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Abstract

Transcriptional Signatures of the Tumor and the Tumor Microenvironment Predict

Cancer Patient Outcomes.

by

Bianca Xue

The cellular components of tumors and their microenvironment play pivotal roles in

tumor progression, patient survival, and the response to cancer treatments.

In my doctoral thesis, I describe a new way to extract transcriptional signatures from

gene expression data of tumor components and microenvironments and access their influence

on cancer patients.

Tumor immune infiltration has been studied for years for its high correlation with

patients’ survival. Many immune therapies are dependent on the detection and quantification

of cell types present in bulk tumors. Bulk tumor microenvironment deconvolution has been

largely limited by low number of cell types signatures. Leveraging cell type signatures derived

from scRNA-seq data provides a broader range of cell types in detection and quantification of

tumor infiltration, therefore helping in developing cancer immunotherapy and targeted cancer

therapies.

I developed a new method called scBeacon, a novel tool that derives cell-type sig-

natures by integrating and clustering multiple scRNA-seq datasets to extract signatures from

public data consortiums while minimizing batch effects. I derived a comprehensive set of hu-

man cell-type signatures from Single Cell Expression Atlas and performed TCGA bulk tumors
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deconvolution analysis using the cell-type signature profile. These cell type estimates enable

the detection of a pan-cancer high-risk sample group that is not detected by traditional gene

expression analysis.

Cancers are traditionally classified into types and subtypes by the organ- and cell-of-

origin. However, there are tumor samples that consist of a mixture of cancer subtypes and raise

challenges in characterizing the subtype profile for mixture samples. Inspired by the scBeacon

deconvolution analysis, I used a similar approach to detect and quantify the subtypes in tes-

ticular germ cell cancer mixture samples. In addition, I used single-cell RNA-seq signatures

to characterize the major cell types and their differential states in testicular germ cell cancer

samples.

For glioblastoma, I used predefined cell state marker genes to deconvolute bulk glioblas-

toma tumors using a hierarchical deconvolution approach. It proved using hierarchical decon-

volution addresses the nature of cell type differentiation, which could give a finer resolution

for deconvolution, especially when some rare cell types come from a subpopulation of a very

similar cell type. This approach is particularly useful for brain tissue deconvolution because of

the complexity of cell type lineages in brain development.
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Chapter 1

Motivation and Introduction

Single-cell RNA sequencing (scRNA-seq), first described in 2009[44], has made rev-

olutionary changes in biology. scRNA-seq provides higher resolution compared to traditional

bulk RNA sequencing. In contrast to studying the average gene expression profiles of a mix-

ture of diverse components of cells, scRNA-seq enables biologists to study pure cell types at a

single cell level, identifying trajectories in organ development from cell differentiation. Since

then, more and more cell types in the human body are discovered. As the technology advances,

the cost of performing scRNA-seq experiments drops dramatically, leading to an explosion

of scRNA-seq datasets deposition on public data consortiums. However, with the abundance

of scRNA-seq data, most of the research labs still use a small proportion of total scRNA-seq

datasets available to perform analysis, leaving out useful transcriptomic profiles in other datasets

due to the limitation of computational resources. It is essential to build a computational efficient

pipeline to process large amounts of scRNA-seq data while preserving the biological informa-
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tion within transcriptomic data. Motivated by this idea, in my first aim, we built scBeacon,

a novel tool that derives cell type signatures by integrating and clustering multiple scRNA-

seq datasets to extract cell-type signatures. With scBeacon, I curated 217 cell-type signatures

from Single Cell Expression Atlas and annotate cell types for scBeacon signatures with curated

marker gene databases and using statistical methods (see Chapter 2).

The World Health Organization reports cancer as the second leading cause of death

globally. This year, 2021, 1,898,160 new cases of cancer and 608,570 deaths from cancer are

projected to occur in the United States alone [43]. Even though more and more therapies and

medicines for cancer have become available in the past few years, the mortality rates for cancer

are improving. However, there is still a long way to go to understand cancer biology so that

more effective drugs can be developed. Cancer immunotherapy is a revolutionary approach

in the field of oncology that harnesses the power of the body’s immune system to recognize,

attack, and destroy cancer cells. Unlike traditional cancer treatments such as chemotherapy

and radiation therapy, which directly target cancer cells, immunotherapy works by boosting

the body’s natural defenses to fight cancer. Over the past decade, cancer immunotherapy has

transformed the landscape of cancer treatment, leading to remarkable successes in treating a

wide range of cancers, including melanoma, lung cancer, and certain types of leukemia and

lymphoma. However, challenges remain, including identifying biomarkers to predict patient

response, overcoming tumor resistance to immunotherapy. However, studies have shown that

additional cell types and molecular characters beyond immune cells play an important role in

tumor character and response to treatment and patient outcomes[2, 19, 34]. Therefore, it is

important to detect and quantify a full profile of cell types to improve our understanding and
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treatment of cancer. In Chapter 3, I applied the cell-type signatures developed in Chapter 1 to

deconvolute bulk tumor RNA-seq samples in TCGA to construct a comprehensive tumor cell-

type profile. Using the deconvolution results, I analyzed how the presence of each cell-types

influences the survival probability of patients. Some results coincide with known cancer biology

properties such as subtypes.

In Chapter 4, I worked with Testicular Germ Cell Cancer working group(TGCT) to

understand testicular cancer histology. I contributed to the analysis of characterizing the sub-

types in undefined mixture samples, and validated my work with the microscopy results from

pathologists. I’ve also delved into deconvoluting cell-type compositions within testicular tu-

mor samples, gaining a comprehensive understanding of how these ratios correlate with tumor

subtypes and differentiation stages.

The effectiveness of deconvolution tools is often constrained by their capacity to pre-

cisely deconvolute hierarchical subpopulations within complex cell mixtures, since the parent

and children cell types on the same developmental linage often share similar marker gene profile

with very few marker genes to differentiate them. This is especially a challenge for characteriz-

ing brain and brain tumor cell-types. I developed a new approach that incorporates hierarchical

marker genes to construct signature gene profile for deconvolution. In this way, tumor decon-

volution tools gained the ability for precise identification of small cellular subsets that could

potentially be useful in cancer therapy (see Chapter 5).
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Chapter 2

Building comprehensive cell-type

signatures from scRNA-seq datasets

The project described in this chapter was published at Cell Reports Methods. I worked

with Hongxu Ding, who was a postdoc in Stuart lab, to come up with the idea, then developed

and implemented this project, scBeacon, in an R package.

I tested and optimized the method by running it on 63 scRNA-seq datasets collected

from Single Cell Expression Altas, visualized the results, and investigated if the cell-type sig-

natures generated from scBeacon could potentially be used for bulk tumor deconvolution.

2.1 Introduction

Single-cell RNA sequencing (scRNA-Seq), first described in Tang,2009[44], has since

transformed biological research. For the first time, it is now possible to determine gene expres-
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sion separately for each cell in a biological sample. The technology offers the opportunity for

a more detailed and more accurate definition of cell types and cell states. With the explosion

of scRNA-seq datasets deposition on public data consortiums, it is essential to build a com-

putational efficient pipeline to process large amounts of scRNA-seq data while preserving the

biological information within transcriptomic data. Motivated by this idea, we built scBeacon,

a scRNA-seq processing pipeline, to rapidly cluster and integrate datasets and build a compre-

hensive human cell type signature profile. We validated scBeacon is not only able to handle

batch effect effectively, but also computational efficient while ingesting and integrate datasets,

without losing biological variance.

Few computational resources exist that automatically extract cell type information

from scRNA-seq repositories in an unsupervised manner. SCDC[12] leverages multiple scRNA-

seq reference datasets by integrating the deconvolution results with optimized weights. UniCell[8]

is one such recent approach that uses a deep learning model trained on hundreds of fully an-

notated scRNA-seq datasets representing 840 cell types for comprehensive cell types decon-

volution. However, deep learning approaches can lack robustness and lead to “black box”

solutions that are difficult to interpret and share. In contrast, Ecotyper[28] used linear gene

expression vectors extracted from single cell RNA-seq clusters that extend the original LM22

signatures into 64 immune system-related cell types used to deconvolute TCGA samples. Sim-

ilarly, TIMEx[51] extracted 37 immune-related cell-type signatures from a pan-cancer single

cell RNA-seq data compendium and performed enrichment based deconvolution on TCGA bulk

tumors.

I extracted 217 cell type signatures from Single Cell Expression Atlas, 602,359 sin-
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gle cells in total. It extends the work of TIMEx and Ecotyper by including additional single

cell datasets beyond cancer samples and incorporates additional cell types beyond malignant

and immune system types. We introduce a novel non-parametric signature comparison metric

that can detect related clusters across diverse datasets and merge them into a single cell type

signature.

I also validated if the cell-type signatures generated from scBeacon pipeline could

be potentially used for bulk tumor deconvolution using a variety of PBMC(peripheral blood

mononuclear cell) scRNA-seq datasets. I proved scBeacon generated signature can not only

used for deconvolution in CIBERSORT, but also have better performance compared to tradi-

tional count-based signatures, used in most of the deconvolution researches.

scBeacon was developed as part of a collaboration with Seagate technologies. In that

project, the goal was to optimize the retrieval of cell signatures using fast relational queries.

For that reason, only rank-based transformations were considered. While I do show these rank

transformations, perhaps surprisingly, outperform standard representations (like TPM) for the

purposes of deconvolution, an exploration of other normalization and batch correction tech-

niques could reveal further improvements to combining cell signatures across multiple diverse

datasets.
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2.2 Methods

2.2.1 Data

1. The Single Cell Expression Atlas (SCEA), a part of EMBL-EBI’s Expression Atlas, is

a public single-cell RNA sequencing data consortium that hosts datasets from published

studies for six species8. For this analysis, we downloaded the 62 homo sapiens single-

cell RNA sequencing datasets available in February 2020. The datasets come from a

wide range of healthy and diseased tissues, consisting of numerous cell types in the hu-

man body. The 62 datasets were sequenced using different single-cell RNA sequencing

techniques, such as 10X Genomics platform, smart-seq, drop-seq etc.

2. PBMC scRNA-seq datasets:

(a) Ding, Jiarui, et al. ”Systematic comparison of single-cell and single-nucleus RNA-

sequencing methods.” Nature biotechnology 38.6 (2020): 737-746.

(b) 10X-v1: 6k PBMCs from a Healthy Donor, Platform: 10XGenomics v1 chemistry,

Single Cell Gene Expression Dataset by Cell Ranger 1.1.0, published on July 31,

2016

(c) 10X-v2: 8k PBMCs from a Healthy Donor, Platform: 10XGenomics v2 chemistry,

Single Cell Gene Expression Dataset by Cell Ranger 2.1.0, published on November

8, 2017

(d) 10X-v3: 10k PBMCs from a Healthy Donor, Platform: 10XGenomics v3 chemistry,

Single Cell Gene Expression Dataset by Cell Ranger 3.0.0, published on November

7



19, 2018

3. Gene sets used to annotate cell-type signatures are obtained from PanglaoDB[42], Harmonizome[40],

and the cell type pathways from MSigDB (C8)

4. MOCA (Mouse Organogenesis Cell Atlas) dataset[7] contains hundreds of cell types and

56 trajectories from mouse embryos, staged between 9.5 and 13.5 days of gestation.

5. scRNA-seq datasets used to create synthetic bulk samples: human head and neck cancer

dataset[36] (GSE103322), human melanoma dataset[45] (GSE72056), and bulk RNA-

Seq data for each of 6 different melanoma cell lines[33].

2.2.2 Validation of Reciprocal Top-K Enrichment (RTKE) metric

The scBeacon workflow relies on exemplar signatures, i.e. gene expression profiles

aggregated across many single cells similar enough to be clustered together, constructed from

multiple clusters, from possibly multiple datasets, derived from several scRNA-seq platforms

(Fig 2.1A; see Methods). To help mitigate possible batch effects, we use signatures based on

ranking the gene expression data; i.e. each cluster’s expression profile is rank transformed to

form a rank centroid before it is compared to other clusters. We created a Reciprocal Top-K En-

richment (RTKE) metric to detect if the highest expressing genes of one cluster’s rank centroid

are among the top-ranking expressed genes in another cluster’s rank centroid and vice versa.

Using RTKE to link related individual clusters, the pipeline then attempts a second clustering

aggregation step, treating the clusters as the items to be clustered, to identify exemplars from

the metacluster groups of clusters that could represent possible cell types in particular cell states

8



encompassing various tissues, contexts, and developmental stages.

Rank-transformation of the expression vectors is good for harmonizing across datasets,

but it could reduce the cell-type signal that is present in the expression centroids, negatively af-

fecting their usefulness in deconvolution tasks. To address this issue, we compared the deconvo-

lution performance of rank-transformed expression centroids to that of count-based expression

centroids. First, to illustrate that ranking preserves a high degree of cell type information, we

plotted the PBMC data from multiple datasets and platforms using either the original cluster

centroids based on averaged gene expression counts (Fig 2.1B) or using the corresponding rank

centroids (Fig 2.1C). Except for two cases from smart-seq2, the rank normalization centroids are

aggregated by cell type instead of by sequencing platform. In addition, using the RTKE metric

as the distance function enhances the distinction between the three major cell types (Fig 2.1D).

Thus, ranking and RTKE complement to preserve cell type information useful for identifying

cell types across scRNA-seq datasets of different platforms and batches.

2.2.3 In silico immune infiltration evaluation

We created different types of in silico cell type mixtures simulating immune infiltra-

tion in cancer tissue in order to validate the 217 cell type signatures for deconvolution. We cre-

ated 200 in silico mixtures from scRNA-Seq data from a human head and neck cancer dataset58

(GSE103322), human melanoma dataset59 (GSE72056), and bulk RNA-Seq data for each of 6

different melanoma cell lines60. The centroid of all scRNA-Seq tumor cells or bulk RNA-Seq

cell lines in each dataset was used to represent the tumor components of the mixture. The tumor

components was randomly assigned a mixture percentage between 50 and 90%. The rest of the

9
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Figure 2.1: scBeacon workflow and validation. (a) scBeacon workflow. Individual scRNA-
seq datasets are clustered using Louvain clustering. Cluster centroids are ranked and then com-
pared to each other using a novel reciprocal top-k enrichment (RTKE) metric. High scoring
cluster pairs that exceed an empirically determined threshold are retained as a graph for further
clustering to identify exemplars from associated groups of metaclusters. Exemplar centroids
are computed by averaging the cluster ranked centroids and recorded as exemplar signatures,
assumed to be proxies of cell type signatures for downstream analysis (see Methods). B-D
tSNSE plots of PBMC scRNA-seq centroids using different transformations of the count-based
data or similarity calculations between centroids. Left panel in each plot shows cells colored
by single-cell sequencing technology platform (10x version 1 or 2 chemistries, green; 10x ver-
sion 3 chemistry, aqua; 10x Chromium version 3 chemistry, light green; 10x Chromium version
2A chemistry, red; 10x Chromium version 2B chemistry, orange; CEL-Seq2, lightblue; Drop-
seq, medium blue; inDrops, dark blue; Seq-Well, purple; Smart-seq2, pink). Right panels in
each plot show cells colored by cell type (T cells, lightblue; B-cells, red; Monocytes, green).
(b) Centroids represent vectors of count-based data (transcripts per million reads, TPMs). (c)
Same as B, but centroids were rank-normalized. (d) Same as C, but using the matrix of RTKE
similarity metrics as input to tSNE.
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mixture was randomly distributed between immune and microenvironment cell-type centroids

in integer-valued percentages: B cells, dendritic cells, NK cells, endothelial cells, fibroblasts,

macrophages, mast cells, myocytes, and T cells.

For the melanoma cell lines dataset, the immune cell types were purified from blood

using marker genes in a vaccination study61. We take the average of the 2 patients at time point

t0 (before vaccination) to represent pure cell type references. For both datasets, the expression

data were reduced to the overlapping genes between the two datasets and quantile normalized

to remove batch effects and enable mixing.

To validate this approach, we used scRNA-Seq PBMC (peripheral blood mononuclear

cell) datasets from different sequencing platforms62. PBMCs consist mainly of monocytes, B

cells, and T cells, with other minor fractions of dendritic cells, NK cells, and macrophages63.

We created cell-type signatures from scRNA-Seq PBMC datasets62 from various single-cell

sequencing technologies, e.g. 10X Chromium, CEL-Seq2, Drop-Seq, inDrops, Seq-Well. Ad-

ditional PBMC datasets were downloaded from the 10X Genomics website, Chromium demon-

stration data64

We clustered each dataset using the Louvain algorithm and assigned three main clus-

ters to monocytes, B cells, and T cells using the expression of established marker genes (CD3E

for T cells, MS4A1 for B cells, and CD14 for monocytes). We calculated centroid for each cell

type and generated a signature matrix for each dataset.

We performed three different deconvolution approaches with the signatures to deter-

mine if ranking the centroids and combining the signatures produced accurate deconvolution

results. First, the log-transformed, count-based TPM (transcripts per million reads)-normalized

11



centroids from the 10X-v2 dataset alone were used as the signature matrix in deconvolution.

Second, the rank-normalized centroids from the 10X-v2 dataset were used on their own as the

signature matrix for deconvolution. Finally, the rank-normalized centroids were combined with

all PBMC scRNA-Seq datasets and used as a combined signature matrix in deconvolution.

2.2.4 CIBERSORT deconvolution to identify cell types in bulk samples

The exemplar cell-type signatures generated from the scBeacon workflow were used

for deconvolution of cancer bulk RNA-Seq data, in which each signature’s contribution to the

mixture was estimated. We used the Cibersort deconvolution method55, which performed well

in the DREAM deconvolution competition56. We ran Cibersort with parameters: perm=100,

QN=FALSE, absolute=TRUE, abs method=’no.sumto1’.

We used rank-normalized cell type signatures in CIBERSORT to deconvolute TCGA

bulk tumors. Compared to cell type signatures derived from count-based expression values,

rank-normalized signatures outperformed count-based signatures in bulk tumor deconvolution,

which is commonly used in other deconvolution approaches. This was validated by our valida-

tion analysis using synthetic bulk samples.

In this study, we used the TCGA collection as the bulk tumor data for deconvolution.

We downloaded the counts per tumor type data from Xena57, which represents The Cancer

Genome Atlas (TCGA) gene expression HTSeq counts data originally provided by the NCI’s

Genomic Data Commons. We normalized the count data to TPM (transcripts per million reads).

12



2.2.5 scBeacon - Exemplar Signature Derivation

The scBeacon workflow is shown in Fig. 2.1A. Starting from a compendium of

scRNA-Seq datasets, the cells in each dataset are clustered using the Louvain algorithm46.

We found louvain clustering had the best performance regarding speed and memory efficiency

on different environments (dgtMatrix in R, pandas data frame in python) compared to various

other clustering algorithms, e.g. k-means and hierarchical clustering.

We used cell-wise rank normalization to reduce any possible batch effects that would

be introduced by integrating clusters across different datasets. For each cell cluster, a centroid

was computed by taking the average rank of a gene across all the cells in the cluster, resulting in

a rank average for each gene. We found that rank normalized centroids were accurate and robust

representations of single-cell clusters. First, we found that rank centroids accurately preserved

biological information using the MOCA (Mouse Organogenesis Cell Atlas) dataset51 as a test

case. Centroids “islands” in different colors were found to represent unique cell types in MOCA

(Supplementary Fig. S15A) and the developmental trajectory was well preserved according to

the annotated murine developmental stages (Supplementary Fig. S15B). Second, we found

that generating rank normalized centroids from 50 cells is robust to represent a cluster based

on subsampling cells and finding that the Spearman correlation between the centroid derived

from a random subset and its corresponding centroid from the complete data saturates at 50

(Supplementary Fig. S16).

In order to group centroids by unique cell types, we used the reciprocal top-k en-

richment (RTKE) method introduced in the Biological Process Activity manuscript by Ding et

13



al.52. After rank-normalization, the top 10 percent of the genes in a centroid were used to per-

form RTKE and the enrichment scores were used as similarity scores to compare all centroids

to each other. We found that other choices for the top k genes, ranging from 5% up to 40%,

yielded highly similar results as using the top 10% of genes (Supplementary Fig. S17A).

To cluster the cluster centroids into meta-clusters that include similar cell types, we

compute the empirical distribution of similarity scores. We set a threshold for centroids as

0.006 upper quantile of the empirical distribution and then use the louvain clustering to define

meta clusters. Each meta-cluster is considered to represent a cell type, and it can be made of

multiple centroids from one or multiple datasets or be a unique cluster from just one dataset.

The 0.006 top quantile is selected by screening through thresholds ranging from 0 up to 0.1,

the clustering results are evaluated using Silhouette scores, when threshold is 0.006, Louvain

clustering reaches the highest Silhouette score (Supplementary Fig. S17B).

The meta-cluster centroids, also called exemplars, are used as cell-type signatures.

To obtain cell-type signatures for tumor deconvolution, we first constructed a differential gene

expression matrix. For each cell type, we identify a unique set of genes that distinguishes it from

other signatures. First, we compute the average expression of each gene in the 217 cell types.

For each gene, we subtract the average expression value of the highest-expressing cell type

and the second-highest expressing cell type. This strategy ensures that only genes expressed

distinctly high in each cell type are included in the signature matrix, which is key for subsequent

analyses as overlap in gene signatures between cell types can complicate deconvolution results.

The 20% most differentially expressed genes are chosen as signature genes and this subset

matrix was used as the signature matrix as the input for CIBERSORT. Supplementary Fig. 9
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shows a heatmap of the 217 cell type signatures. We used this signature matrix in bulk tumor

deconvolution.

2.2.6 Annotating the SCEA signatures using Pathway enrichment

To better understand the biological features of SCEA signatures, we use GSEA en-

richment analysis to test for both enriched cell types and pathways by using a combination of

gene sets from PanglaoDB53, Harmonizome54, and the cell type pathways from MSigDB (C8).

To maintain specificity as well as robustness for the enrichment analysis, we retained gene sets

that had more than 50 genes and less than 100 genes. This resulted in a collection of 5398 gene

sets in total – 178 from PanglaoDB, 84 from Harmonizome, 4436 from MSigDB GO gene-

sets and 700 from MSigDB cell type genesets(Supplemental Table S6). For each signature, we

used GSEA to score and rank all of the gene sets in the collection. The top five ranking gene

sets for each cluster was recorded in an annotation table (Supplemental Table S2). We also

used cell-level annotations published in the manuscripts that described the dataset from which

a cluster was derived and prioritized using these author-provided annotations to label a cluster

centroid wherever it was available. If multiple annotations were present among the cells in a

cluster, a summary annotation “short name” was created. Manual inspection of the cases where

author annotations and PangloDB-inferred annotations were both available revealed a high con-

cordance between the independently derived annotations (see Table S2). In the absence of an

author-derived annotation, a “short name” was created by summarizing the top ranking gene

sets for the associated signature.
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Figure 2.2: Number of cells needed to reliably estimate cluster centroid Y-axis shows Spear-
man correlation coefficient between the centroid from all the cells of a cluster with centroid from
sampled cell, number of cells sampled shows on x-axis. Correlation coefficient saturates when
samples of over 50 cells are included in the analysis.
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Figure 2.3: tSNE plot of Mouse Organogenesis Cell Atlas (MOCA) dataset after scBeacon
pipeline, clustering solution is curated by cell type annotation in MOCA. Data points are
centroids (a) tSNE plot of MOCA centroids, colored by cell types. (b) same as A, colored by
mouse developmental stages from E9.5 to E13.5.
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Percent genes used for reciprocal enrichment analysis P value cut off for scBeacon centroids clusteringA B

0.006

Figure 2.4: Clustering solution and percent genes for reciprocal enrichment analysis in
scBeacon (a) We chose 10% top ranked genes to perform reciprocal enrichment analysis, here
we compared the similarity score generated using top 5%, 20% 30% and 40% genes using cor-
relation plot, with correlation coefficient shown in the plots. (b) Use silhouette score to decide
p-value cut-off to build scBeacon centroids adjacency matrix for louvain clustering (resolu-
tion=0.7). To decide scBeacon centroids clustering solution, we evenly spaced 100 p values
from 0 to 0.1 and calculated silhouette scores for louvain clustering. For each p-value, sil-
houette scores were calculated under 50 different random seeds, the black line is the average
silhouette score of the 50 silhouette scores calculated. From the plot, the highest silhouette
score is reached at p value=0.006, silhouette score=0.3, generating 217 clusters.
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2.3 Results

2.3.1 Validation of ranked cell-type signatures for deconvolution

Next, we measured the effectiveness of rank centroids for their use as exemplar sig-

natures for deconvolving in silico mixtures. To this end, we created in silico mixtures from

single-cell as well as bulk RNA-Seq data that simulate immune infiltration into tumor tissue. We

created in silico mixtures by combining several PBMC-related expression signatures together at

known mixing proportions. The expression signatures were generated by taking the average of

single-cell transcriptomes sampled from pre-established clusters either from the PBMC dataset

or a published scRNA-seq cancer dataset. Next, we measured the accuracy of CIBERSORT

deconvolution for identifying and quantifying the PBMC cell types at the prescribed mixing

proportions.

We compared the use of count-based signatures to rank-based signatures for decon-

volution and found that rank-based signatures provided slightly more accurate estimates of cell

proportions. We used both the Pearson correlation and the Root Mean Square Error (RMSE)

to measure the concordance between the known to predicted levels. The Pearson correlation

measures if the estimates track with one another in a relative sense while the RMSE measures

how close each estimate is to their actual known levels. For the count-based signatures, we used

an immune cell-type signature matrix derived from a scRNA-Seq PBMC dataset with TPM

count-based expression values to deconvolute a synthetic bulk melanoma single-cell dataset

containing infiltrating immune cells (Fig 2.2A). For the rank-based signatures, we formed ex-

emplar rank centroids by averaging the rank centroids of clusters found in multiple PBMC
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datasets (Fig 2.2B). While there is not a consistent trend over all three immune cell types, the

deconvolution estimates using the scBeacon-derived signature matrix are generally closer to the

mixed-in proportion resulting in a lower RMSE. For example, CIBERSORT tends to overesti-

mate T cell populations when count-based signatures are used compared to rank-based. Rank-

and count-based centroids provide comparable estimates for all cell-types, with higher corre-

lations in T- and B-cells, and slightly lower correlation for monocytes. Rank-based signatures

produced more accurate cell proportion estimates in a second evaluation in which we used

scRNA-seq to construct synthetic bulk head-and-neck tumors, with B-cells and monocytes very

poorly estimated by count-based signatures and recovered with much higher correlations and

lower RMSEs by the rank-based signatures (Fig 2.3). In addition, we tested the use of rank-

based centroids derived from the multiple PBMC datasets, in place of the lymphocyte-related

LM22 signatures originally published with CIBERSORT, for deconvoluting synthetic PBMC

mixtures. In the case of the LM22 comparison, ranked centroids performed comparably with

count-based versions and constructing ranked signatures using multiple datasets did not influ-

ence the usefulness of the signatures in deconvolution in this case (Supplementary Fig. S2).

Deconvolution for all cell lines used to construct the synthetic bulk were comparable (Supple-

mentary Fig. S3). We observe that T-cells were overestimated using the count-based single

PBMC signature matrix while T-cell estimation was slightly underestimated using a rank-based

signature matrix with improved RMSE (Fig. S2-S3B-D). The plots suggest some systematic

biases for over-estimating some cell types (e.g. monocytes in the melanoma sample) at the

expense of under-estimating others (e.g. B-cells in the same sample) likely a result of some

mismatch in PBMC vs infiltrating immune transcriptional signatures. Overall, these tests illus-
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Figure 2.5: Validation of scBeacon workflow in synthetic mixtures of a scRNA-Seq
melanoma dataset (a) Correlation between the true mixture proportion of in silico mixtures
from a scRNA-Seq melanoma dataset to the deconvolution estimates of using a count-based
signature matrix from a single PBMC scRNA-Seq dataset (10X-v2). Red line marks the correct
estimate (x=y). Cell type ratios are normalized to sum up to 1. (b) Same as A, but using a rank-
normalized signature matrix from the combination of multiple PBMC scRNA-Seq datasets: all
PBMC datasets from Fig. 1B-D, except Smart-seq2: 10X chemistry v1-v3, CEL-Seq2, Drop-
Seq, inDrops, Seq-Well. (RMSE = Root Mean Square Error, corr = pearson correlation).

trate that using ranked centroids to derive signatures for deconvolution provides much lower

RMSEs and maintains high correlations between predicted and known cell-type proportions.
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Figure 2.6: Validation of scBeacon workflow in synthetic mixtures of a scRNA-Seq head
and neck cancer dataset (a) Correlation between the true mixture proportion in synthetic mix-
tures from a scRNA-Seq head and neck cancer dataset and the deconvolution results of using
a count-based signature matrix from a single PBMC scRNA-Seq dataset (10X-v2). Red line
marks the correct estimate (x=y). Cell type ratios are normalized to sum up to 1. (b) Same
as A, but using a rank-normalized signature matrix from the combination of multiple PBMC
scRNA-Seq datasets (all PBMC datasets from Fig. 1B-D, except Smart-seq2: 10X chemistry
v1-v3, CEL-Seq2, Drop-Seq, inDrops, Seq-Well).
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Figure 2.7: Validation of scBeacon workflow in synthetic mixtures from one sorted bulk
RNA-Seq datasets (a) Correlation between the true mixture proportion in synthetic mixtures
from bulk RNA-Seq and the deconvolution results of using Cibersort’s default signature matrix,
LM22, and summing more specific deconvolution results into T cells (T), B cells (B), and
Monocytes (M). The synthetic mixtures are built from bulk RNA-Seq of the cancer cell line
Malme3M and bulk RNA-Seq of purified immune cells. Red line marks the correct estimate
(x=y). Cell type ratios are normalized to sum up to 1. (b) Same as A, but using a count-based
signature matrix from a single PBMC scRNA-Seq data set (10X-v2). (C) Same as A, but using
a rank-normalized signature matrix from a single PBMC scRNA-Seq data set (10X-v2). (D)
Same as A, but using a rank-normalized signature matrix from the combination of multiple
PBMC scRNA-Seq data sets (all PBMC data sets from Fig. 1B-D, except Smart-seq2: 10X
chemistry v1-v3, CEL-Seq2, Drop-Seq, inDrops, Seq-Well).
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2.3.2 scBeacon clusters and signatures from EBI’s Single-Cell Expression Atlas

(SCEA): Building a comprehensive single-cell derived cell type signature

library

EBI’s Single Cell Expression Atlas (SCEA) is a public single-cell RNA sequencing

data consortium that hosts datasets from published studies for six different species8. For this

analysis, we downloaded 62 homo sapiens scRNA-Seq datasets available in February 2020. The

datasets cover a wide range of healthy and diseased tissues, consisting of numerous cell types in

the human body, and were processed with different single-cell sequencing technologies. SCEA

serves as the fundamental data resource for this project to build a comprehensive collection of

human cell-type signatures, which is then used for bulk tumor deconvolution.

Clusters were extracted for each SCEA dataset, producing a total of 585 clusters.

Centroids and rank centroids were calculated for each of these and used as the clusters’ sig-

natures. Clusters were linked if their RTKE metric was above 77.39 (top 10% percentile) and

then clustered into metaclusters using the Louvain algorithm with default Seurat settings. The

RTKE threshold and Louvain method were found to obtain the highest Silhouette scores out of

a series of thresholds and several clustering methods (including K-means, Hierarchical, and a

graph-based iGraph methods). Louvain clustering produced 217 metaclusters from which ex-

emplars were defined. Exemplar signatures were created from the average rank signatures of

clusters assigned to a metacluster and using only the top 20% of differentially ranked genes

(see Methods; Fig. 3A). The 217 metaclusters were annotated using both author’s published

annotations and marker genes based enrichment test, the full annotation is available.
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We found several examples in which multiple datasets contributed to the definitions of

a single exemplar. Overall, 16 (7.4%) of the exemplars were implicated by two or more datasets.

Even so, the map contains a majority of singleton exemplars 141 (65.0%) – those metaclusters

containing a single cluster from a single dataset. Altering the metaclustering parameters would

give different numbers of clusters and singletons. However, we found the chosen setting to

maximize a Silhouette score struck a good balance as even singletons that were “close” to one

another in the map had deconvolution results across the TCGA that were just as distinct from

each other as those that were “far” apart, justifying maintaining them as separate signatures for

our use. We also note that a few centroids combine clusters from different datasets that probed

distinctly different human tissues. These centroids could represent a common cell type found

in many tissues, as is the case with immune cell types.

We queried the scBeacon collection of exemplars to determine the extent to which

they reflected distinct cell types. First, we investigated the distribution of cell types expected to

be highly similar based on the expression of a particular known tissue-specific marker gene. To

that end, we queried the map for all centroids with high expression of the insulin gene to identify

pancreatic-associated clusters. Meta-cluster X85 contains several such pancreatic clusters (Fig.

3B) that were derived from three different datasets that all assayed different states of pancreatic

tissue (Fig. 3C). We also queried three immune cells using marker genes, CD3E for T cells,

MS4A1 for B cells and CD14 for monocyte (Supplementary Fig. S8).
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Figure 2.8: 217 exemplars of cell types and states identified from single-cell RNA-seq
datasets in the Single Cell Expression Atlas (SCEA) (A) Distinct cell types were identified
by comparing clusters of single cells with similar expression profiles across multiple datasets.
scBeacon clusters are colored by grouping into exemplars representing distinct cell types/states.
Nodes represent 585 clusters of single cells derived from clustering individual datasets in the
SCEA collection. To determine a non-redundant set of cell states/types from these dataset-
derived clusters, clusters were connected to each other, linking clusters found in possibly sepa-
rate datasets. (B) To reveal pancreas-related cell-type clusters, clusters in A are colored based
on INS (insulin marker gene) gene expression (low expression, blue; high expression, red).
Exemplar X85’s centroid (circled) had a high level of INS expression, implicating an insulin
system role for its represented cell type. (C) Detailed view of the X85 exemplar illustrating it
was derived from 18 different clusters (nodes) contributed by three different pancreas-related
SCEA datasets (colors of the nodes), 12 clusters of which are highly mutually similar and make
up the core of the exemplar. (D) CIBERSORT estimation of 217 exemplars on TCGA bulk
tumor samples. Columns: 217 exemplar deconvolution estimation. Row: averaged across the
samples within each of the 33 TCGA cancer types. E. Same as part D but for CIBERSORT
deconvolution of TCGA normals using the same set of 217 exemplars.
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T cell marker gene CD3E B cell marker gene MS4A1

Monocyte marker gene CD14

Figure 2.9: Immunomarkers in scBeacon clusters scBeacon centroids(colored circles) col-
ored by T cell(CD3E), B cell(MS4A1) and monocyte(CD14) marker genes (low expression,
blue; high expression, red).
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mixed

no

unknown

yes

(A)  tumor signature ratio

developing

differentiated
unknown

(B)  developing signature ratio

Figure 2.10: Tumor and developing signature ratios in scBeacon. (A) Tumor signatures num-
ber and ratio(36, 16.6%), non-tumor signatures(166, 76.5%), mixed with tumor and none-tumor
signatures(2, 0.92%), unknown(13, 6.0%), non-tumor signatures could come from datasets of
other diseases other than tumor. B Developing signatures number and ratio(46, 21.1%), differ-
entiated signatures(152, 70.0%), unknown(19, 8.8%).

2.4 Discussion

There is ever-growing evidence that the cell types present in a tumor’s microenviron-

ment influences the outcome of a cancer patient1. In recent years since single-cell sequencing

became available, the characterization of various cell types in the human body has improved

immensely38–40. A growing number of public single-cell sequencing datasets provides a more

accurate and comprehensive definition of the human cell type repertoire. However, there are still

challenges to efficiently integrate and analyze those datasets together. First, due to the high level

of technical noise and systematic differences between sequencing platforms, simple concatena-

tion could result in batch effects that become the dominant variance rather than biology. Batch

effects have been shown to cause an increased number of false positives in downstream analy-

ses41. To reduce the chance of false discoveries, integration of multiple datasets must eliminate
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batch effects42. Whole reference atlas initiatives such as the Human Cell Atlas (HCA) started

collaborative projects to integrate as many datasets as possible to create a whole human cell type

map, the data integration process for this task should not only be able to handle batch effects

well, but also be computationally efficient and fast while ingesting and integrating datasets.

We introduced a single cell RNAseq pipeline called scBeacon that clusters and in-

tegrates datasets to identify single cell signatures useful for the deconvolution of bulk cancer

samples. Unsupervised clustering of full transcriptome data has been used to identify subsets

of related samples or genes for years since the establishment of DNA microarrays43,44. Since

then, clustering has only increased in importance for the analysis of bulk and later scRNA-

seq datasets45. Computational algorithms leverage an ever increasing number of samples of

scRNA-seq datasets using approaches like community detection46 and later deep-learning au-

toencoders47. In our approach, we assume many of the clusters represent a collection of cells

with highly similar transcriptomes that concentrate distinct cell types. Given this assumption,

“marker genes” of a cell type/state or lineage may be approximated with the cluster centroids.

Our pipeline infers cell types using multiple datasets by using a novel enrichment-based test to

determine when clusters from different scRNAseq datasets are highly similar.

We validated scBeacon’s deconvolution using in silico mixtures from single-cell and

sorted bulk RNA-Seq data. We used the EBI Single-Cell Expression Atlas (SCEA) as a database

to create a comprehensive set of cell-type signatures with a new enrichment-based similarity

test, the reciprocal top-k enrichment (RTKE) test.

Several methods have been created to help biologists search these collections to find

cell types of interest. Scmap48 implemented a fast approximate k-nearest-neighbor search with
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cosine distance to project cells in scRNA-seq datasets to reference databases. CellBlast49 built

a robust data query method in scRNA-seq database based on a neural network-based generative

model and a customized cell-to-cell similarity metric. CellAtlasSearch50 used locality-sensitive

hashing (LSH) Hamming distance for bulk and single cell RNA-seq data processing and query.

We found the RTKE test to be robust to the comparison of cluster centroids across datasets and

scRNA-seq platforms.

We found that the use of rank-based cell type signatures for the deconvolution of bulk

RNA-Seq data compared to count-based cell type signatures is effective for forming signatures

from multiple data sources. The rank-normalization and combination of multiple datasets did

not impact the accuracy of deconvolution and sometimes even improves the inference. Thus,

our rank-based approach offers a promising and simple strategy for the ongoing derivation of a

comprehensive set of cell type signatures from an expanding collection of scRNAseq datasets.
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Chapter 3

Single-cell signatures identify

microenvironment factors in tumors

associated with patient outcomes

The project described in this chapter was submitted to Cell Reports Methods with

Chapter 2. I worked with Verena Friedl to develop and implement this project.

3.1 Introduction

Cancer is a disease involving the interplay of many cell types[21]. Tumor cells are

surrounded by a microenvironment of various types of cells, such as stromal and blood cells.

Characterizing the composition and spatial arrangement of human cell types embedded in the

tumor microenvironment is a relatively new direction in cancer biology research. Most no-
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tably, immune infiltration has been a focus in recent years for the implications of emerging and

promising immunotherapies that have been shown to depend on the presence of certain immune

cell types and states[53]. However, studies have shown that additional cell types and molecu-

lar characters beyond immune cells play an important role in tumor character and response to

treatment and patient outcomes[2, 19, 34]. Therefore, it is important to detect and quantify a

full profile of cell types to improve our understanding and treatment of cancer.

Characterizing the tumor cell types has been largely limited by the low number of

known cell type signatures. Most studies have focused nearly exclusively on immune-associated

cell types. Leveraging cell type signatures derived from newly available single-cell RNA se-

quencing (scRNA-seq) presents an opportunity to broaden the detection of cell types. scRNA-

Seq[44] has transformed biological research by making it possible to determine gene expression

separately for each cell in a biological sample. The technology provides a higher definition of

cell types and cell states and has already expanded the catalog of known cell types[47]. Ad-

vances in sequencing technology have facilitated an explosion of the availability of scRNA-seq

datasets supported by databases such as the Single Cell Expression Atlas[31] and the Human

Cell Atlas[39]. Those large databases are great resources of cell-type transcriptomes.

Over the years there have been several bioinformatics tools developed to deconvo-

lute bulk tumors with cell type specific gene expression profiles derived from scRNA-seq data.

CIBERSORT(X) is the most widely used cell type deconvolution tool based on support vec-

tor regression. BSeq-SC applied scRNA-seq derived cell type signatures to deconvolute bulk

tissues using CIBERSORT, and discovered subpopulations and heterogeneity within pancreatic

cell types[4]. MuSiC deoconvolutes bulk RNA-seq samples using cell type reference generated
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from hierarchical clustering on multi-subject scRNA-seq data using weighted non-negative least

squares(NNLS)[49], along with DeconvSeq utilizes a generalized linear model for cell type ra-

tio estimation[13], Bisque uses NNLS regression[24], and BayesPrism[10], BLADE[1] imple-

ments probabilistic model (multinomial) to deconvolute bulk RNA-seq data using scRNA-seq

derived gene expression profile. These methods rely on a cell type signature matrix from only

one scRNA-seq dataset that has been pre-annotated, which limits the number of datasets used

for bulk tissue deconvolution. With the increasing number of scRNA-seq datasets available and

large scRNA-seq consortiums being built, strictly supervised deconvolution approaches could

limit the opportunity to discover new cell types and a comprehensive characterization of bulk

tissues.

I used 217 cell-type signatures using scBeacon described in Chapter 1 and used them

to quantify cell types in bulk tumor specimens from the TCGA RNA-Seq compendium. We

find dozens of expected and novel associations between cell types and tumor types in the TCGA

collection, with implications for synergistic and antagonist interactions between cell types based

on the co-occurrence or mutual exclusivity of cell type groups. Some cell type signatures were

found to be significantly associated with patient outcomes in several tested tumor types, many

of which are independent of published cancer subtypes and thus provide a new independent

measure of disease state.

To provide a comprehensive view of the relationship of all TCGA samples to each

other based on their inferred microenvironment contents, we developed an interactive tumor

cell-type (TCT) map that uses the inferred exemplar estimates to arrange the samples in one

layout. The two dimensional projection of TCGA samples on the Tumor Map20 revealed sev-
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eral unexpected cluster associations, several with implications about patient survival.

3.2 Methods

3.2.1 Deconvolution to identify cell types in bulk tumors

The exemplar cell-type signatures generated from the scBeacon workflow were used

for deconvolution of cancer bulk RNA-Seq data, in which each signature’s contribution to the

mixture was estimated. We used the Cibersort deconvolution method55, which performed well

in the DREAM deconvolution competition56. We ran Cibersort with parameters: perm=100,

QN=FALSE, absolute=TRUE, abs method=’no.sumto1’.

We used rank-normalized cell type signatures in CIBERSORT to deconvolute TCGA

bulk tumors. Compared to cell type signatures derived from count-based expression values,

rank-normalized signatures outperformed count-based signatures in bulk tumor deconvolution,

which is commonly used in other deconvolution approaches. This was validated by our valida-

tion analysis using synthetic bulk samples.

In this study, we used the TCGA collection as the bulk tumor data for deconvolution.

We downloaded the counts per tumor type data from Xena57, which represents The Cancer

Genome Atlas (TCGA) gene expression HTSeq counts data originally provided by the NCI’s

Genomic Data Commons. We normalized the count data to TPM (transcripts per million reads).
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3.2.2 Bimodality test to associate a cell type signature with a patient cohort

After obtaining the CIBERSORT deconvolution results on TCGA cancer samples,

we analyze if the presence of the cell-type signatures in tumors correlates with the survival out-

comes of patients. First, we define patient groups based on how much a signature is detected in

the patients’ tumor samples. For each signature in each tumor type, samples that have a rela-

tively high proportion of the signature detected are defined as “patients-up group” and samples

that have a relatively lower proportion of the signature detected are defined as “patients-down

group”.

To formalize this separation of samples in the deconvolution results, we applied a

bimodality test for each signature, based on the student-t distribution65 implemented in the t-

Student Mixture Models Module (SMM) library66 in python. It models data by a mixture of

t-Student distributions, estimating the parameters with Expectation-Maximization, and uses the

Bayesian information criterion(BIC) to decide whether the current model fits the proposed data.

Signatures that fit the student-t bimodal distribution are kept for survival analysis since they

represent a meaningful separation between patient groups. From the two distributions identified

in the model, we define sample groups: samples that have a cell type estimate higher than the

upper mean are labeled as “patients-up”, samples that have a cell type estimate lower than the

mean of the lower distribution are labeled as “patients-down” (Fig. 5B). For signatures that

don’t fit the student-t bimodal distribution, the patients are separated by the median. However,

in cases where a signature had estimates of zero in more than 50% of the tumor-type samples,

all samples with an estimate of zero were assigned to the “patients-down” group and all samples
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with an estimate above zero were assigned to the “patients-up” group. A signature was excluded

from survival analysis in a tumor type if less than 10 samples had an estimate above zero.

3.2.3 Survival Analysis to Associate Cell Type Signatures with Patient Outcomes

TCGA survival information was downloaded from the Xena portal67 . We used

progression-free interval (PFI) to measure disease progression, except for Acute Myeloid Leukemia

(LAML) patients, which only have Overall Survival (OS) available.

To measure the separation between the two sample groups, we used the R package

“survminer” for Kaplan-Meier survival analysis, and applied Cox proportional hazards (CoxPH)

model68 by using R package “survival”69. Reported hazard ratios (HR) were extracted from

the CoxPH model and all p-values for survival analysis were, unless stated otherwise, p-values

of the log-rank test. We report the results for a ’naive’ signature outcome separation (SOS),

which is a univariate CoxPH model.

In Supplementary Table 3 we curated subtype annotations for all TCGA tumor types,

mostly from the TCGA PanCanAtlas project21 and TCGAbiolinks70, except for DLBCL (dif-

fuse large B-cell lymphoma), which had no subtype information available. Subtype information

was used as a covariate in multivariate CoxPH models per tumor type in order to correct a po-

tential imbalance in subtypes, and avoid recapitulating known cancer subtypes by the separation

of the patients groups.

To understand how the 217 cell type signatures separate the patients survival, we used

Benjamini Hochberg multi-test corrected p values from the survival analysis, and focused on

the ones that have corrected p value lower than 0.05. We also extracted hazard ratio from the
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models, the hazard ratio greater than 1 indicates the event hazard increases and thus the length

of survival decreases. When hazard ratio smaller than 1 indicates the cell type variant positively

influences the patients’ survival length.

3.2.4 Tumor Cell-Type (TCT) Map to Identify New Pancancer Connections

(Building the Map) The two-dimensional layout of the Tumor Microenvironment

(TCT) map was created by providing the matrix of the 217 exemplar CIBERSORT estimates for

each of the 11,057 TCGA samples to the DrL layout engine of the UCSC TumorMap tool20.

The interactive TCT map is available online (bit.ly/TCTmap 217exemplars). The interactive

map includes attributes for browsing various results of our analysis including exemplar esti-

mates, TCGA disease categories, TCGA disease subtype categories (Table S5), and TCGA

PancanAtlas clustering solutions21.

(Clustering the Samples on the TCT Map) The samples on the TCT map were

clustered by their two-dimensional coordinates using hdbscan, a spatial hierarchical clustering

method33, with a minimum cluster size of 20. This resulted in 49 sample clusters (Supplemen-

tary Fig. S20). Additionally, 1,277 samples were not assigned a TCT map cluster.

To measure the novelty of the resulting clustering solution, we first measured the

similarity between the spatial TCT map clusters and the grouping by disease subtype using

the adjusted rand index. Additionally, we measured the similarity to the PancanAtlas mRNA-

based TumorMap21. This TumorMap provides a similar comprehensive look at the same set

of TCGA samples, and it is based on mRNA data, which is also the basis of our exemplar

estimates. Therefore, we can now determine if any grouping we find on the TCT map is only a
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recapitulation of known subtype biology or gene expression, or if it is newly determined by our

exemplar estimates.

We applied the same spatial hdbscan clustering method to the PancanAtlas mRNA

TumorMap with a minimum cluster size of 50 samples in order to reach a similar number of

resulting clusters (Supplementary Fig.21). The samples on the PancanAtlas TumorMap were

assigned to 41 clusters and 1,123 samples were not assigned a cluster. We then measured the

similarity of the two spatial clustering solutions using the adjusted rand index.

(Finding Survival Differences on the TCT Map) We applied survival analysis on

TCT map cluster groupings of the TCGA samples analogous to the approach we described

previously. First, we analyzed survival in the context of each disease. We defined the main

clusters of each disease as any cluster containing 5 or more samples of that disease. Then,

we applied CoxPH models between pairs of sample clusters of the same disease, comparing

each cluster to the largest cluster, i.e. the cluster with the most samples of that disease. We

again provided the disease subtype information curated in Table S3 to the CoxPH models as

a covariate in order to correct for a potential imbalance in subtypes. Second, we repeated

the same survival analysis in each disease subtype, eliminating the need to provide a subtype

covariate and determining which subtypes contributed to the overall findings per disease. The

disease and subtype level results are presented in Table S4. Additionally, Table S4 lists the most

differential exemplars between each cluster and the largest cluster in each disease and each

subtype. We determined the three highest, and the three lowest exemplars in each comparison

using a student’s t-test.
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3.3 Results

3.3.1 Deconvolution of TCGA samples using scBeacon signatures

The meta-clusters from the human SCEA were further processed with the scBeacon

workflow (Fig.1; see Methods) to create a signature matrix for use in deconvolution (Supple-

mentary Fig. S9). We used CIBERSORT to deconvolute the bulk RNA-seq samples available

for 33 different tumor types from The Cancer Genome Atlas (TCGA)21 using the signatures

matrix derived from the 217 cell-type exemplars (Fig. 3D-E). As expected, many cell-type

signatures are undetected within most tumor samples, reflecting a degree of specificity to the

signatures and their use in deconvolution. Assuming that a signature was “detected” in a sample

if it had a CIBERSORT score of 0.01 or greater (i.e. it was estimated to account for 1% of the

expression among all detected signatures for a particular sample after 0 - 1 normalization), then

83.4% of the signatures (n=181) were detected in at least one sample but less than 50% of all

samples. On the other hand, a small number of signatures (n=2) were detected in over 90% of

the samples. Finally, 10 signatures were detected at levels of 1% or less in any of the samples.

These lowly-estimated signatures could represent cell-types absent from the current TCGA col-

lection among several possibilities. Still, the vast majority of the SCEA signatures (207, 95%)

were detectable in at least some of the samples.

Tumor types that arise in similar tissues of the body had similar deconvolution profiles

(Figure 3D). For example, the estimated cell-type profile for COAD (colon adenocarcinoma) is

most similar to the estimated cell-type profile of READ (rectum adenocarcinoma). Likewise,

LIHC (liver hepatocellular carcinoma) and CHOL (cholangiocarcinoma) clustered together, as
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well as GBM (glioblastoma multiforme) and LGG (brain lower grade glioma), and a group of

squamous cell carcinomas (HNSC = head and neck squamous cell carcinoma, LUSC = lung

squamous cell carcinoma, BLCA = bladder urothelial carcinoma), CESC = cervical squamous

cell carcinoma and endocervical adenocarcinoma). These results suggest that tumors arising

from related tissues in the body share a similar microenvironment makeup compared to tumors

arising from different tissues. Indeed, when we repeat the cell type analysis using deconvolution

on normal tissue (using the TCGA matched normal samples), we again find that tissues cluster

together based on their cell type profiles (Figure 3E).

To confirm this result and to validate the scBEACON procedure for identifying ex-

emplars using a positive control test case, we repeated the entire analysis using normal samples

from the GTEx consortium from which exemplars were derived from the published single-

nucleus RNA sequencing (snRNA-seq) dataset 22 and deconvolution was performed on samples

from the bulk GTEx RNA-seq dataset 23. We found that similar tissues of related organ systems

clustered together based on their GTEx exemplar deconvolution scores; e.g. brain cerebellum

with another cerebellum, colon with small intestine with stomach, several arteries clustered to-

gether, and so on (Supplementary Fig. S10). Expected cell-types were again found with high

deconvolution scores in GTEx tissues (Supplementary Fig. S11C-E). Slightly more than half of

the signatures in GTEx (19 out of 35; 54%) had high correlations (Pearson ¿ 0.5) with at least

one signature in scBeacon’s SCEA-derived set. Thus, we estimate another 16 signatures from

GTEx could have been included to the collection of the EBI 217, consisting of a marginal in-

crease in cell-type representation (7.4%). On the other hand, the EBI collection captured many

signatures not represented in GTEx (164 out of the 217 had correlations below 0.50 for any-
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Figure 3.1: Signature matrix for meta-cluster exemplars The heatmap shows the average
gene expression in the selected 3988 signature genes. The middle redline shows the differential
expressed genes for each exemplar that separate it from others.
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Figure 3.2: 217 exemplars of cell types and states identified from single-cell RNA-seq
datasets in the Single Cell Expression Atlas (SCEA) (A) Distinct cell types were iden-
tified by comparing clusters of single cells with similar expression profiles across multiple
datasets. scBeacon clusters are colored by their grouping into exemplars representing distinct
cell types/states. Nodes represent 585 clusters of single-cells derived from clustering individual
datasets found in the SCEA collection. To determine a non-redundant set of cell states/types
from these dataset-derived clusters, clusters were connected to each other, linking clusters found
in possibly separate datasets. (B) To reveal pancreas-related cell-type clusters, clusters in A are
colored based on INS (insulin marker gene) gene expression (low expression, blue; high expres-
sion, red). Exemplar X85’s centroid (circled) had a high level of INS expression, implicating an
insulin system role for its represented cell type. (C) Detailed view of the X85 exemplar illus-
trating it was derived from 18 different clusters (nodes) contributed by three different pancreas-
related SCEA datasets (colors of the nodes), 12 clusters of which are highly mutually similar
and make up the core of the exemplar. (D) CIBERSORT estimation of 217 exemplars on TCGA
bulk tumor samples. Columns: 217 exemplar deconvolution estimation. Row: averaged across
the samples within each of the 33 TCGA cancer types. E. Same as part D but for CIBERSORT
deconvolution of TCGA normals using the same set of 217 exemplars.
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thing present among the GTEx signatures) and thus provides a 3.5-fold increase over what is

represented in the GTEx collection. In summary, the metaclustering procedure for identifying

exemplars from scRNA-seq cluster signatures, as well as their use to identify them in bulk sam-

ples via deconvolution, was reproducible using a completely orthogonal dataset in a scenario

where the signatures and deconvolution results were well-annotated. In addition, the resulting

GTEx signatures compared well to what was found and represented in the scBeacon collection

based on SCEA, even though the GTEx signatures were derived from nuclei transcriptomes.

3.3.2 Single cell exemplar signatures deconvolve appropriate bulk tumors but

with lower scores compared to their normal counterparts

We measured the degree to which deconvolution with exemplars, derived from a par-

ticular tissue, could “detect” the presence of a cell type in bulk tumor (or normal) samples

from TCGA when using a tumor type of that same tissue. To quantify and visualize exemplar

specificity, we used the CIBERSORT deconvolution results that considered all 217 exemplars

to compare the estimates obtained in related to unrelated tissues. We selected three tissues –

breast, lung, and brain – for which exemplars were annotated as either derived from normal

or cancerous tissue. We collected the CIBERSORT estimates and aggregated them as either

related to the exemplar’s tissue or unrelated. For example, X10 (myoepithelial cell of mam-

mary gland) was used as the normal breast exemplar while X62(B cells from lymph node in

breast carcinoma patients) was used as the cancerous breast adenocarcinoma (BRCA) exem-

plar since these signatures had the highest CIBERSORT scores in normal breast and cancerous

breast, respectively, among all other signatures annotated as breast-related (Supplementary Fig.
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Figure 3.3: scBeacon deconvolution using GTEx snRNA-seq and bulk RNA-seq data, com-
pared to SCEA-derived 217 signatures GTEx deconvolution results (A) Overview of decon-
volution of bulk samples from the GTEx Consortium dataset 23 in which cell type signatures
were derived from the GTEx single-nucleus RNA sequencing dataset 22, cell type annotation
for single cells, and tissue annotation for bulk samples were taken from curated metadata. (B)
Pearson correlation between GTEx snRNA-seq deconvolution results and SCEA-derived 217
deconvolution results on GTEx bulk samples. With rows as SCEA-217 signatures and columns
as GTEx snRNA-seq cell type signatures. (C,D,E,F) The top 10 GTEx cell types in blood,
brain, heart, and skin.
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S12A-B). Exemplars for the other two tissues were chosen using the same criteria (Supplemen-

tary Fig. S12C-F). The 113 normal samples of the TCGA BRCA cohort showed significantly

higher CIBERSORT scores for X10 than normal samples in other TCGA cohorts (P ¡ 2.2e-16,

Kruskal-Wallis test; Fig.4A, left panel). Similarly, the 1104 tumor samples of the TCGA BRCA

cohort showed higher scores for X62 than tumor samples in other cohorts (P¡2.2e-16, Kruskal-

Wallis test; Fig.4A, left panel). The same trends were found for both the normal and tumor

signatures when the comparisons were repeated in lung (Fig. 4A, center panel) and brain (Fig.

4A, right panel). Thus, exemplars annotated as derived from a specific tissue, and that have the

highest match to a particular tissue in TCGA among all other exemplars annotated as derived

from that tissue, also were found to be relatively specific for deconvolving that tissue (i.e. they

receive the highest CIBERSORT scores among all other tissues). In summary, even when used

together with signatures derived from many cell types, deconvolution of TCGA samples using

the exemplars results in scores that are consistent at the tissue level.

Cancer signatures had lower CIBERSORT scores than their corresponding normal

counterparts for all three tissue types tested (cancer box plots in Fig. 4A). This suggested that

cancer signatures reflect a quantitatively lower degree of tissue specificity compared to their

normal counterparts. This could be due to patient-specific factors or loss of differentiation

fidelity, among other possibilities. To further investigate, we plotted the CIBERSORT scores of

both the normal and cancer samples summarized at the TCGA tumor type level (Fig. 4B) and at

the level of tumor subtypes (Fig. 4C). The radar plots of all three tissue types investigated reveal

that, compared to the normal signatures (Fig. 4B-C, blue radar areas) the cancer signatures

(Fig. 4B-C, yellow radar areas) have a reduced relative match to their expected tissues. For
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Figure 3.4: Tissue specific signatures estimation in matching cancer and normal samples
The barplot shows the average CIBERSORT estimation in signatures derived from normal (left)
and cancer (right) tissues. (A) normal breast signatures in normal breast samples. (B) cancer
breast signatures in breast cancer samples. (C) normal lung signatures in normal lung samples.
(D) cancer lung signatures in lung cancer samples. (E) normal neuron signatures in normal
brain samples. (F) cancer neuron signatures in brain tumor samples. The signatures in each
barplot are ordered by the average CIBERSORT estimation values, from highest to lowest.
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the breast and lung signatures, matches apparently similar to cell types in other tissues may

explain the relative lower scores; whereas for the GBM signature, the similarity to cell types in

brain-related tissue is lower without a concomitant increase in scores to cell types in non-brain

tissues. In the case of the breast signature, strong matches to prostate (PRAD) cancer samples

appeared to provide a better match than to breast samples when the scores were averaged.

However, when the scores were averaged at the subtype level instead of at the cohort level

(Fig. 4C), the highest average score matched a HER2 amplified subtype of breast cancer, which

represents a minor proportion of the overall BRCA samples, even though matches to several

PRAD subtypes also had high scores, the match to HER2 has a higher score than any of the

PRAD matching score. The breast cancer signature comes from a mix of two breast cancer

subtypes, with 62% HER2 samples and 38% triple-negative samples. In Fig. 4C, the highest

average score matched a HER2 amplified subtype of breast cancer, this could be caused by

the majority of the samples of the breast cancer signature coming from the HER2 subtype.

Alternatively, it could be caused by the different developmental states of luminal versus basal

cell types. Basal cells exhibit heightened cancer stem cell activity compared to luminal cells

(HER2). Given that triple-negative breast cancer samples primarily comprise basal cells[37]

while the HER2 subtype predominantly features luminal cells[35], the HER2 subtype emerges

as a more differentiated breast cancer subtype in comparison to others. This might explain

why the HER2 subtype is the dominant subtype showing breast tissue-specific signal shown in

Fig.4C.

Taken together, exemplar signatures had their highest relative matches in TCGA to

samples obtained from the same tissues as the exemplar signatures were obtained. In addition,
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Figure 3.5: Cell type exemplar signatures are specific to their tissue type for tumor de-
convolution (A) Exemplars were selected if annotated as derived from a tissue common to a
TCGA cohort. Normal and cancer exemplars were selected, either from a normal or cancer-
derived cluster. Both types of exemplars show specificity to the matching tissue-type in TCGA
for all three tumor types inspected including breast cancer (BRCA, left panel, X10 for normal
breast, X62 for breast cancer), lung cancer (LUAD and LUSC cohorts, middle panel, X41 for
normal lung, X168 for lung cancer) and brain cancer (LGG and GBM, right panel, X206 for
normal brain, X86 for brain cancer). The distribution of CIBERSORT estimation scores for
samples within the tissue type (pink/left box in each panel) was compared to all estimations for
samples outside the tissue type (blue/right box in each panel). (B) Radar plots illustrate more
detail of the exemplar CIBERSORT deconvolution results in distinct tumor subsets (higher es-
timates correspond to outer rings) for the same cohorts as in part A (breast cancer BRCA, left
panel; lung cancers of LUSC and LUAD, middle panel; brain cancers of GBM and LGG, right
panel). Each radar level shows the average CIBERSORT estimate of a cancer-related exemplar
for that cancer type (yellow area) or a normal-tissue-specific exemplar for the cancer type (blue
area) averaged across all TCGA samples within one of the 33 tumor types. (C) Similar to (B)
but the CIBERSORT estimates of each exemplar are averaged for 132 different cancer subtypes
(spokes around the circle), which group tumors based on shared molecular properties within
each of the 33 tumor types.
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cancer exemplar signatures exhibited lower relative scores to their tissues on average compared

to normal signatures from the same tissue. These findings suggest CIBERSORT maintains

its ability to identify the presence of a cell type in a bulk RNA-seq sample using the ranked

exemplar signature together with 217 total signatures. Moreover, the results indicate cancer

tissue signatures may lose some of the strength of their match relative to normal tissues, which

may reflect a loss of differentiation fidelity.

3.3.3 Survival analysis based on deconvolution results: Some cell-type signatures

align with patient outcomes in in some tumor types

We next asked whether any of the examplars represented microenvironment deter-

minants that indicate either better or worse outcomes for patients. To that end, we performed

survival analysis separately for each cancer cohort using each of the exemplar signatures (see

Methods). In total, 6944 exemplar-cohort pairs were tested, formed from the 217 exemplars

tested against 32 cancer cohorts. For each exemplar-cohort pair, we grouped the patients in the

cohort as either scoring high or low using the CIBERSORT estimates of the exemplar’s decon-

volution proportion for each patient’s bulk tumor sample. We determined if the patient scores

reflected a natural bimodal distribution (see Fig. 5B for an example with signature X164 in

PRAD; see Methods). 2801 exemplar-cohort pairs passed the bimodality test (n=2801). In each

of these cases, the two modes were detected and a cutoff was determined that was equidistant

between the modes, dividing the samples into high- and low-scoring groups. 4143 exemplar-

cohort pairs failed the bimodality test. For these cases, the patient samples were split into two

groups using the median of the score distribution as the cutoff (see Fig. 5C for an example with
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signature X58 in PRAD).

Once two groups were determined, we asked if the presence versus absence of an

exemplar’s signature implicated a difference in patient outcomes for a particular type of can-

cer. To that end, we calculated a signature outcome separation (SOS) measure for an exemplar

applied to a TCGA cohort by fitting a Cox proportional hazards (CoPH) model using the co-

variate of high-/low-scoring patient group (see Fig. 5D-E for Kaplan-Meier plots illustrating

SOS for signatures X164 and X58). The significance (-log base 10) of the SOS measure was

recorded as the fit of the model. Both univariate CoPH –in which only the signature was used

as the predictor of outcome– and multivariate –in which an additional covariate was used that

represented the previously published subtype groupings of the samples- tests were calculated.

In this latter multivariate case, we refer to the SOS as the subtype-corrected SOS. A signifi-

cant subtype-corrected separation would indicate an exemplar’s deconvolution score separates

the patients into groups that are distinct from the established cancer subtypes, or that further

separate patients within a subtype, and may be of particular biological and clinical interest.
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Figure 3.6: Single-cell exemplar signatures stratify patients into high- and low-risk groups
in several types of cancer (A) CIBERSORT estimates for each of the 217 exemplars (cir-
cles, crosses, boxes in plots) were used to stratify patients in each cohort from low-scoring to
high-scoring. Five cohorts had at least one signature with a significant separation (FDR¡0.25
on CoxPH). The CoxPH results of the survival separation using only the exemplar signature
was plotted (“naive SOS”, x-axis, log10 of univariate P-value) or combined with a covariate to
account for a tumor type’s published subtypes (“subtype corrected SOS”, y-axis, log10 of mul-
tivariate P-value) to show those that are significant on their one (open circles), with subtype-
correction (crossed), or both (crossed boxes) and colored if the presence of the signature in-
dicates a significant separation in patient outcomes (FDR ¡ 0.25) that are either poorer (red,
hazard ratio ¿ 1) or better (blue, hazard ratio ¡ 1) (full results in Table S3 and plotted in Supple-
mentary Fig. S18-19). (B) For each exemplar signature in each cohort, two groups of patient
samples were determined as the high and low category of the score distribution if it matched
a bimodal distribution. An example of such a case is shown for exemplar X164 estimated in
PRAD samples where a “down group” (blue-shaded area) was distinguished from an “up group”
(red-shaded area).
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(C) In the case where the bimodal test failed, samples were grouped into the top and bottom
half using the median of an exemplar’s score. An example is shown for exemplar X58 in PRAD
samples with samples below the median score defined as the “down group” (blue-shaded area)
and those above as the “up group” (red-shaded area). (D) The significance by which each cell
type exemplar in each cohort separated the outcomes of the patients was measured using a Cox
proportional hazards model (CoxPH) that used either the exemplar signature alone (univariate
CoxPH) or combined with a covariate to account for published patient subtypes (multivariate
CoxPH). The survival separation is illustrated for exemplar X164 in PRAD using a Kaplan-
Meier survival plot to show that samples with estimated higher levels of the cell type represented
by X164 have associated poorer outcomes. (E) Same as part D but for a different cell type
exemplar X58 that also shows poorer outcomes when the exemplar signature is present.

We tested all exemplar-cohort pairs to determine if an exemplar’s signature separated

the patients by their outcomes using a subtype-corrected and FDR-adjusted test (Supplementary

Fig. S13). We calculated SOS and subtype-corrected SOS only for pairs that had at least 10

non-zero samples in samples classified into the high-scoring category (5931 out of 6944). Of

these, we found 5730 cases that did not separate by outcome, across all 217 exemplars and

32 tumor types. 89 exemplars produced no outcome separation on any of the tumor types;

likewise, for 27 tumor types no exemplars were found that could separate the outcomes after

accounting for the published subtypes. For example, there were 163 exemplar-tumor type pairs

in which the subtype correction in the multivariate model eliminated the outcome separation

detected by the univariate model. In these cases, it may be informative to investigate whether

unanticipated microenvironment factors correlate with the published subtypes. However, we

chose to focus on cases in which an exemplar had a clear implication on patient outcomes and

that were independent of the published subtypes that we discuss next.

We found 38 exemplar-cohort pairs that had a significant subtype-corrected SOS for

at least one exemplar (Fig. 5A, Table 1) including four exemplars for the kidney carcinoma
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(KIRC) cohort, two for leukemia (LAML), four for liver (LIHC), six for the pheo- and pan-

glioma neuroendocrine tumors (PCPG), and 21 for prostate (PRAD). For example, four exem-

plars (X88, X197, X30, and X18) were found for LIHC that may reflect differentiation differ-

ences between the tumors. All four were associated with high hazard ratios, indicating poorer

outcomes when the signature was detected. Moreover, the ratios were relatively unchanged in

the multivariate models, indicating the exemplar-induced dichotomies of the patients are inde-

pendent of the published subtypes (i.e. represent a different way of grouping the patients).

We plotted the Benjamini-Hotchberg-adjusted significance of the uncorrected and

subtype-corrected SOS analysis. Most of the signatures discovered across these five tumor

types were associated with poorer outcomes (red entries in Fig. 5A) and no exemplars in which

the outcome separation was found to be significant only after accounting for published subtypes.

We note that there are three borderline significant exemplars in PRAD (blue x’s without boxes)

that may represent cases the subtype correction does help reveal the survival separation. Other

than these three exceptions in PRAD, we found that the outcome separation either remained

significant (Fig. 5A, crossed circles) or was no longer significant in the case that an exemplar

recapitulated a separation already accounted for by the published subtypes (Fig. 5A, open cir-

cles). Several cancer types (e.g. PRAD) had a linear trend near Y=X, indicating the published

subtypes had little to no influence on most of the patients groupings based on signature scores.

On the other hand, several tumor types (e.g. KIRC, LAML and PCPG), had linear trends off of

Y=X revealing that subtype correction lessened the survival separation significance, suggesting

many of the signature groupings are similar to the previously determined subtypes.

We found both exemplars that separate survival in a tumor-type specific manner as
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tumor-type signature subtype-cor. naive subtype

SO-HR SO-HR OS

KIRC X125: cortical excitatory neuron 3.64 (s) 3.70 (n) (G)

from organoids (-)

X184: fetal fibroblast from placenta 2.23 (S) 2.88 (N)

X54: B cells from liver 1.84 (s) 1.68 (n)

X145: pancreatic stellate cell 0.58 (s) 0.50 (N)

LAML X112: stromal cell and metanephric cap 3.65 (s) 2.26 (n) (G)

from multiple tissues (-)

X92: astrocyte from brain 3.87 (s) 3.60 (N)

LIHC X88: oligodendrocyte precursor cell 5.32 (s) 5.40 (N) (-)

X197: iPSC normal culture 3.18 (s) 3.12 (n)

to maintain pluripotency (-)

X30: Spermatid and germ cells from testis 3.11 (s) 3.00 (n)

X18: Plasma cells from bone marrow 2.91 (s) 2.50 (n)

PCPG X68: Mammary epithelial cells from primary 5.93 (s) 4.59 (n)

breast cancer cells and lymph node (-)

X205: Muller cell and retinal rod cell 4.55 (s) 5.20 (n)

from retinal neural layer (-)

X132: Endothelial cells from embryonic heart 4.43 (s) 4.51 (n)

X167: Epithelial and basal cells 4.40 (s) 3.97 (-)

from lung carcinomas (-)

X54: B cells from liver 3.98 (s) 4.62 (n)

X39: type I pneumocyte 0.06 (s) 0.11 (-)

PRAD X38: lung ciliated cell 6.41 (s) 4.69 (n)

X150: acinar cell from pancreas 5.22 (S) 4.16 (n)

X2: Epithelial cells from lung 5.13 (s) 5.36 (n)

bronchioalveolar carcinoma (-)

X164: immune from lung carcinomas 5.07 (s) 3.38 (n)

X211: fetal hepatocytes 4.72 (s) 3.27 (-)

X134: Neurons from heart 4.02 (s) 3.52 (n)

X122: erythroid lineage cell 3.90 (s) 4.48 (n)

from multiple tissues (-)

X58: innate lymphoid cell from tonsil 3.49 (s) 3.30 (n)
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tumor-type signature subtype-cor. naive subtype

SO-HR SO-HR OS

PRAD X44: mast cell from lung 3.47 (s) 2.90 (-)

X145: pancreatic stellate cell 3.01 (s) 2.49 (-)

X205: Muller cell and retinal rod cell 2.93 (s) 3.03 (n)

from retinal neural layer (-)

X166: Epithelial cells from lung carcinomas 2.60 (s) 2.33 (n)

X196: induced Neural Plate Border 2.55 (s) 2.82 (n)

Stem Cells from fibroblast (-)

X80: acinar cell 2.54 (s) 2.93 (n)

X132: Endothelial cells from embryonic heart 2.42 (s) 2.70 (n)

X25: EC-Blood from testis 2.36 (s) 2.12 (-)

X151: Alpha cells from pancreas 0.36 (s) 0.39 (n)

X103: embryonic stem celll from H9 cell line 0.31 (s) 0.29 (n)

X39: type I pneumocyte 0.29 (s) 0.28 (n)

X32: Peritubular myoid cells from testis 0.28 (s) 0.40 (-)

X87: Macrophages from brain 0.19 (s) 0.22 (n)

X9: luminal epithelial cell of mammary gland 0.16 (s) 0.22 (n)

Table 3.1: High-confidence signature outcome separation (SOS) results. All results with
a subtype-corrected signature outcome separation (multivariate CoxPH model) fdr-adjusted p-
value p ≤ 0.05. SO-HR = Signature Outcome Hazard Ratio, OS = outcome separation. The
subtype-corrected SO-HR is marked with “s” if the outcome separation has an False Discovery
Rate adjusted p-value p ≤ 0.05, and with “S” for p < 0.001. Similarly, the naive SO-HR is
marked “n” for p < 0.05 and “N” for p ≤ 0.001, and a tumor type for which the subtype groups
show significant (p ≤ 0.001) outcome separation is marked with “G”.
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well as those that separate patients by outcomes in two or more tumor types. For example,

signature X132 shows a SOS in four tumor types, PRAD, KIRC, PCPG and LGG, whereas in

all those four tumor types the detection of the signature X132 correlates with worse outcome

(high SHS). The cells in signature X132 created from four centroids from the same human

dataset, of which a majority of the cells (4568 cells out of 5782 total, 79%) are annotated

as “endothelial cells from embryonic heart.” Gene set enrichment analysis of X132 identifies

“GO MUSCLE ORGAN MORPHOGENESIS” as the most enriched pathway from Gene On-

tology. Studies have shown endothelial cells play a role in tumor microenvironment in regu-

lating tumor initiation, progression, and metastasis24. For example, endothelial cells promote

prostate cancer metastasis25. Endothelial cell proliferation is known to be associated with tu-

mor angiogenesis in gliomas, which contributes to malignant gliomas26. An emerging theme

in metastasis is the involvement of endothelial dedifferentiation as a mechanism tumors use to

transform and gain an immune privilege shared by developmental cell lineages (see Huijbers

et al. 2022 for a review27). The SCEA contained 7 different prenatal and pediatric datasets

(E-GEOD-114530, E-GEOD-124472, E-HCAD-10, E-HCAD-13, E-HCAD-7, E-MTAB-7381,

E-MTAB-7407) from which 32 exemplar signature were derived by the scBEACON pipeline

that include cell types originating from the liver, heart, kidney, umbilical cord blood, bone

marrow, and tonsils. These signatures may implicate additional developmental associations in

tumor subsets and are tabulated in the supplemental material (Supplemental Table S7). Signa-

ture X112 was derived from stromal cells and metanephric cap cells of the kidney. Studies have

shown that Bone marrow stromal cells (BMSCs) promote chemoresistance in acute myeloid

leukemia (AML) cells28 and potentially negatively influence patient survival rates. Thus, even
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though exemplar X112 was derived from kidney, its stromal signature was robust enough to

detect stromal presence in another tissue.

We further investigated specific exemplar-cohort pairs to illustrate microenvironment

components relevant to patient outcomes. The associations for all exemplars and tumor types

are provided in the supplemental material (see Supplementary Table S3) documenting numer-

ous possible correlations worthy of exploration. For reasons that are not clear to us, many more

signatures (n=22) were found to separate the patient samples of the PRAD cohort compared

to other cohorts. Among these for example is exemplar X164 derived from lung carcinomas

(dataset E-MTAB-6653), which was found to have a bimodal distribution for the PRAD sam-

ples (Fig. 5A). The presence of the X164 signature is associated with poorer outcomes for

PRAD patients both with and without subtype correction (Fig. 5C). Our annotation pipeline as-

sociates the signature with NK cells and T-cells of the immune system (based on PanglaoDB).

Because signature X164 is derived from another cancer cohort (lung carcinoma), it is possible

this immune-related signature represents a cancer-permissive state (e.g. exhausted or inhib-

ited T-cell populations). Consistent with this finding, some types of T cells, such as TH17

and/or Treg CD4+ T cells, have been shown to be involved in the development or progression

of prostate cancer29.

As another example, exemplar X58 scores did not exhibit a bimodal distribution on

PRAD samples but splitting the samples by the median signature score (Fig. 5B) produced a

grouping of the patients into different outcome classes (Fig. 5D). X58 was derived from an

“innate lymphoid cell” scRNA-seq dataset (E-GEOD-70580). Studies have shown that type 2

innate lymphoid cell are enriched in prostate cancer30, which produce interleukin (IL)-4 and -
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13, which is known to regulate tumor microenvironment and promote cancer proliferation31,32.

3.3.4 New pan-cancer clustering is revealed on a Tumor Cell-Type (TCT) map

using all cell-type exemplar signatures

In order to take a more comprehensive look at the cell type signature estimates in

TCGA tumors, we projected the TCGA samples onto a two-dimensional landscape, using the

estimates of all 217 cell types as input to Tumor Map20. The interactive Tumor Cell-Type

(TCT) map is available online at bit.ly/TCTmap 217exemplars. We clustered the samples using

hdbscan (see method), a spatial hierarchical clustering method33 to identify 50 TCT clusters.

If a tumor type had at least five samples in multiple clusters, an outcome analysis described in

section Methods was performed between the main cluster of that tumor type and the smaller

minor cluster(s). Out of the 50 clusters, 35 were “pan-cancer”, consisting of at least two or

more tumor types. All the clustering and survival analysis results based on TCT map can be

found in the supplement (Supplementary Table S4).

Most samples cluster by their tumor type (Fig. 6A). This is expected because the cell-

of-origin signal in cancer molecular data is strong and the deconvolution estimates are based on

mRNA-Seq data21. Even so, some exceptions were observed in which TCT clusters revealed

unanticipated divisions with respect to previous publications of these tumors. Interestingly, the

TCT clusters related to PanCan groupings to a higher degree compared to published subtypes

in many cases. We compared the TCT clusters with previous subtypes quantitatively for each

tumor type (Fig. 6B). For example, STAD had low similarity to both PanCan clustering solution

and published subtypes. We investigated the TCT implications for STAD as it provided an
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alternate perspective on how the tumors related to each other, The STAD samples were oriented

into three main TCT clusters –, c36, c39 and c40 (Fig. 6D). Each of the three clusters contained

a mixture of the published STAD subtypes. Thus, STAD as well as 6 other tumor types (i.e.

CESC, LUSC, PRAD, LUAD, UCEC, UCS) may be interesting cases for further follow-up

analyses to appreciate the TCT factors underlying why these tumors represent exceptions to the

general rule in which tumors cluster with others primarily of their tissue-of-origin.

In several cases, the TCT map provided a new grouping for samples that had previ-

ously been grouped based on bulk molecular profiles. We found cases in which the TCT map

split a published subtype into multiple new clusters and cases where the map merged samples

of previously separated published subtypes into a single new cluster. A splitting pattern was

found for the STAD cohort. A single copy-number instable STAD cluster, STAD-GI.CIN, was

split into two different TCT map clusters (c39 and c40, Fig. 6D). C39 has higher signal from

Exemplar X151 (alpha cells from the pancreas) and c40 has a higher signal from exemplar X101

(neural progenitor cells), compared to c39. An alpha cell is one type of endocrine cell that is re-

sponsible for secreting the peptide hormone glucagon. Endocrine cells are found throughout the

GI tract 34, and enteroendocrine cells are dispersed in gut and stomach epithelium, comprising

the endocrine elements of the GI tract 35. We suspect that the alpha cell exemplar reflects the

enteroendocrine signal in STAD samples due to the current lack of a stomach enteroendocrine

exemplar in the scBeacon collection. The association of X101 with c40 suggests the enteric

nervous system (ENS) marks distinct tumor microenvironments, which is supported by work

showing the ENS plays an essential role in regulating both the stem cell niche and the tumor

microenvironment in many organs 36. Of potential interest to further characterize STAD tumor
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Figure 3.7: Tumor Cell-Type (TCT) Map (A) TCT map colored by TCGA tumor type. (B)
Clustering of tumor types into clusters (clustering solution provided in Supplementary Fig.
20) and the similarity (adjusted rand index) of the clusters to the clustering solution derived
in TCGA PancanAtlas21 as well as the grouping of samples into tumor subtypes. (C) STAD
samples, colored by STAD subtypes. (D) Colors show the most differential signatures in STAD
GI.CIN samples between cluster c39 and c40: Exemplar X151 (alpha cells from pancreas)
and exemplar X101 (neural progenitor cells). (E) Survival of STAD subtype GI.CIN samples
based on their clusters. F KIRC samples, colored by KIRC subtypes. (G) Colors show the
most differential signatures in KIRC mRNA subtype 1 samples between cluster c15 and c16:
Exemplar X11 (luminal epithelial cells of mammary gland) and exemplar X22 (CD4-positive
helper T cells from HIV infection blood). (H) Survival of KIRC mRNA subtype 1 samples in
clusters.
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samples, we observed that the samples annotated originally by TCGA as copy-number instable

(i.e. the STAD-GI.CIN subtype) were clustered into three TCT clusters that reveal a survival

difference among the patients. E.g. cluster c39 patients have significantly lower PFI survival

rates compared to c40 patients, and both c40 and c39 patients have lower PFI survival prob-

ability compared to c36 patients. Thus, the TCT map was found to reveal differences among

tumors previously categorized as the same subtype of disease.

We found examples in which the TCT map clustered together samples belonging

to different previously published subtypes. For example, TCT clusters c15 and c16 contain

a mix of published KIRC subtypes (Fig. 6F-H). TCT cluster c15 shows higher signal from

exemplar X11(luminal epithelial cells) while cluster c16 has higher X22 signal (CD4+ helper

T-cells from HIV infection blood). For KIRC mRNA subtype 1 samples between cluster c15

and c16, samples in c15 have better prognosis survival rate compared to c16. This trend could

be explained by the role that tumor epithelia plays in regulating immunotherapy outcomes and

molecular components in tumor microenvironment37. In Zhang et al, the authors found KIRC-

TCGA samples with high estimated fraction of CD8+ T cells have lower survival probability

than samples with high estimated endothelial cells. Even though endothelial and epithelial cells

have different cellular functions and structure, they are both derived from epithelium and have

similar molecular characteristics. This could explain the reason that we observed dissimilar

survival trend in TCT cluster c15 vs. c16.

Visual inspection of the TCT map revealed additional examples of groupings that go

against the expected trends (cancer types or their subtypes clustering) that may suggest mi-

croenvironment factors associated with tumor state. For example, the TCT divides some of
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the lung cancers into two distinct clusters (c09 versus c41) with both clusters having equal

representation from the major subtypes (LUSC and LUAD). The division appears to separate

potentially different lineages with c09 showing higher levels of X38 (lung ciliated cell) and

X41 (transformed epithelial cell from lung) compared to those with higher levels in c41 such

as X167 (Epithelial and basal cells from lung carcinomas) and X46 (type II pneumocytes). As

another example, uterine carcinomas (UCEC) show an interesting pattern in the TCT. Among

the copy number high UCEC subtype samples, several cluster with the serous ovarian tumors

in c28 (n=30) while others cluster into the c27 group (n=114). The microenvironment factors

that underlie the UCEC copy number high distinctions are complicated to interpret as both the

high signatures in c28, such as X59 (neurons in the neocortex), and the high signatures in c27

such as X43 (B-cell from lung), are annotated with lower confidence. Other UCEC samples

cluster with sarcomas into TCT cluster c32, distinguished by high levels of signature X108

(*Keratinocytes/Suprabasal cells of esophagus and low levels of the well-annotated signature

X168 (Basal cells from lung carcinomas). More precise cell type signatures may be needed

to understand the major determinants of the UCEC divisions by the TCT. On the other hand,

some of the uterine sarcomas (UCS) cluster with the UCEC samples into c27 (n=13) instead

of the main cluster (n=14) with immune-related signatures correlated with the division; e.g.

with X22 (CD4-positive helper T cell from HIV infection blood) higher in the UCEC cluster

compared to epithelial cells (X132 and X117) higher in the other cluster. Finally, the TCT map

divided some of the prostate (PRAD) samples into two clusters that were not subtype related

with some PRAD samples clustering into c24 (n=199) and others clustering with samples in

c26 (n=296) with higher levels in c24 associated with exemplars X152 (acinar cell from pan-
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creas) and X156 (CD8-Positive T-Lymphocytes from influenza patients), reflecting a lineage

difference (e.g. involving the secretory glands) and/or a variation in the immune components

underlying the disease. Thus, the TCT map reveals commonalities among tumors previously

considered to have distinct molecular profiles.

3.4 Discussion

There is ever-growing evidence that the cell types present in a tumor’s microenviron-

ment influences the outcome of a cancer patient1. In recent years since single-cell sequencing

became available, the characterization of various cell types in the human body has improved

immensely38–40. A growing number of public single-cell sequencing datasets provides a more

accurate and comprehensive definition of the human cell type repertoire. However, there are still

challenges to efficiently integrate and analyze those datasets together. First, due to the high level

of technical noise and systematic differences between sequencing platforms, simple concatena-

tion could result in batch effects that become the dominant variance rather than biology. Batch

effects have been shown to cause an increased number of false positives in downstream analy-

ses41. To reduce the chance of false discoveries, integration of multiple datasets must eliminate

batch effects42. Whole reference atlas initiatives such as the Human Cell Atlas (HCA) started

collaborative projects to integrate as many datasets as possible to create a whole human cell type

map, the data integration process for this task should not only be able to handle batch effects

well, but also be computationally efficient and fast while ingesting and integrating datasets.

We used the 217 signatures from Chapter 2 for the deconvolution of 33 different
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cancer types from TCGA. Many of the cell-type signatures are found to be correlated to patient

outcomes in single tumor types, some also over multiple tumor types.

The interpretation of the deconvolution results has challenges. When a cell type is

detected in a cancer sample, it may be due to the cell type being present in the tumor microenvi-

ronment. However, another possibility is that the tumor cells themselves have acquired certain

characteristics of other cell types, which is ascribed to a particular cell type by the deconvolu-

tion method. Yet another possibility is that the usage of an incomplete reference might influence

the deconvolution estimate to detect the most closely related cell type when the actual cell type

is not included in the signature matrix. In addition, the annotation of the established collection

of cell-type signatures is challenging since only a subset of the clusters of a dataset may have

reliable annotations either assigned by the authors or inferred by computational methods like

those presented in this study. Finally, the granularity of our cell type signatures may have an

effect on the downstream analysis. Some datasets in our database are represented completely

by just one cell type signature. This happens because all cells in the dataset are from a specific

cell type and are very similar to each other compared to other datasets. Nevertheless, a more

fine-grained cell type definition might be desirable in some cases, and a hierarchical definition

of cell types and cell-type signatures might be a solution to this issue.

TCGA does not contain an exhaustive representation of all tissues and cell types in the

body. Indeed, it has a limited set of cancer types. Thus, we expect many cell types to be absent

from the TCGA collection. The fact that some signatures are not found when deconvolving may

either the exclusion of certain types of cells in cancer tissues in the biased TCGA set or “odd”

cell types found in scRNAseq data that are not present in bulks samples (although the latter is
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hard to rule out as we did not analyze a comprehensive set of bulk tissue data). As the collection

of signatures grows, there will concomitantly be increases in the number of signatures that fail

to be detected in any analyzed set of tissues. However, at this stage, such extra cell types have

not proven detrimental to the deconvolution or downstream analyses in any tangible way.

Validation of the scBEACON approach using the GTEx consortium data further af-

firmed its robustness and accuracy in identifying cell type signatures and their application in

deconvolving bulk RNA-seq datasets. By leveraging the orthogonal dataset published by the

GTEx consortium containing single nucleus RNA sequencing (snRNA-seq) derived signatures

and subsequent deconvolution of GTEx bulk RNA-seq samples, we demonstrated that decon-

volution with scBEACON-derived signatures for GTEx effectively grouped similar tissues,

thereby underscoring its utility across diverse biological datasets. Notably, tissues from related

organ systems such as the brain, gastrointestinal tract, and vascular structures exhibited coher-

ent clustering, which is indicative of the tool’s precision in capturing organ-specific cellular

compositions. Moreover, the comparison of the scBEACON-derived signatures from the Single

Cell Expression Atlas (SCEA) with the 35 obtained from GTEx revealed significant overlaps,

with more than half of the GTEx signatures showing a high correlation with the SCEA-derived

set. The majority of SCEA signatures were unique compared to those in GTEx, indicating a

broader scope of cellular diversity captured by the SCEA dataset, reinforcing the capability of

scBEACON to provide a detailed and expansive view of cellular landscapes across different

conditions and tissues, which is crucial for understanding complex biological systems and their

underlying mechanisms in health and disease.

In summary, we provide a comprehensive collection of cell-type signatures based on
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the preprocessing of a large amount of scRNAseq data, strategies for identifying and merging

signatures across datasets even from different platforms using rank-based centroids, a graph-

based meta-clustering approach, and a novel enrichment-based cluster comparison metric. We

provide annotations for all of the discovered 217 signatures and document survival associations

for 33 exemplar signatures in 5 tumor types. We have made available a new interactive map

of all TCGA tumors based on their TCT content. We found evidence for both merging pre-

established subtypes into common TCT clusters as well as splitting samples of one subtype into

multiple new TCT clusters. We found several examples in which regrouping samples, either

using individual signatures on a single tumor cohort or using all signatures in a new pan-cancer

TCT clustering, revealed new outcome implications.
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Chapter 4

Characterizing cancer subtypes and

cell-type components of Testicular

Germ Cell Tumors

The project described in this chapter was part of the GDAN testicular germ cell can-

cer (TGCT) AWG working group at the National Cancer Institute (NCI). My main contributions

are characterizing TGCT cancer subtypes in mixture samples, and deconvoluting and analyz-

ing bulk tumor samples using cell-type signatures derived from scRNA-seq, especially cancer-

specific tissue infiltrating macrophages. The manuscript is under preparation for submission.
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4.1 Introduction

About 95% of all testicular cancers are represented by testicular germ cell tumors

(TGCTs). TGCT is the most common solid tumor among males 15–34 years of age, with an

estimated 8,850 new cases and 410 deaths during 2017 in the United States[16].

Testicular germ cell tumors (TGCTs) are the most common tumors in men aged be-

tween 15 and 44 years[17]. Germ cell tumors account for most of all testicular cancers. TGCT

can be divided roughly into 2 groups: seminoma and non-seminoma, whereas Non-Seminoma

can be further divided into spermatocytic seminoma, embryonal carcinoma, yolk sac tumor,

choriocarcinoma, and teratoma, including many possible combinations of those[29].

The increasing incidence of TGCTs among males provides strong motivation to un-

derstand its histology, its genetic basis, and its gene and transcript regulatory properties[5].

TGCT affects several regulatory mechanisms on various molecular levels. Transcription fac-

tors and microRNAs can be considered key regulators of the transcriptome that frequently

show aberrant activity in cancers. MicroRNAs (miRNAs) are short non-coding RNAs (2̃2

bases)[27, 22, 6] involved in many biological processes and human diseases[25]. miRNAs

regulate mRNAs by either degrading them or preventing their translation[50]. The possible in-

terplay between mRNAs, miRNAs, circular RNAs (circRNAs), long non-coding RNAs (lncR-

NAs), and other types of RNA that have miRNA binding sites gives rise to a large regulatory

network between transcripts that carry miRNA binding sites. Network transcripts are referred

to as competing endogenous RNAs (ceRNAs), as they compete for binding a limited pool of

miRNAs[41]. In particular, circRNAs are potentially very potent ceRNAs as their circular form
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is stable and protects these RNAs from degradation while at least some show a higher number

of binding sites compared to other RNAs[23]. One hypothesis is that circRNAs act as miRNA

buffers[54]. Several examples of interactions between miRNAs and circRNAs are known (e.g.,

CDR1as/CiRS-7, SRY[20], and circNCX1[26]). Even though individual studies confirmed the

existence of ceRNAs in cancer, we lack knowledge of these phenomena in TGCT.

4.2 Subtype deconvolution in TGCT

Understanding subtypes in testicular germ cell cancer is crucial. Identifying and clas-

sifying these subtypes enables personalized treatment strategies tailored to individual patients,

optimizing therapeutic efficacy while minimizing unnecessary side effects. Additionally, ad-

vances in molecular profiling have revealed heterogeneity within and across subtypes, high-

lighting the complexity of disease progression and the need for targeted interventions. Expert

Pathologist Committee (EPC) review reported that many tumor samples contained mixtures of

histological subtypes, which makes it harder to assign subtypes for the mixture samples. To ex-

tend a simplistic approach that assigned one subtype per sample, we deconvoluted subtypes for

each sample, using data from DNA methylation, gene expression, and microRNA expression.

In the sample cohort, we have 4 pure histological types: seminoma(170), embryonal

carcinoma(47), yolk sac(18), and mature teratoma(13). And 2 dominant histological types,

choriocarcinoma(1) and immature teratoma(3), are the samples that have more than 70% of

assigned histology but also consist of other histology types. The numbers in the parathesis are

the number of the samples.
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Figure 4.1: Subtype Deconvolution in TGCT mixture Samples. (A) Signature genes for
the 6 TGCT subtypes, columns are the gene expression values for marker genes, rows are the
subtypes. (B) Deconvolution results for TGCT samples. The results are 0-1 normalized (C)
Pathologist review of the subtype percentage for TGCT samples.

First of all, I ranked normalized (ranking/number of genes) gene expression values

in each sample and computed the average rank-normalized gene expression for each histolog-

ical type to generate ranked centroids for each subtype. For choriocarcinoma and immature

teratoma, I took the “purest” sample for each subtype and computed the ranked sample to rep-

resent ranked centroids for the two subtypes. Next, for the 6 ranked centroids, I subtracted the

highest and second-highest expressed histological types for each gene and got a vector of differ-

ential expression values, then I ranked the differential expression vector, from highest to lowest.

Next, I took the top 20% of genes as the differential expressed genes. Then I computed the

signature matrix for CIBERSORT by subsetting differential expressed genes from the average

rank normalized matrix generated in the previous step.

Then I calculated the accuracy of our deconvolution-based subtype estimation. We

define the Estimate accuracy = # samples match with pathologists’ call \ total # of pure or
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Figure 4.2: Subtype Deconvolution in TGCT mixture Samples Left to right: Subtype per-
centages from pathology (EPC) review and from subtype deconvolution using DNA methylation
data, miRNA expression data, and mRNA expression data. Immature teratoma and mature ter-
atoma were merged into a ‘teratoma’ subtype; the one choriocarcinoma was excluded from the
analysis.

dominant samples. For pure samples, the accuracy goes up to 97.7%, for dominant and mixture

samples, the accuracy is 78.6%.

Next, we applied this approach for DNA methylation data and microRNA data, to

compare the results using these three omics. For this analysis, we merged the mature teratoma

and immature teratoma into a single subtype type, and we removed the choriocarcinoma subtype

since there were no 100% immature teratoma or choriocarcinoma samples. The predicted,

deconvolved subtype proportions were concordant with subtype proportions from the pathology

review. DNA methylation data estimated larger fractions of embryonal carcinoma components

in seminoma samples, while results were similar to gene expression and miR expression data.
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4.3 Cell type deconvolution in TGCT

The tumor microenvironment (TME) consists of various non-cancerous cell types, in-

cluding immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which

interact with tumor cells and influence tumor behavior. Tumor purity refers to the proportion of

tumor cells in a tumor sample relative to non-tumor cells. The components of the TME can sig-

nificantly impact tumor purity through multiple mechanisms. For instance, infiltrating immune

cells such as tumor-infiltrating lymphocytes (TILs) can target and eliminate tumor cells, leading

to decreased tumor purity. In TGCT samples, seminoma and non-seminoma samples showed

distinct differences in their gene expression profile(see Figure 4.3(A)) as well as tumor purity

level, as shown in Figure 4.3 (B). Non-seminoma samples have higher purity levels compared

to seminoma samples. In Figure 4.3(C), LM22 is the default immune signature consisting of

22 major immune cell populations, the high negative correlation indicates the presence of im-

mune cells in the tumor microenvironment contributed to tumor impurity in TGCT samples.

Therefore, here we are using deconvolution to understand and characterize the cell type ratios

for tissue components and microenvironment in TGCT samples.

The CIBERSORT analysis was performed using cell-type signatures that were de-

rived from single-cell RNAseq studies. The analysis results in a score that serves as an esti-

mation of cell type abundance within each tumor sample. Note that there is no requirement

for a sample’s cell-type scores to sum to one. That is, if no cell-type signature matches well

with the sample data, the sample does not get forced into the closest cell-type. We begin with

a signature set that was derived from a scRNA-seq study of healthy fetal and postnatal human
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Figure 4.3: TGCT tumormap and purity. (A) Tumormap using RNA-seq gene expression,
with histology calls in colors. (B) Tumor purity in seminoma and non-seminoma samples. (C)
purity score in correlation with the sum of the LM22 score in the scatter plot.
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testis[18]. The most striking difference between the histologic subtypes is in the germ cell sig-

nature score. Overall, the seminoma samples have the highest germ cell signature scores. Of the

non-seminomas, the embryonal (and embryonal dominant) samples had the highest germ cell

signature scores. The remaining non-seminomas scored low in the germ cell signature scores.

One thing to note is that there seems to be a small subset of KIT-mutated seminomas that have

low scores in the germ cell signature compared to the other seminomas. There is a much smaller

set of KIT-wt seminomas that has a similar pattern but to a lesser extent. These germ cell-low,

KIT-mutated samples had signature scores that were distinct in other CIBERSORT analyses, as

well.

Preliminary analysis also reveals some evidence of differences between histology

subtypes in macrophage signature scores derived from the study conducted by Guo et al[18].

Seminomas and embryonals score slightly higher in that signature. We performed additional

analysis to determine whether the signature is detecting tissue-resident macrophage or infiltrat-

ing macrophage. For this, we further investigated cell type using signature sets derived from

immune studies of various organ systems[11]. We found that, in all four organ signature sets

and the average across all organs, the macrophage scores were the highest compared to other

immune cell types, which is in concordance with the previous human testis studies, which con-

clude testicular macrophages are the largest immune cell population in the human testis.[52, 55]

To better understand the macrophage populations in TGCT samples, we generated

three macrophage signatures from the scRNAseq study of human gonadal development[15] for

deconvolution: SINGLEC15 ftM fetal testicular macrophages (ftMs), which had an osteoclast-

like signature; TREM2 tfM, which had a microglialike signature; and tissue repair.macrophage.
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Figure 4.4: TGCT cell type deconvolution. Cibersort deconvolution for TGCT samples using
cell type signatures derived from multiple single-cell RNA-seq datasets

75



We also included a monocyte signature in the same study to represent the infiltrating macrophage

population. Monocytes originate in the bone marrow and circulate in the blood. SINGLEC15 ftM

and TREM2 tfM are two types of testis-specific resident macrophages. tissue repair. macrophages,

which are present in all developing tissues, make up the majority of the macrophage popula-

tion in the Garcia Alonzo study. In TGCT samples, TREM2 tfM and tissue repair.macrophage

are the two major macrophage populations, with little SINGLEC15 ftM and monocyte signals

showing up in CIBERSORT deconvolution results.

In this study, we then did correlation analysis for macrophage scores from embryonic

testis study with different populations of macrophage. We computed the correlation of fetal or

postnatal macrophage scores[18] with scores from a human gonadal development study[15]. We

observed that the correlation was highest with tissue-repair macrophage signature (R= 0.52).

The TREM2 tfM signature had a lower correlation (R= 0.18). Again, TGCT samples had very

low SINGLEC15 ftM and monocyte signature scores, so no correlation was observed for those

cell types. This correlation analysis suggests that the fetal or postnatal macrophage scores that

we observe from the Guo study can be attributed mostly to the tissue-repair macrophage cell

type.

We found that the correlation of the guo macrophage signature with either the tissue-

repair.mac signature or the TREM2 tfM signature depended upon the subset of TGCT sam-

ples that we considered. We separated our TGCT cohort into seminoma and non-seminoma

groups in this analysis. For the seminoma group, the guo macrophage signature was more

highly correlated with the tissuerepair.mac signature compared to the non-seminoma group

(pearson r seminoma= 0.60, pearson r non seminoma= 0.18). We saw a different pattern for
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Figure 4.5: TGCT subtypes consist of different macrophage populations. Cibersort decon-
volution for TGCT samples using cell type signatures derived from multiple single cell RNA-
seq datasets
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the non-seminomas. The guo macrophage signature correlation with TREM2 tfM signature

was higher for non-seminomas than for seminomas (pearson r non seminoma= 0.48, pear-

son r seminoma= −0.01). We also observed that, of the non-seminoma histology types, the

embryonal carcinoma samples tended to have the highest guo macrophage and TREM2 tfM

signature scores. The mature teratoma samples tended to have the lowest guo macrophage and

TREM2 tfM signature scores. [reference scatterplots] [Perhaps seminomas come about early

in testis development, before testis immune privilege has been established, allowing access by

tissue-repair macrophages. Non-seminomas develop at later stages when the immune privilege

is in place, so we see the more dominant signal from tissue-resident TREM2 tfM.]

We used scRNAseq data from studies that investigated the developmental processes

involving iPSC endoderm[62] and iPSC endothelium[63]. Cell type signatures at different time

points were derived from these datasets, representing timepoint snapshots of tissues as they

progress through various developmental time points. As before, we used these developmental

cell-type signatures to score the TGCT samples using CIBERSORT. Using the TGCT sample

scores from the signatures that represent the earliest and latest developmental time points, we

computed differential iPSCendothelial and differential iPSCendodermal scores to get a readout

of how the TGCT samples relate to each other along those developmental axes. We found

that embryonal tumors have the lowest differential scores. This result suggests that the cells of

embryonal tumors are the least differentiated of the histology subtypes in our dataset. The result

is corroborated by GSEA scores in a testis differentiation pathway (ref name of the pathway as it

appears in MSigDB). The GSEA result also includes the highest differentiation in KITmutated

seminoma.
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4.4 Discussion

In this study, we characterized the TGCT subtype for the mixture samples that consist

of multiple subtypes and compared the results to the histology review. Using the deconvolution

pipeline, we are able to achieve high accuracy in assigning subtypes for TGCT samples.

We also showed that different macrophage populations are associated with TGCT

histology, which is also associated with mutation status in TGCT samples. We generated devel-

opmental scores derived from iPSC stem cells, and the differential score correlated well with

the testis differential pathway enrichment score. This approach could potentially be used to

characterize cell state transition and developmental stages in tumors.
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Chapter 5

Identifying cell types and cell states in

glioblastoma

The project described in this chapter is part of the Treehouse Childhood Cancer Initia-

tive collaboration with University of Helsinki and University of Arkansas for Medical Sciences.

The work is still subject to active research and will be published under the project lead of Analiz

Rodriguez, Vadim Le Joncour and Olena Vaske.

My main contributions are extraction of cell state signatures in previous studies, and

deconvolution for gliablastoma bulk RNA-seq samples with predefined marker genes and brain

cell developmental trajectories.
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5.1 Introduction

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor

among adults and carries a grim prognosis with less than a 5% chance of 5-year survival fol-

lowing standard therapy[38]. However, the standard treatment such as radiation and chemother-

apeutic has remained the same for the last decades. This one-size-fits-all treatment approach to

heterogeneous tumors has contributed to the poor treatment outcome in patients. There has been

tremendous work on identifying and characterizing the molecular subtypes in cancer samples in-

cluding glioblastoma. Studies of inter-tumor heterogeneity based on bulk gene expression data

in TCGA suggest that at least three subtypes of glioblastoma exist, namely proneural (TCGA-

PN), classical (TCGA-CL) and mesenchymal (TCGA-MES)[46, 48]. Based on glioblastoma

subtypes, researchers identified genetic heterogeneity between tumor samples.

Another layer of heterogeneity is the developmental states of glioblastoma cells in the

tumor[30]. Glioblastoma contains subsets of glioblastoma stem cells (GSCs), which interfere

with neuron development and contribute to treatment resistance and tumor metastasis[3, 9].

In addition, multiple subtypes or developmental states can co-exist in different regions of the

same tumor[32]. It is important to understand the cell types and states in glioblastoma at the

single-cell level, including tumor components and microenvironment, either with single-cell

sequencing technology or bulk tumor deconvolution using cell type signatures derived from

single-cell gene expression profiles.

There are a few studies for defining and characterizing the cell type and states in

glioblastoma, in this project, I used two studies: First, 1) Liu, Ilon, et al. ”The landscape of tu-
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mor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age

and location.” Nature Genetics 54.12 (2022): 1881-1894. In this study, the authors dissected

H3-K27M mutant diffuse midline glioma using single-cell transcriptomic, epigenomic, and spa-

tial data. They identified 5 tumor metaprograms: ”astrocyte-like” (AC-like), ”oligodendrocyte-

like” (OC-like), ”mesenchymal-like” (MES-like), oligodendrocyte precursor cell (OPC-like)

and cycling. OPC-like cells were further resolved into three subpopulations (OPC-like-1, OPC-

like-2, and OPC-like-3). Oligodendrocyte precursor cells (OPC)-like glioma cells demonstrated

a cancer stem cell-like state that is capable of self-renewal and tumor initiation. This indicates

that OPC-like cells are at the core of K27M mutation-mediated tumorigenesis.

In 2) Neftel, Cyril, et al. ”An integrative model of cellular states, plasticity, and ge-

netics for glioblastoma.” Cell 178.4 (2019): 835-849, the authors analyzed scRNA-seq data

from glioblastoma patients and concluded that malignant cells in glioblastoma exist in 4 cel-

lular states: (i) neural progenitor-like (NPC-like), (ii) oligodendrocyte-progenitor-like (OPC-

like), (iii) astrocyte-like (AC-like) and (iv) mesenchymal-like (MES-like) states. Mesenchymal-

like (MES-like) states can be further separated into two meta-modules: hypoxia-independent

(MES1) and dependent (MES2) signatures. Neural progenitor-like (NPC-like) is also further

subdivided into two subprograms: OPC-related genes in NPC1 vs. neuronal lineage genes in

NPC2.

There are overlaps and discrepancies in the definition of cell states or metaprograms in

glioblastoma in those two papers, in this project, I analyzed the two sets of cell states separately.

However, brain tissue has been known for its complexity and the amount of different

cell types that exist in the brain. Many cell types that are derived from the same progenitor

82



cells often share similar marker gene profiles, which makes it harder to generate a unique set of

marker genes for brain tumor cell types needed for deconvolution. Because of this, many tumor

deconvolution studies or methods avoid brain tumor cell type deconvolution. Here I proposed to

use a multi-group, hierarchical approach for constructing a signature matrix for glioblastoma.

This approach minimized the problem of overlapping marker genes and resulted in more robust

deconvolution results.

In this context, the definition of cell states and cell types might overlap to a degree,

but there is an important distinction where cell type refers to the specific kind or category of

cell based on its structural, functional, and molecular characteristics, and cell states address

the current condition or status of a cell, which can be dynamic and can change in response to

various internal and external factors. Cell state can include factors such as whether the cell

is actively dividing (in the cell cycle), and whether it is undergoing differentiation (changing

into a specialized cell type). Here we emphasize the approach to generate a ”cell signature”,

regardless of the difference between cell types and cell states.

5.2 Deconvolute glioblastoma based on cell type developmental tra-

jectories

There are two developmental trajectories in glioblastoma samples that we are inter-

ested in, see Figure 5.1. We are particularly interested in trajectory 1, because trajectory 1

summarized the glioblastoma-related neuron cell types development, and it contains the cell

types we are interested in such as oligodendrocyte-progenitor-like (OPC), astrocyte, and oligo-
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Figure 5.1: Glioblastoma cell type developmental trajectories

dendrocyte. In Figure 5.2, I grouped cell types into 8 groups for a lower-resolution first-round

deconvolution. In this way, similar cell types, or cell types derived from the same trajectory

branches are grouped together and minimize the impact of overlapping marker genes for indi-

vidual similar cell types.

Figure 5.3 shows the first round deconvolution results for the 8 cell type groups, and

figure 5.3(A) shows the signature matrix with a set of differentially expressed genes for each

group. Figure 5.3(B) shows deconvolution results using synthetic bulk generated using the

glioblastoma single-cell RNA-seq dataset from the Treehouse.

As shown in Figure 5.3(B), the correlation between the ground truth and deconvolu-
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Figure 5.2: Group glioblastoma cell types based on developmental trajectories
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Figure 5.3: Group glioblastoma cell types deconvolution, first round. (A) Signature matrix
with a set of differential expressed genes for each group. (B) First round of deconvolution
results using synthetic bulk samples generated from scRNA-seq data

tion results is high, especially for group 3, which consists of ependymal, astrocyte, OPC, and

oligodendrocyte, the cell types we are most interested in.

Next, since we are very interested in characterizing astrocytes, OPC, and oligoden-

drocytes in glioblastoma, I picked group 3 for further analysis. As shown in Figure 5.4, I further

separated Group 3 into two clusters(cluster 9 and cluster 10). Differentially expressed genes in

the second round of deconvolution are selected from the marker genes of group 3, and the es-

timated ratios for cluster 9 and cluster 10 are normalized by the estimated ratio of group 3.
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Figure 5.4: Group glioblastoma cell types deconvolution, first round. (A) Second round
deconvolution on group 3. (B) Third round of deconvoluton results

Using the same strategy, I performed the third round of deconvolution shown in Figure 5.4(B),

in which astrocyte, OPC, and oligodendrocyte ratios are estimated individually with high cor-

relation with the ground truth ratios with low RMSE.

Using a hierarchical strategy for marker gene selection for deconvolution addressed

the nature of cell type differentiation. This approach made it possible to have a finer resolution

for deconvolution, especially when some rare cell types come from a subpopulation of a very

similar cell type. Compared results to the traditional way of analyzing all cell types possible at

once in one deconvolution run, separating the deconvolution into multiple steps based on cell

type developmental trajectory showed decent results.

87



5.3 Estimate cell states in glioblastoma tumor with H3-K27M mu-

tation

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in

diffuse midline gliomas (DMGs) of the childhood pons. It is important to understand the het-

erogeneity of glioblastoma tumors with H3-K27M mutations. Here we collected two papers

that defined cell states in glioblastoma tumors with H3-K27M mutation using bulk RNA-seq

data, with marker genes associated with each cell state. For this project, we want to extract

the cell states in these two publications and deconvolute bulk tumor samples in Treehouse, the

Childhood Cancer Initiative in UC Santa Cruz.

The two papers are listed below: 1) Liu, Ilon, et al. ”The landscape of tumor cell states

and spatial organization in H3-K27M mutant diffuse midline glioma across age and location.”

Nature Genetics 54.12 (2022): 1881-1894. 2) Neftel, Cyril, et al. ”An integrative model of

cellular states, plasticity, and genetics for glioblastoma.” Cell 178.4 (2019): 835-849.

In order to extract cell state signatures for deconvolution, I collected single-cell RNA-

seq data GSE102130[14] to generate a signature matrix for cell states. I annotated the samples

in the scRNA-seq dataset with cell state marker genes and performed deconvolution analysis

using CIBEROSRT on Treehouse glioblastoma samples. See results in Figure 5.5 and Figure

5.6.

The two results correlated well in terms of the AC and MES like cell states, which

made up for the majority of the cell states composition in glioblastoma samples. OC, OPC,

and NPC population varies across samples and the two results, could caused by the different
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Figure 5.5: Cell states estimation in patients based on Liu et al. (A) Cell states heatmap with
marker genes in Liu et al. (B) Signature matrix for cell states based on Liu et al, in GSE102130
glioblastoma scRNA-seq data. (C) Cell states deconvolution results in patient tumor samples.
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Figure 5.6: Cell states estimation in patients based on Neftel et al. (A) Cell states heatmap
with marker genes in Neftel et al. (B) Signature matrix for cell states based on Neftel et al,
in GSE102130 glioblastoma scRNA-seq data. (C) Cell states deconvolution results in patient
tumor samples.
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molecular definitions for OC, OPC, and NPC in the two papers.

5.4 Discussion

In this chapter, two independent methods were applied to deconvolute bulk RNA-

seq glioblastoma tumor samples: the first using synthetic bulk RNA seq data generated from

scRNA-seq glioblas- toma samples, and the second using bulk RNA seq data from tumor biop-

sies of individuals with glioblastoma. The two results demonstrated the complexity and het-

erogeneity of glioblastoma tumors. Using a hierarchical strategy for marker gene selection for

deconvolution addressed the nature of cell type differentiation. This approach made it possible

to have a finer resolution for deconvolution, especially when some rare cell types come from

a subpopulation of a very similar cell type. Compared to the traditional way of analyzing all

cell types possible at once in one deconvolution run, separating the deconvolution into multiple

steps based on cell type developmental trajectory showed decent results.

Inferring cell states based on previous studies from Treehouse bulk RNA tumor sam-

ples also has clinical importance in understanding the heterogeneity of glioblastoma tumors.

Using cell state signatures generated in an independent scRNA-seq dataset showed the robust-

ness of the rank-based deconvolution pipeline to capture the biological signals.
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Chapter 6

Conclusion

Even though cancer is a disease originating in the genome, the cell phenotype is often

better classified with transcriptional signatures.

In chapters 2 and 3, first, I built scBeacon, a tool that derives cell type signatures by

integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving

unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the TCGA

cohort, we find previously unrecognized cellular and molecular attributes within specific tumor

categories, many with patient outcome relevance. We developed a tumor cell-type map (TCT)

to visually depict the relationships among TCGA samples based on the cell-type inferences. In

Chapter 4, I used a similar deconvolution approach to characterize and estimate the mixed

histologies in testicular germ cell cancer and deconvoluted the bulk tumors using cell type

signature derived from scRNA-seq data derived from germ cell testicular tissue. I also came up

with developmental scores using iPSC data to characterize the differentiation stages in TGCT
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samples.

In Chapter 5, I characterized cell type and cell states in glioblastoma using a hier-

archical strategy for marker gene selection for deconvolution and addressed the nature of cell

type differentiation. To estimate the cell state component in the Treehouse samples, we relied

on previous studies on glioblastoma with predefined marker gene sets.

Altogether, I presented a variety of research projects that demonstrate the use of tran-

scriptional signatures in the analysis of tumors and their microenvironment. I described the new

insights gained from gene expression analysis about cancer subtypes, cell states, and ultimately

patient risk and outcomes.
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