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ABSTRACT OF THEDISSERTATION

Automated Video-Based Fall Detection

by

Alex Daniel Edgcomb

Doctor of Philosophy, Graduate Program in CompS8taence
University of California, Riverside, June 2014
Dr. Frank Vahid, Chairperson

Automatically detecting falls is a desired part aafring for a live-alone senior.
Researchers have developed various video-baseddéiction methods, including
moving-region-based 3D-projection-based methods. iWfe@duce a video-based fall
detection method that is simpler and more effictlain previous methods, while being
equally or more accurate. The method is based emitbving-regions, represented as a
minimum bounding rectangle (MBR) around the persomideo. The method uses fall
detectors that use a particular feature of the M&Rh as height or width, to contribute a
fall likelihood score. Many fall likelihood scoresmn be combined to produce a single-
camera fall score. Multiple cameras can be combiteegroduce a multi-camera fall

score. We evaluated our method on a commonly usksb \data set featuring a middle-
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aged, male actor performing falls and in-home #as. We report accuracy as
sensitivity and specificity, and efficiency as fresnper second (FPS). The method for a
single-camera achieved 0.960 sensitivity and O gificity, and for 2 or more cameras
achieved at least 0.990 sensitivity and at le&8®specificity. The method runs at 32.1
FPS while single-threaded on a 3.30 GHz Xeon psmresOur method was more
accurate than the state-of-the-art MBR-based msethathile being equally efficient.
Also, our method was about 10x more efficient than state-of-the-art projection-based
algorithms, while being more accurate with 3 camesad equally accurate with 4+

cameras.
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Chapter 1. INTRODUCTION OF DISSERTATION

1.1 VIDEO-BASED FALL DETECTION

INTRODUCTION

Researchers [2][17][31][32][39][57][58] have devedul efficient video-based fall
detection algorithms using the minimum boundingaegle (MBR) around the moving-
region. To improve accuracy, researchers [3][4][4®veloped computationally-
expensive 3-dimensional projection-based algorithms

Falls contribute to the injuries of elderly peopd&]. Automatically detecting a fall
can enable rapid response that in turn can redddei@nal complications from a long
period in a fallen position. Even when a fall diok mesult in injury, automatic detection
can alert caregivers of the need for preemptivesomes such as hazard elimination,
physical conditioning, etc.

A fall is characterized by a person beginning witdrmal behaviors, such as sitting
or walking, followed by the person rapidly descewgdihen laying on the ground for an
extended period of time. The fall characterizat®ma sequence of time-ordered events.
State machines (SMs) excel at describing time-edidrehaviors; a fact of which this
dissertation takes advantage.

The following chapters consist of:



e A description of our moving-region and state maehknased fall detection
algorithm and a comparison of that algorithm to $i&te-of-the-art video-
based fall detectors.

e An examination of how to further improve fall deiea accuracy by
analyzing the efficacy of 3D and 2D head tracking.

e An examination of how fall detection fits into a reocomplete assistive
monitoring environment.

e An analysis of the privacy perceptions of real-gepmcluding evaluating

the efficacy of human's to detect falls on variptisacy-enhanced video.

1.2 BACKGROUND ON VIDEO-BASED FALL

DETECTION

Researchers have developed fall detection algosithsing features of the MBR
[2][17][31][32][39][57][58]. Anderson's algorithm?2] used the MBR width to height
ratio along with the off-diagonal term from a caaace matrix as features to detect falls.
A threshold for each feature determines whethalleeent has occurred. The result of
the threshold is the input to a Hidden Markov Mo@¢MM) that determines whether a
fall is likely to have occurred. Anderson did neport the sensitivity or specificity of the
fall detector. Miaou's algorithm [39] used a cajimounted camera with a 360 degree
view and extracted the person silhouette to prodmckIBR. The height to width ratio of
the MBR was a feature, and if that ratio exceed#deshold, then a fall was said to have

occurred. Miaou also used the person's body makex i(BMI) to adjust the threshold,



achieving 78% sensitivity and 60% specificity withoBMI adjustment and 90%
sensitivity and 86% specificity with BMI adjustmemiaou's study included 20 people
and a total of 60 recordings. Williams [58] deveddpan algorithm using the width to
height ratio of the MBR. If the ratio exceeded eefinold then the person was said to be
standing, otherwise the person had fallen. Whetieerperson was sitting or had fallen
was the input of a support vector machine (SVMY} thetermined whether a fall had
occurred. Williams evaluated the algorithm with id@ages (not videos) and observed
only 1 false positive and O false negatives. Thesisigity and specificity were not
reported and we were unable to reconstruct themm fitee results given in the paper.
Cucchiara [17] developed an occlusion resistant MBBfrithm using multiple cameras,
then input the width to height ratio of the MBRaon HMM to generate a fall likelihood.
Cucchiara did not report the sensitivity or spedi of the fall detector. Thome's [57]
algorithm computed the angle between the heightveidth of the MBR to predict the
pose of the person, which was passed to a Layek&id khat output the probability that
a fall had occurred. Thome evaluated the algorithith 50 fall videos and 50 walking
videos, achieving 82% sensitivity and 98% spedifiaiith 1 camera, and 98% sensitivity
and 100% specificity with 2 cameras. Hung's algaonit [31][32] combined two
orthogonal cameras by multiplying the width of M8R from each camera, calling the
result the occupied area. The algorithm also detednwhether a person was standing,
sitting, or laying using the height and occupieglaaras features. If the person was laying
and the occupied area exceeded a threshold, tf@hmaay have occurred. If the person

remained laying for an extended period of timentadall was said to have occurred. The



algorithm was evaluated with the University of M@aatl video data set [5]. Hung's
algorithm ran in real-time on a desktop computet aohieved a 95.8% sensitivity and
100% specificity using cameras 2 and 5 of the data

Rougier developed an algorithm [51] that trackee tluman shape by using line
detection on the moving region. A Procrustes ds#aii9] was measured between the
observed human shape and a database of normatyabtiman shapes. The distance was
input to a Gaussian Mixture Model (GMM) that outghe likelihood of a fall. If the
likelihood of a fall exceeded a threshold, theralhWas said to have occurred. Multiple
cameras voted to determine whether a fall occukdtiree-fourths majority in favor of a
fall was required to determine that a fall had oceth Rougier evaluated her algorithm
with the University of Montreal video data set awthieved with a single camera an area
under curve (AUC) between sensitivity and spedificanging from 0.964 - 0.978. The
algorithm achieved with four cameras an AUC of @.$&nsitivity and specificity were
not provided. In a previous study with the sameoiigm, Rougier [51] reported a
sensitivity of 0.955 and specificity of 0.964 walsingle camera.

Researchers have used features of the multi-dimeaisiprojection of the MBR
[3][4][49]. Rougier [49] also developed an algonttor 3D head tracking to detect falls
with a single camera. The algorithm requires thdibaion of the camera's
characteristics, such as lens deformation effestthe observed world, and the pose of
the ground's plane relative to the camera. The hezsl tracked as an ellipsoid with
particle filters using the moving region, color,dabody coefficients as features. If the

vertical velocity of the head exceeded a threshibleln a fall was said to have occurred.



Rougier evaluated the algorithm with 10 fall reasog$ (and no non-fall recordings),
achieving a 100% sensitivity. Anderson's algoriffdhextracted person silhouettes from
multiple cameras to build a voxel person, then usedy logic to determine whether the
person was in an upright state, an on-the-grouat#,sor in-between states. A fall was
declared when the voxel person was in the on-tbergt state for 5 seconds. The
algorithm achieved 100% sensitivity and 93.75% #jo#tly with videos of 14 falls and
32 non-falls.

Auvinet's algorithm [4] built a vertical volume #libution based on the silhouette of
a person using multiple cameras. The vertical velimould be heavily distributed near
the floor when the person was laying on the fledrereas the vertical volume would be
evenly distributed when the person was standingimai evaluated the algorithm with
the University of Montreal video data set and #mevE-one-out method, achieving 80.6%
sensitivity and 100% specificity with 3 cameras 400% sensitivity and specificity with
4+ cameras. The results of 2 cameras were nottegpbdkuvinet also added artificial full
occlusions by deleting contributions of one cameslting in a 94.7% sensitivity and
100% specificity with 3 cameras, and 100% sensytiand specificity with 4+ cameras.
The 3 cameras’ result improved with full occlusianger no occlusions because 1/3 of
the time the camera that caused the misclassditatias excluded. With eight cameras,
Auvinet's algorithm ran at 0.34 frames per secdfflS) on a 2.4Ghz Xeon processor,
meaning one camera would run at 2.68 FPS. Auvioet¢larated his algorithm with a

GPU implementation that improved to 9.5 FPS fohe@ameras.



1.3 COMMON TERMS USED IN THIS DISSERTATION

Video-based fall detection algorithms often usegntbving-region in the video as a
predictor for a person. Ainimum bounding rectangle, or MBR, is often fit around the
moving-region.

We report accuracy as two numbesansitivity andspecificity. Sensitivity is the ratio
of correct fall detections over actual falls, ef@3 falls were correctly detected but there
were 25 total falls, then sensitivity was 23/25 .92 Specificity is the ratio of correct
non-fall reports over actual non-falls, e.g., ifi@@n-falls were reported but there were 25

non-falls, then specificity was 24/25 = 0.96.



Chapter 2. ACCURATE AND EFFICIENT CAMERA -

BASED FALL DETECTION USING M OVING -REGIONS

2.1 INTRODUCTION TO MOVING -REGION-BASED

FALL DETECTION

A fall is characterized by a person beginning witdrmal behaviors, such as sitting
or walking, followed by the person rapidly descewgdihen laying on the ground for an
extended period of time. A fall can be describea &isne-ordered sequence of behaviors
or events. State machines (SMs), widely used inalligircuit design and increasingly in
software design, excel at describing time-orddreldaviors. Additionally, SMs promote
the capturing of specific, modular behaviors. Thedoar behaviors allow for a plug-
and-play framework for fall detection. Therefores wsed state machines to describe the
fall detection method presented in this chaptethinfuture work section of this chapter,
we discuss expansions on the state machine model.

As shown in Figure 2-1, our method uses multiplled@tectors that contribute to the
final decision of whether a fall has occurred, ,ecgmera 1 and 2 both feed their own
height-based and width-based fall detectors. Eah detector contributes a fall
likelihood score. The method combines the fall lilk@od scores to produce a single
camera’'s combined fall score. Multiple cameras lmarcombined to produce a single

multi-camera fall score.



Height-based | _ Fall likelihood
/ fall detector score (height)

MBR
Camera 1 -+ tracker -'\

H Single-camera
fall score

Width-based | _ Fall likelihood
fall detector score (width)

~ Multi-camera
fall score

MBR L= Single-camera

Camera N = 1over [ tRd fall score

Figure 2-1: Each camera has multiple SM-based fafletectors that produce a fall likelihood
score, which can be combined to produce a single+oara fall score, and further combined to a multi-

camera fall score.

2.2 RECORDINGS

We used two data sets to evaluate our fall deteciigorithm: the University of
Montreal (U of M) video data set [5] and our owoarlings.

The U of M data set included 24 recordings withaéheras each running at 30 FPS
with 720x480 pixel resolution. Each recording habkrgth between 52 seconds and 3

minutes. Figure 2-2 shows a moment in one recorilorg each camera's perspective.



Figure 2-2: Same moment captured from each camerd the University of Montreal video data

set [5]. Camera's numbered 1-8 from left-to-right {irst row: 1 2).

Figure 2-3: Floor plan of our in-home environment ncluding the position and direction of the

(a) main camera and (b) supplementary camera. (Flaglan created with http://floorplanner.com)
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Our recordings took place at a UC Riverside lalmoyain-home environment, shown
in Figure 2-3. Two cameras recorded at 15 frames@eond at a resolution of 352x240
pixels. The cameras came from a popular in-homan8eta monitoring set made by Q-
See and sold by Costco for around $400. The camnares positioned and had a viewing
direction as shown in Figure 2-3. The cameras {88tm above the floor.

Our recordings included 1 male actor, age 27, frrécordings. The recordings
contained 35 falls, including standing, trippingdaslipping falls described in [48], and
34 non-falls, including walking, watching TV, antkaning. Each recording was one
minute long, starting the first 5 seconds withdw factor so that the MBR tracking
algorithm could learn the background. The fallsusoed between 7 and 37 seconds into
the video.

Of the 35 fall recordings, we recorded 10 fallshwmdnly the main camera. We
recorded the other 25 falls with both the main anpplemental camera. Of the 34 non-
fall recordings, we recorded 12 non-falls with otie main camera. We recorded the

other 24 non-falls with both the main and suppletaletamera.

2.3 MBR TRACKER

The MBR tracker performs foregrounding, or foregrdtdbackground segmentation,
which is the splitting of moving objects in a videdoreground from the video’s static
background. Typical moving objects in a home arepfee especially in the home of a
live-alone elderly person being monitored for falldany algorithms for accurate

foreground-background segmentation exist [36][S8][&uch algorithms typically detect
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non-changing portions of an image as representiggimage background, and then
subtract the background image from video framass thaving only the moving objects.
We used the established foregrounding algorithnZilsiovic [63] (implemented in
OpenCV 2.2.0 library [43] as BackgroundSubtractoi®®) to extract a foreground
image, shown in Figure 2-4(c). Using the outpuefpound image, we developed an
algorithm [22] to place an MBR around the largesiving object in the foreground
image, as shown in Figure 2-4 (d). The MBR traciksedesigned to track only one

moving object, as would be common in an elderlg{alone home.

(@) (b) (€) (d)

Figure 2-4: Foregrounding via foreground-background segmentatio takes as input (a) a background

image and (b) a video frame, and outputs (c) a fogeound. (d) An MBR is fit around the foreground.

2.4 HEIGHT-BASED FALL DETECTOR

This section describes one of our MBR-based fatea®n methods, based on
height. The height-based fall detector, shown guFe 2-5 uses the height of the MBR
to detect falls with 4 state machines (SMs): suggktall event, orientation, OK-to-lay,
and fall sense. The period of each SM is the sasnéha frames per second of the

recording. The suspected fall event SM uses thghhedf the MBR to calculate a
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suspected fall score that grows proportional toahmmunt and speed of the increase in
the height of the MBR. The orientation SM useslibght-to-width ratio of the MBR to
determine whether the person is off-screen, sittstgnding, or laying. The OK-to-lay
regions SM is preloaded with a list of regionshe video that are considered safe to lay
on, such as a couch. The fall sense SM producedl &kelihood score based on the
maximum suspected fall score and the amount of tiragoerson remains laying in a not
safe region.

The training videos used to develop the state mashand thresholds included 9
falls and 5 non-falls from our recordings. The fdtordings included falling from a
standing position by tripping, slipping, and loagiconsciousness, and backwards,
forwards, and rightwards, falling while sittinganchair, falling while reaching for a lamp
from the couch, and falling while cleaning. The fialls recordings included a couch
nap, reading on the couch, walking around the rodegning the room, and watching

TV.
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Height-based fall detector
Suspected - Sus. fall
fall event score
Fall
MBR b Sit/stand/lay Fall sense | likelihood
tracker score
OK to lay?
Orientation /
(sit,stand, oK t_o lay
lay) regions

Figure 2-5: Height-based fall detector that includes 4 state nwhines, uses the MBR from the MBR

tracker, and outputs a fall likelihood score.

2.4.1. SUSPECTED FALL EVENT STATE M ACHINE

The suspected fall event SM, shown in Figure 2Zr@jntains a four second buffer of
the height of the MBR and the time of the MBR sanmgpl The buffer is ordered with the
oldest sample at the front and newest sample didble. The SM initially fills the buffer
then transitions to the "check for fall" state.

If the height of MBR element in the buffer is manan 1.0 times the oldest height of
MBR in the buffer (indicating a fall), then the Sk&nsitions to the "suspected fall event
detected" state. Otherwise, the SM transitionbéd'theck for fall" state.

The "fill buffer" and "check for fall* states outpa suspected fall score of 0. The

"suspected fall event detected"” state outputs estsd fall score of 2.
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Suspected fall event

other

buffer full

Height-of-MBR
decreases rapidly

Suspected
fall event
detected

Height-of-MBR
decreases rapidly

Figure 2-6: Suspected fall event SM checks for falls by lookinfpr large decreases in the height of the

MBR.

2.4.2. ORIENTATION STATE MACHINE

The orientation SM uses the height and width of &R to output whether the
person is in one of four states: off-screen, stapdsitting, or laying. The person is said
to be off-screen if the width or height of the MBRRO pixels. Otherwise, if the height-to-
width ratio exceeds 1.75, the person is said tethading. Otherwise, if the height-to-
width ratio exceeds 0.9, the person is said tatbag Otherwise, the person is said to be
laying. The height-to-width ratio thresholds of 3.And 0.9 were determined by
observing the actor's ratios in the training recagg when the actor was standing, sitting,

and laying.
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2.4.3. OK-T O-LAY REGION STATE M ACHINE

The OK-to-lay region SM determines whether the gens laying in a safe place,
such as a couch, bed, or chair. The SM contairsd aflregions that are safe to lay down.
The list was created during setup by manually agldinectangular box around the couch
in our recordings.

The OK-to-lay region SM has three states: not-lgyisafe-laying, and not-safe-
laying. The SM takes as input the MBR and the dutduthe orientation SM. If the
orientation SM outputs that the person is not lgyithen the OK-to-lay region SM
transitions to the not-laying state. Otherwisepriie of the OK-to-lay regions contains
90% of the MBR, then the SM transitions to the dafgeng state. Otherwise, the SM
transitions to the not-safe-laying state.

The OK-to-lay region SM outputs true only whenhe safe-laying state. Otherwise,

the SM outputs false.

2.4.4. FALL SENSE STATE MACHINE

A fall includes a suspected fall event followed dyperiod of laying down in an
unsafe region. The fall sense SM, shown in Figure takes input from the suspected fall
event SM, orientation SM, and OK-to-lay regions SMe fall sense SM outputs a fall
likelihood score as a positive value or 0. The darpe score, the more likely that a fall

occurred. A score of 0 means that a fall did nauoc
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other

Person
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screen

Not on
screen

not on screen

not
laying or

not on screen

on screen
and laying
and lok-to-lay

Suspected
fall

Figure 2-7: Fall sense SM outputs a fall likelihood score basesh the maximum suspected fall score since

transitioning to the "suspected fall" state and thelength of time the person remains laying down in aot ok-to-
lay region.

The fall sense SM initializes in the "not on screstate. If the orientation SM is not

in the "not on screen” state, then the fall seridetri@nsitions to the "person on screen”

state. Otherwise, the fall sense SM transitiortéd'not on screen” state.
If the orientation SM is in the "not on screen'tstdhen the "person on screen" state

transitions to the "not on screen" state. Otherwiisthe suspected fall score exceeds 0,

then the "person on screen” state transitionsdd'shspected fall" state. Otherwise, the

"person on screen” state transitions to itself.
The "suspected fall" state transitions to "not oresn" state if the orientation SM is

in the "not on screen state”. Otherwise, if themation SM is not in the "laying" state or

the OK-to-lay region SM outputs true, then the pmeted fall* state transitions to the

"person on screen”. Otherwise, the "suspectedstdte transitions to itself.
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The fall likelihood score is 0 when in the "not screen” and "person on screen”
states. The "suspected fall" state maintains a mamxi-seen suspected fall event score
that is set to O when the "suspected fall" statefisThe maximum-seen score divided by
one-fifth the sample rate of MBR is added to tHeliieelihood score once per period. A

fall likelihood score can reach 100 in no fastemtl2 seconds.
2.5 HEIGHT AND WIDTH -BASED FALL DETECTORS

This section describes an improvement to our metihadl uses both height and
width. A weakness of height-based fall detectionuss when the fall occurs from the
sitting position because the height does not dsereapidly. However, the width may
increase rapidly.

As shown in Figure 2-8, we added width-based faledtion to the height-based fall
detection (shown in Figure 2-5). The orientationd &K-to-lay regions SMs used in the
width-based fall detector are identical to the SMsd in the height-based fall detector.
The width-based fall detector has modified suspkétdl event and fall sense SMs.
Lastly, the fall likelihood scores for height anddtth are averaged to produce a single-

camera fall score.
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Height-based fall detector e

Width-based fall detector
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Figure 2-8: Height and width-based fall detectors for a singleamera. The fall likelihood for height and

width are averaged to produce a single-camera fadicore.

2.5.1. SUSPECTED FALL EVENT STATE MACHINE (WIDTH)

The suspected fall event SM (width) has the sanfmitien as the suspected fall
event SM (height) described in Section 0, except khffer contains width of MBR
instead of height of MBR, and the threshold valaes tuned for width-based fall
detection.

If the newest width of MBR in the buffer is moreath1.5 times the oldest width of
MBR in the buffer (indicating a fall), then the Sik&nsitions to the "fall event detected"
state. Otherwise, the SM transitions to the "chieckfall* state. The "fill buffer" and
"check for fall" states output a suspected fallreoof 0. The "fall event detected" state
outputs a suspected fall score of 2. A suspectéddare (width) of 2 was used, instead

of up to 10 like with the suspected fall score ¢h¢), because the suspected fall event
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SM (width) often confuses bending down or leaningrowith a fall. The lower value
causes a slower growth potential (up to 5 timesvatd of the fall likelihood score

(width) than the fall likelihood score (height).

2.5.2. FALL SENSE STATE MACHINE (WIDTH)

The fall sense SM (width) has the same definitisnttee fall sense SM (height),
shown in Figure 7, except that fall sense SM (widéplaces input from suspected fall
score (height) with input from suspected fall scénedth). Also, the output is fall

likelihood score (width).

2.5.3. SINGLE -CAMERA FALL STATE MACHINE

The single-camera fall SM averages the fall liketiti scores from the height and
width-based fall sense SMs. The effect of averagsmghat when the fall detectors
disagree, then twice the length of time must pasferb a fall can be declared. For
example, we may assume that a single-camera fai sf 100 is needed to declare that a
fall has occurred. If only one of the fall sense sSigl outputting a fall likelihood score
above 0, then the single-camera fall score willnegtwice the length of time to declare
a fall to have occurred. However, if both the heigihd width fall sense SMs are
outputting fall likelihood scores above 0, then #ivegle-camera fall score will reach 100

in about the same amount of time that either fliadllihood score would reach 100.
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2.5.4. EXTENDING TO MULTI-CAMERA FALL DETECTION

The multi-camera fall detection, shown in Figur®,2averages the outputs of the
single camera fall detection, which could be thaglsi-camera fall score described in
Section 2.5.3 or the fall likelihood score desatilde Section 2.4. The multi-camera fall
SM averages the single-camera fall score for casnerth an MBR (indicating that a

person is on screen). The average is output antitecamera fall score.

Multi-camera fall detection

Single-camera

MBR Height and / fall score
Camera 1 tracker ] Width-based \
fall detectors Onccreer?

Multi-camera Multi-camera
fall fall score
On screen?
. Height and /
Camera N wracker [] Width-based
il fall detectors \ Single-camera
fall score

Figure 2-9: Each camera contributes a single-camera fall scor@he single-camera fall scores of cameras

with an MBR (indicating person on screen) are averged to produce a multi-camera fall score.

2.6 EVALUATION OF OUR FALL DETECTORS

2.6.1. FALL DETECTION ACCURACY

We evaluated the accuracy of our fall detectiororlgm on the recordings on the

University of Montreal video data set [5].

20



We required our algorithm's multi-camera fall sctareneet or exceed 100 to declare
that a fall had occurred. If only a single cameeswsed, then the multi-camera fall score
reflected that camera's single-camera fall score.

Hung's [32], Auvinet's [4], and Rougier's [52] falletection algorithms were
evaluated on the University of Montreal video dsga All three algorithms required the
person to remain on the floor for at least 5 sesafter the fall in order to determine that
a fall had occurred. The problem is that the adidmot remain on the floor for at least 5
seconds after some falls. The researcher's solwamto extend the last frame until 5
seconds after the fall. We employed the same tqalerextending the last frame until our
fall detector decided whether a fall had occuri@te recording ending within 5 seconds
of the fall does not allow for additional confoungievents, such as the person getting
back up or moving on the ground. However, the datavas sufficient to get a sense of
our fall detection algorithm's performance and twmpare to other fall detection
algorithms on a common data set.

We excluded cameras 4 and 5 from the evaluatioausecthe MBR of the person
standing and laying are nearly the same. Theseanteras were on opposite sides of the
room, viewing the long direction of the room, whislas 9.0m. The actor typically fell
toward/away from these cameras. Future work isnfarove our orientation SM to better
handle falls toward/away from the camera, perhapsiding information provided by
each camera.

We excluded recordings 23 and 24, as did Auvireegseriments [4], because those

videos had other moving objects that cause the MB&ker to fail to track the person. In
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these recordings, the actor moved various inanirahjects, including boxes, a jacket,
brooms, and trash bins, which confused the MBRk&®adto the extent that nearly the
entire room was included in the MBR. Future workasmprove our MBR tracker (more
details in Section 0). To see if excluding suchninaate objects would improve our
method, we performed human-assisted MBR extradtiothe chair fall recordings from

our recordings, which then yielded perfect fall ed¢on for height and width fall

detectors.

We developed the state machines and thresholdsilukssdn Sections 2.4 and 2.5
using our video recordings. To account for changesamera position and angle between
our recordings and the University of Montreal'sorelings, we re-trained the orientation
SM's sit-lay threshold using recording number Sogem arbitrarily) for each camera of
the University of Montreal video data set. The moetlof training was to select the
smallest threshold (to the tenths place) that glderfect sensitivity and specificity. We
tested on the remaining 21 recordings of the Usityeiof Montreal data set. For multi-
cameras, we evaluated all combinations of cameras.

The OK-to-lay SMs were not used during the evatumatWe would expect adding
the OK-to-lay SMs to improve the specificity in segios in which the actor sits or lays

on a couch but is determined to have fallen.
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# of cameras| Our method| Hung [32]| Auvinet[4]| Rougier [51] | Anderson [3] | Miaou [39] | Thome [57]
1 0.960 - - 0.955 - 0.900 0.820
2 0.990 0.958 - - 1.000 - 0.980
3 0.998 - 0.806 - - - -
4 1.000 - 0.997 - - - -
5 1.000 - 0.999 - - - -
6 1.000 - 1.000 - - - -
7 - - 1.000 - - - -
8 - - 1.000 - - - -

Table 2-1: Fall detection sensitivity comparing our method to the state-of-the-art videdoased fall

detection algorithms. A dash (-) means unreportedranot applicable, such as Hung's algorithm that use exactly

two cameras.

# of cameras| Our method| Hung [32]| Auvinet[4]| Rougier [51] | Anderson [3] | Miaou [39] | Thome [57]
1 0.995 - - 0.964 - 0.860 0.980
2 1.000 1.000 - - 0.938 - 1.000
3 1.000 - 1.000 - - - -
4 0.995 - 0.998 - - - -
5 0.993 - 1.000 - - - -
6 1.000 - 1.000 - - - -
7 - - 1.000 - - - -
8 - - 1.000 - - - -

Table 2-2: Fall detection specificity comparing our method to the state-of-the-art videdoased fall

detection algorithms. A dash (-) means unreportedranot applicable, such as Hung's algorithm that use exactly

two cameras.

Hung's algorithm [32] required two orthogonal caaseand used camera 2 and

camera 5 of the University of Montreal video datt suvinet's algorithm [4] required 3

or more cameras. Anderson's algorithm [3] requiveal cameras. Anderson [3], Miaou

[39], and Thome [57] did not evaluate using theudrsity of Montreal video data set,

instead each used his own recordings.

Table 2-1 shows the fall detection sensitivity, gaming our algorithm to the state-

of-the-art video-based fall detection algorithmair @lgorithm outperformed the other

algorithms for one, three, four, and five cameFas.two cameras, Anderson's algorithm
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achieved perfect 1.000 sensitivity, while ours aghd 0.990. For six cameras, both our
and Auvinet's algorithm achieved 1.000 sensitivity.

Table 2-2 shows the fall detection specificity, gamng our algorithm to the state-
of-the-art fall detection algorithms. For a singlamera, our algorithm outperformed
Miaou's and Thome's algorithms. For two cameras atgorithm, Hung's, and Thome's
algorithm achieved a perfect 1.000 specificity. @uathod matched Auvinet's method for
3 and 6 cameras with perfect specificity but penfed worse by less than 0.008 for 4 and
5 cameras.

The performance of each algorithm may be due ihtpathat algorithm's coverage
of a fall's typical time-ordered behaviors, inchglisuspecting a fall, waiting to see
whether the person is OK or got up, then after>dereled period of time notifying the
caregiver. As shown in Table 2-3, the state-ofdaltemethods are missing one or more of
the time-ordered behaviors, whereas our methodudiesl each of the time-ordered
behaviors.

We also evaluated the accuracy of our fall detecagorithm on our recordings
described in Section 2.2. We developed the statehimaes described in Sections 2.4
using the training data described in the recordisgction. The accuracy was 1.000 for

sensitivity and specificity when using either 12orameras.

Time-ordered Our Hung [32] | Auvinet [4] Rougier Anderson | Miaou [39] Thome
behaviors method [51] [3] [57]
Suspected fall V4 V4
Orientation V4 V4 V4 V4 V4 Vi V4
Fall sense V4 V4 Ve Ve Ve

Table 2-3: Time-ordered behaviors by fall detectioralgorithm. Our method includes each time-

ordered behavior, whereas the state-of-the-art metids are missing one or more behavior.
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2.6.2. FALL DETECTION EFFICIENCY

We evaluated computational efficiency of our MBRcker by determining the
processing rate in frames per second (FPS) witltutheersity of Montreal video data set
[5], which recorded at 30 FPS. The evaluation idetlicamera 1 and all 24 recordings.
We ran the evaluation 10 times, calculating themaaad standard deviation of FPS. The
computer used during evaluation had a 3.30 GHZ ké®n processor with 8GB of
memory and ran 64-bit Windows 7. Our MBR trackerswan single-threaded and
achieved an average of 32.1 FPS with 0.1 FPS sta@aiation, which is comparable to
other MBR-based fall detection algorithms, suchHasg's algorithm running in real-
time [32].

Recently, Rougier has shown that 3D head traclshgwn in Figure 1(a), can be
used to predict falls [49][51], but at the highd?P cost of 7.7 frames per second (FPS)
[49]. Also, Auvinet's 3D human tracking algorithranrat 2.7 FPS per camera with a
2.4Ghz Xeon processor. Since Avuinet's algorithms wan on a lower frequency
processor than ours, we can somewhat compensageti@mance by multiplying his
evaluated FPS by (3.3/2.4), or 1.375, to yield djusted FPS of 3.7 FPS. Although the
adjusted FPS is an estimate of projection-basédiéaéction efficiency, the projection-
based efficiency is still about 10x slower than MB&sed fall detection efficiency.

More than 99.9% of our run-time was spent on ju®RMtracking. In contrast,
Auvinet's algorithm [4] spent more time computingjpction than MBR tracking as

evidenced by an increase from 0.88 FPS, when bd@R Macking and projection were
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run on the CPU, to 10.2 FPS, when the projectios maved to a GPU implementation

but MBR tracking remained on CPU.

2.6.3. TRADE-OFF BETWEEN FALL DETECTION ACCURACY

AND EFFICIENCY

We analyzed the trade-off between fall detectiocueacy, using a combined
accuracy score, and efficiency, using frames peorse processing rate, on our method
and the state-of-the-art methods. The combined racguscore is the sensitivity
multiplied by the specificity.

We assume the efficiency of the other MBR-basedhou= by Hung [32], Miaou
[39], and Thome [57] were equivalent to our methbdcause those methods
computationally were not significantly differenbm ours, and the MBR tracking was
99.9% of our run-time, as discussed in Section22.8uvinet's method [4] achieves
approximately 3.7 FPS per camera as discussedctin8&.6.2. Rougier [51] stated that
her algorithm "can run in real time at 5 frameskgit likely executes closer to 15 FPS
because her method uses MBR tracking along withodriam analysis and shape
analysis, in which MBR tracking is likely as comatibnally expensive as histogram
analysis plus shape analysis. Anderson evaluatedhbthod [3] using 3 FPS video but
does not discuss computational expenses. Anderalggsthm included MBR tracking
and voxel intersection, which were likely the mosmputationally expensive aspects of

his fall detection algorithm, with MBR tracking e twice as expensive as voxel
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intersection; therefore, we assume Anderson's ithgorwould execute at 22.5 FPS per
camera.

Figure 2-10 shows the trade-off between the contbaueuracy score and efficiency
when a single camera is used. The trade-off indudlestate-of-the-art methods that with
reported results for single camera fall detectionuaacy. Figure 2-11 shows for two
camera used, Figure 2-12 for 3 camera use, andd=&33 for four camera use. For both
metrics of accuracy and efficiency, a higher sasreetter, thus being closer to the top-

right of the graph is better. Our method was clb&ethe top-right in each figure.

Methods using single camera
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©
5 30
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o 20 Our method
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w15 Rougier
> .
2 10 Miaou
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é 5 Thome
w

0

0 0.2 0.4 0.6 0.8 1

Combined accuracy score

Figure 2-10: The accuracy and efficiency trade-offbetween method's with reported results for
performing fall detection using a single camera. Hjher is better; close to top-right is best; therefie,

our method is best for single camera use.
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Methods using two cameras
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Figure 2-11: Two camera trade-off between accuracgnd efficiency. Higher is better; close to

top-right is best; therefore, our method is best fotwo camera use.

Methods using three cameras
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Figure 2-12: Three camera trade-off between accurgcand efficiency. Higher is better; close to

top-right is best; therefore, our method is best fothree camera use.
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Methods using four or more cameras
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Figure 2-13: Four or more camera trade-off betweemccuracy and efficiency. Higher is better;

close to top-right is best; therefore, our methods best for four camera use.

2.7 FUTURE WORK

We plan to develop a video data set that includes-fall confounding events, such
as moving on the floor and getting back up. Addisldy, we plan to include events that
do not include falls that appear to be falls, sastthecking under the couch.

The MBR tracker we used was designed to track onk moving object and gets
confused when multiple moving objects are on sgreaoh as a person and a chair. We
plan to find or develop an MBR tracker that cancdminate between people and
inanimate objects. Even better would be to finddevelop an MBR tracker that only
tracks an intended person.

Each suspected fall event SM's fall likelihood scoould be based on the severity of

the fall in terms of length of fall and distancdlda. More severe falls would generate
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larger fall likelihood scores, reducing the duratim wait between suspected fall and
declaring a fall had occurred.

The threshold values for the suspected fall evernt arientation SMs could be
learned based on the camera angle and positiongapemwith a person initially walking
onto screen to give an example of sit, stand, agdAdditionally, different body types
may require different threshold values, so a metfmdmodifying the thresholds to
personalize should be investigated.

One such method for automatically training thredbak to convert the orientation
and suspected fall event SMs into HMMs. The adwgmtaould be a statistical model
that can be trained with ground truth data for ddbtiV.

The Ok-to-lay region list could be improved by autdically recognizing safe to lay
regions using object recognition software. Furthaen the list could be dynamically
updated to account for room re-arranging.

Cameras with programmable processors are commigrenailable [6]. The non-
MBR tracking state machines could be executed single, low-power microcontroller.
The MBR tracking algorithm contains many parallghle calculations, particularly in
loops scanning over each pixel in an image, fomgta, Auvinet [4] accelerated his

MBR tracking algorithm with a GPU, achieving an mage speed-up of 29.3%.
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2.8 CONCLUSION ON ACCURACY AND EFFICIENCY

OF M OVING -REGION-BASED FALL DETECTION

Our fall detection algorithm was more accurate tbdrer MBR-based algorithms,
while being equally efficient. Also, our algorithmas an order of magnitude more
efficient than projection-based algorithms, whikrfy more accurate with 3 cameras and
equally accurate with 4+ cameras. We evaluatedalmarithm using the commonly used
video data set from Univ. of Montreal. A single-cama achieved 0.960 sensitivity and
0.995 specificity, while 2 or more cameras achie@@90 or better sensitivity and
specificity. Our algorithm ran at 32.08 FPS for aranera while single-threaded on a

3.30 GHz Xeon processor.
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Chapter 3. VIDEO-BASED FALL DETECTION
EFFICACY: 3D HEAD TRACKING, 2D HEAD

TRACKING, AND MOVING -REGION TRACKING

3.1 INTRODUCTION TO HEAD TRACKING AND

M OVING -REGION FALL DETECTION

Video-based fall detection algorithms typically ube MBR around the moving-
region, shown in Figure 1(b), to predict falls [I{][31][39][52][57][58]. Recently,
Rougier has shown that 3D head tracking, shownignrE 1(a), can be used to predict
falls [49][51], but at the higher frames per secdRBS) of 7.7 [49], as opposed to 32.1
FPS with MBR (see Section 3.5.4).

This chapter compares the fall detection efficatW®8R, 2D head, and 3D head
tracking. Figure 3-1 shows the same picture sequefchead tracking and MBR
tracking. This chapter's experiments include usimanual 2D and 3D head-tracking on
87 recordings, including confounding and non-confiing, fall and non-fall scenarios to
determine the improved fall detection accuracy tredd tracking's extra computational

cost might provide.
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(b)

Figure 3-1: Picture sequence showing fall with (a) head trackim and the same fall with (b) moving-region

tracking.

3.2 RECORDINGS

Our recordings [25] took place at a UC Riversideolatory in-home environment,
and include video, 2D head tracking, 3D head tragkand moving-region tracking data.
A camera recorded at 15 frames per second at dutiesoof 352x240 pixels. The
cameras are shown in Figure 2-3. The cameras camed popular in-home 8-camera
monitoring set made by Q-See and sold by Costcafound $400. The cameras were
positioned and had a viewing direction as showRigure 3-1. The cameras were 182cm
above the floor.

Each recording had a length of one minute, stariegfirst 5 seconds without the

actor so that the MBR tracking algorithm could teéine background. The recordings
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included 1 male actor, age 27. The falls occurretiveen 7 and 37 seconds into the
recording.

We collected 87 recordings. 18 recordings contacmdounding scenarios (5 fall,
13 non-fall), while 69 contained non-confoundingersarios (35 fall, 34 non-fall). A
confounding scenario was typically harder for thk dletectors to correctly classify the
recording, such as looking under the couch for @pled item or falling next to an
upright vacuum that was just used. Non-confoundiognarios include standing falls,
tripping falls, and slipping falls described in Ras paper [46], as well as walking,
watching TV, and cleaning.

Fourteen non-confounding recordings (9 falls ambb-falls) were used for training
the state machines and thresholds described inioBe&4. The remaining non-

confounding and all confounding recordings werealuse testing in this chapter.

3.3 HEAD AND M OVING -REGION TRACKING

We developed manual 2D head tracking software ithd?y The software would
display a frame, wait for the user to click on freame, then display the next frame. The
location of the click (as a pixel value) on thenfimwas stored, along with the frame's
time position in the recording. The software digpth 15 frames per 1 second of
recording. The manual head tracking was performga lvesearch assistant who was
instructed to continuously click on the centerha tictor's head.

Similarly, we developed manual 3D head trackindveaife in Python. The software

would display a frame from the video along with éltical head height options and a
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no-actor present option. Each vertical head heggtion was a picture of the actor,
ranging from the actor's head being 6 inches (datong on the ground) to 80.25 inches
(actor jumping upward) from the ground. When aigalthead height or no-actor present
option was selected, the software would show the frame. The manual vertical head
height tracking was performed by a research assistho was instructed to select the
option that best matched the current frame.

The MBR tracker is discussed in Section 2.3.

3.4 HEAD-BASED FALL DETECTOR

The 2D head-based fall detector uses the pixel-value of the vertical position loé t
head to detect falls with 4 state machines (SMspscted fall event, orientation, OK-to-
lay, and fall sense. The 2d head-based fall dateciusists of the same SMs described in
Section 2.4, except that the suspected fall evbhtSes the vertical position of the head
to calculate a suspected fall score that growsgotmmal to the amount and speed of the
increase in the vertical position of the head. Headking commonly uses the moving-
region as a feature [49][51], so we use the MBRas of 2D head-based fall detection.

The state machines and thresholds were trained thgh 14 non-confounding
recordings described in Section 3.2. The fall rdocws included falling from a standing
position by tripping, slipping, and loosing cons@aess, and backwards, forwards, and
rightwards, falling while sitting in a chair, fally while reaching for a lamp from the
couch, and falling while cleaning. The non-fallsorlings included a couch nap, reading

on the couch, walking around the room, cleaningtloen, and watching TV.
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The suspected fall event SM, similar to Figure 2liffers in that a fall is suspected
when the newest element in the buffer is greatam tr equal to 100 (indicating the head
is near the floor). The value of 100 indicatingtttree head is near the floor was decided
by choosing the vertical position in the frame thats approximately 1/3 of a meter
above the floor where the floor meets the wallhe far side of the room. The "fill
buffer" and "check for fall" states output a suspddall score of 0. The "suspected fall

event detected" state outputs a suspected fak sfd?.

3.4.1. 3D HEAD-BASED FALL DETECTOR

The 3D-based fall detector takes input from the 3D vertical head height teacland
contains the same 4 state machines as the 2D lasad-fall detector, with modifications
to the suspected fall event SM. The suspectedefaht SM's buffer stores the vertical
head height in inches. The newest vertical heaghheialue in the buffer must be less
than 15 inches, also the newest and oldest vettieatl heights in the buffer must not

have the no-actor present option (meaning, the attist be present on the screen).

3.4.2. MOVING -REGION-BASED FALL DETECTORS

The top of the MBR can be considered an approxonabf head tracking because
the head of the person tends to be at the top @fMBR. The MBR-top-based fall
detector takes input from the MBR tracker, instead of tleadhtracker, and contains the
same 4 state machines as the 2D head-based falit@ietwith modifications to the

suspected fall event SM. The suspected fall evitis Buffer stores the top of the MBR
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values. The newest top of MBR value in the buffeistrexceed 1.3 times the value of the
oldest.

The MBR-height-based fall detector takes input from the MBR tracker, instead of
the head tracker, and contains the same 4 statbimeacas the 2D head-based fall
detector, with modifications to the suspected &lent SM. The suspected fall event
SM's buffer stores the height of the MBR valuese Tiewest height of MBR value in the
buffer must exceed 0.9 times the value of the ¢ldes

The MBR-width-based fall detector takes input from the MBR tracker, instead of the
head tracker, and contains the same 4 state macasmthe 2D head-based fall detector,
with modifications to the suspected fall event SlMe suspected fall event SM's buffer
stores the width of the MBR values. The newest vt MBR value in the buffer must

exceed the value of the oldest.

3.5 EVALUATION OF HEAD AND M OVING -REGION

FALL DETECTORS

We evaluated the accuracy of head and MBR-baskddtdctors. We used the state
machines and thresholds described in Section 5 whesé trained with our training
recordings.

If only a single fall detector was used, then wquieed that fall detector's fall
likelihood score to meet or exceed 100 to be dedlarfall. If one camera with multiple

fall detectors were used, then we required thatcEinhera's single-camera fall score to
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meet or exceed 100. If multiple cameras were u$eah, the multi-camera fall score was

required to meet or exceed 100.

3.5.1. FALL DETECTION ACCURACY ON NON-

CONFOUNDING SCENARIOS

We evaluated the accuracy of 2D head, 3D head M#Bid fall detectors with our
recordings of non-confounding scenarios. The narfaxanding scenarios included
standing falls, tripping falls, and slipping faliiescribed in Rantz's paper [16] (which
included the suggestions from an experienced nimssder-person care), as well as
walking, watching TV, and cleaning.

The 2D head, 3D head, and MBR-based fall detectors each achieved 1.00 sensitivity
and 1.00 specificity. Thus indicating that the MBR-based fall detectams sufficient for

fall detection, as well as, 3D head and 2D heddl&tkectors.

3.5.2. FALL DETECTION ACCURACY ON CONFOUNDING

SCENARIOS

The confounding scenarios are intended to findottbological differences between
the classification accuracy between the 3D headhe®dl, and MBR-based fall detectors.
The confounding scenarios are deliberately atypsmanarios in the attempt to find
pathological differences.

Table 3-1 shows the comparison between head-basb#MBR-based fall detector

accuracy with our confounding scenario recordird§®.head, 2D head, and MBR-based
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fall detectors achieved the same sensitivity of00®hereas the 3D head-based fall
detector had a 1.00 specificity, 2D head-basedaha®@5, and the MBR-based has a 0.54.
The difference in specificity between 3D head, 2adh and MBR-based fall detectors
was caused by the head-based fall detector knowatgthe head was not near the
ground.

Of the fall recordings, all fall detectors failemdorrectly classify "fall w/ vacuum 2"
as a fall because the orientation SM declared éingop to be sitting when the person was
actually laying. The MBR tracker contained thedalpberson and upright vacuum, which
gave an orientation that appears to be a persimgsiAlthough the respective suspected
fall event SM for 2D and 3D head-based fall detecsuspected a fall, the respective fall
sense SM decided a fall had not occurred becawserténtation SM declared that the
person was not laying. The same result was obsdovedp, height, and width of MBR.

The 3D head-based fall detector accurately claskiéill non-fall recordings. 2D
head and the MBR-based fall detectors misclassifteduch with box" and "kneel and
move chair". The "crouch with box" recording is toarlarly difficult because the
moving-region includes a large cardboard box amdaittor is kneeling while looking in
the box, hence the orientation SM outputs "layifJ50, the person's head is close to the
ground. For similar reasons, "kneel and move chea$ misclassified.

The 2D head detector correctly classified the remginon-fall recordings, whereas
the MBR-based fall detectors also misclassifietl ¢jaickly" and "sit then toss up item".
In both recordings, the orientation SM declared dbtor to be laying. The head-based

fall detectors did not misclassify these recordibgsause the head position/height was
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not near the ground. If the top-based fall detektmw the head was not on the ground,
then the top and 2D head-based fall detectors woaNe achieved the same accuracy.

The top-based detector misclassified "hands upndofen lay" because the actor's
arms horizontally extended caused the orientatiwht& declare the actor to be laying
and the top of the MBR decreased by more thanirh&st

The height and width-based detectors misclassisédhen hands to side" because
the orientation SM declared the MBR to be layingewtihe actor was sitting with his
arm's stretched horizontally. The top-based detalitbnot suspect a fall because the top
of the MBR did not decrease by 1.3 times.

Although the confounding scenarios consisted gbiatyl situations in the daily lives
of elderly persons, the scenarios helped idengfth@logical differences between the 3D
head, 2D head, and MBR-based fall detectors. Spaltyf, the 3D head and 2D head-
based fall detectors had the advantage of knowavgfar the head was from the ground,
which enabled a few non-fall scenarios to be ctiyedassified, whereas the MBR-

based fall detectors misclassified.
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Confounding scenarios - falls

Confounding scenario 3D Head 2D Head MBRtop  MBR height MBR width
Fall w/ vacuum 1 7 7 7 7 7
Fall w/ vacuum 2
Put book in shelf
Look under couch
Take picture off wall

‘\ ‘;\ "\
NN

XN
N
N

Confounding scenarios - non-falls

Confounding scenario 3D Head 2D Head MBRtop  MBR height MBR width

Crouch with box

Set cushion on couch :.’ 7 7 7 7
Sit quickly 7 7
Hands to side then sit 7 7 7 7 7
Sit then hands to side J J Ve
Hands up, down, then lay s J J J
Hands up, down, then sit 1 v v v Y, Y,
Hands up, down, thensit2 Vs Vs Vs Vs
Sit then hands up/down 7 7 7 7 7
Lay then toss up item 7 7 7 7 7
Sit then toss up item e e
Stand then toss up item 7 e e e e
Kneel and move chair 7
Confounding scenarios - accuracy summary
Sensitivity 0.80 0.80 0.80 0.80 0.80
Specificity 1.00 0.85 0.54 0.54 0.54

Table 3-1: Confounding scenarios comparison of 2Ddad, 3D head, top, height, and width-

based fall detector accuracy~ means correct.

3.5.3. ATTEMPTED |IMPROVEMENTS OF M OVING -REGION -

BASED FALL DETECTION

We evaluated whether the top of MBR could be usedetermine that the person
was not on the ground by modifying the top of MBRisspected fall event SM to
additional require that the newest element in thieb equal or exceed 100 (indicating
the top of MBR is on the floor), then re-evaluatetth the non-confounding and
confounding scenarios. The top of MBR's fall dededtill achieved perfect sensitivity
and specificity of 1.00 for the non-confoundingrsaeos. For the confounding scenarios,

the specificity increased to a perfect 1.00, whetba sensitivity decreased to 0.20. The
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same modification yielded the same results for hbgght and width-based MBR fall

detectors. The cause of the change with the codfagnscenarios accuracy is that the
MBR would encompass a non-person object, suchea®thof a vacuum or chair, which

was not near the floor. The trade-off between serigi and specificity means fewer

false alarms at the expense of more missed fahgzhvmay be beneficial for practical

applications, in which very few false alarms areegtable.

We evaluated whether including a supplemental camgositioned with an
orthogonal view of the room improved the MBR-bastdl detectors with the
confounding scenarios. A subset of the recordingscdbed in Section 3 also had
supplemental camera recordings and those recordirege used for this evaluation,
including 40 non-confounding scenario recordingd fall and 22 non-fall) and all 18
confounding scenario recordings (5 fall and 13 fail)-

Of the non-confounding scenarios, the top-baseldditiector achieved the same
perfect sensitivity and specificity of 1.00. Whesdhe width-based and height-based fall
detectors achieved the same 1.00 sensitivity, tlieaed the lower 0.91 specificity and
0.95 specificity, respectively.

Of the confounding scenarios, the top-based, hdighéd, and width-based fall
detectors achieved the higher 1.00 sensitivitytbetlower specificity of 0.23, 0.31, and
0.31, respectively. The sensitivity improved beeatle supplemental camera correctly
classified "fall w/ vacuum 2" as a fall. The suppkntal camera's orientation SM
determine the actor to be laying in "fall w/ vacudyy whereas the main camera's

orientation SM determined the actor to be sittifilge specificity decreased because the
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supplemental camera's orientation SM declared #msop to be laying in some of the

recording in which the main camera's orientation 8&tlared the person not to be

laying.
3.5.4. EVALUATION OF MBR TRACKER EFFICIENCY

We evaluated computational efficiency of our MBRcker, which is discussed in
detail in Section 2.6.2. The main point is that MIBR tracker's efficiency is an order-of-

magnitude more efficient than 3D models.

3.5.5. FUTURE WORK

Much of the future work is discussed in Section Additionally, future work will
investigate computationally efficient methods ofacking the head or other
computationally efficient mechanisms for detectfalis in confounding scenarios. The
trade-off between precision of head location amdelocomputation will be investigated.
Furthermore, future work needs to maintain a fooms classification accuracy as

automated head tracking is likely to be less thenfiggt tracking.

3.6 CONCLUSION OF THE EFFICcACY OF 3D HEAD
TRACKING, 2D HEAD TRACKING, AND M OVING -REGION

TRACKING

The key difference between the head and MBR-baakdiétectors was that the

head-based allowed a rule that the head had toedethe ground to be considered a
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potential fall, which prevented some confoundingndf@l recordings from being
classified as falls. The accuracy of MBR-based digtection matches the accuracy of
head-based fall detection for non-confounding seesavith perfect 1.00 sensitivity and
specificity. Head-based and MBR-based also hadvabpnt sensitivities of 0.75 for
confounding scenarios. However, the 3D head-baskdlétector had a specificity of
1.00, 2D head-based had 0.85, and MBR-based hdddr.sonfounding scenarios. The
difference in specificity was entirely caused bg tread-based fall detectors knowing the
head was not near the ground, whereas the MBR-afledetector did not know. Our
state machine-based algorithm with MBR data raB2al FPS for one camera while
single-threaded on a 3.30 GHz Xeon processor, appately 5-10x faster than 3D head
tracking algorithms with comparable fall detectamcuracy. MBR-based fall detection is
suitable for a variety of scenarios; however, wlnggher accuracy is necessary and
confounding situations are likely, the extra conagion cost of head-tracking may be
justified. We used manual head tracking in this kvtty determine an upper-bound.

Automatic head trackers may have lower accuracy.
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Chapter 4. ACCURATE AND EFFICIENT
ALGORITHMS THAT ADAPT TO PRIVACY -ENHANCED

VIDEO FOR |MPROVED ASSISTIVE M ONITORING

4.1 INTRODUCTION TO VIDEO-BASEDASSISTIVE

M ONITORING AND PRIVACY -ENHANCED VIDEO

In-home assistive monitoring uses technology sglsemsors and cameras to aid
live-alone aging persons, typically involving aution. A common monitoring goal,
for example, is to automatically detect that a pemnay have fallen and provide prompt
notification to caregivers. A different goal is aotomatically estimate a person’s daily
energy expenditure. Low expenditure is correlatéth wevelopment of dementia, with
falls, with depression, and other features, and tihetecting negative trends may help
caregivers introduce appropriate interventions.eDgoals include detecting other critical
situations such as a person not arising by a cemtarning time, staying in a room (such
as a bathroom or laundry) much longer than noriealing the house at night an not
returning within a time period, etc.

Body-worn sensors, household sensors, and camesys b@ used in assistive
monitoring, often in some combination. Video praieg on camera video does well in

achieving certain goals, with the benefit of nofjueing a person to wear anything
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special. However, video has the obvious drawbact#teafeased privacy. We previously
examined several video privacy-enhancements, ssidutmatically covering a person
by a box, that still enable some monitoring godlieeement. However, such privacy-
enhancements may degrade quality of the automatmdtaning. In this chapter, we
examine adaptive algorithm's ability to compendate privacy-enhanced video goal
performance, and describe the idea of creatingrighgos that automatically adapt

themselves based on the video being received toowvemuality.

4.2 BACKGROUND RELATED TO VIDEO-BASED

ASSISTIVE MONITORING

4.2.1. PRIVACY -ENHANCED VIDEO IN ASSISTIVE
M ONITORING

Privacy-enhanced video increases the sense ofgyrpp@servation over raw video
[18][24]. 15 participants, who were over the ag&5f surveyed by Demiris [18] felt that
the use of a camera for in-home assistive mongomas obtrusive, while "many
participants felt that [silhouetting] was more apgprate,” (numerical data was not
provided). In our earlier work [24], we surveyed83@articipants (average age of 20
years) with raw video, and privacy-enhanced videduding person covered by blur,
person replaced by silhouette, person covered Ileg foval, person covered by filled
rectangle, and person replaced by blue-outlineghngte with trailing arrows videos. The

effectiveness of each privacy enhancement was atetvo metrics: privacy score and
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sufficiency of privacy. The privacy score was basada 6-choice Likert scale for the
statement, "This [privacy enhancement] protectsn@pa’s privacy". Three videos were
shown for each privacy enhancement. The privacyescacross the three videos were
summed, giving a privacy score range from O (stipdgsagree) to 18 (strongly agree).
Raw's privacy score was 2.4, whereas other scoere:wlur 9.5, silhouette 11.6,
bounding-oval 14.0, bounding-box 15.5, and tradamgows 16.0. The sufficiency of
privacy was the percentage of participants whoaeded that a privacy enhancement
provided a sufficient amount of privacy vs. a idgignt amount of privacy. Only 2%
said that raw video provided sufficient privacy, esas other scores were: blur 23%,

silhouette 59%, bounding-oval 88%, bounding-box 9&f@ trailing-arrows 98%.

4.2.2. ASSISTIVE MONITORING

Commonly, only traditional sensors like motion sessand door sensors are used in
commercial assistive monitoring systems, to ded@cimalies and provide configurable
event-of-interest detection. BeClose [9] monitaaditional sensors for anomalies in
daily activities and notifies a caregiver in theeeof an anomaly. Motorola's Homesight
[41] is configured by the caregiver or a techniciardetect events of interest, such as a
person leaving home at night. A camera can be gordd to take a picture or record
video when an event of interest is detected bubisused as a sensor to detect events.
QuietCare [45] performs anomaly detection afterriesy typical patterns with motion
sensors that are placed throughout the home arfteadhe caregiver when an anomaly

is detected. SmartHome [54] and X10 [60] offer aietg of monitoring kits and
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products, such as an eight camera system with taéisessecurity and a programmable
thermostat.

Similar to commercial systems, academic assistieaitoring systems commonly
use traditional sensors to detect anomalies, veaitee also integrate camera monitoring
and provide programmable platforms. CASAS [47] perls anomaly detection on
sensors, such as motion and light sensors, byitgamormal behavior then detecting
salient events. The Gator Tech Smart House [30]aisensor platform that is
programmable for detecting events of interest @naalies. The types of sensors are vast,
including floor sensors, plug sensors, and smactaniaves; however, cameras are not
used to monitor the interior of the home due twgmy concerns [28]. We previously
developed the Monitoring and Notification Flow Laragie (MNFL) [23] that integrates
traditional sensors with cameras for assistive tooing. MNFL also provided users with
an easy to use and fast way to learn graphicalrgnogning for describing assistive
monitoring systems. Users connect graphical blackdescribe the intended monitoring
system. A graphical block could be a sensor (inolgdvideo), actuator, or single
function, such as OR-logic or a threshold.

Automated fall detection has been performed wittbody accelerometers [11], and
off-body sonar [38] and cameras [3][20][50]. Thecelerometers and sonars provide
high-levels of privacy in that the identity and sifie activity is not easily discernible.
Some camera-based solutions are privacy-enhancetl, & Anderson [3] that uses
extracted person-silhouettes to detect falls. Wevipusly developed a camera-based

solution [20] that allowed the user to choose amaaw video or 4 privacy

48



enhancements: person covered by blur, person explay silhouette, person covered by
filled oval, and person covered by filled rectangle

Commercial automated energy expenditure is typicadtimated by a device worn
around the upper arm, such as the BodyBugg [18ooly Media's armband [12]. These
devices cost about $100-$150 with $5-7 monthly suapons and estimate energy
expenditure using algorithms operating on data ftleendevice’s multiple sensors, which
include a tri-axial accelerometer, a heat flux sena galvanic skin response sensor, and
a skin temperature sensor. The first version ofBbdyBugg was compared to doubly
labeled water, which is the most tested and rediabtirect measurement of energy
expenditure method [53], for energy expenditurenedion and had on average 90%
accuracy [34]. In this chapter, we used the sedasslumedly more accurate) version of
the BodyBugg, to compare video-based energy expeedestimations with “actual”
numbers. Another common approach to energy expeedigstimation is to wear a
pedometer, which counts the number of steps takkhough costing as little as a few
dollars, pedometers are far less accurate for greeqgenditure estimation [16].

Researchers have estimated energy expenditurewdéo-based approaches. Yao
[61] used a body-worn camera attached to the uskits on the chest just below the
neck, to distinguish between walking and joggingrmasuring frame displacements, i.e.,
shifts in the video content. Yao's method was nadluated against other energy
estimation devices. In previous work, we [22] usedtationary camera to determine

energy expenditure by analyzing the moving regroraiv video.
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One of our previous works [21] demonstrated thataoly enhanced video can be as
accurate as raw video across many monitoring gdmissome privacy enhancements
experienced monitoring goal accuracy degradationpawed to raw video. This chapter
extends that work by introducing and demonstratihgt adaptive algorithms can
compensate for the degradation. Additionally, thapter demonstrates that the adaptive

algorithms are computationally more efficient thae non-adaptive algorithm.

4.2.3. ADAPTIVE ALGORITHMS

An adaptive algorithm changes a programs behawpending on the sensor data
[10][55][59] and/or available resources [44][29]n Axample of an algorithm that adapts
to sensor data was implemented by Wood [59], inctvhéan assisted-living sensor
network adjusted the power usage for individuaksen based on the monitored person's
behavior. In particular, a sensor's sampling radse proportionally adjusted to the rate of
sensor data change. Another example is fault mamgan asynchronous distributed
systems by Sotoma [55], in which time-out lengtihs adjusted based on the recent
history of elapsed times for pings. An example ofadgorithm that adapts to available
resources is adaptive sorting by Petersson [44)hich the available memory dictated
the sorting algorithm chosen. Another example wasetbped by Guo [29] that adjusted
sensor boundaries based on sensor placement. ddysgasion allows for readjustments
when a sensor moves or is no longer functional.

This chapter expands on our previous work by intoiay algorithms that adapt to
privacy-enhanced video to regain some of the madnigogoal quality loss due to the

privacy enhancements. The video is analyzed for radberistics of privacy
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enhancements, such as a solid-colored rectangleriogvthe person, which triggers an

adaptation, such as hunt the video for that sadid«c Section 6 goes into further detail.

4.3 RECORDINGS

The recordings took place at a UC Riverside lalooyah-home environment. Three
separate groups of recordings were taken: energya®on, MNFL monitoring goals

[23], and fall detection.

4.3.1. ENERGY ESTIMATION RECORDINGS

We recorded 4 actors for 9 activities each in akmoehome environment that
included a living room and dining room, shown iguiie 2-3(a). The energy expenditure
estimation video dataset is available online, d@ivweblink is available in the references
[26]. The environment was located in a researcbrktbry at the University of California
at Riverside. Each recording contained a singlergmrforming a single activity, such as
reading while seated, wiping down surfaces, orgisirstair stepper exercise machine.
Each recording lasted 30 minutes. Video was recbrte30 frames per second, and
energy estimates were recorded with a BodyBuggedirement for each recording was
that the actor never left the camera'’s view.

We grouped the 9 activities into 3 categories basedhe number of Calories
expended per minute according to the BodyBugg: kwtivity level (less than 3
Cal./min.), medium activity level (between 3 andCél./min.), and high activity level
(more than 6 Cal./min.). The grouped activities @escribed in previous work [22] but

shown in Table 4-1 for the reader's convenience.
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The camera came from a popular in-home 8-cameratonmgy set made by Q-See
and sold by Costco for around $400. The camera peagtioned and had a viewing
direction as shown in Figure 2-3(a). The camerai®2cm above the floor.

4 male actors performed the various activitiesoAdtwas 18 years old, actor 2 was

21, actor 3 was 20, and actor 4 was 21.

Activity description Activity level
Sit on couch while reading a book Low
Sit on couch while using a laptop Low
Sit at dinner table while eating meal Low
Slow-speed pace Medium
Wipe the surfaces Medium
Sweep the floors High
Moderate-speed pace High
Use stair stepper High
Quick-speed pace High

Table 4-1: Nine activities used for energy expendite estimation that were recorded and

categorized as either low activity level, medium awity level, or high activity level.

4.3.2. MNFL MONITORING GOALS RECORDINGS

The same recording environment and camera placenverg used for MNFL
monitoring goals as for energy estimation recorsgjmgscribed in Section 4.3.1. Each
recording contained a single actor. In some reogsjithe actor performed one or more
general events, such as entering or exiting thetrmpat. In some recordings, the actor
performed a specific task, such as read on cousiweep the floors. The recordings were
grouped by monitoring goal, and each group hadt aideo length, such as 30 minute
recordings for in room too long detection.

The actors were a 27-year old UCR graduate studseircher on this project and

two UCR undergraduate student volunteers, ages@23, all males.
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The MNFL video dataset is available online, and web link is available in the

references [40].

4.3.3. FALL DETECTION RECORDINGS

The same recording environment and camera placewexet used for fall detection
as for energy estimation recordings, described enti6n 4.3.1. For this chapter, we
recorded 24 raw videos (12 with and 11 withoutslatif a 27-year old UCR graduate
student researcher on this project. Each videons wminute long. The fall videos
included stumbling and slipping on the floor, andding balance from the couch while
reaching for a lamp. The non-fall videos includedesping the floor, napping and
watching television on the couch, and searchingaféost item involving stooping and
bending.

The fall video dataset is available online, and tineb link is available in the

references [27].

4.4 FOREGROUNDING VIA FOREGROUND-

BACKGROUND SEGMENTATION

Foregrounding, also referred to as MBR trackingdescribed in detail in Section

2.3.

4.5 PRIVACY ENHANCEMENTS CONSIDERED

Cameras typically output raw video, which we defasefollows:
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Raw video, shown in Figure 4-1(a), is normal vidleat shows the camera’s

scene as clearly as possible.

A privacy-enhanced video intentionally obscures dppearance of a person in the

video to protect that person’s privacy. Raw vide@erceived to have less privacy than

privacy-enhanced video [18][24]. We consider fivev@cy enhancements:

Blur video (Figure 4-1(b)) smears the video, tgflic restricting the
smearing to the region with movement.

Silhouette video (Figure 4-1(c)) covers the movenwveth an outline of the
person filled with a solid color.

Bounding-oval video (Figure 4-1(d)) covers the mment with a bounding
oval around each person.

Bounding-box video (Figure 4-1(e)) covers the mogetrwith a bounding
box around each person.

Trailing-arrows video (Figure 4-1(f)) replaces tm®vement with a hollow
box having a dot in the center, with trailing c@drarrows indicating prior

activity.

We built a tool to convert raw video to privacy-anbed video. The raw video was

processed with our foreground-background segmemtatlgorithm to extract a

foreground and the MBR around the foreground. Tihe \adeo blurred the region of the

raw video in which the MBR resides. The silhoueitbkeo changed a pixel to blue if that

pixel was part of the foreground and within theioegof the MBR. The bounding-oval

video covered the region of the MBR with a solidébbval that has the same height and
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width of the MBR. The bounding-box video covered tlgion of the MBR with a solid
blue rectangle with the same height and width ef MBR. The trailing-arrows video
covered the region of the MBR with a hollow bluetemgle with the same height and
width of the MBR. A green dot was displayed at temter of the MBR for trailing-

arrows, and colored arrows trailed from prior atgiv

(@) (b) c)( (d) (€) (f)

Figure 4-1: Pictures from the same moment of the sae recording of (a) raw, (b) blur, (c)

silhouette, (d) bounding-oval, (e) bounding-box, ah(f) trailing-arrows.

4.6 ADAPTIVE ALGORITHMS FOR PRIVACY -

ENHANCED VIDEO PERSON EXTRACTION

Foregrounding, as described in Section 4, may leel ts extract the person from
privacy-enhanced video since the privacy enhancemeenls to move with the person.
However, privacy-enhanced-video has degraded mamgta@oal accuracy compared to
raw video with foregrounding [21], such as blur doethe blending of foreground and
background to cause the blur effect. An adaptigordthm may compensate for the
degraded accuracy by using characteristics of thegy-enhanced video, such as the

moving region is mostly one color, to improve persextraction by triggering
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adaptations, such as search the frame for thataloe. As Figure 4-2 shows, the default
algorithm for person extraction is foregroundingl dhat an adaptation may be used if a

particular characteristic is detected.

Video »| Foregrounding _..Mmfmg _+Extracted
frame region person
(a)
Video »| Forearoundin +Moving | Mostly one Hunt for that Color_| _ Extracted
frame i 9 9 region - color? color region person

(b)
Figure 4-2: (a) Default person extraction is foregounding. (b) If a characteristic in moving
region was detected (e.g., mostly one color), tham adaptation (e.g., hunt for that color) was usetb

refine person extraction.

4.6.1. ADAPTATION : SPECIFIC-COLOR HUNTER

If the moving region was mostly one color (such vaish bounding-oval and
bounding-box) for a sufficiently long time, then \@dapted by specifically hunting for
that color. The MBR result of foregrounding a videmme, shown in Figure 4-3(a), was
used to define the size of the moving region, shawfigure 4-3(b). We determined
whether the moving region of the video frame was oolor by creating a histogram for
red, green, and blue, shown in Figure 4-3(c) anscriged in Figure 4-4(b). The
histograms used bin sizes of 4, e.g. red pixelreddetween 0 and 3 were counted for one
bin and red pixel colors between 4 and 7 were ctarranother. If the largest bin of each
histogram contained more than double that of tloerse largest bin of the respective

histogram, then the moving region was considerdzbetmostly one color. The largest bin
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of each histogram formed the color range, e.glatgest bin of the red histogram formed

the red range.

Histograms

Blue I
._,.l]

0 255

(@) (b) (©) (d) (€)

Figure 4-3: (a) Default person extraction is foregounding. (b) If a characteristic in moving

region was detected (e.g., mostly one color), tham adaptation (e.g., hunt for that color) was usetb
refine person extraction. Specific-color hunter usa (a) the MBR result of foregrounding to create (b)
the moving region. (c) The histograms for red, grag and blue determined whether the moving

region was mostly one color. If so, then (d) an ingee of only that color was used to build (e) an MBR.

The specific-color hunter traversed all pixels bé tvideo frame, as described in
Figure 4-4(c). If a pixel was within the color rasgdetermined by the histograms give or
take 8, then the pixel was colored white. Otherwibe pixel was colored black. The
resulting image, shown in Figure 4-3(d), was paskesligh the MBR builder, described
in Section 4, to generate an MBR representing #titeaeted person, shown in Figure
4-3(e) .

The specific-color hunter was controlled by an endted sliding scale, shown in
Figure 4-4(a), to determine whether the movingardiad contained mostly one color
for a sufficient amount of time. The scale slidemremented each time the moving region
contained mostly one color and decremented otherwWise scale ranged between 0 and

40. If the scale slider was 15 or greater, thensgeific color hunter was turned on. If
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the scale slider reached 0, then the specific dulmter was turned off. The scale slider

was initialized to 0.

1 Given a reccrding: Video recocrding (a)
&
3 5lider sldr = new Slider()
4
3 while ( recording.hasMcreFrames ()} )
& Image currFrame = recording.getNextFrame ()
7 Image foregreound = feoeregrounding(currFrame)
B Rectangle currMBR = mbrBuilder(foreground)
g
10 Coler o = isRegionfOn=Color(currFrame, currMBR, c)
11 if ( ¢ == null )
12 sldr.sliderUpdate( -1 )
13 else
14 sldr.sliderUpdate ( +1 )
15
16 if { sldr.colorHunterCni() )
17 foreground = specificColorHunter(currFrame, c)
15 currMBR = mbrBuilder (foreground)
15
20 ocutputToFile (currMBR)
1 Cocleor isRegicnOneCeolor(Image frame, Rectangle mbr, Coclor c)
3 Image movingRegicon = frame.getSubImage (mbr)
4 HistocgramArray histocgrams = buildHistograms (movingRegicn)
6 for each (Histogram h in histograms) // (r, g, b)
7 if (h.getLargestBin() > Z2*h.getSecondLargestBin()) (b)
6 e «— h.largest_bin
7 else
B return null
g
10 return c
1 Image specificColorFunter(Image frame, Coclor c)
2 if ( o == null )
3 c = previcusColor (c)
4 Image feoreground = emptyImage ()
3 for each (Pixel p in frame)
= if p.similarTeo (coelox)
T foregreund [p] = white
8 else
9 foregreund [p] = black
10
11 return foreground

Figure 4-4: Pseudocode for (a) specific-color huntedaptation, (b) check whether the moving

region contains mostly one color, and (c) scan agme for a specific-color.
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The parameters of histogram analysis, color comepariand sliding scale were
trained manually with training video with a maleduate student on this project taken in

the same environment described in Section 4.3.

4.6.2. ADAPTATION : EDGE-VOID FILLER

Video in which the moving region contains few edgesygests a blur privacy
enhancement was used because blurring blends qokais together thus causing less
edges to exist. If the moving region contained feges, then we assumed a privacy
enhancement was used and adapted by filling thet efoedges in each direction starting
from the center of motion to create an MBR. The ME&Rult of foregrounding a video
frame, shown in Figure 4-5(a), was used to defirgesize of the moving region, shown
in Figure 4-5(b). We determined whether the mowuiagion, shown in Figure 4-5(b),
contains few edges by performing edge detectiomwshin Figure 4-5(c), then
calculating the ratio of edges to non-edges inrtfwing region. Edge detection was
performed by applying a Gaussian blur to the movegjon of a video frame to reduce
noise, then converting the image to grey scale. déult Laplace operator [33] in
OpenCV 2.4.0 [43] was applied to the grey scalegeneesulting in an image with the
edges detected, in which areas of larger pixelrocih@ange were colored closer to white
than black. We calculated the ratio of edges to-emges by summing the number of
pixels in the edge detected image that had collregdess than 25, then divided the sum
by the area of the moving region. The moving regi@s said to contain few edges if the

ratio of edges to non-edges was less than 0.30.
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(b) (

(@)

) (d) (€) (f)

Figure 4-5: Edge-void filler used (a) the MBR result of foregrounding a frame

C

e

with a person sweeping to create (b) the moving region. (c) Edge detection was
performed on the moving region. If the ratio of black-to-non-black pixels in the
edge detection exceeded a threshold, then (d)-(f) a rectangle filled the black pixels,
resulting in (f) the person extraction.

As Figure 4-5(c) shows, the location that the bkgided in the moving region was
void of edges after edge detection. However, thentlaries of the blurred region are not
clear. The observation is that an MBR can be cdebsefilling the edge-void from the
center of the moving region until each side of tbetangle hits a detected edge. Edge-
void filler is shown in Figure 4-5(d)-(f) and deed in Figure 4-6(c). Since
foregrounding the privacy enhancements, such as often resulted in a smaller than
expected MBRs as seen in Figure 4-5(a), we inccetise size of the moving region by
10% in both directions on the x and y-axis. We therformed the same edge detection
described above to the size-increased moving rediom the resulting edge detected
image, a 2x2-pixel rectangle was drawn at the cearft¢he foregrounding's MBR. The
rectangle grew one pixel left, right, up, then dowmtil that direction touched a pixel
with a color greater than or equal to 50. When rbetangle could not grow in any

direction, that rectangle was said to be the MBRhefperson.
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1 Gven a recording: Video recording

5 (@
3 Slider sldr = new Slider()

4

5 while( recording. hashvoreFranes() )

6 I mage currFrane = recordi ng. get Next Frane()
7 I mage foreground = foregroundi ng(currFrane)
8 Rect angl e curr MBR = nbr Bui | der ( f or egr ound)
9

10 if ( contai nsFewkdges(currFrame, currMBR) )
11 sldr.sliderUpdate( +1)

12 el se

13 sldr.sliderUpdate( -1)

14

15 if ( sldr.voidFillerOn() )

16 foreground = edgeVoi dFiller(currFrame
curr MBR)

17 curr MBR = nbrBui | der (f or egr ound)

18

19 out put ToFi | e( curr MBR)

1 Bool ean cont ai nsFewEdges(| mage frane, Rectangle nbr) ()
2 | mage novi ngRegi on = frane. get Subl nage( nbr)

3 I mage bl urredl nage = appl yGaussBl ur ( movi ngRegi on)

4 I mage greyl mage = convert ToG eyScal e( bl urredl nage)

5 | mage edgesDetected = appl yLapl aceOp (greyl nage)

6

7 Nurmber edgePi xel s = count EdgePi xel s( edgesDet ect ed)

8 Nurmber nonEdgePi xel s = pi xel Count (edgesDet ect ed) - edgePi xel s
9

10 if ( ( edgePixels / nonEdgePixels ) < 0.30)

11 return true

12 el se

13 return fal se

1 Inage edgeVoi dFiller(lnmage frame, Rectangle nbr)

2 Rect angl e bi gger MBR = i ncreaseRect Si ze (nbr) ©
3 | mage bgr Movi ngReg = frane. get Subl ng(bi gger MBR)

4 I mage bgrBl url nage = appl yGaussBl ur ( bgr Movi ngReg)
5 I mage bgrGeylng = convert ToG ey (bgrBl url mage)

6 | mage bgr Edges = appl yLapl aceOp(bgr G- eyl ng)

7

8 Rect angl e newMBR = cent er O Rect angl e( bi gger MBR)

9 Bool ean canG ow = true

10 while ( canGow )

11 canG ow, newMBR = gr owVBR( newBR, bgr Edges)

12

13 return newivBR

Figure 4-6: Pseudocode for (a) specific-color hunter adaptation, (b) check
whether the moving region contains mostly one color, and (c) scan a frame for a

specific-color.
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Edge-void filler was controlled by an automatedlisly scale, described in Figure
4-6(a), to determine whether the moving region t@aatained few edges for a sufficient
amount of time. The scale was between 0 and 15stale slider incremented when the
moving region contained few edges and decremerntewise. The adaptation turned on
when the scale slider reached 15 and turned offhwithe scale slider reached 0. The scale
slider was initialized to 0.

The parameters of edge-to-non-edge threshold, gravgorithm, and sliding scale

were trained manually with the same training vided&ection 4.6.1

4.7 CAMERA -BASED ASSISTIVE M ONITORING

GOALS

Live-alone persons, particularly elderly live-aloneersons, may wish to be
monitored for situations of interest that indicateproblem. The assistive monitoring
goals would be determined by the monitored persothat person's caregiver, which
could be an adult child or nursing staff. Some gaan be solved with a camera-based
approach, such as the following 8 goals that thepter considers: energy expenditure
estimation, in room too long, leave but not retarmight, arisen in morning, not arisen in
morning, in region too long, abnormally inactiveridg day, and fall detection.

The camera could be installed by the monitoredguerthe caregiver, or a trained
technician. Similarly, the assistive monitoring [goasing the installed camera could be

configured by the monitored person, caregiver, tmmed technician using an assistive
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monitoring language such as MNFL [23]. Our previawgk [21] describes in detail the

importance of and particular method for solving 8n@onitoring goals used in this work.

4.8 EXPERIMENTS OF NON-ADAPTIVE
(FOREGROUNDING ) CAMERA -BASED M ONITORING

GOALS

Our previous work [21] describes in detail our expental method and results
using non-adaptive algorithms. The combined figiedtas produced by applying Fisher’s
transformation to each correlation between an actadeo-based and BodyBugg energy
estimation, averaging the transformations, thenlyapp the inverse of Fisher's
transformation on the average to create a combawecklation. Table 2 contains the
aggregated results of the experiments. Energy astmand fall detection yielded the
widest variation of results of the monitoring godfer energy estimation, raw video had
a significantly higher accuracy (p < 0.001) thae tither privacy enhancements. The
combined fidelities for each privacy-enhancemens we same as raw with p < 0.001.
For fall detection, raw video had the highest aacymwith 1.0 for average sensitivity and
specificity, while silhouette had the second higlvagh 0.92 average sensitivity and 0.83
average specificity. Of the remaining monitoringalyo the sensitivity and specificity
were perfect 1.0, except blur video's sensitivitP & for in region too long and trailing-

arrows room-too-long sensitivity of 0.0 and abndiyniaactive specificity of 0.67.
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Privacy Energy Energy | Roomtoo | Arisenin Region | Abnormally Fall
enhancement estimation| estimation long morning too long inactive detection
average | combined| average average average average average
accuracy | fidelity sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/
specificity | specificity | specificity | specificity | specificity
Raw 90.9% 0.997 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
Blur 80.5% t| 0.994 % 1.0/1.G 1.0/1/0 0.5/1.01.0/1.0 0.75/
0.75
Silhouette 85.0% 1 0.998 % 1.0/140 1.0/10 /1@ 1.0/1.0 0.92/
0.83
Bounding- | 85.6% t| 0.997 % 1.0/1.( 1.0/1)0 1.0/10 /1@ 0.83/
oval 0.83
Bounding- | 84.3% t| 1.000 % 1.0/1.( 1.0/1)0 1.0/10 /1@ 0.92/
box 0.75
Trailing- 79.8% t| 0.997 % 0.0/ 1.4 1.0/1)0 0.0/1.0 /D®7 | 0.5/0.67
arrows

Table 4-2:Foregrounding experiments for each assistive monitoring goal by privacy enhancement. Higher

metrics are better. The privacy enhancements of silhouette, bounding-oval, and bounding-box cause some

degradation in quality compared to raw video.

T indicates significantly lower than raw (p < 0.001L

¥ indicates significantly the same as raw (p < 0.@D

4.9 EXPERIMENTS OF ADAPTIVE CAMERA -BASED

ASSISTIVE MONITORING GOALS

The previous section shows that privacy-enhanceeovcauses some degradation in
monitoring quality. This section examines whethar two proposed adaptations can
decrease that degradation. We applied the sameiegoeal methods used in Section 4.8

with the adaptive algorithms described in Sectidh 4
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4.9.1. | MPACT OF SPECIFIC-COLOR HUNTER AND EDGE-

VOID FILLER ADAPTATIONS ON ALL VIDEOS

We ran the two adaptations on all privacy enhanoésnt see the adaptations’
impacts. Table 4-3 summarizes the changes fromeT4d@ due to applying the specific-
color hunter adaptation to each video. Table 4-ésdeo for the edge-void filler
adaptation. The data shows that the adaptationshalgful for particular privacy

enhancements but hurtful for others, as is to Ipeeted.

Privacy Energy Energy | Roomtoo | Arisenin Region | Abnormally Fall
enhancement estimation| estimation long morning too long inactive detection
average | combined| average average average average average
accuracy | fidelity sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/
specificity | specificity | specificity | specificity | specificity
Raw -1.90%% =% =/= =/= =/= =/= =/=
Blur +0.20% =i =/= =/= =/= =/= +0.08 / =
T
Silhouette | +0.10% | +0.013% =/= =/= =/= =/= =#0.09
Bounding- | +2.50% | +0.003% =/= =/= =/= =/= +0.17 /
oval + +0.17
Bounding- | -1.70% =i =/= =/= =/= =/= =#0.17
box T
Trailing- | -0.30%f =% =/= =/= =/= =/= =/=
arrows

Table 4-3: specific-color hunter experiments compared to the foregrounding experiments. Specific-color

hunter had many improvements in fall detection, and with bounding-oval in energy estimation accuracy.

* Positive values are bold and mean improved perfanance by an absolute amount, e.g. +2.50%

means specific-color hunter had 2.5 more percentagmints, e.g. 85.6% to 88.1% is +2.50%.

* Negative values mean degraded performance by arbsolute amount.

T indicates significantly different than foregroundng (p < 0.05)

* = means no change in performance.

¥ indicates significantly the same as foregroundinp < 0.001)
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Privacy Energy Energy | Roomtoo | Arisen in Region | Abnormally Fall
enhancement estimation | estimation long morning too long inactive detection
average | combined| average average average average average
accuracy | fidelity sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/ | sensitivity/
specificity | specificity | specificity | specificity | specificity

Raw -1.80%7 = =/= =/= =/= =/= -0.17 /=
Biur | +6.30% | +0.036| 05/= | =/= | 05/=| -05/-| +0.25/-
+ I 0.17 0.07
Silhouette | -3.80%%} = =/= =/= =/= =/= =/=
Bounding- | +1.90% | +0.006 =/= =/= =/= =/= -0.41 /-
oval T 0.25
Bounding- | +4.10% | +0.005| =/= =7= =7= =/= | =/-042
box T :{:
Trai"ng- = =1 =/= =/= =/= =/= =/=
arrows

Table 4-4:Edge-void filler experiments compared to the foregrounding experiments. Edge-void filler had

big improvements in energy estimation accuracy with blur, bounding-oval, and bounding-box.

* Notes and notation same as Table 4-3.
49.2. PERFORMING ADAPTATIONS SPECIFICALLY

The device that privacy-enhances the assistive toramg video could also send
metadata indicating which privacy enhancement wgglied. Knowing the privacy
enhancement enables a privacy-enhancement-awaraw®t€) algorithm to select the
best non-adaptive or adaptive algorithm for eaatiqudar monitoring goal. By default,
PE-aware will select the non-adaptive algorithmregpounding, to minimize
computation. For example, Table 5 shows the enexpenditure estimation accuracy
comparison of privacy enhancement by non-adaptideaaptive algorithms. Specific-
color hunter had the highest accuracy for boundwaj-compared to foregrounding and
edge-void filler; therefore, PE-aware selects dpecolor hunter to run on the bounding-
oval video for energy expenditure estimation accyraThe adaptive algorithms

compensated for performance degradation of theadaptive algorithm with privacy-
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enhanced video compared to raw video. The avenagacy enhancement degradation of
the non-adaptive algorithm compared to raw was f8ih®% accuracy to 83.9%. The
adaptive algorithms significantly improved accurafyhe average privacy enhancement
up to 87.1%. Trailing-arrows is exempt from thisalysis because trailing-arrows
performance does not change across non-adaptivadapdive algorithms.

Table 4-6 shows the fall detection sensitivity apecificity for non-adaptive and
adaptive algorithms. The adaptive algorithms comptad for performance degradation
with foregrounding of privacy-enhanced video comegato raw video. The privacy-
enhanced video with foregrounding degradation was f1.0 to 0.86 sensitivity and 1.0
to 0.79 specificity. Adaptive algorithms compendabeivacy-enhanced video up to 0.92

sensitivity and 0.90 specificity.

Non-adaptive Adaptive
Privacy Foregrounding Specific-color hunter Edge-void fille PE-aware
enhancement
Blur 80.5% < 86.8%t 86.8%f
Silhouette 85.0% 85.1%T < 85.1%T
Bounding- 85.6% 88.1% < 88.1%t
oval
Bounding- 84.3% < 88.4%t 88.4%f
box
Average 83.9% 87.1% T
Raw 90.9% < < 90.9% |

Table 4-5:Energy expenditure estimation accuracy for non-adaptive and adaptive algorithms.

Foregrounding on raw video achieved the higher accuracy of 90.9% over the average privacy enhancement with

83.9%. PE-aware algorithm improved the accuracy of the average privacy enhancement to 87.1%.

* < means the adaptive algorithm performed worse tan foregrounding,

* = means the adaptive algorithm performed the samas foregrounding,
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T indicates significantly greater than foregrounding (p < 0.05)

Non-adaptive Adaptive
Privacy Foregrounding Specific-color Edge-void filler PE-aware
enhancement (sensitivity / hunter (sensitivity / (sensitivity / (sensitivity /
specificity) specificity) specificity) specificity)
Blur 0.75/0.75 0.83/0.75 < 0.83/0.75
Silhouette 0.92/0.83 0.92/0.92 = 0.92/0.92
Bounding- 0.83/0.83 1.0/1.0 < 1.0/1.0
oval
Bounding- 0.92/0.75 0.92/0.92 < 0.92/0.92
box
Average 0.86/0.79 0.92/0.90
Raw 1.0/1.0 = < 1.0/1.0 |

Table 4-6:Fall detection sensitivity and specificity of non-adaptive and adaptive algorithms.

Foregrounding privacy-enhanced video degraded accuracy from foregrounding raw video, from 1.0 sensitivity to

0.86 and 1.0 specificity to 0.79. Adaptive algorithms compensated accuracy back up to 0.92 sensitivity and 0.90

specificity.

* < means the adaptive algorithm performed worse tan foregrounding,

* = means the adaptive algorithm performed the samas foregrounding

PE-aware selects foregrounding for energy experaligstimation fidelity for all

privacy enhancements, except bounding-box, whitdctespecific-color hunter. For the

MNFL goals, PE-aware always selects foregroundiggecific-color hunter ties

foregrounding for each MNFL goal and edge-voidefilperforms worse with blur in

room too long, region too long, and abnormally tnec

4.9.3.

ADAPTIVE ALGORITHM EFFICIENCY

We evaluated the computation efficiency of the fvoposed adaptive algorithms

and the non-adaptive (foregrounding only) algorithyndetermining the processing rate

of each algorithm in frames per second (FPS) orh gatvacy enhancement. The

recordings used during the evaluation were ther88gy estimation recordings, which
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were each at least 30 minutes in length. The Sirseconds of each recording were used
to train the background. The computer used dunrduation had a 3.30 GHz Intel Xeon
processor with 8GB of memory and ran 64-bit Winddwd he computer was rebooted
after each algorithm's evaluation. The algorithnesearun single-threaded.

Table 4-7 shows the FPS of foregrounding by privaalyancement, and the percent
difference of FPS for each adaptive algorithm amckdrounding. Color hunter has a
significantly (p < 0.01) higher FPS than foregrdung for blur by 4.9% and fading lines
by 5.0%, but a significantly lower (p < 0.01) FR8 faw by 0.9%. Similarly, void filler
has a significantly higher (p < 0.01) FPS thardwounding for blur by 3.2%, silhouette
by 4.1%, bounding-box by 1.7%, and fading line2§p6, but a significantly lower FPS
for raw by 1.1%. Across privacy enhancements, teptive algorithms had significantly
higher FPS (p < 0.01) than foregrounding, colortbumy 1.5% on average and void

filler by 1.9%.

Privacy Foregrounding|  Color hunter % difference | Void filler % difference from
enhancement (FPS) from foregrounding foregrounding
Raw 128 -0.9%k -1.1%¢
Blur 142 +4.9%% +3. 2%
Silhouette 110 +0.7% +4.1%¢
Bounding- 120 -1.1% +1.1%

oval
Bounding- 124 -0.3% +1.7%
box
Fading lines 116 +5.0%6k +2.6%&
Average 123 +1.5%¢% +1.9%%

Table 4-7:Foregrounding FPS compared to adaptive algorithm FPS across privacy enhancements. The

adaptive algorithms tend to have higher FPS than foregrounding. Higher is better.

¥ indicates significantly different from foregrounding (p < 0.01)
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4.10 CONCLUSION ON ADAPTIVE ALGORITHMS FOR

VIDEO-BASED IN-HOME M ONITORING

Privacy-enhanced video degrades the accuracy oitonimgy goals compared to raw
video when using non-adaptive algorithms. We shoted two adaptive algorithms,
specific-color hunter and edge-void filler, can fhelompensate for that degradation
without loosing computational efficiency. Energy tiemtion accuracy from
foregrounding raw to privacy-enhanced degraded f86m0% to 83.9%, but the adaptive
algorithms significantly compensated by bring teewaiacy back up to 87.1%. Similarly,
fall detection accuracy degraded from 1.0 sengjtito 0.86 and 1.0 specificity to 0.79,
but the adaptive algorithms compensated accuracl bp to 0.92 sensitivity and 0.90
specificity. Additionally, the adaptive algorithmgere computationally more efficient
than the non-adaptive algorithm, with color hunpeocessing 1.5% more frames per
second than foregrounding and void-filler 1.9% more

Future work includes further compensations to deser to the results from raw
video, determining which privacy enhancement is dmesed on video rather than relying
on metadata, increasing the number of evaluatedtanmg goals, increasing the number
of privacy enhancements considered, and usingfdataother types of sensors too like

motion or sound sensors.
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Chapter 5. PRIVACY PERCEPTION AND FALL
DETECTION ACCURACY FOR IN-HOME VIDEO
ASSISTIVE MONITORING WITH PRIVACY

ENHANCEMENTS

5.1 INTRODUCTION TO PRIVACY PERCEPTION

Privacy is critical for adoption of video-based ntoring technology [7][8][18], but
the ability to detect critical events decreasemathods to protect privacy are added. We
explore tradeoffs among privacy perception anddatection accuracy via an experiment
involving several hundred participants. We consdethe video privacy settings shown
in , including raw video and five privacy-enhancedeos: blur, silhouette, oval, box, and
trailing-arrows. We assume a system may includers¢wideo privacy setting options
because the ability to customize has been showe important to the usage of assistive
technology [8][18].

This chapter explores privacy and fall detectioadéoffs among those privacy
settings, and examines whether a privacy enhandetaehnique exists that provides
sufficient perceived privacy protection while enaglaccurate fall detection by humans.

Blurring video is a common approach to privacy ectibn but may not provide

sufficient privacy [14]. Lee [37] surveyed 47 paipiants with video privacy settings of
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raw video, slightly-blurred video, heavily-blurrettdeo, and no video (audio only). 44
participants preferred to "disable their cameramwpgvacy was desired" and used raw
video when privacy was not desired, thus indicativag blur may not be a practical video
privacy setting. Boyle [14] surveyed 20 particigantth two video privacy settings: blur
video and pixelized video. Pixelized video segmeraeraw video into a 2-dimensional
grid with equal-sized squares. The color of eactelpn each square was averaged and
that average color was applied to the entire squzaeh video privacy setting could be
adjusted from level 1 to 10, in which level 1 hadremely high levels of blur (or
pixelization) and level 10 had extremely low levefsblur (or pixelization). Participants
gave level 5 blur video and level 6 pixelized videprivacy score of about 3.5 out of 5.0,
in which a score of 5.0 is highly protected privaagd participants were able to identify
activities at level 5 blur video and level 7 pixell video. Neustaedter [42] surveyed 20
participants with 10 levels of blur to determinee thalance between privacy and
awareness, including high risk activities, suchclagnging clothes. Blur levels 1 and 2
were adequate for privacy, and blur levels 3 to &senadequate for awareness. Since
more privacy is required than a viewer is ablea@tetmine what is happening, blur is not
a good privacy setting.

Silhouetted video has been examined for in-homeapyi. Demiris [18] surveyed 15
participants over the age of 65, all of whom fhlattthe use of a camera for in-home
monitoring was obtrusive, while "many participarfiédt that [silhouetting] was more

appropriate,” (numerical data was not provided).
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Figure 5-1: The same frame of an original video siwing (a) raw, (b) blur, (c) silhouette, (d)

oval, (e) box, (f) trailing-arrow video.

Exotic video privacy settings are often preferred privacy protection over raw
video but have comparatively worse detection aayufa5][62]. Caine [15] surveyed 25
participants over the age of 65, and compared rideovto point-light video, which is a
black background with white dots representing tiffteoaette of the person, and a blob-
tracker video, which is a black background withobored blob that provides information
on the location and activity level of the personinlight video and blob-tracker video
were both perceived to provide significantly moregcy (p < 0.05) than raw video. The
ability to detect problem situations such as fallss not evaluated. Zhao [62] surveyed
20 participants with the following video privacyttsegs: raw video, pixelized video,
live-shadow video, shadow video and edge-detedtieby Live-shadow video pixelated
only the foreground of the raw video. Shadow vidadaced transparent, pixelated
foreground video onto a background image. EdgeetiElevideo was a black and white

video in which high contrast edges were white amel test of the video was black.
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Participants identified both the actor and thevagtiof the actor with raw video in 85%
of the videos, 73% for pixelized videos, 66% folgedletected videos, 55% of live-
shadow videos and 26% of shadow videos. The sefffayi of privacy provided was not

evaluated.

5.2 VIDEO PRIVACY SETTINGS

A video privacy setting is a video attribute thadicates the type of privacy
enhancement applied to the video. We describeusitt privacy settings below.
Cameras typically output raw video:
e Raw video (Figure 5-1(a)) is unaltered video thaives the camera’s scene
as clearly as possible.
A privacy-enhanced video obscures a person’s appearin the video. We consider

five privacy enhancements:

Blurred video (Figure 5-1(b)) smears the video,idglly restricting the

smearing to the region with the person.

e Silhouetted video (Figure 5-1(c)) replaces the @emsith a solid shape of the
person.

e Bounding-oval video (Figure 5-1(d)) covers the parwith a solid oval.

e Bounding-box video (Figure 5-1(e)) covers the pensth a solid box.

e Trailing-arrows video, a method we developed fas texperiment (Figure

5-1(f)), replaces the person with a hollow box hgva dot in the center, with

trailing colored arrows indicating prior activity.
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We built two tools to convert raw video to privaeghanced video. The first tool
takes as input raw video and a background image, ctputs the MBR data and a
blurred, silhouetted, bounding-oval, and bounding-kideo. The first tool is described
in Section 2.3.

The second tool converted the MBR data of the ralgosand a background image
to a trailing-arrow video using ActionScript [1]h& tool drew the MBR as a hollow blue
box, as in Figure 5-2. A bright green dot was poséd in the center of the hollow box.
The dot was solid when there was activity and loldhen there had been no activity for
four or more seconds. A solid line connected aadeated from activity to the previous
dot. Midway through the line was an arrow indicgtthe direction of the activity. The
color of a line started as bright green, the saoler@as the dot. The color of a line faded
to black in 10 seconds (Figure 5-2(a)), then totevlin another 10 seconds (Figure
5-2(b)), thus showing a trace of the person's #gtiAdditionally, if there was no
activity for at least four seconds, then text woafpear near the last activity indicating
how long since the last activity. For example,hére had not been activity for seven
seconds, then the text would be, "7 sec sincetdstity,” as in Figure 5-2(b).

In an initial trial, which did not include any paipants from this chapter's
experiment, participants indicated two difficultisgerpreting the trailing-arrow video.
The first was that participants had a hard timewheining where the person had exited a
scene. In response, we adjusted the fading ofa$tefilve lines, such that the last line did
not fade at all and the previous four lines woubthsecutively fade more to dark green.

The second difficulty was that the participants laatard time interpreting the motion

75



history when there was a lot of activity. We redlidee number of lines with two
pruning techniques: do not place a line more tharye333ms, and do not place a new
line if the MBR has not moved at least 25 pixelsaany direction. These modifications

were included in the trailing-arrow videos usedhis chapter’'s experiment.

(a)

4 s¢C since last activity f sec since last activity

Figure 5-2: Two trailing-arrows picture sequences(a) person walks into scene toward couch as

the green trail turns to black, and (b) person siting on couch as black trail turns to white.
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53 METHODS

We conducted an experiment to explore tradeoffsvéxen privacy perception and
fall detection on raw video and privacy-enhancedewi and to determine whether a

privacy setting exists providing sufficient peraaivprivacy and accurate fall detection.

5.3.1. PARTICIPANTS

The participants were undergraduate students atUhwersity of California,
Riverside (UCR) with an average age of 20 yearsgiregy from 17 to 42 years. The
average participant had some experience providimfpome care and almost no
experience receiving in-home care. The averageacjpamt uses a social networking
website several times a day and has installed akeseftware programs and hardware
components, such as a printer or webcam. The awepagticipant has little to no
programming experience. The total number of paaicts was 376. We excluded 48
participant's responses because of duplicate unidemtifiers caused by participants
incorrectly inputting his or her computer numbend garticipant's arriving late in lab
then using another participant's computer who direftnished. Therefore, the results
consider 328 participants.

The patrticipants were enrolled in CS 8, a coursg ihtroduces basic computing
applications such as Microsoft Office and web aggtions, intended for non-computing
and non-engineering majors and having no prereggist8% percent of the participants
were non-computing and non-engineering majors. MESR degree programs outside

science and engineering schools require undergreslta take any course in computing
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or math as an elective; CS 8 attracts approxim&@@0 students per year (the university
enrolls about 3,500 new students per year). CS S8aliasen for the experiment due to
our access to the course labs and the large nuoflsudents who take the course. The
experiment was the first lab assignment for CS &d hn the first week of the 2012
winter quarter, conducted during a scheduled thoee lab section. The experiment was
conducted in twelve 3-hour lab sections, each@eetith 30 or less students.

The participants were blind to the conditions amdppse of the experiment. The
participants were participating as part of theimpoting applications coursework, thus
reducing self-selection bias. The experiment wgg@aped by UCR's IRB (Institutional
Review Board).

The participants completed a background informasiorvey with questions related
to technology comfort and caregiving experience.d\mificant correlation was found
between any privacy or detection measurements aypcfathe background information

survey. The background information results areitgtan our previous work [24].

5.3.2. DESIGN

The video privacy settings were evaluated for peeck privacy and for fall
detection accuracy. A first measure was 18 vidaogomly selected from 23 videos (18
rather than the full 23 due to our desire to hdaudents spend about 30-45 minutes total
on the experiment, to avoid fatigue), randomly oedeand randomly assigned video
privacy setting constrained such that each paditdigaw all six video privacy settings
three times. For each video, the participant wae@s$o detect what was happening and

rate the level of privacy. A second measure wasking of each of the six video privacy
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settings with respect to privacy and detectionitgbiA third measure was a dichotomy
between sufficient and insufficient privacy for baxf the six video privacy settings. The
data was analyzed by comparing privacy perceptmhdetection accuracy across video

privacy settings.

5.3.3. M ATERIALS

The lab sections included identically configured ndbws computers and web
browsers. The experiment consisted of four web gagéroduction, unique participant
number, background information, and detection andapy videos.

The introduction web page stated the purpose ofeperiment to be to evaluate
different ways of using video to monitor peoplegrihisted the titles of the next three
web pages. The web page instructed the participawbrk alone. A hyperlink loaded a
web page prompting the participant to enter a giediunique identifier, after which the
background information web page loaded.

The background information web page is detailedunprevious work [24]. At the
bottom of the web page was a "Submit form" buttbthe participant had not selected an
option for each question, then the web page wowdeha pop-up informing the
participant that a question was missed and thatrissing question's prompt would be
highlighted in red. Otherwise, the detection andamy videos web page loaded.

The detection and privacy videos web page had tbeetons: introduction, videos
with questions, and final questions. The introductstarted with an orientation to the
participant's task: "Imagine your Grandpa has aetann his home. He is concerned

about falls and has asked you to occasionally roptite camera video. The camera’s
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view is of Grandpa's living room." Next, the videsgh questions section were outlined
as follows: "Watch the following 18 videos (androduction video). Each video lasts

about 1 minute and is silent. The order of the etdiss random. The videos use various
styles, some with alterations intended to proteetapy.” The introduction video showed

each of the video privacy settings for the samestsonds of the same original video.
The introduction had a list of instructions pertaghto the answering of the 18 video's
guestions:

- "Watch from start to finish, seeking to detecGifandpa has fallen. After finishing,
you may rewind and rewatch all or part as many siaeyou'd like."

- "Answer the two questions that follow the vidéadicate that a fall has occurred if
it is more likely than not to be a fall."

- "The goal is for you to detect falls without egseve awareness of non-fall activity.
In judging privacy, avoid biasing your response doa®n your general opinion of
monitoring. Instead, note that Grandpa has askadgoonitor him for falls."

- "Note: No persons were harmed in the making e$¢hvideos."

We recorded 23 videos (8 with a fall during theead8 with a fall prior to the video,
and 7 with normal activity) without sound. The wdefeatured a sole, male actor, who
was twenty-six years old. Screen shots of the \@a@e shown in our previous work [24].
We recorded the videos using a webcam that wasigagtraw video at a rate of 15
frames per second. The videos were recorded inviagliroom. Each video was
approximately one minute long. There were threegmies of videos recorded: "fall

during," "fall prior" and "normal activity." The &l during” videos included stumbling
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and slipping on the floor, and losing balance fribra couch while reaching for a lamp.
The "fall prior" videos included the actor laying the floor in a few different angles and
occasionally moving limbs. The "normal activity"deios included sweeping the floor,
napping and watching television on the couch, aedrching for a lost item. We
converted each video into each privacy-enhanceebvigsing our tools.

The videos with questions section of the detectod privacy videos web page
randomly selected 6 "fall during”, 6 "fall prior'hd 6 "normal activity" videos. Each of
the 18 videos had two questions. An example vidéb the two questions is shown in
Figure 5-3. The video was embedded in the web padgehad to be clicked to play. The
video was above the two questions. The first gaestvas, "This video shows that
Grandpa:" and had four radio options to selechefollowing order:

- "falls starting at about __ second(s) into tieew and remains fallen for the rest
of the video." (the __ was a drop down menu withdptions 1 through 60)

- "fell before the video started and remains fatlemoughout the video."

- "Is participating in normal activity (no fall osored).”

- "I cannot determine whether a fall has occurred."

The second question was, "This style protects Grasdorivacy" with responses in
the following order: strongly disagree, disagrdeghdly disagree, slightly agree, agree,

and strongly agree.
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8 sec since last activity

This video shows that Grandpa:
" falls starting at about -] second(s)

" fell before the video started and remains fallen
throughout the video.

' is participating in normal activity (no fall occured).
" | cannot determine whether a fall has occurred.

This style of video protects Grandpa's privacy.
Strongly Stghty Stightly . Stongly

disagree Disagree disagree agree agree

Figure 5-3: Participants were instructed to watch he entire embedded video at least once then
answer the two questions.
The final questions section of the privacy and déta videos web page included
two ranking criteria for the ordering of the videovacy settings. A picture of each video
privacy setting showed the same frame of the samgéenal video as in Figure 5-4. The

pictures could be drag-and-dropped to a new ragik \(fas higher) with a mouse, with
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other pictures automatically shifting left or rigatcordingly. The starting location of
each picture was randomized for each participantefach rank criterion. The first
criterion was "how well each style allows you tdede a fall." Under the far left picture
read, "1 (best for detecting)." Under the far rigitture read, "6 (worst for detecting).”
The second criterion was "how well each style mtstéhe person's privacy." Under the
far left picture read: "1 (most privacy)." Underetiiar right picture read: "6 (least
privacy)."

The final questions section had a question for e&ddo privacy setting: "Does this
style provide sufficient privacy for Grandpa?" Feach video privacy setting, there was a
picture and the option to select Yes or No. Theesamsture was used as the ranking
guestions discussed previously. The order of thdeoiprivacy setting was randomized.
Finally, there were three free response prompts:

- "Why do some styles provide sufficient privacylarot others?"

- "Please enter comments that you have regardangriliacy-protecting alterations."

- "Please enter any other comments you have regaydiur experience."

At the bottom of the web page was a "Submit formttdn. If the participant had not
selected an option for each question, then the pegje would have a pop-up informing
the participant that a question was missed andthigamissing question's prompt would
be highlighted in red. Otherwise, a completion weé#ige loaded instructing the

participant to notify the teaching assistant of ptetion.
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2) How well each style allows you to detect a fall

+ Drag and drop + « Drag and drop -+

« Drag and drop -+ + Drag and drop +

« Drag and drop -+ « Drag and drop »

1 (best for detecting) 2 3 4 5 6 (worst for detecting)

Figure 5-4: Rankings allowed participants to re-rark the video privacy setting by dragging and
dropping the picture representing the video privacysetting. The initial ranking was randomized for

each participant and for each ranking criteria.
5.3.4. PROCEDURE

Prior to the experiment, the 13 teaching assistai®e instructed not to answer
guestions regarding the experiment, but to answesstipns related to using the
computers to answer the questions from the expetinidée teaching assistants were not
participants. The teaching assistants were blindhéo conditions and purpose of the
experiment.

The experiment took place during lab sections. Epatfticipant had a desktop
computer assigned to him or her. Participants wesen the full three hour lab section to
work on the experiment. Most participants finishathin the first hour, as we desired.

The lab section's teaching assistant gave partitspa hyperlink to the experiment's
introduction web page. The order of the experinsenéb pages were static and linear in
the following order: introduction, unique particiganumber, background information,
and detection and privacy videos. Participants eorkt their own pace. Participants

were required to leave the lab section room onoepbeted.
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2.4 PRIVACY PERCEPTION RESULTS

We measured privacy perception in three ways: ka0 privacy settings, privacy
score for each video privacy setting, and askingaith video privacy setting provided

sufficient privacy.

5.4.1. PRIVACY RANKING

The participants were asked to rank how well eadborprivacy setting protects the
person's privacy. The rank from most to least pywaas: trailing-arrows, bounding-box,
bounding-oval, silhouette, blur, and finally ravded. There was a statistically significant
difference in ranking between all video privacytisgfs. The ranking is useful for
establishing a relative order between the videwvagy settings but does not give insight

into the magnitude of the relative differences.

5.4.2. PRIVACY SCORE PER VIDEO

Each video shown (except the introduction videa) ha associated prompt, "This
style of video protects Grandpa's privacy" with possible responses. We associated a
number with each response: strongly disagree ¢i8agree (-2), slightly disagree (-1),
slightly agree (+1), agree (+2), and strongly ag(e8). We summed the number
associated with the response between each videacgrsetting. There were three videos
for each video privacy setting, thus the range wWat +9. We added +9 to each video
privacy setting summation resulting in a range db0+18, as shown in Figure 5-5. A

score above 9 means that the video privacy setimgwerage was perceived by the
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participants to protect privacy to some degree,rede a score below 9 means that the
video privacy setting did not protect privacy. Téawas a significant difference (p <
0.005) in the privacy scores between all videogonwsettings.

The privacy score establishes the relative diffeeebetween the video privacy
settings. The privacy score questions were askegenately after watching each video
and thus participants likely responded based orcretem examples rather than more
abstract beliefs.

The particular combination of videos, video orderd privacy setting per video was
the same across only one participant on averagehwh too few to determine if a
statistical confound occurred from the simultaneouanipulations of the randomly
selected videos, randomly ordered videos and ralydassigned video privacy settings.

18 Privacy protected

15 15
ks (e
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o 12 -
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9
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| ' ' ' I
raw blur silhouette oval box trailing

alrows
Figure 5-5: Privacy score per video: Summed privacgcores between each video privacy setting.

The higher the score, the more the privacy was peetved to be protected.
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5.4.3. PERCEIVED SUFFICIENCY OF PRIVACY

Ultimately, we wish to know if participants felt @a privacy enhancement was
sufficient in protecting privacy or not. Near thedeof the experiment, participants were
asked to declare each video privacy setting asigiray sufficient privacy or as not
providing sufficient privacy. The percentage of tpgpants that reported each video
privacy setting as sufficient is shown in Figuré.5There was a statistically significant
difference (p < 0.001) in sufficiency of privacytiseen all video privacy settings, except
the trailing-arrows video and the bounding-box widifference was not significant (p =
0.249).

This result suggests that only bounding-oval, bauptbox, and trailing-arrows
provide sufficient privacy, and even more imporgntthat the common privacy
enhancements of silhouetting and blurring do ngteap to provide sufficient accuracy.
Additionally, since this question was administeedter each video privacy setting had
been seen, the participants had a chance to contipargideo privacy settings. The
comparison between settings is consistent with ighoy customizable assistant
technology, which has been shown to be importattigaisage of assistant technology.

The reason participants tended to report insufiic@ivacy for blur and silhouette
(and of course raw) may have been that those \pdegacy settings still showed what the
monitored person was doing, such as drinking coeemtching his or her face, etc. For
example, one participant wrote in the free respaisthe end of the survey that, "as it

[silhouette] is, you can make out what the persodding.” Another participant wrote,
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"Box, oval and trailing arrows showed the actiomrgipa is taking but covered the

appearance and shape of grandpa.”

100% Sufficient privacy
2 . oem 9%
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arrows

Figure 5-6: Sufficiency of privacy: The percentag®f participants who reported that there was

sufficient privacy provided for each video privacysetting.

9.5 FALL DETECTION RESULTS

We measured fall detection in two ways: rankingidkEo privacy settings based on

perceived detection accuracy, and actual deteatioaracy.

5.5.1. PERCEIVED FALL DETECTION ACCURACY RANKING

Participants ranked how well each video privacytirsgtwas perceived to have
allowed for him or her to detect a fall. The rarkinom best to worst for detecting a fall

was: raw, blur, silhouette, bounding-oval, boundux, and finally trailing-arrows
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video. There was a significant difference (p < @Q)Jd ranking between all video privacy
settings. The perceived detection ranking is usébul establishing a relative order
between video privacy settings but does not addaessal detection ability nor the

relative difference between video privacy settings.

9.5.2. ACTUAL FALL DETECTION ACCURACY

Each video shown (except the introduction videa) ba associated prompt asking
the participant to determine if a fall had occurdedting the video, sometime prior to the
video, or not at all. A correct answer had the eciroption selected and if the correct
option is a fall during the video, then the estimgatime of the fall during the video is
within 10 seconds of the actual fall. The detectamturacy is the number of correct
answers divided by the number of questions averageuks the participants. The actual
detection accuracy establishes a relative diffexdretween video privacy settings and is
a practical measure of fall detection ability.

Figure 5-7 shows the detection accuracy for eadeoviprivacy setting. There was
not a significant difference (p = 0.274) in deteotaccuracy between raw and blur video,
nor a significant difference (p = 0.623) in detentaccuracy between blur and silhouette
video. There was a significant difference (p = @)0in detection accuracy for raw and
silhouette video. There was a significant diffeeefig < 0.003) in detection accuracy for
the remaining pairs of video privacy settings.

A typical use case would be that the caregiveragdarat the video and notices the
care receiver's position (likely on floor) with wually light activity, rewinds video to a

period of interest (activity, then unusually lighttivity), then watches the interesting
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point to determine whether a fall occurred. To exanthe participant's ability to detect
falls during the video, we categorize videos iral-fluring (which would appear during a
period of interest) and no-fall-during (a no-falf pre-fall). We report the average
sensitivity and specificity in Table 5-1. Sensityvis the ratio of correctly detected fall-
during videos over actual fall-during videos, gify5 fall-during videos were correctly
detected but there were 6 total fall-during videthgn the sensitivity is 5/6 = 0.83.
Specificity is the ratio of correctly detected radHduring videos over actual no-fall-
during videos, e.g., if 11 no-fall-during videosr@eorrectly detected but there were 12
total no-fall-during videos, then the specificisyli1/12 = 0.92.

The higher fall detection accuracy of bounding-owatr bounding-box may be due
to the brief occasional exposures of the outeispara person’s head, arms, and legs with
bounding-oval, which admittedly was unintentional @aur part but turned out to be a
useful feature. A participant explained during astpexperiment interview that such
exposure helped the viewer know the monitored messorientation, such as which
direction the person was facing. Also, one paréiotpwrote, "l feel the oval was good
because you get privacy, but you can still seg#reon’'s arms and head which can help
in determining whether a person is hurt or haefalllThe bigger rectangles covering the
entire body and movement make it difficult to detare this."

The particular combination of videos, video orderd privacy setting per video was
the same across one participant on average, whithoifew to determine if a statistical
confound occurred from the simultaneous manipulatiof the randomly selected videos,

randomly ordered videos and randomly assigned viieacy settings.
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Figure 5-7: Actual fall detection accuracy: Correctanswers over total answers for each video

privacy setting averaged across all participants.

Video privacy setting Sensitivity  Specificity
Raw 0.98 0.98
Blur 0.98 0.96
Silhouette 0.97 0.97
Bounding-oval 0.95 0.86
Bounding-box 0.64 0.84
Trailing-arrows 0.74 0.72

Table 5-1: Sensitivity is the correctly detected f&kduring videos over total fall-during videos,

and specificity is the correctly detected no-fall-dring videos over total no-fall-during videos.

5.6 PRIVACY PERCEPTION AND FALL DETECTION

One purpose of our experiment was to explore thdewff space between fall

detection and privacy perception. The tradeoff spaetween actual fall detection
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accuracy and perceived sufficiency of privacy isveh in Figure 5-8. The ideal video
privacy setting would have a value of 100% in bodkegories, thus being located in the
top-right corner of the plot. Bounding-oval videoodlosest to the top-right corner, which
is best assuming actual fall detection accuracypandeived sufficiency of privacy are of
equal concern. The next closest was bounding-bdeovithen trailing-arrows video. The
significant lack of sufficient privacy provided Isyihouette, blur, and raw video caused
these video privacy settings to be far from the-right corner. The tradeoff space
between actual fall detection accuracy and privacgre per video had a similar
distribution of video privacy settings, with boungtoval video closest to the top right

followed by bounding-box video then trailing-arrowdeo.
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Figure 5-8: Tradeoff space for video privacy settigs between actual fall detection accuracy
(correct answers over total answers) and sufficieryoof privacy (percentage of participants who

reported privacy was sufficient).
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2.7 CONCLUSION ON PRIVACY PERCEPTIONS OF

PRIVACY -ENHANCED VIDEO AND FALL DETECTION

ACCURACY

Our experiments demonstrated tradeoffs among privathancements and fall
detection accuracy for in-home assistive monitaringoarticular, placing an oval or box
over a person was viewed as sufficiently protectmmyacy (by 88% and 96% of
participants, respectively) while still enabling selvers to detect falls with good
accuracy for bounding-oval (89%) and but lower aacy for bounding-box (77%). The
bounding-oval’s improved accuracy (and slightly éwprivacy) seemed to come from
the oval occasionally and briefly not covering asp@a’s extremities. Another key finding
was that the common privacy enhancement methodsillobuetting and blurring,
although commonly suggested for privacy purposesrewgenerally perceived as
providing insufficient privacy. We also found th#te trailing arrows enhancement,
which we introduced to improve privacy and fallettton over a bounding box, failed to
achieve improvement in fall detection. Furtherm@eme users stated they found the
method unpleasant or confusing to view, indicatinigias on our part towards a display
comfortable perhaps for engineers.

Ultimately, an in-home assistive monitoring systeray provide users with multiple
privacy-enhancement options, as configurabilitypeople’s different privacy and fall

detection needs is important.
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Our future work includes striving to find a methsuhnilar to trailing arrows that
provides strong privacy protection while also pdwwg high fall detection accuracy and
while being comfortable to view by non-engineerse WAfe also developing automated
fall detection algorithms operating on each typepafacy enhanced video. We are
investigating human and automated detection ofviéies beyond fall detection,
including activities of daily living, such as coakj, eating, sitting, standing, nighttime
rising, leave home at night, and in room too loalgng with detection of disorientation,

of seizures, of strangers in the home, and more.
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Chapter 6. CONTRIBUTIONS

An MBR-based fall detector can provide highest az@cy while also requiring the
least amount of computation. Our MBR-based algorittsed an order of magnitude less
computation time than 3D-based algorithms, whiledpenore accurate with 3 cameras
and equally accurate with 4+ cameras. A single-camehieved 0.960 sensitivity and
0.995 specificity, while 2 or more cameras achie@@90 or better sensitivity and
specificity.

MBR-based and head-based fall detection accuraaresthe same for non-
confounding scenarios achieving perfect 1.00 seitgitand specificity, and the same
sensitivity of 0.75 for non-confounding scenaridtowever, the 3D head-based fall
detector had a specificity of 1.00, 2D head-baseatl W85, and MBR-based had 0.54 for
confounding scenarios. But, head-based fall detedigorithms increased computation
by five to ten times versus MBR-based fall detatctiand thus are only practical when
computing resources are plentiful or the highessyide accuracy is demanded.

Privacy-enhanced video degrades the accuracy oftonmg goals compared to raw
video for non-adaptive algorithms. However, the paida algorithms, specific-color
hunter and edge-void filler, can help compensatettiat degradation without loosing
computational efficiency. For example, fall detentiaccuracy degraded from 1.0
sensitivity to 0.86 and 1.0 specificity to 0.79 Itle adaptive algorithms compensated

accuracy back up to 0.92 sensitivity and 0.90 d$pégi
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Placing an oval or box over a person was vieweduffsciently protecting privacy
(by 88% and 96% of participants, respectively) wistill enabling observers to detect
falls with good accuracy for bounding-oval (89%ydyut lower accuracy for bounding-
box (77%). Another key finding was that the comnpoivacy enhancement methods of
silhouetting and blurring, although commonly sudeeésfor privacy purposes, were

generally perceived as providing insufficient paya
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