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Abstract 

The theory of the semiclassical evolution of wave packets is developed as a 

version of WKB theory in phase space. Special attention is given to the trans­

formation properties of wave packets, their Wigner functions, and their classi­

cal analogs under operations in phase space. A complete development of the 

Heisenberg and metaplectic operators is presented, including their interaction 

with the Wigner-Weyl formalism and the questiQn of caustics. A metaplecti­

cally covariant wave packet propagator is presented and discussed. Finally, a 

group theoretical discussion of Gaussian wave packets is given. 
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1. Introduction 

Wave packet techniques constitute a version of WKB theory in phase space. The 

appeal of such theories is that they incorporate the known canonical structure of classical 

mechanics, including Poisson brackets, Poincare invariants, and the like, into semiclassical 

mechanics. Phase space is the proper framework for studying classical mechanics, since l.f 

it provides the arena in which the most general principles of covariance of the equations 

of motion are expressed, as well as the most general relations between symmetries and 

invariants. Therefore, on both physical and mathematical grounds, one should not expect 

the canonical structure of Hamilton's equations to be purely an attribute of classical m~ 

chanics, but rather it should have precursors in both quantum mechanics and semiclassical 

mechanics. For this reason, covariance in phase space can be taken as a guiding principle 

for semiclassical mechanics, one which can be expected to reveal fundamental relations in 

their most general form. 

Of course, the general outlines of the relation between the canonical structure of 

classical mechanics and the formalism of quantum mechanics are well known, and go back 

to Dirac and beyond, even to Hamilton. Nevertheless, a serious and explicit examination 

of invariance principles in semiclassical mechanics is a rather more recent occurrence, 

which can be dated ~rom the work of Keller [1958] and Maslov [1972] {see also Maslov and 

Fedoriuk [1981]). Maslov's theory, which in some ways is a more mathematical version 

of Keller's, presents semiclassical wave functions and propagators which are, in a sense, 

invariant under the Fourier transform. The significance of- the Fourier transform is that 

it represents a transformation in phase space of a simple kind, namely an inversion of the 

roles of q and p. 

On the other hand, the majority of WKB work done over the years has dealt almost 

exclusively with an eikonal representation of wave functions in configuration space. This 

, 



-5-

approach typically leads to nonphysical infinities at caustics, boundary layer analyses, and 

connection rules. Nor is this approach merely a version of a phase space theory in disguise; 

traditional eikonal methods are fundamentally committed to the space in which the wave 

l' function is expressed, and are not invariant even under the Fourier transform. This lack of 

invariance is felt most acutely at caustics, where, say, the x-space wave function diverges, 
~ 

but the p-space wave function is well behaved. 

A fundamental fact about caustics is that they have no invariant meaning in phase 

space. This is related to the fact that rays in phase space do not focus, because of Liouville's 

theorem. This is not to say that phase space theories always avoid the practical difficulties 

of evaluating wave fields in the neighborhood of caustics, such as by the use of special 

functions or their integral representations. But sometimes they do, as is the case with 

numerical applications of wave packet techniques. 

The above are the main reasons for my interest in this subject, and in my discussion of 

wave packet propagation I have made a concerted effort to treat q and p on an equal footing, 

and always to display the transformations properties of the results derived. However, this 

paper is in no way an attempt to formulate some definitive version of WKB theory on 

phase space; not only do I not know how to do this, it is not even clear that there is any 

sense in which some theory should be considered unique. Instead, I have focussed on the 

specific issue of wave packet propagation, about which much can be said and many definite 

results derived. 

The basic idea underlying the semiclassical propagation of wave packets is very simple. 

One merely replaces the exact Hamiltonian or other time evolution operator of a wave 

system by a tractible, usually quadratic, approximation, valid in the neighborhood of the 

wave packet. It is also an old idea, whose history is hard to trace, and which has certainly 

been used in many isolated instances for many years. The basic idea is present, for example, 

in the use of "Gaussian beams" (Keller [1971]; Deschamps [1972]). 
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But surely no one has done more to advance the theory and practice of wave packet 

techniques than has the chemist Heller. In a remarkable series of papers (Heller [1975, 

1976, 1977a,b, 1985]; Davis and Heller [1979, 1981, 1984]), Heller and coworkers have 

successfully applied wave packet methods to a number of problems, including classically 

chaotic systems such as the Henon-Heiles system. Furthermore, recent practical advances 

in the method by Metiu and coworkers {Heather and Metiu (1985]; Sawada and Metiu 

[1985]; Sawada, Heather, Jackson and Metiu [1985]) seem to have overcome many of the 

shortcomings of earlier approaches, and extended their applicability. Although this latter 

work is too recent to have figured prominently into the thinking underlying this paper, 

nevertheless it shows that wave packet techniques have every promise of maturing into an 

important new calculational tool of broad applicability. 

This· paper, however, is not· intended to be a review of Heller's work, and in many 

. respects, expecially those relating to numerical calculations, what I have to say is often 

simple-minded in comparison to the analyses of Heller. What I have tried to do is to 

show the structure and transformation properties of wave packets and their time evolution 

within a phase space framework. As a result, much of the emphasis is group theoretical, 

and deals with covariance and invariance properties under transformations in phase space. 

I have attempted to formulate this presentation in as nontechnical language as possi­

ble. I have not used differential geometry at all, and only a minimum of topology, such as 

is required to discuss the Maslov index. The group theory I have invoked is hardly more 

than what one encounters in the theory of the ordinary rotation operators in quantum 

mechanics. Some issues, such as irreducible representations, hardly appear at all, while 

others, such as the group theoretical properties of caustics, take some attention. Through­

out, I have tried to draw parallels between transformations in phase space and the more 

familiar transformations in configuration space. For example, the Maslov index bears a 

j,J 
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strong analogy to the phase shifts which occur in systems with internal degrees of freedom, 

such as electron spin, and I have emphasized this. 

This paper has been substantially influenced by the rather considerable body of math-

ematical literature which now exists on wave asymptotics. There has been a good deal 

of activity in this area over the last twenty years, which seems to have been stimulated 

originally by the work of Maslov. Principal references in this area include Arnold [1967]; 

Duistermaat [1974]; Guillemin and Sternberg [1977, 1984]; Hormander [1971); Leray [1981]; 
~ 

Maslov [1972]; Maslov and Fedoriuk (1981]; and Voros [1976, 1977). I have especially found 

the work of Voros to be insightful and accessible. Unfortunately, most of this mathemat-

ical work is virtually impenetrable to the nonspecialist, and it is difficult for an outsider 

to master it in detail or even to know what the fundamental ideas are. Furthermore, I 

know of few instances in which this theory has consciously been applied in a practical way. 

There is a regrettable communications gap here, which hopefully this paper will help to 

fill. 

Therefore my approach has been to concentrate on concrete calculations and deriva-

tions. I have always tried to be explicit in my derivations, and to be complete with phase 

conventions and practical matrix elements. The theory of the Heisenberg and metaplectic 

groups which I have invoked is sometimes old, and almost always well understood, at least 

in the right circles. But I believe that many of my explicit calculations and the physical 

reasoning which accompanies them are new, although one can never be quite sure about 

this. 

In particular, I am not aware of anything in the published literature quite like my 

discussion in Sec. 5 of caustics and the metaplectic operators. Nor am I aware of anything 

like my discussion of .the transformation properties of Gaussian wave packets in Sec. 8, 

although similar things are known to field theorists, who have dealt extensively with ere-
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ation and annihilation operators. Furthermore, the ideas underlying the propagator of 

Eq. (7.27) are current, but I am not aware of any such formula having been written down. 

WKB theory and semiclassical mechanics is a truly vast field, in which there are 

literally thousands of relevant books and research articles. These are spread over many 

diverse fields, among which there is little communication, such as seismology, electrical 

engineering, physics, chemistry and mathematics. Therefore it is inevitable that I have 

neglected to give proper credit for some of the ideas I shall present. It is also inevitable 

that some of the problems I pose have already been solved. For this I apologize in advance, 

and merely request that these matters be drawn to my attention by interested readers. 

Nevertheless, one can clearly discern in this sea of literature that the evolution of 

phase space methods in semiclassical theory is the dividing line between the old and the 

new. It is one of the principal objectives of this paper to provide an accounting of some of 

the ideas which are involved in any phase space approach to semiclas!O!ical mechanics, and 

to do it in such a way as to be accessible to the largest possible audience. The specific 

issue of wave packet evolution has been selected as a vehicle for this, partly because it is 

concrete, and partly because of its demonstrated practical value. 

In practical terms, there are two main advantages to the formalism presented in this 

paper, of which the first is conceptual. The analogies between the classical, phase space 

picture of dynamics and the quantum mechanical picture, which are represented quantita-

tively through the medium of symplectic/metaplectic transformations on the Wigner-Weyl 

formalism, are much stronger than many realize at first. These analogies form a powerful 

.. 

... 

means of conceptualizing problems, formulating the right questions, and understanding ii 

the answers. They are also quite astonishing when first encountered. 

A second advantage is computational. Most of the calculatio~s involving Gaussian 

integrals and wave packets to be found in the literature are carried out by brute force 
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methods, and lead to results in which it is hard to see the fundamental structure. One of the 

main points of this paper is that the metaplectic operators form the natural transformation 

group of Gaussians. Because of this, many calculations are reduced to a standard form, in 

which one need only multiply symplectic matrices to get the desired result. 

The applications of WKB theory extend considerably beyond the Schrooinger equa­

tion, and this potentially applies to wave packet techniques as well. Therefore I remark 

that virtually all of the results of this paper are applicable to any wave system, if one 

merely sets 1i = 1 and replaces p by k. People who work with classical wave equations 

tend not to like the Schrooinger equation as an example of WKB theory, becuase it is too 

restrictive a model. There are three features of the Schrooinger equation which make it 

special. First, it is a second order differential equation in space, instead of some higher 

order. In fact, integral equations are common in classical wave systems. Second, the sim­

plest versions of the Schrooinger equation do not involve any q-p ordering issues. And 

third, the Schrooinger equation has no dissipation, since the Hamiltonian is Hermitian. 

Partly in deference to this larger context of wave equations, I have nowhere, except in 

some inessential examples, made any assumption that the Hamiltonian has the simple form 

of kinetic plus potential energies, nor have I assumed that it is a quadratic (or any other) 

polynomial in momentum, or that q-p ordering issues can be neglected. Actually, even for 

simple Schrooinger Hamiltonians, this would be the right approach to take anyway, since 

the functional form of kinetic plus potential energies is not invariant under transformations 

in phase space. 

I have, however, assumed that the Hamiltonian is Hermitian. This is definitely a 

limitation of this paper, although there is no reason why the wave packet methods as 

developed originally by Heller could not be applied to dissipative systems. However, the 

transformation properties of such systems involve complex phase space, and it seemed 
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better to draw the line here with real phase space. Incidentally, there are plenty of reasons 

to believe that complex phase space would be useful even for conservative systems. 

In spite of this attention to a larger class of wave systems, I have written this paper 

throughout with quantum mechanics in mind. I did this because of the fundamental 

physical importance of semiclassical mechanics, because it seemed best to work with a 

specific problem, and because the most sophisticated applications of wave packet techniques 

seem to be taking place today in quantum mechanics. Besides, the formalism of quantum 

mechanics, and in particular the Dirac bra-ket notation, is of great value in discussing 

transformation properties, and it would be pointless not to use it. I do hope, however, 

that workers in other fields will find this presentation to be useful and illuminating . 

. This paper is organized as follows. Section 2 presents the fundamental physical pic­

ture which is daborated upon. in the rest of the paper. This consists of the Ehrenfest 

relations and wave packet spreading, seen in classical terms through distribution functions 

in phase space. In Section 3, the Heisenberg operators ar~ developed and used to formulate 

a representation of the Ehrenfest relations in phase space. The natural role of the Heisen­

berg operators in a phase space picture of semiclassical mechanics is discussed, as well 

as some basic ideas about transformation properties. Sections 4, 5 and 6 define, develop 

and apply the metaplectic operators, which are responsible for wave packet spreading. 

There does not seem to be any fully satisfactory presentation of the metaplectic operators 

in the physics literature, and these sections are partly intended to fill the gap. Section 

4 motivates the metaplectic operators, and, by a simple analysis, develops their x-space 

matrix elements for points not on caustics. Section 5 generalizes these results for points 

which are on caustics, and presents a rather complete theory of caustics for quadratic 

Hamiltonians. In Sec. 6 some examples of the practical consequences of the metaplectic 

operators are developed, including special cases such as the Fourier transform and scaling 

operations, as well as the transformation properties of the Wigner-Weyl formalism under 

,, 
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metaplectic operations. The latter are essential to the phase space picture of wave packet 

propagation. In Sec. 7, a semiclassical propagator is developed, using the Heisenberg and 

metaplectic operators. This is the propagator implicitly used by Heller, and its properties 

are discussed. Section 8 develops in detail the transformation properties of Gaussian wave 

packets and Wigner functions under metaplectic operators, and reveals the group theo­

retical significance of the quantities which appear in Gaussian wave packets. This section 

is somewhat more technical than the others. Section 8 also contains some results and 

speculations on simple generalizations of the coherent states. Section 9 contains a discus­

sion of omissions, generalization, and conclusions. Three appendices are provided, which 

summarize important properties of the symplectic matrices, the Wigner-Weyl formalism, 

and the standard coherent states. 
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2. Wave Packets and Classical Nearby Orbits 

The time evolution of the center of a wave packet in quantum mechanics is governed, 

at least approximately, by the Eherenfest relations, which relate this evolution to motion 

along a classical orbit. In this section it is argued that the evolution of the shape and 

spreading of the wave packet, in both configuration and momentum space, should also be 

describable in classical terms, and that in particular it should be related to the classical 

evolution of a bundle of nearby orbits. 

These notions are not new, and can be traced back at least as far as Madelung's 

[1926] fluid interpretation of quantum mechanics. More recently, Heller [1975] has shown 

the relationship between wave packet spreading in quantum mechanics and the classical 

symplectic matrices governing the behavior of nearby orbits. This is the first instance of 

which I am aware in which this relationship has been explicitly revealed, although Heller" 

employed the quantum mechanical projective representations of the symplectic matrices 

(the metaplectic operators) only in implicit form. Heller went on to perform a fascinating 

series of theoretical and computational studies of wave packet evolution. Similar ideas have 

also been given by Markuvitz [1980), who used the Wigner function as a "quasiparticle" 

distribution function on phase space. The interesting paper by Bialynicki-Birula [1977] 

is also to be recommended in this regard. The role of the metaplectic operators in the 

propagation of light through optical devices has been developed by Bastiaans [1979a,b], 

Bacry and Cadilhac [1981], Nazarathy and Shamir [1982], Sudarshan, Simon and Mukunda 

[1983], and others, and discussed rather thoroughly by Guillemin and Sternberg [1984]. 

Workers in optics seem not to regard the light in an optical device as a "wave packet," 

although it is treated in the same way as the wave packets in this paper (with time 

replaced by a spatial coordinate as the independent variable). In this section I provide an 

independent argument for these ideas, with some examples, and I generalize the context 

of the discussion. 
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2.1. Ehrenfest's Theorem and Quadratic Hamiltonians 

A proof of Ehrenfest's theorem can be found in any textbook on quantum mechanics, 

but often the statement of the theorem is vague and imprecise, and usually the thrust of 

the discussion is somewhat different than what we need here. Therefore I shall begin with 

'' Ehrenfest 's theorem, and I shall emphasize certain features of it which will be of particular 

interest to us. I shall do this in the context of a one-dimensional Schrooinger equation 

with a Hamiltonian of the form 

"'2 

H= :m +V(q). (2.1) 

As always in t~is paper, a hat will be used to distinguish the operators q, p from their 

counterparts on the classical phase space, q, p, which are numbers. It is also convenient to 

restrict the use of the symbol x to instances in which we are committed to a configuration 

space representation, as with the wave function 'f/;(x), and to reserve the symbol q for 

cases where we wish to represent something .on phase space, or to draw attention to the 

pairing with p. This distinction cannot always be maintained consistently, nor is it com-

pletely logical, since we make no analogous convention for the momentum variable. But we 

seldom use momentum space wave functions, and, as a practical matter, this convention 

eliminates considerable confusion. For example, in the x-representation, the operators q, 

fJ are represented by q = multiplication by x, fJ = -ina 1 ax. 

A wave function 'f/;(x, t) which satisfies the SchrOdinger equation will endow the expec-

tation values (q), (P) with a time dependence, which, by Ehrenfest's theorem, is governed 

by the equations 

~(A)= (p) 
dt q m' 

~(fJ) = -( av (q)). 
dt ax (2.2) 
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These equations are often stated in words by saying that the expectation values (q), (p) 

follow the classical motion. This statement is in general incorrect, as may be seen by noting 

that Eqs. (2.2) do not in general even form an autonomous system, much less the particular 

autonomous system offered by Hamilton's equations of classical mechanics. That is, the 

right hand side of the second of Eqs. (2.2) (the force term) is not in general a function of 

(q). The statement in question would be correct if instead of Eqs. (2.2) we had 

~t (q) = ~' 
f}__(fJ) = _ av ((q)). 
dt ax (2.3) 

These equations, however, are only an approximation, whereas Eqs. (2.2) are exact. 

In the special case that the potential is a quad~atic function of x, the two sets of 

equations, (2.2) and (2.3), are, in fact, equival~nt, and the expectation values do follow 

the classical motion, exactly. Indeed, this is the only case they do so, for arbitrary wave 

packets (and speaking of H&ailtonians of the form (2.1)). For other potentials, Eqs. (2.3) 

will be approximately correct, if the potential V ( x) can be represented to a good accuracy 

over the extent of the wave packet by expanding it out to quadratic order about the center 

of the wave packet, (q). This is not necessarily a semiclassical approximation, because the 

same approximation occurs entirely within classical mechanics, as shown in Sec. 7. 

The case of quadratic potentials is also the most general case in which an initial 

Gaussian wave packet remains exactly Gaussian in the course of time. Otherwise, the 

Gaussian property is only maintained approximately, the approximation being the same 

as just mentioned. 

The generalization of these facts to arbitrary Hamiltonians H ( q, p) in any number 

of degrees of freedom involves an analogous privileged role for the Hamiltonians which 

are quadratic functions of q and p (which are now N-dimensional vectors of operators). 

Similarly, the generalizations of Eqs. (2.2) will be approximately C()rrect if the classical 

It' 

't, 
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Hamiltonian H ( q, p) (i.e. an appropriate symbol of the evolution operator H ( q, p)) 1s 

well approximated in phase space by a quadratic expansion about ( q), (p), over the extent 

of the wave packet in both configuration and momentum space. Expanding in momentum 

as well as position is usually not an issue in quantum mechanics, where Hamiltonians are 

at most quadratic in p (including linear terms if a magnetic field is present). But such 

" considerations certainly arise in plasma physics, where Bessel and other functions of p are 

common. They also arise in optics, where the Hamiltonian involves the square root of 

polynomials in p. (They would also appear in quantum mechanics, if spin were taken into 

account.) 

In any case, consideration of more general time evolution operators does lead to an 

important consideration, namely that a wave packet should be thought of simultaneously 

in both its configuration and momentum space forms. One way to deal precisely with such 

concepts is to use the Wigner function, which is discussed in Appendix B. The Wigner 

fuQ.ction is a function on the classical phase space ( q, p), associated with the wave packet. 

It is centered on the expectation values (q), (p), and has widths in the various directions 

in phase space related to the dispersions, ~q, ~p. The Wigner function of Gaussian wave 

packets will be discussed more fully in Sec. 8. 

It is apparent that in the theory of the semiclassical evolution of wave packets the 

Hamiltonians which are at most quadratic polynomials in q, p play a privileged role, even 

when they are obtained by expanding more general Hamiltonians about some point (q), (p) 

in phase space. A similar privileged role is suggested for the Gaussian wave packets, which 

as a class are invariant under the time evolution generated by quadratic Hamiltonians. 

,~ One may also note that the Gaussian form is invariant under the Fourier transform. 

This fact is reminiscent of the Maslov theory (Maslov [1972]; Maslov and Fedoriuk [1980]; 

Blattner and Ralston [1983]; Kravtsov [1968]; Percival [1976]; Weinstein [1979]; Ziolkowski 

[1980]), in which caustics are circumvented by selective appeal to the l<'ourier transform. In 
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a sense, the Maslov theory avoids caustics by being invariant under the Fourier transform, 

and it is a similar principle of invariance under transformations in phase space which· 

circumvents caustic difficulties in the use of Gaussian wave packets. As is now widely 

recognized (Arnold [1983]; Berry and Upstill [1980]; Kravtsov and Orlov (1983]), caustics 

are the results of a kind of projection from objects in phase space (Lagrangian manifolds) 

down onto configuration space, and they do not have an invariant meaning in phase space. 

The Fourier transform itself is a part of the theory of quadratic Hamiltonians, as will be 

shown in Sees. 4-6, and has an interpretation in phase space. 

The process of expanding a Hamiltonian out to second order about some point in 

phase space is important as well in classical mechanics, because it is such an expansion 

which governs the linearized behavior of classical orbits near some chosen orbit. To develop 

this idea, it is useful to have a collective notation for coordinates in phase space. Consider 

a classical system of N degrees of freedom, with phase space coordinates q, p, which are 

N-vectors. We will denote the coordinates collectively by z = (q,p), which is a 2N-vector. 

(This is not to be confused with the complex N-vector q + ip, which is used in the theory 

of coherent states. See Appendix C.) When it is necessary to indicate components, we 

shall let the Latin indices i, j, etc., run over the numbers 1, ... , N, and Greek indices a, 

(3, etc., over the numbers 1, ... , 2N, as in qi, Pi, Z01 • 

For some given Hamiltonian H ( q, p) = H ( z), Hamilton's equations can be written in 

the compact form 

dz -J BH 
dt - . az' (2.4) 

where the 2Nx2N matrix J is defined by its decomposition into four NxN matrices, 

(2.5) 

The matrix J is responsible for the Poisson bracket structure of classical mechanics, as is 

easily seen by noting that 

(2.6) 
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where the curly brackets represent the usual Poisson bracket. More generally, the Poisson 

bracket of two functions f(z), g(z) is given by 

aJ ag 
{/,g} =-a Ja/3-a · 

Za Zf3 
(2.7) 

In this paper I sum over repeated indices, except as noted. 

A change of coordinates z~ = z~(z13) is a canonical transformation if the Poisson 

bracket structure is preserved, i.e. if 

az~ azp 
-a J"'v-a = Ja/3· 

Zp. Zv. 
(2.8) 

In particular, a homogeneous linear transformation z' = S · z, for some 2Nx2N matrix S, 

is a canonical transformation if S satisfies the matrix equation, 

SJS =J, {2.9) 

where the tilde represents the transpose. 

The matrices S satisfying this equation are the symplectic matrices, which form a 

group of N(2N + 1) dimensions. Important properties of the symplectic matrices are 

summarized in Appendix A. By Eq. (2.8), even a nonlinear canonical transformation can 

be characterized in terms of symplectic matrices, by saying that the transformation is 

canonical if and only if the Jacobian matrix Sa/3 = az~jaz/3 is symplectic at every point 

of phase space. 

Turning now to the problem of nearby orbits, we let zo be some initial conditions, 

which give rise to an orbit z(t) under the time evolution generated by H(z) (see Fig. 1). 

We shall call z(t) the "reference orbit". We let 6zo be some small displacement in the 

'tl · initial conditions, which gives rise to a nearby orbit in the course of time, described by 

the displacement 6z(t). The displacement 6z(t) obeys time-dependent linear equations of 

motion, obtained by linearizing Eq. (2.4) about the reference orbit, 

~t 6z = J · H"(t) · 6z, (2.10) 
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where the 2N x 2N symmetric matrix H" is the Hessian matrix of the original Hamiltonian 

H, evaluated along the reference trajectory, 

, a
2 
H ( ( )) Ha/3 =a a z t .. 

Z 01 Zf3 
(2.11) 

It depends on time, but, once the reference orbit is given, it does not depend on z. Just as 

z obeys a Hamiltonian system of equations, so also does hz, with the Hamiltonian being 

given by 

K(hz,t) =~hi· H"(t) · hz, (2.12) 

which is a homogeneous quadratic polynomial in hq, hp (and is explicitly time-dependent). 

The general solution to Eq. (2.10) can be written in the form 

hz(t) = S(t) · hzo, (2.13) 

where S(t) is a 2Nx2N time-dependent matrix satisfying S(O) =I. It is also a symplectic 

matrix, since 

S () 
_ aza{t) 

a/3 t - a , 
zo13 

(2.14) 

0 

and since the time evolution of classical Hamiltonian systems generates canonical trans-

formations (i.e. z(t), considered as a function of z0 , is canonical) (Goldstein [1980]). The 

matrix S(t) obeys equations of evolution essentially the same as those of hz, namely 

~t S(t) = J · H"(t) · S(t). (2.15) 

We note that if the original Hamiltonian happens to be a quadratic function of q,p, then 

H" is independent of time, and hz obeys time-independent equations of motion. In that 

case, S(t) forms a one-parameter subgroup of the symplectic group. 

Clearly there is a strong analogy between the approximation involved in the Ehrenfest 

relations {2.3) (and in the preservation of the Gaussian form in the course of time), and 

the linearized behavior of nearby orbits in classical mechanics. This suggests that the 
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spreading of wave packets can be understood in classical terms, just as the motion of the 

expectation values ( q), (p) can be so understood. 

2.2. A Simple Example 

Nevertheless, the spreading of wave packets is often regarded as a purely quantum phe-

nomenon, with no classical analog. Sometimes this spreading is called "quantum diffusion", 

presumably because of the mathematical similarity between the SchrOdinger equation and 

a diffusion equation under the replacement t -+ -it. However, there is not much physi-

cal similarity between wave packet spreading and diffusion. For example, an ensemble of 

classical particles undergoing a simple diffusive process has a dispersion ax which goes 

asymptotically in time as ,;i, whereas the dispersion ax of a free particle wave packet in 

quantum mechanics is linear in time as ~ -+ oo. The quantum behavior is more like that 

of a classical ensemble of particles, not undergoing a diffusive process, but rather evolving 

independently of each other as free particles, since an initial displacement in velocity 8vo 

gives rise to a spatial separation 8v0 t in the course of time. We shall now develop the 

example of the free particle more fully, in order to explore this analogy. 

We consider first the quantum case. Let 1/l(x,t) be the solution to the free particle 

SchrOdinger equation (here in one dimension), 

(2.16) 

with initial conditions 

(2.17) 

The initial conditions represent a minimum uncertainty wave packet with (q) = 0, (p) = po, 

b,qo = L, apo = n/2L. The exact solution is 
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1 1 
'1/J(x, t) = {27rL2)1/4 -;===in=t= 

1 + 2m£2 

[ 

{x- pot/m) 2
. 

x exp - 2 ( int ) 
4L 1+2m£2 

{2.18) 

If we take the branch cut of the square root to lie just under the negative real axis, then 

Eq. {2.18) is correct for all t, both positive and negative. We have chosen our wave packet 

to be minimum uncertainty at t = 0, but it is easy to show that an arbitrary Gaussian 

taken as initial conditions {in one dimension) becomes minimum uncertainty for some value 

oft {possibly negative). 

It follows directly from the solution that the expectation values and dispersions, as 

functions of time, are given by 

( A)_ pot 
q --, 

m 

~q(t) =·L 

(P) =Po, 

1i 
dp(t) = dpo =· 

2
L. 

{2.19) 

(2.20) 

Equations (2.19) verify the Ehrenfest relations, and Eqs. (2.20) show the spreading in 

x. (For the free particle, there is no spreading in momentum, but more generally, this 

will occur, too.) The spreading in x appears to vanish as ;, -+ 0, thereby seeming to 

substantiate the notion that the spreading is a purely quantum phenomenon; we shall 

discuss this issue presently. 

Consider now a purely classical analysis of an ensemble of free particles. Let the 

Liouville density function f = /(z) = f(q,p) be given initially by a Gaussian in phase 

space, centered at q = 0, p = po: 

1 [ q
2 

(p - Po) 
2 

] 
fo(q,p) = 27rLK exp -2£2 - 2K2 . (2.21) 

The initial dispersions are ~qo = L, ~Po = K. The distribution at any later time is given 

by 

... 
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pt 1 [ (q- ptjm) 2 (p- Po) 2
] 

f(q,p, t) = fo(q- m ,p) = 2n'LK exp - 2£2 - 2K2 . (2.22) 

A direct calculation of moments gives the average values of q and p and their dispersions, 

(q) = pot, 
m 

(p) =Po 

v K2t2 
~q(t)=L 1+m2£2' 

(2.23) 

~p(t) = K. (2.24) 

Note in particular the similarity of the formulas for ~q(t) in the quantum and classical 

cases. Again, as in the quantum case, our initial conditions cause ~q to be minimum 

at t = 0, but more generally one can show that an arbitrary Gaussian taken as initial 

conditions produces a function ~q(t) which is minimum for some t. 

Figure 2 gives a picture of the time evolution of the free particle ensemble. Suppose 

we choose the parameters L and K (or the scaling of q and p in the diagram) so that the 

· initial Liouville distribution function has contour lines which are circles in phase space, 

centered at q = 0, p = pa. One of these contour lines is shown in the figure. As time 

progresses, the center of the distribution function moves to the right along the constant 

momentum line, p = po. But the particles above this line have higher velocities than the 

average, and those below have lower velocities, so the contours of the distribution function 

gradually shear into ellipses. The result is the spreading characterized by ~q(t). 

We can now understand better the appearance of n in the quantum formula for the 

dispersion ~q, Eq. (2.20). It is true that the term n2t 2 /4m2 L 4 approaches zero as n -+ 0, 

but only if the other parameters of the problem are held fixed. In Eq. (2.17) we chose 

an initial wavefunction which was minimum uncertainty, i.e. of quantum dimensions (the 

quantity ~qti.p/n is of order unity), and this in effect is responsible for the appearance of 

n in Eq. (2.20). On the other hand, if we were to choose a classical distribution function, 

Eq. (2.21), satisfying LK = n/2, i.e. one of quantum dimensions, then n would appear 

in the classical formula, Eq. (2.24), as well. In this case, the classical spreading would 
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also vanish as n - 0, because the velocity differential in the distribution would go as 

Av = Apfm"' n/mL-+ 0. 

There are further subtleties to this analysis, because in a certain sense one has no 

choice in quantum mechanics except to choose a wave packet of quantum dimensions. For 

example (speaking in terms of Gaussians), while it is true that AqApfn at t = 0 can be 

assigned any value not less than ~'even classical (i.e. very large) values, nevertheless in the 

course of time there will come a moment when the wavepacket is minimum uncertainty and 

t.l.q(t)Ap(t)/n = ~· Obviously there is no analogous requirement for a classical Gaussian 

ensemble, in which n does not appear, even though AqAp does have some minimum value 

.for some value oft. The resolution of this subtlety involves the distinction between pure 

and mixed states, about which we will have more to say. 

With this analysis in mind, we· are encouraged to rurther push the notion that not 

only the evolution of expectation values, but also the spreading of wave packets, is com­

prehensible in classical terms. 

.. 

.. 

.,.· 
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3. An Operator Approach to the Ehrenfest Relations 

In this section I introduce the Heisenberg operators and use them to describe the 

evolution of expectation values of wave packets. Issues relating to the spreading will be 

deferred to later sections. 

Heisenberg operators have a long history, going back to Weyl [1927]. They play an 

important role in the theory of coherent states (Klauder and Sudarshan [1968]), as is 

discussed in Appendix C. The Wigner-Weyl formalism (see Appendix B) is fundamentally 

based on these operators, and they provide the most appealing medium through which 

the canonical structure of classical mechanics can be made to make its appearance in the 

classical limit. 

3.1. Translations in Phase Space 

The basic idea of the Heisenberg operators is that they move wave functions around 

in phase space. Since wave functions are not usually defined on phase space, but rather 

on configuration space or momentum space {but not both), this notion is as yet imprecise. 

However, wave functions do have expectation values which can be represented as points 

on phase space, and Heisenberg operators do move these expectation values around. 

To develop this idea, let us extend the notation of the previous section, and write z 
for the 2N-vector of operators {q,p). These operators do not commute with each other, 

for we have 

(3.1) 

where J is the Poisson matrix introduced in Eq. {2.5). For a given state lw), the expectation 

values (q), (p) may be written collectively as 

z = (z) = (wlzlw). (3.2) 
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A Heisenberg operator is parameterized by a point z0 in phase space, which represents 

a displacement vector from the origin to z0 • We shall denote this operator by T(z0 ), 

where T stands for "translation". The operator T(z0 ) has the property that if 11/J) has the 

expectation value z given by Eq .. (3.2), then T(zo)l'l/l) has the expectation value z + z0 • 

That is, 

(1/JIT(zo)f z T(zo)l'l/J) = z + zo. (3.3) 

This will be satisfied if we have 

T(zo)t i T(zo) = i + zo. (3.4) 

This equation represents the most fundamental property of the Heisenberg operators. It 

is, in fact, satisfied by the explicit form of the Heisenberg operators, which we now proceed 

to construct. 

One approach to the Heisenberg operators is to consider first their classical counter­

?arts, which we denote by Tcz(zo). When acting on points z in the classical phase space, 

these classical operators act by simple vector addition, so that 

(3.5) 

A different version of the classical Heisenberg operators acts on Liouville distribution 

functions /(z). Here the effect is to move all the particles constituting the distribution 

function by the same displacement z0 , so that the contour surfaces of f ( z) are rigidly 

displaced forward by zo. If we write g = Tel ( zo) f for the new distribution function g, then 

we have 

g(z) = [Tc,(zo)/](z) = /(z- zo). (3.6) 

The minus sign is necessary in Eq. (3.6) to make the classical expectation values come out 

right, i.e. so that 

(3.7) 
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This is the correct classical analog of Eq. (3.3), because it shows that classical expectation 

values are moved forward by z0 • 

The classical Heisenberg operators form an Abelian group of 2N dimensions, since 

.. they represent simple vector addition on phase space. Furthermore, the action of a classical 

Heisenberg operator constitutes a canonical transformation (if viewed in the passive sense), 

• 
or a symplectic mapping of phase space onto itself (if viewed in the active sense, which is 

more common). That is, the transformation 

I z = z + zo, (3.8) 

is canonical, since a z~ I a z fJ = Oa(J is a symplectic matrix (the identity matrix is symplectic). 

It is convenient to embed this transformation in a family of transformations, by scaling 

zo by a parameter t. That is, we write 

z'(t) = z + tzo, 

so that z'(O) = z and z'(l) = z'. This can be viewed as the t-evolution of a classical 

Hamiltonian, where z plays the role of an initial condition at t = 0, and z' plays the role of 

a final condition at t = 1. z0 is a parameter of the Hamiltonian, not the initial condition. 

This scaling has the effect of embedding the given displacement in a one parameter group of 

displacements, all along the line in phase space specified by z0 • The Hamiltonian describing 

this evolution of z' is parameterized by z0 , so we write H(z', z0 ) for it. It is easy to find 

this Hamiltonian; we call on Eq. (2.4) in the form 
... 

~t z' ( t) = J · :z' H ( z', z0 ) = z0 • (3.10) 

Using the antisymmetric symplectic form w = J- 1 , defined by Eqs. (A.4)-(A.5), we can 

easily solve for H, and we find 

H(z, zo) = i · w · zo = w(z, zo) = p · qo - q ·Po (3.11) 
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where we have now dropped the prime. We see that the symplectic form is the classical 

generator of displacements in phase space. 

We now ask for the quantum analog of the classical displacement operator, Tc~(zo). 

Since the time evolution operator in quantum mechanics is e-itH/n, we postulate the 

following form for the quantum Heisenberg operator, 

(3.12) 

where we have taken the classical Hamiltonian of Eq. (3.11) and simply replaced z by 

the operator vector .i. (This formula has a classical analog, which relates Tct(z0 ) to the 

exponential of a certain Liouville operator. The action of this operator on functions I 

is obtained by forming the Poisson bracket of I with w(z, zo). The result is precisely 

Eq. (3.6).) 

As before, we can embed the quantum Heisenberg operator in a family parameterized 

by t, by replacing zo by tzo, and we can consider the t-evolution which results. If 1-rPo) 

is some initial state, we set 11/1) = T(tzo)l-rPo), and we obtain the following differential 

equation for 11/1), 

in :t 11/1) = w(.i, zo)I1P) = (qo · P- Po· 4)1-rP), (3.13) 

which is a version of the Schrooinger equation. 

This equation can be solved, and it leads to the matrix elements of T(zo). We solve 

it in the x-representation, i.e. we write 1/1 = 1P(x, t), so that 

in~~ = -i1iqo · V1/1- (Po· x)-rP. (3.14) 

This equation, being first order in space as well as time, is easily solved by the method of 

characteristics; if 1j10 (x) is the initial condition, then we find 

1P(x, t) = exp [* (tpo · x- t; Po· Qo)] -rPo(x- tq,). (3.15) 

... 

.. 
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Setting t = 1, we have 

(3.16) 

which is. an explicit formula for the action of the Heisenberg operator T(z0 ) on wave 

functions in the x-representation. This may be compared to its classical analog, Eq. (3.6). 

This result is also easily obtained by applying the Cam.bell-Baker-Hausdorff formula to 

Eq. (3.12). 

Special cases of this are of interest. If the vector z0 consists of a displacement purely 

in configuration space, then we have 

[T(qo, 0)'1/J](x) = t/;(x- qo), (3.17) 

as one would expect. Similarly, if the displacement is purely in momentum space, then 

[T(O, Po)t/J](x) = eiPo·x/lit~;(x), (3.18) 

which is also to be expected. However, T(z0 ) is more general than either of these cases, 

and allows simultaneous displacements in both configuration and momentum space. This 

is necessary, because such simultaneous displacements are actually generated by the semi-

classical time evolution of wave packets. 

Equation (3.16) gives us immediately the configuration space matrix elements ofT(zo), 

which we write in the form 

(xjT(zo)lx') = eiPo·(x+x')/2" 6(x- x'- qo). (3.19) 

Further properties follow easily. By Eq. (3.12), the Heisenberg operators are unitary, and 

T(zo)- 1 = T( -zo) = T(zo)t. (3.20) 

We now consider the commutativity of the Heisenberg operators. The classical Heiseri-

berg operators commute with each other, since they merely represent vector addition: 

(3.21) 
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But the quantum Heisenberg operators do not commute, since they are exponentials of 

linear combinations of the noncommuting operators q and p. Indeed, a simple calculation 

based on Eq. (3.19) shows that 

(3.22) 

The quantum Heisenberg operators fail to commute, due to the phase factor shown. 

Finally, we return to Eq. {3.4}; and prove that it is satisfied. One way to do this is to 

expand out the exponential of Eq. (3.12) and commute the operator Za through the terms. 

We find, for example, 

(3.23) 

using Eqs. (3.1) and (A.5). The result is 

T{zo)t Za = (za + zoa)T(zo)t, (3.24) 

in agreement with Eq. (3.4). 

3.2. Discussion 

Let us pause to consider Eq. (3.22). Although we have derived this result in the x­

representation, the result itself is representation independent. Furthermore, the classical 

phase space expressions appearing in this result treat q and p on an equal footing. The 

coupling of q and p is expressed through the symplectic form w, which is a symplectic 

invariant (see Eq. (A.6)). The same properties are evident in Eq. (3.12), which is also 

representation independent. Equations (3.16) and (3.19) do not treat q and p on an 

equal footing, but that is because they explicitly involve x-space matrix elements, and not 

because of the Heisenberg operators themselves. 

In any practical calculation, one must use some representation, whether it is configura­

tion space or momentum space or some other. But one can think beyond the representation 

.. 
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being used to the objects in the abstract, whether they be vectors in Hilbert space or the 

operators which act on them. Consider, for example, the vectors in Hilbert space, which 

are the abstract representatives of the wave functions. In carrying out some calculation, 

one certainly should expect the result, in the sense of the Hilbert space vector, to be inde­

pendent of the representation which was used in the calculation. And indeed, this is the 

normal situation in quantum mechanics. 

Yet it is precisely on this account that traditional WKB theory fails. For example, 

the usual WKB techniques for calculating energy eigenfunctions yield different answers (in 

the sense of Hilbert space vectors) when carried out in momentum space than they do in 

configuration space. This is to say that the momentum space WKB wave function is not 

in general the exact Fourier transform of the configuration space WKB wave function. 

Similarly, the usual WKB techniques can be applied in initial value problems to obtain 

the WKB approximation to the Green's function. This can be done either in configuration 
•' 

space or momentum space, and the result is the respective matrix element of a WKB 

approximation to the propagator, which in the abstract is an operator on the Hilbert 

space. Unfortunately, the approximate propagator which results is not the same operator, 

in general, when the calculation is done in momentum space as it is in configuration space. 

Again, this is to say that the WKB Green's function in momentum space is not the exact 

Fourier transform of the WKB Green's function in configuration space. 

This situation is usually rationalized by saying that the two wave functions or Green's 

functions, derived in the two representations, are approximately the Fourier transforms 

of each other, through the stationary phase approximation. And in fact one can devise a 

" sense in which the two wave functions or Green's functions differ from one another by an 

amount which is 0(1i), so that the situation seems to be consistent and satisfactory. 

Nevertheless, there is another sense, and an important one physically, in which the 

two wave functions or Green's functions do not differ by a small amnunt, but rather have 
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an infinite difference. This has to do with caustics. Consider, for example, WKB wave 

functions in one dimension. Carrying out the usual WKB approximation in configuration 

space yields a wave function (xi1Pq), and carrying it out in momentum space yields another 

wave. function (pj1Pp). The two Hilbert space vectors I1Pq) and I1Pp) are not the same 

vectors, so that the x-space wave function (xi1Pp), which is the exact Fourier transform of 

the momentum space WKB wave function {pj1Pp), is not the same x-space wave function 

as (xl'¢q). For most values of x, the difference (xi1Pp)- (xi1Pq) is small, but when xis at a 

caustic, this difference diverges. Indeed, as is well known (Percival [1977]), when xis near 

a caustic, the wave function (xj'¢p) is finite and well behaved, and typically displays Airy 

function behavior, whereas (xl'¢q) diverges. 

These considerations suggest that if one could devise a semiclassical approximation 

which was representation independent, then one would not have difficulties with nonphys­

ical divergences at caustics. At a minimum, this would entail the ability to write down a 

formula for the semiclassical wave function or propagator which is manifestly representa­

tion independent. I shall exhibit such a formula for the semiclassical propagator in Sec. 7; 

its representation independence is responsible for the fact that wave packet techniques do 

not have difficulties with caustics. This propagator makes explicit use of the Heisenberg 

operators, and it is for this reason that I call attention to the manifest representation 

independence of Eqs. (3.4), (3.12), (3.20), and (3.22). 

Actually, representation independence, which guarantees that the results of calcula­

tions are independent of the basis employed in Hilbert space, is only one issue in semiclas­

sical mechanics, because it only takes care of the quantum side of the picture. The other 

side is the classical side, and one might suppose that here we should demand an analogous 

representation independence, namely invariance with respect to general canonical transfor­

mations. Sometimes one does obtain such invariance, as is the case with the phase factor of 

Eq. (3.27) below when the transport process is carried around a closerlloop in phase space. 

.. 
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But in other cases, there is only a more limited form of invariance, namely invariance with 

respect to linear canonical transformations. For example, the phase of Eq. (3.72) is only 

invariant under this restricted class of classical canonical transformations. 

Furthermore, there are many instances in which classical and quantum objects are 

coupled together, as in the exponent of Eq. (3.12). Here we require an invariance principle 

which is coordinated between. the classical and quantum objects. Again, in the case of 

linear canonical transformations, it is possible to develop such a principle, due to the fact 

that linear canonical transformations have a projective representation in terms of unitary 

operators on Hilbert space. These are the metaplectic operators, which are discussed in 

Sees. 4-6. But for more general canonical transformations, such a coordination of classical 

and quantum invariance principles is not possible. 

Such considerations quickly lead into a murky area, where it is difficult to formulate 

the right questions. However, there are several issues which are clearly related to this 

question of invariance principles, among them being the matter of "nonlinear canonical 

transformations of operators," "higher order terms," and the uniqueness of the semiclas­

sical expansion. We shall not pursue these matters any further here, but the interested 

reader is directed to the discussion of "other quantizations" by Guillemin and Sternberg 

[1984]. 

In any case, even with invariance only under linear canonical transformations, we are 

far ahead of traditional WKB theory, which is invariant only under linear point transfor­

mations. It isprecisely the lack of an invariance principle in phase space which leads to 

the caustic difficulties in traditional WKB theory. 
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3.3. Transport of Wave Functions 

The phase factor appearing in Eq. (3.22) has an interesting classical interpretation. It 

says that if we transport a wave function through phase space, then the result we obtain 

depends on the path taken. Considering, for example, a simple segmented path such as 

that shown in Fig. 3, we see that the result of transporting a wave function along the 

broken path is different from the result along the direct path. This is due to the phase 

difference ~w(z0 , zl), which, apart from sign, is the first Poincare invariant associated with 

the triangle defined by the displacements. (For N = 1, it is the area of the triangle in 

phase space.) 

It is also interesting to note that if w(zo, zl) = 0, then the transport process is 

commutative. This fact leads to the notion of a Lagrangian manifold, which is a certain 

kind of N-dimensional surface in the 2N.;.dimensional phase space {Arnold [1978]). The 

simplest Lagrangian manifold is a Lagrangian plane, which we consider first. A Lagrangian 

plane can be characterized m at least two equivalent ways. First, a Lagrangian plane has 

the property that w(z, z') = 0 for any two displacement vectors z, z' which lie in (or are 

parallel to) the plane. This means that the transport of wave functions along any two 

paths which lie in a Lagrangian plane is commutative. Second, a Lagrangian plane is any 

plane which can be realized as the Q-space resulting from a linear, possibly inhomogeneous, 

canonical transformation. That is, it is the image of configuration space under some linear 

canonical transformation. If the transformation is homogeneous, then the Lagrangian 

plane is the image of configuration space under the action of a symplectic matrix, and 

it passes through the origin of phase space. Configuration space itself is a Lagrangian 

plane, as is momentum space, or any plane parallel to these, and many others as well. In 

particular, transport of wave functions in configuration space is commutative. 

More generally, a Lagrangian manifold is the image of configuration space under any 

(possibly nonlinear) canonical transformation. For example, the invariant tori of integrable 
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systems are Lagrangian manifolds, because they are the Q-spaces which result from the 

nonlinear transformation to action-angle variables. The tangent plane to a Lagrangian 

manifold is a Lagrangian plane, so that infinitesimal displacements lying in a Lagrangian 

manifold are commutative. These can be integrated, as we do below in Eq. (3.27), to 

form finite displacements, and the results of these displacements are invariant with respect 

to continuous deformations of path, as long as the deformations lie in the Lagrangian 

manifold. However, the transport process is not in general commutative if the two paths 

reaching the same final endpoint form a closed curve which cannot be smoothly contracted 

to a point (while remaining on the Lagrangian manifold). This is a topological matter, 

which arises in the case of the invariant tori, and it leads to quantization conditions. In the 

special case N = 1, any curve (a one-dimensional manifold) in the tw~dimensional phase 

space is a Lagrangian manifold. In particular, curves of constant energy are Lagrangian. 

For N > 1, only special N -dimensional surfaces are Lagrangian, and the surfaces of con-. 
stant energy are never Lagrangian, since they do not even have the right dimension (2N -1 

instead of N). Lagrangian manifolds arise naturally in the eikonal representation of wave 

functions, although they have a significance which goes beyond this, since the eikonal form 

breaks down at caustics. There is no intrinsic feature of a Lagrangian manifold to signal 

the presence of a caustic, since the latter is representation-dependent, and the condition 

w(z, z') = 0 is not. 

It is suggestive to imagine that the semiclassical time evolution of a wave packet, 

which causes the expectation values (z)(t) to follow a classical trajectory, is governed by a 

'ti sequence of near-identity Heisenberg operators. Let us take a classical trajectory z(t), and 

segment it into a number if straight sections, as shown in Fig. 4. We consider the product 

of Heisenberg operators corresponding to these segments, 

T(zn - Zn-d ... T(z2 - zl)T(z1 - zo). (3.25) 
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By the product rule (3.22), and by using the antisymmetry of w, this can be written 

exp [
2
ih I: w(zk+l - Zk, zk)l T(zn)T(zo)t. 

k=O 

{3.26) 

In the limit n-+ oo, and taking Zn = z(t), we obtain a kind of propagator, 

U(t) = exp [- 2~ fa' w(z,Z)dt] T(z(t))T(z0 )1. (3.27) 

The integral in this expression is like the Bohr-Sommerfeld phase factor, but it is taken 

over the symmetrized action 4 (p · dq - q · dp). When transport is performed around a 

closed curve, the phase factor is unity only if the orbit encloses an area of 21rnh, for some 

integer n. (The word "area" is correct only for one degree of freedom. More generally, it 

is the first Pofncare invariant.) 

The picture presented by this analysis is incomplete in several respects, and has been 

given at this point only for its suggestive value. It will be greatly improved upon in 

Sec. 7. Nevertheless, it is important to show how a semiclassical theory can be founded 

on constructions which are based on the canonical structure of classical mechanics. After 

all, this structure should not be expected to abruptly emerge, fully formed, when the 

classical limit is taken. Instead, this structure should be mirrored somehow in semiclassical 

mechanics. This illustration and others we shall present show that the Heisenberg operators 

a.re a natural medium for expressing the classical canonical structure in quantum and 

semiclassical mechanics. 

3.4. Further Properties of the Heisenberg Operators 

I finish this section with some further properties of the Heisenberg operators which 

will be of use in other places. First we may note that the Heisenberg operators, as defined 

so far, do not form a group, because of the phase factor in Eq. (3.22). (They are not closed 

.. 
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under multiplication.) However, if we extend their definition to include a phase factor, 

then we do get a group. We define 

{3.28) 

so that 

{3.29) 

This equation is the group multiplication law for the Heisenberg group, which is {2N + 1)-

dimensional. Unlike its classical counterpart, it is non-Abelian. The name of Heisenberg is 

attached to this group because its Lie algebra consists essentially of the q-p commutation 

relations. 

Next we derive a pair of orthogonality and completeness formulas which are of great 

importance for the Wigner-Weyl formalism. The first is 

I d2Nzo 
(
2
1rn)N (xiT{zo)tlx') (y!T{zo)ly') = 6(x- y')6(y- x'). {3.30) 

This is easily proved by directly using the matrix element of Eq. (3.19). It is a kind of 

a completeness relation on operator space, and in a formal sense it says that the Heisen-

berg operators, as given, form an irreducible representation of the Heisenberg group (the 

abstract group obeying the multiplication law {3.29)). 

The second formula is 

(3.31) 

where Tr is the trace. This is a kind of orthogonality relation on operator space. It is easy 

to prove, and often useful. 

Finally, I remark that some authors have used an alternative version of the Heisenberg 

operators, in which Eq. (3.12) is replaced by 

(3.32) 
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For the purposes of semiclassical mechanics, this version is undesirable, because it does 

not treat q and p on an equal footing. (For example, the factors do not commute. Which 

one is to be placed first?) For this reason and others, I shall make no use of it. 

Although the Heisenberg operators can account for the evolution of the expectation 

values (z) of wave packets, they have no effect on the spreading. For example, when they act 

on minimum uncertainty Gaussians, they produce other minimum uncertainty Gaussians, 

with different expectation values (z). {These are the coherent states; see Appendix C). 

On the other hand, we know that wave packet spreading is ubiquitous, as shown by the 

example of the free particle. To account for spreading, it is necessary to introduce a new 

class of operators, namely the metaplectic operators. 
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4. The Metaplectic Operators 

Although the Heisenberg operators have been frequently used in physics, the same is 

not true for the metaplectic operators. This is not due to any intrinsic lack of importance, 

for, as we shall see, the metaplectic operators go hand in hand with the Heisenberg opera-

" tors, in the same way that purely spatial rotations combine with purely spatial translations 

to form the Euclidean group, the group which preserves the Euclidean structure of con­

figuration space. Indeed, the Heisenberg and metaplectic operators include the Euclidean 

transformations as special cases, and generalize them to the analogous operations on phase 

space, operations which preserve the symplectic structure of phase space. 

Probably the best references on the metaplectic operators which exist in the physics 

literature are Bargmann [1961), Moshinsky and Quesne [1971), and Kramer, Moshinsky 

and Seligman [1975). Bargmann's remarkable and beautiful paper develops the abstract 

group properties of the metaplectic operators quite thoroughly, and is otherwise notable 

for his theory of the Hilbert space of analytic functi01is. It is, however, rather technical, 

and many of his conventions are contrary to the standards of physics. Also, he dealt only 

with the coherent state matrix elements of the metaplectic operators, and not their x-space 

matrix elements. The other references provide valuable additional information, especially 

Kramer, Moshinsky and Seligman [1975), which presents a theory of complex symplectic 

transformations. Many of the observations of this paper would probably be placed on a 

deeper foundation if complex symplectic transformations were incorporated. None of these 

references, however, deal in a systematic way with the matrix elements of the metaplectic 

·..: operators near caustics. This is a subject which I will explore in detail in Sec. 5. 

There are a number of references in the mathematical literature to the metaplectic 

operators, among which I may mention Duistermaat and Hormander [1972]; Guillemin and 

Sternberg [1977, 1984]; Leray [1975, 1981]; Lion and Vergne [1980]· Shale [1962]; Treve 
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[1980]; Voros [1976, 1977]; and Weil [1963]; and references contained therein. In most of 

these there has been little attempt to make the discussion accessible to the nonspecialist, 

with the exception of the first hundred pages of Guillemin and Sternberg [1984], who 

have a very interesting discussion of "Fresnel optics." There is no uniformity among these 

references as to the precise definition of the metaplectic group, although the one I adopt 

in this paper seems to be the most common. Incidentally, it is from the mathematical 

literature that the name "metaplectic" is taken. 

My presentation is intended to be practical, and I shall emphasize the similarity be­

tween the metaplectic operators and the familiar rotation operators of quantum mechanics. 

I begin by defining and motivating the metaplectic operators in three equivalent ways, be­

fore proceeding to an explicit calculation of matrix elements. 

4.1. First Approach: Linear Canonical Transformations 

Our first approach to the metaplectic operators arises in a natural way when we 

consider homogeneous linear transformations taking the operator vector i = ( q, p) into a 

new operator vector, Z = (Q, P). As for the motivation for this question, suffice it for 

the moment to point out that in th~ classical nearby orbit problem, the displacement 6z 

evolves according to a time-dependent linear transformation specified by the matrix S ( t), 

which is symplectic. Let us therefore set 

(4.1) 

for some matrix S. If we demand that the standard commutation relations be satisfied for 

the new operators Z, i.e. 

(4.2) 

then we easily see that S must be symplectic. 
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In general, the question as to what constitutes a "canonical transformation of opera-

tors" is one that is beset with subtleties. However, in the special case of linear transfor-

mations, we see that the answer is easy: the classical and quantum cases are identical. 

The linear transformation ( 4.1) specifies a unitary operator M = M ( S), parameterized 

by the symplectic matrix S, such that the relation 

(4.3) 

is satisfied. We shall prove this below; for now we merely call attention to the analogous 

formula obeyed by the Heisenberg operators, Eq. (3.4), as well as the analogous formula in 

the theory of rotation operators (c.f. Messiah [1961], Eq. XIII.54). This operator M(S) is 

a metaplectic operator; by Eq. ( 4.3) it is specified to within an arbitrary phase. The choice 

of phase can be narrowed by demanding that the operators reproduce the multiplication 

law of the symplectic matrices. This demand is only partially successful, however; a sign 

ambiguity remains. 

4.2. Second Approach: Quadratic Generators 

Our second approach to the metaplectic operators is group theoretical and involves 

quantum Hamiltonians which are homogeneous quadratic polynomials in i. Of course, we 

are thinking of the quadratic expansion discussed in Sec. 2 (and so successfully exploited 

by Heller [1975, 1976, 1977a,b]), but in addition there are many Hamiltonians of physical 

>~ interest of this form. Among these, we mention the harmonic oscillator, a charged particle 

in a uniform magnetic field, and the components of angular momentum, L = r x p, treated 

as the generators of rotations. Let us write such a Hamiltonian in the form 

h 1 A K A = 2 Za a{J ZfJ, (4.4) 
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for some 2Nx2N symmetric matrix K (c.f. Eq. (A.13) for the classical analog). We 

demand that K be symmetric so that h will be Hermitian; of course, there is no such 

consideration in the classical case. 

The infinitesimal propagator for such a Hamiltonian is an infinitesimal metaplectic 

operator. Let us put 

(4.5) 

Then a short calculation shows that 

(4.6) 

This agrees with Eq. (4.3) if we write S(€) = I+ flK, which is indeed an infinitesimal 

symplectic matrix (c.f. Eq. (A.15)). In fact, it is the same symplectic matrix generated by 

the classical Hamiltonian corresponding to Eq. (4.4). It was this agreement which governed 

my choice for the positioning of M and Mt in Eq. (4.3). 

Next we consider the Lie algebra generated by quadratic Hamiltonians. We write the 

quantum equivalent of Eq. (A.18), 

h lA K .. 
i = 2z · i · z, (4.7) 

for i = 1, 2, 3, where K 1 and K 2 are any two given symmetric matrices, and where K3 is 

determined by 

(4.8) 

This is meaningful, because the commutator of two quadratic Hamiltonians is another such 

Hamiltonian. Working out the commutator gives K3 = K 1JK2- K2JK1, in agreement 

with Eq. (A.l7). 

The fact that quadratic Hamiltonians are closed under the commutator shows that 

they generate a group; this is the metaplectic group, denoted M p(2N). And the explicit 

calculation we have done shows that this group has the same Lie a)~ebra as the classical 

.. 

.. 



-41-

symplectic matrices, i.e. the symplectic group Sp(2N). It follows from Lie group theory 

that in neighborhoods of the identity of the two groups there is a one-to-one correspon-

dence between symplectic matrices and metaplectic operators, which preserves the group 

.. multiplication law. For infinitesimal symplectic matrices and metaplectic operators, this 

·.~ 

association is given explicitly by Eq. (4.6). This is an important concept, because in the 

classical nearby orbit problem defined by Eq. (2.9), the time evolution of-6z proceeds from 

t to t + ~t by multiplication by the infinitesimal symplectic matrix I + ~tJH" ( t). On the 

other hand, the semiclassical time evolution of the quantum wave packet proceeds by the 

action of the uniquely corresponding infinitesimal metaplectic operator, 

i~t .. H"( ) .. 1 - 21i z . t . z. (4.9) 

However, in spite of this one-to-one correspondence for near-identity operations, the 

two groups, Sp(2N) and Mp(2N), are not the same group, i.e. the multiplication law for 

the metaplectic operators cannot, globally speaking, be placed in one-to-one correspon-

dence with that of the symplectic matrices. This is due, in a sense, to the fact that the 

metaplectic operators carry more information than the symplectic matrices; in fact, one 

bit more information. This arises in the following way. The classical evolution of nearby 

orbits produces a symplectic matrix function S(t), satisfying S(O) =I. This function can 

be regarded as a trajectory in the space of symplectic matrices. As discussed in Appendix 

A, this space has a "hole" in it, and a closed trajectory therefore has a winding number. 

Now, for most nearby orbit problems, the matrix function S(t) will not represent a closed 

curve in the space of symplectic matrices, i.e. it will not satisfy S(t) =I for any t except 

t = 0. Nevertheless, for the sake of illustration, let us imagine for the moment that S(t) is 

closed, since this is the best way to illustrate the double valuedness ofthe metaplectic oper-

ators. This double valuedness is important even when S(t) is not closed. Corresponding to 

the symplectic matrix S(t), there is a metaplectic operator M(t), bu1lt up by infinitesimal 
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compositions in the same way as S(t). It turns out that if S(t) is a closed curve with an 

odd winding number, returning to S(T) =I at some timet= T, then M(T) is not 1 (the 

identity), but rather it is -1. On the other hand, if the winding number of S ( t) is even, 

then M(T) = +1. 

These facts do not contradict the statement made above, that in neighborhoods of the 

identity the two groups Sp(2N) and Mp(2N) are isomorphic. This is because, globally 

speaking, they are not isomorphic; rather, the metaplectic group stands in a 2-to-1 corre­

spondence with the symplectic group. For every symplectic matrix S (globally speaking), 

there are two metaplectic operators, M1 (S) and M2(S). These operators differ by a sign, 

M1 (S) = -M2(S). (4.10) 

The relationship between the two groups Sp(2N) and Mp(2N) is very much like that 

between the complex w- and z-planes for the analytic function w = z2. If the complex 

number z = z(t), parameterized by t, goes around tile origin once, without passing through 

it, then w(t) goes around twice. (The correct analogy here is to identify z(t) with M(t), and 

w(t) with S(t).) In this analogy, the relation between z and w can be expressed through 

the phase angles, Bz = arg z and Ow = arg w, so that (Jz = Bw/2 + mr, where n = 0 or 1. 

Similarly, a symplectic matrix Scan be associated with an angle 1s = argdet(A + iB), 

as explained in Appendix A. A metaplectic operator can also be associated with an angle 

1M, which can be understood in terms of the resulting phase when a standard Gaussian 

wave packet is acted upon by a metaplectic operator. If this metaplectic operator is one 

of the two shown in Eq. (4-.10), then 1M ~ "Ys/2 +-mr, where n = 0 or 1. This half-angle 

relationship is shown explicitly in Eqs. (6.30) and (6.32). 

This situation is analogous to the one which obtains in the theory of rotation operators 

for half-integral angular momenta. In that case, also, there are two rotation operators 

corresponding to a single classical 3 x 3 rotation matrix, and these 0perators differ by a 
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sign. In the same way that an electron can be rotated by 360° and suffers a phase change 

of -1, so too, in a sense, can a wave packet be "rotated" in phase space by a continuous 

operation which classically returns to the identity, but quantum mechanically produces a 

phase change of -I. However, this property of the metaplectic operators has nothing to 

do with spin. 

Furthermore, just as the double valuedness of electron rotation operators is important 

even when the classical rotation matrix does not return to the identity, the same is true 

in the case of metaplectic operators and classical symplectic matrices. For example, in 

the case of an electron precessing in an inhomogeneous or time-varying magnetic field, 

the rotation operator describing the precession might never return to the identity, and yet 

clearly no analysis of the problem could be done without taking the double valuedness into 

account. 

As just indicated, the phase shif1 produced by the metaplectic operators when the 

classical symplectic matrix returns to its original value is determined by the winding num­

ber of S(t) in the group Sp(2N). This winding number is one half of the Maslov index, 

which we denote by J.l.i therefore the phase shift is ei~r/2 • The Maslov index for a closed 

trajectory S(t) is a topological invariant of the symplectic group, and is invariant under 

changes of coordinates {in the sense discussed in Appendix A), as well as under continuous 

deformations of the path S(t). Later we will relate this version of the Maslov index·to the 

more familiar version, which is expressed in terms of caustics. 

4.3. Third Approach: Gaussian Wave Packets 

Our third approach to the metaplectic operators is based on Gaussian wave packets. 

By using Heisenberg operators to move expectation values around in phase space, we know 

we can transform any Gaussian into one which has (z) = 0, i.e. onf' which is situated at 
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the origin in phase space. We may regard this operation as trivial, so here we consider 

only Gaussians satisfying (z) = 0. We also consider only normalized Gaussians. Then 

the metaplectic operators can be characterized as those operators which map every such 

Gaussian into another such Gaussian, i.e. the operators which leave the set of all such 

Gaussians invariant. 

It is tolerably apparent that the x-space matrix elements of such an operator must 

have the form 

(4.11) 

since the quadratic exponent guarantees that a Gaussian will he transformed into another 

Gaussian. The NxN matrices L 1 and L3 are syiilmetric, and L2 is arbitrary, for a total 

count of N(2N + 1) parameters. The L matrices must also be purely imaginary, so that 

M is unitary (the Gaussians are supposed to remain normalized). In addition to the form 

(4.11), one must also consider limiting cases of it, which give rise to 6-functions of linear 

expressions in x and x. Obviously, such 6-functions also preserve the Gaussian form. 

What is perhaps surprising is that the kernels of the form ( 4.11) are closely related to 

the symplectic matrices. As a result, it turns out that Gaussian wave packets can he 

parameterized, in a sense, by symplectic matrices (hut not uniquely, as we shall see). 

4.4. Configuration Space ·Matrix Elements of the Metaplectic Operators 

We now proceed to calculate the matrix elements of the metaplectic operators, based 

on our first approach and Eqs. {4.1)-(4.3). This calculation is similar to that employed 

by Moshinsky and Quesne [1971] and by Bargmann [1961], although Bargmann worked 

directly in the coherent state basis. It is also related to the analysis of Miller [1974], who 

considered as well nonlinear operator functions of i. 



'f 

-45-

Using the notation of Eq. (A.B), we write the first half of Eq. (4.1) in the form 

(4.12) 

Because of the commutation relations (4.2), the N components of the operator vector 

Q are commuting operators, and we can construct their simultaneous eigenstates. We 

.denote these by IQ(x)), to indicate both the operators Q and the eigenvalues x, so that 

QIQ(x)) = xiQ(x)). Similarly, we write jq(x)) for the simultaneous eigenstate of the 

operators q with eigenvalues x; the simple notation jx) is ambiguous. 

The eigenstates IQ(x)) are determined in the q-representation by 

(q(x')IQIQ(x)) = x(q(x')IQ(x)), (4.13) 

or 

(Ax'- inB ~' - x) U(x',x) = 0, (4.14) 

where we abbreviate, U(x',x) = (q(x')IQ(x)). For the time being, we assume that the 

matrix B is nonsingular, which in effect says that we are away from caustics. We will 

interpret this condition more fully in Sec. 5; for now we merely note that the symplectic 

matrices S such that det B = 0 form a set of measure zero in the space of all symplectic 

matrices, and that the possible difficulty det B = 0 can be removed by introducing an 

arbitrarily small perturbation into S. Then we have 

a i 
Bx' U(x',x) = -~B- 1 (Ax'- x) U(x' ,x). (4.15) 

The fact that a solution to this equation exists is guaranteed by the symmetry of the 

matrix a- 1A = .A:B-1, which follows from the symplectic condition in the form (A.9). It 

is also equivalent to the fact that the operators Q commute with one another, and therefore 

possess simultaneous eigenstates. Thus we have 

(4.16) 

where f(x) is a normalization/phase factor. 



The spectrum of Q, like that of q, is continuous, so we normalize the states IQ(x)) 

according to 

(Q(x')IQ(x)) = 6(x- x'), {4.17) 

or 

j dx" U~x",x')* U(x",x) = 6(x- x'). {4.18) 

The integral gives 

so we obtain 
sa(x)/t& . 

' e - • (x'B- 1Ax'-25t'B- 1 
) U(x x) = e 31' x 

' y'(211"1i )N I det Bl ' 
{4.20) 

in which the phase a:{x) is still arbitrary. 

For any choice of the phase function a:{x), the eigenstates IQ(x)) uniquely specify a 

unitary operator M, defined by 

MIQ(x)) = 14(x)). (4.21) 

That is, M takes an eigenstate of Q with eigenvalues x into an eigenstate of q with the 

same eigenvalues. M is uniquely specified because it maps a complete set of states into 

another compl~te set. {Here we simply assume that the commuting operators Q form 

a complete set. This can be verified after the fact.) It is also unitary, because of the 

normalization condition {4.17). This M causes the first half of Eqs. {4.3) to be satisfied, 

Le. 

Mt qM = Q = Aq + Bp. ( 4.22) 

We would like M to satisfy as well the second half, i.e. 

Mt p M = P = Cq + Dp. (4.23) 
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It is not obvious that this can be done, because M is already determined by Eq. (4.21). 

However, it turns out that by properly choosing the phase a(x), this equation is also 

satisfied. We show this by taking the matrix element of Eq. (4.23) between the states 

(q(x')l and IQ(x)), which gives 

i1i~U(x',x) = ( Cx'-i1iD:x,) U(x',x), (4.24) 

or, by substitution of Eq. (4.20), 

a~~x) = {DB-1A- C- a-1)x'- DB-1x. (4.25) 

The term in x' vanishes according to the symplectic conditions (A.9)-(A.10), which also 

show that the matrix DB-1 = :B-tjj is symmetric. Therefore a solution exists, and we 

have 

( 4.26) 

where (3 is a constant. 

We see that with this choice of a, i.e. with this choice of phase conventions for the 

states IQ(x)), we can simultaneously satisfy all 2N components of Eq. (4.3), with M 

defined by Eq. (4.21). We also have phase conventions for the states IP(k)), if we define 

them by 

MIP(k)) = lp(k)). (4.27) 

(We should not write IZ(z)), because the 2N operators Z do not commute and do not 

possess simultaneous eigenstates.) 

We summarize these results by noting that U(x',x)* = (q(x)IMiq(x')), or 

ei/3 
(xl M(S) lx') = --;:;====::::::=:;::;::::;::~ 

yi(21r1i)NI det Bl 

x exp [
2
i1i {x'B-1Ax'- 2x'B- 1x + XDB- 1x)] , ( 4.28) 

where we have dropped the specification of the operator q in (xi, lx'), this henceforth 

being understood. The exponent is i/1i times the mixed variable generating function 
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F1 (x, x') (Goldstein [1980]) which is responsible for the canonical transformation, z = Sz', 

in agreement with Miller [1974]. 

Next we consider the phase {3, which is an essential part of our analysis. This phase 

is independent of x and x', but we will want it to depend on S. As we have seen, in a .,_ 

neighborhood of the identity, the group multiplication law for the metaplectic operators 

should be the same as that for the symplectic matrices, and we can only bring our result 

( 4.28) into accordance with this if we determine the phase {3 as a function of S. 

Let us therefore consider two symplectic matrices ~b 8 2, and set S = 8182. Then 

we have 

s-(A B)-(A1A2+BtC2 A1B2+BtD2) 
- C D - C1A2 +D1C2 C1B2 +D1D2 . 

(4.29) 

Correspondingly, let us compute the matrix element (xiM(SI)M(S2)Ix') by inserting a 

resolution of the identity, 

1 dy ly)(yj = 1 (4.30) 

and integrating c_:>ver y. We assume that all three matrices, B1, B2, B, are nonsingular. 

Collecting only the terms which depend on y, we have the integral 

J dy ex~ { 2~ [9(B11At + D2B2" 1 )y- 2(x'B2 1 + xB1 1 )y]}. (4.31) 

The symmetric matrix B!1A1 + D2B2"1 can be written B!1BB21
, and when we carry 

out the integral and collect terms, making liberal use of the identities (A.9)-(A.10), we 

find that the exponent of the result is precisely the exponent of Eq. ( 4.28). Furthermore, 

the leading factors agree in absolute value, so that M(S 1S2) is the same operator as 

M(SI)M(S2), to within a phase. 

As for the phase itself, we let N + and N _ be respectively the numbers of positive and 

negative eigenvalues of the symmetric matrix B! 1BB2 1
, so that N+ + N_ = N. Then 

the phase of the result is 

N rr 1T' 
/3 = /31 + /32 +-- -N_. 

4 2 
( 4.32) 
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If this could be written in the form (3(8) = (3(81) + (3(82), then we would have a unitary 

representation of the symplectic group. However, we will find in the attempt that this 

cannot be done, although an appropriate form for (3(8) does appear. Let us denote the 

phases of det B1, det B2, det B respectively by v11r, v21r, v1r, where the v's take on the 

values 0 or 1. Then we have 

N- = v - v1 - v2 '(mod 2). (4.33) 

Therefore if we write Eq. (4.32) in the form· 

(4.34) 

we see that the integer in the last term is even. This suggests that we define 

.8(8) = - ~1r - v21r' (4.35) 

where eivw = _sgn det B, so that 

(4.36) 

where n is an integer. 

The result of this analysis is that if we form a one-t~one association between symplec-

tic matrices 8 and operators M(8), by using Eq. (4.28) with (3(8) defined by Eq. (4.35), 

then the set of operators M(8) that we obtain is not a group. This is so because the set of 

operators so formed is not closed under multiplication; sometimes (depending on 81, 82) 

when we multiply M(8I) with M(82), we obtain, not M(8182), but rather -M(8182), 

which is not in the set. Therefore in order to obtain a group, we must extend the set of 

operators to include both M(8) and -M(8) for every symplectic 8. 

We see that in order to uniquely specify a metaplectic operator, we must not only 

give the symplectic matrix to which it corresponds, but we must also give the choice of 
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sign, which we denote by u. Thus, an unambiguous notation for a metaplectic operator is 

M(S, u). This operator has x-spa.ce matrix elements given by 

(xjM(S u)jx') = ---u~== 
' {21ri1i)N/2y'det B 

X exp [2i1i (X'B-1Ax'- 2X'B-1x + xna-1x)] ' (4.37) 

where u = ±L To maintain agreement with our computation of phases above, we will take 

the branch cut of the square root to lie just under the negative real axis, so that the phase 

of v' det B is either 0 or 1r /2. Similarly, the phase of iN 12 is N 1r /4 (we take the square root 

first, and then raise to the N-th power). Note that with this convention for the phase of 

the square root, the algebraic rules vzy = vx../Y and v'f7X = 11 .;x are not in general 

true. 

Having made this careful analysis of phases, we now partially set it aside, and adopt 

the following admittedly imprecise but useful notation. We will write M(S), without the 

sign u, either when we do not care what the sign is, or when a formula as written is true 

for one or more of the possible choices of signs, or when the sign cancels. For example, we 

now display a pair of fundamental results, 

{4.38) 

and 

(4.39) 

This notation tends to be useful, because for many purposes it is more important to 

recognize the 2-to-1 association than it is to work with some explicit representation of it, 

such as the conventions developed here for u. (Later we will see other conventions, as i 

well.) 

An important case in which the sign cancels is when the combination M(S)t, M(S) 

occur together. One example of this has already been given, in Eq. (t1.3), and it will occur 
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again, in other conjugation formulas. These are examples of the fact that the product 

Mp(2N)txMp(2N) transforms, not according to the metaplectic group, but according 

to the classical symplectic matrices (as can be seen in Eq. (4.3)). The analogous fact in 

the theory of rotation operators is that, even for half-integral angular momenta, vector 

operators transform under conjugations according to the classical 3 x 3 rotation matrices, 

and do not have any double valuedness. For example, the electron spin operatorS= (n/2)u 

transforms as an ordinary 3-vector. Analogously, the operator vector z transforms as an 

ordinary 2N-vector in phase space. 

We shall not display the mixed x- and p-space, or full p-space, matrix elements of 

M ( S, u), since these are easily obtained by replacing S by JS or SJ - 1 or J SJ - 1 , as we 

shall show in Sec. 6. Furthermore, even if such results were displayed, they would be 

incomplete, since x and p are vectors, so that the Fourier transform can be carried out 

on any subset of the components of x or p. All these possible matrix elements are easily 

obtained from Eq. ( 4.37) by multiplying symplectic matrices. 
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5. Metaplectic Operators and Caustics 

As is evident from Eq. (4.37), the matrix element (xjM(S)jx') diverges when det B-+ 

0. In this section I will show that this divergence is a kind of caustic, and I will develop 

limiting forms for the metaplectic matrix elements as the caustic is approached. 

5.1. Caustics and Divergences 

The word "caustic" often raises alarm bells. When a caustic is approached, one has 

the expectation that some approximation is breaking down, and is leading to nonphysical 

infinities. Furthermore, various singularities and discontinuities are expected, such as a 

discontinuity of the phase. Let us therefore address these issues in connection with the 

metaplectic matrix elements. 

First, I emphasize that the derivation. of Eq. (4.37) involved no approximation. It 

began with Eq. (4.3) and led directly to the metaplectic matrix elements of Eq. (4.37). 

Therefore the divergence as det B -+ 0 is not the result of some approximation breaking 

down, but rather it is correct and real. Next, we may note that the divergence in question is 

not in a wave function, but rather in the matrix elements of an operator. In fact; as I shall 

show, when det B -+ 0, the matrix element (xjM(S)jx') assumes the form of 8-functions 

of linear combinations of x and x'. These IS-functions represent perfectly well .behaved 

operators, as can be seen in the special caseS= I, where M(S) = ±1 and (xjM(S)jx') = 

±8(x- x'). In other words, it is the x-space matrix element which is diverging, not the 

operator itself in any intrinsic sense. In fact, the metaplectic operators are quite well 

behaved; they are not only bounded for all values of S, they are, by construction, unitary. 

Next we consider the question of discontinuities. This is a real question, because if 

we compute a matrix function S( t) in a classical nearby orbit problem, and similarly the 

corresponding metaplectic operator M(t) = M(S(t)), we would like to know if M(t) will 

• 
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suffer a discontinuity when we cross a caustic, i.e. when det B(t) --+ 0. The answer is 

that the operator M ( t) itself is perfectly continuous as the caustic is crossed, although 

its x-space matrix elements will diverge as the caustic is approached, and the sign u of 

Eq. ( 4.37) may undergo a discontinuity on crossing the caustic. Indeed, in this section we 

shall determine the rules for the sign changes in u, based on the requirement that M ( t) be 

continuous. 

To say that M ( t) is continuous as we cross a caustic means that the operator difference 

M(t +At)- M(t) is small when At is small, even when the two times straddle a caustic. 

However, since the difference of the x-space matrix elements is not small in this situation, 

we should say what is meant by a small operator difference. There are actually several 

different ways to define con~inuity of operators (Reed and Simon [1980]), but the fact is 

that for all reasonable definitions of continuity, the familily of metaplectic operators M ( t) 

which we have in mind is continuous for all t. In a practical sense, it comes down to this. 

If I1Po) is some fixed state, and properly a member of Hilbert space, so that (1Poi1Po) is 

finite, then M(t + At)I1Po)- M(t)11Po) is small (in the sense of the usual norm on Hilbert 

space) when At is small. (This is strong continuity.) This means in particular that if I1Po) 

represents a wave·packet which is being propagated in time by an operation represented 

by I1P(t)) = M(t)I1Po), then I1P(t)) undergoes no discontinuity or divergence of any kind 

when the caustic is crossed. This is part of the reason why wave packet techniques do not 

suffer from caustic difficulties. 

On the other hand, if I1Po) is a "state" like lx), which is not normalizable, then there 

may be divergences, as indeed we see there are from Eq. ( 4.37). In other words, the caustic 

divergences of Eq. ( 4.37) are the fault of the X-representation, and not of the metaplectic 

operators themselves. That is also why the matrix B seems to play a privileged role; in 

another representation, such as the momentum representation, another submatrix of S 

would take the place of B in determining divergences. None of these submatrices has any 
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privileged role in phase space. On the other hand, if we were to use matrix elements of 

M(S) taken between proper Hilbert space vectors, such as harmonic oscillator eigenstates, 

then there would be no divergences at all. In particular, the coherent state matrix elements 

of the metaplectic operators are always finite and continuous. 

Therefore several questions of strategy arise here. First, if the x-space matrix elements 

have divergences, then why do we not use, say, momentum space matrix elements? The 

answer to this is that the states IP) are not normalizable either, and thus the momentum 

space matrix elements also have divergences. It is true, however, that the divergences 

of the momentum space matrix elements (p!M(S)Ip') usually occur at different locations 

within the space of ·symplectic matrices, although the overall structure of the divergences 

is the same as in the case of the configuration space matrix elements. In fact, one can show 

that when the x-space matrix element diverges, there always exists some combination of 

x- and p-components with respect to which the matrix element of M(S) is finite and well 

behaved. This fact is one of the f><ssential ingredients in the Maslov theory, and it allows 

one to make a. practical analysis of the divergences of the x-space matrix elements by a 

selective appeal to the Fourier transform. We do not take this approach in this section, 

but rather we stay with the x-space matrix elements. But we do set up the practical 

machinery which would be required for the Fourier transform approach; this is most of the 

work anyway, and the interested reader can easily fill in the missing details. In any case, 

since the overall structure of the caustic singularities is the same in any representation 

obtained from the x-representation by a partial or a complete Fourier fransform, we are 

in effect solving all cases at once by dealing only with the x-representation. (In fact, the 

caustic structure is the same in any representation obtained from the x-representation 

by any fixed, passive metaplectic transformation. The structure, although not the actual 

locations, of the caustic singularities is an invariant of the symplectic group.) 
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Second, if wave packet techniques do not lead to caustic difficulties, and if divergences 

can be avoided by using, say, coherent state matrix elements, then why do we not switch to 

these matrix elements here, and simply forget about the x-representation? The answer is 

that we could do this, and in a sense the contents of.this section are not, strictly speaking, 

necessary for the subject of wave packet propagation. (The reader who is only interested 

in wave packet propagation could skip this section without much loss of continuity.) Nev­

ertheless, the coherent state basis is less familiar and in some respects less convenient to 

use than the x-basis. Furthermore, the divergence of the metaplectic matrix elements at 

caustics is an important part of the theory of caustics, and sheds considerable light on the 

general phenomenon. It is also an interesting subject in its own right, and contributes to 

an understanding of why nonphysical divergences at caustics do not occur in wave packet 

techniques, or, for that matter, in any semiclassical approach based on invariance princi­

ples in phase space. In addition, one of our aims in this paper is to present a reasonably 

complete accounting of the properties of the metaplectic operators, and the caustic singu­

larities are certainly a part of it. In later sections we shall make some use of the x-space 

matrix elements of M(S) when det B = 0. 

Besides, caustics are physic3.lly real, if not in the sense of infinities in the wave field in 

configuration space, at least in the sense of the enhancement of wave intensity at certain 

locations and the evanescent penetration into classically forbidden regions. This is true 

in spite of the fact that caustics have no invariant meaning in phase space. The general 

theory of caustics involves catastrophe theory, as reviewed by Berry and Upstill [1980] and 

Kravtsov and Orlov [1983], and an interesting question would be to relate wave packet 

methods to this general theory. We will not do this here, but rather leave it as a problem 

for the future. 

The caustics we encounter in this section are of a rather special kind, because of 

our focus on quadratic Hamiltonians. We will find no Airy functions, nor any of their 
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generalizations. Catastrophe theory in the usual sense does not enter, because quadratic 

Hamiltonians produce linear maps on phase space, which always take Lagrangian planes 

into other such planes. These can and do have singular projections onto configuration 

space, but the singularities are not stable with respect to small perturbations, even linear 

ones. 

Our discussion of caustics begins with a classical analysis, and then proceeds to a 

discussion of the metaplectic matrix elements when det B .- 0. 

5.2. A Classical Picture of Caustics for Quadratic Hamiltonians 

To deal with the case det B = 0, it is well to begin with a classical analysis. For 

the time being, let us assume that we are dealing with a classical Hamiltonian which is 

a quadratic function of z, and which may be time-dependent. Ultimately, of course, we 

are interested in the linearized behavior around some reference orbit, in which a quadratic 

Hamiltonian is only an approximation. But for the sake of simplicity, we shall momentarily 

assume that our quadratic Hamiltonian is globally valid in phase space. When we have 

completed this analysis, Vfe will say a few words about how the results can be interpreted 

in the nearby orbit problem. 

Let us suppose that some initial conditions Zi at t = 0 give rise to an orbit z(t), 

reaching final point z 1 at time t 1. Then we know that the final condition is related to the 

initial condition_by some symplectic matrix S, which depends only on t1. That is, we have 

z1 = S(t 1 )zi. 

The correct analogy between this situation ~d the matrix element ( 4.37) is to identify 

x' with the configuration space part of Zi, and x with the configuration space part of z 1; 

Furthermore, we identify S(tl) with the symplectic matrix S appearing in Eq. (4.37). That 

is, we take x' = qi and x = q 1, so that we are interested in classical orbits which start at 
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x' at t = 0 and reach x at t = t 1. The reason for considering such orbits in connection 

with Eq. (4.37) comes from an interpretation of the matrix element as a Green's function, 

since a Green's function indicates the final wave field a.t position x and time t 1 due to an 

initial 6-function disturbance at position x at timet= 0. 

Consequently, we are interested in orbits for which the initial and final positions are 

given. Of course, if the initial position and momentum were given, then we would have a 

unique orbit, but since instead we have initial and final positions, it is not clear that any 

such orbit exists, or, if it does, whether it is unique. Let us therefore consider the first half 

of the transformation equations z = Sz' (where z' = Zi, z = z 1) in the form 

Bp' =x-Ax'. (5.1) 

If knowledge of x and x! implies a unique determination of the initial momentum p', then 

we have a unique orbit. Therefore we ask, under what conditions, for fixed S and chosen 

x, x', does there exist an initial momentum p' which will satisfy this relation? Clearly, if 

det B i= 0, then p' exists and is unique, and is given by 

p' = a-1(x- Ax'). (5.2) 

On the other hand, if det B = 0, then in general there will not eXist a solution, and 

the chosen final point x simply cannot be reached by an orbit beginning at x'. This will 

be the case if the right hand side of Eq. (5.1) is not orthogonal to the left null eigenvectors 

of B, i.e. the vectors u such that ii · B = 0. Mathematically, these left null eigenvectors 

are covectors in the dual space to x-space, and they span the kernel of B; they can be 

interpreted as momentum vectors in p-space, because the expression ii · x occurs in the 

orthogonality condition. The general situation is illustrated in Fig. 5. Let us suppose 

that there are n linearly independent left null eigenvectors u of B, which we denote by 

u<l), ... , u<n), which we arrange as column vectors in an Nxn matrix Un. The number n 

is the corank of B, i.e. the dimensionality of the kernel or nullity of B, and we shall call it 
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the order of the caustic. We denote the rank of B by r, so that n + r = N. The symplectic 

condition places no restriction on the rank of B, so that n can take on any value between 

0 and N. B can even vanish, as happens in the case S = I. In any case, we conclude that 

a solution p' to Eq. (5.1) exists only if 

(5.3) 

On the other hand, if x and x' are chosen so that Eq. (5.3) is satisfied, then a solution 

for p' does exist, but it is not unique. In this case the general solution of Eq. (5.1) is given 

by 
n 

p' = p~ + L CiV(i)' 

i=l 

(5.4) 

where Pri is a particular solution to Eq. (5.1), and where we have represented an arbitrary 

linear combination of the right null eigenvectors of B, i.e. the vectors v such that B ·V = 0. 

(Later we will provide an explicit formula for p', including the particular solution Pri.) 

The linearly independent set v< 1>, ... , y(n) span the kernel of B, and can also be arranged 

column-wise into an Nxn matrix V n· The vectors v(i) represent physically momentum 

vectors in p'-space. The set of all p' vectors which map onto the same final x point (i.e. by 

following an orbit with initial conditions x!, p') is represented by an n-dimensional plane 

in p'-space. If p' = 0 is a possible solution to Eq. (5.1), then this plane passes through the 

origin of p' -space, i.e. it is the kernel of B; otherwise it is an n-dimen.sional plane parallel 

to the kernel of B. 

.. 

Let us imagine that at t :- 0 an infinite number of particles are emitted from x', .. 

with all possible initial momenta p', and distributed, say, uniformly in p'. This would 

correspond to an initial condition of a wave equation, tPi(xi) = cS(Xi -x'), since the Fourier 

transform of the 6-function has uniform density in momentum. Classically, it corresponds 

to the initial N -dimensional Lagrangian plane in the phase space z' specified by Xi = x', 

Pi = p' =anything. 
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The spatial density of particles is infinite at x' at t · 0. But at final point x at the 

later time t 1, the spatial density will be finite if det B i= 0, since only one initial momentum 

p' gives an orbit arriving at x. However, if det B = 0, then there are two cases. If x and 

x are such that Eq. (5.3) is not satisfied, then there are no orbits arriving at x, and· the 

density at xis zero. But if x and x' do satisfy Eq. (5.3), then there is an n-dimensional 

infinity of initial momenta which map onto x, and the density of particles is infinite at x. 

We see that if det B = 0, then the distribution of particles in x-space (considering 

now x variable and x' fixed) is concentrated with infinite density on a surface specified 

by Eq. (5.3). This is the caustic surface, and it is an r-dimensional plane. Equation (5.3) 

shows that the left null eigenvectors u(i) are all orthogonal to the caustic surface, and 

determine its orientation. If x' is such that UnA · x' = 0, then this plane passes through 

the origin of x-space, and is the image of B; otherwise it is parallel to the image of B. 

For an arbitrary matrix taken out of context, there is no particular relation between 

the left and right null eigenvect0rs. But the symplectic condition provides additional 

structure,· and gives us such a relation for the matrix B. Let us consider a left null· 

eigenvector u, which we multiply by the matrix A. Then by Eq. (A.9) we have BAu = 

ABu = 0, and we see that Au is a right null eigenvector of B. If we let A act on the 

entire linearly independent set u< 1>, ... , u<n) of left null eigenvectors, we obtain a set of n 

right null eigenvectors, and we would like to know if these are linearly independent. We 

cannot assume that det A i= 0, because A may be singular, even when B is also singular. 

But the symplectic condition imposes constraints on the simultaneous singularity of the 

two matrices A and B, because det S = 1. This means in particular that if some linear 

combination of rows of B should vanish, then the same linear combination of rows of A 

cannot vanish, because if it did, there would be a vanishing linear combination of rows of 

S. Therefore the collection of vectors { ii(i) ·A, i = 1, ... , n} are linearly independent, and 
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they provide us (taking the transpose) with a basis for the kernel of B. In other words, 

with no loss of generality, we can take 

(5.5) 

which we shall henceforth do. 

Clearly it' is desirable, in dealing with the caustic surface, to introduce coordinates in 

which the surface is oriented in a simple way. We do this as follows. In addition to the 

vectors u(i), i = 1, ... , n, we chooser more such vectors u(i), i = n + 1, ... , N, so that the 

whole collection of N vectors is linearly independent. Since the first n u<'> are orthogonal 

to the caustic surface, the remaining r u(i) define coordinates on the caustic surface. We 

arrange these new r vectors column-wise into ·an N x r matrix U n which can be appended 

to the right of U n to form an invertible N x N matrix U. There are, of course, many ways 

to choose these r vectors, and no choice has any privileged role. The same is true for the 

choice of the particular linearly independent combination of left null eigenvectors of B; 

which form the columns of Un. We do not demand orthogonality for any of these vectors, 

because orthogonality has no invariant meaning under symplectic transformations. To 

demand orthogonality would only cloud the fundamental issues. 

Next, we define new coordinates yin x-space by 

y=Ux. (5.6) 

Sometimes we decompose y into its first n and remaining r components, y n and y n which 

are respectively n- and r-dimensional vectors, so that y n = U nX, y r = U rX· Then in 

terms of the new coordinates, the caustic surface is specified by an equation involving only 

- I - I 
Yn = UnAx = V nX, (5.7) 

which is constant if x' is fixed. The remaining components of y, y r, represent coordinates 

on the caustic surface. 

.. 
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Similarly, we perform a change of coordinates in x'-space to simplify expression for 

the kernel of B. (This is really a change of basis in p'-space, which induces a dual basis 

in x' -space.) As with U, we fill out the N X n matrix V n with r more columns, denoted 

• collectively by Vr, which is an Nxr matrix, to form altogether an invertible NxN matrix 

V. (We cannot take Vr = AUr, because when detA = 0, the resulting V would be 

" 

singular. We cannot assume any relation between Ur and Vr.) We then set 

y' = Vx', (5.8) 

and similarly write y~ = V nx', y~ = V rX. The r-dimensional plane in x' -space which is 

perpendicular to the kernel of B is now specified by y~ = 0, y~ = anything, and we see 

that the vector y~ serves as a coordinate vector on this plane. The equation for the caustic 

surface now takes on the simple form, 

_, 
Yn- Yn· (5.9) ... 

These changes of coordinates induce dual changes of coordinates in p- and p' -space. 

We define 

k = u-1p, 

k' = v-1p'' (5.10) 

which cause the transformations (x,p) - (y,k) and (x',p') - (y',k') to be canonical 

(they are both point transformations). In effect, we have replaced our symplectic matrix 

S by SoSS} 1
, where 

(5.11) 

This causes the replacements A ........ iJ A V - 1 , B ........ UBV, C ........ u- 1 CV - 1 , D ........ u- 1 DV, 

which we denote respectively by a, b, c, d. The change of coordinates makes it natural to 

partition each of these into their nxn, nxr, rxn, and rxr submatrices, denoted a""' &nr, 
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arn, a,.n etc. By using the relations UnB = 0, BV n = 0, and the symplectic conditions 

{A.9), we find a simplification in many of the submatrices, which are summarized by 

a= (Inn 
8rn a~,.)' b= (~ b~,.)' 

• 

( Cnn Cnr), d =(Ion dnr) {5.12) c= drr . Crn Crr 

We note in particular that the rxr matrix b,.,. has rank r and is, therefore, invertible. 

We can now give a complete and explicit solution to the inversion problem {5.1). 

Writing this out in the new coordinates, we have 

O=yn-Y~, 

b k / . I I 
rr r = Yr- 8rnYn- 8rrYr• {5.13) 

A solution for k1 exists only when y n = y~, whereupon the solution takes the form 

k~ = anything, 

k l b-1 ( I I) r = rr Yr- &rnYn- a,.,.y,. · (5.14) 

This classical solution will prove to be of value in analyzing the matrix element {4.37). 

5.3. Phase Space Picture of Caustics 

It is enlightening to view this classical picture of caustics which we have developed 

from the standpoint of phase space. Figure 6 shows the general situation in the case N = 1; 

unfortunately, it is not easy to represent phase space in a diagram when N > 1, so some 

imagination must be used in the general case. 

The initial condition at time t = 0 is qi = x1
, as shown in the figure. The ensemble of 

initial particles, all satisfying q.; = x 1 and uniformly distributed in the initial momentum 

p1
, is represented by the vertical line L 0 . In higher dimensions, £ 0 is an N -dimensional 
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plane, because it is a copy of momentum space. It is also a Lagrangian plane, as explained 

in Sec. 3. 

As time progresses, the points constituting L0 follow their respective orbits, and 

produce the new Lagrangian plane £ 1 at some time t 1 . L 1 is still a plane, because the 

Hamiltonian, by hypothesis, is quadratic, and generates linear equations of motion. It 

is also Lagrangian, because Lagrangian manifolds evolve into other Lagrangian manifolds 

under Hamilton's equations. This new Lagrangian plane L1 (a line in the diagram) has a 

nonsingular projection onto configuration space, and the final particle density at any point 

x at time t 1 is finite (such as x = x 1 in the figure). This corresponds to the case det B =j:. 0. 

Later, however, at time t 2 , we suppose that the Lagrangian plane has turned over and 

become vertical, as shown by the line £ 2 in the diagram. Now if we choose a final point 

such as x = x2, we see that the final density of particles is zero, since no orbits arrive at x2 

at time t 2 • But if we choose x = x3 as a final point, then the density of particles is infinite, 

and we have a caustic. This corresponds to the case det B = 0, and we see that the caustic 

"surface" in the diagram is just the one point x = X3 (which is zero-dimensional). 

Let us now consider the more general case of a nonquadratic Hamiltonian, which 

has a quantum propagator U(t) = e-itH/ta and Green's function (xiU(t)lx'). Again, as 

shown in Fig. 7, the appropriate classical picture is one in which initial particles are spread 

uniformly in momentum over the initial Lagrangian plane Lo. Now, however, in the course 

of time the Lagrangian surface distorts and does not remain a plane (although it is still 

Lagrangian), and it turns into the curved surface Lt at time t1 . 

Let us consider first the final point x = x1 at time t1 in the figure. We will speak in 

one-dimensional terms for a moment. We see that there are two orbits which reach x = Xt 

from x' in the given time, one with initial conditions z~ = ( x', p~) and final conditions 

z I = (xI, pi), and the other below the q-axis (not labelled). The particle density at x 1 
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is a sum of two terms, coming from these two orbits and orbits nearby them. However, 

both contributions are finite, because the tangent line to L 1 at the point z 1 has a finite 

slope (and similarly for the second orbit below). This finite slope is similar to that of 

the Lagrangian line L1 in Fig. 6. The tangent line to L1 at z1 in Fig. 7 is evidently the 

image of a small piece of the initial Lagrangian line L 0 at z~, under the linearized classical 

evolution which results from treating z 1 (t) ~a reference orbit. This linearized evolution 

is described by the symplectic matrix S 1 ( t), as discussed in Sec. 2. 

The tangent line to L1 at z 1 generalizes in higher dimensions to a piece of a Lagrangian 

plane which is tangent to the (generally curved) Lagrangian manifold. And the finite slope 

of the tangent line at z 1 in Fig. 7 generalizes to the nonsingularity of the projection of this 

tangent plane onto configuration space. As in our discussion above, this nonsingularity 

condition is equivalent to det B 1 (ti) # 0, where B 1(t) is the submatrix ofS1(t) .. Therefore, 

there is no caustic at x 1 at time t 1· 

Next we consider the point x = x 2 at time t1. Now there are no orbits arriving at x2 

in the given time, and the density of classical particles is zero. 

Finally we consider the point x = x3 at time t 1• In this case the tangent to the 

Lagrangian surface at z3 has infinite slope, so the density of classical particles at X3 is 

infinite, and we have a caustic. In higher dimensions, this caustic would be indicated by 

the vanishing of det B 3(ti), where B 3 (t) is the submatrix of S3(t), obtained by treating 

Z3(t) as a reference orbit. 

Although in Fig. 7 the caustic "surface" is just one point, in higher dimensions it 

IS a real surface, generally curved, in configuration space. Figure 8 is an attempt to 

illustrate this for the case N = 2. Every point on this surface is characterized by the 

fact that it the projection of a Lagrangian manifold onto configuration space is singular 

there. This Lagrangian manifold is the image under the classical evolution of the initial 
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Lagrangian manifold, which is the momentum plane situated at x' at t = 0. Furthermore, 

a classical orbit z( t) starting from the initial Lagrangian manifold and arriving at the final 

one contributes to a caustic there if the submatrix B(t) of the symplectic matrix S(t), 

obtained by linearizing about z( t), is singular at the final t~e. The local orientation of 

the caustic surface in configuration space is determined by the left null eigenvectors u of 

B(t), as in our analysis above of quadratic Hamiltonians. (Usually there is only one left 

null eigenvector when det B = 0, and the caustic surface is ( N - 1 )-dimensional.) 

Note that .the caustic at x3 in Fig. 7 is not due to a turning point, since the orbit 

Z3 ( t) continues without turning around. Turning points are associated with caustics only 

in normal mode (i.e. energy eigenfunction) problems, not in initial value problems such as 

we are considering here. 

However, the caustic can be associated with a focussing of rays in configuration space. 

We can see this by noting that an orbit which is nearby z3 (t) in Fig. 7, differing from 

it by a first order displacement 6'!'' in initial momentum, arrives at the final point with 

only a second order displacement in position. This is to say that the quantity (Bx/Bp')x• 

vanishes; in higher dimensions, the analog is the vanishing of the determinant of the matrix 

( Bxi/ Bpj )x•, which is none other than the matrix B. In higher dimensions, the first order 

displacements 6p' in initial momentum must lie in the kernel of B in order to get only 

second order displacements in the final position. 

We see that for any given orbit z(t), the caustics which it·encounters during its time 

evolution are determined by the vanishing of det B(t), which can occur successively at 

different times. Any of these caustics can be of any order, and, as we shall see, there is 

a directionality to their crossing, so that they can be counted in either a positive or a 

negative sense (at least for first order caustics; see below for details). The total count of 

caustics along a segment of an orbit, including multiplicities and directionality of crossing, 
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is the Maslov index of the orbit segment. This version of the Maslov index differs somewhat 

from the one discussed in Sec. 4, as I shall explain presently. 

We can also see that the caustics are not so much a property of the orbit z( t) itself as 

they are of the symplectic matrix S(t) describing the linearized motion about the orbit. 

In fact, even this statement is misleading, for the following reasons. Suppose that instead 

of the Green's function (xiU(t)lx'), we were to look at the mixed matrix element of the 

propagator, (xiU(t)lp'). The classical picture for this case is indicated in Fig. 9. Since the 

initial wave disturbance is now a 6-function in momentum space, the initial Lagrangian 

manifold is not a copy of momentum space, but rather a copy of configuration space with 

constant momentum p1
• As this Lagrangian manifold evolves in time to a later Lagrangian 

manifold Lt, caustics may indeed develop, as shown by the points x 1 and x2 and the 

orbit z( t). But now the caustics are indicated by the vanishing of the determinant of 

(axi/Bx~·)p•, which is the A submatrix of S{t). Finally, suppose we were interested in the 

full momentum space Green's function, (piU(t)lp'). In this case we still have the same 

initial Lagrangian manifold Lo shown in Fig. 9, but the caustics at the later time are now 

determined by the projection of L1 onto momentum space, not configuration space. This 

gives the one caustic p = p1 shown in the figure, corresponding to the singularity of the C 

submatrix. 

As a result, there is no meaning to the number of caustics encountered by an orbit z(t) 

when it is taken out of context. Even when we consider the matrix function S(t), obtained 

by linearizing about z( t), there is still, in general, no meaning to the number of caustics .. 

in some time interval. To.specify the number of caustics, one must indicate not only S(t), 

but also the initial Lagrangian plane (or small piece of one) which is to be transported 

by z(t) and rotated by S(t), as well as the space onto which it is to be projected. This 

latter space is usually configuration space or momentum space, both of which themselves 

are Lagrangian planes, but more generally it can be any Lagrangian plane. 
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Therefore the symplectic matrix function S(t), taken out of context, does not spe­

cify any caustics or Maslov index. It is only when S(t) is associated with some initial 

Lagrangian plane to be rotated, and some final Lagrangian plane to be projected upon, 

that caustics have any meaning. It is for this reason that caustics cannot be considered 

to have any invariant meaning in phase space. Similarly, the metaplectic operators M(S) 

are, in any intrinsic sense, oblivious of caustic issues, at least until we place them in some 

context, such as by looking at the matrix element (xiM(S)Ix'). The metaplectic operators 

themselves are, in a sense, true phase space objects, and ideally suited for the expression 

of a theory of semiclassical mechanics on phase space. 

However, if one is interested in caustics, then the most satisfactory objects to look at 

are the Lagrangian planes. The orientation of these planes can be specified by symplectic 

matrices, but with some redundancy, because more than one symplectic matrix can rotate 

a Lagrangian plane into some fixed final position (e.g. one can always rotate coordinates 

on the plane itself, without changing the orientation). Therefore the most satisfactory 

treatment of caustics does not deal with the space of symplectic matrices, but rather with 

the space of Lagrangian planes {Arnold [1967]). We do not take this approach in this 

paper, mainly in order to avoid any unnecessary proliferation of abstract spaces, and we 

shall stay with the symplectic matrices as the descriptors of caustics. 

Finally, I should point out that in wave packet propagation, one is not so much 

interested in Green's functions per se as in some matrix element such as (xiM{S)I'l/lo), 

where lwo) represents some initial wave packet (say a Gaussian). The initial wave packet 

does not generally correspond to any initial Lagrangian manifold, so its time evolution 

does not involve caustic issues. 

I turn now to the metaplectic operators and their matrix elements when det B--+ 0. 
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5.4. Metaplectic Matrix Elements Near Caustics 

Equation ( 4.37) was derived on the assumption that det B =I= 0, and we now seek 

the corresponding expression when det B = 0. We could simply return to the differential 

equations (4.14) and (4.24) and reanalyze them, but this would not give us the phase of the 

result. Instead, we shall represent ourS with det B = 0 as the product of two symplectic 

matrices S1S2, where det B 1 and det B 2 are nonzero. However, if we were to do this with 

fixed S 1 and S2, then we would miss a fact of fundamental importance, namely that the 

metaplectic operators themselves (as in contrast to their matrix elements) are continuous 

as a caustic is approached and crossed. 

We shall examine this situation by embedding the symplectic matrix S with det B = 0 

in a family S( f), which satisfies det B( f) =I= 0 for f =I= 0, where f is confined to a finite (but 

possibly small) neighborhood of zero. Clearly this is the appropriate thing to do when S(t) 

results from the classical nearby orbit problem, since typically we will have det .B(t) = 0 

only at an isolated point of time t = tc (where c stands for "caustic"). 

In this analysis we require a different sense to the term "caustic surface" than was 

used in the preceding discussion of the classical picture of caustics. There the caustic 

surface was seen as a surface (in fact, an n-dimensional plane) in x-space. Here, since we 

are considering the time evolution of S(t) in the space of symplectic matrices, we shall 

speak of the caustic surface somewhat differently. It is convenient to do this in terms 

of the space of the B matrices, because the caustics are determined by the vanishing of 

det B. We could look at things in the larger space of symplectic matrices, but that is not 

necessary, since only the B matrix is needed to determine caustics. A trajectory S(t) in the 

space of symplectic matrices gives rise to another trajectory B(t) in B-matrix space, and 

a caustic occurs when det B( t) = 0. Therefore we shall now speak of the caustic surface 

as the surface in B-matrix space where det B = 0. If there is any possibility of confusion 
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between this terminology and the caustic surface in x-space, we shall indicate explicitly 

which is meant. 

The space of B matrices is a simple vector space with N 2 dimensions. Every possible 

B matrix is allowed as a submatrix of a symplectic matrix, so every possible point of this 

space is accessible by some orbit B(t). One can easily see this by considering the matrix 

(5.15) 

which is symplectic for every possible B. 

As we pointed out in Sec. 4, for any given S with det B = 0, it is always possible 

to introduce a small perturbation (even maintaining the symplectic condition) such that 

the perturbed S has det B =F 0. We shall explicitly construct such a perturbation below. 

This fact has a simple geometrical interpretation in terms of B-matrix space. Since the 

condition det B = 0 amounts to one constraint on N 2 variables, the caustic surface in 
•· 

B-matrix space is a surface of lower dimensionality than that of the whole space, so there 

is plenty of "room" to move away from it. 

It turns out that if we restrict consideration to points on the caustic surface where the 

corank of B is 1, i.e. the points representing first order caustics, then these points form a 

smooth surface of dimensionality N 2 -1, i.e. one less than the dimensionality of the whole 

space. Therefore a matrix function B(t) undergoing a first order caustic at t = tc can be 

pictured as shown in Fig. 10. We assume that B(t) punctures the surface transversally, 

and does not, for example, touch it tangentially and then pull away again. 

In this case we see that the existence of the caustic is stable under small perturbations 

to the trajectory B( t). Although an individual matrix B can be pulled away from the 

caustic surface by means of a small perturbation, nevertheless a whole trajectory B(t) will 

still have a first order caustic when it is perturbed. The only thing that will happen is 

that the time tc at which the caustic occurs will shift by a small amount, as will also the 



-70-

null eigenvector of B which determines the orientation of the caustic surface in x-space. 

Furthermore, we see that in the case of a first order caustic, there are two sides to the 

caustic surface. These correspond to the positive and negative senses of traversal which 

are used in determining the Maslov index. 

As for second order caustics, the set of points where corank B = 2 is also a smooth 

surface, but it has dimensionality N2 - 4, three less than the first order caustic surface. 

The second order caustic surface obviously must be connected to the first order caustic 

surface, because by introducing a small perturbation into B when rank B = N- 2, we can 

get rid of one of the linear dependencies of its rows or columns. However, the two surfaces 

connect in such a way that their combination is not a smooth manifold ( Golubitsky and 

Guillemin [1973]). 

The situation is a little hard to see geometrically, because even in the simplest case 

of N = 2, we are dealing with a 4-dimensional space of B matrices. Nevertheless, the 

diagram of Fig. 11, representing surfaces in 3-dimensional space, gives the right idea. The 

first order caustic surface looks like a cone (which extends out to infinity in both directions), 

omitting the apex. The apex itself is the second order caustic surface, represented with 

zero dimensions due to the inadequacy of the diagram, but actually having dimensionality 

N 2 -4. 

Now we can get an idea of what happens when B(t) passes through a second order 

caustic, although the cone diagram is only an approximation to the real situation in higher 

dimensional space, and is in some ways misleading. There are two possibilities, as shown in 

Figs. 12 and 13. Figure 12 shows how a small perturbation introduced into the trajectory 

B(t) may cause the caustic to be bypassed altogether. In other words, unlike first order 

caustics, second order caustics sometimes disappear completely under a small perturbation. 

On the other hand, Fig. 13 shows that sometimes a small perturbation will cause a second 

order caustic to bifurcate into two first order caustics, both occurring at times near tc. We 
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can also see that a second order caustic can be approached from more than two inequivalent 

directions. 

The general situation for an n-th order caustic is similar, but more complicated. As 

we shall see, ·the possible classes of directions from which an n-th order caustic can be 

approached depends on the number of positive and negative eigenvalues of a certain n x n 

matrix G, defined below in Eq. (5.33). In all cases, however, a small perturbation can be 

introduced to cause an n-th order caustic to break up into a cluster of some number of first 

order caustics (possibly none at all). For this reason, the Maslov index is often reckoned 

in terms of first order caustics only (although this is not really necessary). 

Let us now return to some symplectic matrix of interest S satisfying det B = 0. We 

shall embed this in a family S(€) defined by 

(5.16) 

where T(€) is symplectic and satisfies T(O) = I, where S = S(O), and where we require 

det B( €) -# 0 when € -# 0. We can End such aT( €) in the following way. Writing z = Sz', we 

note that if z' is purely in the momentum direction, and if its momentum components are 

purely in the subspace defined by the kernel of B, then z is also purely in the momentum 

direction. That is, if we choose z' to be of the form (0, v(i)), for 1 :::;; i:::;; n, then 

(5.17) 

where we have used Eq. (A.9) to show that Dv(i) = DAu(i) = u(i). The geometrical 

significance of this is that the original Lagrangian plane, specified by x' = 0, p' = anything, 

has been rotated under S into a final configuration in which it is partially perpendicular 

to x-space (in an n-dimensional subspace, spanned by the vectors u(i), i = 1, ... , n, which 

are linearly independent). Our task in choosing T(t) will be to rotate the n phase space 

vectors on the right hand side of Eq. (5.17) so that they have a nonsingular projection 

onto x-space. 
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These considerations lead to the following choice for T(c:), 

(
I c:fr-1u-1

) 
T(c:) = 0 I ' (5.18) 

which is symplectic for all values of c:, and which gives 

(
A+ c:fr- 1u-1c 

S{c:) = C {5.19) 

This parti~ular parameterization constitutes only one of the possible directions of approach 

to the caustic. We note that B(c:) is now nonsingular in some neighborhood of c: = 0, since 

and since 

Indeed, we have 

where 

B(c:) = fr- 1{b + c:d)v- 1, 

b+c:d _(finn - 0 

/3 = det brr det(UV)- 1• 

(5.20) 

(5.21) 

(5.22) 

{5.23) 

The quantity {3 depends on the particular linear combinations which were used in selecting 

the left null eigenvectors of B, i.e. the choice of basis for the kernel of B. But its sign 

is independent of this choice, and depends only on the original symplectic matrix S. Nor 

does {3 depend on how the remaining r columns of the matrices U and V were chosen. If 

n = N, so that brr is vacuous, we shall interpret det brr as +1. 

Since we now have det B(c:) =f:. 0 for c: =f:. 0, we can make use of our previous result, 

Eq. (4.37). It is convenient to call on our transformations (5.6) and (5.8) to the variables 

y, y'. We also note that 

( 

~I0nn (b + c:d)- 1 = \. (5.24) 
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Keeping only terms which will not vanish as f-+ 0, we have 

(xiM(S(!),u)lx') = ( . ):l2 y€R73 21r1.1i fn/3 

X exp[
2
:1i (Yn- y~) 2 + 2~ Q(y,y')], (5.25) 

where 

(5.26) 

and where 

- b--1) &rn rr ' 

b -1 
rr a,.,. 

(5.27) 

The matrices Q 1 and Q3 are symmetric. 

Now letting f -+ 0, we have the following result for the metaplectic matrix element 

when det B = 0: 

(5.28) 

The quantity u1 is either +1 or -1, depending on nand the signs off and /3. We shall 

not give explicit rules for this sign, because our derivation is based on a particular path 

of approach to the caustic, and because we shall give the more general formula below (for 

an arbitrary approach). Nevertheless, this result illustrates the fact that when det B = 0, 

as when det B :f:. 0, there is a 2-to-1 sign ambiguity in relating a symplectic matrix to 

a corresponding metaplectic operator. One can also show the overall consistency of this 

result, i.e. that the group multiplication law M(SI)M(S2 ) = ±M(S1S2) is valid even 

when any or all of the matrices B 1 , B 2 , Bare singular. The matrix element of Eq. (5.28) 
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is independent of any of the choices that were involved in setting up the matrices U and 

V (i.e. the choice of basis in kerB, or coordinates on the caustic surface, etc.). 

We see from this result that the matrix element of the metaplectic operator, considered 

as a function of x and x', becomes a. b-function concentrated on the caustic surface in x-

space when det B = 0. There is also a phase, which is a function of position along the 

caustic surface in x-space. Although the matrix element diverges, it does so only as a 

b-function, which represents a perfectly well-behaved operator M(S). (Of course, the 

operator is still unitary, as it must be.) 

Special cases of this result are of ·interest. If B = 0, then the symplectic condition 

requires that A be nonsingular and that D = A -l. In this case we can take U = I, so 

that V =A. Then we have 

. ±1 . 
(xjM(S)jx') = b(x- Ax') exp( ~t:. x' · C · x']. 

v'det A-1 2n 
(5.29) 

If further C = 0, then the phase vanishes, and we have the matrix elements for a linear 

point transformation (and a representation of the group GL(N, ffi) ). Finally, if in addition 

A = I, so that S is overall the identity, we have 

(xjM{I)Ix') = ±b(x- x'), (5.30) 

I.e. M(I) = ±1. 

There are important conclusions to be drawn from these results. Our whole derivation 

has been based on continuity arguments, which are relevant because we want the time 

dependent operator M(t) = M(S(t),a(t)) to be a continuous function of time when S(t) 

is determined by the classical analysis of nearby orbits. As long as S(t) does not cross a 

caustic surface, then the expression {4.37) is valid, and continuity of M(t) is guaranteed 

by the continuity of the matrix element. This in turn implies that a(t) must be constant. 

Next, when we approach a caustic surface, continuity of M(t) demands that the matrix 



.. 

-75-

element assume the form {5.28) with u1 uniquely determined. But when we cross to the 

other side, and enter a region where Eq. ( 4.37) is valid again, we must change the sign of u 

if the value of u1 was dependent on the direction in which Eq. {5.28) was evaluated. This 

is so because only by so doing can we guarantee that the product uu1 is independent of 

. .. the direction in which the caustic surface is approached. In other words, the quantity u( t) 

may discontinuously change sign when a caustic surface is crossed by S(t), in order that 

M ( t) be continuous. 

Our conclusions so far are incomplete, because we have shown how to determine u1 

on the caustic surface, and hence the possible sign flip of u when crossing it, only for the 

· particular path S(t:) given by Eqs. (5.16) and (5.19). The actual path S(t) generated by 

a classical.orbit will usually be a different one. Let us therefore replace T(t:) with the 

infinitesimal symplectic matrix generated by the classical Hamiltonian at t = tc, i.e. let us 

set 

{5.31) 

where T = t - tc and K = H"(tc), in accordance with Eqs. (2.10) and (A.15). Then we 

write 

{5.32) 

where S = S{O) is on the caustic surface. 

As before, we would like to have det B( T) -:j; 0 for some finite neighborhood around 

T = 0. However, in general this will not be so; it is perfectly possible for B(t) to run 

along the caustic surface, or for the rank of B( t) to drop in steps. In any case, it is 

straightforward to show that if the following n X n symmetric matrix is nonsingular, 

{5.33) 

where Kpp is the NxN lower right submatrix of K, then det B(r) "I 0 forT "I 0 in some 

finite interval about r = 0. But if G is singular, then the curve B(t) is tangent to the 
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caustic surface at t = tc, and may even lie in it. It is also interesting that the condition 

det G =/; 0 is the same one required in order to have B(r)- 1 = 0(1/r) {instead of 0(1/r2 ) 

or something stronger). 

In the name of simplicity, therefore, we shall assume here that det G =/; 0. We note, 

however, that in quantum mechanics the matrix Kpp is the inverse mass tensor, and is 

always positive definite. Therefore in quantum mechanics, B(t) always crosses the caustic 

surface transversally. 

The rest of the analysis proceeds exactly as before, by introducing the coordinates 

y, y' and the matrices a, b, c, d. The calculation, however, is somewhat tedious, so I 

shall merely quote the results. In the first place, except for O't, Eq. (5.28) emerges as the 

metaplectic matrix element, showing that to within a sign the form given is independent of 

the path used to reach the caustic surface. The quantity u1 itself is given by the following 

rules, which depend on the numbers of positive and negative eigenvalues of G, qenoted 

respectively by n+ and n_. If T - 0 from negative values (the same direction the time 

will take), then, writing u 1 = ( -1 )", we have v = n+ /2 if n+ is even. If n+ is odd and 

(3 > 0, then v = {n+ + 1)/2. If n+ is odd and (3 < 0, then v = (n+- 1)/2. If r- 0 from 

positive values, then the rules are the same as those just given, with n+ replaced by n_. 

These rules uniquely determine whether or not u must change sign when S(t) crosses the 

caustic, in order to ensure continuity of M ( t). 

We shall now define the Maslov index in terms of caustics. Suppose we have a symplec­

tic matrix function S(t) and a corresponding metaplectic operator M(t) = M(S(t),u(t)). 

The sign O'(t) is determined by demanding that M(t) be continuous in t. At some time 

t such that S(t) does not lie on a caustic, the x-space matrix element of M(t) is given 

by Eq. (4.37). The constant phase e-iNff/4 is independent of time, so we ignore it, and 

we look at the phase of u / v' det B. If det B > 0, this quantity has the phase ± 1, and if 

.. 
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det B < 0, it has the phase ±i. Therefore in all cases, we can write 

(1 71" 

arg v'det B = Jl. 2' (5.34) 

where p. is defined modulo 4. The integer p. is the Maslov index. Since both u and sgn det B 

are constant away from caustics, the Maslov index is a constant function of t until a caustic 

is crossed. If it is a first order caustic, then the sign of det B will change, as may also u. 

In any case, the Maslov index will either increment or decrement by 1 on crossing the first 

order caustic. If it is a higher order caustic, it can be broken up into first order caustics 

by a small perturbation, or it can be treated directly by the rules given above for u. The 

results are the same in either case. 

In Sec. 4 another version of the Maslov index was given, namely twice the winding 

number of S(t) when S(t) is a closed curve in the space of symplectic matrices. If S(t) is 

closed, the corresponding M(t), determined by continuity, need not be a closed curve in 

the space of metaplectic operators. But the increment o1 the Maslov index along M ( t), for 

one period of S(t), obtained by counting caustics, is the same as twice the winding number 

of S(t). In other words, for closed curves S(t), the two versions of the Maslov index are 

the same. 

It is not hard to see that this is true, on the basis of the mixed x-space and coherent 

state matrix elements we shall develop in the next section. But it is rather remarkable, 

because when S(t) is not closed, the Maslov index has no invariant meaning, since it 

depends on the choice of initial and final Lagrangian planes. For closed S(t), however, this 

dependency cancels, and the count of caustics is the same for any choice of Lagrangian 

planes. 

One cannot help but have mixed feelings about this analysis of caustics. On the 

one hand, caustics are physically important and interesting in their own right, and they 

lead to some pretty mathematics. On the other hand, their noninvariance in phase space 
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keeps reasserting itself, and the mathematics involved is the kind in which it is easier 

to prove theorems than it is to apply one's conclusions in a practical way. Altogether, 

it seems that the use of the x-representation in developing the intrinsic properties of 

the metaplectic operators is an awkward and inelegant approach, although it can be and 

has been done with full mathematical rigor. In the next section we shall examine some 

alternative representations of the metaplectic operators, which are not only more practical 

and theoretically cleaner, but which are also of direct relevance to wave packet propagation. 

·• 

.. 
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6. Applications of the Metaplectic Operators 

We are now prepared to explore the consequences of the metaplectic operators, whose 

most important properties are summarized by Eqs. (4.3), (4.21), (4.27), (4.37), (4.38), 

and (5.28). I shall begin by discussing the active and passive points of view in the use of 

the metaplectic operators, and by presenting some examples. One of these shows that a 

change from the x-basis to the p-basis, i.e. the Fourier transform, is a passive metaplectic 

transformation corresponding to the symplectic matrix S = J. The second example shows 

how scaling transformations can be represented as passive metaplectic transformations, 

and dispenses with the scale factors which are often introduced into practical calculations 

involving coherent states. Following this, we discuss the interaction between Heisenberg 

and metaplectic operators, and we display a number of formulas showing how various 

symbols transform under Heisenberg and metaplectic conjugations. Finally, we discuss the 

coherent state matrix elements of the metaplectic operators, and some of their suggestive 

properties. 

6.1. Active Versus Passive 

The metaplectic operators, like the symplectic matrices, can be used in either an 

active or passive manner, and both are useful (see Appendix A for the case of symplectic 

matrices). Mostly we have been taking the active point of view with the metaplectic 

operators, as is appropriate when thinking of wave packet evolution, but we implicitly 

sneaked in a passive operation with our introduction of the symplectic matrices So and 

8 1 in Eq. (5.11). In either point of view, the algebra is the same; however, the operations 

themselves are conceptually quite distinct, and it is worthwhile to keep them straight. 

In the active point of view, we take a state I ,PI) (say with wave function 1P1 (x)) and 

map it into a new state lt/12 ) = M(S)I,P1 ) under the action of a metaplectic operator. The 
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wave function of the new state, 1/J2(x), is computed using the matrix elements ofEq. (4.37) 

or (5.28), 

1/J2(x) = / dx' (q(x)IM(S)Iq(x')) 1/11 (x'), (6.1) 

where we have temporarily restored our notation which displays both the operators and 

their eigenvalues. In the active point of view, the symplectic matrix S has components 

with physical dimensions such that the physical dimensions of the components of z are 

preserved, component-wise, under the transformation Z = Sz, in accordance with the . 
classical idea that z and Z represent distinct points of phase space in the same coordinate 

system. For example, if q and p represent ordinary physical position and momentum, 

then the submatrix A of S is dimensionless, while B has dimensions of length/momentum, 

etc. When S arises from linearizing in a classical nearby orbit problem, these physical 
. 

dimensions emerge automatically from Hamilton's equations, and 1i does not appear in the 

components of S. Similarly, when we use Eq. (4.3) in the active point of view to define . 
new operators Z = Sz = M(S)t z M(S), the physical dimensions of the components of 

Z are the same, component-wise, as those of z. Finally, we note that the original and 

transformed wave functions '¢1 (x), 1P2(x) in Eq. {6.1) have the same physical dimensions 

(length-N/2 if xis ordinary physical position), and that they represent distinct physical 

states, both being expressed in the same basis. 

But sometimes it is convenient to introduce symplectic matrices which do not preserve 

physical dimensions. Consider, for example, the transformation which results from taking 

S = J. Classically, we have 

(6.2) 

This transformation inverts the roles of q and p, so that if q and p are ordinary position 

and momentum, then Q no longer has the same physical dimensions as q. Similarly, the 

operators Q, P defined by Eq. (4.3) now have opposite physical dimensions from q, p. 
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Another example is a scaling operation, used to change dimensions or to introduce di-

mensionless variables. Suppose q, p represent ordinary position and momentum, and that 

some problem has a characteristic scale length a in x-space. For example, in the harmonic 

oscillator, we would take a = y'nfmw. Then the following symplectic transformation 

could be used to introduce a new dimensionless variable Q: 

(6.3) 

The new variable P is not dimensionless, but rather has the dimensions of n. If we wish 

Q and P to appear with the same dimensions (namely ;,112 ), we could take 

(
QP) = ( (vtn

0
/a)I o ) (q) 

{a/v'n)I p . 
{6.4) 

If a is given by its harmonic oscillator value of y'nfmw, then this symplectic matrix is 

independent of n, whereas that of Eq. {6.3) is not {holding m and w fixed). 

These are examples of passive transformations, which classically represent a change 

of coordinates on phase space. The vectors z and Z-on the two sides of Eqs. {6.2)-(6.4) 

represent the same point of phase space, expressed in two different coordinate systems. A 

similar interpretation occurs in the quantum picture. We still use Eq. ( 4.3) as it stands to 

define new operators Z, but these no longer have the same physical dimensions, component-

wise, as the old operators .i. 

Let us examine these passive transformations quantum mechanically. We take some 

state l't/1), which has wavefunction 't/J(x) = (q(x)l't/1}, and ask for the wave wave function of 

the same state with respect to a new basis specified by the operators Q. We denote this 

new wave function by <I>(Q) = (Q(Q)I't/1}. Then, applying Eq. (4.21), we have 

<I>(Q) = j dx' (q(Q)IM(S)Iq(x')}'t/l(x'). (6.5) 
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This has the same form as Eq. (6.1), but a different interpretation. Now ¢(Q) and 1/J(x') 

represent the same state, but with respect to a different basis. The wavefunctions ¢(Q) 

and 1/J(x') may also have different physical dimensions. 

These issues are really quite elementary, but they are capable of causing a great deal 

of confusion. Therefore we will illustrate them with some examples. Consider first the 

inversion of q and p specified by Eq. (6.2). Since we now have Q = p, the change of basis 

indicated by Eq. (6.5) must _correspond to a transformation to the momentum space wave 

function. To bring this out, we replace the symbol Q in Eq. (6.5) by p, since Q, and 

therefore its eigenvalues Q, now have physical dimensions of momentum, and since the 

symbol Q is a dummy in this equation anyway. We also use Eq. ( 4.37) with A = D = 0, 

B =I; and we take u = +1. Then Eq. (6.5) becomes 

A.( ) _ J dx! . -ip·x' /T.,J,( ') 
'I' p - (21rin )N/2 e 'I' X ' 

(6.6) 

which, apart from the overall phase, ·is the usual momentum spaci! wave function. 

We see that the Fourier transiorm itself is a metaplectic operator, and that the group 

of metaplectic operators constitutes a generalization of the Fourier transform. This obser-

vation allows us to easily write down the mixed x- and p-space, and full p-space, matrix 

elements of the metaplectic operators. For example, the matrix element (xiM(S)Ip') is 

given by replacing Sin Eq. (4.37) or (5.28) by sJ- 1 , and replacing xtby p'. Similarly, 

we obtain (piM(S)Ix') by making the replacements S- JS, x- p; and (piM(S)Ip') by 

the replacements S - JSJ- 1 , x- p, and x' - p'. 

The Fourier transform also sometimes appears in the active sense, such as in the time 

evolution of the harmonic oscillator during a quarter period (in the appropriately scaled 

variables). In the active sense, the transformation of Eq. (6.2) appears as a 90° active 

rotation of objects in phase space in a clockwise (negative) direction. The metaplectic 
I 

operators, in their greater generality, allow for arbitrary angles of rotation, along with 
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scaling and other transformations which constitute the linear canonical transformations. 

These are important, because the actual time evolution of wave packets consists of such 

transformations. Rotations in the usual sense, i.e. orthogonal transformations, do not have 

any invariant meaning in phase space, because canonical transformations do not respect 

any Euclidean metric. Nevertheless, considerations of the transformations which are both 

orthogonal and symplectic does lead to important conclusions, as indicated in Appendix 

A. 

As another example of a passive transformation, let us consider the scaling operation 

(6.4) which introduces the variables Q, P with symmetrized physical dimensions. We write 

the matrix element of Eq. (5.29) in the following form, where we have taken A= ( v'n/a)l, 

C=O: 

( )

N/4 
{q(Q)IM(S)Iq(x')) = ~ 6 ( Q- ( v'n/a)x'). (6.7) 

We apply this to the wave function 

·'·( ) _ 1 -~·x/2a2 

'~-' x - (7ra2)N/4 e ' 

which, if a = y'njmw, is the ground state of the isotropic harmonic oscillator. (Even if 

the physical system of interest has nothing to do with harmonic oscillators, it might be 

reasonable to consider the state given by Eq. (6.8) anyway, such as when using coherent 

states. In that case, a is merely some spatial scale of interest.) Then we find 

<I>(Q) = 1 -Q·Q/21l 
(1rn)N/4 e 

(6.9) 

Had we used the transformation of Eq. (6.3) instead of (6.4), our result would be in 

completely dimensionless form. However, we shall generally prefer the transformation 

(6.4), which treats Q and P symmetrically, and which leaves n explicitly in the result 

{6.9). This will be used later for ordering purposes. We also note that the wave function 

x(P) of the same state appearing in Eqs. (6.8) and (6.9), expressed in the· P-basis, is 

) _ 1 -P·P/21& 
x(P - (1rn)N/4 e ' (6.10) 
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which shows the effects of the symmetrized dimensions. 

If our physical system h~ different scale lengths in different directions, then for the 

purposes of setting up coherent states, it might be advisable to replace the scalar a 2 in 

Eq. (6.8) with a diagonal matrix, containing different quantities a~, i = 1, ... , N, in its 

diagonal slots. It is clear that the same analysis used above, with appropriate modifications 

to the symplectic matrix of Eq. (6.4), will go through with minor modifications, and will 

yield the same symmetrized wave functions appearing in Eqs. (6.9)-(6.10). The significance 

of this fact is that for the purposes of developing coherent states, it suffices to consider 

only wave functions of the form (6.9)-(6.10). All others, with correct physical scaling, can 

be obtained from these by a fixed, passive metaplectic transformation. 

Indeed, there may not be any reason to restrict oneself to diagonal matrices, or· even 

point transformations, in Eq. (6.4). There has often been a concern, in using coherent 

states for physical systems which a,re not harmonic oscillators, of how best to choose the 

fundamental wave packet from which all the other coherent states are derived (the fiducial 

state; see Appendix C). Our considerations here do not answer this question, but they do 

show what the freedom of choice is: We can choose any wave packet which is derived from 

Eq. (6.9) as the result of a passive metaplectic transformation. As we shall see, this means 

any Gaussian wave packet, minimum uncertainty or not. 

Let us now return to the active transformation l'f/.12) = M(S)I'f/.11), the x-representation 

of which is given in Eq. (6.1). If we wish to express this in the Q.,.representation, defined 

by Eq. (6.4) or some appropriate generalization of it, then we can simply combine matrix 

elements in the obvious way. For example, if we write ¢1(Q), ¢2(Q) for the wave functions 

of l'f/.11), l'f/.12) in the Q-basis, then we have 

'f/.II{x') = (q(x')l'f/.11) = J dQ' (q(x')IQ(Q'))(Q(Q')I'f/.II) 

= J dQ' (q(x')IM(So)ti4(Q'))¢I(Q'), (6.11) 
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where we have used Eq. (4.21) and where S0 is the symplectic matrix of Eq. (6.4) (or 

its appropriate generalization). By similarly transforming 1P2(x) into ¢2(Q), Eq. (6.1) 

becomes 

¢2(Q) = J dQ' (q(Q)IM(SoSS01)jq(Q')) ¢ 1 (Q'). (6.12) 

The sign choice for M(So) cancels, and the result has algebraically the same form as 

Eq. (6.1), with S replaced by the conjugation R = S0 SS01
. This new symplect.ic matrix 

R is dimensionless, if the original S appearing in Eq. (6.1) preserved physi_cal dimensions 

(as it should, if it represents an active transformation, and as it must, if Sis derived from 

a classical nearby orbit problem). 

Furthermore, if S is derived from a classical nearby orbit problem, as discussed in 

Sec. 2, then there is no need t'o compute S( t) in the original q, p variables and then 

conjugate with S0 • Instead, we can do the classical problem in the (Q, P) coordinates, 

and directly obtain R(t). Indeed, conjugating Eq. (2.15) with So gives 

~t R(t) = JK"(t)R(t), (6.13) 

where 

(6.14) 

The matrix K" is symmetric, like H", and is the Hessian matrix of a transformed classical 

Hamiltonian K, defined by 

K(Z) = H(z) = H(S01Z). (6.15) 

K is the result of performing the classical canonical transformation Z = Soz on H(z), 

and it therefore correctly describes the time evolution of the coordinates Z = (Q, P), with 

symmetrized physical dimensions, along any orbit Z(t), as well as the small displacements 

6Z(t) about such an orbit. In addition, if H(z) is the ordinary Weyl symbol (see Appendix 
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B) of the quantum Hamiltonian H(z), then K(Z) will be the ordinary Weyl symbol of the 

quantum Hamiltonian 

(6.16) 

This follows by the use of Eq. (4.3), and some properties of the Weyl symbol under meta­

plectic conjugation, which we shall discuss presently. These operations are examples of 

"metaplectic covariance," to which we shall return. 

The upshot of this analysis is that, with no loss of generality, and maintaining full 

ability to restore variables with physical dimensions and scale lengths, we can work entirely 

with the variables (Q, P) with symmetrized dimensions, both classically and quantum 

mechani~ally. Furthermore, if we are using coherent states, we can use the simple form 

given in Eq. (6.9) for the fiducial state, again with no loss of generality. 

Therefore in the sequel we make the following notational changes. We simply forget 

about our original z's and the transformations to Z's, etc., and replace Z by z, R by·S~ K 

by H, etc. That is, we return to our original notation, except that now it is understood 

that q and p have the same dimensions of 11. 1/
2

. Our symplectic matrices S(t) arising in 

the nearby orbit problem are now dimensionless, and any issue of physical scale lengths 

does not enter into our considerations. 

6.2. The Sernidirect Product 

There is an interesting interplay between the Heisenberg and metaplectic operators, 

which also involves the Wigner-Weyl formalism and coherent states. We begin with an 

important conjugation formula, which follows from Eq. (4.3). If we let zo be a displacement 

vector in phase space, then we have 

M(S)tw(z0 ,z)M(S) = w(z0 , Sz) = w(S- 1zo, z), (6.17) 

.. 
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by use of Eq. (A.6). Combining this with Eq. (3.12), we obtain the important result, 

M(S)t T(z0 ) M(S) = T(S-1z0 ). (6.18) 

Equation ( 6.18) is often of use in the analysis of coherent states. Suppose, for example, 

we are interested in the action of a metaplectic operator on the coherent state lz). 

we have 

M(S)Iz) = M(S)T(z)IO) = T(Sz)M(S)IO). (6.19) 

The result can be obtained by letting M (S) act first on the fiducial state, and then translat­

ing by a Heisenberg operator (both of which are easier than evaluating M(S)Iz) directly). 

Equation (6.18) also allows us to combine the Heisenberg and metaplectic groups into 

a single group, which encompasses all linear canonical transformations, both homogeneous 

and inhomogeneous. Returning to the notation ofEqs. (3.28)-{3.29), we define the operator 

M{z,1,S) by 

M(z, 1, S) = T(z, 1)M(S). (6.20) 

This operator is a member of the inhomogeneous metaplectic group, which we shall denote 

by 1Mp(2N). It is the semidirect product of the Heisenberg and metaplectic groups, and 

its group multiplication law is 

In this paper we shall mostly keep the Heisenberg and metaplectic operators separate, 

because it is algebraically simpler to do so. In Sec. 7 we shall develop a wave packet 

propagator which is an operator in 1Mp(2N). 

There is a sense in which the phase space of classical mechanics emerges from quan­

tum mechanics as the space of the Heisenberg operators T(z). If these are augmented 

by the phase factor ehl", as in Eq. (3.28), then we have a candidate for a "semiclassical 

phase space," which is the group manifold for the Heisenberg group, and which has the 
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topology 1R2
N xS 1 • (81 is the circle.) The simultaneous time evolution of z(t) and 1(t), 

such as indicated by Eqs. (3.25)-(3.27), then appears as a single trajectory in this space, 

and the Bohr-Sommerfeld quantization rules (without any factors of ! ) take on an interest­

ing geometrical interpretation (namely, energy eigenstates correspond to periodic orbits). 

More generally, one can take the semiclassical phase space to the be group manifold of 

1Mp(2N), in which a single trajectory represents the simultaneous time evolution of z(t), 

1(t), and M(t). (As it turns out, this evolution itself is a Hamiltonian system.) The EBK 

quantization rules (Keller [1958], Percival [1977]) are closly related to the geometry and 

topology of this space (Voros [1976, 1977]). There is some interesting mathematics here, 

but since it is not always clear how this impacts the practical problems of wave packet 

evolution, we shall pursue it no further. 

6.3. Interaction of Heisenberg and Metaplectic Operators and Symbols 

The Heisenberg and metaplectic operators also interact with the Wigner-Weyl for­

malism. Let A be some operator with Weyl symbols a(z), a(z) (see Appendix B), and let 

B = T(zo) AT(zo)t, with symbols b(z), b(z). Then it follows immediately from Eqs. (B.2)­

(B.3) that 

b(z) = efw(so,•>a(z), 

b(z) = a(z- zo). (6.22) 

Under conjugation by T(z0 ), the ordinary Weyl symbol is translated in phase space by zo, 

exactly like a classical function on phase space under the action of the classical translation 

operator, Tct(z0 ), as given by Eq. (3.6). We can state this succinctly by writing 

Sym (T(zo)AT{zo)t) = Tct(zo) Sym A, (6.23) 

where Sym A refers to the ordinary Weyl symbol of the operator A. In particular, if A is 

the projection operator l?/1)(1/11, so that a(z) is the Wigner function W (z) of the state 11/1), 
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then the Wigner function corresponding to the transformed state T(zo)I'I/J) is W(z- z0 ). 

The Wigner function has been rigidly translated in phase space. 

Before developing analogous formulas for the metaplectic operators, it is useful to have 

a notation for their classical analogs (which are multiplications by symplectic matrices). 

Following the notation of Eqs. (3.5)-(3.6), we define the classical.operator Mcz(S) by 

Mcz(S)z = Sz, (6.24) 

when acting on points, and by 

(Mcz(S)f) (z) = /(S- 1z), (6.25) 

when acting on functions on the classical phase space. 

Now let B = M(S)A M(S)t, and consider the Weyl symbols of the operators A and 

B. By using Eq. (6.18} and (B.2)-(B.3}, we have 

b{z) = a(S- 1z), 

b(z) = a(S- 1z). (6.26) 

We state this rule for the ordinary Weyl symbol in the form, 

Sym (M(S)AM(S)t) = Mcz(S) SymA. (6.27) 

The choice of sign for M(S) cancels. Again, if W(z) is the Wigner function of the state 

1'1/J), then the Wigner function of M(S)I'I/J) is W(S- 1z). In all these cases, the ordinary 

Weyl symbol or Wigner function has transformed exactly as one would expect under the 

active, classical canonical transformation specified by the symplectic matrix S, i.e. under 

the mapping Z = Sz. The inverse of S appears in these formulas for the same reason that 

z - z0 appears in Eqs. (3.6} and (6.20): the value of the old function at the old point is 

equal to the value of the new function at the new point. 

Incidentally, we see that Eqs. (6.15) and (6.16) also have the same mathematical form 

as our results here, and essentially for the same mathematical reasons. But Eqs. (6.15) 
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and (6.16) represented a passive transformation, so their interpretation is different. There 

we did not have old points and new points; rather, there was only one point, expressed in 

the two coordinate systems z and Z = S0 z. The matrix S01 appears in Eq. (6.15) because 

we were eliminating the old variables z in H ( z) in favor of the new, in order to get K ( Z). 

Equations ( 6.22 )-( ~.27) form the basis of "metaplectic covariance." The idea behind 

this concept is that, just as the results of classical mechanics should not depend on the 

canonical coordinate system used, so also should the results of semiclassical mechanics not 

depend on the canonical operator vector z which is used in the semiclassical calculations. 

Insofar as one restricts oneself to linear canonical transformations, these goals are easily 

achieved, and they are based on the transformation rules just derived. Suppose, for ex­

ample, we have a semiclassical problem involving some Hamiltonian and possibly other 

operators, which produces· a semiclassical wave function '¢(x) = (xl't/J): In the process 

of carrying out the semiclassical c~culation, we use the coordinate system (z = q, p) on 

the classical phase space. If the semiclassical theory is metaplectically covariant, then our 

results will be the same if, on the quantum side, we act on the state l'f/.1) with some fixed 

Heisenberg or metaplectic operator, and conjugate all operators such as the Hamiltonian 

by the same operator; and, on the classical side, we perform the canonical change of co­

ordinates corresponding to the fixed Heisenberg or metaplectic operator. In particular, 

metaplectic covariance implies covariance under the Fourier transform. As discussed in 

Sec. 3, traditional WKB theory has no such principle of covariance, and this fact is closely 

associated with the existence of nonphysical caustic singularities. 

The coherent state wave functions and symbols also have simple transformation prop­

erties under the Heisenberg operators. If l'f/.1) is some state with coherent state wave function 

'l,bcs(z) (see Appendix C), then the state T(zo)l'f/.1) has coherent state wave function 

(6.28) 
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The coherent state wave function is rigidly translated, and multiplied by a phase factor 

{which depends on position in phase space). Likewise, if A is an operator with coherent 

state symbol acs(z), then the coherent state symbol of T{z0 )AT{z0 )t is 

(ziT(zo)AT{zo)tlz) = acs(z- zo). {6.29) 

That is, the coherent state symbol transforms exactly as the ordinary Weyl symbol under 

conjugation by Heisenberg operators. The transformation of coherent state symbols under 

metaplectic conjugation is more complicated, and will be dealt with later. 

6.4. Coherent State Matrix Elements 

When a Gaussian wave packet evolves according to the semiclassical approximation 

discussed in Sec. 2, its spreading and certain of its other features are governed by the 

action of a metaplectic operator. Therefore we now examine this action. 

We begin with the standard fiducial coherent state given by Eq. {C.4), denoted IO). 

We do not at first consider the other coherent states, because they are obtained from this 

one by the action of Heisenberg operators, an essentially trivial operation. Nor do we 

consider more general Gaussians, for, as we shall see, they are contained in our result. 

Therefore we consider the state M(S)IO). We compute this in the x-representation, using 

Eq. ( 4.37) when det B ::/= 0. The calculation is straightforward, and yields 

(xiM(S)IO) = ( n~N/4 u . exp [-
2
: x(D- iC)(A + iB)- 1x]. 

1r y'det(A +~a) " 
(6.30) 

It is convenient in this expression {and in Eq. (6.32)) to take the branch cut of the square 

root to lie just under the positive real axis. 

This is a result of some significance. First we note that the matrix (D- iC) (A+ iB) -l 

is symmetric (and complex), as follows from the identities of Eq. (A.9)-(A.l0). It also has 
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a real part which is positive definite, since 

(D- iC)(A + iB)-1 = (D- iC)(A- iB) [(A+ iB)(A- iB)] -
1 

= [I- i(DB + CA)] (AA + BB)-1
• (6.31) 

The final expression in this equation depends only on the components of the matrix SS, 

for reasons explained in Sec. 8. Next we note that the complex matrix A+ iB is never 

singular, for if it were, there would exist some vanishing linear combination of its rows. 

Splitting this linear combination into its real and imaginary parts, we see that there would 

be a simultaneous vanishing linear combination of the rows of A and B, which would imply 

that S was singular. Since det S = +1, this is impossible. Therefore, although Eq. (6.30) 

was derived from Eq. ( 4.37) on the assumption that det B =f:. 0, it is easy to extend it by 

continuity to the case det B = 0, since the expression is continuous in all components of 

the symplectic matrix S, including B. Therefore Eq .. (6.30) is valid as it stands, even for 

detB = 0. 

The quantity u appearing in Eq. (6.30) has the values ±1, but it is not the same 

u appearing in Eq. (4.37). The relation between the two is complicated, but the overall 

situation regarding the 2-to-1 association between metaplectic operators and symplectic 

matrices is much more clear here than it was in Eq. (4.37). In particular, we note that 

there is absolutely no problem when det B-+ 0, because this matrix element is nonsingular 

for all symplectic matrices S. If we have a function S = S( t) derived by linearizing about 

a classical orbit, and we wish to guarantee the continuity of M ( S ( t)) as a function of time, 

then, as shown by the complicated rules for sign flips of u on crosssing caustics, the matrix 

element of Eq. (4.37) is quite awkward to use. Here, however, we need only change the 

sign of (I when the square root in Eq. (6.30} crosses over onto the second Riemann sheet. 

This is simple, and can easily be implemented numerically. 

Equation (6.30) does not uniquely specify the metaplectic operator it came from, 

because we have a fixed ket on the right in the matrix element, instead of an arbitrary 
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member of complete basis. To remedy this situation, we compute the mixed x-space and 

coherent state matrix element, according to Eq. (6.19). The analysis is straightforward, 

and the result can be put into the form 

1 (7 ( 1 ) 
(xiM(S)Iz) = (7r1i)Nf4 y'det(A + iB) exp - 21i 1~12 

x exp{ ~ [ -!x(D- iC)(A + iB)-1x 

+ J2f(A + ~-a)- 1x- !f(A + iB)-1(A- ~B)~l }, (6.32) 

where we use the notation of Appendix C to distinguish the complex N-vector ~from the 

real2N-vector z. The matrix (A+ iB)-1(A- ~B) is complex symmetric. 

Unlike Eq. (6.30), the matrix element ofEq. (6.3~) does contain full information about 

the metaplectic operator, because of the completeness of the coh:rent states lz). It also 

provides a unique specification of the symplectic matrix Son the right hand side, as may 

be seen by noting that the comple~ symplectic matrix S' = sw-1, where W is given by 

Eq. (A.31), has components, 

S' _ _!_ ( A-~B -i(A+iB)) 
- y'2 -i(D + iC) D - iC . 

(6.33) 

The components of S can therefore be reconstructed from a knowledge of the matrices 

appearing in the exponent of Eq. (6.32). 

Furthermore, Eq. (6.32) shows quite simply and rigorously the double covering of the 

symplectic group by the metaplectic group, which is expressed via the double Riemann 

surface required for the complex square root. The double covering is manifested through 

the overall phase of the Gaussian wave packet appearing in Eq. (6.32). This is related to 

the phase 1s, defined by 

1s = argdet(A + iB), (6.34) 

which is discussed in Appendix A. If we denote the overall phase of Eq. (6.32) by e-i"'M, 

then we have 
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1M = ~"''s + mr, (6.35) 

where n = 0 if u = + 1, and n = 1 if u = -1. The phase IM evolves continuously in 

time, unlike the Maslov index (which has discontinuities at caustics), and in a sense it is 

a continuous version of the Maslov index. 

In this interpretation, the discontinuities in phase which are usually associated with 

caustics are smoothed out, and take place continuously along a whole orbit. However, one 

should riot make too much of this idea, since neither the Maslov index nor the phase 1M 

are invariants in phase space. (Specifically, the angle Is is not preserved under symplectic 

conjugation.) It is only when the matrix function S(t) is periodic that there is any invariant 

meaning to the elapsed Is or Maslov index; in that case, IS is an integral multiple of 21r, 

1M is an integral multiple of 1r, and the Maslov index is even. 

It is also curious to note that had we blindly substituted the components of the 

complex S' directly into Eq. (4.37), not worrying about the fact that S' is complex, we 

would have arrived at Eq. (6.32) in all of its details, except for the factor exp( -1~1 2 /2n). 

Similarly, had we blindly substituted the components of the complex w-1 of Eq. {A.31) 

into Eq. (4.37), again, except for the factor exp(-1~1 2/2n), we would have arrived at the 

coherent state matrix element (xlz) ofEq. (C.9). These observations suggest an important 

role for the theory of the complex symplectic group (Kramer, Moshinsky, and Seligman 

(1975); Weissman [1982]). Perhaps there is a sense in which the use of coherent states to 

avoid caustic difficulties is analogous to the analytic continuation methods so common in 

ordinary WKB theory {Berry and Mount [1972); Froman and Froman [1965]). It would 

especially be of interest to know what invariant significance there is to the phenomenon 

of Stokes' lines {which, being tied to caustics, are certainly not invariant in the usual 

formulation of WKB theory). Some interesting analysis of complex manifolds, using the 
. 

formalism of Stokes' lines,bas been carried out by Berk and Pfirsch [1980], and is in need 

of deeper understanding. 
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The mixed x-spacejcoherent state matrix element of Eq. (6.32) is most useful in the 

kind of wave packet analysis performed by Heller, but it is also useful to have the full 

coherent state matrix elements. These are obtained in a straightforward manner from 

Eqs. (6.32) and (C.9). The result is 

(ziM(S)Iz') = ~exp [- 2~ {1~1 2 + 1~'1 2 )] 
detA. 

X exp [~ (4rr* A. - 1 ~* +fA. - 1 ~*- 4f A. - 1r~')], (6.36) 

where the complex NxN matrices A., rare given by Eq. (A.40). The matrix A. is always 

nonsingular. This result was first derived by Bargmann [1961], who worked directly in the 

coherent state representation. It also arises in semiclassical operations on the coherent 

state path integral (Klauder [1978]). The quantity tr appearing here is not the same tr as 

in Eq. (4.37) or (6.32). 

Because of the completeness of the coherent states, one can in principle use purely 

coherent state matrix elements to carry out any calculation. Such calculations involve 

integrals over the Liouville-Gibbs Jlleasure on the classical phase space, tfZNzj(27r1i)N, and 

Bargmann [1961] has given rules, involving analytic continuation, for carrying out such 

integrals. 

Finally, we note an interesting fact concerning the ordinary eigenstates lx) and IP) of 

position and momentum, namely that these can be seen as limiting cases of coherent states, 

under the action of metaplectic operators. Since the states lx), IP) are not normalized, 

whereas the coherent states are, one must change the norm in the limiting process. We 

introduce the following symplectic matrix, 

S(o) = 0 .!.1 (
ol 0 ) ' 

Q 

which is a simple scaling operation. Then we have 

lim 
a-o 

1 
(4o27rn)N/4 T(x,O)M(S(o))IO) = jx), 

(6.3.7) 
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(4a2:n)Nf4T(O,p)M(S(a))tl0) = IP), {6.38) 

where IO) is the standard fiducial coherent state of Eq. {C.4), and where we have taken 

u = +1. One can use these limiting forms to retrieve Eq. {4.37} from Eq. {6.32} or (6.3.6). 

We tum now to the use of Heisenberg and metaplectic operators in wave packet 

propagation. 
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7. A Semiclassical Wave Packet Propagator 

We are now prepared to assemble our results and to develop a semiclassical propagator 

for wave packets. We begin by developing a classical nearby orbit propagator for localized 

Liouville distribution functions. We then extend this analysis to the quantum case, and 

explore the strong analogies. between the quantum and classical picture. The quantum 

wave packet propagator is then used to create a semiclassical propagator for arbitrary 

initial wave functions. This propagator has a number of problematic aspects, which we 

discuss and relate to some fundamental questions of semiclassical mechanics. 

7.1. A Classical Propagator in the Nearby Orbit Approximation 

Let us return to the discussion of Sec. 2 and make a classical analysis of the time 

evolution of a distribution function f(z, t) in the nearby orbit approximation. Let us 

suppose, as illustrated in Fig. 14, that at t = 0 the initial distribution function /o(z) has 

expectation values (z) = z0. These act as initial conditions for an orbit Zr(t), which we 

shall take as a reference orbit. We expect that if /o(z) is localized about zo, then the time 

evolution of {z)(t) will follow the reference orbit, and be the same as Zr(t). 

To relate this idea to the nearby orbit approximation, we begin with the exact Liouville 

equation for the evolution of f(z, t), 

aj {! H} = aj aj .J. aH =O. 
at + ' at + az az (7.1) 

H = H(z) is the classical Hamiltonian, about which we make no assumptions (e.g. it does 

not necessarily have the form of kinetic plus potential energies). We compute the time 

derivative of the expectation values {z)(t), as is standard in classical kinetic theory, to 

obtain 

d J (af an) 2N -{z)=- z -·J·- d z. 
dt az az (7.2) 
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Integration by parts and the use of the antisymmetry of J then gives us the classical version 

of Ehrenfest 's theorem, 

d (an) -(z) =J· - . 
dt az (7.3) 

Just as in Eqs. {2.2), this result is exact, but it does not imply that (z)(t) follows the 

reference orbit. Nor is it a version of Hamilton's equations, because the average of a HI az 

on the right hand side, while it is a function oft, in general is not a function of (z)(t). 

If, however, /o{z) is localized about zo, then we can expect /(z, t) to be localized 

about (z){t), at least for limited time intervals, and we can expand H(z) about (z)(t). 

Carrying this out to second order, we have 

BH · 
H(z) ~ H((z)) + (z- (z)) · a;{(z)) 

a2H + l(z- (z)) ·- · (z- (z)). 2 azaz . (7.4) 

The final term involves the same matrix H" introduced in Eq. (2.11). Using thiS approxi­

mation in Eq. (7.3), the term in H" cancels, and we have 

d BH 
-(z) = J · -((z)) dt az , (7.5) 

which is the classical analog of Eq. (2.3). This equation has the solution (z)(t) = Zr(t), 

and we see that classical expectation values do follow the reference orbit in the nearby 

orbit approximation. 

However, the reference orbit gives only partial information about the time evolution 

of /(z, t). More complete information results when we introduce the symplectic matrix 

defined by Eq. (2.15). Referring to Fig. 14, we can see pictorially what effect the evolution 

of nearby orbits has on the evolution of /(z, t). Not only does the expectation value (z)(t) 

move along the reference orbit Zr(t), but also the shape and spreading of f(z, t) about 

Zr(t) changes in time. This can be conceived of as a symplectic "rotation" in phase space; 

we put the word in quotes because a symplectic matrix includes scaling and stretching 
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operations, as well as rotations. Sample contour lines of I are shown in the figure to 

illustrate this effect. 

It is convenient to describe the net effect of the time evolution of I in the nearby orbit 

approximation as a three-step process. In the first step; we move I 0 ( z) rigidly from zo to 

the origin. This can be done with the classical displacement operator, Tc~(zo)- 1 • In the 

second step, we rotate I into its final orientation by means of the symplectic matrix S(t), 

which is the solution to Eq. {2.15). This can be accomplished with the operator Mel (S(t)), 

defined by Eqs. {6.24)-{6.25). In the final step, we rigidly translate the rotated I into its 

final position at Zr { t), using the translation operator Tel { Zr { t)). 

Combining these operations, we have a classical propagator Uez{t,z), based on the 

nearby orbit approximation, which has the form 

{7.6) 

The approximate time evolution of I is ·then given by 

l{z, t) = [Ucz(t, zo)lo] (z), (7.7) 

or, by explicitly writing out the action of Uez(t, zo), 

l{z, t) = lo ( S(t)-1 (z- Zr(t)) + zo). (7.8) 

Note that we have made no assumptions about lo(z), other than that it be localized. In 

particular, it need not be Gaussian. Note also tht we are not expanding l{z, t) about (z); 

we have only expanded the Hamiltonian. The evolution (7.8) is nonlinear in I, because zo 

depends on I o. 

A less pictorial derivation of Eq. {7.8) can also be given. Let us assume that l(z, t) 

has the form shown in Eq. (7.8), but without making any assumptions about Zr(t) or S(t). 

In particular, we do not assume that Zr(t) is an allowable orbit, or that Zr(t) = (z)(t), or 

that S( t) is symplectic. In general, of course, a solution of this form does not exist, and 
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cannot be made to satisfy the Liouville equation. However, if we expand H(z) to second 

order about Zr(t), as in Eq. (7.4), and substitute into the Liouville equation, then we find 

that Zr(t) and S(t) are uniquely determined. 

Indeed, Eq. (7.8) gives 

a f = a f o . [s -t (z - z ) - s -t z J at az r r ' 

(7.9) 

where aj0 jaz is evaluated at the argument shown in Eq. (7.8). Substituting this into the 

Liouville equation and using the second order expansion of H ( z) about Zr, we find 

(7.10) 

where H' is the vector (aHjaz)(z,.), and H" is the matrix of Eq. (2.11), evaluated at Zr. 

Collecting terms in powers of z- z~, and using ss-t+ ss-t = 0, we find 

S = JH"S, (7.11) 

in agreement with the results of Sec. 2 on nearby orbits. 

It is also of interest to compute the second moments of f under the time evolution 

specified by Eq. (7.8). We define a2Nx2N correlation matrix, 

(7.12) 

Then a direct calculation of moments based on Eq. (7.8) gives 

C(t) = S(t)C(O)S(t). (7.13) 

Thus, not only the first moments of f, but also the second, can be expressed simply in 

terms of the parameters of the nearby orbit problem. 
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7.2. The Quantum Propagator in the Nearby Orbit Approximation 

We shall now perform a similar analysis in the quantum case. Let us suppose we 

have an initial state 11/lo) which represents a wave packet of finite norm. It need not be 

Gaussian. This wave packet bas expectation values {i) at t = 0 which we denote by zo. 

On the analogy of the classical propagator of Eq. (7.6), we shall look for solutions 

11/1) = 11/J(t)) to the Schrodinger equation in the form 

(7.14) 

where z(t), S(t), and 1(t) are functions of time yet to be determined. This approach is 

essentially the same as Heller's [1975], although Heller built the time evolution into the 

parameters of a Gaussian wave packet, and we have placed it into the operators. This 

approach has the advantage the 11/lo) need not be Gaussian. In order to satisfy the initial 

conditions, we must have 1 = 0, ~ = z0 , and S = I at t = 0. Furthermore, the sign of 

M ( S) is chosen at t = 0 so that M (I) = + 1; continuity will then determine the sign of 

M (S(t)) at all later times. 

In order to substitute Eq. (7.14) into the Schrooinger equation, we need formulas 

for the time derivatives of T (z(t)) and M (S(t)). For the Heisenberg operator, we use 

Eq. (3.22) to write 

T(z + z'.O.t) = exp [- i~t w(z, z)] T(z.O.t)T(z). (7.15) 

Using Eq. (3.12) for the term T(z.O.t) and expanding the exponentials to first order in ~t, 

we have 

T(z + z.O.t) = { 1- i!t [w(i, z)- 4w(z, z)]} T(z). (7.1~) 

From this we can compute the time derivative of T(z), which we write in the form 

~t T(z) = -* [w(i- z,z) + 4w(z, z)] T(z). (7.17) 
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We treat the metaplectic operato~s similarly. First we write 

M (S(t + .<lt)) = M(S + ~tS) = M ((I+ Atss- 1 )S) 
= M(I + Atss-1 )M(S), (7.18) 

where we use Eq. (4.38). The+ sign is taken in the decomposition of the product because 

the first factor is near identity, and we demand continuity. The near identity symplectic 

matrix in the first factor must have the form I + AtJK, where K is symmetric, as in 

Eq. (A.15). Therefore K = -Jss- 1, and we can use Eq. (4.5) to write· 

M(S(t +At))= ( 1 + i~t i · Jss-1
• i) M(S(t)). (7.19) 

This finally shows that 

~t M(S) = 2~ ( z · JSS-1
• z) M(S). (7.20) 

We now compute the time derivative of 1-r/J). The term in (dfdt)M(S) is multiplied 

on the left by T(z), so we commute this through the leading factor of Eq. (7:20), using 

Eq. (4.3). This replaces i by z- z, so that altogether our result can be written in the form 

in :t 1-rP) = [ -1 + w(i- z, z) + !w{z, z)- ! (z- z). Jss-l. (z- z)] 1-r/J), (7.21) 

where z means the z(t) appearing in Eq. (7.14). The leading factor, not surprisingly, iS a 

quadratic polynomial in i- z; it represents an element of the Lie algebra of 1Mp(2N). 

As in the classical .case, a time dependent state of the form (7.4) is not in general 

a solution to the SchrOdinger equation, unless we approximate the Hamiltonian in terms 

of nearby orbits. However, the SchrOdinger Hamiltonian is a function of the operators 

z, not the classical phase space coordinates z, so we need to develop a sense for what 

this approximation means. Of course, this is no problem for the simple Hamiltonians of 

quantum mechanics, in which the kinetic energy is already quadratic in momentum, and 

there are no ordering issues. In that case, we merely expand the potential V (x) about q, 

.. 



.. 

,. 

-109-

where q is the configuration space part of z. More generally, however, there are ordering 

issues to be dealt with. 

Therefore we call on the Wigner-Weyl formalism, and proceed somewhat heuristically . 

We denote the ordinary Weyl symbol of H(z) by H(z), and we let the Wigner function of 

11/J) be W(z). By Eq. (B.20), the Wigner function is centered in phase space on the point 

(1/Jizi.,P). We shall assume that it is well localized about this point, and that it takes on 

substantial values only within roughly one unit cell of phase space, with volume (21r1i)N. 

If we use the phase space coordinates ( q, p) with symmetrized dimensions, as discussed in 

Sec. 6, then the Wigner function will have, according to our assumptions, a scale length in 

phase space which is 0{1i1
/

2
) in any direction. We do not assume that the Wigner function 

is smooth, nor do we expand it about its mean value. 

Actually, it is known (Balazs and Jennings (1984], Berry (1977], Heller [1976]) that 

in general the Wigner function is highly oscillatory in phase space, and may be quite 

extended. The degree to which this is true, of course, depends on the state 11/J), and it 

is not clear what restrictions 11/J) must satisfy in order to produce the kind of localized 

Wigner function we have in mind here. In the case of Gaussians, however, the Wigner 

function is easily calculated, and, for reasonable Gaussians at least, it has the kind of 

localization in phase space we are describing. For more general wave functions, perhaps it 

is easiest to sidestep the question and simply to define a "wave packet" as a state whose 

Wigner function is localized. Although certain rigorous statements can be made about the 

approximation scheme we are developing here {Hepp [1974], Hagedorn [1980]), we shall be 

~ satisfied with a partly intuitive picture. 

In any case, if 11/J(t)) has the form postulated in Eq. (7.14), then the Wigner function 

W (z, t) is centered on the point z(t). We show this by directly computing (1/Jizi.,P), using 

Eqs. {3.4) and (4.3): 
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(1/llzl'¢) = (1/loiT(zo)M(S)tT(z(t)) t i T(z(t))M(S)T(zo)tl'¢0 ) 

= (1/loiT(zo)M(S)t [z + z(t)] M(S)T(zo)ti'I/Jo) 

= (1/loiT(zo) [Sz + z(t)] T(zo)ti1Po) 

= (1/lol [S(z- zo) + z(t)] 11/lo) = z(t), (7.22) 

where we have used (1Polzl1/lo) = zo in the last step. 

Therefore we shall assume that the time evolution of the Wigner function can be 

approximated by expanding the Weyl symbol H(z) of the Hamiltonian about z(t), which 

we take out to quadratic order as in Eq. (7.4). This produces a quadratic polynomial in 

i- z( t), which can be interpreted as the symbol of an approximate quantum Hamiltonian. 

Inverting the Weyl symbol relations is easy for quadratic polynomials in z, and we obtain 

the approximation 

H(z; t) ~ H {z(t)) + {z- z(t)) . H' (~(t)) + ~ (z- z(t)) . H" {z(t)) · {z ,_ z(t)). (7.23) 

The scalar H, the vector H' = aHjaz, and the matrix H" represent the ordinary Weyl 

symbol of the exact quantum Hamiltonian, and are functions of time through z(t). 

This expression is not necessarily an expansion in n. This is most easily seen in the 

q, p variables with symmetrized dimensions introduced in Sec. 6. The expansion of the 

Weyl symbol should be valid out to a distance in phase space of order n1
/

2 about z(t), ~n 

the basis of our assumptions about the Wigner function. However, H(z) is a function of 

the dimensionless variables q/ v'f,., pf v'f,., so all terms in Eq. (7.23) are of the same order 

in n. The expansion (7.23) really represents an assumption about the smoothness of the 

Hamiltonian, which can be tested in individual cases. One also has considerable latitude 

in the choice of the initial. state I.Po), which can be used to optimize the validity of the 

expansion. In some cases, Eq. (7.23) can be seen as an expansion in the inverse quantum 

number. 
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In any case, we can now combine Eqs. (7.21) and (7.23) in the Schrodinger equation, 

Collecting terms on each side by powers of i - z, we obtain the equations 

7 = !w(z,z)- H(z(t)), 

z = JH'(z(t)), 

S = JH"(z(t))S. 

(7.24) 

(7.25) 

The last two of these are the equations for the classical orbit and the symplectic matrix 

describing nearby orbits; and the first is a phase, due essentially to the noncommutativity 

of the Heisenberg operators. It is like the Bohr-Sommerfeld phase, but symmetrized in q 

and p, since 

;(t)=! tdt(p·q-q·p)-Ht. lo · (7.26) 

Here we have assumed that the original Hamiltonian is time-independent, so that H(z) is 

constant along the orbit z(t), and can be taken out of the time integral. However, if H 

does have an explicit (but slow) dependence on time, then Eqs. (7.25) are still valid, and 

we need only keep H(z, t) inside the time integral in Eq. (7.26). 

Collecting our results, we can now write down a semiclassical wave packet propagator, 

which is the quantum analog of Eq. (7.6): 

U(t,z0 ) = eh(t)/ta T(z(t))M(S(t))T(zo)t. (7.27) 

Apart from the phase ; and the double valuedness of the metaplectic operators, this carries 

exactly the same information as the classical propagator, and it shows that wt,t.ve packets 

can be propagated on the basis of (nearly) purely classical calculations. This, of course, is 

the practical goal of any semiclassical theory. 
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Although this propagator preserves the norm of the state it acts upon, it is not unitary 

in the usual sense, because it is not even a linear operator. It is nonlinear for the same 

reason as its classical counterpart, i.e. the parameter z0 depends on the initial state. 

When this propagator is used to advance wave packets in time, the expectation values 

(z)(t) follow the trajectory z(t}, as shown by Eq. (7.22). Furthermore, by Eq. (7.25}, z(t} is 

seen to be a classical orbit. However, just as in the classical case, the reference orbit alone 

gives somewhat limited information about the wave packet. Letus therefore compute the 

second moments of the wave packet about the central orbit. 

As in the classical case, we define a 2Nx2N correlation matrix C, 

(7.28} 

Because the components of i do not commute with each other, we have symmetrized the 

first term to obtain a real quantity. Inverting the Weyl symbol relations for a quadratic 

polynomial in z automatically produces this symmetrization, because real symbols corre­

spond to Hermitian operators. We note that CafJ contains all the quantities D..ql, tip~ 

which would be of interest in investigating questions of minimum uncertainty, as well as 

all the cross terms. 

A direct calculation of CafJ, carried out exactly as in Eq. (7.22}, shows that the 

quantum correlation matrix obeys exactly the same rules as in the classical case, i.e. 

Eq. (7.13} is still valid. This is the generalization of the spreading of the free particle wave 

packet, as discussed in Sec. 2. 

We can go beyond the calculation of moments and give a precise description of the 

evolution of the Wigner function of lw) under the propagator (7.27). We let the Wigner 

function of 1'1/Jo) be W0 (z). Then, using Eqs. (6.22} and (6.26}, we find that the Wigner 

function of U(t, zo)I'I/Jo) is 

W(z, t) = Wo ( S(t)- 1(z- z(t)} + zo). (7.29) 
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This is exactly the same behavior displayed in the classical Liouville function, Eq. (7.8). 

A principal benefit of this analysis is a conceptual one, since wave packet spreading, in 

both configuration and momentum space, can now be seen in purely classical terms. This 

picture also clearly shows the limitations of Eq. (7.27) as a wave packet propagator. For 

example, it is known classically that distributions of particles which are initially localized 

in phase space do not remain localized in the course of time. In most cases, the spreading 

is at least linear in time, and for chaotic systems, it is exponential in time, as determined 

by the Liapunov exponents (Lichtenberg and Lieberman [1983]). 

For certain systems, however, the classical spreading of a distribution of particles is 

periodic in time. These are systems whose Hamiltonians are action variables, which have 

the properties that not only are the orbits they generate periodic, but also the period is 

constant from one orbit to the next. Thus, afte~ one period, a. classical distribution function 

reassembles itself exactly, and if any spreading does occur, it is followed by contraction. 

This is not to say that the corresponding quantum evoltion will be exactly periodic, but 

at least within the quadratic nearby orbit approximation it will be so. If furthermore 

the action variable which is being treated as a Hamiltonian happens to be a quadratic 

function of q's and p's, then the propagator (7.27) will be exact, and the spreading of the 

quantum wave packet will be periodic and hence bounded. More generally, the propagator 

will be valid only for limited periods of time, which can be determined quantitatively by 

an analysis of the separation of classical orbits. 

Nevertheless, there are many problems for which the time limitation is not an imped­

iment. Some of these are discussed by Heller [1975, 1976]; others include the transmission 

of light through optical devices, as discussed by Guillemin and Sternberg [1984], and the 

use of "Gaussian beams" {Keller [1971], Deschamps [1972], Cerveny and Psencik [1979], 

Cerveny, Popov and Psencik [1982]). Another interesting example concerns the motion of 

charged particles in inhomogeneous magnetic fields. If the inhomogeneities are weak, then 
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the motion is approximated by the uniform field solution. The latter, however, is repre­

sented by a quadratic Hamiltonian, whose propagator is a metaplectic operator. Taking 

account of the inhomogeneities as a perturbation will surely result in a wave packet prop-. 

agator of the form (7.27), although to my knowledge the details of this have never been 

worked out. This problem is important in recent g- 2 experiments (Ford [1978]), and in 

other areas. 

Another limitation of the propagator (7.27) is its failure to deal with tunneling. If the 

reference orbit z(t) is inside a separatrix, then it will stay there forever, and no tunneling 

will occur. However, the classical analog we have developed shows clearly what the problem 

is, and what must be done to fix it. Although tunneling is usually considered a purely 

quantum effect, there is a simple classical analog. Suppose, for example, that the initial 

Liouville distribution function is Gaussian in phase space, and that the reference orbit is 

inside a separatrix. In the exact classical solution, particles in the tail of the distribution 

will be outside the separatrix, and will classically"tunnel." However, this effect is lost 

when the approximate classical propagator (7.6) is used. Clearly, in order to correctly 

describe tunneling, one must propagate more than one wave packet. (This, however, is a 

naive picture. The basic fact is that neither Eq. (7.27) nor its classical analog is valid for 

long periods of time in the neighborhood of an unstable fixed point.) 

It is possible that the limitation on time intervals allowed in Eq. (7.27) can be turned 

into an advantage, by providing one with a means for studying the statistical properties 

of quantum chaos. Presumably quantum chaos differs from classical chaos in that not 

only do the phase space positions of the particles or wave packets mix, but ·also the linear 

superposition of the wave packets gives rise to a mixing of their phases. It is likely that a 

simple analysis along these lines would lead to interesting results. For chaotic systems, it is 

known that initially smooth Lagrangian manifolds become tangled up in the course of time 

(Berry, Balazs, Tabor and Voros [1979]), and this is certainly related to the time limitations 
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imposed on the propagator (7.27). Some interesting studies relating wave packet evolution 

and quantum chaos have been carried out by Heller [1985]. 

The wave packet 11/Jo) appearing in Eq. (7.14) need not be Gaussian, and it seems 

that sometimes it is useful to consider more general wave packets. For example, the light 

entering an optical system can be treated as a single wave packet, whose reference orbit is 

the optical axis (Guillemin and Sternberg [1984]). 

If, however, 11/Jo) is a Gaussian, then we have the advantage of being able to carry out 

the action of the metaplectic operator in closed form. Suppose, for example, that 11/Jo) is 

the standard coherent state centered at zo at t = 0. That is, let 11/Jo) = T{zo)IO), where 

IO) is the standard fiducial state of Eq. {C.4). When we apply the propagator {7.27) to 

this initial state, the Heisenberg operator T(zo) cancels, and we have 

11/J(t)) = eh(t)/T& T(z(t))M(S(t)) IO). (7.30) 

The x-space representation of this is easily worked out, by using Eqs. (6.30) and (3.16), 

and we find 

1 1 
(xl'f/J(t)) = (1r1i)N/4 Jdet(A + iB) 

{1[. ·- i_ 
X exp ~ '&1 + tp ·X- 2p · q 

- ~(x- q). (D- iC)(A + iB)- 1
· (x- q)l }· (7.31) 

If one does not want to Use the standard fiducial coherent state IO), then it can be replaced 

by M(So)IO), where 8 0 is some fixed symplectic matrix. This form encompasses all possible 

Gaussian wave packets as initial conditions, as shown in Sec. 8. Then Eq. (7.30) is still 

valid, with S(t) replaced by the product S(t)S0 • In other words, one only needs to multiply 

symplectic matrices. 
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7.3. A Semiclassical Propagator for Arbitrary Initial Conditions 

Of course, wave packets do not constitute the most general initial conditions that one 

might be interested in. However, an arbitrary initial condition l't,bo} can be represented 

as a linear combination of wave packets, and these can be propagated individually. From 

an analytical standpoint, it is most convenient to use the coherent states for this purpose 

(Klauder and Sudarshan [1968]). Let us therefore decompose lwo} into coherent states, by 

using the coherent state wave function, as in Appendix C. For the initial state, we can 

write a modified form of Eq. (C.12), 

I JlNz 
l't,bo} = (21r1i)~ T(zo)IO}(zol't,bo}. (7.32) 

Applying the propagator (7.27} to each wave packet individually then givesus a semiclas-

sical. propagator, applicable to any initial wave function, 

U(t) = J (~:n~~ eh(t)/Ta T(z(t))M(S(t}) IO}(zol· (7.33) 

Of course, this propagator is suuject to the same limitations on time interval as was 

Eq. (7.27}. This propagator is not directly useful in numerical work, because it requires 

an infinite number of orbits. But it does have analytical promise, which mostly seems to 

be as yet unrealized. 

Nevertheless, certain aspects of this propagator are problematical. For example, it 

does not form a group, i.e. U(t2 + t 1 ) # U(t 2 )U(tt). There is a certain amount of arbi-

trariness to the manner in which an initial wave function is decomposed into wavepackets. 

We have chosen the standard coherent states for convenience, but many other choices could 

be made. For any reasonable choice for this decomposition, some error will be introduced 

as the wave packets are propagated, due to the approximations inherent in Eq. (7.27). 

This error hopefully will be small, but it will differ from one choice of initial wave packets 

to another. However, when we apply, say U(tl) to an initial wave function, the final state 
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is not represented as a linear combination of the same class of wave packets as the initial 

state, due to wave packet spreading. Therefore if we follow U(ti) by U(t2 ), the effect at 

time t1 is to stop, add up all the final wave packets created by U(ti), which by now have 

spread, and express the sum again in terms of the given initial set. In a sense, therefore, 

U(t) creates a privileged role for the time t = 0. In fact, since wave packet spreading 

generally degrades the accuracy of Eq. (7.27), we can see that the product U(t2)U(ti) will 

be more accurate than U(t2 +ti). Therefore this failure of U(t) to form a group is another 

manifestation of the time limitation imposed on the wave packet propagator (7.27), and 

one can see that for short times, the group composition law is approximately obeyed, the 

approximation being of the same order as that inherent in Eq. (7 .27). It is an interesting 

question as to whether any semiclassical propagator can form a group. Of course, one does 

not ask this question out of love for group theory, but rather because any privileged role 

for the time t = 0 is unphysical. In any case, it is not clear that this question has ever 

been addressed. 

A slight consolation in this is the fact that the classical analog of Eq. (7.32) would 

suffer from the same problem. If an initial distribution function /o(z) were decomposed 

into small packets at t = 0, and each of these packets were propagated forward by Eq. (7.6), 

then the classical packets would also spread, and again a privileged role would be created 

for the time t = 0. The only exception would be if the classical packets were so small that 

they became 6-functions, in which case the classical propagator would be exact. Of course, 

we have no such option in the quantum case. 

A worse problem for Eq. (7.32) is that U(t) is not unitary. A unitary operator preserves 

scalar products, and our propagator (7.33) does not do this. The overcompleteness of the 

coherent states is an inessential obstacle in seeing this, so let us simply consider two initial 

coherent states, lzo) and lz~), both of which are to be propagated by Eq. (7.27). Then at 

a later time we have 
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(7.34) 

In general, this is not equal to (z0 jz0), although it is possible to see that for limited times 

it is approximately equal to it. 

Suppose first of all that z0 and z0 are close together, and that z(t), z'(t) remain close 

together over the time interval of interest, so that c zo = zl0 - zo and c z ( t) = z' ( t) - z ( t) are 

small. Then we can assume that S ~ S', so that cz(t) = Scz0 • Using this and Eq. (6.18), 

we can write the matrix element on the right in the form 

(7.35) 

On the other hand, if we carry out 1'(t) -1(t) to first order in cz, and make use of the 

fact that 

rt rt an 
Jo dt w(z,cz) =- Jo dt cz · az = -cEt, (7.36) 

where cE is the difference in energy between the two orbits, then we find 

1'(t) - "', (t) ~ !w(z, cz)- !w(zo, hzo). (7.37) 

As a result, the right hand side of Eq. (7.34) becomes 

(7.38) 

and the scalar product is preserved. 

On the other hand, if z0 and z0 are widely separated, then both the initial and final 

matrix elements are exponentially small in their respective separations (see Eq. (C.l8)), 

so scalar products are again approximately conserved. Altogether, we conclude that U ( t) 

will be approximately unitary, as long as the nearby orbit approximation remains valid. 

Perhaps these difficulties have to do with the impossibility of mapping groups of 

unitary operators onto classical groups of canonical transformations in a natural way. 

The exceptions to this rule include the Heisenberg and metaplectic groups, for which the 
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classical and quantum Lie algebras are identical, and in this sense it is not surprising that 

for quadratic Hamiltonians all the difficulties with Eq. (7.33) fall away, and U(t) becomes 

the exact propagator. In effect, the Heisenberg and metaplectic operators are used in 

.. Eq. (7.33) to represent nonlinear canonical transformations locally in phase space, but the 

small pieces do not exactly "fit" together. 

... 

In this sense it is interesting that Eq. (7.33) represents a semiclassical version of a 

"nonlinear canonical transformation of operators," where the canonical transformation in 

question is that generated by the classical time evolution. In general, there is no unique way 

of making a correspondence between a classical canonical transformation and a quantum 

unitary operator. This is evidently true even in a semiclassical sense, due to the arbitrari­

ness involved in the representation ~f the initial wave function as a linear combination of. 

wave packets. Nevertheless, Eq. (7.33) is one candidate for such a correspondence. 

Another candidate has been proposed by Miller [1974], and exploited by him with 

great success. Miller's semiclassk:U version of a canonical transformation of operators is 

based on the traditional eikonal approach to WKB theory, rather than wave packets, so its 

immediate relation to the propagators considered here is not immediately clear. It would 

be an interesting problem to explore this connection. 

The next section is motivated by one of the issues raise here, namely the privileged role 

played by the standard coherent states in our formalism. Although it is widely recognized 

that there is no particular reason to use the standard fiducial state ofEq. (C.4), nevertheless 

the arbitrariness of this choice is especially driven home by the troubles it causes here, 

such as the failure of U ( t) to form a group. Therefore in the next section we shall examine 

Gaussian wave packets from a larger perspective than that of coherent states and the 

Heisenberg operators which are used to create them. Although our results will not solve 

any of the difficulties raised in this section, they do form an important analysis of Gaussian 



-114-

wave packets in general, which should be of value in any application of Gaussians m 

practical problems. 



-115-

8. Gaussian Wave Packets 

As I pointed out in Sec. 4, the metaplectic operators constitute the natural transfor-

mation group of the Gaussian wave packets. In this section I shall explore these trans-

formation properties in detail. I begin by considering the Wigner functions of Gaussians, 

• which give us an interesting interpretation of Gaussian wave packets in phase space, and 

show that there is no invariant meaning to the concept of minimum uncertainty. I also 

show that these Wigner functions are invariant under U ( N) transformations, and I discuss 

some questions relating to pure and mixed states. Next I examine the transformation 

properties of the Gaussian wave packets themselves, and show that they are invariant un-

der SU(N) transformations. Finally, I raise some questions about the nonuniqueness of 

the standard coherent states, and make a few observations. 

8.1. The Wigner Function of Gaussians 

Let us begin by assembling some facts about Gaussians, derived in a straightforward 

manner in the x-representation. We shall consider only Gaussians which satisfy (.i) = 0, 

since any Gaussian which does not satisfy this condition is easily transformed into one 

which does, by the trivial operation of applying a Heisenberg operator. We shall also 

consider only normalized Gaussians. The most general Gaussian of this kind has the form 

· ( det a ) l [ 1 ] ,P(x) = (1r1i)N exp -i"Y- 21i x ·(a+ ~b). x , (8.1) 

where"'! is a phase and the NxN matrices a, bare real and symmetric. The matrix a is 

,. also positive definite, so that ,P is normalizable. 

The topology of the space of positive definite symmetric matrices is the same as 

that of the symmetric matrices, since one space is converted into the other by the in-

vertible operations of taking the exponential or logarithm. Therefore, since both a and 



-116-

b have N { N + 1) /2 independent parameters, the space of Gaussians has the topology 

m.N(N+I) xS 1 , where the circle 8 1 represents the phase "Y· 

It is straightforward to calculate the Wigner function W(z) of the Gaussian {8.1), by 

using Eq. {B.6). The result can be written 

W (z) = 2N exp (-~i · G · z), (8.2) 

where the 2N x 2N matrix G is given by 

G _ (a+ ba-1b ba-1
) 

- a- 1b a-1 • 
(8.3) 

Although in general the Wigner function of a state may take on negative values, we see 

that for Gaussians it is strictly positive. The matrix G is real and symmetric, and, not 

surprisingly, positive definite. This follows by noting that 

i · G · z = q · a · q + (qb + p) · a- 1
• (bq + p) ~ 0, (8.4) 

with equality only if q = p ="0. 

What is perhaps more surprising is that Sis also symplectic (Bastiaans [1979b]). This 

is easily proved by directly showing that GJ G = J. This means that G is a member of 

the T-space of positive definite symmetric symplectic matrices discussed in Appendix A, 

and that it can be uniquely represented as the exponential of JK8 for some symmetric 

K 8 in the s-subspace of the Lie algebra of Sp(2N). This is the first sign of the intimate 

connection between Gaussians and the polar decomposition of the symplectic matrices. 

Furthermore, it is easy to show that every positive definite symmetric symplectic 

matrix can be realized through the Wigner function of some Gaussian. To see this, we 

note that if 11/J) in Eq. {8.1) is taken to be the standard fiducial state IO) of Eq. (C.4), then 

a = I and b = 0, so that G = I, and the Wigner function of the standard fiducial state is 

(8.5) 

.. 
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Next, we use Eq. (6.26) to show that the Wigner function of the state M(S)IO) is W0 (S-lz), 

so that the G matrix corresponding to the Gaussian M(S)IO) is given by 

G = s-1s-1. (8.6) 

Thus, if we are given some positive definite symmetric symplectic matrix G, we can always 

put it into this form by taking s-1 = v'G, which is the unique positive definite square 

root of G. This is also symplectic, as shown either by the polar decomposition, or by 

noting that if G = exp(JK8 ), then we can take S = exp( -4JK8 ). Therefore the space 

of the Wigner functions of Gaussians is identical to the space of the positive definite 

symmetric symplectic matrices, which has the topology m_N(N+1). Incidentally, we see 

that whereas every Gaussian wave function has a Gaussian Wigner function, the converse 

is not true; many Gaussian distribution functions are not the Wigner functions of Gaussian 

wave packets. 

Next we compute the rorrelation matrix C, defined by Eq. (7.28), for Gaussians. 

Although it is straightforward to do this directly in the x-representation, it is easier to 

do it through the Wigner function. First we note that the Weyl symbol of the operator 

{zQzsi + ZJiZQ)/2 is simply zQzsi. Equation (B.19) then shows us that 

C 2N I tflNz -I·G·•I" 
Qsi = (21rn)N ZQZJi e . (8.7) 

Using the fact that G can be written in the form (8.6), and also that det S = 1, we make 

the substitution z = Sz1 to obtain 

S I tflNzl I I -I' ·•' jta n S 
CQsi = Q,.,.Ssi, (1rn)N z,.,.z, e = 2SQ,.,. Jip., 

or, by noting that G-1 = SS, 

C = ~G- 1 . 
2 

Therefore, by using Eq. (A.ll), we have 

(8.8) 

(8.9) 

(8.10) 



-118-

A similar calculation has been presented by Bastiaans [1979b]. 

This matrix contains in its diagonal elements all the variances Aq'f, ilp~. If we define a 

minimum uncertainty wave packet as one which satisfies Aqafl.pi = n/2, fori= 1, ... , N, 

then the usual analysis of the minunum uncertainty condition shows that a is diagon3.1 

and b = 0. Therefore minimum uncertainty wave packets are characterized by G and C 

matrices which are diagonaL 

These results can be seen pictorially in phase space. By Eq. (8.2), the contour sur­

faces of the Wigner function in phase space are the same as those of the positive definite 

quadratic form i · G · z, which are ellipsoids. We pick out one of these for convenience, the 

ellipsoid i · G · z = 21rn, and call it the "Wigner ellipsoid." It is indicated schematically in 

Fig. 15. The volume enclosed by the Wigner ellipsoid is of the order of a unit cell in phase 

space, i.e. (21r1i)N, and it indicates the principal region of concentration of the Wigner 

function. 

The principal axes of the Wigner ellipsoid indicate the directions in phase space along· 

which the rate of decrease of the Wigner function is stationary with respect to small 

variations in direction. The rate of decrease itself is measured with respect to the distance 

s2 = i · z. Since this distance is not invariant under symplectic transformations, neither 

are the principal axes, but they are interesting to consider nonetheless. 

We denote the eigenvectors of G by e0 , where a is not a component index, but rather 

distinguishes the eigenvectors, and we let the corresponding eigenvalues be .A"', so that 

{8.11) 

(no sum on a). Since G is symmetric and positive definite, the eigenvectors ea are real 

and can be chosen to form an orthogonal set, and the eigenvalues are real and positive. 

As shown in Appendix A, if .A is an eigenvalue of G, then so is 1/ .A, and in fact the 

eigenvalues can be arranged in (.A, 1/ .A) pairs. One can show that these pairs can be made 

.. 
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to correspond to the q-p axes of a canonical coordinate system. This is easiest when the 

eigenvalues are distinct, but it can be proven in any case. If we normalize the eigenvectors 

so that their tips lie on the Wigner ellipsoid, i.e. so that eQ · eQ = 27r1ij).Q, then the total 

volume spanned by the eigenvectors is (27r1i)N. 

If the Gaussian from which G was derived is minimum uncertainty, then the principal 

axes of the Wigner ellipsoid can be chosen to be parallel to the q-p. coordinate axes, and 

conversely. If the Gaussian is not minimum uncertainty, then the products tiqitiPi are 

greater than Ti/2 because of the angles of the projections of the Wigner ellipsoid onto 

the coordinate axes. In a sense, therefore, Gaussians which are not minimum uncertainty 

appear so only because they are viewed from the wrong symplectic frame; in the right 

frame, every Gaussian is minimum uncertainty. This fact is also suggested by the rules 

of statistical mechanics, which assign quantum states a phase space volume of (21r1i)N, 

whether or not they are minimum uncertainty in the usual sense. This is another reason 

not to assign any privileged role to the standard coherent states. 

' . 

However, one must be careful in the use of the Wigner ellipsoid, because its principal 

axes are not symplectic invariants. That is, suppose a Gaussian I1P) has a Wigner function 

specified by the matrix G, with eigenvectors eQ. Then if we replace I1P) by M ( S) I1P), G is 

replaced by S - 1 GS - 1 , but the new eigenvectors are not given by SeQ. This is clear because 

the eigenvectors always form an orthogonal set, and symplectic matrices do not respect 

orthogonality relations .. In general, the relation between the old and new eigenvectors is 

not simple. 

In particular, this means that we cannot align the Wigner ellipsoid along some La-

grangian manifold, and expect the alignment to persist in the course of time. The ori-

entation of the tangent plane to the Lagrangian manifold is correctly described by the 

symplectic matrix which represents the linearized How along some orbit, but the eigenvec-

tors of the Wigner ellipsoid are not. 
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Furthermore, there is no simple relation between the eigenvectors of the Wigner ellip­

soid and those of the symplectic matrix describing the linearized flow. The eigenvectors 

of the latter need not even be real, nor do they necessarily form a complete set. They are 

useful, however, in describing the exponential instability of chaotic systems; presumably 

in the course of time for such a system, the Wigner ellipsoid gets stretched out along the 

unstable manifold (Arnold and Avez (1968]). These questions have apparently not been 

investigated deeply. 

Because the Wigner function is bilinear in the state 11/J)·, it transforms according to the 

group Sp(2N), not Mp(2N), as shown explicitly 'by Eq. (6.26). Furthermore, the Wigner 

function of any Gaussian can be derived from that of the standard Gaussian, as we showed 

in Eqs. (8.5) and (8.6). Therefore Wigner functions of Gaussians can be parameterized 

by symplectic matrices. However, this parameterization is not unique; more than one 

symplectic matrix will yield the same final Wiglier function, or, to say the same thing, 

there is a family of symplectic matrices which will leave the Wigner function invariant. 

The family in question depends on the Wigner function under consideration; it con­

sists of the symplectic matrices S such that §-1G 0S-1 =Go, where the positive definite 

symmetric symplectic matrix G 0 represents the chosen Wigner function. This family forms 

a group, which is a subgroup of Sp(2N), and it is the isotropy or stationary subgroup of 

the chosen Wigner function. It is easiest to see what this subgroup is when we let the 

Wigner function be the standard one of Eq. (8.5), since in that case we have Go = I. 

Then the invariance condition becomes §-lg-l =I, which shows that S must be orthog­

onal. Therefore the isotropy subgroup of the standard Wigner function is the intersection 

Sp(2N) n 0{2N), which, as shown in Appendix A, is isomorphic to the group U(N). For 

any other Wigner function, specified by G 0 , the isotropy subgroup is the conjugate sub­

group of U ( N) under the action of ~. Therefore the Wigner functions are parameterized 

uniquely by the coset spaces with respect to U ( N), or, 

• 
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Space of Wigner functions of Gaussians "' s;~~). (8.12) 

T~is space is not a group, because U(N) is not an invariant subgroup of Sp(2N). This 

again is related to the fact that there is no privileged role for the standard fiducial state, 

insofar as canonical transformations in phase space are concerned. 

Because the matrix G does not contain the full infor:mation which is in the symplectic 

matrix S describing the evolution of nearby orbits, there is considerable redundancy in 

the matrix S when it is used to advance the Wigner function of Gaussian wave packets 

according to Eq. (7.29). In fact, we see that out of N(2N + 1) independent parameters 

which are necessary to specify S, only N(N + 1) of them, or approximately half, are 

actually used in the time evolution. At first sight this seems to suggest an opportunity 

for making the numerical integration of Eq. (2.15) more efficient, by keeping only the 

subset of variables which are actually needed. However, this is probably not practical, 

since Eq. (2.15) is l~ear, and the 2N columBs of S decouple from one another, and evolve 

independently. It is probably not worth it to replace Eq. (2.15) by a coupled, nonlinear 

system, even if the total number of variables is reduced. 

Nevertheless, there is theoretical interest in the redundancy indicated by Eq. (8.12), 

because it says that the time evolution of a Gaussian wave packet requires less information 

than would be required for the analogous classical problem of nearby orbits. Evidently, 

this is related to the fact that the matrix G must be symplectic. It might be reasonable to 

consider classical distributions which are Gaussian in phase space, as we did in Sec. 2, but 

there would be no reason in classical mechanics to demand that the quadratic form in the 

exponent be symplectic. However, since Wigner functions are capable of representing both 

pure and mixed states, one might suspect that the privileged role for symplectic quadratic 

forms has to do with this distinction. 

Let us therefore consider a distribution function of the form 
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f ( z) ~ 2N v' det F exp (- ~ z · F · z) , (8.13) 

where we make no assumptions about F except that it be positive definite and symmetric. 

There is no guarantee that this distribution function can be realized as a Wigner function 

at all, either for a pure or a mixed state. Because f is real, it does correspond to some 

Hermitian operator p, but p must be positive semidefinite and satisfy Tr p = 1 if it is to 

be interpreted as a density operator. It is easy to show that Tr p = 1, because of the 

normalization we imposed on f(z). But it is more difficult to see whether p is positive 

semidefinite. 

Therefore we shall pose a more refined question, which is easier to answer. We shall 

ask what conditions must be imposed on F so that /(z) will represent the Wigner function 

of a pure state. In this case, we need not directly prove positive semidefiniteness, because 

the density operator for a pure state is a projection operator, and satisfies p2 = p. 

It seems easiest to exam:: 'le this condition through the alternative Weyl symbol of 

Eq. (B.2). Using Eq. (B.4), we fiLd 

(8.14) 

Next, we use the Weyl product rule in the form (B.8) to compute the alternative Weyl 

symbol of p2 , which we denote by j 2 (z). We find 

j 2 (z) = v'det F exp[8~ z. (JF- 1J- F) · z]. (8.15) 

Therefore j 2 (z) - j(z), i.e. p2 = p, if and only if FJF = J, which shows that F' is 

symplectic. Therefore the distribution function (8.13) represents a pure state if and only 

ifF is symplectic. In particular, the distribution function of Eq. (2.21) represents a pure 

state if and only if LK = h/2. 

Equation (8.13) can also represent mixed states. One example is the Wigner function 

of a harmonic oscillator in thermal equilibrium with a heat bath. However, not every 
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distribution function of the form (8.13) represents a Wigner function. One example is the 

case F = cl, where c > 1 is a constant. I do not know in general what condition F must 

satisfy in order that the operator corresponding to f(z) should be positive semidefinite. 

While we are on the subject of redundant information, I shall point out some inter­

esting facts about Eq. (2.15), the evolution equation for S. This is a matrix equation, 

nominally in 4N2 variables, although there are only N(2N + 1) independent components 

in S. The redundancy is due to the Poincare invariants, which are constants of the mo­

tion of Eq. {2.15). Since there are N(2N- 1) independent Poincare invariants, and since 

N(2N - 1) + N(2N + 1) = 4N2 , the total parameter count comes out right. What is 

more interesting is that Eq. {2.15) is a Hamiltonian system in its own right, whose phase 

space is the 4N2-dimensional space of all 2Nx2N matrices. The Poincare invariants are 

generators of a symmetry group in this space, which turns out to be 0(2N). Therefore 

out of the remaining N(2N + 1) independent parameters inS, some can be evaluated by 

quadratures. This system is a prime candidate for the theory of "reduction" {Abraham 

and Marsden [1978]), and I shall report on it in more detail in the future. 

8.2. Transformation Properties of Gaussians Under Mp(2N) 

We turn now from Wigner functions to Gaussian wave packets themselves, and con­

sider their transformation properties under the metaplectic operators. First we ask whether 

any Gaussian wave packet can be realized from any other through the action of a metaplec­

tic operator. If so, then any Gaussian can be realized in the course of time in semiclassical 

wave packet evolution. To answer this question, it is sufficient to ask whether any Gaussian 

I1P) can be reached from the standard Gaussian IO}, i.e. whether we can write 

11/7) = M(S, u)IO) {8.16) 
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for some metaplectic operator M ( S, u). We shall take I 7/J) to be given in the form· ( 8.1), 

and we shall search for M(S,u), where u is defined by Eq. (6.30) or (6.32). 

Certainly, if Eq. (8.16) is to be satisfied, then the Wigner functions of the two sides 

must be equal·. But we have ju8t shown that ther~ always exist symplectic matrices which 

cause the Wigner functions to be equal; they all have the form 

1 
S=-· R v'G ' (8.17) 

where G is the positive definite symmetric symplectic matrix appearing in the Wigner 

function of 1'1/J), as shown explicitly by Eq. (8.3), and R is an element of the U(N) subgroup 

of Sp(2N), as shown by Eq. (A.23). 

However, there is an alternative form of Eq. (8.17) which is more useful and equally 

valid. Instead of factoring G·by its square root, we write G = S01S01
, where 

(8.18) 

in which c = y'a, i.e. the positive definite square root of a. One can easily show that So 

is symplectic. Therefore every S which makes the Wigner functions of the two sides of 

Eq. (8.16) agree has the formS= SoR, or 

(8.19) 

where U = X + ,y is unitary. 

On the other hand, equality of Wigner functions does not imply equality of wave func-

tions, because the overall phase is lost on going to the Wigner function. Therefore we must 

make the phases of the two sides of Eq. (8.16) agree in order to solve for M(S, u). As it 

turns out, this will place further restrictions of Sand uniquely determine u. (Incidentally, 

a more obvious approach to the transformation of Gaussians would be to transform anni-

hilation operators, since every Gaussian has an annihilation operator, and these transform 

.. 
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under metaplectic conjugation according to Eq. (4.3). But this approach would give us no 

information about the phases.) 

Therefore we use Eqs. (8.1) and (6.30) to equate phases, and we have 

"'Y = mr +! argdet(A + iB), (8.20) 

where n = 0 if u = +1, and n = 1 if u = -1. The matrices A and B must be restricted 

to the form shown in Eq. (8.19) to make the Wigner functions agree, so we have 

argdet(A + iB) = argdet(X + ~Y) = argdet U, (8.21) 

since c is positive definite. On the other hand, as indicated in Appendix A, every unitary 

U can be uniquely written in the form U = U 8 U o = U o U 8 , where U 8 is a member of 

SU(N) and U 0 = eio./NI, where 0 < o < 21r. Thus, we have det U = det Uo = eio., and 

the angle o and the integer n are uniquely determined by the following rules: If 0 :5 "'Y < 1r, 

then n = 0 and o = 2"')'; if 1r :5 "'Y < 21r, then n =1 and o = 2{"'Y- 1r). 

Altogether, we see that there always exists a metaplectic operator M(S,u) which will 

satisfy Eq. (8.16), and that it is not unique. The sign u is uniquely determined, but S is 

not, since it must have the formS= S 0RoR8 , where So is given by Eq. (8.18), where Ro 

is given by Eq. (A.30) with {3 = o/N, and where R 8 has the form (A.23), where X+ ~y 

is an arbitrary member of SU(N). 

As in the case of the Wigner functions, there is a family of metaplectic operators which 

will leave any given Gaussian invariant, and this family forms a group. This group is a 

subgroup of Mp(2N), and it is the isotropy subgroup of the given Gaussian. Again, it is 

easiest to see what this subgroup is when the given Gaussian is the fiducial state IO) itself; 

in that case, S 0 = I and o = 0, so Ro = I also. Therefore all metaplectic operators which 

leave the fiducial state invariant have the form M(R8 , +1), where Rs is a member of the 

symplectic representation of SU(N). These operators, naturally, form a representation of 
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SU(N) within the metaplectic group, and therefore the isotropy subgroup of the standard 

fuducial Gaussian is simply SU(N). More generally, the .isotropy subgroup of an arbitrary 

Gaussian is the conjugate subgroup of SU(N) under the action of SoR0 • This shows 

that the Gaussian wave packets parameterize the coset spaces of MI?(2N) with respect to 

SU(N), or, 

. . Mp(2N) 
Space of Gaussian wave packets"' SU(N) . (8.22} 

Again, as in the case of Wigner functions, the propagation of Gaussian wave packets 

requires less than the full information contained in the metaplectic operators, namely 

N 2 + N + 1 parameters instead of N(2N + 1). 

In the special case N = 1, the group SU(1) is zer~dimensional and essentially vacu~ 

ous. Furthermore, the matrices a and b reduce to scalars a, b, with a > 0. Therefore for · 

N = 1, the solution M(S, u) of Eq. (8.16) is unique, and the quantities a, b, "Y uniquely pa-

rameterize the metaplectic operator, and form a coordinate system on the group manifold 

of Mp(2). 

8.3. Possible Generalizations of the Coherent States 

The following comments are some observations and speculations on possible general-

izations of the coherent states, which are motivated by the manifest nonuniqueness of the 

standard coherent states. We have seen this nonuniqueness in several ways, all of which 

ultimately come down to the fact that the standard coherent states have no invariant 

meaning in phase space, i.e. that they are not invariant under the action of metaplectic 

operators. This means, among other things, that the selection of the standard fiducial 

state depends on the coordinate system used in phase space; it is not invariant even under 

scaling operations. Furthermore, standard coherent states do not remain standard in the 

course of time, when they are advanced by the wave packet propagator of Sec. 7. This 
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fact brings about a privileged role for the time t = 0, which has no physical significance. 

Finally, the coherent states give rise to a metric on phase space, as shown in Eq. (C.lO); 

this has no classical significance, and it is hard to understand why it should appear in a 

semiclassical theory. 

From a purely mathematical standpoint, it would seem logical to generalize the com-

pleteness relation (C.2}, which is essentially a Haar integral over the Heisenberg group, into 

some analogous integral over the inhomogeneous metaplectic group, IMp(2N). However, 

it is not clear to me how this would work out, although it would presumably involve the 

irreducible representations of IMp(2N). Nor is it clear what physical meaning the result 

would have, since it would include Gaussian wave packets with very long and thin Wigner 

ellipsoids. 

Therefore I shall take a more limited approach here, and simply consider the gen­

eralization of the coherent states which results when the standard fiducial state IO) is 

replaced by M(So}IO), for some fixed symplectic matrix So. Many authors who have writ-

ten about coherent states, apparently sensing their nonuniqueness, have introduced scale 

factors into the definition of the fiducial state, and left these scale factors as free parameters 

of the analysis. These scale factors represent simple point transformations, so what we are 

proposing here is a generalization of this approach, in that we are considering arbitrary 

linear canonical transformations, and allowing the entire symplectic matrix So to be a free 

parameter. Since, as we have shown, any Gaussian wave packet can be realized from the 

standard one by the action of some metaplectic operator, our use of M(So}IO) as a fiducial 

state is equivalent to taking an arbitrary Gaussian for this state. Furthermore, apart from 

phase factors, we can expect S0 to appear in our results only through the combination 

G S--ls-1 
0 = 0 0 • 

However, at the same time, this approach is quite naive, since it does not solve any 

of the nonuniqueness issues mentioned above. Nor is it the best approach to take in 
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practical problems, where one often wants to represent a given wave function as a linear 

combination of Gaussians which are related to IO) by different matrices S0 • (This question 

has been addressed in an interesting paper by Davis and Heller [1979]). Therefore I offer 

the following results mainly for their suggestive value, in the hopes that they will help " 

clarify the larger picture. 

Let us write 10, So) = M(So)IO) for our nonstandard fiducial state, and let us define 

a complete set of coherent states by 

lz, So)= T(z)IO, So)= T(z)M(So)IO). {8.23) 

These are complete in the same way as the standard coherent states, as explained in 

Appendix C. 

We could now go through all the formulas we have for the standard coherent states, and 

generalize them to our nonstandard version, which would explicitly display the dependence 

on So. In all cases, the calculations merely involve multiplications of symplectic matrices, 

due to the rules developed in Sec. 6. To take a complicated example, consider Bargmann's 

matrix element ( 6.36). If we generalize this, we have 

(z, SoiM(S)Iz', So) = (S0~IM(S0 IsSa)IS0 ~'), (8.24) 

by using Eq. (6.18), so that the generalized version can be expressed in terms of the 

standard version. It is not particularly illuminating to write this out explicitly, although 

one can show that it depends on S~ only through the combination Go = S0 1 S0 1 . 

To take another example, let us consider the generalized coherent state symbol of an 

operator, defined by 

acs(z, So) = (z, SoiAiz, So), (8.25) 

as in Eq. (C.15). In order to relate this to the standard coherent state symbol, we can first 

relate it to the ordinary Weyl symbol a(z). We proceed exactly as in Eqs. (C.20)-(C.22). 

.. 
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dflNz' exp[--1ii w(z,z')-
4
1
1i(i' ·Go· z')] ti(z') 

(21r1i)N 

I dflNz' ( 1 _, G ') ( ') = (1r1i)N exp --,;z · o·z az+z 

= exp[~ (~. G01
• ~)] a(z), 

. 4 az az (8.26) 

where G01 = SoSo. This result can be combined with Eq. (C.22) to obtain a formula 

connecting ac8 (z, So) with the standard version, ac8 (z). 

What is interesting about this calculation is that it proceeds exactly as in the standard 

case, except that the standard coherent state metric, expressed through 21~1 2 = i · z, is 

replaced by i · Go · z. In effect, the use of alternative coherent states has introduced an 

alternative metric. Although these alternative metrics have no more classical significance 

than the standard one, perhaps there is consolation in the fact that not just any metric is 

allowed, but rather only symplectic ones. 

It is hoped that some of these observations will prove useful in gaining a deeper 

understanding of the semiclassical role of coherent states. 



-190-

9. Conclusions 

I shall conclude this paper by discussing some outstanding omissions and possible 

generalizations. 

The first of these concerns the relationship between wave packet propagation and 

the more traditional approaches to WKB theory, including the Hamilton-Jacobi equation, 

the Maslov · method, and EBK quantization. The general outlines of this relationship 

are clear; the Fourier transform in time- of the propagator yields both the energy levels 

and the projection operators. onto the subspaces spanned by the energy eigenstates. If 

the energy levels are nondegenerate, then these projection operators specify the energy 

eigenfunctions, to within an overall phase. In multidimensional integrable systems, the 

classical action variables are the symbols or approximate symbols of the complete set of 

commuting observables which occur in quantum mechanics. The symmetry operations 

generated by these observables can be treated semiclassic• Uy in the same way as the time 

propagator itself, and will lead to orbits in phase space which encircle the invariant torus. 

The metaplectic operators describing nearby orbits are an essential part of this picture, 

because they provide the Maslov index in the EBK quantization conditions. 

There exist published accounts of the relationship between wave packet propagation 

and Hamilton-Jacobi theory, but I do not believe they are correct, because they fail to take 

into account the time dependence of the symplectic matrix S( t) which is responsible for 

wave packet spreading. This cannot be neglected, because it is this time dependence which 

provides the Maslov index in the quantization condition. On the other hand, the fact that 

S(t) is not usually periodic denies one of any simple picture of phase reinforcement in the 

time evolution of a single wave packet. 

Instead, the way to extract the quantization conditions and the semiclassical energy 

eigenfunctions from a wave packet analysis, at least for integrable systems, is to propagate 

·~ 

.. 
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the wave packet in the angle variables, by using the conjugate action variables as Hamil­

tonians. Unlike the time evolution, the angle evolution produces a symplectic matrix S(O) 

which is always periodic in 0, and which, therefore, corresponds to a definite Maslov index 

over a single period. These symplectic matrices are periodic because the action variables 

generate periodic orbits in phase space whose periods are independent of initial conditions. 

This means in particular that nearby orbits have the same period as the reference orbit. 

For example, one finds that the z-component of orbital angular momentum, L z, gives a 

Maslov index of 0, whereas the magnitude of orbital angular momentum L gives a Maslov 

index of 2. {The observable L2 is not an action, and does not possess a Maslov index.) 

Since the action variables commute with the Hamiltonian, they and the Hamiltonian 

possess simultaneous eigenstates. Therefore propagating in the angle variables works as 

well as propagating in time for finding energy eigenstates. Indeed, the angle propagator 

works better, due to the peri~~icity of S(O). When the 'semiclassical propagator corre­

sponding to one of the action variables is Fourier transformed in the conjugate angle, one 

obtains both the eigenvalues of the actions and the projection operators onto the sub­

spaces spanned by the action eigenstates. This is just as with the energy, except that the 

integral in the Fourier transform need be taken only over a finite interval {one period). 

The action eigenvalues which emerge are the EBK values, In = (n + p.f4)n, where p. is 

the Maslov index corresponding to the action I. The projection operators select the sub­

spaces corresponding to a single (necessarily one-dimensional) irreducible representation 

of the symmetry corresponding to the given action. A nondegenerate energy eigenstate 

results when the product of all these projection operators, one for each degree of freedom, 

is applied to a single initial wave packet. 

Although the energy levels which emerge from this analysis are the same as in the EBK 

theory, the energy eigenfunctions are different. They are, of course, free from caustics, and 

they bear a close relation to the continuous representation eigenstates I have discussed 
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previously {Littlejoh~ [1985]). They are also closely related to the eigenstates which Heller 

has produced in some of his numerical work, and it is easy to see that they represent a 

kind of an average over the classical invariant torus. 

More generally, other invariant manifolds besides the invariant tori of integrable sys­

tems should be of interest. For example, there is considerable evidence to suggest the 

importance of periodic orbits in the quantization of nonintegrable systems (Gutzwiller 

(1971, 1973, 1977], Miller (1975], and Tabor (1983]). The calculations of McDonald (1979] 

and McDonald. and Kaufman (1985] on the stadium problem show that certain high mode 

eigenstates of this nonintegrable system seem to be dominated by a. single periodic orbit. 

Heller [1985] has also examined the stadium problem, and recognized a role for the periodic 

orbits in the "scarring" of wave functions. There must be a way of attaching a Maslov 

index to such periodic orbits a.nd explaining their important role in quantization, but I do 

not know what it is. 

A second neglected issue is that of spin, or more generally, multicomponent wave 

equations. These are, of course, very important in practice, whereas this paper has dealt 

exclusively with a scalar wave equation. Equations which are higher order than first in 

time also fall into this category, since they can be represented as first order equations on 

multicomponent wave fields. Multicomponent wave equations have been neglected here 

because the emphasis of this paper is on transformation and invariance properties, and 

it is not clear what invariance properties one should expect for multicomponent objects 

in a phase space picture. It does seem clear, however, on the basis of traditional WKB 

theory and other considerations, that multicomponet wave equations will lead to U ( n) 

gauge fields on some kind of phase space, for some integer n. Some interesting results 

along this line have been obtained by Berry [1984, 1985], Simon [1983], Wilczek and Zee 

[1984], and Wilkinson [1984], but how these results couple with transformations on phase 
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space is not completely clear. Another interesting issue in multicomponent wave equations 

is mode conversion, which is a kind of tunneling. 

Another interesting question is that of higher order corrections in the wave packet 

propagator. The classical side of this question has been well developed by Dragt and 

coworkers (Dragt (1982], Dragt and Forest (1983]), using a Lie-algebraic theory of nonlinear 

polynomial symplectic maps. The quantum side seems less well developed, although one 

proposal for dealing with higher order corrections has been made by Heller (1975], and 

there generally seems to be interest in this question. The development of a more accurate 

propagator for a single wave packet would be of use in optics, but perhaps less so in 

quantum mechanics, where there remain issues to be dealt with even at lowest order. For 

example, going to higher order will not eliminate the difficulties in the neighborhood of a 

separatrix, where the topology of the classical orbits changes and wave packets split. 

Finally, let me raise the interesting question of symmetries and invariants, which, as 

mentioned in the introduction, is a primary motivation for using a phase space picture 

in the first place. It seems that the irreducible representations of a symmetry group in 

quantum mechanics are analogous to the coadjoint orbits (Abraham and Marsden (1978]) 

as they are used in classical mechanics (Weinstein (1979]), at least for Lie groups. Never­

theless, probably no one has taken a serious look at this to see how it could be of benefit 

in semiclassical calculations. It would not be hard to do this, but it would require a closer 

examination of symmetry groups and the practical matters of wave packet techniques than 

has been taken in this paper. 
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Appendix A. Symplectic Matrices 

In this appendix I outline some of the principal properties of the symplectic matrices, 

while attempting to keep the technical language to a minimum. A readable account of some 

of the matters covered here (and some others as well) has been given by Dragt [1982], and 

the use of symplectic matrices in optics has been discussed by Guillemin and Sternberg 

[1984]. More mathematical treatments may be found in Arnold [1978], Bargmann [1961], 

Guillemin and Sternberg [1977], Leray [1981], Weil [1963], and references therein. 

Symplectic matrices are defined by Eqs. (2.5) and (2.9). A symplectic matrix S 

specifies a homogeneous linear canonical transformation, z' = Sz, or a linearized version 

of a nonlinear canonical transformation. Sometimes these represent a change of coordinates 

(the passive point of view), so that z and z' are the coordinates of the same point in two 

different coordinate systems; and sometimes they represent a linear mapping of phase space 

onto itself (the active point of view), so that z and z' are coordinates of distinct points in 

the same coordinate system. The latter case arises, for example, as the result of the time 

evolution of Hamiltonians which are quadratic in z. 

Since the matrix J of Eq. (2.5) is antisymmetric and orthogonal, we have J- 1 = -J = 

i. We also have detJ = 1. Therefore by Eq. (2.9) it follows that (detS)2 = 1, so s-1 

exists. It is then easy to prove that if S, S 11 S2 are symplectic, then so are S, s-t, and 

S 1S 2 . The 2Nx2N identity matrix I, as well as J itself, are also symplectic. Therefore 

the symplectic matrices form a group, denoted by Sp(2N). Since s-1 = -JSJ, it is easy 

to invert symplectic matrices (see Eq. (A.ll) below). 

An important fact is det S = +1 (never -1). It is easy to prove this using exte­

rior algebra (Arnold [1978]); otherwise the proof involves manipulations of permutations 

(Hamermesh [1962]). 
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Let the secular equation of a symplectic matrix S be denoted by 

All eigenvalues .A are nonzero, since det S -=/; 0. Then one can show that 

.A2N det(S- ~I):- det(S- .AI). 

(A.l) 

(A.2) 

Therefore the secular equation has the symmetry a0 = a2N, a1 = a2N-l, etc., where 

ao = 1. This means that if .A is an eigenvalue with some multiplicity, then 1/ .A is also an 

eigenvalue with the same multiplicity. Therefore all eigenvalues .A -=/; 1 can be arranged in 

(.A, 1/ .A) pairs. Since the total number of eigenvalues is 2N, the multiplicity of .A = 1 is, 

even, and all eigenvalues, including .A= 1, can be arranged in (.A, 1/.A) pairs. 

It is often of interest to see when some feature of a problem is invariant under canonical 

transformations. We consider a linear canonical change of coordinates, y = So · z for 

fixed symplectic So. Then a mapping z' = S · z becomes, in the new coordinates, y' = 
SoSS0 1 

• y. Therefore the conjugation relation, S .....,. S 0SS0 1 , represents a canonical 

change of coordinates. In this context, S represents an active transformation, and So a 

passxve one. 

The action differential p · dq, is familiar in classical and semiclassical mechanics, but 

it is not invariant under canonical transformations, even linear ones. This fact is related 

to the appearance of caustics in traditional WKB theory. (It ·is, however, invariant under 

point transformations in configuration space). This form of the action differential tends 

to occur in calculations which are committed to a configuration space representation, as 

traditional WKB theory often is. In momentum space, the differential -q · dp occurs, 

and this is not invariant either. In this work a more useful quantity is the symmetrized 

action differential, ~(p · dq- q · dp). To formalize this, we introduce the symplectic form 

w, defined as follows. For any two vectors in phase space Z1 = ( Qb pi), Z2 = ( Q2, P2), we 
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define 

(A.3) 

We will sometimes write this as i 1 · w · z2, where now w represents the matrix .. 

(0 -1) 
w= I 0 · (A.4) 

This matrix differs only by a sign from the matrix J of Eq. (2.5), and the use of two 

different symbols for the two matrices is, strictly speaking, not necessary, at least for the 

purposes of this paper. We do so anyway because wand J have rather different meanings 

in an abstract sense ( J is contravariant and w is covariant), and because they tend to 

be used in rather different ways. The matrix w corresponds to the Lagrange brackets of 

classical mechanics, just as J corresponds to the Poisson brackets (c.f. Eq. (2.6)). An 

important relation is w = J-l, or 

(A.5) 

The matrix w, like J, is itself symplectic. 

The symplectic form w is invariant under linear canonical transformations, i.e. 

(A.6) 

for all vectors z 1 , z2 and all symplectic matrices S. In particular, the symmetrized action 

differential, 

1 ( ') 1( . ') 
2w z, z = 2 p · q - q · P (A.1) 

is a symplectic invariant. 

It is convenient to partition a 2Nx2N symplectic matrix S into four NxN matrices, 

(A. B) 
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The definition (2.8) is equivalent to either of the two sets of equations1 

AD-BC=Ij 

AB=BA, 

CD=DC, (A.9) 

or 

AD-CB =I, 

AC=CA, 

BD=DB, (A.lO) 

which imply one another. (One does not have to assume that B is nonsingular.) The 

matrices AB, CD, .Ac, BD are symmetric. s-1 is given by 

s-1 = ( n 
-c 

(A.ll) 

which is often useful. Although det S = 1, any one of the submatrices A, B, C, D may be 

singular (indeed, they may vanish). In fact, any one of the submatrices can take on any 

value, although once this value is assigned, the remaining submatrices are constrained by 

the symplectic condition. 

For N = 1, the only constraint imposed on a 2x2 matrix by the symplectic condition 

is that its determinant be +1, i.e. that it represent an area preserving map. (In higher 

dimensions there are further constraints.) We write a 2 x 2 symplectic matrix in the form 

(A.l2) 

where ad- be = 1. In the four-dimensional space specified by a, b, c, d1 the constraint 

ad- be = 1 produces a three-dimensional surface which is a kind of a hyperboloid of 

revolution. This can be seen by writing a= x1 + x2, b = X3 + x4 , e = X3- x 4 , d = x1 - x2, 

so that xi - x~ - x~ + x~ = 1. This surface is a bit hard to picture, but the most important 
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facts are that it is connected, and that it has a "hole" in it. This surface is topologically 

equivalent to the solid interior of a torus, not including the surface, or of a slab with 

opposite faces identified (a periodic slab). 

When a 2 x 2 symplectic matrix is parameterized by some parameter t, S = S ( t), we 

can picture a curve in the surface ad - be = 1. If the curve is closed, it has a winding 

number, indicating how many times S(t) went around the "hole". This winding number 

is closely related to the Maslov index. There are several versions of the Maslov index; the 

one appearing in this context is especially interesting, because it is a symplectic invariant. 

This version of the Maslov index is twice the winding number of S ( t). 

Matrix functions S(t) occurring in wave packet propagation are not usually periodic, 

and so do not give rise to closed curves in the space of symplectic matrices (the group 

manif9ld). Therefore, they do not have a winding number, nor a Maslov index in the sense 

defined here. Periodic matrix functions occur more commonly in Hamilton-Jacobi theory. 

In any case, the topological features revealed by considering closed curves are important 

for wave packet propagation. 

The situation is not very much different in higher dimensions. The matrices consti-

tuting Sp(2N) form an N(2N +I)-dimensional surface in the 4N2-dimensional space of 

all 2Nx2N matrices. As in the case N = 1, this surface is connected and has one "hole" 

in it, and hence closed curves S(t) have a unique winding number (which is one half of the 

Maslov index). A more detailed and precise discussion of the topology of Sp(2N) is given 

below. 

Symplectic matrices arise classically in the solution of Hamilton's equations for Hamil-

tonians which are quadratic functions of z. Let h(z) be such a Hamiltonian, specified by 

a 2Nx2N symmetric matrix K: 

h(z) = !z · K. z. (A.13) 
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Here we assume that K is time-independent. Then the solution to Hamilton's equations, 

Eq. (2.4), is given by z(t) = S(t) · z0 , where 

S(t) = exp(tJK). (A.14) 

This family of matrices S(t) forms a one-parameter subgroup of Sp(2N), since S(ti)S(t2) = 

S(t1 + t_2 ). Depending on the matrix K, this family may be bounded or unbounded. 

Not every symplectic matrix can be written in the form (A.14), but every symplectic 

matrix can be written as a product of such forms, for different K's. This follows from the 

fact that Sp(2N) is connected. See Eq. (A.22). 

An infinitesimal symplectic matrix has the form 

(A.l5) 

where K is symmetric. This follows directly by substituting Eq. (A.15) into the definition 

(2.9). Thus, there is a one-t~one correspondence between 2Nx2N symmetric matrices 

and infinitesimal symplectic matrices. Since there are N (2N + 1) linearly independent 

symmetric matrices K, this number is the dimensionality of Sp(2N). 

The Lie algebra of Sp(2N) is obtained by taking the matrix commutator of infinites­

imal symplectic matrices. If K 1 and K2 are ~ymmetric, then 

(A.16) 

where 

(A.17) 

so that K 3 is also symmetric. 

The same Lie algebra occurs in classical quadratic Hamiltonians. We write 

hi(z) = ~z · Ki · z, (A.l8) 

.. 
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for i = 1, 2, 3. If K1 and K2 are given symmetric matrices which define h1 and h2 , and 

we define K3 by the Poisson bracket relation, 

(A.19) 

then we find that K3 is given by Eq. (A.16). Equation (A.19) is meaningful, because the 

Poisson bracket of two quadratic Hamiltonians is another such Hamiltonian. 

Although K is symmetric and J is antisymmetric, the product JK does not in general 

possess any symmetry. However, we can divide the space of all symmetric matrices K (a 

vector space of N(2N + 1) dimensions) into two subspaces, which we call the a-subspace 

and the s-subspace. If the product JK is antisymmetric, then K belongs to the a-subspace, 

and if the product is symmetric, then K belongs to the s-subspace. An arbitrary K does 

not belong to either subspace, but it can be represented uniquely as a sum of matrices 

which do. That is, the decomposition K = Ka + K., is unique. The a-subspace is N 2
-

dimensional, and the s-subspace is N(N +I)-dimensional. 

The a-subspace is closed under the commutator (A.l6), and generates a subgroup of 

Sp(2N). The matrices of this subgroup are exponentials of antisymmetric matrices, and 

are, therefore, orthogonal 2N x 2N matrices. They are also symplectic, so they constitute 

the intersection of the two groups, Sp(2N) n0(2N). This subgroup is isomorphic to U(N) 

(see below). 

The s-subspace is not closed under the commutator (A.16), and it does not generate 

a subgroup. Nevertheless, the exponential of all matrices of the form JKs is an important 

subset of Sp(2N). Since these are exponentials of symmetric matrices, they are all positive 

definite symmetric. Conversely, a positive definite, symmetric and symplectic matrix T 

has a unique symmetric logarithm (as can be seen by diagonalizing it), and therefore 

corresponds to a unique K in the s-subspace. Therefore the topology of the positive 

definite symmetric symplectic matrices is the same as that of the s-subs·pace, namely 
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m_N(N+l). These matrices arise in the Wigner functions of Gaussian wave packets (see 

Sec. 8). 

A general theorem (the polar decomposition) states that any invertible matrix S can 

be uniquely written as the product of a positive definite symmetric matrix T and an 

orthogonal matrix R: 

S=TR (A.20) 

This follows by considering the matrix SS, which is positive definite and symmetric, and 

has, therefore, a unique positive definite square root, which we define to be T. One then 

easily shows that R = T-1 S is orthogonal. 

However, if S is symplectic, then so are T and R. This follows by noting that 

(A.21) 

On both sides we have a product of a positive definite matrix and an orthogonal matrix. 

Since the polar decomposition is unique, we have JTJ-1 = T-1 a.Ild JRJ-1 = R, which 

shows that both T and R are symplectic. 

Every T matrix can be uniquely represented as the exponential of JK8 for some 

symmetric K 8 in the s-subspace, and every R matrix can be represented as the exponential 

of JKa for some symmetric Ka in the a-subspace (but not uniquely, because some matrices 

in the a-subspace generate one-parameter subgroups which are periodic). Therefore any 

symplectic matrix S can be written in the form 

S = exp(JKB) exp(JKa)· (A.22) 

A matrix R which is both orthogonal and symplectic must satisty both RJR = J 

and Rii = RR =I. From these relations we can show that the form (A.S) must satisfy 

D =A and B =-C. Therefore we writeR in the form 

R=(-~ i)• (A.23) 

.. 



where X and Y satisfy . 

-149-

xX+YY=I, 

XY-YX=O. (A.24) 

Therefore the N X N complex matrix u = X + ,y satisfies uut = I, and is unitary. 

.. Conversely, every N X N unitary matrix U = X + tY, when converted into a 2N x 2N 

real matrix via Eq. (A.23), produces an orthogonal symplectic matrix. Furthermore, the 

group multiplication law is reproduced, i.e. R(UI)R(U2 ) = R(U1 U 2). Therefore the R 

matrices form a 2N-dimensional real representation of the group U(N), i.e. 

Sp(2N) n 0(2N) "'U(N). (A.25) 

(This representation is reducible; see Eq. (A.41).) 

Since the polar decomposition is unique, and since the space of T matrices has the 

topology of m.N(N+l), Sp(2N) has the topology of the product, 

Sp(2N) - m.N(N+l) X U(N). (A.26) 

In the special case N = 1, the group U(1) merely consists of the complex phase factors 

eia, and has the topology of a circle, denoted S 1• Therefore 

Sp(2) - m.
2 x s1

, (A.27) 

which shows the appearance of the periodic·slab mentioned earlier. 

For N > 1 we call on the fact that for any unitary U, det U = eia is a phase factor. 

Therefore U can be uniquely written as 

(A.28) 

where det U0 = 1, and 0 :$: a < 21r. The matrix U 0 is an element of the group SU(N), 

which is simply connected. Therefore, topologically speaking, we have 

Sp(2N) - m.N<N+I> x su(N) x S 1 . (A.29) 
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The group Sp(2N) is the product of a simply connected space with a circle. The circle 

provides the "hole" mentioned earlier, and the corresponding winding number and Maslov 

index. 

Because SU(N) is a subgroup of U(N), it is also represented as a subgroup of Sp(2N). 

The symplectic matrices comprising the representation of SU(N) are R matrices of the 

form (A.23), with det(X +tY) = 1. Similarly, unitary matrices which represent multipli­

cation by a phase factor, U = ei.8I, are represented within Sp(2N) by R matrices of the 

form 

R(,B) = ( c?s ,BI sin ,BI ) 
- sm ,BI cos ,BI · 

(A.30) 

In principle, one can use the following algorithm for dete~ing the winding number 

of a closed curve S(t) in the space of symplectic matrices. For each t, we apply the polar 

decomposition, to get S(t) = T(t)R(t). We discard the positive definite symmetric part 

T(t), .. and write R(t) in the form (A.23), SQ that X(t) + iY(t) =-U(t) is unitary. We then 

factor U(t) according to Eq. (A.28), to obtain the angle a(t). That is, we set 

a(t) = argdet(X + tY). (A.31) 

The winding number is then determined directly from a(t). 

In practice, however, the polar decomposition is awkward to use, and the following 

alternative algorithm works just as well. Instead of using the angle a(t), we use the angle 

ry(t), defined directly in terms of S(t) by 

ry(t) = argdet(A +£B). (A.32) 

The angle ry(t) gives the same winding number as a(t) for the following reason. We 

decompose S(t) into a product of three matrices, 

S( t) = ( '!' 1 T 2 ) ( cos a IN I sin o: IN I ) ( X 0 Y 0 ) . 
T 2 T 3 - sin a IN I cos o: IN I -Yo Xo ' 

(A.33) 



-145-

where T1 and T3 are symmetric and positive definite and where det(Xo + iYo) = +1. 

Multiplying this out, we have 

(A.34) 

or 

(A.35) 

By the symplectic condition (A.9) applied toT, the matrix T11T 2 is symmetric, so the 

eigenvalues of I+ iT1'1T2 are complex numbers of the form 1 + i)., with ). real. When 

S(t) goes through one period, these eig~nvalues execute closed paths which are strictly to 

the right of the imaginary axis, and which do not, therefore, encircle the origin. Thus, the 

winding number determined by a( t) is the same as that determined by 1( t). 

EspeCially in work on coherent states, it is sometimes useful to consider complex 

symplectic matrices.· These are defined in the same way as real ones, and satisfy the 

relations (A.9-A.ll). A complex symplectic matrix of some importance is 

W _ .2_ (I t1) 
- y'2 t1 I ' (A.36) 

which is also symmetric and unitary. This matrix is responsible for the complex classical 

canonical transformation which takes ( q, p) into creation/ annihilation variables, 

~ = ~(q +ip), 

i~· = ~(iq + p). (A.37) 

A useful complex representation of Sp(2N) is obtained by conjugating the real one 

with W. We write 

(A.38) 

where the subscript c denotes the complex representation. Since W is complex symplectic, 

so is Sc. Sc partitions as follows: 

(
A* 

Sc = ir -ir*) 
A ' (A.39) 
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where the N X N complex matrices A., r are given by 

A= ![(A+ D)+ i(B- C)], 

r = ! [ (A - D) - i (B + C)]. 

My notation is based on that of Bargmann (1961]. 

(A.40) 

The R matrices become especially simple in the complex representation. We have 

(
u• 

Rc= O (A.41) 

where U = X + ~y is unitary. 

Although the polar decomposition is useful for many purposes, it is not invariant under 

symplectic transformations. That is, the matrix ~0RS0 1 is not in general orthogonal, even 

if R is. However, the set of matrices S0RS0 1 , for all orthogonal symplectic R, does form 

a representation of U(N) which is just as good as the "standard" one we have been using, 

in the sense that the same topological conclusif"ns can be drawn (the topology does not 

change under a change of coordinates). 

In fact, there is not very much about the symplectic matrices which is invariant under 

a conjugation. Neither the R subgroup, nor the T subspace, nor the phase ·angle a, nor 

the decomposition of the Lie algebra into a- and s-type subspaces is invariant. However, 

the winding number of a closed curve S(t) is an invariant, as also is the secular equation 

(A.l). 

Neither U(N) nor SU(N) is an invariant subgroup of the symplectic group Sp(2N), 

and the coset spaces Sp(2N)/U(N) and Sp(2N)/ SU(N) are not groups. The Lie subalge-

bra consisting of the a-type matrices Ka is not invariant under the adjoint representation 

of Sp(2N). 

Other subgroups of Sp(2N) are of physical interest. A linear point transformation is 

represented by a symplectic matrix in which B = C = 0, which means that A is nonsingular 

·• 
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and D = A - 1
• Such a symplectic matrix represents the transformation q' = A · q, 

p' = A - 1 • p. In the special case that A is orthogonal, we have a classical rotation 

operator, 

(A.42) 

where AA = I. The symplectic matrices of this form constitute a representation of the 

group O(N), which is a subgroup of the group U(N) discussed above (i.e. Eq. (A.42) 

has the form of Eq. (A.23), with X = A, Y = 0). If N = 3, then a one-parameter 

subgroup of this group represents rotations about some fixed axis in physical space, and 

it forms a closed curve in Sp(2N) of period 211" with respect to the angle of rotation. The 

winding number of this curve in Sp(2N) is zero, which is responsible for the fact that the 

components of orbital angUlar momentum are quantized in integral multiples of n. In this 

case the semiclassical quantization is exact, because the components of orbital angular 

momentum are quadratic functions of q, p. More generally, as is easily seen on the basis,of 
~ . 

Eq. (A.32), the angle 1 corresponding to any point transformation is zero. The only way 

to get a nontrivial Maslov index is to engage both position and momentum simultaneously 

in an operation on phase space. 
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Appendix B. The Wigner-Weyl Formalism 

This appendix summarizes and develops a symplectic notation for the Wigner-Weyl 

formalism, in order to show its intimate relation to the Heisenberg and metaplectic oper­

ators. Recent reviews or other articles of interest on the Wigner-Weyl formalism include 

Berezin and Subin [1972), Balazs and Jennings [1984), Carruthers and Zachariasen [1983), ~ 

Hillery, O'Connell, Scully and Wigner [1984], McDonald [1983], and Mizrahi [1984]. More 

mathematical treatments of symbol theory and applications are given by Dubinskii [1982], 

Grossman, Loupias and Stein [1968], Hormander [1971], Treve [1980], Voros [1976, 1977], 

and Weinstein [1975]. Part of the mathematical interest in symbols is in proving theorems 

about partial differential equations, in which rigorous statements concerning domains of 

definition are important. In this appendix, we mostly ignore such issues. 

Unfortunately, most of the accessible references on the Wigner-Weyl formalism fail to 

emphasize its representation independence, nor do they make its fundamental symplectic 

invariance manifest. The purpose of this appendix is primarily to draw attention to such 

features, as well as to provide a summary of useful formulas. 

We begin with symbols. In general, a symbol is some way of representing an operator 

. on Hilbert space in terms of functions defined on some space with a classical interpretation. 

In all important cases, this space has. dimensionality 2N, and the represent~tion is linear. 

For example, the x-space matrix element of an operator A, (xiAix'), can be interpreted 

as a symbol on the space (x,x'). The two point dielectric function !(x,x') used in plasma 

physics falls into this category. One can also use the mixed x- and p-space, or full p-space, 

matrix elements. Clearly, these symbols uniquely specify the operator in question. 

If an operator A is a simple function of the operators ( q, p) = z (see Eq. ( 3.1)), then 

one can obtain a symbol for A simply by replacing ( q, p) by their classical counterparts 

( q, p) = z, without regard to ordering, and dropping all terms of order n or higher (which 
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could be present in the original expression for A, or which could be introduced by chang­

ing the ordering of the q's and p's). We will call this the principal symbol, which can be 

interpreted as a function a = a( q, p) on the classical phase space. This symbol does not 

uniquely specify the operator it was derived from, because of the neglect of ordering is­

sues. In most cases of interest in quantum mechanics, the principal symbol of the quantum 

Hamiltonian is the classical Hamiltonian. However, the principal symbol is not always de­

fined. For example, the propagator U(t) = e-itH/1& does not have a power series expansion 

in 1i, and therefore the principal symbol does not exist. The same is generally true for 

projection operators j.,P)(.,Pj. In cases in which other symbols, such as the Wigner-Weyl 

symbol or the coherent state symbol, have power series expansions in 1i, the leading term 

(i.e. the 0(1i0 ) term) is identical with the principal symbol. This is to say that these 

other symbols differ from one another only by higher order terms in 1i, assuming that 

they have an expansion in 1i at all, and that these differences amount to different ordering 

conventions. 

By adopting some ordering convention and keeping all terms in 1i, one can obtain 

symbols which do uniquely represent the corresponding operator. Suppose, for example, 

we commute all p's to the right and all q's to the left in the expression for some operator 

A, and then replace the q's and p's by their classical counterparts. Then we obtain the 

"q-before-p symbol" (called the ordinary symbol by McDonald [1983]). This symbol is 

extensively used in the mathematical literature, and is especially suggestive for differential 

operators in x-space. It also tends to appear in WKB theory based on the Hamilton­

Jacobi equation. However, it has some unpleasant properties, such as the asymmetry it 

introduces between q and p, and the fact that Hermitian operators do not in general have 

real symbols. Similarly, one can define the p-before-q symbol, which has similar drawbacks. 

The Feynman path integral leads to symbols. However, if the time evolution operator 

(the Hamiltonian) involves any nontrivial ordering issues, then the definition of the symbol 
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gets mixed up with the procedure used to discretize the paths, as discussed by Feynman 

and Hibbs [1965], Schulman [1981], and Langouche, Roekaerts, and Tirapegui [1982]. If the 

q-before-p ordering is adopted, then the path discretization is easier, but then we return 

to the unpleasant features of the q-before-p symbol. We shall not deal with these issues, 

nor shall we make any use in this paper of the q-before-p symbol. 

The coherent state symbol emerges from the coherent state path integral (Klauder 

[1978], Schulman [1981]). It is discussed in Appendix C. 

The most satisfactory symbol is the Weyl symbol. It comes in two versions, which we 

denote by a(z) and a(z) for some operator A. These are sometimeS called the covariant 

and contravariant versions. The symbol a(z), which we shall call the alternative Weyl 

symbol, is defined implicitly by 

I ff?Nz 
A= (21r1i)N a(z)T(z). (B.l) 

In other words, a(z) is the expansion coefficient in· a representation of A in terms of a 

linear combination of Heisenberg operators. The fact that such a representation exists and 

is unique (modulo domain questions, which we ignore) is due to the irreducibility of the 

Heisenberg operators. Explicitly, if such an a(z) exists, then by Eq. (3.31) it must be given 

by 

a(z) = Tr(T(z)t A]. (B.2) 

Conversely, if we take this a(z) and substitute it into the integral of Eq. (B.l), then use of 

Eq. (3.30) shows that the result is just A. 

The second version of the Weyl symbol, a(z), which we shall call the ordinary Weyl 

symbol, is the Fourier transform in phase space of the one just given, where the phase 

of the exponent in the Fourier transform is given in terms of the symplectic form w (see 

Eqs. (A.3)-(A.4)). This symbol is the one usually considered as the Weyl symbol proper, 
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and it is defined by 

I cf2Nz' . ' 
a(z) = ii(z') eiw(s ,s) 

(21rtt)N · 
(B.3) 

Inverting this gives 

I 
.J2N. I _ a- z • ' 

a(z) = a(z') exw(• ,s) 
(21rtt)N · 

(B.4) 

The signs in the exponents of these expressions are correct. Both symbols ii(z) and a(z) 

uniquely specify the corresponding operator, and are defined even when the principal 

symbol is not. 

Since the association between operators and Weyl symbols is invertible, one can in 

principle use the Weyl symbol to perform exact quantum mechanical calculations on a 

classical-looking phase space, with no approximation. In addition, if one is interested in 

semiclassical approximations, then certain properties of the Weyl symbol make it especially 

attractive for this purpose as well, such as the ease with which the canonical structure 

of classical mechanics makes its appearance in the Wigner-Weyl formalism. As a result, 

several authors have explored the use of the Weyl symbol in semiclassical mechanics (Berry 

[1977], Bialynicki-Birula (1977], Carruthers and Zachariasen (1983], Heller [1976, 1977b], 

Smith [1978], and Springborg [1984]). The full promise of this approach has probably not 

yet been realized. 

If the operator A is Hermitian and has Weyl symbols ii(z), a(z), then the symbols 

of the operator At ar~ respectively ii( -z)* and a(z)*. In particular, the ordinary Weyl 

symbol of a Hermitian operator is real. In most cases in quantum mechanics, the ordinary 

Weyl symbol of the quantum Hamiltonian is the classical Hamiltonian, and agrees with 

the principal symbol. In plasma physics, the Weyl symbol of the dielectric operator is the 

local dispersion relation i(x, k), and has been used in WKB analyses by Berk and Pfirsch 

[1980] and others. 
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The relationship between the Weyl symbols and the x-space matrix elements is given 

by 

(B.5) 

and 

(B.6) 

where z = (q,p). This follows easily from the formulas above and Eq. (3.19). Equation 

(B.6) shows that the ordinary Weyl symbol is the Fourier transform of the x-space kernel 

of the operator A, taken over the difference variable s = x - x, while holding the sum 

variable q = (x + x)/2 fixed. One often has reason to interpret_the difference variable as 

"rapidly varying," whereas the sum variable is "slowly varying." Thus, the Weyl symbol 

has the nature of a local Fourier transform (de Bruijn [1973)), and leads to such things as 

local dispersion relations. 

Special cases of the Weyl symbols are ofinterest. If the operator A.= 1, then a(z) =· 

(21r1i)N 6(z) and a(z) = 1. If A= z0 , a= 1, ... 2N, then 

-( ) _ (2 t:.)N •t:.J a6(z) 
a z - 1t'" '" a/3 a ' Zf!J 

(B.i) 

and a(~) = Za· More generally, if A is a polynomial in i, then a(z) consists of 6-functions 

and their derivatives at z = 0, and a(z) is a polynomial in z. a(z) can be nonzero away 

from z = 0, but only if A is not a polynomial in i. 

Consider three operators A, B, C such that C = AB, and let their Weyl symbols be 

a, b, c, a, b, c. Then 

_ I fflNz' i ( , ) _ -
c(z) = eViw • ·• a(z')b(z- z') 

(21rn)N · 
(B.B) 

The corresponding formula for c(z) cannot be reduced to a single integral: 

c(z) = e2Xw(s ·• ) a(z + lz')b{z- lz"). I d2Nz' ~Nz" i , , 

( 41t'n)2N 2 2 
(B.9) 
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However, by expansion in Taylor series and repeated integration by parts, the equation for 

c(z) can be formally written as a power series in 1i: 

(in-) c(z) = a(z) exp 2 L b(z), (B.lO) 

-where L is the "Janus operator," 
+- ~ .... a a 

L =-a Jafl-a , 
Z 01 ZfJ 

(B.ll) 

in which the two partial derivatives act in opposite directions (the left one on a(z), the 

right one on b(z)). The first few terms of Eq. (B.10) are 

'1i 
c{z) = a(z)b{z) + '

2 
{a, b} + 0(1i2

), (B.12) 

where the curly bracket is the Poisson bracket. Since the operators A and B in general 

do not commute, whereas multiplication of functions on phase space does commute, the 

symbol of the product of two operators cannot simply be the ordinary product of the 

symbols. However, Eq. (B.12) shows that the leading term is the ordinary product, and 

that there are corrections of higher order in 1i. It is interesting that the first correction 

involves the classical Poisson bracket. 

Equation (B.lO) is called the Groenewold [1946] formula, or, as we shall call it, the 

W eyl product rule. It must be used with caution, especially if the symbols a( z) pr b( z) 

are not simple power series in 1i. In particular, if they are the symbols of propagators 

or projection operators (i.e. Wigner functions), then they are likely to have an essential 

singularity in 1i at 1i = 0, invalidating the ordering indicated in Eq. (B.12) and jeopardizing 

,the convergence of the series. Nevertheless, the series (B.12) shows the emergence of the 

classical Poisson bracket in the symbol formalism, and provides powerful persuasion that 

an approach to semiclassical mechanics based on the Heisenberg operators is the correct 

approach. The operation of Eq. (B.10) has been denoted c =a • b by Bayen et al. [1978], 

and used by them to develop a path integral {see also Sharan [1979]). A similar path 

integral has been discussed by Berezin and Subin [1972] and Berezin [1980]. 
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If instead of C = AB, we take C =AB-BA= [A,B], then we obtain 

( in -) ( in ..... ) c(z) = a(z) exp 2 L b(z)- b(z) exp 2" L a(z). {B.13) 

Expanding this out to the first few terms gives 

c(z) =in{ a, b} + O(n3
), (B.14) 

which shows the relationship between the quantum mechanical commutator and the clas-

sica! Poisson bracket. 

Equation (B.13) provides the definition of the Moyal [1949] bracket, which we distin­

guish from the Poisson bracket by the subscript M: 

c(z) = in{a,b}M· (B.15) 

Like the Poisson bracket, the Moyal bracket is antisymmetric and satisfies the Jacobi 

identity, but it is not a derivation (i.e. a bilinear operation involving first order differential 

operators). It is in a sense a nonlocal operation on phase space, as can be seen by putting 

it into an integral form like Eq. (B.9). The approximation of the Moyal bracket by the 

classical Poisson bracket (i.e. keeping only the first term in Eq. (B.14)) is related to the 

approximation involved in wave packet propagation, as discussed in Sec. 2. 

The trace of an operator is given in terms of its Weyl symbols by 

(B.l6) 

The Hermitian scalar product of two operators is given in terms of their Weyl symbols by 

t I tflNz .. ... I tflNz * 
Tr(A B) = (21rn)N a(z) b(z) = (21rn)N a(z) b(z). (B.l7) 

The final equality is a version of Parcival's theorem. 

Given a state I '1/J}, one can associate with it a function on the classical phase space 

which has most of the properties one would expect for a classical Liouville probability 

density function.· This is the Wigner function W(z), and it is the ordinary Weyl symbol 
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of the projection operator 11/J)('I/JI. Since this operator is Hermitian, the Wigner function is 

real. Assuming that 11/J) is normalized, Eq. (B.16) immediately gives 

I tflNz 
(21rn)N W(z) = 1. (B.18) 

If A is any operator, then Eq. (B.17) gives 

I tflNz 
(1/liAI'I/l) = (21rn)N W(z)a(z). (B.l9) 

In particular, setting A = z, we have 

I tflNz 
(z) = (21rn)N W(z) z. (B.20) 

If lx) is some state with Wigner function V(z), then 

l(xi'I/J)I
2 

= Tr(lx)(xi1P)('I/ll) =I (~~~ V(z)W(z). (B.21) 

. In particular, if lx) = lx), we have V(z) = V(q,p) = 6(x- q), as one can easily show by 

use of Eq. (3.19). Therefore Eq. (B.21) becomes 

2 I dNp 
11/J(x)l = (21rn)N W(x, p), (B.22) 

which shows that the integral of the Wigner function over momentum is the probability 

density in configuration space. Similarly, if lx) = IP), we find 

2 I dNq 
1</>(p)l = (21rn)N W(q,p), (B.23) 

where </>(p) is the momentum space wave function, so that the integral of the Wigner 

function over position is the probability density in momentum space. 

In all of the properties (B.18)-(B.23), the Wigner function behaves exactly like a 

classical Liouville probability density function /(z) on phase space (apart from the factor 

(21rn)N). However, unlike the Liouville function, the Wigner function may take on negative 

values. 

The Wigner function W(z) associated with a state 11/l) is a nonlinear function of the 

state, and does not obey linear superposition. The overall phase of 11/l) is lost on going to 
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the Wigner function; apart from this, 11/1) can be reconstructed from W(z) (assuming that 

W ( z) represents a pure state). 

In statistical mechanics, the Wigner function is taken to be the Weyl symbol of the 

density operator p. This includes the previous usage of the Wigner function as a special 

case, i.e. when p = l'l/1)(1/11. It is in this context that the Wigner function was first used by 

Wigner [1932]. This generalization produces obvious modifications to Eqs. (B.19)-(B.23), 

e.g. the left hand side of Eq. (B.19) becomes Tr(pA). 

Given a real function f(z) on the phase space, one would like to know if it represents 

a Wigner function, i.e. the symbol of some density operator p. One can in principle 

invert the Weyl symbol relations to find the Hermitian operator corresponding to /(z). 

If the result is a . density operator, it must be positive semidefinite and satisfy Tr p = L 

However, the positive semidefiniteness condition seems difficult to interpret in the Wignero' 

Weyl formalism, so that it is not easy to tell if a given /z) represents a Wigner function 

(Voros [1976, 1977]). 
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Appendix C. Coherent States 

Coherent states can be traced back to Schrodinger [1926], but they have attracted 

special interest in recent years, since the work of Glauber [1963]. They are reviewed by de 

Groot and Suttorp [1972], Klauder and Skagerstan [1985], Klauder and Sudarshan [1968], 

and Schulman [1981]. Generalizations have been proposed or developed by Klauder [1979, 

1982], Nieto and Simmons [1979], Perelemov [1977], and Yaffe [1982]. The purpose of 

this appendix is to summarize some important facts about coherent states, while at the 

same time relating them to the symplectic formalism of this paper and emphasizing their 

features which are representation independent. 

We take any normalized state IO) and act on it with the Heisenberg operators T(z) 

(given by Eqs. (3.12) and (3.19)) in order to define the new states, 

lz) = T(z)IO). (C.1) 

The vector z is the real 2N -dimensional coordinate vector on the classical phase space. 

The 2N-dimensional family of states lz) provides a resolution of the identity, 

(C.2) 

as follows immediately from Eq. (3.30). This fact is a result of the irreducibility of the 

Heisenberg operators, and has nothing to do with the state IO), apart from the fact that it 

is normalized. In particular, it has nothing to do with Gaussians. Because of this, Klauder 

[1978] has called IO) the "fiducial" state. 

If the state IO) satisfies (Oii!O) = 0, then by Eq. (3.4) we have 

(zlilz) = z. (C.3) 

The states I z) can then be seen as wave packets, centered at location z in phase space 

(their Wigner functions will be so centered). If in addition the fiducial state IO) is taken 
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to be the state with the x-space wave function, 

( 10) _ 1 -x·x/21i 
X - (7r1i)N/4 e ' (C.4) 

then the states lz) form what we shall call the standard coherent states. See Sec. 6 for 

a discussion of the units chosen for x in this equation. This appendix deals only with 

standard coherent states. 

Equation (C.4) represents the ground state of the isotropic harmonic oscillator, which 

is an eigenstate of the annihilation operator with eigenvalue 0. Therefore we introduce the 

operators ~' ft, 

(C.5) 

which are creation/ annihilation operators. The matrix shown is the complex symplectic 

matrix W of Eq. (A.36). The operators?, iff therefore ph.y the role of Q, Pin Eq. {4.1), 

and the commutation relations (4.2) are satisfied. However, they are not Hermitian. The 

classical counterpart of Eq. (C.5) is given.in Appendix A, and produces the classical com­

plex canonical variables~' i~*. Either one of these (a complex N-vector) contains the same 

information as the 2N -dimensional real vector z (assuming q and p are real). 

By Eq. (3.4) we have 

T(zo)t f T(zo) = f + ~o, (C.6) 

and therefore 

flzo) = ~olzo). (C.7) 

The standard coherent states lzo) are eigenstates of the annihilation operator with eigen~ 

value ~O· 

In this sense, the coherent states lz) are like the states IQ(Q)) discussed in Sec. 4, and 

the transformation connecting the q-basis and the coherent state basis is a special kind 

of metaplectic transformation, related to the complex symplectic matrix W of Eq. (C.5) 
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and (A.36). No doubt a fully satisfactory theory of coherent states would involve the 

complex generalization of the symplectic group (and the nonunitary generalization of the 

metaplectic group). Probably the theory of Kramer, Moshinsky, and Seligman [1975] could 

be applied here, and would result in a deeper understanding of the coherent states, but 

to my knowledge this has not specifically been done. In any case, the present analogy is 

imperfect, because a Hermitian Q has both eigenkets and eigenbras, both outside Hilbert 

space, whereas the non-Hermitian ? has good eigenkets within Hilbert space, but no eigen­

bras. (?t has eigenbras, but not eigenkets.) See also Weissman [1982], who treats complex 

, canonical transformations. 

The q-basis wave functions for the coherent states are given by 

{xlz) = {xiT(z)IO) 

1 { 1 [ 1 (- -) ( ) ·- i- ] } = (1rn)N/4exp i -2x-q. x-q +~p·x-2p·q . (C.B) 

This follows from Eq. (3.19). In terms of the complex vector~' this can also be written 

{xlz) = (1rn~N/4 exp { ~ [ -!1~1 2 - !x · x- !~ · ~ + v2x · ~J}, (C.9) 

where 

(C.10) 

This equation represents a kind of Euclidean metric on the classical phase space, which 

arises from the choice made in Eq. (C.4) for the fiducial state. This metric makes its 

appearance in semiclassical calculations based on coherent states, and all representation 

independent quantities which ~ in such calculations can be expressed in terms of this 

metric and the symplectic form w. Of course, only the latter has a purely classical signifi-

cance. 

Equation (C.2) provides a means of defining wave functions on phase space. We denote 

such a function by tPcs(z), which is given in terms of t/l(x) by 

tPcs(z) = {zlt/l) =I dx (zlx)(xl t/l) =I dx (zlx)t/l(x). (C.ll) 
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The inverse of this is 

(C.12) 

Unlike the Wigner function, the coherent state wave function 'fllcs(z) is a linear functional 

of 'f/l(x), and obeys linear superposition. However, it lacks the compelling uniqueness of 

the Wigner function, since its definition is dependent on the choice of the fiducial state, 

and because of the over-completeness of the coherent states. It is interesting to note that 

the coherent state wave function is a form of the Weyl symbol, since 

'fllca(z) = Tr [T(z)tl'f/1)(01] . (C.13) 

One can also define coherent state matrix elements for an operator A. These are given 
' 

by· 

Ac.,(z,z') = {ziAiz'). (C.14) 

The operator A, .and hence its full coherent state matrix elements, are uniquely determined 

uy the diagonal values alone (Klauder [1978), Mizrahi [1984]), 

aca(z) = Aca(z,z) = {ziAiz). (C.15) 

We call aca(z) the coherent state symbol of A. It arises in the coherent state path integral 

(modulo some issues of path dis~retization), and in other places as well. 

The coherent state wave function 'fllca(z) has the property that the quantity 

( C.16) 

is an entire analytic function of ~· (i.e. of its N complex components). Similarly, the 

quantity 

(C.17) 

is an entire analytic function of both ~· and ~'· Much has been made of these facts by 

Bargmann [1961), who has developed a theory of the Hilbert space of analytic functions. 

A readable introduction to this subject has been given by Schulman [1981]. 
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The coherent states are complete but not orthogonal, since 

(zlz') = exp [~ ( -!1~1 2 - !k'l2 + f* · ~')] 

= exp { ~ [-!1~- ~'1 2 - iw(z,z')]}, (C.18) 

where 

( ') .(.... I - '*) w z, z = t ~ . ~ - ~ . ~ . (C.19) 

The overlap of the coherent states falls off exponentially as z and z' separate from each 

other in phase space, as measured by the distance specified by the coherent state metric, 

Eq. (C.lO). The phase is the symplectic form. Perhaps the coherent state metric should 

be interpreted as a symmetric, complex extension of the antisymmetric, real symplectic 

form. As shown in Sec. 8, the coherent state metric has a symplectic interpretation. 

The nonorthogonality of the coherent states is a reflection of the fact that they ate 

grossly overcomplete. This leads to their "reproducing kernel," as discussed by Klauder 

[1978]. The overcompleteness can be greatly reduced by restricting consideration to those 

coherent states situated on lattice sites in phase space, defined by the unit q-p cell of 

volume (21rn)N. One can also use any lattice obtained from this one by the action of a 

symplectic matrix (a symplectic lattice). This is obviously a kind of a semiclassical result, 

but I do not know what its significance is. See Bacry, Grossman and Zak [1975], Lion and 

Vergne [1980], Perelemov [1971, 1977], Schulman [1981], and von Neumann [1955]. 

A relationship between the coherent state symbol aca(z) and the Weyl symbols a(z), 

a(z) for some operator A can be derived as follows. We write 

aca(z) = (OIT(z)t A T(z)IO) 

=I 
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= j (~:;~ exp [ -~w(z, z')- 2~ 1>'12
] ii(z'), (C.20) 

where we have used Eqs. (3.22) and (C.18). Next, application of.Eq. (B.4) gives 

(C.21) 

The ordinary Weyl symbol in the integrand can be expanded in powers of z', yielding 

integrals which are moments of Gaussians. These can all be done, giving finally 

aea(z) = exp [~ (:;.2 + !~2 )] a(z). (C.22) 

This result is subject to the same warnings surrounding the Weyl product rule, Eq. (B.lO). 

But it shows explicitly that for operators· whose symbols are powers series in 1i, the leading 

term of'both the coherent state symbol and ordinary Weyl symbol is the same (and is 

identical with the principal symbol). The phase space Laplacian appearing in Eq. (C.22) 

involves the inverse or contravariant version of the coherent state metric. It will be gener-

alized in Sec. 8. 
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Figure Captions 

1. Nearby orbits in classical mechanics. The solid curve is the reference orbit, and the 

dotted curve is the orbit nearby. 

2. The classical time evolution of a Gaussian ensemble of free particles. The velocity 

differential causes the circle to shear into an ellipse. 

3. The Heisenberg operators do not commute, due to the overall phase. The phase is 

the first Poincare invariant associated with the triangle. 

4. Heisenberg operators can be used to move a wave function along a curve in phase 

space. 

5. The left null eigenvectors u of B lie in p-space. They are orthogonal to the caustic 

surface, which lies in x-space and is parallel to the image of B. The right null 

eigenvectors v of B lie in p'-space; they span the kernel of B. The diagram illustrates 

the case n = 1, r = 2, N = :1. 

6. Lagrangian planes and caustics for a quadratic Hamiltonian in one dimension. The 

initial condition is x'. The final point X3 is a caustic of the Lagrangian plane £2. 

7. Caustics and Lagrangian manifolds for nonlinear Hamiltonians. The final point X3 

lies on a caustic associated with Lagrangian manifold L 1 • 

8. Caustics in a multidimensional problem. The Lagrangian manifold L .has a singular 

projection onto configuration space at the point x. The caustic surface is a curve in 

configuration space, whose tangent is determined by the null eigenvectors of B. B is 

the submatrix of the symplectic matrix governing orbits nearby the reference orbit 

z(t). 

9. Classical picture corresponding to the mixed x- and p-space Green's function. 
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10. The matrix function B(t) passes through a first order caustic. There are two sides 

to the caustic surface. 

11. The set of points in B matrix space where det B = 0 do not form a. smooth surface 

where the rank of B drops. 

12. Sometimes a second order caustic is avoided altogether by introducing a small per­

turbation into B(t). 

13. Sometimes a second order caustic bifurcates into two first order caustics under a 

small perturbation. 

14. The evolution of localized Liouville distribution functions in the nearby orbit approx­

imation. 

15. The Wigner ellipsoid in phase space. Some Gaussians appear to be more than mini­

mum uncertainty because they are viewed from the wrong symplectic frame. 
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