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The clonal and mutational evolution spectrum of
primary triple-negative breast cancers
Sohrab P. Shah1,2, Andrew Roth1,2*, Rodrigo Goya3*, Arusha Oloumi1,2*, Gavin Ha1,2*, Yongjun Zhao3*, Gulisa Turashvili1,2*,
JiaruiDing1,2*, KaneTse3*, GholamrezaHaffari1,2*, Ali Bashashati1,2*, LeahM.Prentice1,2, JaswinderKhattra1,2, AngelaBurleigh1,2,
Damian Yap1,2, Virginie Bernard4, Andrew McPherson1,2, Karey Shumansky1,2, Anamaria Crisan1,2, Ryan Giuliany1,2,
Alireza Heravi-Moussavi1,2, Jamie Rosner1,2, Daniel Lai1,2, Inanc Birol3, Richard Varhol3, Angela Tam3, Noreen Dhalla3,
Thomas Zeng3, Kevin Ma3, Simon K. Chan3, Malachi Griffith3, Annie Moradian3, S.-W. Grace Cheng3, Gregg B. Morin3,5,
Peter Watson1,6, Karen Gelmon6, Stephen Chia6, Suet-Feung Chin7,8, Christina Curtis7,8,9, Oscar M. Rueda7,8, Paul D. Pharoah7,
Sambasivarao Damaraju10, John Mackey10, Kelly Hoon11, Timothy Harkins11, Vasisht Tadigotla11, Mahvash Sigaroudinia12,
Philippe Gascard12, Thea Tlsty12, Joseph F. Costello13, Irmtraud M. Meyer5,14,15, Connie J. Eaves16, Wyeth W. Wasserman4,5,
Steven Jones3,5,17, David Huntsman1,2,18, Martin Hirst3,15,19, Carlos Caldas7,8,20,21, Marco A. Marra3,5 & Samuel Aparicio1,2

Primary triple-negative breast cancers (TNBCs), a tumour type
defined by lack of oestrogen receptor, progesterone receptor and
ERBB2 gene amplification, represent approximately 16% of all
breast cancers1. Here we show in 104 TNBC cases that at the time
ofdiagnosis these cancers exhibit awide and continuous spectrumof
genomic evolution, with some having only a handful of coding
somatic aberrations in a few pathways, whereas others contain
hundreds of coding somatic mutations. High-throughput RNA
sequencing (RNA-seq) revealed that only approximately 36% of
mutations are expressed. Using deep re-sequencing measurements
of allelic abundance for 2,414 somatic mutations, we determine for
the first time—to our knowledge—in an epithelial tumour subtype,
the relative abundance of clonal frequencies among cases represent-
ative of the population. We show that TNBCs vary widely in their
clonal frequencies at the time of diagnosis, with the basal subtype of
TNBC2,3 showing more variation than non-basal TNBC. Although
p53 (also known as TP53), PIK3CA and PTEN somatic mutations
seem to be clonally dominant compared to other genes, in some
tumours their clonal frequencies are incompatible with founder
status. Mutations in cytoskeletal, cell shape and motility proteins
occurred at lower clonal frequencies, suggesting that they occurred
later during tumour progression. Taken together, our results show
thatunderstanding thebiologyand therapeutic responses of patients
with TNBC will require the determination of individual tumour
clonal genotypes.
To understand the patterns of somatic mutation in TNBC, we

enumerated genome aberrations at all scales from104 cases of primary
TNBC (Affymetrix SNP6.0, 104 cases; RNA-seq, 80 cases; genome/
exome sequencing, 65 cases: 54 exomes, 15 genomes with 4 overlap-
ping) (Supplementary Table 1 and Supplementary Fig. 1), annotated
with clinical information (Supplementary Table 2). We revalidated
2,414 somatic single nucleotide variants4,5 (SNVs) (Supplemen-
tary Table 3) with targeted deep sequencing to a median of 20,0003

coverage, including 43 non-coding splice site dinucleotide mutations
(Supplementary Table 4) and 104 genes with 107 indels (Supplemen-
tary Table 5 and SupplementaryMethods). Notably, the distribution of
somatic mutation abundance varies in a continuous distribution
among tumours (Fig. 1a) and seems to be unrelated to the proportion
of the genome altered by copy number alterations (CNAs) (Fig. 1b) or
tumour cellularity (Supplementary Fig. 2b). Although this distribution
could be partially explained by a false-negative rate in mutation dis-
covery, others have noted similar distributions in epithelial cancers6,
suggesting that the total mutation content of individual tumours may
be shaped by biological processes or differential exposure tomutagenic
influences in the population.
The overall pattern (Supplementary Fig. 3a, b) of CNA abundance

appears similar (Supplementary Fig. 4) to that seen in a larger, inde-
pendent series of,2,000 SNP6.0 profiled breast tumours7. Among the
most frequently observedCNAevents (SupplementaryTable 6) are the
tumour suppressor and oncogenes PARK2 (6%), RB1 (5%), PTEN
(3%) and EGFR (5%). Here we report intragenic deletions (Sup-
plementary Fig. 5) in the PARK2 tumour suppressor8,9, specifically
linking PARK2with TNBC for the first time. Consistent with previous
reports in breast cancer10, we did not observe frequent recurrent struc-
tural rearrangements (Supplementary Fig. 3d and Supplementary
Table 7), althoughwe revalidatedmany individual fusion events invol-
ving known oncogenes or tumour suppressors (for example, KRAS,
RB1, IDH1, ETV6) (Supplementary Tables 8–10).
A comparison of RNA-seq datawith genomes/exomes data revealed

that only 36%of validated somatic SNVswere observed in the transcrip-
tomesequence (SupplementaryTable3 andSupplementaryFig. 2b). In a
recent lymphoma study, similar proportionswere observed (137 of 329
somatic mutations expressed in RNA-seq)11. As expected, the propor-
tion of low-abundance somatic SNVs observed in RNA is reflected in
the distribution ofwild-type, heterozygous andhomozygous expressed
mutations (Supplementary Fig. 2b), consistent with the notion that
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low-abundance alleles may represent rarer clones in the primary
tumour. We found 43 splice junction mutations with evidence for an
impact on splicing patterns (Supplementary Table 4), encompassing
several known tumour suppressors (p53, PIK3R1; Supplementary Fig.
6) aswell asmanygenes not yet implicated in carcinogenesis.Analysis of
72 somatic mutations in the non-coding space of experimentally deter-
mined human regulatory regions12 showed (Supplementary Table 11) a
significant overrepresentation (31.9%versus expected 2.5%, Fisher exact
test P5 23 1019) of mutations within retinoblastoma-associated
protein (RB)-binding sites. Sixmutationswerepredicted to bedamaging
to RB binding (Supplementary Methods and Supplementary Fig. 7).
This is consistent with observations of frequent functional disruption
of the RB-regulated cell cycle network13 in TNBC.
We next searched for mutation enrichment patterns in three ways:

by single genemutation frequency overmultiple cases; by themutation
frequency over multiple members of a gene family; and by correlating
mutation status with expression networks. First, similar to other
studies14,15, p53 is the most frequently mutated gene (Supplementary
Table 12) with 62% of basal TNBC (determined by gene expression
classification with PAM50 (ref. 16) analysis on RNA-seq expression
profiles) and 43% of non-basal TNBC cases harbouring a validated
somatic mutation. We also observed frequent mutations in PIK3CA at
10.2% (7/65), USH2A (Usher syndrome gene, implicated in actin
cytoskeletal functions) at 9.2% (6/65), MYO3A at 9.2%, PTEN and
RB1 at 7.7% (5/65) and a further eight genes (including ATR, UBR5
(also known as EDD1), COL6A3) at 6.2% (4/65) of cases in the cohort

(Fig. 2a). Considering background mutation rates17, p53, PIK3CA,
RB1, PTEN, MYO3A and GH1 showed evidence of single gene selec-
tion (q, 0.1) (Supplementary Table 13). Additional recurrent muta-
tions of note occurred in the synuclein genes (SYNE1 and SYNE2, 9.2%
6/65, recently implicated in squamous head and neck cancers18,19),
BRCA2 (three cases), and several other well known oncogenes
(BRAF, NRAS, ERBB2 and ERBB3) with mutations in two cases each.
Approximately 20% of cases contained examples of potentially
‘clinically actionable’ somatic aberrations, including BRAF V600E,
high-level EGFR amplifications and ERBB2 and ERBB3 mutations.
In the second approachwe searched for statistically overrepresented

gene families and protein functions using the Reactome functional
protein interaction database20 (Supplementary Methods). This ana-
lysis quantifies gene family involvement through sparse mutation
patterns in functionally connected genes, which would be statistically
underrepresented by single gene recurrent mutation analysis. The
overrepresented pathways (false discovery rate (FDR), 0.001)
included p53-related pathways along with chromatin remodelling,
PIK3 signalling,ERBB signalling, integrin signalling and focal adhesion,
WNT/cadherin signalling, growth hormone and nuclear receptor co-
activators, andATM/RB-related pathways (Fig. 3a and Supplementary
Table 14). We note that the candidate ‘driver’MYO3A, a cytoskeleton
motor protein involved in cell shape and motility, relates to several
pathways upstream and downstream of integrin signalling. The
mutated genes include extracellular matrix (ECM) interactions
(laminins, collagens), ECM receptors (integrins), several proteins
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Figure 1 | Distribution of number of validated
somatic mutations by case over 65 cases.
a, Mutation frequency (basal, red; other, grey).
Patients harbouring known driver gene mutations
are indicated. b, Case-specific and overall (inset)
distributions of mutations in CNA classes. AMP,
amplification; GAIN, single copy gain; HETD,
hemizygous deletion; HLAMP, high-level
amplification; HOMD, homozygous deletion;
NEUT, no copy number change. The number of
(HOMD, HLAMP) CNAs (black diamonds) and
percentage genome altered (green circles) are
indicated.
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regulating actin cytoskeleton dynamics (usherin, palladin, multiple
myosins) and microtubule motor proteins (kinesins) (Fig. 2a). All of
these contribute to cellular processes that have been functionally impli-
cated in cancer progression; however, a signature of somatic mutation
associated with these proteins has not been previously noted in TNBC.

To confirm themutational spectrum in the general breast cancer popu-
lationwe re-sequenced all exons of 29 genes in an additional 159 breast
cancers (82 oestrogen receptor (ER)1 and 77 ER2, tumour and
matched normal) (Fig. 2b), and confirmed that many of the genes
found in the discovery cohort were recurrently mutated in an addi-
tional population. Whether this pattern of mutation represents the
occurrence of disease-modifyingmutations, or possibly selection from
other processes (for example, transcription-related hypermutation) is
unknown. Interestingly, the enrichment of cytoskeletal functions in the
somatic aberration landscape is also evident from the copynumber and
alternative splicing landscapes (Supplementary Fig. 8).
Third, we integrated both the CNA and mutation data with expres-

sion data to reveal genomic events associated with extreme changes in
the transcription of interacting genes20 (Table 1), using a bipartite
graph-based method (driverNet; Supplementary Methods). The
somatic aberrations showing statistically significant association with
extreme expression in this analysis (P, 0.05) (Table 1 and Sup-
plementary Table 15) implicate well known oncogenes and tumour
suppressors (TP53, PIK3CA, NRAS, EGFR, RB1, ATM) and suggest
several new genes of interest, including PRPS2 (a nucleotide bio-
synthesis enzyme, rank 7), harbouring homozygous deletions in three
cases, NRC31 (a glucocorticoid receptor, rank 10) with SNVs in three
cases, four PKC-related genes, PRKCZ, PRKCQ, PRKG1 and PRKCE.
The gene networks show a partial overlapwith driverNet applied to the
TCGA ovarian high-grade serous data21 (Supplementary Table 16).
Having identified candidate driver genes and significantly over-

represented pathways, we asked how these are distributed among
individual tumours by clustering a pathway–patient-mutation matrix
(Supplementary Fig. 9). The abundance of implicated pathways can be
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Figure 3 | Network analysis of 254 recurrently mutated genes by somatic
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encodes the adjusted P value (q value) of the comparison of the distribution of
clonal frequencies ofmutations in a given pathway to the overall distribution of
clonal frequencies. A spectrum of higher (red) and lower (yellow) clonal
frequencies is evident. Letters in parentheses indicate database sources.

Table 1 | Analysis of the top somatically aberrated genes influencing
expression
Rank Gene gband SNV or

indel
HLAMP HOMD Events P value

1 TP53 17p13.1 35 0 0 2242 0
2 PIK3CA 3q26.32 7 0 0 441 1 31024

3 NRAS 1p13.2 2 0 0 271 4 31024

4 EGFR 7p11.2 1 5 0 220 4 31024

5 RB1 13q14.2 5 0 5 184 5 31024

6 PGM2 4p14 1 0 1 172 5 31024

7 PRPS2 23p22.2 0 0 3 171 5 31024

8 PTEN 10q23.31 5 0 3 150 5 31024

9 PRKCE 2p21 0 0 1 136 7 31024

10 NR3C1 5q31.3 3 0 0 130 7 31024

11 CREBBP 16p13.3 1 0 1 119 8 31024

12 CS 12q13.2 1 0 0 108 0.0011
13 MAN2A2 15q26.1 2 0 1 104 0.0012
14 HMGCS2 1p12 1 2 0 100 0.0013
15 HEXA 15q24.1 2 1 0 97 0.0013
16 ADCY9 16p13.3 2 1 0 91 0.0017
17 OR4N4 15q11.2 0 0 5 90 0.0017
18 LCLAT1 2p23.1 0 0 1 85 0.002
19 DGKI 7q33 2 0 0 82 0.0022
20 CYP2A6 19q13.2 1 0 0 80 0.0024
21 JAK1 1p31.3 1 0 0 78 0.0026
22 POLR1A 2p11.2 2 0 0 78 0.0026
23 PLD1 3q26.31 1 0 0 69 0.0038
24 IDH3B 20p13 1 0 1 68 0.004
25 PAPSS2 10q23.2 0 0 3 67 0.0041
26 PRKX 23p22.33 0 0 2 65 0.0046
27 TPH2 12q21.1 1 0 0 65 0.0046
28 UGT2B17 4q13.2 0 0 1 63 0.0053
29 RRM2 2p25.1 1 0 0 57 0.0072
30 ATM 11q22.3 1 0 0 55 0.0084
31 CLCA1 1p22.3 2 0 0 54 0.009
32 PRKCZ 1p36.33 1 0 0 53 0.0095

Rank, derived by the driverNet algorithm (see Supplementary Methods); gene, somatically aberrated
gene; gband, chromosomal band containing gene; SNV or indel, the number of cases harbouring an
SNV or indel in the gene; HLAMP, the number of cases harbouring a predicted high-level amplification;
HOMD, the number of cases harbouring a predicted homozygous deletion; events, number of gene
expression outliers (see SupplementaryMethods) coincident with a genomic aberration andwhere the
outlying gene is connected to the aberrated gene; P value, statistical significance based on a randomly
generated background distribution (Supplementary Methods).
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seen to be only partially related to the total number of mutations in a
case, groups 1 and 2 having on average fewer mutations per case. The
frequent involvement of pathways with p53, PTEN and PIK3CA as
members, is noted (Supplementary Fig. 9); however, the case group-
ings also vary by the progressive inclusion of additional pathways (for
example,WNTsignalling, integrin signalling, ERBB signalling, hypoxia
and PI3K). More than two thirds of cases contained one ormoremuta-
tions in the actin/cytoskeletal functions group of genes (Supplementary
Fig. 9). Some 12% of cases did not contain somatic aberrations in any of
the frequent drivers or cytoskeletal genes (Supplementary Table 12).
This suggests that primary TNBCs aremutationally heterogenous from
the outset, with some patients’ tumours having a small number of
implicated pathways and fewmutations, whereas other patients present
with tumours containing extensive mutation burdens and multiple
pathway involvement.
Motivated by the observation that early primary TNBCs show a

wide variation of mutation content, we asked whether the clonal
composition of these primary cancers is similarly varied. We and
others have shown22,23 how deep-frequency measurements of allelic
abundance can be used to study tumour clonal evolution. Clonal
mutation frequency, a compound measure of clonal complexity,
(Fig. 4a) can be estimated from allele abundance, once the influence
of copy number states, regional loss of heterozygosity (LOH state) and
tumour cellularity have been considered (although we note that
approximately 68% of SNVs in this study are in diploid, neutral
regions). To extend allelic abundance measurements to estimation of
clonal frequencies, we implemented a Dirichlet process clustering
model (pyclone; Supplementary Methods and Supplementary Fig. 10)
that simultaneously estimates the genotype and clonal frequency given
a list of deeply sequenced mutations and their local copy number and
heterozygosity contexts.
Using the set of deeply sequenced (median 20,0003), validated

SNVs, our analysis revealed (Fig. 4b) that groups of mutations within
individual cases have different clonal frequencies, indicative of distinct
clonal genotypes. Remarkably, the tumours exhibit a wide spectrum of
modes over clonal frequencies (Fig. 4b and Supplementary Fig. 11),
with some cases showing only one or two frequency modes (Fig. 4b),
indicating a smaller number of clonal genotypes, whereas other
tumours exhibit multiple clonal frequency modes, indicating more
extensive clonal evolution. Consistent with early ‘driver gene’ status,
mutations in known tumour suppressors such as p53 tend to occur in
the highest clonal frequency group inmost tumours.However, in some
cases (for example, SA219, SA236; Fig. 4b, Supplementary Fig. 11) p53
resides in lower-abundance clonal frequency groups (Supplementary
Fig. 12 and Fig. 3a), suggesting that it was not the founding event.
Although the number of clonal frequencymodes tends to increasewith
the number ofmutations, the relationship is not strictly linear (Fig. 4c).
To determine whether basal and non-basal cancers differ in their
clonality, we compared the distribution of clonal modes (clusters) by
case and as an overall distribution, and note that basal TNBCs have
more clonal frequencymodes than non-basal TNBCs (Fig. 4c). Both of
these distributions emphasize a key observation; namely, that at the
time of diagnosis TNBCs already display awidely varying clonal evolu-
tion that mirrors the variation in mutational evolution.
Finally, we asked where key pathways appear in the distribution of

clonal frequency groups. We examined the clonal frequency of genes
in each pathway and ascertained if there was a deviation away from the
distribution of clonal frequency for all mutations. As expected,
pathways involving p53 and PIK3CA showed significantly skewed
distributions (Wilcoxon, q, 0.01; Fig. 3b and Supplementary Fig. 12)
towards higher clonal frequencies, consistent with their roles in early
tumorigenesis (Fig. 3a and Supplementary Table 17). Intriguingly,
pathways with cytoskeletal genes such as myosins, laminins, collagens
and integrins tend to have lowermedian clonal frequencies, suggesting
that somaticmutations in these genes are acquiredmuch later (Fig. 3b).
Notably, the median clonal frequency for Reactome pathway ‘p53

pathway feedback loops’, including 46 mutations in ATM, ATR,
NRAS, PIK3CA, PTEN, SIAH1 and p53,was 73% (Wilcoxon,
q5 0.0007), whereas ‘integrin cell surface interactions’, including 23
mutations in integrin, laminin and collagen genes, had amedian clonal
frequency of 42% (Wilcoxon, q5 0.9569).
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Figure 4 | Clonal evolution in TNBC. a, Schematic representation of
integration of CNA, LOH, allelic abundance measurements and normal cell
contamination for clonal frequency estimation using a Dirichlet process (DP)
model (left). Example of a mixture of three clonal genotypes composed of four
mutations (A, B, C, D) and their resulting clonal frequencies. b, Estimated
clonal frequencies for four cases are shown as the distribution of posterior
probabilities from the pyclone model (Supplementary Methods). Clonal
frequency distributions are coloured by their frequency group membership.
c, Left, relationship of mutation abundance (synonymous (Syn) and non-
synonymous (Non-syn)) and the inferred number of clonal clusters. Middle,
distribution and kernel density (red line) of the number of inferred clonal
clusters over 54 TNBCs. Right, kernel density distribution of clonal clusters for
basal (red) and non-basal (grey) tumours.
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Primary TNBCs are still treated as if they were a single disease entity,
yet it is clear they do not behave as a single entity in response to current
therapies. Here we show for the first time, using next-generation
sequencing mutational profiling methods, that treatment-naive
TNBCs display a complete spectrum of mutational and clonal evolu-
tion, with some patients’ tumours showing only a few somatic coding
sequencepointmutationswith a limitednumberofmolecular pathways
implicated, whereas other patients’ tumours exhibit considerable addi-
tional mutational involvement. Moreover, the clonal heterogeneity of
these cancers is also a continuum, with some patients presenting with
low-clonality cancers and other cases exhibiting more extensive clonal
evolution at diagnosis. In this respect, the basal expression subtype of
TNBCs also tends to show higher clonality at diagnosis, although the
relationship is not exact.
In clonally evolving tumours, identification of genes by single gene

mutation frequency measurements will probably favour early driver
genes, because the subsequent involvement of multiple additional
pathways during tumour progression is unlikely to be observed as a
frequent single gene mutation. The clonality analysis emphasizes this
point: known drivers such as p53, PIK3CA and PTEN have among the
highest clonal frequencies, whereas mutations in cell shape/motility
and ECM-signalling genes appear in the lower clonal frequency
groups, distributed overmany genes. Although p53 somaticmutations
are clearly early events, the clonal frequencies observed in some TNBC
suggest that they are not always the first event, raising a question about
what drives early clonal expansion in some of these cancers. Our
findings suggest that each TNBC at the time of primary diagnosis
maybe at a very different phase ofmolecular progression,with possible
implications for approaches to the biology of low clonality versus high
clonality primary tumours.

METHODS SUMMARY
The genomes and transcriptomes of 104 TNBCs were profiled with Affymetrix
SNP6.0 arrays (all cases), RNA-seq (80 cases; Illumina GAII), and whole exome/
genome sequencing (65 cases; tumour and normal DNA). Exomes were obtained
using Agilent’s Human All Exon SureSelect Target Enrichment System v.1 fol-
lowed by Illumina GAII sequencing, and whole genomes were sequenced using
Life Technologies SOLiD system. Data were analysed using computational
approaches to detect somatic SNVs4,5, indels, copy number alterations, gene
fusions and gene expression patterns. Predictions were then validated using
orthogonal experimental assays, including targeted ultra-deep amplicon sequencing
of SNVs to ,20,0003 redundancy. We determined single genes under selection
using a statistical approach that considers patient-specific backgroundmutation and
transition/transversion rates. Mutations predicted to alter transcriptional profiles
were determined using an integrated bipartite graph-based method (driverNet) that
associates genomic aberrations with outlying expression patterns informed by pre-
definedpathwaygene sets.Disruptedpathwaysweredeterminedusing theReactome
FI Cytoscape plugin. Clonal analysis was performed (cases with .10 mutations)
using a Dirichlet process statistical model that simultaneously estimates clonal fre-
quencies and mutation genotype given deeply sequenced somatic SNVs and copy
number estimates. Experimental assays and analytical methodology are detailed in
the Supplementary Information.
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