ2 PTE Reference

WMAP 9-yr WMAP Ka–V 0.76 0.089 ± 0.014 Hinshaw et al. (2013)
Natale et al. LFI 70, WMAP Ka–V 0.54 0.069 ± 0.011 <0.79 Natale et al. (2020)
Planck 2018 HFI 100 × 143 0.50 0.050 ± 0.009 <0.41 Planck Collaboration V (2020)
SROLL2 HFI 100 × 143 0.50 0.059 ± 0.006 Pagano et al. (2020)
NPIPE (Commander CMB) LFI+HFI 0.50 0.058 ± 0.006 <0.16 Tristram et al. (2021)
BeyondPlanck, e = 2–8 LFI, WMAP Ka–V 0.68 0.066 ± 0.013 <0.84 0.32 This paper
BeyondPlanck, e = 3–8 LFI, WMAP Ka–V 0.68 0.066 ± 0.014 <1.0 0.32 This paper

Notes. Columns list, from left to right, (1) analysis name; (2) basic data sets included in the analysis; (3) 
effective accepted sky fraction;
(4) posterior mean estimate of the optical depth of reionization with 68% error bars; (5) upper limit on tensor-to-
scalar ratio at 95,% confidence;
(6) χ2 goodness-of-fit statistic as measured in terms of probability-to-exceed; and (7) primary reference.

main motivation behind this work was to develop
a novel and statistically consistent Bayesian end-
to-end analysis framework for past, current, and
future CMB experiments, with a particular  focus
on next-generation polarization experiments. As
such, the single most important scientific target in
all of this work is the optical depth of reionization,
τ, which serves as an overall probe  of  the
efficiency of the entire framework. At  this point,
we are finally ready to present the main results
regarding this parame- ter, as given below.

In the left panel of Fig. 4, we show the
marginal  posterior  distribution  for  τ  as  derived
from  the  low-e  BeyondPlanck  likelihood alone
(black curve) and com- pare this result with the
corresponding  estimates  from  the  literature
(Hinshaw et al. 2013;  Planck Collaboration VI
2020; Natale et al. 2020; Pagano et al. 2020). We
note,  however,  that  making  head-to-head
comparisons between all of these is non- trivial, as
the  reported  parameters  depend  on  different
assump-  tions and data combinations. For
example, Pagano et al. (2020)

Natale et al. (2020) analyzed the official LFI and
WMAP  prod-  ucts jointly, we chose to tune our
analysis configuration to their findings to facilitate
a head-to-head comparison for the most rel- evant
case. The corresponding numerical values are
summarized in Table 3.

We see that the BeyondPlanck polarization-only
estimate  is  in  reasonable  agreement  with  the
Natale et al. result based on the official LFI and
WMAP products, with an overall shift of  about
0.2σ. However, there are two important
differences to note  in  this regard.  First,  the
BeyondPlanck mean  value is  slightly  lower  than
the LFI+WMAP value and it is therefore in slightly
better agreement with the HFI-dominated results.
Second,  and more  importantly,  we see that  the
BeyondPlanck uncertainty  is  greater  for
BeyondPlanck  than  LFI+WMAP, despite  the  fact
that  its  sky fraction  is  larger  (68 versus 54 %).
Since  the  uncertainty on τ scales roughly
inversely proportionally with the  square root of
the sky fraction3, we can make a rough estimate
of

considers a likelihood that includes Commander 2018 temper-        
ature  likelihood  and  low-e  E  modes  and
marginalizes over As, whereas Natale et al. (2020)

considers only low-e polarization and marginalizes
over  only  a  small  set  of  strongly  correlated
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parameters, that is, As and/or r. Taking into
account the fact that

3 This assumption has been verified by simulating two
sets of 1000 CMB plus noise maps, with a different sky
coverage, and computing the estimate of τ in order to
retrieve the proper uncertainty scaling factor as
function of fsky.
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We also note in Table 3 that the impact of e = 2
from the analysis is small, and the only noticeable
effect  of  removing  it  from  the  analysis  is  to
increase  the  uncertainties  on  τ  and  r  by  about
10%. This is important because the BeyondPlanck
pro-  cessing  is  not  guaranteed  to  have  a  unity
transfer function for this single mode (EE, e = 2):
As discussed by  Gjerløw et al. (2023), there is a
strong degeneracy between the CMB polariza- tion
quadrupole and the relative gain parameters and
the current  pipeline  breaks  this  by  imposing  a
ΛCDM prior on the single EE e = 2 mode. Although
this  effect  is  explicitly  demonstrated  through
simulations to be small by Brilenkov et al. (2023),
it  is  still  comforting  to  see  that  this  particular
mode does not have a significant impact on the
final results.

Finally, the sixth column in Table 3 shows the
χ2 probability-  to-exceed  (PTE),  where  the  main
quantity is defined as:

χ2 = sˆt
(
S(Cbf) + 

N

)−1 

sˆ
. (21)

For a Gaussian and isotropic random field, this 
quantity should
be distributed according to a χ2 distribution, where 
ndof = 225

20 30 40 50 60 70 80
fsky [%]

Fig.  5.  Low-e  likelihood  stability  as  a  function  of  sky
fraction.  All  results are evaluated adopting the same
series of LFI processing masks  as  defined  by  Planck
Collaboration V (2020).  From  top  to  bottom,  the  three
panels  show (1)  posterior  τ  estimate;  (2)  posterior  r
estimate, expressed in terms of a detection level with
respect to a signal with van- ishing B-modes in units of
σ;  and  (3)  χ2 PTE  evaluated  for  the  best-fit  power
spectrum in each case.

what our uncertainty should have been for their
analysis setup:

rIJ 
f BP

is the number of degrees of freedom, which in our
case is equal  to the number  of basis  vectors in
sˆCMB.  The  PTE  for  our  likeli-  hood is 0.32,
indicating full consistency with the ΛCDM best-fit
model4 and  sample-based  noise  covariance
matrix.5

Figure  5 shows  corresponding  results  for
different  sky  fractions,  adopting  the  series  of
analysis masks defined by  Planck Collaboration V
(2020).  The  tensor-to-scalar  ratio  is  reported in
terms of a nominal detection level in units of
σ, as defined by matching the observed
likelihood ratio (rbf)/ (r = 0) with that of a Gaussian
standard  distribution.  Overall, we see that all
results are largely insensitive to sky frac-  tion,
which  suggests  that  the  current  processing  has
managed to remove most statistically significant
astrophysical contamina-  tion (Andersen et al.
2023; Svalheim et al. 2023b). However, we

sky
aggressive sky coverage of 83%, and also that the 
χ PTE starts

= 
0.013 ·

0.68 
= 0.014.

(20)
0.54

to fall somewhat above 68%. For this reason, we
conservatively adopted a sky fraction of 68% for
our  main  results,  but  we  note  that  73%  would
have been equally well justified.

For  comparison,  the  actual  Natale et al. (2020)
uncertainty  is  0.011, or about 30% smaller. We
interpret our greater uncertainty  as being due to
marginalizing  over  a  more  complete  set  of  sta-
tistical uncertainties in the BeyondPlanck analysis
framework than is  possible  with the frequentist-
style and official LFI and WMAP data products. As
such,  this  comparison  directly  high-  lights  the
importance of the end-to-end approach.

Table  3 also  contains  several  goodness-of-fit
and stability tests. Specifically, we first note that
the best-fit tensor-to-scalar ratio is consistent with
zero and with an upper 95% confi- dence limit of r
<  0.84.  While  this  is  by  no  means  competitive
with current state-of-the-art constraints from the
combination of  BICEP2/Keck  and  Planck  of  r <
0.032 (Tristram et al. 2022), the absence of strong
B-mode  power  is  a  confirmation  that  the
BeyondPlanck  processing  seems  clean  of
systematic  errors;  these  results  are  in  good
agreement  with  the  power  spectrum  results

presented by Colombo et al. (2023). As done above
for τ,  we  can  rescale  the  upper  limit  on  r  to
account for the differ- ent sky fraction of Natale et
al. (2020), leading to a constraint of  r < 0.94,
which is to be compared with r < 0.79 obtained in
that work. This suggests that also for r  the
marginalization over additional model parameters
included in the BeyondPlanck framework leads to a
20% increase in uncertainty compared to  a
traditional analysis.
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Before  concluding  this  section,  we return  to
the importance of end-to-end error propagation,
performing a simple analysis in  which we
estimate the marginal τ posterior under three
different regimes of systematic error propagation.
In the first regime, we assume that the derived
CMB  sky  map  is  entirely  free  of  both
astrophysical and instrumental uncertainties and
the only source of uncertainty is white noise. This
case is evaluated by selecting one random CMB
sky map sample as the fiducial sky and we do not
marginalize over instrumental or astrophysical
samples when evaluating the sky map and noise
covariance matrix in Eq. (15).  In the second
regime, we assume that the instrumental model
is perfectly known, while the astrophysical model
is  uncertain.  In  the  third  and  final  regime,  we
assume  that  both  the  instrumen-  tal and
astrophysical parameters are uncertain and we
marginal-  ize  over  all  of  them,  as  in  the  main
BeyondPlanck  analysis.  The results from these
calculations are summarized in Fig. 6. As
4 In this paper, we denote quantities fixed to a fiducial
ΛCDM best-fit value with the superscript bf.
5 We note that this was not the case in the first
preview version of the BeyondPlanck results announced
in November 2020: In that case the full-sky χ2 PTE was
(10−4),  and this was eventually explained in terms of
gain over-smoothing by Gjerløw et al. (2023) and non-
1/ f cor-  related noise contributions by Ihle et al.
(2023). Both these effects were mitigated in the final
BeyondPlanck processing, as reported here.
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Fig.  6.  Estimates  of  τ  under  different  uncertainty
assumptions.  The  blue  curve  shows  marginalization
over  white  noise  only;  the  red  curve  shows
marginalization  over  white  noise  and  astrophysical
uncertain-  ties;  and,  finally,  the  black  curve  shows
marginalization  over all  con- tributions, including low-
level instrumental uncertainties, as in the final
BeyondPlanck analysis.

expected, we see that the uncertainties increase
when marginal- izing over additional parameters.
Specifically, the uncertainty of  the  fully
marginalized  case  is  46% larger  than  for  white
noise, and 32% larger than the case marginalizing
over  the  full  astro-  physical  model.  This
calculation further emphasizes the impor- tance of
global end-to-end analysis that takes jointly into
account all sources of uncertainty.

5.Monte Carlo convergence

As noted in Sect. 2, one important goal of the
current paper is to assess how many end-to-end
Monte  Carlo  samples  are  required  to robustly
derive covariance matrices and cosmological
param- eters by Gibbs sampling. This permits us
to answer this question quantitatively,  using the
results presented above.

Starting with the low-e  polarization likelihood,
we once again adopted τ as a proxy for overall
stability, which we show in Fig. 7 τ as a function of
the number of Gibbs samples, nsamp, used to build
the low-e  likelihood inputs in Eq. (15)6. Here, we
see that the estimates are positively biased for
small values of nsamp, with a central value around τ
=  0.085.  However,  the  estimates  then starts to
gradually fall while the Markov chains explore the
full distribution. This behavior can be qualitatively
understood as follows: the actual posterior mean
sky map converges quite quickly with number of
samples, and stabilizes only with a few

500 1000 1500 2000 2500 3000

Main chain samples

Fig. 7. Convergence of constraints of the reionization
optical depth as a function of the number of main chain
samples  used  to  construct  the  CMB  mean  map  and
covariance matrix and the relative wall time needed to
produce such samples in the main Gibbs loop. The solid
blue line shows the posterior mean for τ, while the gray
and  green  regions  show the corresponding 68%
confidence interval for Natale et al. (2020) and Tristram
et al. (2022), respectively.

200 400 600 800 1000
Multipole, 

Fig. 8. Gelman-Rubin convergence statistic for the
BeyondPlanck TT angular power spectrum, as evaluated
from four independent σe chains.  A R 1 value lower
than 0.1 typically indicates acceptable convergence.
Moreover, we report the  R 1  =  10−2 threshold (dotted
black  line)  representing  a  safer  criterion  to  assess
convergency.

greater than the number of modes in thecovariance matrix,

hundred samples. However, the τ estimate is 
derived by com-
paring the covariance of this sky map with the 
predicted noise

nmod

e

= 225. Obviously, this number will depend on 
the specifics

covariance as given by N; any excess fluctuations
in s¯ compared to N is interpreted as a positive S
contribution. Convergence in N  is obviously much
more expensive than convergence in  s¯, which
leads to the slow decrease in  τ  as a function of
sample  as  N  becomes  better  described  by  a
greater number of samples.

From Fig. 7, we see that the results stabilize
only after

nsamp       ≈         2000         main         Gibb  s samples, which is almost
nine times

6 Recall that for each main Gibbs chain sample, we
additionally draw  n  =  50  subsamples  to  cheaply
marginalize  over  white  noise,  such  that  the  actual
number  of  individual  samples  involved  in  Fig.  7 is
actually  50 times higher than what is shown; the
important question for this test, however, is the number
of main Gibbs samples.

of the data models and datasets in question, and
more degener- ate models will in general require
more samples, but at least this estimate provides
a real-world number that may serve as a rule- of-
thumb for future analyses.

Finally,  to  assess  convergence  for  the  high-e
temperature  likelihood,  we  adopt  the  Gelman-
Rubin  (GR)  R  convergence  statistic,  which  is
defined  as  the  ratio  of  the  “between-chain
variance” and the “in-chain variance” (Gelman &
Rubin 1992). We evaluate this quantity based on
the four available σe chains,  including  different
numbers  of  samples  in  each  case,  ranging
between 250 to 4000. The results from this
calculations are sum- marized in Fig.  8. Here we
see that the convergence improves rapidly below
e ;S 600–800, while multipoles above e & 1000
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converge very slowly. We adopt a stringent
criterion of R  1 <
0.01 (dashed horizontal  line), and conservatively
restrict the multipole range used by BeyondPlanck
to e  600. With these restrictions, we once again
see  that  about  2000  samples  are  required  to
converge.

6.Conclusions

The  main  motivation  behind  the  BeyondPlanck
project is to develop a fully Bayesian framework
for a global analysis of CMB and related datasets
that allows for a joint analysis of both
astrophysical and instrumental effects and, thus, a
robust end-to-  end  error  propagation.  In  this
paper,  we have demonstrated this  framework in
terms of standard cosmological parameters, which
arguably represent the most valuable deliverable
for any CMB experiment. We emphasize that this
work  is  primarily  algorith-  mic in nature, and
intended to demonstrate the Bayesian frame-
work itself using a well-controlled dataset, namely
the Planck LFI measurements; it is not intended to
replace the current state-  of-the-art Planck 2018
results, which are based on highly sensi- tive HFI
measurements.

With this observation in mind, we find that the
cosmological  parameters  derived  from  LFI  and
WMAP  in  BeyondPlanck  are  overall  in  good
agreement with those published from the previous
pipelines.  When  considering  the  basic  ΛCDM
param-  eters  and  temperature  information
between  30 e 600,  the  typical  agreement
between the various cases is better than 1σ, and
we also note that  in the cases where there are
discrepan-  cies,  the  BeyondPlanck results  are
typically  somewhat  closer  to  the  high-e  HFI
constraints  than previous results,  indicating  less
internal tension between low and high multipoles.

Overall, the most noticeable difference is seen 
for the optical depth of reionization, for which we 
find a slightly higher value of τ = 0.066 0.013 
than Planck 2018 at τ = 0.052 0.008. At the same 
time, this value is lower than the corresponding 
LFI-plus- WMAP result derived by Natale et al. 
(2020) of τ = 0.069 0.011, which suggests that 
the current processing has cleaned up more 
systematic errors than in previous LFI processing. 
Further- more, and even more critically, we find 
that the BeyondPlanck uncertainty is almost 30% 
larger than latter when taking into account the 
different sky fraction. We argue that this is due to 
BeyondPlanck taking into account a much richer 
systematic error model than previous pipelines. 
Indeed, this result summa- rizes the main purpose
of the entire BeyondPlanck project in terms of one 
single number. We believe that this type of global 
end-to-end processing will be critical for future 
analysis of next- generation B-mode experiments.

A second important goal of the current paper
was to quantify how many samples are actually
required to converge for a Monte  Carlo-based
approach. Based on the current analysis, we find
that about 2000 end-to-end samples are need to
achieve  robust  results. Clearly, introducing
additional sampling steps that more  efficiently
break down long Markov chain correlation lengths
will be important to reduce this number in the
future, but already the current results proves that
the Bayesian approach is compu-  tationally
feasible for past and current experiments.
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