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Abstract
Sleep staging is a fundamental but time consuming process in any sleep laboratory. To greatly speed up sleep staging 
without compromising accuracy, we developed a novel framework for performing real-time automatic sleep stage 
classification. The client–server architecture adopted here provides an end-to-end solution for anonymizing and 
efficiently transporting polysomnography data from the client to the server and for receiving sleep stages in an 
interoperable fashion. The framework intelligently partitions the sleep staging task between the client and server in a 
way that multiple low-end clients can work with one server, and can be deployed both locally as well as over the cloud. 
The framework was tested on four datasets comprising ≈ 1700 polysomnography records ( ≈ 12 000 hr of recordings) 
collected from adolescents, young, and old adults, involving healthy persons as well as those with medical conditions. 
We used two independent validation datasets: one comprising patients from a sleep disorders clinic and the other 
incorporating patients with Parkinson’s disease. Using this system, an entire night’s sleep was staged with an accuracy 
on par with expert human scorers but much faster ( ≈ 5 s compared with 30–60 min). To illustrate the utility of such real-
time sleep staging, we used it to facilitate the automatic delivery of acoustic stimuli at targeted phase of slow-sleep 
oscillations to enhance slow-wave sleep.
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Statement of Significance
Sleep comprises different physiological stages, with each stage having a unique neurophysiological signature. 

Traditionally, staging is performed visually by trained sleep technologists. The process is costly and time consuming. In 
the present work, we utilized recent advances in machine learning, to develop a framework that automatically performs 
real-time sleep staging. We tested the framework on ≈ 12 000 hr of polysomnography records. Sleep classification was on 
par with expert scorers across data collected from participants who differed in age and health status. Furthermore, our 
approach opens up new applications that require real-time sleep-stage dependent interventions.
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Introduction
Polysomnography (PSG) is the primary tool used for quantita-
tively assessing sleep and involves concurrent acquisition of 
multiple physiological signals comprising the electroenceph-
alogram (EEG), electrooculogram (EOG), electromyogram (EMG), 
and electrocardiogram (ECG). Standardized rules for sleep sta-
ging using PSG were first laid out by Rechtschaffen and Kales [1] 
(R&K) in 1968. In 2007, the American Academy of Sleep Medicine 
(AASM) [2] combined the best available evidence with the con-
sensus of experts in sleep medicine and sleep science to modify 
the R&K rules, resulting in a higher inter-rater reliability (IRR) of 
sleep staging than with the R&K system [3]. Under the modified 
rules, the number of sleep stages was simplified to 5: Wake (W), 
Stage 1 through Stage 3 (N1, N2, and N3), and REM. Stages 3 and 
4 from the R&K rules were collapsed to N3 in the revised scoring 
criteria, and movement time (MT) was no longer considered as 
a separate stage.

Numerous automatic sleep stage classification schemes 
have been proposed and demonstrated, but time consuming 
and resource intensive human expert review remains the main 
method by which sleep staging is performed in most clinical 
and sleep research labs worldwide. Automated systems typically 
incorporate particular carefully engineered features extracted 
from PSG data into a classification algorithm. Features that have 
been extracted from PSG data include spectral power [4–7], band 
power [4–11], wavelet coefficients [4, 6, 12–14], higher order spec-
tra [15], Hurst exponent [5], auto-regressive model parameters 
[16, 17], fractal dimension [17], entropy [5, 17, 18], Itakura dis-
tance [19], root mean square amplitude [4], peak-to-peak amp-
litude [4, 6], kurtosis [7, 11, 18], zero crossing [7] amongst others. 
Classification algorithms include support vector machine [7], 
Gaussian mixture models [15], artificial neural networks [4–6, 13, 
14, 18], learning vector quantization [16], rule and case based 
reasoning [4, 6, 8], neurofuzzy classifier [19], decision trees [4, 6], 
linear discriminant analysis [4, 6, 17], extreme learning machine 
[11], and hidden Markov models [9]. Some methods apply 
sophisticated artifact correction prior to feature extraction [4, 
6]. The accuracy associated with existing automated methods 
varies from between 75% and 95%. In most instances, the clas-
sifier was validated using samples containing less than 100 hr 
of data [7, 8, 12, 15–18], with some work being supported by as 
little as 10 hr of validation data [9, 13, 14, 19]. The large variety 
of methods used, lack of convenient software for clinical users, 
concern about generalization of the methodology beyond the 
test samples used to demonstrate proof-of-concept, as well as 
earlier limitations in computational power, have hindered the 
broad employment of automated sleep staging systems.

With the growing adoption of artificial intelligence tech-
niques in everyday life ranging from voice recognition to pre-
diction of search preferences, there is a compelling case for 
reconsidering broad adoption of automated sleep staging to 
speed up clinical sleep staging as well as to open the door to 
“real time” applications like targeting memory reactivation [20, 
21] or the selective accentuation of slow oscillations in slow-
wave sleep (SWS) to augment memory [22–25].

A recent publication in this journal featured one big data 
approach [11] which used a very large dataset to train and val-
idate an automatic sleep classification system. In contrast to 
the present work, the approach used was based on tuning mul-
tiple, expertly selected statistical EEG features. In contrast, we 

employed deep learning [26] algorithms that engage multiple 
neural network layers to discover patterns and structure in 
large datasets. Instead of relying on expertly selected features, 
deep-learning methods extract features in a data-driven fashion 
to discover structure and patterns to connect these features to 
high-level abstract concepts, thereby completely obviating the 
need for feature engineering.

Deep learning has delivered exceptional performance in 
applications involving image and speech recognition [26]. Our 
framework employs a combination of deep and shallow neural 
networks along with standardized data processing and trans-
port protocols. Its advantages compared with previous methods 
are as follows: (i) ability to operate on raw PSG data, without 
relying on artifact and noise correction; (ii) low data transport 
and processing overheads together with a high level of paral-
lelization, allowing for rapid sleep classification even on con-
sumer-grade hardware; (iii) scoring accuracy that is on par with 
expert human scorers; and (iv) issuance of a confidence score 
associated with each scored epoch for review purposes. We also 
demonstrated a novel application of the framework: to automat-
ically deliver precisely timed acoustic stimulation during slow-
wave (N3) sleep, for the purpose of memory augmentation [25].

Materials and Methods

Datasets

PSG data were obtained from four independent sources in 
Singapore and San Diego, USA. The data were acquired according 
to AASM practice standards and scored by experienced research 
assistants or registered polysomnographic technologists 
(RPSGT) according to AASM standards. The data comprised of 
the following: dataset-1 (DS1) with 1046 PSG records ( ≈ 7800 hr) 
from healthy adolescents (age: 15–19 years), DS2 with 284 PSG 
records ( ≈ 1700 hr) from healthy young adults (age: 21–40 years), 
DS3 with 210 diagnostic PSG records ( ≈ 1600 hr) from patients 
(age: 10–83 years) of a sleep disorders clinic, and DS4 with 77 PSG 
records ( ≈ 600  hr) from adult patients (age: 47–89  years) with 
Parkinson’s disease (PD). A  combination of DS1 and DS2 was 
used for training and testing of the classification models. DS3 
and DS4 were used as independent validation sets. A  total of 
11,727 hr of PSG data with 1,403,164 epochs were used for train-
ing, testing, and validation. Details of the datasets are summa-
rized in Table 1. All participants provided written consent and 
data collection and usage were approved by the Institutional 
Review Board (IRB) of the National University of Singapore (DS1), 
the SingHealth Centralized IRB (DS2 and DS3), and University of 
California San Diego IRB (DS4).

Framework overview

The sleep-scoring framework adopted the separation of con-
cerns (SoC) design principle by dividing the task between a cli-
ent and server module (Figure  1). The client was responsible 
for interfacing with the EEG recorder (for online sleep classifi-
cation) or local storage (for offline sleep classification) and pre-
processing the data. Offline PSG data were stored in European 
Data Format (EDF), an open and nonproprietary file format for 
storage and exchange of digitized PSG data [27]. Two EEG chan-
nels (C3-A2 and C4-A1) and two EOG channels (E1-A2 and E2-A1) 
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were used. The four-channel PSG data underwent filtering and 
resampling operations followed by a short-time Fourier trans-
form, which resulted in a three-channel spectrogram for every 
epoch of data. The stacked spectrograms were then packed into 
a compressed feature set (CFS), a standardized binary file format 
(Figure S2). The CFS format provides an interoperable high-level 
specification for communication between different implemen-
tations of client and server modules. In addition to anonymity, 
the CFS format afforded significant data compression resulting 

in far smaller file sizes compared with offline EDF files or raw 
online data. The software library used to create, stream, and 
store CFS files from raw PSG data or EDF files is available online 
(Matlab: https://github.com/amiyapatanaik/cfslib-MATLAB and 
Python: https://github.com/amiyapatanaik/pycfslib).

The server side module received a CFS file/stream and 
decoded it back into a stacked spectrogram that was used for 
sleep classification. The final sleep scores along with their asso-
ciated confidence scores were sent back to the client in JavaScript 

Table 1. Details of training, testing, and validation datasets

Datasets

Name PSG Records (hrs) N Source Scored by Demographics Type

DS1 1046* (7777) 120 Cognitive 
Neuroscience Lab, 
Duke-NUS Medical 
School, Singapore

Trained  
research 
assistants

Healthy adolescents, age: 
15–19 y

75% training, 25% 
testing

DS2 284* (1749) 52 Chronobiology and 
Sleep Lab, Duke-
NUS Medical School, 
Singapore

The Siesta  
Group GmbH, 
Austria

Healthy adults, age: 21–40 y 75% training, 25% 
testing

DS3 210 (1590) 210 Sleep Disorders Unit, 
Singapore General 
Hospital, Singapore

Trained 
technicians

Patients with suspected organic 
and functional sleep disorders, 
age 10–20 y (4.8%), 21–45 y 
(42.4%), 46–60 y (33.3%), above 
60 y (19.5%)

Validation

DS4 77 (611) 77 Laboratory for Sleep 
and Chronobiology, 
University of 
California San Diego, 
School of Medicine, 
USA

Trained 
technicians

Patients with Parkinson’s dis-
ease (PD) with 42% patients 
additionally classified as hav-
ing REM-sleep behavior dis-
order (RBD) and 28% patients 
as probably having RBD. age: 
47–89 y

Validation

Dataset 1 (DS1) and DS2 comprise PSG records from healthy adolescents and adults, respectively. DS3 is obtained from patients from patients in a sleep clinic, whereas 

DS4 is a sample of patients with Parkinson’s disease. Total 11 727 hr.

*includes naps.

Figure 1. Framework for automatic sleep stage classification. The framework employs a separation of concerns design principle by dividing the task between a client 

and a server. The client handles data acquisition and preprocessing, while the server handles sleep scoring. The server and client communicate using standardized 

protocol for high level of interoperability.
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Object Notation (JSON), a lightweight open and nonproprietary 
data-interchange format. A confidence score between 0 and 10 
was then assigned, with 0 being low confidence and 10 being 
very high confidence. This score provides guidance for quality 
control (QC), i.e. human review of the results of the automated 
sleep stage classification. A cloud-based implementation of the 
framework is made available at https://z3score.com. An inter-
face to the sleep classification server module can be found at 
https://github.com/amiyapatanaik/z3score-api along with sam-
ple client code. A  modified version of fMRI Artefact rejection 
and Sleep Scoring Toolbox (FASST [28]) is also accessible from 
https://github.com/amiyapatanaik/FASST-Z3Score. The toolbox 
provides an easy to use graphical user interface for the inte-
grated automatic sleep scoring methodology implemented by 
the sleep classification server.

Data acquisition and preprocessing: client side

The client side module acquired two EEG channels (C3-A2 and 
C4-A1) and two EOG channels (E1-A2 and E2-A1) from the EEG 
recorder or offline storage. Within the preprocessor module, the 
C4-A1 and C3-A2 channels were averaged, to construct a single 
EEG channel. If either of the EEG channels was missing, the data 
were sent directly without averaging. The data were then filtered 
using a window-based order 50 finite impulse response (FIR) 
band-pass filter. Computation of filter weights was performed 
using a Hamming window. The pass-band frequency was 0.3 to 
45 Hz for EEG channels and 0.3 to 12 Hz for EOG channels. The fil-
tered data were then downsampled to 100 Hz using a polyphase 
FIR filter. If the original data were sampled at 100 Hz, the down-
sampling step was omitted. The data were then divided into 30 s 
epochs. Each epoch at this stage comprised of 3000 samples per 
channel. For each epoch, a spectrogram, comprising time-fre-
quency decompositions of the original data, was obtained using 
a short-time Fourier transform. Specifically, a Hamming win-
dow of length 128 with overlap of 29.69 per cent was used and 
Fourier transform was performed using Fast Fourier Transform 
(FFT) algorithm. This resulted in a spectrogram with 32 time 
points (resolution of 938  ms) and 65 frequency points (reso-
lution of 0.7692 Hz). The first 32 frequency bins were considered 

(corresponding to 0 to 24.6154 Hz) resulting in a 32 × 32 spec-
trogram. The spectrogram for each channel was then stacked 
into a three-channel matrix of size 32 × 32 × 3. This resulted in 
a single stacked-spectrogram per epoch. Spectrograms from all 
data were stacked together and were encoded to the CFS format 
(Figure S2). The CFS data stream was transported to the server 
using Hypertext Transfer Protocol (HTTP).

Sleep classification: server side

The server module consisted of a decoder to read the stacked 
spectrograms from CFS files and two stages of classification 
blocks (Figure  2). The first classification stage comprised of a 
16-layer deep convolutional neural network (dCNN), which took 
the spectrogram and assigned class probabilities to each sleep 
stage for that epoch, i.e. for a given spectrogram correspond-
ing to the nth epoch, the dCNN, in its final layer generated the 

probability ( , , , , )/p p p p pn
wake

n
stage

n
stage

n
stage

n
REM1 2 3 4  that the epoch was 

classified with a particular sleep stage. The sleep stage with 
the highest probability was the most probable class (MPC). To 
numerically compute the MPC, each sleep stage was encoded as 
a number (1: Wake, 2: S1, 3: S2, 4: S3, 5: REM) and then the MPC 
was computed as

 c argmax p ii= ( ) = …; , , .1 5  

The probabilities for the five possible sleep stages along with the 
MPC constituted the output of classification block 1.

For offline data, the block-1 classifier was run on all available 
data. For online data requiring real-time processing, at least five 
epochs of data were first processed by the block-1 classifier. For 
any epoch, the output of the block-1 classifier along with five 
preceding and five succeeding MPC outputs were fed into block-2 
classifiers (Figure 2). In online mode, when succeeding MPC out-
puts were not available, the five preceding MPC outputs were 
reused. The block-2 classification block consisted of a multi-
layer perceptron (MLP). The MLP block weighted the succeeding 
and preceding five MPC outputs along with the current epoch’s 
block-1 classifications to generate a revised class probability of 
each sleep stage for that epoch. An MPC block was again used to 

Figure 2. Overview of the classifier module. The classification module receives CFS data from the client and decodes it into stacked spectrograms. The spectrograms 

are then fed into classification block 1 comprising of a dCNN. The output of the dCNN is fed into a multilayer perceptron in classification block 2. The final sleep stages 

and associated relative confidence are then sent back to the client.
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find the final sleep stage for that epoch. Additionally, a relative 
confidence score r  was computed as

 r
p

p

max

secondmax
= −







min , ,1 10  

where pmax  is the probability of the MPC and psecondmax  is the 
probability of the second MPC. The score varied between 0 and 
10, with 0 signifying very low confidence and 10 signifying very 
high confidence. By thresholding this confidence score, a portion 
of the overall data could be marked for review during quality 
control. The classified sleep stage along with associated relative 
confidence was sent to the client in JavaScript Object Notation 
(JSON) over HTTP. The MLP had a total of 445 tunable weights, 
whereas the dCNN had 177,669 weights. The overall classification 
blocks have a total of 177,669 + 445 = 178,114 tunable weights. The 
specifics of architecture for each classification block, along with 
initialization and training procedures, are discussed in detail in 
Supplementary Material (Figure S1 and Table S1).

Novel application: real-time acoustic stimulation

The ability to perform sleep staging rapidly and reliably opens 
up many novel applications that require stage dependent inter-
vention. For example, boosting SWS, using transcranial stimula-
tion [24] or acoustic stimulation [25] has been shown to enhance 
declarative memory. Similarly, online detection of REM sleep can 
be used to time the induction of lucid dreams [29]. In the present 
work, we demonstrated one such application by automatically 
delivering precisely timed acoustic stimulation during SWS in 
real-time.

For effective auditory closed loop simulation of SWS, short 
bursts of auditory tones must be presented during the up-state 
of the EEG waveform (Figure 3). Therefore, both sleep stage and 
phase of the EEG signal must be estimated in real-time. Three 
EEG channels (F3-A2, C3-A2, and C4-A1) and two EOG chan-
nels (E1-A2 and E2-A1) sampled at 500 Hz were acquired in 
real-time. The F3-A2 EEG channel was used for phase tracing, 
whereas other channels were used for sleep scoring. The data 
were fed into a 30  s running buffer (Figure  4A) at 50 Hz. Due 
to the presence of large DC drifts, a DC-blocking filter [30] with 
cutoff of 0.03 Hz was applied to the buffer. The running buffer 
was resampled at 100 Hz using polyphase FIR filters. All filtering 
was applied in both temporal directions to avoid phase delay 
caused by filtering. The running buffer was sleep scored once 
in a second using the framework, whereas phase detection was 

carried out 50 times a second. Phase tracking of raw EEG sig-
nal in real-time is a difficult task. Phase-locked loops (PLL) have 
been shown to reliably track phase in real-time [31]. However, 
the implementation and parameter optimization of a PLL-based 
phase tracker are nontrivial. We used a simple voltage thresh-
old and inflection point–based up-state detection and target-
ing algorithm (Figure S3). Although the algorithm did not track 
phase per se, it detected the up-state reliably which was suffi-
cient for our purposes. Auditory tones in the form of 40 ms pink 
noise were delivered in the form of 2 on and 2 off blocks. During 
the off blocks, the phase-targeting was carried out but no tones 
were delivered.

Results

Classification accuracy

The classification blocks were trained using 75 per cent of DS1 
and DS2, whereas the remaining 25 per cent were used for test-
ing. A single pass through the whole training dataset constituted 
one training epoch. Training continued until no improvement 
in accuracy for the testing set was observed (Figure  5A). The 
block-2 classifier reduced the error rate of the block-1 classifier 
by 18.4 per cent in the testing set. The overall accuracy was 90 
per cent for the training set and 89.8 per cent for the test set, cor-
responding to Cohen’s kappa ( κ ) of 0.865 and 0.862, respectively 
(Figure 5B). This corresponds to perfect agreement according to 
Landis and Koch’s [32] arbitrary benchmarks for evaluating κ . 
The highest disagreement between automatic and expert classi-
fication was observed for N1 sleep. For other stages, automated 
and expert classification were in agreement for at least 90 per 
cent of records.

With validation set DS3, the overall accuracy was 81.4 per 
cent corresponding to κ = 0 740. , signifying substantial agree-
ment. Compared with the training and testing set, agreement 
for REM sleep dropped substantially with automatic classifi-
cation agreeing with expert classification 71.8 per cent of the 
time. For validation set DS4, overall accuracy was 72.1 per cent 
corresponding to κ = 0 597. , corresponding to moderate agree-
ment. The lower agreement can be attributed to an overall drop 
of agreement across all sleep stages but particularly for REM, 
which was expected given that many of the patients with PD 
also exhibited REM behavior sleep disorder. Classification per-
formance did not improve by increasing depth of the d-CNN any 
further. Replacing the second stage MLP with a long short-term 

Figure 3. Phase angle of a sinusoidal wave. Acoustic stimulation is most effective when delivered in the up-state (green) and is ineffective when delivered in the down-

state (red). Ideally, the stimulus should be targeted for the peak of the wave (90°) while avoiding overshooting.
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memory (LSTM) [33] to utilize long-range contextual informa-
tion resulted in a decrease in classification accuracy in the val-
idation sets.

Automatic vs expert scoring agreement

The between experts’ IRR for the validation sets was estimated 
by rescoring a subset of the data. Specifically, 50 PSG records 
were randomly chosen from each of the validation sets DS3 and 
DS4 and were rescored independently by RPSGT-certified sleep 
technologists from a professional sleep scoring company—
SomnoSure, St. Louis, MO—USA. The subject-wise agreement 
between expert and automatic scoring was slightly lower than 
the overall agreement rate (i.e. after combining all epochs) for 
both DS3 (subject wise κ = 0 713.  vs overall κ = 0 740. ) and DS4 
(subject-wise κ = 0 560.  vs overall κ = 0 597. ). For the rescored 
subset, a pairwise comparison of subject-wise IRR revealed a 
higher rate of agreement between automatic and expert scorer 
compared with the expert–expert scorer (t49  =  2.320, p  <  0.05, 
Figure  6). While for DS4, there was no statistically significant 

difference in agreement between automatic-expert and expert-
expert IRR ( t N S49 0 013= . , . . ). The reliability of agreement between 
all three raters (two experts and the automatic scorer) was then 
assessed using Fleiss’ κ for the rescored subset. The median 
Fleiss’ κ was 0.655 for DS3 and 0.563 for DS4 which correspond 
to substantial and moderate agreement, respectively (based on 
Landis and Koch’s [32] arbitrary benchmarks). This was similar 
to the IRR observed between automatic and expert scorers for 
the entire dataset.

Quality control and secondary review system

Any machine learning algorithm can yield unexpected results 
if the input data differ significantly from the training sets. 
Therefore, notwithstanding the human expert level accuracy of 
the framework, secondary review is an important aspect of sleep 
classification. The confidence score associated with each epoch 
provides guidance for this review whereby only the epochs below 
a given confidence threshold are recommended for review. For 
both validation datasets, Figure 7 shows the percentage of data 

Figure 4. Automatic acoustic stimulation system. (A) Overview of the real-time stimulus presentation system. The scoring and phase tracking were carried out on a 

running 30 s buffer which was updated at 50 Hz. Scoring was performed using the client–server architecture every second. When conditions based on phase of the 

EEG wave and sleep stage were satisfied, an auditory stimulus was presented. (B) Average event-related potentials stimulus locked to the first auditory stimulus for a 

representative participant, who underwent a stim and a sham session. Sham refers to the control condition where phase tracking was carried out but without auditory 

stimulation. Both sessions were separated by a week.
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that were marked for review (bottom x-axis) for a corresponding 
confidence threshold value (top x-axis) and the auto vs expert 
IRR value for data that remained unreviewed (y-axis). For the 
validation datasets, a confidence threshold of 1 required 12 per 
cent of the data to be reviewed for both validation datasets DS3 
and DS4 while resulting in perfect agreement for remaining data 
for DS3 and substantial agreement for DS4 (based on Landis and 
Koch’s [32] arbitrary benchmarks for evaluating Cohen’s κ).

Data compression, classification speed, and acoustic 
stimulation

Using the CFS file format, we achieved an average compression 
of 16.4× compared with original EDF files (15.97GB compared 
with 262GB). On a workstation without a GPU (Intel Xeon E5, 3.7 
GHz, Quad Core CPU), a single epoch of raw data were scored in 
less than 5 ms, which works out to ≈ 5 s for scoring an ≈ 8.5 hr 
sleep recording. This included time to convert the raw data to CFS 

Figure 5. Classification performance of the framework. (A) Training and testing error rates vs. training epoch number for classification blocks 1 and 2. Training was 

stopped once test error saturated or started increasing. (B) Confusion matrix for training, testing, and validation sets. The training set comprised of 75% dataset 1 (DS1) 

and DS2, and the testing set comprised of the remaining 25% of DS1 and DS2. DS3 and DS4 constituted independent validation sets.

Patanaik et al. | 7



format, transport the data to the locally deployed server, and get 
back the scored data. This was brought down to sub-1 ms using a 
mid-range GPU (NVIDIA GeForce GTX-1060).

The framework allowed presentation of acoustic stimulation 
for boosting SWS fully automatically. Figure 4B shows average 
event-related potentials stimulus locked to the first auditory 
stimulus for a representative subject during stim and sham con-
ditions. Sham was a control condition where phase targeting was 
carried out but no auditory stimulation was given while during 
stim, an auditory stimulus was delivered. A detailed description 
of the dataset and associated findings of the acoustic stimula-
tion protocol are described in a separate study [34].

Discussion
Irrespective of the scoring method used (AASM or R&K), the 
overall IRR among human experts scoring sleep recordings was 
about 80 per cent (Cohen’s κ = 0.68 to 0.76) [3]. Part of the discrep-
ancy in scoring can be attributed to scorer errors and bias, but 
most disagreements in scoring were from epochs that cannot 
be clearly assigned a sleep stage [35]. This results in an upper 
bound in the performance of any automatic sleep stage classi-
fication system. In the present work, accuracy on the training 
and testing set was higher than IRR values previously reported 
(~90 per cent agreement between our classification model and 
expert scores compared with reported expert–expert agreement 

of ~82% [3]). The higher accuracy can likely be attributed to 
the classification model mimicking the sleep technicians who 
scored the training and test datasets instead of attempting to 
follow a rigid rule-base. However, to be confident of the gener-
alizability of a classifier, its performance should be shown to be 
on par with expert–expert IRR on a separate dataset, ideally with 
different characteristics compared with the training samples.

To demonstrate this, we utilized two independent datasets 
that differed from the training and testing datasets in terms 
of age, health conditions, geography, EEG recorders used, scor-
ing difficulty, and technicians who scored the data. Validation 
set DS3 was obtained from patients who visited a sleep clinic. 
Validation set DS4 included patients with PD and was a consid-
erably more difficult dataset to score. Prior work has shown that 
IRR is very low for patients with PD [36], with a median κ = 0 614. .  
On both datasets, the overall performance of our framework was 
on par with expert human scorers. This assessment was arrived 
at through evaluation by an independent set of sleep technicians 
and reflects achievement of an accuracy level consistent with prior 
reports [36]. Among the different sleep stages, sensitivity and spe-
cificity of N1 detection were lower compared with other stages 
for both datasets. This is in line with previous observations with 
human experts [3, 36–38]. These results are promising given that 
the sleep staging system was trained on young, healthy individu-
als, and yet, it could accommodate evolving alterations in sleep 
architecture arising from aging and neurological disease [39].

Figure 6. Agreement between automatic and expert scores. Fifty randomly selected polysomnography records from each validation dataset DS3 and DS4 were rescored 

by an independent organization. This was used to estimate the subject-wise IRR between experts for each dataset as measured by Cohen’s κ and then compared with 

the computed agreement between automatic scoring and experts. The expert vs automatic scoring agreement was statistically significantly better than expert-expert 

agreement for DS3 but similar for DS4. The distribution of Cohen’s κ is shown on the left for each validation dataset. The reliability of agreement between the two 

experts and automatic scoring was assessed using Fleiss’ κ. The box-plot of the distribution of Fleiss’ κ for the 50 records is shown on the right for each validation 

dataset DS3 and DS4. Within each plot, individual participants are uniquely color coded.
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Our approach is differentiated from prior work, in which train-
ing, testing, and validation data were obtained by partitioning 
the same dataset. Although all machine learning algorithms fit 
a model to the data, the ultimate goal of any such algorithm is 
to learn the underlying statistics which are not specific to that 
particular dataset and to generalize these to data from different 
sample populations. Even for large datasets, when both training 
and validation sets are obtained from the same sample, perform-
ance on the validation set might not generalize to other datasets 
as the model might be learning idiosyncrasies specific to that 
sample. This led us to avoid retraining the algorithm on the val-
idation datasets. Instead, we chose to use confidence scores to 
provide a way to carry out quality control after automatic sleep 

classification. Although variations of the framework might further 
improve performance, the current network architecture repre-
sents a good trade-off between maximizing classification accur-
acy while minimizing network complexity and computation load.

PSG, the gold standard for measuring sleep quantitatively, is 
a mature technology, and the time-consuming process of sleep 
scoring has changed little over the years. Burgeoning public 
interest in the personal measurement of sleep as evidenced by 
the growing sales of personal sleep/activity tracking devices pro-
vides a strong impetus for a robust, easily implemented rapid 
sleep scoring system. Devices based on actigraphic measures do 
not reliably quantify duration in each sleep stage [40]. Given the 
rapidly increasing computing power of personal mobile devices 

Figure 7. Secondary review system. The automatic sleep scoring framework generated a confidence score in addition to sleep classification for every epoch of data. The 

confidence score varied between 0 and 10: 0 indicating low confidence whereas 10 indicating high confidence. The secondary review system relied on quickly reviewing 

epochs with confidence below a set threshold. The figure shows amount of data (bottom x-axis) that needed review at a given confidence threshold (top x-axis) and the 

inter-rater reliability as measured by Cohen’s κ on the remaining (nonreviewed) data for both validation datasets DS3 and DS4.
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(like smartphones), advances in cloud computing and internet-
of-things technology, we anticipate that real-time sleep scoring 
like what we describe here will open up many novel applications 
(see for example, Kokoon, https://kokoon.io and Dreem head-
band, https://dreem.com). Our sleep classification framework is 
well positioned to take advantage of these developments.

By using a client–server architecture, the computationally 
heavy classification on the server side is separated from the 
relatively light preprocessing on the client side. This keeps the 
technical specifications of the client recording the PSG to a mini-
mum. The CFS file format ties the client and server in an inter-
operable fashion while significantly reducing data overhead.

In conclusion, our framework provides a practicable, vali-
dated, and speedy solution for automatic sleep stage classifica-
tion that can significantly improve throughput and productivity 
of sleep labs. It has the potential to play an important role in 
emerging novel applications of real-time automatic sleep scor-
ing as well as being installed in personal sleep monitors.

Supplementary Material
Supplementary material is available at SLEEP online.

Acknowledgments
We are grateful to Dr. Toh Song Tar at Sleep Disorders Unit, 
Singapore General Hospital, Singapore for providing data for val-
idation. We are thankful to Ms. Raudha Senin, Ms. Song Peirong, 
Mr. Sing Chen Yeo, Ms. Lianqi Liu, Mr. Xuan Kai Lee, Mr. Nicholas 
Chee, and Ms. Bindiya Lakshmi Raghunath for help with data 
acquisition and scoring. Ms. Litali Mohapatra helped with the 
figures.

Funding
This was not an industry sponsored study. The work was sup-
ported by the National Medical Research Council, Singapore 
(NMRC/STaR/015/2013); the Defence Science and Technology 
Agency, Singapore (PA/9B12100786), and The Far East Organization.

Notes
Conflict of interest statement. A.P., M.W.L.C., and J.L.O.  have a 
patent for the framework. S.A.-I. is a consultant to Acadia, Merc, 
NeuroVigil, Inc., Eisai, Pfizer, and Purdue. The authors declare no 
other conflicts of interest.

References
1. Rechtschaffen A, et al. A Manual of Standardized Terminology, 

Techniques and Scoring System for Sleep Stages of Human 
Subjects. 1968.

2. Iber C, et  al. The AASM Manual for the Scoring of Sleep 
and Associated Events: Rules, Terminology and Technical 
Specifications. Westchester, IL: American Academy of Sleep 
Medicine; 2007.

3. Danker-Hopfe H, et al. Interrater reliability for sleep scoring 
according to the Rechtschaffen & Kales and the new AASM 
standard. J Sleep Res. 2009; 18(1): 74–84.

4. Anderer P, et  al. An E-health solution for automatic sleep 
classification according to Rechtschaffen and Kales: valid-
ation study of the Somnolyzer 24 x 7 utilizing the Siesta 
database. Neuropsychobiology. 2005; 51(3): 115–133.

5. Chapotot F, et al. Automated sleep–wake staging combining 
robust feature extraction, artificial neural network classifi-
cation, and flexible decision rules. Int J Adapt Control Signal 
Process. 2010; 24: 409–423.

6. Anderer P, et  al. Computer-assisted sleep classification 
according to the standard of the American Academy of 
Sleep Medicine: validation study of the AASM version of 
the Somnolyzer 24  ×  7. Neuropsychobiology. 2010; 62(4): 
250–264.

7. Koley B, et  al. An ensemble system for automatic sleep 
stage classification using single channel EEG signal. Comput 
Biol Med. 2012; 42(12): 1186–1195.

8. Park HJ, et al. Automated sleep stage scoring using hybrid 
rule- and case-based reasoning. Comput Biomed Res. 2000; 
33(5): 330–349.

9. Doroshenkov L, et al. Classification of human sleep stages 
based on EEG processing using hidden Markov models. 
Biomed Eng. 2007; 41: 25–28.

10. Malhotra A, et al. Performance of an automated polysom-
nography scoring system versus computer-assisted man-
ual scoring. Sleep. 2013; 36(4):573–582.

11. Sun H, et  al. Large-scale automated sleep staging. Sleep. 
2017; 40(10). doi:10.1093/sleep/zsx139.

12. Ebrahimi F, et al. Automatic sleep stage classification based 
on EEG signals by using neural networks and wavelet packet 
coefficients. Presented at: 2008 30th Annual International 
Conference of the IEEE Engineering in Medicine and Biology 
Society. Vancouver, BC, Canada: IEEE; 2008: 1151–1154.

13. Sinha RK. Artificial neural network and wavelet based auto-
mated detection of sleep spindles, REM sleep and wake 
states. J Med Syst. 2008; 32(4): 291–299.

14. Oropesa E, et  al. Sleep Stage Classification Using Wavelet 
Transform and Neural Network. Berkeley, CA:  International 
Computer Science Institute; 1999.

15. Acharya UR, et al. Analysis and automatic identification of 
sleep stages using higher order spectra. Int J Neural Syst. 
2010; 20(6): 509–521.

16. Zhovna I, et  al. Automatic detection and classification 
of sleep stages by multichannel EEG signal modeling. 
Presented at: 2008 30th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society; 2008. 
Vancouver, BC, Canada: IEEE; 2008: 2665–2668.

17. Liang S-F, et al. Automatic stage scoring of single-channel 
sleep EEG by using multiscale entropy and autoregressive 
models. IEEE Trans Instrum Meas. 2012; 61: 1649–1657.

18. Zoubek L, et al. Feature selection for sleep/wake stages clas-
sification using data driven methods. Biomed Signal Process 
Control. 2007; 2: 171–179.

19. Estrada E, et  al. EEG feature extraction for classification 
of sleep stages. Presented at: Engineering in Medicine and 
Biology Society, 2004. IEMBS’04. 26th Annual International 
Conference of the IEEE, 2004. San Francisco, CA: IEEE; 2004: 
196–199.

20. Rudoy JD, et al. Strengthening individual memories by reac-
tivating them during sleep. Science. 2009; 326(5956): 1079.

21. Oudiette D, et al. Upgrading the sleeping brain with targeted 
memory reactivation. Trends Cogn Sci. 2013; 17(3): 142–149.

22. Ong JL, et al. Effects of phase-locked acoustic stimulation 
during a nap on EEG spectra and declarative memory con-
solidation. Sleep Med. 2016; 20: 88–97.

10 | SLEEPJ, 2018, Vol. 41, No. 5

https://kokoon.io
https://dreem.com


23. Papalambros NA, et al. Acoustic enhancement of sleep slow 
oscillations and concomitant memory improvement in 
older adults. Front Hum Neurosci. 2017; 11: 109.

24. Marshall L, et  al. Boosting slow oscillations during sleep 
potentiates memory. Nature. 2006; 444(7119): 610–613.

25. Ngo HV, et al. Auditory closed-loop stimulation of the sleep 
slow oscillation enhances memory. Neuron. 2013; 78(3): 
545–553.

26. LeCun Y, et  al. Deep learning. Nature. 2015; 521(7553): 
436–444.

27. Kemp B, et  al. A simple format for exchange of digitized 
polygraphic recordings. Electroencephalogr Clin Neurophysiol. 
1992; 82(5): 391–393.

28. Leclercq Y, et al. fMRI artefact rejection and sleep scoring 
toolbox. Comput Intell Neurosci. 2011; 2011: 598206.

29. LaBerge S, et al. Validity established of DreamLight cues for 
eliciting lucid dreaming. Dreaming. 1995; 5: 159.

30. Yates R, et al. DC blocker algorithms [DSP Tips & Tricks]. IEEE 
Signal Process Mag. 2008; 25: 132–134.

31. Santostasi G, et  al. Phase-locked loop for precisely timed 
acoustic stimulation during sleep. J Neurosci Methods. 2016; 
259: 101–114.

32. Landis JR, et  al. The measurement of observer agreement 
for categorical data. Biometrics. 1977; 33(1): 159–174.

33. Hochreiter S, et al. Long short-term memory. Neural Comput. 
1997; 9(8): 1735–1780.

34. Ong JL, et al. Auditory stimulation of sleep slow oscillations 
modulates subsequent memory encoding through altered 
hippocampal function. Sleep. 2018; doi:10.1093/sleep/zsy031.

35. Younes M, et  al. Staging sleep in polysomnograms: ana-
lysis of inter-scorer variability. J Clin Sleep Med. 2016; 12(6): 
885–894.

36. Danker‐Hopfe H, et al. Interrater reliability between scorers 
from eight European sleep laboratories in subjects with dif-
ferent sleep disorders. J Sleep Res. 2004; 13: 63–69.

37. Basner M, et al. Inter-rater agreement in sleep stage clas-
sification between centers with different backgrounds. 
Somnologie (Berlin). 2008; 12: 75–84.

38. Rosenberg RS, et  al. The American Academy of Sleep 
Medicine inter-scorer reliability program: sleep stage scor-
ing. J Clin Sleep Med. 2013; 9(1): 81–87.

39. Ohayon MM, et  al. Meta-analysis of quantitative sleep 
parameters from childhood to old age in healthy individu-
als: developing normative sleep values across the human 
lifespan. Sleep. 2004; 27(7): 1255–1273.

40. Jeon L, et  al. Consumer sleep tracking devices: a critical 
review. Digital Healthcare Empowering Europeans: Proceedings 
of MIE2015. 2015; 210: 458.

Patanaik et al. | 11




