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Abstract

Our current understanding of terrestrial carbon processes is represented in various models
that are routinely used to integrate and scale measurements of CO, exchange from remote
sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine
how well models simulate carbon processes across a range of vegetation types and
environmental conditions. Here we compare observed and simulated monthly CO,
exchange using 44 eddy covariance flux towers in North America and model runs from
22 terrestrial biosphere models. The analysis period spans ~220 site-years, 10 biomes,
and includes two large scale drought events in North America, providing a natural
experiment to evaluate model skill as a function of drought and seasonality. We also
evaluate models’ ability to simulate the seasonal cycle of CO, exchange using Taylor
diagrams and analyze links between model characteristics, site history, and model skill.
Overall model performance was poor; the difference between observations and
simulations was 10-times observational uncertainty, with forested ecosystems better
predicted than non-forested. Model-data agreement was highest in summer and in
temperate evergreen forests. In contrast, model performance was poor in spring and fall,
especially in ecosystems with large deciduous components, and during wet or dry periods
during the growing season. Models used across most biomes, the mean model ensemble,
and an optimized model showed high consistency with observations. Overall skill was
higher for models with simplified or detailed carbon and soil structure as well as those
that estimated net ecosystem exchange as the difference between gross primary

productivity and autotrophic respiration.



Keywords: carbon modeling, ecosystem models, model validation, carbon exchange,

drought, North American Carbon Program

Introduction

Drought is a reoccurring phenomenon in all climates (Larcher, 1995) and is characterized
by a partial loss in plant function due to water limitation and heat stress. For terrestrial
CO; exchange, drought typically reduces photosynthesis more than respiration
(Baldocchi, 2008; Ciais et al., 2005; Schwalm et al., 2009), resulting in decreased net
carbon uptake from the atmosphere. In the recent past drought conditions have become
more prevalent globally (Dai et al., 2004) and in North America (Cook et al., 2004). Both
incidence and severity of drought (Seager et al., 2007b) as well as heatwaves (Meehl et
al., 2004) are expected to further increase in conjunction with global warming (Houghton

et al., 2001; Huntington, 2006; Sheffield & Wood, 2008; Trenberth et al., 2007).

There is a continued need for models to improve consistency and agreement with
observations (Friedlingstein et al., 2006), both overall and under more frequent drought
events related to global environmental change. Past validation studies of terrestrial
biosphere models focused only on few models and sites, typically in close proximity and
primarily in forested biomes, with differing objectives, levels of calibration to site data,
and parameter values (e.g., Amthor et al., 2001; Delpierre et al., 2009; Grant et al., 2005;
Hanson et al., 2004; Granier et al. 2007; Ichii et al., 2009; Ito, 2008; Siqueira et al., 2006;

Zhou et al., 2008). Furthermore, assessing model performance relative to drought



requires high quality observed CO, exchange data, a reliable drought metric as well as a

natural experiment across sites and drought conditions.

In this study we evaluate model performance using terrestrial CO, flux data and
simulated fluxes collected from 1991 to 2007. This timeframe included two widespread
droughts in North America: 1) the turn-of-the-century drought from 1998 to 2004 that
was centered in the interior West of North America (Seager et al., 2007a) and 2) a
smaller-scale drought event in the southern continental Untied States from winter of
2005/2006 through October 2007 (Seager et al., 2009). During these events Palmer
Drought Severity Index values (Cook et al., 2007; Dai et al., 2004) and precipitation
anomalies (Seager et al., 2007a; 2009) were highly negative over broad geographic areas.
Ongoing eddy covariance measurements (Baldocchi et al., 2001) under these
circumstances provided flux data across gradients of time, space, seasonality, and
drought. We use these data to examine model skill relative to site-specific drought
severity, climatic season, and time. We also link model behavior to model architecture
and site-specific attributes. Specifically, we address the following questions: Are current
state-of-the-art terrestrial biosphere models capable of simulating CO, exchange subject
to gradients in dryness and seasonality? Are these models able to reproduce the seasonal
variation of observed CO, exchange across sites? Are certain characteristics of model
structure coincident with better model-data agreement? Which biomes are simulated

poorly/well?

Methods



Modeled and observed net ecosystem exchange (NVEE, net carbon balance including soils
where negative values indicate outgassing of CO; to the atmosphere) data were analyzed
from 22 terrestrial biosphere models (Table 1) and 44 eddy covariance (EC) sites
spanning ~ 220 site-years and 10 biomes in North America (Table 2). All terrestrial
biosphere models analyzed simulated carbon cycling with process based formulations of
varying detail for component carbon fluxes. Simulated NEE was based on model-specific
runs using gap-filled observed weather at each site and locally observed values of soil

texture according to a standard protocol (http://isynth-site.pbworks.com). Apart from the

mean model ensemble across all models and LoTEC, an assimilated model (Ricciuto et
al., 2008), each model was spun up to steady state initial conditions with a target NEE of

zero integrated over the last five years of the simulation period.

Gaps in the meteorological data record occurred at EC sites due to data screening or
instrument failure. Missing values of air temperature, humidity, shortwave radiation, and
precipitation data, i.e., key model inputs, were filled using DAYMET (Thornton et al.,
1997) before 2003 or the nearest available climate station in the National Climatic Data
Center’s Global Surface Summary of the Day (GSOD) database. Daily GSOD and
DAYMET data were temporally downscaled to hourly or half-hourly using the phasing
from observed mean diurnal cycles calculated from a 15-day moving window. The
phasing used a sine wave assuming peak values at 15:00 local standard time (LST) and
lowest values at 3:00 LST. In the absence of station data a 10-day running mean diurnal

cycle was used (http://nacp.ornl.gov/docs/Site_Synthesis_Protocol v7.pdf).



http://isynth-site.pbworks.com/
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EC data were produced by AmeriFlux and Fluxnet Canada investigators and processed as
a synthesis product of the North American Carbon Program (NACP) Site Level Interim

Synthesis (http://www.nacarbon.org/nacp/). The observed NEE were corrected for

storage, despiked (i.e., outlying values removed), filtered to remove conditions of low
turbulence (friction velocity filtered), and gap-filled to create a continuous time series
(Barr et al., 2004). The time series included estimates of random uncertainty and
uncertainty due to the friction velocity filtering (Barr et al., 2004;

ftp://nacp.ornl.gov/synthesis/2008/firenze/site/observations/uncertainty/). In this analysis

NEE was aggregated to monthly values using only non-gap-filled data, i.e., observed
values deemed spurious and subsequently infilled were not considered. Coincident
modeled NEE values were similarly excluded. This removed the influence of gap-filling

algorithms in the comparison of observed and modeled NEE.

Drought level was quantified using the 3-month Standard Precipitation Index (SPI,
McKee et al., 1993). Monthly SPI values were taken from the U.S. Drought Monitor

(http://drought.unl.edu/DM/) whereby each tower was matched to nearby meteorological

station(s) indicative of local drought conditions given proximity, topography, and human
impact. This study used three drought levels: dry required SPI < -0.8, wet corresponded
to SPI > +0.8, otherwise normal conditions existed. Climatic season was defined by four

seasons of three months each with winter given by December, January, and February.

Model skill


http://www.nacarbon.org/nacp/
ftp://nacp.ornl.gov/synthesis/2008/firenze/site/observations/uncertainty/
http://drought.unl.edu/DM/

Model-data mismatch was evaluated using normalized mean average error (NMAE;
Medlyn et al., 2005), the reduced y” statistic (x*; Taylor, 1996) as well as Taylor diagrams
and skill (S; Taylor, 2001). The first metric quantifies bias, the “average distance”

between observations and simulations in units of observed mean NEE:

NMAE - NEE,, — NEE

sim , (1)
ijkl nNEEobS

where the overbar indicates averaging across all values, n is sample size, the subscript
obs 1s for observations and sim is for modeled estimates. The summation is for any
arbitrary data group (denoted by subscripts on the summation operator only) where

subscript i is for site, j is for model, & is for climatic season, / is for drought level.

The second metric used to evaluate model performance was the reduced y” statistic. This
is the squared difference between paired model and data points over observational error

normalized by degrees of freedom:

.1 Z(NEEO,JS ~ NEE,, jz o

4é‘NEE

where dygg 1s uncertainty of monthly NEE (see below), 4 normalizes the uncertainty in
observed NEE to correspond to a 95% confidence interval, the summation is across any
arbitrary data group (denoted by subscripts on the summation operator). y* values are

linked to error variance with < 1 indicating an overestimation and > 1 an underestimation.



A value of unity indicates that model and data are in agreement relative to data

uncertainty.

A final characterization of model performance used Taylor diagrams (Taylor, 2001);
visual displays based on pattern matching, i.e., the degree to which simulations matched
the temporal evolution of monthly NEE. Taylor plots are polar coordinate displays of the
linear correlation coefficient (p), centered RMSE (pattern error without considering bias),
and the standard deviation of NEE (o) where all three quantities were calculated using the
full data record for each combination of site and model (ranging from 7 to 178 months).
Taylor diagrams were constructed for the mean model ensemble and across-site mean
model performance. More generally, each coordinate point for any arbitrary data group

can be scored:

2(1+p)
(Unorm + l/anorm )2 ,

)

where S is the model skill metric bound by zero and unity where unity indicates perfect

agreement, and o, 1is the ratio of simulated to observed normalized standard deviation

norm

(Taylor, 2001).

To scale any model skill metric across gradients of site, biome, model, seasonality, and
dryness level we aggregated across data groups weighting each by sample size. For

example, y* for model / is given by:



2
n. 7
Zzi:] = E —'/HZ i , (4)

gk iz

where the summation is across all groups where model / was used, and Xz,-zl references
model / across all sites, seasons, and levels of dryness as denoted by subscripts on the
summation operator. We did not evaluate model performance for any data group with n <
3. In sum, Taylor displays and skill examined models’ ability to mimic the monthly
trajectory of observed NEE, the calculation of NMAE quantified bias in units of mean
observed NEE, and y* values quantified how well model-data mismatch scales with flux

uncertainty.

Observational flux uncertainty

We calculated the standard error of monthly NEE (dngr) by combining random
uncertainty and uncertainty associated with the friction velocity threshold (u+" h), a value
use to identify and reject spurious nighttime NEE measurements. Random uncertainty
was estimated following Richardson & Hollinger (2007): (i) generate synthetic NEE data
using the gap-filling model (Barr et al., 2004) for a given site-year, (ii) introduce gaps as
in the observed data with u+"" filtering, (ii1) add noise, (iv) infill gaps using gap-filling
model, (v) repeat the process 1000 times for each site. The random uncertainty
component of dygz was then the standard deviation across all 1000 realizations

aggregated to months.

The u+" uncertainty component of dygz was also estimated using the Monte Carlo

methods. Here 1000 realizations of NEE were generated using 1000 draws from a



distribution of u+"". The distribution of u+"" was based on binning the raw flux data with
respect to climatic season, temperature, and site-year and estimating u+"" in each bin
(Papale et al., 2005). The standard deviation across all realizations gave the us"
uncertainty component of dyze. Both components were combined in quadrature to one

standard error of monthly NEE (= dngg)

(ftp://macp.ornl.gov/synthesis/2008/firenze/site/observations/uncertainty/).

Relating model skill to model structure and site history

The models evaluated here range widely in their emphasis and structure (Table 1). Some
focus on biophysical calculations (SiB3, BEPS), where as others emphasize
biogeochemistry (ORCHIDEE) or ecosystem dynamics (ED2). However as terrestrial
biosphere models simulate carbon cycling with hydrological variables most models
contain both biophysics and biogeochemistry. This motivated characterizing model
structure with definite attributes, e.g., prognostic vs. prescribed canopy, number of soil
pools, and type of NEE algorithm (Table 3). To resolve how such characteristics and site
history impacted model skill we calculated S for all observed combinations of site,
model, seasonality, and drought level and cross-referenced these with 13 site history and
15 model attributes (Table 3). Only 20 models were available for the RTA exercise, the
MEAN model and the optimized LoTEC were excluded. We used S as it is bound by zero
(no agreement) and unity (perfect agreement) in contrast to NMAE and y* which are
unbound. The Taylor skill metric (S) was discretized into three classes based on terciles.
These classes, representing three tiers of model-data agreement, were then related to

biome, climatic season, drought level, site history, and model structure using regression
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tree analysis (RTA) as a supervised classification algorithm. RTA is a form of binary
recursive partitioning (Breiman et al., 1984) that successively splits the data (Taylor skill
classes as the response; all other attributes as predictors) into subsets (nodes) by
minimizing within-subset variation. The result is a pruned tree-like topology whereby
predicted values (Taylor skill metric class) are derived by a top-to-bottom traversal
following the rules (branches) that govern subset membership until a predicted value is
reached (terminal node). The splitting rules at each node as well as its position allow for a
calculation of relative variable importance (Breiman et al., 1984) with the most important
variable given a score of 100. Variables of high importance were further analyzed using
conditional means, i.e., comparing mean values for each predictor value, with statistical

differences determined using Bonferroni methods.

Results

Model-data agreement relative to climatic season, dryness, and biome

Overall agreement across n = 31025 months was better in forested than non-forest
biomes; both NMAE (Table 4) and Xz values (Table 5) were closer to zero. At the biome
level model skill was loosely ranked in four tiers: evergreen needleleaf forests in the
temperate zone > all other forested biomes > grasslands, woody savannahs > croplands,
shrublands, wetlands > tundra. These rankings were robust across models used in the
majority of biomes although some divergence was apparent for croplands and shrublands
(Figure 1). Relative to seasonality and drought level models were most consistent with
observations during periods of peak biological activity (climatic summer) under dry

conditions (Figure 2). However, across the three levels of dryness changes in model-data



agreement were negligible for NMAE (~4% change, Table 4) but more pronounced for y*
(8.10 to 12.72, Table 5). Averaged over the warm season (excluding climatic winter)
dry/wet conditions were coincident with worse model-data agreement, e.g., NMAE was -
1.32,-1.26, and -1.74 for dry, normal, and wet respectively. In biomes with a clear
seasonal cycle in leaf area index (LAI) a loss of model skill occurred during climatic

spring and fall (Table 4 & 5).

Skill metrics by model

Model skill was, regardless of metric, highly variable. Of the three, NMAE was related to
both Taylor skill and y* (p = -0.65; p < 0.0001). Jointly, high Taylor skill co-occurred
with NMAE and y° values closer to zero (Figure 3). Across models NMAE ranged from -
0.42 of the overall mean observed flux to -2.18 for LoTEC and DNDC respectively.
Values of y* varied from 2.17 to 29.87 for LoTEC and CN-CLASS. Alternatively, the
degree of model-data mismatch (the distance between observations and simulations) was
at least 2.17 times the observational flux uncertainty. Similarly, Taylor skill showed a
high degree of scatter across sites and within models (Figure 4), although two crop only
models (SiBcrop and AgrolBIS), LoTEC, and ISOLSM were more conservative and

showed a high degree of consistency with observations (S > 0.8).

Among crop models, SiBCrop and AgrolBIS performed well, especially in climatic
spring and during wet conditions. In contrast, the crop only DNDC model exhibited poor
model-data agreement with y* > 15 in climate spring and summer as well as across all

drought levels. Although four crop only simulators were analyzed, the best agreement in



croplands (NMAE and * closer to zero) was achieved by SiB3 and Ecosys, models used
in multiple biomes. With the highest Taylor skill and NVAE and  closest to zero, the
LoTEC model (NMAE = -0.42, ¥*~2.17, S = 0.95) was most consistent with observations
across all sites, dryness levels, and climatic seasons. This platform was optimized using a
data assimilation technique, unique among model runs evaluated here, and was applied at
10 sites. In addition, the mean model ensemble (MEAN) also performed well (NMAE = -
0.74, xzi 3.35, §=0.80). For individual models (n = 12) used at a wider range of sites (at
least 24 sites) model consistency with observations was highest for Ecosys (VMAE = -

0.69, x>~ 7.71, S = 0.94) and lowest for CN-CLASS (NMAE = -1.50, y*~29.87, S = 0.48).

Site-level model-data agreement also showed a high degree of variability (Figure 5). At
three croplands sites (US-Nel, US-Ne2, and US-Ne3) Taylor skill across all models
ranged from zero to unity. Both NMAE and * exhibited similar scatter by site (not
shown). Even for the best predicted site on average (US-Syv) S ranged from 0.19 to 0.95.
Similarly, two forested sites (CA-Qfo and CA-TP4) were predicted well (S > 0.5) by all
models; whereas only one tundra site (US-Atq) was consistently poorly predicted (S <
0.5). Despite the wide range in model performance, model skill (NMAE, y*, and S) was
not related to the number of sites (|p| < 0.2; p > 0.5) or biomes (|p| <0.2; p > 0.3)
simulated, i.e., using a more general rather than a specialized model did not result in a
loss in model performance. Also, model-data agreement was not better at sites with
longer data records (|p| <0.1; p > 0.1). Lastly, model skill was not related to how close
model spinup and initial conditions approximated steady state. Although long-term

simulated NEE varied from near zero (steady state) to ~-500 g C m™ yr™', there was no



relationship (|p| <0.1; p > 0.2) between these values and any of the three model skill

metrics.

Model and site-specific consistency with observations using Taylor diagrams

Average model performance (both across-site and across-model) was evaluated using
Taylor diagrams based on all simulated and observed NEE monthly integrals. Better
model performance was indicated by proximity to the benchmark, representing the
observed state. The benchmark was normalized by observed standard deviation such that
the distance of 6 and RMSE from the benchmark was in observed o units. Similar to
model skill metrics, forested sites were better predicted than non-forested ones. The
MEAN model, i.e., average model performance across all models, at all sites (excluding
CA-SJ2 and US-Atq) showed p > 0.2 but generally (33 of 44 sites) underpredicted the
variability associated with monthly NEE at forested (Figure 6) and non-forested (Figure
7) sites. Similarly, 40 of 44 sites were predicted with RMSE < . Also 8 (6 forested and
two croplands sites: CA-Obs, CA-Qfo, CA-TP4, US-Hol, US-IB1, US-MMS, US-Ne3,
US-UMB) of the 44 sites were predicted with p > 0.95 and RMSE < 1. The worst

predicted site was CA-SJ2 with p =-0.67, 0 = 4.3, and RMSE = 5.1.

Overall model performance, aggregated across sites, was similar (Figure 8). Most models
underpredicted variability and showed RMSE < ¢. Of all 22 models only DNDC
exhibited p < 0.2. Based on proximity to the benchmark, i.e., a high S value (Figure 3),
the best models were: EPIC (crop only model used on one site), ISOLSM (used on 9

sites), LOTEC (data assimilation model), SiBcrop and AgroIBIS (crop only models),

20



EDCM (used on 10 sites), Ecosys and SIBCASA (more generalist models used on 39 and
35 sites respectively), and MEAN (mean model ensemble for all 44 sites). All of these

“best” models had p > 0.8, RMSE < 0.8 and slightly underpredicted variability; except the
crop only models and Ecosys where variability was overpredicted. Models whose average

behavior was furthest away from the benchmark were DNDC followed by BEPS.

Links between model skill, model structure, and site history

Across all sampled combinations of site, model, climatic season and drought (n = 3132
groups), biome was the most important factor in the distribution of model skill (Figure 9).
Biome was followed by climatic season and stand age, the highest scored site-specific
attribute. None of the 12 evaluated site disturbances (Table 3) achieved an importance
score of at least 25. Apart from drought, the remaining variables were model-specific
structural attributes: the number of soil layers, vegetation pools, and soil pools. Three
carbon flux calculations also had a variable score > 25, with NEE being the highest

scored algorithm.

With 8 of the 14 evaluated model-specific factors having a variable importance score of
at least 25, model attributes were linked to model skill. Comparing mean S across all
levels of a single model attribute (Figure 10) revealed three instances where model-
specific factors were statistically related to model skill: Models using a prescribed canopy
achieved higher S (= 0.54) than either prognostic or semi-prognostic models (S = 0.42; p
< 0.05). Using a daily time step was coincident (S = 0.42) with a loss in model skill

relative to non-daily time steps (S = 0.53; p <0.05). Finally, calculating NEE as the
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difference between GPP and autotrophic respiration was superior (S = 0.53) to other
calculation methods (S = 0.42; p < 0.05). Both vegetation pools and soil layers exhibited
a weak pattern whereby models with coarse or very detailed vegetation and soil structure

were more consistent with observed data (Figure 10).

Despite these effects model attributes were of secondary importance. The change in §
relative to biome varied from 0.30 to 0.55; a much larger range than seen for model
attributes. Similarly, the high variable importance scores for biome and climatic season,
as well as the lower score for drought level, corroborated the relationships between these
factors and model skill as seen with NMAE and *. While the regression tree algorithm
achieved an accuracy of 66% for predicting Taylor skill class, the site history and model
characteristics considered here did not explain the underlying cause of biome and

seasonal differences in model skill.

Discussion

Effect of parameter sets on model performance

Model parameter sets are a large source of variability in terms of model performance
(Jung et al., 2007b). They influence output and accuracy (Grant et al., 2005) and are more
important for simulating CO, exchange than interannual climatic variability (Amthor et
al., 2001). This is related to the use of biome-specific parameters relative to within-biome
variability (Purves & Pacala, 2008). A corollary occurs in the context of EC observations
as tower footprints can exhibit heterogeneity, particularly in soils, that is not reproduced

in model site-specific parameters (Amthor et al., 2001).



The importance of model parameter sets was visible in this intercomparison in two ways.
Firstly, biome had the highest variable importance score. Insomuch as models rely on
biome-specific parameter values this finding indicates model parameter sets as a key
factor in the distribution of model skill. Furthermore, the variability in model skill across
sets of biome-specific constants (Figure 5) underscores that biomes may be too
heterogeneous in time (Stoy et al., 2005; 2009) and space to assume constant parameter
values relative to within-biome variability linked to climate (Hargrove et al. 2003).
Secondly, the general high degree of within-model variation in model skill (Figure 4)
suggested that model parameter sets may need to be refined to capture local, site-specific

realities.

Effect of model structure on model performance

The smaller variable importance scores and changes in model skill relative to biome and
climatic season (Figure 9 & 10) revealed only a secondary link between model skill and
the model structural attributes evaluated here. In general, model-data agreement was
highest when models did not use a daily time step, used a prescribed canopy, and
calculated NEE as the difference between GPP and autotrophic respiration. Similarly, for
soil layers, vegetation pools, and, to a lesser extent, soil pools, consistency with
observations was highest in those models with either the simplest structure (e.g., one soil
carbon pool in ISOLSM) or the most complex (e.g., Ecosys and SIBCASA with 15 soil
layers). Models that exhibited all of these structural characteristics (SIBCASA, SiB3, and

ISOLSM) showed high degrees of model-data agreement across all three skill metrics.
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Similarly, Ecosys, which used a prognostic canopy but otherwise had similar structural
characteristics as SIBCASA, also performed well. It is noteworthy that models with a
prognostic canopy required more detailed carbon pool and soil layer characterizations
such as Ecosys. There was no model with a low number of carbon pools and soil layers
and a prognostic canopy that was in the top tercile of model skill based on any skill

metric except SiBcrop and AgroIBIS for Taylor skill in croplands only.

The success of those models with desirable, determined from predicting model skill
classes using model attributes, model structure was not confined to single biomes. While
non-forested sites were not as well simulated as forested sites, model-data consistency in
these biomes, especially croplands, sites was highest with Ecosys and SiB3; not the crop
only simulators. This suggests that a single model with requisite model structural
attributes can be used in all types of ecosystems. As multiple models with both good
performance and desirable structural attributes were available, model choice is recast as a
tradeoff between ease of parameterization and spin up. Finally, while the choice of model
structure is an important consideration for model-data agreement using multiple models
(MEAN) or data assimilation to optimize model parameter sets (LoTEC) resulted in

better consistency with observations.

Links between model performance and environmental factors
Dryness level was related to model skill. During the warm season (all climatic seasons

excluding winter) model performance declined under dry/wet conditions.
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While this points to process uncertainty, especially during dry conditions (Sitch et al.,
2008), ecosystem response to longer-term drought can exhibit lags and positive feedbacks
(Arnone et al., 2008; Granier et al., 2007; Thomas et al., 2009; Williams et al., 2009) that

were not explicitly included in the drought metric used in this study.

In spring and fall, especially for biomes with a significant deciduous component, models
showed a decline in model skill relative to periods of peak biological activity (climatic
summer) (see also Morales et al., 2005). Phenological cues are known to influence the
annual carbon balance at multiple scales (Barr et al., 2007; Delpierre et al., 2009; Keeling
et al., 1996). The loss of model skill seen in this study during spring and fall was likely
linked to uncertainty (process- and parameter-based) in leaf initiation and senescence
(Hanson et al., 2004) as well as the initiation and cessation of canopy photosynthesis
relative to soil moisture and soil temperature (Waring & Running, 2007). In this study
seasonality was second only to biome in driving model skill (Figure 9). This and the lack
of link between model skill and site history strongly implicate phenology as a needed

refinement of terrestrial biosphere simulators.

The evergreen needleleaf forest biome diverged in performance based on whether the
sites were located in the temperate or boreal zones. A similar divergence was reported
using Biome-BGC, LPJ and ORCHIDEE to simulate gross CO, uptake across a
temperature gradient in Europe (Jung et al., 2007a); average relative RMSE was higher
for evergreen needleleaf forests in the boreal zone. This was linked to an overestimation

of LAI at the boreal sites and relationships between resource availability and leaf area
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(Friedlingstein et al., 2006; Jung et al., 2007a; Stich et al., 2008). Additionally, recent
observations in the circumboreal region, where all boreal evergreen needleleaf forested
sites are located, suggest that transient effects of climate change, e.g., increased severity
and intensity of natural disturbances (fire, pest outbreaks) and divergence from climate
normals in temperature, have already occurred (Soja et al., 2007). We speculate the loss
of model skill in boreal relative to temperate evergreen needleleaf forests was linked to
insufficient characterization of cold temperature sensitivity of metabolic processes and
water flow in plants as well as freeze-thaw dynamics (Schaefer et al., 2007; 2009) and

that this was exacerbated by the effects of transient climate change.

Effects of site history and protocol on model evaluation

Disturbance regime and how a model treats disturbance are known to impact model
performance (Ito, 2008). In this study stand age impacted model skill whereas site history
was of marginal importance (Figure 9). Comparing sites with and without fire or harvest
activity showed no significant difference in mean model skill (p > 0.25), i.e., disturbance
and age were confounded. However, CA-SJ2, the worst predicted site (Figure 6), was
harvested in 2000 and scarified in 2002, and US-SO2, a second poorly predicted
shrubland site (Figure 7), suffered catastrophic wildfire during the analyzed data record.
The poor model performance for recently disturbed sites follows from the steady state
assumption used in simulation and the absence of modeling logic to accommodate
disturbance. However, the distribution of site history metrics was skewed; only few sites
were burned, harvested, or in the early stages of recovery from disturbance when NEE is

more nonlinear relative to established stands. Furthermore, age class was biased toward
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older stands; of the 17 forested sites only one was classified as a young stand. Other site
characteristics were also unbalanced; all non-forested biomes occurred on five or less
sites; with only site each for shrublands and woody savannahs. While regression trees are
inherently robust additional observed and simulated fluxes in rapidly growing young
forested stands and undersampled biomes are desirable to better characterize model

performance.

Other aspects of the NACP site synthesis protocol also influenced the interpretation of
our results. Firstly, this analysis focused solely on non-gap-filled data to allow the model-
data intercomparison to inform model development. However, the low turbulence
(friction velocity) filtering removes more data at night than during the day, so our
analysis may be skewed towards daytime conditions. Secondly, each model that used
remotely sensed inputs (such as LAI) repeated an average seasonal cycle calculated from
site-specific time series based on all pixels within 1 km of the tower site. This likely
deflated relevant variable importance scores (Figure 9) and precluded a full comparison
of prescribed vs. prognostic LAI. While only few models used such inputs (Table 1),
including one of the best performing generalist models SIBCASA, removing the inherent
bias of an invariant seasonal cycle over multiple years may improve model performance.
Incorporating disturbance information to recreate historical land use and disturbance,
especially for recent site entries, could also improve model performance. Lastly, despite
the model simulation protocol’s emphasis on steady state, few, if any, of the sites are
actually at steady state. This resulted in an inherent bias between simulated and observed

NEE for all sites regardless of site history. Relaxing the steady state assumption
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(Carvalhais et al., 2008) or initializing using observed wood biomass and the quasi-steady

state assumption (Schaefer et al., 2008) could improve model performance.

Conclusion

We used observed CO, exchange from 44 eddy covariance towers in North America with
simulations from 22 terrestrial biosphere models to examine model skill across gradients
in dryness, seasonality, and biome. Models’ ability to match observed monthly net
ecosystem exchange across levels of dryness and seasonality was generally poor; the
mean squared distance (y%) between observations and simulations was ~10-times
observational error. Overall, forested sites were better predicted than non-forested sites.
Weaknesses in model performance concerned model parameter sets, phenology,
especially for biomes with a clear seasonal cycle in leaf area index, and abnormally dry
or wet conditions during the growing season. Sites with disturbances during the analyzed
data record and undersampled biomes (grasslands, shrublands, wetlands, woody
savannah, and tundra) also showed a large divergence between observations and
simulations. In contrast, performance was higher when evaluating month-to-month
trajectories using Taylor diagrams. This indicated that the temporal evolution of NEE is
better modeled than responses to finer scaled changes in driving variables, albeit at the
cost of under and overpredictions that cancel out over longer-term simulations. The
highest degree of model-data agreement occurred in temperate evergreen forests across
all climatic seasons and during summer across all biomes. Terrestrial biosphere
simulators that calculated NEE as the difference between GPP and autotrophic

respiration and with either simplistic (e.g., single soil carbon pool) or complex (e.g., 15
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soil layers) characterizations of carbon pools and soil layers showed higher model skill
relative to other model structural attributes. Models most consistent with observations
included generalist models applied over a wide range of sites and biomes as well as an
optimized model (parameters tuned using data assimilation), and a model ensemble
(mean simulated value across several models). As generalist models (e.g., SiB3, Ecosys)
with preferred model structural attributes performed well across all biomes, different
model architectures were not needed for different types of ecosystems and model choice

is recast as a function of ease of parameterization and initialization.
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Table 3. Model structural and site history predictors used to classify Taylor skill with
regression tree analysis. Taylor skill (S; Eq 3) was divided into three classes using
terciles. Model structural predictants are from the Metadata for Forward (Ecosystem)
Model Intercomparison survey collated by the NACP Site Synthesis
(http://daac.ornl.gov/SURVEY 8/survey_results.shtml). Site history data are from

http://public.ornl.gov/ameriflux/, www.fluxnet.org, and Schwalm et al. (2006).

Predictor

Value

Model temporal resolution
Canopy

Number of vegetation pools
Number of soil pools
Number of soil layers
Nitrogen

Steady state

Autotrophic respiration (4R)
Ecosystem respiration (R)
Gross primary productivity
(GPP)

Heterotrophic respiration (HR)

Net ecosystem exchange (NEE)
Net primary productivity (NPP)

Overall model complexity

Site history

Stand age class

Daily, half-hourly or less, hourly, monthly
Prognostic, semi-prognostic, prescribed.

Prescribed canopy from remote sensing, semi-
prognostic has some prescribed input into canopy leaf
biomass but calculates phenology with other
prognostic variables.

Number of pools, both dynamic and static

Number of pools, both dynamic and static

Number of layers

True if the model has a nitrogen cycle; otherwise false.

True if the simulated long-term NEE integral
approaches zero; otherwise false.

Fraction of annual GPP, fraction of instantancous
GPP, explicitly calculated, nil, proportional to growth
AR + HR, explicitly calculated, forced annual balance
Enzyme kinetic model, light use efficiency model, nil,
stomatal conductance model

Explicitly calculated, first or greater order model,
zero-order model

Explicitly calculated, GPP - R, NPP - HR

Explicitly calculated, fraction of instantaneous GPP,
GPP - AR, light use efficiency model

Low, average, high

Values correspond to terciles of the total amount of
first-order functional arguments for the following
model-generated variables/outputs: AR, canopy leaf
biomass, R, evapotranspiration, GPP, HR, NEE, NPP,
soil moisture.

True if the below listed management activity or
disturbance or event occurred on site; otherwise false.
Grazed, fertilized, fire, harvest, herbicide, insects and
pathogens, irrigation, natural regeneration, pesticide,
planted, residue management, thinning

Young, intermediate, nil, mature, multi-cohort.
Values based on stand age in forested sites; stands
without a clear dominant stratum are treated as multi-
cohort; non-forest types have nil.
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Table 4. Normalized mean average error (NMAFE) by climatic season, drought level, and
biome. Drought level was based on monthly values of 3-month Standard Precipitation

Index (SPI): dry value of <-0.8; wet > +0.8. Otherwise normal conditions existed.

Biome”
CRO
DBF
ENFB
ENFT
GRA
MF
SHR
TUN
WET
WSA
Overall

Climatic season Drought level

Winter Spring  Summer Fall Dry Normal Wet  Overall
1.90 4.64 -0.79 12.73  -1.43 -1.54  -1.59 -1.55
0.81 93.7 -0.52 -2.14  -1.01 -1.00  -0.95 -1.00
1.52 -1.12 -0.69 -1.92  -0.87 -1.15  -3.43 -1.12
-6.34 -0.66 -0.50 -0.76  -0.63 -0.72 -0.63 -0.68
-25.46 -0.84 -1.11 519 -1.52 -1.32 -3.07 -1.51
1.10 -7.48 -0.47 57.70  -1.42 -1.04  -1.15 -1.12
-87.37 -1.37 -3.03  -140.17  -1.82 -2.18  -41.13 -2.88
-1.43 -11.07 -20.63 6.38 19.22 -24.06  -1.81  -20.15
1.80 -5.07 -0.59 472 -1.21 -1.20  -2.38 -1.27
-2.73 -0.75 -1.47 10.56  -1.39 -1.32 -1.51 -1.37
2.42 -1.35 -0.61 -1.94  -0.97 -1.01  -1.00 -1.00

" Biome codes: CRO = cropland, GRA = grassland, ENFB = evergreen needleleaf forest —
boreal zone, ENFT = evergreen needleleaf forest — temperate zone, DBF = deciduous

broadleaf forest, MF = mixed (deciduous/evergreen) forest, WSA = woody savanna, SHR
= shrubland, TUN = tundra, WET = wetland.

Table 5. Reduced y statistic by climatic season, drought level, and biome. Drought level
was based on monthly values of 3-month Standard Precipitation Index (SPI): dry value of
<-0.8; wet > +0.8. Otherwise normal conditions existed.

Biome”
CRO
DBF
ENFB
ENFT
GRA
MF
SHR
WET
WSA
Overall

Climatic season Drought level

Winter Spring  Summer Fall Dry  Normal Wet  Overall
3.22 10.66 39.75 49.71 14.43 23.54  32.75 25.8
5.29 10.74 8.77 4.55 5.58 7.86 8.67 7.34
21.25 17.75 4.98 6.61 11.64 12.02  18.51 12.61
4.39 7.90 3.27 2.26 4.71 4.29 4.60 4.45
10.89 11.38 25.01 1722 13.97 10.99  26.01 16.07
3.74 4.67 2.05 2.02 2.92 3.24 2.98 3.08
13.34 27.98 12.52 11.2 9.26 21.31  10.31 16.26
23.65 27.27 11.74 7.54  21.51 1736 1291 17.47
0.61 5.81 11.88 3.39 6.73 4.64 6.35 5.37
8.18 11.95 11.27 9.45 8.10 998 12.72 10.26

* Biome codes: CRO = cropland, GRA = grassland, ENFB = evergreen needleleaf forest —
boreal zone, ENFT = evergreen needleleaf forest — temperate zone, DBF = deciduous

broadleaf forest, MF = mixed (deciduous/evergreen) forest, WSA = woody savanna, SHR
= shrubland, WET = wetland.
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Figure 1.
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Figure 1. Normalized mean average error (NMAFE) by biome for each model. Biomes in
ascending order based on model-specific NMAE; biomes on the left show better average
agreement with observations. NMAE is normalized by mean observed flux. Across all
sites, seasons, and drought levels within a given biome this value is negative (VEE < 0),
indicating a sink. NMAE values closer to zero coincide with a higher degree of model-
data agreement. Woody savannahs and shrublands not shown: only one site each. Tundra
(n =2 sites) has NMAE < -10 for all models. CN-CLASS croplands value is off-scale (= -
8.98). Black cross: no observations; white circle: undersampled (z < 100 months).

-2.5
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Figure 2.
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Figure 2. Normalized mean average error (NMAFE) by climatic season and drought level.
NMAE is normalized by mean observed flux such that most values are negative (NEE <
0), indicating a sink. Positive values, displayed on same color bar with opposite sign,
indicate a source (NVEE > 0). These occur in winter (all models) as well as spring and fall
(all crop only models: AgrolBIS, DNDC, EPIC, SiBcrop). Off-scale values: AgroIBIS
and SiBcrop in fall are -7.1 and -11.1 respectively. DNDC in fall and spring is -11.4 and -
8.7 respectively. Black cross: no observations; white circle: undersampled (n < 100
months).
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Figure 3.
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Figure 3. Model skill metrics for all 22 models. Skill metrics are Taylor skill (S; Eq. 3),
normalized mean average error (NMAE), and reduced y” statistic (%). Better model-data
agreement corresponds to the upper left with Taylor skill close to unity; NMAE and y°

closer to zero. Gray interpolated surface added and model names jittered to improve
readability.
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Figure 4
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Figure 4. Boxplots of Taylor skill by site. Taylor skill (S; Eq. 3) is a single value
summary of a Taylor diagram where unity indicates perfect agreement with observations.
Panels show interquartile range (blue box), median (solid red line), range (whiskers), and
outliers (red cross; values more than 1.5 x interquartile range from the median). Only
sites (n = 32) simulated with at least 10 unique models, excluding the mean model
ensemble and the assimilated LoTEC, shown. Sites sorted by median Taylor skill.
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Figure 5

T
+
1

SiBcrop
AgrolBIS
LoTEC
ISOLSM
EDCM
Ecosys
ORCHIDEE
TRIPLEX-Flux
siB3 | + I e e e 1 I ] == -

MEAN
SIBCASA
ED2 | I ————— b I J=————— -

TECO
SSiB2
CN-CLASS
Biome-BGC
DLEM
Can-IBIS
LPJf 1m—mm e ———- - I = 1 -

DNDC
BEPS

T
+*
1

|

1
I
I
1
1
1

T
1
[
I
|
[
[
I
|
[
[
I
|
[
[
I
|
[
A
T
1
1

T
+
A
4
1

T
+
+

|

|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
1
1

L]
*
1
I
1
1
1
I
1
1
1
I
1
1
1
I
A
1
1
1
1

Model

I
I
1
1
I
I
1
1
I
I
1
1
I
I
1
1
I
I
1
1
1
1
1
1
1
1

T
I
I
I
I
I
I
1
I
I
I
1
I
I
I
1
|
1

T
|
L
|
|
|
|
|
|
|
|
1

ﬂ“

1 L 1 1 1 1 1 1 1 1 1
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Skill

Figure 5. Boxplots of Taylor skill by model. Taylor skill (S; Eq. 3) is a single value
summary of a Taylor diagram where unity indicates perfect agreement with observations.
Panels show interquartile range (blue box), median (solid red line), range (whiskers), and
outliers (red cross; values more than 1.5 x interquartile range from the median). Only
models (n = 21) used on at least two sites shown. Sites sorted by median Taylor skill.




Figure 6.
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Figure 6. Taylor diagram of normalized mean model performance for forested sites. Each
circle (n = 26 sites) is the site-specific mean model ensemble (MEAN). Benchmark (red
square) corresponds to observed normalized monthly NEE; units of ¢ and RMSE are
multiples of observed o. Color coding of site letter and circles indicates biome: evergreen
needleleaf forest — temperate zone (red), deciduous broadleaf forest (brown), mixed
(deciduous/evergreen) forest (blue), evergreen needleleaf forest — boreal zone (black).
Outlying sites (evergreen needleleaf forest — boreal zone) not shown: CA-SJ1 (p =0.81, ¢
=3.9, RMSE =3.1) and CA-SJ2 (p =-0.67, 6 =4.3, RMSE =5.1).
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Figure 7.
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Figure 7. Taylor diagram of normalized mean model performance for non-forested sites.
Each circle (n = 16 sites) is the site-specific mean model ensemble (MEAN). Benchmark
(red square) corresponds to observed normalized monthly NEE; units of ¢ and RMSE are
multiples of observed o. Color coding of site letter and circles indicates biome: croplands
(red), grasslands (brown), wetlands (blue), all other biomes (black).
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Figure 8.
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Figure 8. Taylor diagram of normalized across-site average model performance. Model o
and RMSE were normalized by observed . Each circle (n = 22 models) corresponds to
the mean across all sites. Benchmark (red square) corresponds to observed normalized
monthly NEE; units of ¢ and RMSE are multiples of observed . Color coding of model
letter and circles indicates generality of model performance: specialist models used only
in croplands (n < 5 sites; black), generalist models used across range of biomes and sites
(n > 30 sites, blue), all other models (red). The correlation for DNDC (p =-0.13) is
displayed as zero for readability.
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Figure 9.
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Figure 9. Variable importance scores for model-specific (blue) and site-specific (green)
predictors. Scores were generated from a regression tree with the Taylor skill classes
based on terciles (n = 3132) as the response. Only the 12 of 28 predictants with score >
25 shown; see Table 3 for complete listing of evaluated model structural and site
attributes.
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Figure 10.
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Figure 10. Bar graphs of mean Taylor skill by model attribute. Whiskers represent one
standard error of the mean. Only model-specific attributes with variable important scores
> 25 shown.
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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or The Regents of
the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity
employer.
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