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Abstract 

Our current understanding of terrestrial carbon processes is represented in various models 

that are routinely used to integrate and scale measurements of CO2 exchange from remote 

sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine 

how well models simulate carbon processes across a range of vegetation types and 

environmental conditions. Here we compare observed and simulated monthly CO2 

exchange using 44 eddy covariance flux towers in North America and model runs from 

22 terrestrial biosphere models. The analysis period spans ~220 site-years, 10 biomes, 

and includes two large scale drought events in North America, providing a natural 

experiment to evaluate model skill as a function of drought and seasonality. We also 

evaluate models’ ability to simulate the seasonal cycle of CO2 exchange using Taylor 

diagrams and analyze links between model characteristics, site history, and model skill. 

Overall model performance was poor; the difference between observations and 

simulations was 10-times observational uncertainty, with forested ecosystems better 

predicted than non-forested. Model-data agreement was highest in summer and in 

temperate evergreen forests. In contrast, model performance was poor in spring and fall, 

especially in ecosystems with large deciduous components, and during wet or dry periods 

during the growing season. Models used across most biomes, the mean model ensemble, 

and an optimized model showed high consistency with observations. Overall skill was 

higher for models with simplified or detailed carbon and soil structure as well as those 

that estimated net ecosystem exchange as the difference between gross primary 

productivity and autotrophic respiration.  
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Introduction 

Drought is a reoccurring phenomenon in all climates (Larcher, 1995) and is characterized 

by a partial loss in plant function due to water limitation and heat stress. For terrestrial 

CO2 exchange, drought typically reduces photosynthesis more than respiration 

(Baldocchi, 2008; Ciais et al., 2005; Schwalm et al., 2009), resulting in decreased net 

carbon uptake from the atmosphere. In the recent past drought conditions have become 

more prevalent globally (Dai et al., 2004) and in North America (Cook et al., 2004). Both 

incidence and severity of drought (Seager et al., 2007b) as well as heatwaves (Meehl et 

al., 2004) are expected to further increase in conjunction with global warming (Houghton 

et al., 2001; Huntington, 2006; Sheffield & Wood, 2008; Trenberth et al., 2007).  

 

There is a continued need for models to improve consistency and agreement with 

observations (Friedlingstein et al., 2006), both overall and under more frequent drought 

events related to global environmental change. Past validation studies of terrestrial 

biosphere models focused only on few models and sites, typically in close proximity and 

primarily in forested biomes, with differing objectives, levels of calibration to site data, 

and parameter values (e.g., Amthor et al., 2001; Delpierre et al., 2009; Grant et al., 2005; 

Hanson et al., 2004; Granier et al. 2007; Ichii et al., 2009; Ito, 2008; Siqueira et al., 2006; 

Zhou et al., 2008). Furthermore, assessing model performance relative to drought 
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requires high quality observed CO2 exchange data, a reliable drought metric as well as a 

natural experiment across sites and drought conditions. 

 

In this study we evaluate model performance using terrestrial CO2 flux data and 

simulated fluxes collected from 1991 to 2007. This timeframe included two widespread 

droughts in North America: 1) the turn-of-the-century drought from 1998 to 2004 that 

was centered in the interior West of North America (Seager et al., 2007a) and 2) a 

smaller-scale drought event in the southern continental Untied States from winter of 

2005/2006 through October 2007 (Seager et al., 2009). During these events Palmer 

Drought Severity Index values (Cook et al., 2007; Dai et al., 2004) and precipitation 

anomalies (Seager et al., 2007a; 2009) were highly negative over broad geographic areas. 

Ongoing eddy covariance measurements (Baldocchi et al., 2001) under these 

circumstances provided flux data across gradients of time, space, seasonality, and 

drought. We use these data to examine model skill relative to site-specific drought 

severity, climatic season, and time. We also link model behavior to model architecture 

and site-specific attributes. Specifically, we address the following questions: Are current 

state-of-the-art terrestrial biosphere models capable of simulating CO2 exchange subject 

to gradients in dryness and seasonality? Are these models able to reproduce the seasonal 

variation of observed CO2 exchange across sites? Are certain characteristics of model 

structure coincident with better model-data agreement? Which biomes are simulated 

poorly/well? 

 

Methods 
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Modeled and observed net ecosystem exchange (NEE, net carbon balance including soils 

where negative values indicate outgassing of CO2 to the atmosphere) data were analyzed 

from 22 terrestrial biosphere models (Table 1) and 44 eddy covariance (EC) sites 

spanning ≈ 220 site-years and 10 biomes in North America (Table 2). All terrestrial 

biosphere models analyzed simulated carbon cycling with process based formulations of 

varying detail for component carbon fluxes. Simulated NEE was based on model-specific 

runs using gap-filled observed weather at each site and locally observed values of soil 

texture according to a standard protocol (http://isynth-site.pbworks.com). Apart from the 

mean model ensemble across all models and LoTEC, an assimilated model (Ricciuto et 

al., 2008), each model was spun up to steady state initial conditions with a target NEE of 

zero integrated over the last five years of the simulation period. 

 

Gaps in the meteorological data record occurred at EC sites due to data screening or 

instrument failure. Missing values of air temperature, humidity, shortwave radiation, and 

precipitation data, i.e., key model inputs, were filled using DAYMET (Thornton et al., 

1997) before 2003 or the nearest available climate station in the National Climatic Data 

Center’s Global Surface Summary of the Day (GSOD) database. Daily GSOD and 

DAYMET data were temporally downscaled to hourly or half-hourly using the phasing 

from observed mean diurnal cycles calculated from a 15-day moving window. The 

phasing used a sine wave assuming peak values at 15:00 local standard time (LST) and 

lowest values at 3:00 LST. In the absence of station data a 10-day running mean diurnal 

cycle was used (http://nacp.ornl.gov/docs/Site_Synthesis_Protocol_v7.pdf). 
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EC data were produced by AmeriFlux and Fluxnet Canada investigators and processed as 

a synthesis product of the North American Carbon Program (NACP) Site Level Interim 

Synthesis (http://www.nacarbon.org/nacp/). The observed NEE were corrected for 

storage, despiked (i.e., outlying values removed), filtered to remove conditions of low 

turbulence (friction velocity filtered), and gap-filled to create a continuous time series 

(Barr et al., 2004). The time series included estimates of random uncertainty and 

uncertainty due to the friction velocity filtering (Barr et al., 2004; 

ftp://nacp.ornl.gov/synthesis/2008/firenze/site/observations/uncertainty/). In this analysis 

NEE was aggregated to monthly values using only non-gap-filled data, i.e., observed 

values deemed spurious and subsequently infilled were not considered. Coincident 

modeled NEE values were similarly excluded. This removed the influence of gap-filling 

algorithms in the comparison of observed and modeled NEE. 

 

Drought level was quantified using the 3-month Standard Precipitation Index (SPI, 

McKee et al., 1993). Monthly SPI values were taken from the U.S. Drought Monitor 

(http://drought.unl.edu/DM/) whereby each tower was matched to nearby meteorological 

station(s) indicative of local drought conditions given proximity, topography, and human 

impact. This study used three drought levels: dry required SPI < -0.8, wet corresponded 

to SPI > +0.8, otherwise normal conditions existed. Climatic season was defined by four 

seasons of three months each with winter given by December, January, and February. 

 

Model skill 
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Model-data mismatch was evaluated using normalized mean average error (NMAE; 

Medlyn et al., 2005), the reduced χ2 statistic (χ2; Taylor, 1996) as well as Taylor diagrams 

and skill (S; Taylor, 2001). The first metric quantifies bias, the “average distance” 

between observations and simulations in units of observed mean NEE: 

 

 


ijkl obs

simobs

NEEn

NEENEE
NMAE ,    (1) 

where the overbar indicates averaging across all values, n is sample size, the subscript 

obs is for observations and sim is for modeled estimates. The summation is for any 

arbitrary data group (denoted by subscripts on the summation operator only) where 

subscript i is for site, j is for model, k is for climatic season, l is for drought level. 

 

The second metric used to evaluate model performance was the reduced χ2 statistic. This 

is the squared difference between paired model and data points over observational error 

normalized by degrees of freedom: 
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where δNEE is uncertainty of monthly NEE (see below), 4 normalizes the uncertainty in 

observed NEE to correspond to a 95% confidence interval, the summation is across any 

arbitrary data group (denoted by subscripts on the summation operator). χ2 values are 

linked to error variance with < 1 indicating an overestimation and > 1 an underestimation. 
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A value of unity indicates that model and data are in agreement relative to data 

uncertainty.  

 

A final characterization of model performance used Taylor diagrams (Taylor, 2001); 

visual displays based on pattern matching, i.e., the degree to which simulations matched 

the temporal evolution of monthly NEE. Taylor plots are polar coordinate displays of the 

linear correlation coefficient (ρ), centered RMSE (pattern error without considering bias), 

and the standard deviation of NEE (σ) where all three quantities were calculated using the 

full data record for each combination of site and model (ranging from 7 to 178 months). 

Taylor diagrams were constructed for the mean model ensemble and across-site mean 

model performance. More generally, each coordinate point for any arbitrary data group 

can be scored: 

 

 
 21

12

normnorm

S






 ,     (3) 

 

where S is the model skill metric bound by zero and unity where unity indicates perfect 

agreement, and norm is the ratio of simulated to observed normalized standard deviation 

(Taylor, 2001). 

 

To scale any model skill metric across gradients of site, biome, model, seasonality, and 

dryness level we aggregated across data groups weighting each by sample size. For 

example, χ2 for model I is given by: 
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where the summation is across all groups where model I was used, and χ2
i=I references 

model I across all sites, seasons, and levels of dryness as denoted by subscripts on the 

summation operator. We did not evaluate model performance for any data group with n < 

3. In sum, Taylor displays and skill examined models’ ability to mimic the monthly 

trajectory of observed NEE, the calculation of NMAE quantified bias in units of mean 

observed NEE, and χ2 values quantified how well model-data mismatch scales with flux 

uncertainty. 

 

Observational flux uncertainty 

We calculated the standard error of monthly NEE (δNEE) by combining random 

uncertainty and uncertainty associated with the friction velocity threshold (u*
Th), a value 

use to identify and reject spurious nighttime NEE measurements. Random uncertainty 

was estimated following Richardson & Hollinger (2007): (i) generate synthetic NEE data 

using the gap-filling model (Barr et al., 2004) for a given site-year, (ii) introduce gaps as 

in the observed data with u*
Th filtering, (iii) add noise, (iv) infill gaps using gap-filling 

model, (v) repeat the process 1000 times for each site. The random uncertainty 

component of δNEE was then the standard deviation across all 1000 realizations 

aggregated to months. 

 

The u*
Th uncertainty component of δNEE was also estimated using the Monte Carlo 

methods. Here 1000 realizations of NEE were generated using 1000 draws from a 15



distribution of u*
Th. The distribution of u*

Th was based on binning the raw flux data with 

respect to climatic season, temperature, and site-year and estimating u*
Th in each bin 

(Papale et al., 2005). The standard deviation across all realizations gave the u*
Th 

uncertainty component of δNEE. Both components were combined in quadrature to one 

standard error of monthly NEE (= δNEE) 

(ftp://nacp.ornl.gov/synthesis/2008/firenze/site/observations/uncertainty/). 

 

Relating model skill to model structure and site history 

The models evaluated here range widely in their emphasis and structure (Table 1). Some 

focus on biophysical calculations (SiB3, BEPS), where as others emphasize 

biogeochemistry (ORCHIDEE) or ecosystem dynamics (ED2). However as terrestrial 

biosphere models simulate carbon cycling with hydrological variables most models 

contain both biophysics and biogeochemistry. This motivated characterizing model 

structure with definite attributes, e.g., prognostic vs. prescribed canopy, number of soil 

pools, and type of NEE algorithm (Table 3). To resolve how such characteristics and site 

history impacted model skill we calculated S for all observed combinations of site, 

model, seasonality, and drought level and cross-referenced these with 13 site history and 

15 model attributes (Table 3). Only 20 models were available for the RTA exercise, the 

MEAN model and the optimized LoTEC were excluded. We used S as it is bound by zero 

(no agreement) and unity (perfect agreement) in contrast to NMAE and χ2 which are 

unbound. The Taylor skill metric (S) was discretized into three classes based on terciles. 

These classes, representing three tiers of model-data agreement, were then related to 

biome, climatic season, drought level, site history, and model structure using regression 
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tree analysis (RTA) as a supervised classification algorithm. RTA is a form of binary 

recursive partitioning (Breiman et al., 1984) that successively splits the data (Taylor skill 

classes as the response; all other attributes as predictors) into subsets (nodes) by 

minimizing within-subset variation. The result is a pruned tree-like topology whereby 

predicted values (Taylor skill metric class) are derived by a top-to-bottom traversal 

following the rules (branches) that govern subset membership until a predicted value is 

reached (terminal node). The splitting rules at each node as well as its position allow for a 

calculation of relative variable importance (Breiman et al., 1984) with the most important 

variable given a score of 100. Variables of high importance were further analyzed using 

conditional means, i.e., comparing mean values for each predictor value, with statistical 

differences determined using Bonferroni methods. 

 

Results 

Model-data agreement relative to climatic season, dryness, and biome 

Overall agreement across n = 31025 months was better in forested than non-forest 

biomes; both NMAE (Table 4) and χ2 values (Table 5) were closer to zero. At the biome 

level model skill was loosely ranked in four tiers: evergreen needleleaf forests in the 

temperate zone > all other forested biomes > grasslands, woody savannahs > croplands, 

shrublands, wetlands > tundra. These rankings were robust across models used in the 

majority of biomes although some divergence was apparent for croplands and shrublands 

(Figure 1). Relative to seasonality and drought level models were most consistent with 

observations during periods of peak biological activity (climatic summer) under dry 

conditions (Figure 2). However, across the three levels of dryness changes in model-data 

17



agreement were negligible for NMAE (~4% change, Table 4) but more pronounced for χ2 

(8.10 to 12.72, Table 5). Averaged over the warm season (excluding climatic winter) 

dry/wet conditions were coincident with worse model-data agreement, e.g., NMAE was -

1.32, -1.26, and -1.74 for dry, normal, and wet respectively. In biomes with a clear 

seasonal cycle in leaf area index (LAI) a loss of model skill occurred during climatic 

spring and fall (Table 4 & 5). 

 

Skill metrics by model 

Model skill was, regardless of metric, highly variable. Of the three, NMAE was related to 

both Taylor skill and χ2 (ρ = -0.65; p < 0.0001). Jointly, high Taylor skill co-occurred 

with NMAE and χ2 values closer to zero (Figure 3). Across models NMAE ranged from -

0.42 of the overall mean observed flux to -2.18 for LoTEC and DNDC respectively. 

Values of χ2 varied from 2.17 to 29.87 for LoTEC and CN-CLASS. Alternatively, the 

degree of model-data mismatch (the distance between observations and simulations) was 

at least 2.17 times the observational flux uncertainty. Similarly, Taylor skill showed a 

high degree of scatter across sites and within models (Figure 4), although two crop only 

models (SiBcrop and AgroIBIS), LoTEC, and ISOLSM were more conservative and 

showed a high degree of consistency with observations (S > 0.8). 

 

Among crop models, SiBCrop and AgroIBIS performed well, especially in climatic 

spring and during wet conditions. In contrast, the crop only DNDC model exhibited poor 

model-data agreement with χ2 > 15 in climate spring and summer as well as across all 

drought levels. Although four crop only simulators were analyzed, the best agreement in 
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croplands (NMAE and χ2 closer to zero) was achieved by SiB3 and Ecosys, models used 

in multiple biomes. With the highest Taylor skill and NMAE and χ2 closest to zero, the 

LoTEC model (NMAE = -0.42, χ2 = 2.17, S = 0.95) was most consistent with observations 

across all sites, dryness levels, and climatic seasons. This platform was optimized using a 

data assimilation technique, unique among model runs evaluated here, and was applied at 

10 sites. In addition, the mean model ensemble (MEAN) also performed well (NMAE = -

0.74, χ2 = 3.35, S = 0.80). For individual models (n = 12) used at a wider range of sites (at 

least 24 sites) model consistency with observations was highest for Ecosys (NMAE = -

0.69, χ2 = 7.71, S = 0.94) and lowest for CN-CLASS (NMAE = -1.50, χ2 = 29.87, S = 0.48).  

 

Site-level model-data agreement also showed a high degree of variability (Figure 5). At 

three croplands sites (US-Ne1, US-Ne2, and US-Ne3) Taylor skill across all models 

ranged from zero to unity. Both NMAE and χ2 exhibited similar scatter by site (not 

shown). Even for the best predicted site on average (US-Syv) S ranged from 0.19 to 0.95. 

Similarly, two forested sites (CA-Qfo and CA-TP4) were predicted well (S > 0.5) by all 

models; whereas only one tundra site (US-Atq) was consistently poorly predicted (S < 

0.5). Despite the wide range in model performance, model skill (NMAE, χ2, and S) was 

not related to the number of sites (|ρ| < 0.2; p > 0.5) or biomes (|ρ| < 0.2; p > 0.3) 

simulated, i.e., using a more general rather than a specialized model did not result in a 

loss in model performance. Also, model-data agreement was not better at sites with 

longer data records (|ρ| < 0.1; p > 0.1). Lastly, model skill was not related to how close 

model spinup and initial conditions approximated steady state. Although long-term 

simulated NEE varied from near zero (steady state) to ~-500 g C m-2 yr-1, there was no 
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relationship (|ρ| < 0.1; p > 0.2) between these values and any of the three model skill 

metrics. 

 

Model and site-specific consistency with observations using Taylor diagrams 

Average model performance (both across-site and across-model) was evaluated using 

Taylor diagrams based on all simulated and observed NEE monthly integrals. Better 

model performance was indicated by proximity to the benchmark, representing the 

observed state. The benchmark was normalized by observed standard deviation such that 

the distance of σ and RMSE from the benchmark was in observed σ units. Similar to 

model skill metrics, forested sites were better predicted than non-forested ones. The 

MEAN model, i.e., average model performance across all models, at all sites (excluding 

CA-SJ2 and US-Atq) showed ρ ≥ 0.2 but generally (33 of 44 sites) underpredicted the 

variability associated with monthly NEE at forested (Figure 6) and non-forested (Figure 

7) sites. Similarly, 40 of 44 sites were predicted with RMSE < σ. Also 8 (6 forested and 

two croplands sites: CA-Obs, CA-Qfo, CA-TP4, US-Ho1, US-IB1, US-MMS, US-Ne3, 

US-UMB) of the 44 sites were predicted with ρ ≥ 0.95 and RMSE < 1. The worst 

predicted site was CA-SJ2 with ρ = -0.67, σ = 4.3, and RMSE = 5.1. 

 

Overall model performance, aggregated across sites, was similar (Figure 8). Most models 

underpredicted variability and showed RMSE < σ. Of all 22 models only DNDC 

exhibited ρ < 0.2. Based on proximity to the benchmark, i.e., a high S value (Figure 3), 

the best models were: EPIC (crop only model used on one site), ISOLSM (used on 9 

sites), LoTEC (data assimilation model), SiBcrop and AgroIBIS (crop only models), 
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EDCM (used on 10 sites), Ecosys and SiBCASA (more generalist models used on 39 and 

35 sites respectively), and MEAN (mean model ensemble for all 44 sites). All of these 

“best” models had ρ > 0.8, RMSE < 0.8 and slightly underpredicted variability; except the 

crop only models and Ecosys where variability was overpredicted. Models whose average 

behavior was furthest away from the benchmark were DNDC followed by BEPS. 

 

Links between model skill, model structure, and site history 

Across all sampled combinations of site, model, climatic season and drought (n = 3132 

groups), biome was the most important factor in the distribution of model skill (Figure 9). 

Biome was followed by climatic season and stand age, the highest scored site-specific 

attribute. None of the 12 evaluated site disturbances (Table 3) achieved an importance 

score of at least 25. Apart from drought, the remaining variables were model-specific 

structural attributes: the number of soil layers, vegetation pools, and soil pools. Three 

carbon flux calculations also had a variable score > 25, with NEE being the highest 

scored algorithm. 

 

With 8 of the 14 evaluated model-specific factors having a variable importance score of 

at least 25, model attributes were linked to model skill. Comparing mean S across all 

levels of a single model attribute (Figure 10) revealed three instances where model-

specific factors were statistically related to model skill: Models using a prescribed canopy 

achieved higher S (= 0.54) than either prognostic or semi-prognostic models (S = 0.42; p 

< 0.05). Using a daily time step was coincident (S = 0.42) with a loss in model skill 

relative to non-daily time steps (S = 0.53; p < 0.05). Finally, calculating NEE as the 
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difference between GPP and autotrophic respiration was superior (S = 0.53) to other 

calculation methods (S = 0.42; p < 0.05). Both vegetation pools and soil layers exhibited 

a weak pattern whereby models with coarse or very detailed vegetation and soil structure 

were more consistent with observed data (Figure 10).  

 

Despite these effects model attributes were of secondary importance. The change in S 

relative to biome varied from 0.30 to 0.55; a much larger range than seen for model 

attributes. Similarly, the high variable importance scores for biome and climatic season, 

as well as the lower score for drought level, corroborated the relationships between these 

factors and model skill as seen with NMAE and χ2. While the regression tree algorithm 

achieved an accuracy of 66% for predicting Taylor skill class, the site history and model 

characteristics considered here did not explain the underlying cause of biome and 

seasonal differences in model skill. 

 

Discussion 

Effect of parameter sets on model performance 

Model parameter sets are a large source of variability in terms of model performance 

(Jung et al., 2007b). They influence output and accuracy (Grant et al., 2005) and are more 

important for simulating CO2 exchange than interannual climatic variability (Amthor et 

al., 2001). This is related to the use of biome-specific parameters relative to within-biome 

variability (Purves & Pacala, 2008). A corollary occurs in the context of EC observations 

as tower footprints can exhibit heterogeneity, particularly in soils, that is not reproduced 

in model site-specific parameters (Amthor et al., 2001).  
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The importance of model parameter sets was visible in this intercomparison in two ways. 

Firstly, biome had the highest variable importance score. Insomuch as models rely on 

biome-specific parameter values this finding indicates model parameter sets as a key 

factor in the distribution of model skill. Furthermore, the variability in model skill across 

sets of biome-specific constants (Figure 5) underscores that biomes may be too 

heterogeneous in time (Stoy et al., 2005; 2009) and space to assume constant parameter 

values relative to within-biome variability linked to climate (Hargrove et al. 2003). 

Secondly, the general high degree of within-model variation in model skill (Figure 4) 

suggested that model parameter sets may need to be refined to capture local, site-specific 

realities. 

 

Effect of model structure on model performance 

The smaller variable importance scores and changes in model skill relative to biome and 

climatic season (Figure 9 & 10) revealed only a secondary link between model skill and 

the model structural attributes evaluated here. In general, model-data agreement was 

highest when models did not use a daily time step, used a prescribed canopy, and 

calculated NEE as the difference between GPP and autotrophic respiration. Similarly, for 

soil layers, vegetation pools, and, to a lesser extent, soil pools, consistency with 

observations was highest in those models with either the simplest structure (e.g., one soil 

carbon pool in ISOLSM) or the most complex (e.g., Ecosys and SiBCASA with 15 soil 

layers). Models that exhibited all of these structural characteristics (SiBCASA, SiB3, and 

ISOLSM) showed high degrees of model-data agreement across all three skill metrics. 
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Similarly, Ecosys, which used a prognostic canopy but otherwise had similar structural 

characteristics as SiBCASA, also performed well. It is noteworthy that models with a 

prognostic canopy required more detailed carbon pool and soil layer characterizations 

such as Ecosys. There was no model with a low number of carbon pools and soil layers 

and a prognostic canopy that was in the top tercile of model skill based on any skill 

metric except SiBcrop and AgroIBIS for Taylor skill in croplands only. 

 

The success of those models with desirable, determined from predicting model skill 

classes using model attributes, model structure was not confined to single biomes. While 

non-forested sites were not as well simulated as forested sites, model-data consistency in 

these biomes, especially croplands, sites was highest with Ecosys and SiB3; not the crop 

only simulators. This suggests that a single model with requisite model structural 

attributes can be used in all types of ecosystems. As multiple models with both good 

performance and desirable structural attributes were available, model choice is recast as a 

tradeoff between ease of parameterization and spin up. Finally, while the choice of model 

structure is an important consideration for model-data agreement using multiple models 

(MEAN) or data assimilation to optimize model parameter sets (LoTEC) resulted in 

better consistency with observations.  

 

Links between model performance and environmental factors 

Dryness level was related to model skill. During the warm season (all climatic seasons 

excluding winter) model performance declined under dry/wet conditions.  
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While this points to process uncertainty, especially during dry conditions (Sitch et al., 

2008), ecosystem response to longer-term drought can exhibit lags and positive feedbacks 

(Arnone et al., 2008; Granier et al., 2007; Thomas et al., 2009; Williams et al., 2009) that 

were not explicitly included in the drought metric used in this study. 

 

In spring and fall, especially for biomes with a significant deciduous component, models 

showed a decline in model skill relative to periods of peak biological activity (climatic 

summer) (see also Morales et al., 2005). Phenological cues are known to influence the 

annual carbon balance at multiple scales (Barr et al., 2007; Delpierre et al., 2009; Keeling 

et al., 1996). The loss of model skill seen in this study during spring and fall was likely 

linked to uncertainty (process- and parameter-based) in leaf initiation and senescence 

(Hanson et al., 2004) as well as the initiation and cessation of canopy photosynthesis 

relative to soil moisture and soil temperature (Waring & Running, 2007). In this study 

seasonality was second only to biome in driving model skill (Figure 9). This and the lack 

of link between model skill and site history strongly implicate phenology as a needed 

refinement of terrestrial biosphere simulators. 

 

The evergreen needleleaf forest biome diverged in performance based on whether the 

sites were located in the temperate or boreal zones. A similar divergence was reported 

using Biome-BGC, LPJ and ORCHIDEE to simulate gross CO2 uptake across a 

temperature gradient in Europe (Jung et al., 2007a); average relative RMSE was higher 

for evergreen needleleaf forests in the boreal zone. This was linked to an overestimation 

of LAI at the boreal sites and relationships between resource availability and leaf area 

25



(Friedlingstein et al., 2006; Jung et al., 2007a; Stich et al., 2008). Additionally, recent 

observations in the circumboreal region, where all boreal evergreen needleleaf forested 

sites are located, suggest that transient effects of climate change, e.g., increased severity 

and intensity of natural disturbances (fire, pest outbreaks) and divergence from climate 

normals in temperature, have already occurred (Soja et al., 2007). We speculate the loss 

of model skill in boreal relative to temperate evergreen needleleaf forests was linked to 

insufficient characterization of cold temperature sensitivity of metabolic processes and 

water flow in plants as well as freeze-thaw dynamics (Schaefer et al., 2007; 2009) and 

that this was exacerbated by the effects of transient climate change. 

 

Effects of site history and protocol on model evaluation 

Disturbance regime and how a model treats disturbance are known to impact model 

performance (Ito, 2008). In this study stand age impacted model skill whereas site history 

was of marginal importance (Figure 9). Comparing sites with and without fire or harvest 

activity showed no significant difference in mean model skill (p > 0.25), i.e., disturbance 

and age were confounded. However, CA-SJ2, the worst predicted site (Figure 6), was 

harvested in 2000 and scarified in 2002, and US-SO2, a second poorly predicted 

shrubland site (Figure 7), suffered catastrophic wildfire during the analyzed data record. 

The poor model performance for recently disturbed sites follows from the steady state 

assumption used in simulation and the absence of modeling logic to accommodate 

disturbance. However, the distribution of site history metrics was skewed; only few sites 

were burned, harvested, or in the early stages of recovery from disturbance when NEE is 

more nonlinear relative to established stands. Furthermore, age class was biased toward 
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older stands; of the 17 forested sites only one was classified as a young stand. Other site 

characteristics were also unbalanced; all non-forested biomes occurred on five or less 

sites; with only site each for shrublands and woody savannahs. While regression trees are 

inherently robust additional observed and simulated fluxes in rapidly growing young 

forested stands and undersampled biomes are desirable to better characterize model 

performance.  

 

Other aspects of the NACP site synthesis protocol also influenced the interpretation of 

our results. Firstly, this analysis focused solely on non-gap-filled data to allow the model-

data intercomparison to inform model development. However, the low turbulence 

(friction velocity) filtering removes more data at night than during the day, so our 

analysis may be skewed towards daytime conditions. Secondly, each model that used 

remotely sensed inputs (such as LAI) repeated an average seasonal cycle calculated from 

site-specific time series based on all pixels within 1 km of the tower site. This likely 

deflated relevant variable importance scores (Figure 9) and precluded a full comparison 

of prescribed vs. prognostic LAI. While only few models used such inputs (Table 1), 

including one of the best performing generalist models SiBCASA, removing the inherent 

bias of an invariant seasonal cycle over multiple years may improve model performance. 

Incorporating disturbance information to recreate historical land use and disturbance, 

especially for recent site entries, could also improve model performance. Lastly, despite 

the model simulation protocol’s emphasis on steady state, few, if any, of the sites are 

actually at steady state. This resulted in an inherent bias between simulated and observed 

NEE for all sites regardless of site history. Relaxing the steady state assumption 
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(Carvalhais et al., 2008) or initializing using observed wood biomass and the quasi-steady 

state assumption (Schaefer et al., 2008) could improve model performance. 

 

Conclusion 

We used observed CO2 exchange from 44 eddy covariance towers in North America with 

simulations from 22 terrestrial biosphere models to examine model skill across gradients 

in dryness, seasonality, and biome. Models’ ability to match observed monthly net 

ecosystem exchange across levels of dryness and seasonality was generally poor; the 

mean squared distance (χ2) between observations and simulations was ~10-times 

observational error. Overall, forested sites were better predicted than non-forested sites. 

Weaknesses in model performance concerned model parameter sets, phenology, 

especially for biomes with a clear seasonal cycle in leaf area index, and abnormally dry 

or wet conditions during the growing season. Sites with disturbances during the analyzed 

data record and undersampled biomes (grasslands, shrublands, wetlands, woody 

savannah, and tundra) also showed a large divergence between observations and 

simulations. In contrast, performance was higher when evaluating month-to-month 

trajectories using Taylor diagrams. This indicated that the temporal evolution of NEE is 

better modeled than responses to finer scaled changes in driving variables, albeit at the 

cost of under and overpredictions that cancel out over longer-term simulations. The 

highest degree of model-data agreement occurred in temperate evergreen forests across 

all climatic seasons and during summer across all biomes. Terrestrial biosphere 

simulators that calculated NEE as the difference between GPP and autotrophic 

respiration and with either simplistic (e.g., single soil carbon pool) or complex (e.g., 15 
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soil layers) characterizations of carbon pools and soil layers showed higher model skill 

relative to other model structural attributes. Models most consistent with observations 

included generalist models applied over a wide range of sites and biomes as well as an 

optimized model (parameters tuned using data assimilation), and a model ensemble 

(mean simulated value across several models). As generalist models (e.g., SiB3, Ecosys) 

with preferred model structural attributes performed well across all biomes, different 

model architectures were not needed for different types of ecosystems and model choice 

is recast as a function of ease of parameterization and initialization. 
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Table 3. Model structural and site history predictors used to classify Taylor skill with 
regression tree analysis. Taylor skill (S; Eq 3) was divided into three classes using 
terciles. Model structural predictants are from the Metadata for Forward (Ecosystem) 
Model Intercomparison survey collated by the NACP Site Synthesis 
(http://daac.ornl.gov/SURVEY8/survey_results.shtml). Site history data are from 
http://public.ornl.gov/ameriflux/, www.fluxnet.org, and Schwalm et al. (2006). 
Predictor Value 
Model temporal resolution Daily, half-hourly or less, hourly, monthly 
Canopy Prognostic, semi-prognostic, prescribed. 

Prescribed canopy from remote sensing, semi-
prognostic has some prescribed input into canopy leaf 
biomass but calculates phenology with other 
prognostic variables. 

Number of vegetation pools Number of pools, both dynamic and static 
Number of soil pools Number of pools, both dynamic and static 
Number of soil layers Number of layers 
Nitrogen True if the model has a nitrogen cycle; otherwise false.
Steady state True if the simulated long-term NEE integral 

approaches zero; otherwise false. 
Autotrophic respiration (AR) Fraction of annual GPP, fraction of instantaneous 

GPP, explicitly calculated, nil, proportional to growth 
Ecosystem respiration (R) AR + HR, explicitly calculated, forced annual balance 
Gross primary productivity 
(GPP) 

Enzyme kinetic model, light use efficiency model, nil, 
stomatal conductance model 

Heterotrophic respiration (HR) Explicitly calculated, first or greater order model, 
zero-order model 

Net ecosystem exchange (NEE) Explicitly calculated, GPP - R, NPP - HR 
Net primary productivity (NPP) Explicitly calculated, fraction of instantaneous GPP, 

GPP - AR, light use efficiency model 
Overall model complexity Low, average, high 

Values correspond to terciles of the total amount of 
first-order functional arguments for the following 
model-generated variables/outputs: AR, canopy leaf 
biomass, R, evapotranspiration, GPP, HR, NEE, NPP, 
soil moisture. 

Site history True if the below listed management activity or 
disturbance or event occurred on site; otherwise false. 
Grazed, fertilized, fire, harvest, herbicide, insects and 
pathogens, irrigation, natural regeneration, pesticide, 
planted, residue management, thinning 

Stand age class Young, intermediate, nil, mature, multi-cohort.  
Values based on stand age in forested sites; stands 
without a clear dominant stratum are treated as multi-
cohort; non-forest types have nil. 
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Table 4. Normalized mean average error (NMAE) by climatic season, drought level, and 
biome. Drought level was based on monthly values of 3-month Standard Precipitation 
Index (SPI): dry value of < -0.8; wet > +0.8. Otherwise normal conditions existed. 
 Climatic season Drought level  
Biome# Winter Spring Summer Fall Dry Normal Wet Overall
CRO 1.90 4.64 -0.79 12.73 -1.43 -1.54 -1.59 -1.55
DBF 0.81 93.7 -0.52 -2.14 -1.01 -1.00 -0.95 -1.00
ENFB 1.52 -1.12 -0.69 -1.92 -0.87 -1.15 -3.43 -1.12
ENFT -6.34 -0.66 -0.50 -0.76 -0.63 -0.72 -0.63 -0.68
GRA -25.46 -0.84 -1.11 5.19 -1.52 -1.32 -3.07 -1.51
MF 1.10 -7.48 -0.47 57.70 -1.42 -1.04 -1.15 -1.12
SHR -87.37 -1.37 -3.03 -140.17 -1.82 -2.18 -41.13 -2.88
TUN -1.43 -11.07 -20.63 6.38 19.22 -24.06 -1.81 -20.15
WET 1.80 -5.07 -0.59 -4.72 -1.21 -1.20 -2.38 -1.27
WSA -2.73 -0.75 -1.47 10.56 -1.39 -1.32 -1.51 -1.37
Overall 2.42 -1.35 -0.61 -1.94 -0.97 -1.01 -1.00 -1.00
# Biome codes: CRO = cropland, GRA = grassland, ENFB = evergreen needleleaf forest – 
boreal zone, ENFT = evergreen needleleaf forest – temperate zone, DBF = deciduous 
broadleaf forest, MF = mixed (deciduous/evergreen) forest, WSA = woody savanna, SHR 
= shrubland, TUN = tundra, WET = wetland. 
 
Table 5. Reduced χ2 statistic by climatic season, drought level, and biome. Drought level 
was based on monthly values of 3-month Standard Precipitation Index (SPI): dry value of 
< -0.8; wet > +0.8. Otherwise normal conditions existed. 
 Climatic season Drought level  
Biome# Winter Spring Summer Fall Dry Normal Wet Overall
CRO 3.22 10.66 39.75 49.71 14.43 23.54 32.75 25.8
DBF 5.29 10.74 8.77 4.55 5.58 7.86 8.67 7.34
ENFB 21.25 17.75 4.98 6.61 11.64 12.02 18.51 12.61
ENFT 4.39 7.90 3.27 2.26 4.71 4.29 4.60 4.45
GRA 10.89 11.38 25.01 17.22 13.97 10.99 26.01 16.07
MF 3.74 4.67 2.05 2.02 2.92 3.24 2.98 3.08
SHR 13.34 27.98 12.52 11.2 9.26 21.31 10.31 16.26
WET 23.65 27.27 11.74 7.54 21.51 17.36 12.91 17.47
WSA 0.61 5.81 11.88 3.39 6.73 4.64 6.35 5.37
Overall 8.18 11.95 11.27 9.45 8.10 9.98 12.72 10.26
# Biome codes: CRO = cropland, GRA = grassland, ENFB = evergreen needleleaf forest – 
boreal zone, ENFT = evergreen needleleaf forest – temperate zone, DBF = deciduous 
broadleaf forest, MF = mixed (deciduous/evergreen) forest, WSA = woody savanna, SHR 
= shrubland, WET = wetland. 
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Figure 1. 

 
Figure 1. Normalized mean average error (NMAE) by biome for each model. Biomes in 
ascending order based on model-specific NMAE; biomes on the left show better average 
agreement with observations. NMAE is normalized by mean observed flux. Across all 
sites, seasons, and drought levels within a given biome this value is negative (NEE < 0), 
indicating a sink. NMAE values closer to zero coincide with a higher degree of model-
data agreement. Woody savannahs and shrublands not shown: only one site each. Tundra 
(n = 2 sites) has NMAE < -10 for all models. CN-CLASS croplands value is off-scale (= -
8.98). Black cross: no observations; white circle: undersampled (n < 100 months). 
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Figure 2. 

 
Figure 2. Normalized mean average error (NMAE) by climatic season and drought level. 
NMAE is normalized by mean observed flux such that most values are negative (NEE < 
0), indicating a sink. Positive values, displayed on same color bar with opposite sign, 
indicate a source (NEE > 0). These occur in winter (all models) as well as spring and fall 
(all crop only models: AgroIBIS, DNDC, EPIC, SiBcrop). Off-scale values: AgroIBIS 
and SiBcrop in fall are -7.1 and -11.1 respectively. DNDC in fall and spring is -11.4 and -
8.7 respectively. Black cross: no observations; white circle: undersampled (n < 100 
months).
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Figure 3. 

 
Figure 3. Model skill metrics for all 22 models. Skill metrics are Taylor skill (S; Eq. 3), 
normalized mean average error (NMAE), and reduced χ2 statistic (χ2). Better model-data 
agreement corresponds to the upper left with Taylor skill close to unity; NMAE and χ2 
closer to zero. Gray interpolated surface added and model names jittered to improve 
readability. 
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Figure 4. 

 
Figure 4. Boxplots of Taylor skill by site. Taylor skill (S; Eq. 3) is a single value 
summary of a Taylor diagram where unity indicates perfect agreement with observations. 
Panels show interquartile range (blue box), median (solid red line), range (whiskers), and 
outliers (red cross; values more than 1.5 x interquartile range from the median). Only 
sites (n = 32) simulated with at least 10 unique models, excluding the mean model 
ensemble and the assimilated LoTEC, shown. Sites sorted by median Taylor skill. 
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Figure 5 

 
Figure 5. Boxplots of Taylor skill by model. Taylor skill (S; Eq. 3) is a single value 
summary of a Taylor diagram where unity indicates perfect agreement with observations. 
Panels show interquartile range (blue box), median (solid red line), range (whiskers), and 
outliers (red cross; values more than 1.5 x interquartile range from the median). Only 
models (n = 21) used on at least two sites shown. Sites sorted by median Taylor skill. 
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Figure 6. 

 
Figure 6. Taylor diagram of normalized mean model performance for forested sites. Each 
circle (n = 26 sites) is the site-specific mean model ensemble (MEAN). Benchmark (red 
square) corresponds to observed normalized monthly NEE; units of σ and RMSE are 
multiples of observed σ. Color coding of site letter and circles indicates biome: evergreen 
needleleaf forest – temperate zone (red), deciduous broadleaf forest (brown), mixed 
(deciduous/evergreen) forest (blue), evergreen needleleaf forest – boreal zone (black). 
Outlying sites (evergreen needleleaf forest – boreal zone) not shown: CA-SJ1 (ρ = 0.81, σ 
= 3.9, RMSE = 3.1) and CA-SJ2 (ρ = -0.67, σ = 4.3, RMSE = 5.1). 
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Figure 7. 

 
Figure 7. Taylor diagram of normalized mean model performance for non-forested sites. 
Each circle (n = 16 sites) is the site-specific mean model ensemble (MEAN). Benchmark 
(red square) corresponds to observed normalized monthly NEE; units of σ and RMSE are 
multiples of observed σ. Color coding of site letter and circles indicates biome: croplands 
(red), grasslands (brown), wetlands (blue), all other biomes (black).
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Figure 8. 

 
Figure 8. Taylor diagram of normalized across-site average model performance. Model σ 
and RMSE were normalized by observed σ. Each circle (n = 22 models) corresponds to 
the mean across all sites. Benchmark (red square) corresponds to observed normalized 
monthly NEE; units of σ and RMSE are multiples of observed σ. Color coding of model 
letter and circles indicates generality of model performance: specialist models used only 
in croplands (n ≤ 5 sites; black), generalist models used across range of biomes and sites 
(n ≥ 30 sites, blue), all other models (red). The correlation for DNDC (ρ = -0.13) is 
displayed as zero for readability. 
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Figure 9. 

 
Figure 9. Variable importance scores for model-specific (blue) and site-specific (green) 
predictors. Scores were generated from a regression tree with the Taylor skill classes 
based on terciles (n = 3132) as the response. Only the 12 of 28 predictants with score > 
25 shown; see Table 3 for complete listing of evaluated model structural and site 
attributes.  
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Figure 10. 

 
Figure 10. Bar graphs of mean Taylor skill by model attribute. Whiskers represent one 
standard error of the mean. Only model-specific attributes with variable important scores 
> 25 shown. 
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DISCLAIMER  
 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or The Regents of 
the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
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