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Approaches to Conceptual Clustering 

Abstract 

Methods for Conceptual Clustering may be explicated in two lights. Conceptual 
Clustering methods may be viewed as extensions to techniques of numerical taxon­
omy, a collection of methods developed by social and natural scientists for creating 
classification schemes over object sets. Alternatively, conceptual clustering may 
be viewed as a form of learning by observation or concept formation, as opposed 
to methods of learning from examples or concept identification. In this paper we 
survey and compare a number of conceptual clustering methods along dimensions 
suggested by ea.ch of these views. The point we most wish to clarify is that con­
ceptual clustering processes can be explicated as being composed of three distinct 
but inter-dependent subprocesses: the process of deriving a hierarchical classifi­
cation scheme; the process of aggregating objects into individual classes; and the 
process of assigning conceptual descriptions to object classes. Each subprocess may 
be characterized along a number of dimensions related to search, thus facilitating 
a better understanding of the conceptual clustering process as a whole. 
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1.0 Introduction 

Classification is a process critical to the success of an intelligent organism. 
The ability to classify objects (events, states, observations, etc.) as members of 
object families or concepts, is the basis of all inferential capacity. Work in Artificial 
Intelligence has concentrated significantly on developing mechanisms for classifica­
tion, and the conceptual representations necessary to support these mechanisms. 
Machine Learning research, specifically work in learning from examples, has fa­
cilitated a better understanding of processes of concept identification, that is the 
derivation of concepts for a teacher imposed classification. Learning from examples 
however, has not addressed the problem of how a learner can originate classes, but 
only how conceptual descriptions can be assigned to externally provided classes. 
Recently methods of conceptual clustering have been forwarded, which do provide 
(partial) solutions to the object class origin problem. 

Methods of conceptual clustering are best explicated and compared with 
respect to two alternative, but complementary views. 

Two Views of Conceptual Clustering 

1) Methods of conceptual clustering are viewed as extensions or analogs to tech­
niques of numerical taxonomy, a collection of methods developed by natural 
and social scientists used to form classification schemes over data sets. 

2) Already alluded to is that conceptual clustering is a form of concept formation 
or learning by observation as opposed to learning from examples. 

Each of these views has utility in explicating processes of conceptual cluster­
ing, and each view will contribute to a unified set of dimensions along which we 
may characterize various conceptual clustering techniques. 

2.0 Conceptual Clustering and Numerical Taxonomy 

Conceptual clustering is a process abstraction originally motivated and defined 
by Michalski ( 1980) and Michalski and Stepp ( 1983a) as an extension of processes 
of numerical taxonomy. Any clustering method, whether it be of the conceptual 
clustering or numerical taxonomy variety may be abstracted as follows. 

The Abstract Clustering Task 

Given: A set of symbolically described objects, 0. 

Task: Distinguish clusters (ie. subsets of 0), 
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Ci, ... , C,,,, such that the set of clusters 
(ie. a clustering) is of high quality 
(perhaps not optimal) with respect to a 
clustering quality function. 

Methods of numerical taxonomy cluster objects that are symbolically de­
scribed as sets of variable-value pairs (ie. attribute-fe~ture pairs). In methods 
of numerical taxonomy, the quality of a clustering is a function only of the clus­
ters of the clustering. That is, numerical taxonomy techniques attempt to find a 
clustering which maximizes a (numeric) quality function of the following form. 

Despite the usefulness of numerical taxonomy techniques, any such method 
suffers from a major limitation, in that the resultant clusters may not be well char­
acterized in some human-comprehensible conceptual language. This limitation can 
be of concern to a data analyst (or learning program) who (which) wishes to ab­
stract the underlying conceptual structure of object groups in order to hypothesize 
about future observations, or to simply compress the data in an intelligent, eas­
ily recoverable way. Michalski ( 1980) defines conceptual clustering as an extension 
over the techniques of numerical taxonomy, which directly addresses the problem of 
determining conceptual representations. In methods of conceptual clustering, the 
quality of a clustering is dependent on the quality of concepts which may be used 
to characterize clusters of the clustering ( eg. the 'simplicity' of concepts) and/ or 
the map between concepts and the clusters they cover ( eg. the 'fit' or general­
ity of derived concepts). That is, methods of conceptual clustering seek to obtain 
clusterings which maximize a quality function of the following form. 

QUALITY (Ci, C2, ... , Cn) 
= f ( C1, C2, ... , Cn, CONCEPTS) 

where CONCEPTS is a set of concepts which may be used to describe object 
clusters.1 

Conceptual clustering algorithms which have been framed as extensions to 
numerical taxonomy techniques include CLUSTER/2 by Michalski and Stepp 
(1983a, 1983b), DISCON by Langley and Sage (1984), and the RUMMAGE 
program by Fisher (1984). A number of other algorithms, although not explicitly 
labeled conceptual clustering techniques, but which nonetheless can be framed as 
such, include GLAUBER by Langley, Zytkow, Simon, and Bradshaw (1985), 

1 This definition of conceptual clustering differs from but is consistent with Michalski's (1980). 
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MKlO by Wolff (1980), and Lebowitz' IPP (Lebowitz, 1983) and UNIMEM 
(Lebowitz, 1982) systems. Each of these systems has a rough analog with some 
methods of numerical taxonomy which we now touch upon. 

The literature on numerical taxonomy distinguishes three classes of methods 
(Everitt, 1980). 

Optimization techniques of numerical taxonomy form a 'fiat' (ie. unstruc­
tured) set of mutually exclusive clusters (ie. a partition over the input object 
set). Optimization techniques make an explicit search for a globally optimal 
K-partition of an object set, where K is a user supplied parameter. This search 
for globally optimal partitions make optimization techniques computationally 
expensive, thus constraining their use to small data sets and/ or small values 
of K. 

Hierarchical techniques form classification trees over object sets, where leaves 
of a tree are individual objects, and internal nodes represent object clusters. A 
'flat' clustering of mutually-exclusive clusters may be obtained from the clas­
sification tree by severing the tree at some level. Hierarchical techniques are 
further divided into divisive and agglomerative techniques, which construct the 
classification tree top-down and bottom-up, respectively. Hierarchical tech­
niques depend on 'good' clusterings arising from a series of 'local' decisions. 
In the case of divisive techniques, a node in a partially constructed tree is 
divided independent of other ( non-ancestrial) nodes of the tree. The use of 
'local' decision-making in hierarchical methods make them computationally 
less expensive than optimization techniques with an associated probable re­
duction in the quality of constructed clusterings. 

Clumpi'ng techniques return clusterings where constituent clusters possibly 
overlap. The possibility of cluster overlap stems from independently treat­
ing some number of clusters as possible hosts for an object which must be 
incorporated into a clustering. 

We can impose a classification on conceptual clustering methods analogous to 
the one just discussed for methods of numerical taxonomy. The Partitioning Module 
of CLUSTER/2 by Michalski and Stepp can be viewed as a conceptual optimization 
techniq·ue which given an object set to be partitioned and a parameter, K, specifing 
the number of desired clusters (ie. the partition size), attempts to construct an 
optimal K-partition of the object set. The partitioning module is computationally 
expensive and is prohibitive for large values of K. The Hierarchy-building Module of 
CLUSTER/2 is a conceptual hierarchical technique which builds a classification tree 
top-down (ie. it is a divisive technique). In dividing each node in the classification 
tree, the hierarchy-building module calls the partitioning module for small parti­
tion sizes (ie. K), and selects the optimal partition from among these possibilities. 
Other divisive hierarchical techniques of conceptual clustering include DISCON 
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and RUMMAGE. Both RUMMAGE and DISCON form monothetic classification 
trees in which any set of siblings in the tree are distinguished by their value along 
a single variable. In contrast, CLUSTER/2 allows arcs to be labelled by a con­
junction of values across several variables, and thus CLUSTER/2 forms polythetic 
classifications. DISCON, unlike both RUMMAGE and CLUSTER/2, discovers an 
optimal classification tree (in terms of the number of nodes in the completed tree), 
whereas the latter two algorithms seek only to independently optimize the division 
of each node, in the hopes that the resultant trees will be of 'high quality'. MKIO 
by Wolff represents an agglomerative hierarchical technique. Conceptual clumping 
techniques include IPP and UNIMEM by Lebowitz and GLAUBER by Langley 
et.al.. Each of these systems builds classification schemes equivalent to reentrant, 
acyclic graphs, where each node represents a cluster, and objects may be included 
in multiple clusters. 

The view of conceptual clustering methods as extensions to methods of numer­
ical taxonomy has served as a vehicle for presenting the input-output behavior of 
a number of algorithms. For a better understanding the processing characteristics 
and utility of each of these techniques we turn to the view of conceptual clustering 
as learning by observation. 

3.0 Conceptual Clustering as Learning 

An alternative view of conceptual clustering relates this task to the well­
studied problem of learning from examples. Both the conceptual clustering task 
and learning from examples are concerned with formulating some description that 
summarizes a set of data. In learning from examples, a tutor specifies which objects 
should be assigned to which class, and the learner must characterize each class. In 
conceptual clustering the learner has the two-fold task of creating object classes as 
well as characterizing these classes. Thus there are two problems which must be 
addressed by a conceptual clustering algorithm, one of which is shared by processes 
of learning from examples. 

The aggregation problem is the problem of distinguishing subsets of an initial 
object- set, that is the formation of a set of classes, each defined as an exten­
sionally enumerated set of objects. The aggregation problem is addressed by 
tasks of conceptual clustering and not by processes of learning from examples 
which assume a set of classes has been supplied by an external source (ie. a 
tutor). 

The characteri'zation problem is the problem of determining characterizations 
(ie. concepts) for an extensionally represented object class, or each of multiple 
object classes. This problem has been extensively addressed in work on 
learning from examples where object classes are presented by a tutor, and 
the learner is responsible for assigning a conceptual description to each class. 
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In fact, the characterization problem, as defined here, and the problem of 
learning from examples are the same. Conceptual clustering processes must 
address the characterization problem since cluster quality, as we have stated, is 
dependent on conceptual descriptions which may be used to describe clusters. 

We do not mean to imply that the aggregation and characterization (ie. learn-
ing from examples) problems are independent, simply that they may be usefully 
modularlized, thus allowing us to make use of the wealth of information regard­
ing learning from examples in analyzing and formulating methods of conceptual 
clustering. 

Given this view, a natural approach to solving the conceptual clustering 
problem involves first solving the aggregation problem, and then using traditional 
methods of learning from examples to solve the characterization problem. ln fact, 
present conceptual clustering algorithms can be framed in this way. For instance, 
GLAUBER forms classes based on the most commononly occuring relation (defined 
over an object set) and then characterizes these classes with respect to the remaining 
relations. MKlO employs a very similar technique (in fact, GLAUBER's method 
is based on MKlO). UNIMEM and IPP construct a number of alternative classes 
each of which is based on the predictive features (ie. variable values) shared by all 
class members, and characterized by a conjunction of all predictable features shared 
by class members. 2 

Both RUMMAGE and DISCON use a list of user-specified attributes to form 
possible partitions over an object set. RUMMAGE considers a number of parti­
tions, each implied by the values of a distinct attribute and selects that partition 
(ie. clustering) which possesses the 'best' conceptual descriptions of objects over the 
remaining attributes. Thus, RUMMAGE solves the aggregation problem by using 
individual attribute values to imply possible clusters (the values of a single attribute 
collectively imply a clustering), and then utilizes a learning from examples subrou­
tine to characterize clusters in terms of the remaining attributes. RUMMAGE 
applies this method recursively to each of the resulting clusters, thus tracing out a 
single hierarchical classification scheme. Like RUMMAGE, DISCON uses attribute 
values to imply possible partitions, thus solving the aggregation problem. Unlike 
RUMMAGE,' DISCON does not construct an explicit description of the devised clus­
ters over the remaining attributes, but simply calls itself recursively on each of the 
possible clusters, thus forming a classification tree over the objects of each cluster 
with respect to the remaining attributes. Both RUMMAGE and DISCON are to a 
greater or lesser extent based on Quinlan's ID3 program for learning from examples 
(Quinlan, 1983) An abstraction of the aggregation processes of both RUMMAGE 
and DISCON is given in figure 1. 

2 See Lebowitz (1983) for definitions of predictive and predictable features. 
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Cu C1m 
~ 

partition 1 

object set 

Construct possible partitions 
based on the values, Vi;, of 
each attribute, Ai. 

Figure 1 - Aggregation in RUMMAGE and DISCON 

The Partitioning Module of Michalski and Stepp's CL USTER/2 system uses a 
more experimental solution to the aggregation problem than the systems described 
above. Given the task of dividing the observed objects into N disjoint classes, the 
system initially selects N seed objects (initially this is done randomly). The system 
treats each such seed as a positive instance of some class and treats the other 
seeds as negative instances of the same class. The program then derives maximally­
general discriminant descriptions for each class implied by the seeds.3 The result is 
that for each seed a number of <;1.escriptions (ie. concepts) are derived, each of which 
covers that seed and no other seed. Each description of each seed also covers some 
number of non-seed objects which are assigned to the same class as the appropriate 
seed. Once all objects (seed and non-seed) have been classified with respect to the 
maximally-general discriminant descriptions, these maximally-general descriptions 
are 'thrown out', and maxi'mally-specific characteristi'c descriptions are derived for 
each defined object class. By selecting one description for each seed, a set of 
(possibly overlapping) clusters, that is a clustering, is implied which classifies the 
input object set. A pictorial summary of the above process is given in figure 2. 

The reasons for this seemingly roundabout means of aggregating and de­
scribing object classes are best explicated in Michalski (1980). By first formulat­
ing maximally-general descriptions, any clustering implied by any combination of 
maximally-:-general descriptions (one description for each seed) can be shown to con­
tain at least one cluster which covers an arbitrary object. Thus by first formulating 
maximally-general descriptions, CLUSTER/2 guarentees that every observed ob­
ject can be classified. Once all objects are classified, derivation of maximally-specific 
descriptions s~rve to reduce the possibility of overlapping clusters with respect to 
unobserved objects. A 'fix-up' operation is then employed to make all possible 
clusterings mutually-disjoint. 

3 See Michalski (1983) for definitions of discriminant and characteristic descriptions. 
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seed 1 

Dii Di2 ... Dim 

Kn Ki2 ... Kim 

Cn C12 ... C1m 

object set 

seed 2 

select k seeds 
(an aggregation 
problem) 

" seed k 

derive maximally-general 
discriminant concepts, 
Dij (a characterization 
problem). 

classify non-seed objects 
with respect to discriminant 
concepts, forming classes, 
Kij (an aggregation 
problem). 

derive maximally-specific 
characteristic concepts, 
Ci;, for each class, Kij 

(a characterization problem). 

Figure 2 - Aggregation and characterization in 
in the Partitioning Module of CLUSTER/2 

4.0 Other Dimensions for Characterizing Conceptual Clustering Methods 

We have thus far characterized conceptual clustering algorithms in terms of the 
structuring of the clusterings they produce, and in terms of the ways in which each 
technique deals with the problems of aggregation and characterization. We now 
define dimensions relating to search, along which we may describe the subprocesses 
of conceptual clustering. We begin by discussing dimensions of characterization (ie. 
learning from examples). 

4.1 Searching the Space of Characterizations 

As we have seen, the characterization component of the conceptual clustering 
task is identical to the well-studied task of learning from examples. Thus, we can 
employ previous results from the machine learning literature in our analysis of 
this component. For instance, Mitchell (1982), Dietterich and Michalski (1983), 
and Langley and Carbonell (1984) have proposed various dimensions along which 
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methods for learning from examples may vary. Mitchell points out that the space 
of concept descriptions is ordered according to generality. This ordering leads 
to three alternative schemes for systematically searching the space of hypotheses. 
First, one may start with a very specific hypothesis, and move toward more general 
descriptions in search of one that covers the instances; this approach may be called 
learning by generalization. Second, one may start with a very general hypothesis, 
and move toward more specific descriptions that cover the data; this may be called 
learning by discrimination. Finally, one may search in both directions, hoping to 
converge on the correct hypothesis; this is Mitchell's version space strategy. 

Applying this analysis to the characterization components of the existing con­
ceptual clustering systems, we find that UNIMEM/IPP and GLAUBER use gen­
eralization in characterizing their groupings. Recall that CLUSTER/2 forms char­
acterizations at two points in its processing: the derivation of maximally-general 
discriminant concepts uses a discrimination approach; the derivation of maximally­
specific characteristic concepts uses a generalization approach. RUMMAGE and 
DISCON use attribute values to form a number of possible partitions, where each 
attribute value may be viewed as a maximally-general discriminant concept of the 
object group it implies. No discrimination or generalization is employed in this 
process. RUMMAGE does however, use generalization to derive characterizations 
of object groups over those attributes not used in partitioning the object groups. 
Wolff's MKlO does not form characterizations per se, though it does generate con­
junctive descriptions based on co-occurrences. 

A second dimension involves the method used to direct search through the 
space of hypotheses. Some AI systems that learned from examples have used depth­
first search to select hypotheses, others have used breadth-first search, while still 
others have non-exhaustive methods such as beam-search and best-first search. The 
non-exhaustive methods require some evaluation function to order hypotheses, so 
the same search technique may give different results depending on the evaluation 
function it employs. Because of the limited concept languages employed by each 
of the conceptual clustering systems discussed, there is exactly one maximally­
specific concept description for any given object group, which is to say there is 
no (or only_ a degenerate) search occuring in most cases. Michalski and Stepp's 
CLUSTER/2carried out a beam search in deriving maximally-general discriminant 
concepts, using evaluation functions supplied by the user (such as simplicity of 
class description). The formation of maximally-specific characteristic descriptions 
in CLUSTER/2, as with all of the other systems, is deterministic. 

Third, one may distinguish between data-driven and model-driven learning 
systems. In data-driven systems, the operators for moving through the space of 
hypotheses require data as input; thus, these data direct the search through the 
problem space. In model-driven systems, some other knowledge is used to generate 
new hypotheses, and the data are used only in the evaluation stage. CLUSTER/2, 
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UNIMEM, GLAUBER, and MKlO employ data-driven characterization methods, 
while the remaining systems can be viewed as model-driven systems (to the extent 
that they form characterizations). However, the "models" used by DISCON and 
RUMMAGE consisted only of a list of attributes that might be used in constructing 
a classification scheme. 

A final dimension concerns whether all observations are processed together, 
or whether they are handled one at a time. The first situation may be called non­
incremental learning, and is plausible for modeling scientific data analysis. The vast 
majority of conceptual clustering systems ( CLUSTER/2, DISCON, RUMMAGE, 
GLAUBER, and MKlO) are all non-incremental learning systems. The second 
situation may be called incremental learning, and is more plausible for modeling 
concept formation based on continuous interaction with one's environment. Of 
the existing conceptual clustering systems, only UNIMEM and IPP can be viewed 
as incremental learners. This dimension is associated with the entire conceptual 
clustering system, not only with the characterization component. 

4.2 Searching the Space of Aggregations 

As we have seen, conceptual clustering methods solve the aggregation problem 
as well as the characterization problem, suggesting another set of dimensions along 
which such methods may differ. In this case, two dimensions present themselves: 

• Search control. One can imagine a conceptual clustering system systemati­
cally considering all possible groupings, evaluating them, and then selecting 
the best. However, none of the systems we have considered employ such an 
inefficient approach. Upon inspection, we find that CLUSTER/2 uses a hill­
climbing method to home in on an acceptable aggregation, using characteri­
zation techniques to evaluate its choices. In contrast, the remaining systems 
carry out only degenerate searches (of depth one) through the aggregation 
space, since they select their groupings in a one-step process. 

• Nature of the operators. In order to understand why RUMMAGE, DISCON, 
and most other systems require only one-step searches, we must examine 
the operators they use to generate candidate groupings. RUMMAGE and 
DISCON both require a user-specified list of attributes and their values; 
by selecting an attribute, these systems automatically generate a candidate 
grouping (one for each value of the attribute), which can then be evaluated. 
GLAUBER, MKlO, and UNIMEM/IPP all accomplish the same effect in a 
more data-driven manner. Only in CLUSTER/2 do we find a less constrained 
operator, which selects seed objects that may or may not lead to a useful 
characterization. 
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4.3 Searching the Space of Hierarchies 

We have seen that unlike systems that learn from examples, conceptual clus­
tering methods must also determine their own aggregations. However, there remains 
another issue that distinguishes conceptual clustering from the task of learning from 
examples. In the latter, one is generally concerned with forming concepts at a single 
level, while conceptual clustering usually focuses on generating hierarchies of con­
cepts. Some numerical taxonomy methods (the optimization techniques) generate 
only single level groupings, but most methods arrive at some tree of groupings. 

The implication for our analysis of conceptual clustering methods is clear 
- the search for aggregations and the search for characterizations are embedded 
within a higher level search through the space of classification trees. Moreover, we 
can classify the existing clustering systems in terms of two additional dimensions. 
These are: 

• Direction of the search. Upon examining the existing conceptual clustering 
systems, we find that divisive (top-down) methods have been used by the 
majority, including CLUSTER/2, DISCON, and RUMMAGE. These systems 
start with a single class of observations, and proceed by subdividing the 
instances into classes, these classes into subclasses, and so forth. However, 
one can also imagine methods that begin with separate "classes" for each 
observation, joining these classes together to form larger classes, and joining 
these classes in turn. Such bottom-up (agglomerative) methods have been 
used by a minority of conceptual clustering systems, including GLAUBER 
and MKlO. Other arrangements are also possible; for example, Mervis and 
Rosch (1981) have suggested an approach where one first forms classes of 
medium generality, and later forms both more general and more specific 
classes. UNIMEM/IPP behaves in roughly this manner and at any point 
in its processing classes of greater or lesser generality than existent classes 
may be added to the classification. 

• Search control. Conceptual clustering systems must somehow direct their 
search through the space of hierarchies. Upon examining the existing sys­
tems,_ we find that CLUSTER/2, RUMMAGE, GLAUBER, and MKlO carry 
out only degenerate searches through this space. The reason is that their 
operators consist of techniques for finding optimal aggregations and char­
-acterizations. Search is involved at these lower levels, but the result is an 
optimal extension to the hierarchical tree. In contrast, DISCON has degen­
erate search schemes at these lower levels, but carries out a best-first search 
through the space of hierarchies. It accomplishes this through an exhaustive 
look-ahead process, evaluating entire sub-trees and preferring those contain­
ing fewer nodes. UNIMEM and IPP also carried out search at this level, 
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entertaining multiple organizations (thus using a form of beam search); how­
ever, these organizations might be revised later in the search, so backup was 
allowed. 

Although these dimensions are similar to those presented for the characterization 
problem, it is important to note that the current dimensions are separate from 
those for characterization. For instance, CLUSTER/2 employed beam search to 
find maximally-general discriminant descriptions, but employed only a degenerate 
search for determining the best hierarchy. 

5.0 Concluding Remarks 

We have discussed the mechanics of a number of conceptual clustering meth­
ods and defined dimensions which serve to clarify the differences and similarities 
between methods. Our bias has been that further work in conceptual clustering is 
best facilitated by first understanding these processes in terms of well-understood 
concepts. Following Michalski ( 1980), we have presented conceptual clustering as 
an extension of numerical taxonomy. Further, by framing conceptual clustering 
as a composition of aggregation and characterization processes, we have shown a 
relationship between conceptual clustering and methods of learning from examples. 
This dichotomy has led to a view of conceptual clustering processes as conducting a 
three-tiered search: a search through a space of hierarchies; a search through a space 
of possible aggregations; and a search through a space of conceptual descriptions. 

It is our view that explicating conceptual clustering as multi-layered search 
will not only ease comprehension of existing methods, but facilitate work in a num­
ber of still open problem areas·. 4 One problem concerns the task of clustering 
structured objects, where object descriptions allow relations to be represented be­
tween attribute values of an object. Vere's THOTH system (Vere, 1978) is currently 
being investigated as a basis for a conceptual clustering system for structured ob­
jects. THOTH discovers a minimal set of generalizations which cover a given set of 
relational production instances, where each production instance is a (before) state -
(after) stat_e pair. Each state representation is equivalent to a structured object rep­
resentation. THOTH traces out a hierarchical classification bottom-up and in many 
ways resembles an agglomerative approach to conceptual clustering. A second area 
of interest to us concerns the problem of utilizing information on the functionality of 
objects to aid the formation of useful clusters. An approach suggested in discussion 
by Nelson (1977) involves using domain-specific knowledge of object functionality 
to guide the search for possible aggregates, and to use perceptual information as the 
basis of characterization. Distinct forms of knowledge may serve to guide the search 

4 See (Langley and Carbonell, 1984; Michalski and Stepp, 1983b) for comprehensive discussions of 
open problems in conceptual clustering. 
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for hierarchies. By distinguishing levels of search we can more easily motivate and 
express the rules, heuristics, and descriptive languages utilized at different levels. 
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20. 

Abstract 

Methods for Conceptual Clustering may be explicated in two lights. Conceptual 
Clustering methods may be viewed as extensions to techniques of numerical taxon­
omy, a collection of methods developed by social and natural scientists for creating 
classification schemes over object sets. Alternatively, conceptual clustering may 
be viewed as a form of learning by observation or concept formation, as opposed 
to methods of learning from examples or concept identificati'on. In this paper we 
survey and compare a number of conceptual clustering methods along dimensions 
suggested by each of these views. The point we most wish to clarify is that con­
ceptual clustering processes can be explicated as being composed of three distinct 
but inter-dependent subprocesses: the process of deriving a hierarchical classifi­
cation scheme; the process of aggregating objects into individual classes; and the 
process of assigning conceptual descriptions to object classes. Each subprocess may 
be characterized along a number of dimensions related to search, thus facilitating 
a better understanding of the conceptual clustering process as a whole. 
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