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A conserved interdomain microbial network 
underpins cadaver decomposition despite 
environmental variables

Zachary M. Burcham1,2, Aeriel D. Belk1,3, Bridget B. McGivern    4, 
Amina Bouslimani5, Parsa Ghadermazi6, Cameron Martino7, Liat Shenhav8,9,10, 
Anru R. Zhang11,12, Pixu Shi11, Alexandra Emmons1, Heather L. Deel13, 
Zhenjiang Zech Xu    14, Victoria Nieciecki    1,13, Qiyun Zhu    7,15,16, 
Michael Shaffer4, Morgan Panitchpakdi5, Kelly C. Weldon5, Kalen Cantrell    17, 
Asa Ben-Hur18, Sasha C. Reed19, Greg C. Humphry7, Gail Ackermann7, 
Daniel McDonald7, Siu Hung Joshua Chan    6, Melissa Connor20, 
Derek Boyd    21,22, Jake Smith21,23, Jenna M. S. Watson21, Giovanna Vidoli21, 
Dawnie Steadman    21, Aaron M. Lynne24, Sibyl Bucheli24, 
Pieter C. Dorrestein    5, Kelly C. Wrighton4, David O. Carter    25, 
Rob Knight    7,17,26,27 & Jessica L. Metcalf    1,13,28 

Microbial breakdown of organic matter is one of the most important 
processes on Earth, yet the controls of decomposition are poorly 
understood. Here we track 36 terrestrial human cadavers in three locations 
and show that a phylogenetically distinct, interdomain microbial network 
assembles during decomposition despite selection effects of location, 
climate and season. We generated a metagenome-assembled genome library 
from cadaver-associated soils and integrated it with metabolomics data 
to identify links between taxonomy and function. This universal network 
of microbial decomposers is characterized by cross-feeding to metabolize 
labile decomposition products. The key bacterial and fungal decomposers 
are rare across non-decomposition environments and appear unique to the 
breakdown of terrestrial decaying flesh, including humans, swine, mice and 
cattle, with insects as likely important vectors for dispersal. The observed 
lockstep of microbial interactions further underlies a robust microbial 
forensic tool with the potential to aid predictions of the time since death.

Decomposition is one of Earth’s most foundational processes, sus-
taining life through the recycling of dead biological material1,2. This 
resource conversion is critical for fuelling core ecosystem functions, 
such as plant productivity and soil respiration. Microbial networks 
underpin organic matter breakdown3, yet their ecology remains in a 
black box, obscuring our ability to accurately understand and model 
ecosystem function, resilience and biogeochemical carbon and nutrient 

budgets. While DNA-based assessments of decomposer microbial com-
munities have occurred in plant litter4,5 and a few in mammals6,7, little 
has been revealed about the microbial ecology of how decomposer 
microbial communities assemble, interact or function in the ecosystem. 
Our understanding of how animal remains, or carrion, decompose is in 
its infancy due to the historical focus on plant litter, which dominates 
decomposing biomass globally. Nevertheless, an estimated 2 billion 
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similar functions. Alternatively, similar microbial community members, 
or microbial networks, may assemble across sites to outcompete other 
community members and thrive on nutrients15.

Recent research has demonstrated that microbial community 
response over the course of terrestrial human cadaver decomposi-
tion and across a range of mammals, results in a substantial microbial 
community change through time that is repeatable across individu-
als6,7,16–18 and appears somewhat similar across different soil types6 
and robust to scavenger activity16. These data suggest the potential for 
universal microbial decomposer networks that assemble in response to  
mammalian remains. However, it remains unclear how the effects of 
environmental variability, such as differences in climate, geographic 
location and season, may affect the assembly processes and interac-
tions of microbial decomposers. Yet understanding and predicting 
this assembly is important for our understanding of ecosystems and 

metric tons of high-nutrient animal biomass8 contribute substantially 
to ecosystem productivity, soil fertility, and a host of other ecosystem 
functions and attributes9,10. Carbon and nutrients from carrion bio-
mass can be consumed by invertebrate and vertebrate scavengers, 
enter the atmosphere as gas, or be metabolized by microbes in situ or  
via leachate in the surrounding soils11,12. The proportion of carrion 
carbon and nutrients entering each resource pool is not well quantified 
and probably highly variable with substantial contributions to each 
at an ecosystem scale2,13. Unlike with plant litter, which is primarily  
composed of cellulose, animal decomposers must predominantly  
break down proteins and lipids, which require a vastly different meta-
bolic repertoire. How microbial decomposers assemble to break down 
these organic compounds is not well understood. For plant litter,  
it has been proposed that functional redundancy allows different com-
munities of microbes to assemble in any given location14 and perform 
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Fig. 1 | Summary of study design. a, Köppen–Geiger climate map showing ARF 
and STAFS as ‘temperate without a dry season and hot summer’ and FIRS as 
‘arid steppe cold’ adapted from ref. 23. Thirty-six cadavers in total were placed 
(N = 36), 3 per season for a sum of 12 at each location. b, Upset plot representing 
the experimental design for the total sample size (x axis) and number of  
shared/paired samples (y axis) for each data type. MetaG, metagenomics;  
Metab, metabolomics; 18S, 18S rRNA amplicon; 16S, 16S rRNA amplicon.  

c, Total body score, a visual score of decomposition calculated over the course 
of decomposition27, illustrating how decomposition progresses at each location 
and by season in triplicate. Dashed lines separate sections of early, active and 
advanced stages of decomposition as determined by a temperature-based unit 
of time, accumulated degree day (ADD), calculated by continuously summing 
the mean daily temperature above 0 °C from left to right. Point transparency 
increases with days since placement.
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informs practical applications. For example, profiling microbial suc-
cession patterns associated with human remains may lead to a novel 
tool for predicting the postmortem interval (PMI), which has critical 
societal impact as evidence for death investigations. Within labora-
tory experiments6,18, as well as field experiments in single locations6,19, 
microbial decomposer community succession is closely linked to 
PMI at accuracies relevant for forensic applications6,17,18, but these 
studies do not inform questions of microbial variation across sites, 
climates and seasons. Consequently, a robust understanding of how 
microbial ecological patterns of mammalian, and specifically human, 
decomposition vary is critical for using and improving these important 
forensic tools. Unlocking the microbial ecology black box for mam-
mal decomposition, or more generally carrion decomposition, could 
provide actionable knowledge for innovation in agriculture and the 
human death care industry (for example, composting of bodies)20, 
sustainability (for example, animal mass mortality events)21 and the 
forensic sciences (for example, estimating PMI)22, as well as guide  
future research on plant decomposition and maintaining global  
productivity under anthropogenic change.

To address ecological and forensic research questions on decom-
poser network assembly and function, we used three willed-body 
donation anthropological facilities in terrestrial environments across  
two climate types within the United States (Fig. 1a and Extended Data 
Fig. 1a,b)23. We asked whether temporal trends in microbial decomposer 
communities that we previously characterized in a limited experi-
ment using human cadavers at a single geographic location6 were 
generalizable across climate, geographic locations and seasons. Over 
the course of decomposition, we compared the microbial response 
to decomposition across 36 human bodies within (temperate forest) 
and between (temperate forest vs semi-arid steppe) climate types. We 
used multi-omic data (16S and 18S ribosomal (r)RNA gene amplicons, 
metagenomics and metabolomics) to reveal microbial ecological 
responses to cadaver decomposition over the first 21 d postmortem 
(Fig. 1b and Extended Data Fig. 1c), when decomposition rates are gen-
erally fast and dynamic (Fig. 1c, metadata in Supplementary Table 1).  
Here we show that a universal microbial decomposer network  
assembles despite location, climate and seasonal effects, with evi-
dence of increased metabolic efficiencies to process the ephemeral 
and abundant lipid- and protein-rich compounds. Key members of 
the microbial decomposer network are also found associated with 
swine, cattle and mouse carrion16,24–26, suggesting that they are not 
human-specific, but probably general to mammal or animal carrion. 
Furthermore, the universal microbial network communities underlie 
a robust microbial-based model for predicting PMI.

Results
Nutrient-rich cadaver decomposition
Terrestrial mammalian decomposition is a dynamic process that is 
partly governed by environmental conditions1,2. We observed that 
cadavers placed in the same climate (temperate) decomposed simi-
larly across locations within a season, as determined by a visual total 
body score (TBS) of decomposition progression (Fig. 1c)27. Cadavers 
placed in a semi-arid climate (that is, FIRS) generally progressed more 
slowly through decomposition over the 21 d, which is probably due to 
decreased temperatures, humidity and precipitation in the semi-arid 
environment (Extended Data Fig. 1a,b)9,28. We observed visual cadaver 
decomposition progression to be impacted by season, wherein sum-
mer was the most consistent across locations (Fig. 1c). As cadavers 
and mammalian carrion decompose, they release a complex nutrient 
pool that impacts the surrounding environment, often resulting in the 
death and restructuring of nearby plant life2,29 due to generally high 
inputs of nitrogen2,6,9,30,31, which is primarily in the form of ammonium6, 
as well as carbon2,6,10,30,31 and phosphorous9,29. We characterized the 
cadaver-derived nutrient pool via untargeted metabolomics using 
liquid chromatography with tandem mass spectrometry (LC–MS/MS) 

data. Cadaver skin and associated soil metabolite profiles were distinct 
(Extended Data Fig. 2a,b). Overall, profiles were largely dominated by 
likely cadaver-derived lipid-like and protein-like compounds, along 
with plant-derived lignin-like compounds (Extended Data Fig. 2c,d). 
As decomposition progressed, both cadaver-associated soil and skin 
profiles became enriched in linoleic acids, aleuritic acids, palmitic acids, 
long-chain fatty acids, fatty amides and general amino acids (Supple-
mentary Tables 2 and 3). Furthermore, we estimated a reduction of ther-
modynamic favourability in the nutrient pool at all locations (Extended 
Data Fig. 2e,f), a similar pattern found in the microbial breakdown of 
plant material in soils32. These data suggest that during the first weeks 
of decomposition, more recalcitrant lipid-like and lipid-derivative nutri-
ents build up within soils as decomposers preferentially utilize labile 
protein-like resources, but with climate-dependent abundance varia-
tions in lipid-like (Extended Data Fig. 2g) and geographic-dependent 
variations in protein-like compounds (Extended Data Fig. 2h). These 
patterns may also be influenced by the physical properties of soil at 
each location such as texture, density and stoichiometry.

Cadaver microbial decomposer assembly
The lipid- and protein-rich cadaver nutrient influx is a major ecological  
disturbance event that attracts scavengers from across the tree of  
life and initiates the assembly of a specific microbial decomposer  
community. On the basis of our metabolite data, we hypothesized 
that soil decomposer microbial communities preferentially shift to 
efficiently utilize more labile compounds (for example, amino acids 
from proteins and possibly also carbohydrates such as glycogen, which 
were not detected via LC–MS/MS metabolomics) and temporarily leave 
the less-labile compounds (for example, lipids) in the system. By build-
ing a metagenome-assembled genome (MAG) database from human 
decomposition-associated soils (Extended Data Fig. 3a,b and Supple-
mentary Tables 4–6), we reconstructed genome-scale metabolic models  
to characterize how potential metabolic efficiencies of soil microbial 
communities shift in response to three major resources: lipids, amino 
acids and carbohydrates. Indeed, we found that temperate decom-
poser metabolic efficiency of labile resources was positively correlated 
with a temperature-based timeline of decomposition (accumulated 
degree day (ADD)) (Fig. 2a–c, Extended Data Fig. 3c and Supplementary 
Tables 7–9). We found that two MAGs constituted a large portion of 
the increased amino acid and carbohydrate metabolism efficiencies 
at temperate locations: Oblitimonas alkaliphila (Thiopseudomonas 
alkaliphila) (Extended Data Fig. 3d) and Corynebacterium intestinavium 
(Extended Data Fig. 3e), respectively. This microbial response is prob-
ably an effect of heterogeneous selection (that is, selection driving 
the community to become different) driving the assemblage of the 
decomposer community, as heterogeneous selection increases relative 
to stochastic forces and homogeneous selection during decomposition 
(Fig. 2d,e, Extended Data Fig. 3f, and Supplementary Tables 10 and 11). 
We further hypothesized that microbe–microbe interactions probably 
contribute to selection33, which we investigated by calculating meta-
bolic competitive and cooperative interaction potentials between our 
genome-scale metabolic models34,35. We found that metabolic compe-
tition potential initially increased at one temperate and the semi-arid 
location, suggesting an increase in microbes with similar resource 
needs (Extended Data Fig. 3g, and Supplementary Tables 12 and 13), 
which was not seen when communities were randomly subsampled 
within each site and decomposition stage (Extended Data Fig. 3h and 
Supplementary Table 12). Furthermore, we found that communities in 
temperate climates increased cross-feeding potential (that is, sharing 
of metabolic products) from early/active to advanced decomposition 
(Fig. 3a, and Supplementary Tables 12 and 13) and had a substantially 
higher number of cross-feeding exchanges during late decomposi-
tion than semi-arid climate communities (Fig. 3b and Supplementary 
Table 14), suggesting the increased potential for metabolic activity. The 
molecules predicted most for exchange by the models are common 

http://www.nature.com/naturemicrobiology
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by-products of mammalian decomposition36,37, specifically of pro-
tein degradation38, and included hydrogen sulfide, acetaldehyde and 
ammonium, and 56% of the top 25 total exchanged molecules were 
amino acids. In contrast to temperate locations, semi-arid decom-
poser communities demonstrated a relatively diminished respon-
siveness to decomposition stage (Fig. 3c, Extended Data Fig. 4a, 
and Supplementary Tables 15 and 16) and did not significantly shift  
their metabolism efficiencies (Fig. 2a–c, Extended Data Fig. 3c and  
Supplementary Tables 7–9), probably due to a lack of water, which  
leads to higher metabolic costs39, decreased substrate supply40 and 
growth41. Despite a less measurable microbial response at the semi-arid 
location, we did detect an increase in cross-feeding potential from 
early to active decomposition stages, suggesting that the semi-arid 

community has an increased ability to respond to decomposition nutri-
ents (Fig. 3a, and Supplementary Tables 12 and 13) but probably at a 
smaller scale than temperate locations.

We further investigated potential effects of selective environ-
mental conditions via multi-omic, joint robust principal components 
analysis ( joint-RPCA) for dimensionality reduction (see Methods)42, 
which all (climate, geographic location, season and decomposition 
stage) significantly shaped the microbial decomposer community 
ecology (Fig. 3d, Extended Data Fig. 4b–f and Supplementary Table 17).  
Climate (temperate vs semi-arid) along with location (ARF, STAFS, 
FIRS) significantly shaped the soil microbial community composi-
tion (Supplementary Tables 18–20) and its potential gene function 
(Supplementary Tables 21–22). Decomposition soils at temperate 
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Fig. 2 | Decomposer community assembly is governed by stochastic and 
deterministic bacterial assembly processes. a–c, Lipid (a), carbohydrate 
(b) and amino acid (c) metabolism efficiency as determined by the maximum 
ATP per C-mol of substrate that can be obtained from each community, plotted 
against the ADD the community was sampled. ARF n = 212, STAFS n = 198 and 
FIRS n = 158 biologically independent samples. Data are presented as mean ± 95% 
confidence interval (CI). Significance was tested with linear mixed-effects 
models within each location including a random intercept for cadavers with 
two-tailed ANOVA and no multiple-comparison adjustments. ARF amino 
acids P = 6.27 × 10−23, STAFS amino acids P = 6.626 × 10−10, STAFS carbohydrate 
P = 2.294 × 10−07 and STAFS lipid P = 3.591 × 10−02. d, Pairwise comparisons to 
obtain βNTI values focused on successional assembly trends by comparing 
initial soil at time of cadaver placement to early decomposition soil, then early 
to active and so on (PL, placement; EA, early; AC, active; AD, advanced) in the 
16S rRNA amplicon dataset, showing that strong selection forces are pushing 
the community to differentiate. ARF n = 232, STAFS n = 202 and FIRS n = 182 
biologically independent samples. In boxplots, the lower and upper hinges of the 

box correspond to the first and third quartiles (the 25th and 75th percentiles); 
the upper and lower whiskers extend from the hinge to the largest and smallest 
values no further than 1.5× interquartile range (IQR), respectively; and the centre 
lines represent the median. The βNTI mean (diamond symbol) change between 
decomposition stage is represented by connected lines. Dashed lines represent 
when |βNTI| = 2. A |βNTI| value < 2 indicates stochastic forces (white background) 
drive community assembly. βNTI values <−2 and >2 indicate homogeneous (blue 
background) and heterogeneous (yellow background) selection drive assembly, 
respectively. The width of the violin plot represents the density of the data at 
different values. Significance was tested with Dunn Kruskal–Wallis H-test, with 
multiple-comparison P values adjusted using the Benjamini–Hochberg method. 
e, Representation of heterogeneous selection pressure relative abundance 
within the total pool of assembly processes increases over decomposition in 
the 16S rRNA amplicon dataset. Bars were calculated by dividing the number 
of community comparisons within with βNTI > +2 by the total number of 
comparisons. *P < 0.05, **P < 0.01 and ***P < 0.001.
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sites exhibited strong microbial community phylogenetic turnover  
(Fig. 3c and Supplementary Table 15) and a decrease in microbial  
richness during decomposition (Extended Data Fig. 4a and Supple-
mentary Table 16), while less measurable effects were observed at 
the semi-arid location (Fig. 3c, Extended Data Fig. 4a, and Supple-
mentary Tables 15 and 16). Season appeared to primarily influence 
soil chemistry as opposed to microbial community composition  
during decomposition (Supplementary Table 23), suggesting possible 
temperature-associated metabolism changes/limitations of micro-
bial decomposer taxa. Taken together, these data suggest that while 
stochastic forces play a part in decomposer community assembly, 
deterministic forces, such as microbial interactions and environmental 
conditions, also play an important role.

Conserved interdomain soil microbial decomposer network
We discovered a universal network of microbes responding to the 
cadaver decomposition despite selection effects of climate, location 
and season on the assembly of the microbial decomposers within the 
soil. To focus on the universal decomposition effects across locations, 
we used the joint-RPCA principal component 2 (PC2) scores to generate 
the universal decomposition network due to their significant change 
over decomposition stage and reduced impact from location, season 
and climate (Fig. 4a,b, Extended Data Fig. 4b–f and Supplementary 
Table 24). Therefore, PC2 scores were used to calculate multi-omics 
of log ratios in late decomposition soil compared to initial and early 
decomposition soils (Fig. 4c, Extended Data Fig. 4g and Supplementary 
Table 25), which allowed us to identify key co-occurring bacterial and 
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eukaryotic microbial decomposers, bacterial functional pathways and 
metabolites associated with late decomposition (Fig. 5a, Extended 
Data Fig. 5 and Supplementary Table 26). The organism O. alkaliphila, 
which is central to the network and a large contributor to the increased 
amino acid metabolism efficiency at temperate locations (Extended 
Data Fig. 3d), may play a key role in terrestrial cadaver decomposition 
as a controller of labile resource utilization in temperate climates, 
but little is known about its ecology43–45. In addition, most microbial 
key network decomposers (Fig. 5a; O. alkaliphila, Ignatzschineria, 
Wohlfahrtiimonas, Bacteroides, Vagococcus lutrae, Savagea, Acineto-
bacter rudis and Peptoniphilaceae) represented unique phylogenetic 
diversity that was extremely rare or undetected in host-associated or 
soil microbial communities in American Gut Project (AGP) or Earth 
Microbiome Project (EMP) data sets (Fig. 5b, Extended Data Fig. 6, 
and Supplementary Tables 27 and 28). Although the decomposers in 
the group Bacteroides have previously been assumed to derive from 
a human gut source46,47, we find that these are instead probably a spe-
cialist group of decomposers distinct from gut-associated Bacteroides  
(Fig. 5b, Extended Data Fig. 6, and Supplementary Tables 27 and 28). 
The only strong evidence of key network bacterial decomposers 
emerging from soil and host-associated environments were in the 
genera Acinetobacter and Peptoniphilus (Fig. 5b, Extended Data Fig. 6,  
and Supplementary Tables 27 and 28). We more comprehensively  
characterized microbial decomposer phylogenetic uniqueness  
with MAG data, which span previously undescribed bacterial orders, 
families, genera and species (Extended Data Fig. 3a). Overall, we  
find that the soil microbial decomposer network is phylogenetically 
unique and in extremely low relative abundance in the environment 
until the cadaver nutrient pool becomes available.

We hypothesized that specialist decomposer network taxa prob-
ably interact to metabolize the nutrient pool, which we explored via 
estimated cross-feeding capabilities of co-occurring communities. 
Highlighting the importance of these key taxa, microbial decomposer 
network members accounted for almost half (42.8%) of predicted late 

decomposition nutrient exchanges (Figs. 3b and 5a, and Supplemen-
tary Table 29) with Gammaproteobacteria being prominent as both 
metabolite donors and receivers. For example, O. alkaliphila has the 
capability to cross-feed with Ignatzschineria, Acinetobacter, Savagea 
and Vagococcus lutrae, to which it donates amino acids known to be 
associated with mammalian decomposition such as aspartate, isoleu-
cine, leucine, tryptophan and valine, along with the lipid metabolism 
intermediate, sn-Glycero-3-phosphoethanolamine36 (Supplementary 
Table 30). As a receiver, O. alkaliphilia is predicted to receive essen-
tial ferrous ions (Fe2+) from Acinetobacter, Savagea and Vagoccocus 
along with glutamate, proline and lysine from Ignatzschineria. Further, 
putrescine, a foul-smelling compound produced during decomposi-
tion by the decarboxylation of ornithine and arginine, and arginine/
ornithine transport systems were universal functions within our net-
work (Fig. 5a). Cross-feeding analysis identified multiple potential 
ornithine and/or arginine exchangers, such as Ignatzschineria, Savagea, 
Wohlfahrtiimonas and O. alkaliphilia (Supplementary Table 31). Putres-
cine is an interdomain communication molecule probably playing an 
important role in assembling the universal microbial decomposer 
network by signalling scavengers such as blow flies48, which disperse 
decomposer microbes, as well as directly signalling other key microbial 
decomposers, such as fungi49–51.

Fungi play an essential role in the breakdown of organic matter; 
however, their processes and interdomain interactions during cadaver 
decomposition remain underexplored. Our network analysis identi-
fied multiple fungal members that are co-occurring with bacteria, 
belonging to the Ascomycota phylum (Fig. 5a)—a phylum known for 
its role in breaking down organic matter6,44,52,53. In particular, Yarrowia 
and Candida are known for their ability to utilize lipids, proteins and 
carbohydrates44,53, and both have one of their highest correlations 
with O. alkaliphila (Fig. 5a and Supplementary Table 25). The ability 
of Yarrowia and Candida to break down lipids and proteins during 
decomposition may serve as interdomain trophic interactions that 
allow O. alkaliphila to utilize these resources44. For example, Yarrowia 
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and Candida genomes contain biosynthesis capabilities for arginine 
and ornithine that, if excreted, could be taken up by O. alkaliphilia. The 
complete genome of O. alkaliphilia (Genbank accession no. CP012358) 
contains the enzyme ornithine decarboxylase, which is responsible for 
converting ornithine to the key compound putrescine43.

Machine learning reveals a predictable microbial decomposer 
ecology
The assembly of a universal microbial decomposer network suggests 
the potential to build a robust forensics tool. We demonstrate that 
the PMI (calculated as ADD) can be accurately predicted directly from 
microbiome-normalized abundance patterns via random forest regres-
sion models (Fig. 6a). High-resolution taxonomic community structure 
was the best predictor of PMI (Fig. 6b), particularly normalized abun-
dances of the 16S rRNA gene at the SILVA database level-7 taxonomic rank 
(L7) of the skin decomposer microbes (Fig. 6a–c). Interestingly, 3 out of 
4 of the skin-associated decomposer taxa that were most informative for 
the PMI model had similar normalized abundance trends over decom-
positions for bodies at all locations, suggesting that skin decomposers 
are more ubiquitous across climates than soil decomposers (Fig. 6d  
and Extended Data Fig. 7). We hypothesize that this is due to the human 
skin microbiome being more conserved between individuals than the 
soil microbiome is between geographic locations54. In fact, both skin 
and soil 16S rRNA-based models had the same top taxon as the most 
important predictor, Helcococcus seattlensis (Fig. 6d and Extended Data 
Fig. 7). H. seattlensis is a member of the order Tissierellales and family 
Peptoniphilaceae, both of which were key nodes within the universal 
decomposer network. In line with our hypothesis, H. seattlensis on the 
skin showed more-similar abundance trends for cadavers decomposing 
across both climate types, while H. seattlensis trends in the soil were 
primarily measurable at temperate locations (Fig. 6e and Extended 
Data Fig. 8). We found that normalized abundances of important soil 
taxa previously established to be in our universal decomposer network 
had strong climate signals, further suggesting a diminished responsive-
ness in semi-arid climates, such as temperate-climate responses with 
H. seattlensis, O. alkaliphila, Savagea sp., Peptoniphilus stercorisuis, 
Ignatzschineria sp. and Acinetobacter sp. (Extended Data Fig. 8c,d). 
However, we found that the three most important PMI model soil taxa, 
Peptostreptococcus sp., Sporosarcina sp. and Clostridiales Family XI 
sp., had increased detection with decomposition in both semi-arid 
and temperate climates (Extended Data Fig. 8c,d), suggesting that 
while strong climate-dependent fluctuations exist, there are microbial 
members that respond more ubiquitously to decomposition independ-
ent of climate. In addition, microbiome-based models and a TBS-based 
model had comparable average mean absolute errors (MAE) (Extended 
Data Fig. 9a); however, 16S rRNA microbiome-based model predic-
tions were on average closer to the actual observed values (that is, 
smaller average residual values), suggesting a higher accuracy (Fig. 6c  
and Extended Data Fig. 9a). Lastly, we confirmed the model accuracy 
and reliability of PMI prediction using 16S rRNA amplicon data with 
an independent test set of samples that were collected at a different 
time from cadavers at locations and climates not represented in our 
model. We discovered that we could accurately predict the true PMIs of 
samples better than samples with randomized PMIs at all independent 
test set locations (Extended Data Fig. 9b,c and Supplementary Table 32),  
confirming the generalizability and robustness of our models in predict-
ing new data from multiple geographies and climates with an accuracy 
useful for forensic death investigations.

Discussion
We provide a genome-resolved, comprehensive view of microbial 
dynamics during cadaver decomposition and shed light on the assembly, 
interactions and metabolic shifts of a universal microbial decomposer 
network. We found that initial decomposer community assembly is 
driven by stochasticity, but deterministic forces increase over the course 

of decomposition, a finding in agreement with other conceptual models 
of microbial ecology33,55–57. These processes led to a decomposer net-
work consisting of phylogenetically unique taxa emerging, regardless 
of season, location and climate, to synergistically break down organic 
matter. The ubiquitous decomposer and functional network revealed 
by our multi-omic data suggests that metabolism is coupled to tax-
onomy, at least to some extent, for cadaver decomposition ecology. 
However, the overall composition of microbial decomposer commu-
nities did vary between different climates and locations, indicating 
that some functional redundancy also probably exists. In a study of 
agricultural crop organic matter decomposition (straw and nutrient 
amendments), researchers similarly demonstrated that although func-
tional redundancy probably plays a role, key microbial taxa emerge as 
important plant decomposers15, and a meta-analysis of microbial com-
munity structure–function relationships in plant litter decay found that  
community composition had a large effect on mass loss58. In terms of 
climatic controls over cadaver decomposition, temperate locations 
had a more measurable microbial response (for example, phyloge-
netic turnover, potential cross-feeding) in soils than the arid location in  
our study, and plant studies support the idea that climate is a strong 
determinant of decomposition rates and microbial activity59.

Despite the lesser response in the arid location, cadaver decom-
poser microbial ecologies were similar, suggesting that while climate 
may act as a strong control, microbial community composition fol-
lows similar assembly paths. We find evidence that key interdomain 
microbial decomposers of cadavers (that is, fungi and bacteria) emerge 
in diverse environments and probably utilize resource partitioning 
and cross-feeding to break down a nutrient pulse that is rich in lipids, 
proteins and carbohydrates. This process would be consistent with 
dogma within leaf litter ecology that fungal decomposers are typi-
cally specialized decomposers of complex substrates while bacteria 
serve as generalists that decompose a broader nutritional landscape60. 
Thus, we hypothesize that fungi (such as Yarrowia and Candida) assist 
in the catabolism of complex, dead organic matter (such as lipids and 
proteins) into simpler compounds (such as fatty acids and amino 
acids), which are utilized by bacterial community members, (such as 
O. alkaliphila) capable of efficiently metabolizing these by-products. 
This division of labour coupled with microbial interactions drives the 
assembly of the microbial decomposer community, in a process remi-
niscent of ecological dynamics observed in leaf litter decomposition60.

We suspect that key network microbial decomposers are probably 
not specific to decomposition of human cadavers and are, in part, 
maintained or seeded by insects. Key cadaver bacterial decompos-
ers O. alkaliphila, Ignatzschineria, Wohlfahrtiimonas, Bacteroides,  
Vagococcus lutrae, Savagea, Acinetobacter rudis and Peptoniphilaceae 
have been detected in terrestrial decomposition studies of swine, cattle  
and mice (Supplementary Table 33)16,24–26, and a subset detected in 
aquatic decomposition61. Most key network bacterial decomposers, 
including the well-known blow fly-associated genera Ignatzschineria 
and Wohlfahrtiimonas62, were rare or not detected in a lab-based mouse 
decomposition study6 in which insects were excluded (Supplementary 
Table 33). However, a different lab-based study that excluded blow flies 
but included carrion beetles26 detected a subset of these key micro-
bial decomposers, suggesting a role for microbe–insect interactions 
and dispersal by insects26,48,63. Further evidence implicating insects  
as important vectors is that all key network bacterial decomposers 
presented here have been detected on blow flies (Supplementary  
Table 28)6,64. Furthermore, Ascomycota fungal members, such as 
Yarrowia and Candida, have been previously detected in association 
with human, swine and mouse remains6,26,44,53. Yarrowia can be verti
cally transmitted from parent to offspring of carrion beetle63 and  
may facilitate beetle consumption of carrion. Taken together, these 
findings suggest that key microbial decomposer taxa identified in 
this study of human cadavers are probably more generalizable carrion  
decomposers and are likely inoculated, at least partly, by insects.
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We demonstrate the potential practical application of microbiome 
tools in forensic science by leveraging microbial community succession 
patterns and machine learning techniques for accurately predicting 
PMI. Importantly, the predictive models showcase their generalizability 
by accurately predicting the PMIs of independent test samples collected 
from various geographic locations and climates, including for test sam-
ples collected from a climate region not represented in the training 
set of the model. The best-performing model was able to accurately 
predict PMI within ~±3 calendar days during internal validation and on 
an independent test set (Supplementary Tables 34 and 35), which is a 
useful timeframe for forensic sciences, enabling investigators to estab-
lish crucial timelines and aiding in criminal investigations. Prediction 
errors are probably due to intrinsic (for example, BMI/total mass)19,24,65 
and/or extrinsic (for example, scavengers, precipitation)19,26 factors 
not accounted for in the model, but should be a future area of research 
for model improvement. For example, total mass has been previously 
shown not to affect microbial decomposer composition in swine24; 
however, ref. 19 found that Gammaproteobacteria relative abundance 
correlated with BMI of humans. Within our study, in which cadav-
ers had highly variable initial total masses (Supplementary Table 1),  
Acinetobacter and Ignatzschineria (within Gammaproteobacteria) were 
important features in our PMI models, suggesting that it is probably 
robust to BMI (Extended Data Fig. 7). In addition, scavenging by inver-
tebrates and vertebrates is another factor that can affect not only the 
decomposer microbial composition (for example, carrion beetles)26 
but also the microbes themselves which can shape the scavenger com-
munity via volatile organic compounds (for example, repel vertebrates 
but attract insects48,66). A better understanding of which intrinsic and 
extrinsic factors directly affect microbes that are important features 
for predicting PMI will be an important next step.

Our improved understanding of the microbial ecology of decom-
posing human cadavers and its more general implications for the 
crucial and rarely studied carrion nutrient pool is critical for revising 
concepts of what should be included in carbon and nutrient budgets 
and the models used to forecast ecosystem function and change11. 
New insight on the role of carrion decomposition in fuelling carbon 
and nutrient cycling is needed for conceptual and numerical models 
of biogeochemical cycles and trophic processes11; this study informs 
how the assembly and interactions among decomposer microbial com-
munities facilitate the turnover and exchange of resources, and begins 
unlocking one of the remaining black boxes of ecosystem ecology. 
Finally, these findings may contribute to society by providing potential 
for a new forensic tool and for potentially modulating decomposition 
processes in both agricultural and human death industries via the key 
microbial decomposers identified here.

Methods
Site and donor selection
Outdoor experiments on 36 human cadavers were conducted at three 
willed-body donation facilities: Colorado Mesa University Forensic 
Investigation Research Station (FIRS), Sam Houston State University  
Southeast Texas Applied Forensic Science (STAFS) Facility and  
University of Tennessee Anthropology Research Facility (ARF). Before 
the start of the project, a meeting was held at STAFS to demonstrate, dis-
cuss and agree on sampling protocols. The Institutional Review Board 
and the Protection of Human Subjects Committee either determined 
that review was not required or granted exempt status for donors at 
each respective facility since the proposed research does not involve 
human donors as defined by federal regulations. Three deceased 
human donors were placed supine and unclothed on the soil surface 
in the spring, summer, fall and winter over the years 2016 and 2017 at 
each facility (N = 36). Bodies were placed on soil with no known pre-
vious human decomposition. Before placement, STAFS performed 
minimal removal of vegetation including raking of leaves and removal 
of shrubbery, and bodies placed at STAFS were placed in cages made 

of 1 cm × 1 cm wire fences and wooden frames to prevent vertebrate 
scavenging. The ARF and FIRS did not remove vegetation or place 
bodies under cages as standard protocol. Furthermore, bodies were 
placed no closer than 2.5 m between sternum midpoints. Collection 
date for each donor can be found in the sample metadata, in addition to 
cause of death if known, initial condition, autopsy status, weight before 
placement, age in years if known, estimated age if not known, sex, donor 
storage type, days donor was stored, time since death to cooling and 
placement head direction (Supplementary Table 1). Donor weight was 
taken at time of intake at ARF and FIRS but is a self-reported measure 
either by the donor before death or a family member at STAFS. During 
daily sampling, daily ambient average temperature and humidity, TBS27, 
scavenging status and insect status were recorded if available or appli-
cable. Human bodies were fully exposed to all weather elements and 
invertebrate scavengers. Inclusion criteria for the remains were speci-
fied before the start of the experiment and required that the remains 
were in the fresh stage of decomposition and had not been frozen (and 
not extensively cooled) or autopsied before placement at the facility.

Decomposition metric calculations
The Köppen–Geiger climate classification system characterizes both 
the ARF and STAFS facilities as temperate without a dry season and hot 
summer (Cfa) and the FIRS facility as a cold semi-arid steppe (BSk)23. 
Average daily temperatures were collected from the National Centers 
for Environmental Information (NCEI) website (https://www.ncei. 
noaa.gov/) and monthly total precipitation accumulation over the 
course of the study was collected from the Weather Underground web-
site (https://www.wunderground.com/) from local weather stations: 
Grand Junction Regional Airport Station, McGhee Tyson Airport Station  
and Easterwood Airport Station. Reference 27 TBS quantifies the degree 
to which decomposition has occurred in three main areas (head, trunk 
and limbs)27. The user assigned values to represent the progress of 
decomposition on the basis of visual assessment of the cadaver and 
added these values to generate a TBS at the time of sampling. A maxi-
mum score was assigned for each area when the cadaver has reached 
dry skeletal remains. ADD was estimated using the weather data 
provided by the NCEI. Degree day on the day of placement was not 
included, and a base temperature of 0 °C was used. ADD was calculated 
by adding together all average daily temperatures above 0 °C for all 
previous days of decomposition, as in ref. 27, and subtracting the base 
temperature of 0 °C.

Sample collection and DNA extraction
We sampled the skin surface of the head and torso near the hip along 
with gravesoils (soils associated with decomposition) associated with 
each skin site over 21 d of decomposition. Control soil samples were 
taken of the same soil series and horizon that are not associated with 
body decomposition (known past or present) from areas within or just 
outside each facility. We collected swabs of 756 non-decomposition soil 
(controls), 756 gravesoil near the hip, 756 gravesoil near the face, 756 
hip skin and 756 face skin samples (N = 3,780). All site samples (skin sur-
face, gravesoil and control soil) were taken using sterile dual-tipped BD 
SWUBE applicator (REF 281130) swabs as described in ref. 18, and imme-
diately frozen after each sampling event and kept frozen at −20 °C. 
Samples were shipped to CU Boulder or Colorado State University 
overnight on dry ice and immediately stored at −20 °C upon arrival and 
until DNA extraction. Skin and soil DNA was extracted from a single tip 
of the dual-tipped swabs using the PowerSoil DNA isolation kit 96-htp  
(MoBio Laboratories), according to standard EMP protocols  
(http://www.earthmicrobiome.org/).

Amplicon library preparation and sequencing
Bacterial and archaeal communities were characterized using 16S 
rRNA gene regions while eukaryotic communities were characterized 
using 18S rRNA gene regions as universal markers, for all successful 
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skin and soil DNA extracts (n = 3,547). To survey bacteria and archaea, 
we used the primer set 515f (5′GTGYCAGCMGCCGCGGTAA) and 
806rb (5′GGACTACNVGGGTWTCTAAT) that targets these domains 
near-universally67,68, with barcoded primers allowing for multiplex-
ing, following EMP protocols69. To survey microbial eukaryotes, we 
sequenced a subregion of the 18S rRNA gene using the primers 1391f_
illumina (5′GTACACACCGCCCGTC) and EukBr_illumina (5′TGATC 
CTTCTGCAGGTTCACCTAC) targeting the 3′ end of the 18S rRNA gene. 
18S rRNA gene primers were adapted from ref. 70 and target a broad 
range of eukaryotic lineages. We have successfully generated and ana-
lysed data using these gene markers previously6,18. Primers included 
error-corrected Golay barcodes to allow for multiplexing while pre-
venting misassignment. PCR amplicons were quantified using Pico-
green Quant-iT (Invitrogen, Life Technologies) and pooled from each 
sample to equimolar ratio in a single tube before shipping to the UC  
San Diego genomics laboratory for sequencing. For both amplicon 
types, pools were purified using the UltraClean PCR clean-up kit  
(Qiagen). 16S rRNA pools were sequenced using a 300-cycle kit on the 
Illumina MiSeq sequencing platform and 18S rRNA gene pools were 
sequenced using a 300-cycle kit on the Illumina HiSeq 2500 sequenc-
ing platform (Illumina). Samples within a sample type (skin vs soil) 
were randomly assigned to a sequencing run to prevent potential 
batch effects. Blank DNA extraction and PCR negative controls were 
included throughout the entire process from DNA extraction to PCR 
amplification to monitor contamination (n = 592 negative controls).

Shotgun metagenomic library preparation and sequencing
Extracted DNA from a subset of hip-associated soil samples (n = 756), 
soil controls (n = 9), blank controls (n = 102) and no-template PCR 
controls (n = 15) were chosen to undergo shallow shotgun sequenc-
ing to provide in-depth investigation of microbial dynamics within 
decomposition soil (Supplementary Table 4). Our standard proto-
col followed that of ref. 71 and was optimized for an input quantity 
of 1 ng DNA per reaction. Before library preparation, input DNA was 
transferred to 384-well plates and quantified using a PicoGreen fluo-
rescence assay (ThermoFisher). Input DNA was then normalized to 
1 ng in a volume of 3.5 μl of molecular-grade water using an Echo 550 
acoustic liquid-handling robot (Labcyte). Enzyme mixes for fragmen-
tation, end repair and A-tailing, ligation and PCR were prepared and 
added at 1:8 scale volume using a Mosquito HV micropipetting robot 
(TTP Labtech). Fragmentation was performed at 37 °C for 20 min, 
followed by end repair and A-tailing at 65 °C for 30 min. Sequencing 
adapters and barcode indices were added in two steps, following the 
iTru adapter protocol72. Universal adapter ‘stub’ adapter molecules 
and ligase mix were first added to the end-repaired DNA using the 
Mosquito HV robot and ligation performed at 20 °C for 1 h. Unligated 
adapters and adapter dimers were then removed using AMPure XP 
magnetic beads and a BlueCat purification robot (BlueCat Bio). A 7.5 μl 
magnetic bead solution was added to the total adapter-ligated sample 
volume, washed twice with 70% ethanol and then resuspended in 7 μl 
molecular-grade water.

Next, individual i7 and i5 indices were added to the adapter-ligated 
samples using the Echo 550 robot. Because this liquid handler indi-
vidually addresses wells and we used the full set of 384 unique 
error-correcting i7 and i5 indices, we generated each plate of 384 
libraries without repeating any barcodes, eliminating the problem of 
sequence misassignment due to barcode swapping (61, 62). To ensure 
that libraries generated on different plates could be pooled if neces-
sary and to safeguard against the possibility of contamination due to 
sample carryover between runs, we also iterated the assignment of i7 
to i5 indices per run, such that each unique i7:i5 index combination is 
only repeated once every 147,456 libraries72. A volume of 4.5 μl of eluted 
bead-washed ligated samples was added to 5.5 μl of PCR master mix and 
PCR-amplified for 15 cycles. The amplified and indexed libraries were 
then purified again using AMPure XP magnetic beads and the BlueCat 

robot, resuspended in 10 μl of water and 9 μl of final purified library 
transferred to a 384-well plate using the Mosquito HTS liquid-handling 
robot for library quantitation, sequencing and storage. All samples 
were then normalized on the basis of a PicoGreen fluorescence assay 
for sequencing.

Samples were originally sequenced on an Illumina HiSeq 4000; 
however, due to some sequencing failures, samples were resequenced 
on the Illumina NovaSeq 6000 platform. To ensure that we obtained 
the best sequencing results possible, we assessed both sequencing 
runs and added the best-performing sample of the two runs to the 
final analysis (that is, if sample X provided more reads from the HiSeq 
run than the NovaSeq run, we added the HiSeq data from that sample 
to the final analysis and vice versa). Samples were visually assessed to 
ensure that no batch effects from the two sequencing runs were present 
in beta diversity analysis. A list of which samples were pulled from the 
HiSeq vs NovaSeq runs can be found in the sample metadata under the 
column ‘best_MetaG_run’, with their corresponding read count under 
‘MetaG_read_count’ (Supplementary Table 1). In total, 762 samples 
were sequenced, with 25 coming from the HiSeq run and 737 samples 
coming from the Novaseq run. Raw metagenomic data had adapt-
ers removed and were quality filtered using Atropos (v.1.1.24)73 with 
cut-offs of q = 15 and minimum length of 100 nt. All human sequence 
data were filtered out by aligning against the Genome Reference Con-
sortium Human Build 38 patch release 7 (GRCh37/hg19) reference 
database released in 21 March 2016 (ncbi.nlm.nih.gov/assembly/
GCF_000001405.13/) and removing all data that matched the refer-
ence from the sequence data. Alignment was performed with bowtie2 
(v.2.2.3)74 using the --very-sensitive parameter, and the resulting SAM 
files were converted to FASTQ format with samtools (v.1.3.1)75 and 
bedtools (v.2.26.0)76. Metagenomic samples were removed from the 
analysis if they had <500 k reads. Final metagenomic sample numbers  
were 569 hip-adjacent soil, 5 soil controls, 102 blank controls and  
15 no-template controls.

Metabolite extraction and LC–MS/MS data generation
To investigate the metabolite pools associated with decomposition 
skin and gravesoils, we performed metabolite extraction on the second 
tip of the dual-tipped swabs collected from the skin and soil associated 
with the hip sampling location to ensure all datasets are paired. Skin 
and soil swab samples were extracted using a solution of 80% metha-
nol. Briefly (with all steps performed on ice), swabs were placed into a 
pre-labelled 96-well DeepWell plate where A1–D1 were used for a sol-
vent blank and E1–H1 were used for blank clean swabs with extraction 
solvent added. Swab shafts were cut aseptically and 500 μl of solvent 
(80% methanol with 0.5 μM sulfamethazine) was added. The DeepWell 
plate was covered and vortexed for 2 min, followed by 15 min in a water 
sonication bath. Next, samples were incubated at 4 °C for 2 h, followed 
by a 12 h incubation at −20 °C. Swab tips were then removed from  
the solvent and samples were lyophilised. Untargeted metabolomics 
LC–MS/MS data were generated from each sample. Two types of dataset 
were generated from each sample: MS1 data for global and statistical 
analysis and MS/MS data for molecular annotation. Molecular anno-
tation was performed through the GNPS platform https://gnps.ucsd.
edu/. Molecules were annotated with the GNPS reference libraries77 
using accurate parent mass and MS/MS fragmentation pattern accord-
ing to level 2 or 3 of annotation defined by the 2007 metabolomics 
standards initiative78. If needed and if the authentic chemical standard 
was available, MS/MS data were collected from the chemical standard 
and compared to MS/MS spectra of the molecule annotated from the 
sample (level 1 of annotation).

Amplicon data processing
After data generation, amplicon sequence data were analysed in the 
Metcalf lab at Colorado State University using the QIIME2 analysis  
platform v.2020.2 and v.2020.8 (ref. 79). In total, 4,139 samples 
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were sequenced, including 592 DNA extraction blank negative and 
no-template PCR controls. Sequencing resulted in a total of 89,288,561 
16S rRNA partial gene reads and 1,543,472,127 18S rRNA partial gene 
reads. Sequences were quality filtered and demultiplexed using the 
pre-assigned Golay barcodes. Reads were 150 bp in length. 18S rRNA 
gene sequences had primers (5′GTAGGTGAACCTGCAGAAGGATCA) 
removed using cutadapt to ensure that the variable length of the 18S 
region was processed without primer contamination. Sequences were 
then classified into amplicon sequence variants (ASVs) in groups of 
samples that were included on the same sequencing run so the pro-
gramme could accurately apply the potential error rates from the 
machine using the Deblur denoising method (v.2020.8.0)80. Feature 
tables and representative sequences obtained from denoising each 
sequencing run were then merged to create a complete dataset for each 
amplicon method. Taxonomic identifiers were assigned to the ASVs 
using the QIIME feature-classifier classify-sklearn method81. For the 16S 
rRNA gene data, these assignments were made using the SILVA 132 99% 
classifier for the 515fb/806rb gene sequences. ASVs that were assigned 
to chloroplast or mitochondria (non-microbial sequences) were fil-
tered out of the dataset before continuing analysis. For 18S rRNA data, 
the RESCRIPt (v.2022.8.0) plugin was used to extract the full 12-level 
taxonomy from sequences matching the primers from the SILVA 138 
99% database, to dereplicate the extracted sequences and to train a 
classifier to assign labels to ASVs in the feature table82. This taxonomy 
was used to filter out any ASVs that were assigned to Archaea, Strep-
tophyta, Bacteria, Archaeplastida, Arthropoda, Chordata, Mollusca  
and Mammalia, as well as those that were unassigned, resulting in 5,535 
ASVs at a total frequency of 772,483,701. DNA extraction negative and 
no-template PCR control samples were analysed to determine that 
contamination within the samples was minimal. Most control samples 
were low abundance and below the threshold used for rarefaction. 
The few controls that were above the rarefaction threshold clustered 
distantly and separately from true samples on principal coordinate 
analysis (PCoA) and had low alpha diversities, hence samples above 
the rarefaction depth were considered minimally contaminated and 
acceptable for analyses. Subsequently, DNA extraction negative and  
no-template PCR control samples were removed from the dataset  
and future analyses.

Microbial diversity metrics were generated from both amplicon 
types using the QIIME2 phylogenetic diversity plugin. The phylogenetic 
trees were constructed for each amplicon type individually using the 
fragment-insertion SEPP method83 against the SILVA 128 99% refer-
ence tree. Alpha diversity metrics were calculated using the number 
of observed features as ASV richness and Faith’s phylogenetic diver-
sity formulas. Statistical comparisons were made using the pairwise 
Kruskal–Wallis H-test with a Benjamini–Hochberg multiple-testing 
correction at an alpha level of 0.05 (ref. 84). To evaluate beta diversity, 
the generalized UniFrac method weighted at 0.5 was used to calculate 
dissimilarity85. Statistical comparisons were made using permutational 
analysis of variance (PERMANOVA) with a multiple-testing correction 
and an alpha level of 0.05 (ref. 86). Taxonomy and alpha diversity visu-
alizations were created using ggplot2 and the viridis package in R87,88. 
Beta diversity principal coordinates plots were constructed using the 
Emperor (v.2022.8.0) plugin in QIIME2 (ref. 89). Linear mixed-effects 
models were used to evaluate the contribution of covariates to a sin-
gle dependent variable and to test whether community alpha diver-
sity metrics (for example, ASV richness) and beta diversity distances  
(for example, UniFrac distances) were impacted by decomposition 
time (that is, ADD) and sampling location (that is, decomposition  
soil adjacent to the hip and control soil). The response variables were 
statistically assessed over ADD with sampling site (that is, decompo-
sition soil vs control soil) as an independent variable (fixed effect)  
and a random intercept for individual bodies to account for repeated 
measures using the formula: diversity metric ≈ ADD × sampling 
site + (1|body ID).

Detection of key decomposers in other decomposition studies
16S rRNA gene amplicon sequence data files from refs. 6,24,25,64, 
69,90,91 were obtained from QIITA92 under study IDs 10141–10143, 1609, 
13114, 10317, 13301 and 11204, respectively. Data obtained from QIITA92 
had been previously demultiplexed and denoised using Deblur80 and 
are available on the QIITA92 study page. Data from ref. 16 were obtained 
from the NCBI Sequence Read Archive under BioProject PRJNA525153. 
Forward reads were imported into QIIME2 (v.2023.5)79, demultiplexed 
and denoised using Deblur (v.1.1.1)80. Data from ref. 26 were obtained 
from the Max Planck Society Edmond repository (https://edmond.
mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.UV4FBN). 
Forward reads were imported into QIIME2 (v.2023.5)79 and demulti-
plexed. Primers (5′ GTGCCAGCMGCCGCGGTAA) were removed using 
cutadapt (v.4.4)93 and the data were denoised using Deblur (v.1.1.1)80. 
ASVs from all studies were assigned taxonomy using a naïve Bayes 
taxonomy classifier trained on the V4 (515f/806r) region of SILVA 138 
99% operational taxonomic units (OTUs). Data tables were imported 
into Jupyter notebooks ( Jupyter Lab v.4.0.5)94 for further analysis 
(Python v.3.8.16). A search for the 35 universal PMI decomposer ASVs 
was conducted within each dataset. This search matched exact ASVs in 
our dataset to other datasets but did not match similar ASVs that may 
be classified as the same taxon. The relative abundance of each decom-
poser ASV was first averaged across all samples within a specific meta-
data category. The average relative abundances were then summed 
across each decomposer genus. Prevalence tables were constructed by 
summing the number of samples across a specific metadata category 
in which each universal decomposer ASV was present. The presence of 
Wohlfahrtiimonas was found in the ref. 26 dataset; however, these ASVs  
were not exact sequence matches to our universal Wohlfahrtiimonas 
decomposers and probably represent insect-associated strains  
(Supplementary Table 33; Wohlfahrtiimonadaceae column). We 
searched within the remaining studies for the presence of other ASVs 
assigned to the Wohlfahrtiimonas genus or ASVs that were assigned 
to the Wohlfahrtiimonadaceae family but these were unidentified 
at the genus level. Average relative abundances were calculated as 
described above.

Community assembly mechanism determination
To investigate the ecological processes driving bacterial assembly, we 
quantitatively inferred community assembly mechanisms by phylo
genetic bin-based null model analysis of 16S rRNA gene amplicon 
data as described in refs. 95,96. Longitudinal turnover in phylogenetic 
composition within the decomposition soil between successional 
stages was quantified using the beta nearest taxon index (βNTI), where 
a |βNTI| value <+2 indicates that stochastic forces drive community 
assembly and a value >+2 indicates less than or greater than expected 
phylogenetic turnover by random chance (deterministic forces). βNTI 
values <−2 correspond to homogeneous selection and values >+2 cor-
respond to heterogeneous selection. Homogeneous selection refers 
to communities that are more similar to each other than expected by 
random chance, while heterogeneous selection refers to communities 
that are less similar to each other than expected by random chance. 
Deterministic forces include selection factors such as environmental 
filtering and biological interactions, while stochastic forces include 
random factors such as dispersal, birth–death events and immigration.

MAGs generation and classification
To maximize assembly, metagenomes were co-assembled within sites 
using MEGAHIT (v.1.2.9)97 with the following flags: –k-min 41 (see Sup-
plementary Tables 4–6 for a list of samples used to generate meta
genomic data, co-assembly statistics, GTDB taxonomic classification 
and TPM-normalized count abundance of MAGs within each sample). 
Assembled scaffolds >2,500 kb were binned into MAGs using MetaBAT2 
(v.2.12.1)98 with default parameters. MAG completion and contamina-
tion were assessed using checkM (v.1.1.2)99. MAGs were conservatively 

http://www.nature.com/naturemicrobiology
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA525153
https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.UV4FBN
https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.UV4FBN


Nature Microbiology | Volume 9 | March 2024 | 595–613 607

Article https://doi.org/10.1038/s41564-023-01580-y

kept in the local MAG database if they were >50% complete and <10% 
contaminated. MAGs were dereplicated at 99% identity using dRep 
(v.2.6.2)100. MAG taxonomy was assigned using GTDB-tk (v.2.0.0, 
r207)101. Novel taxonomies were determined as the first un-named 
taxonomic level in the GTDB classification string (see Supplemen-
tary Table 5 for MAG quality and taxonomy information). MAGs and 
co-assemblies were annotated using DRAM (v.1.0.0)102 (Supplementary 
Table 5;https://doi.org/10.5281/zenodo.7843104). From 575 metage-
nomes, we recovered 1,130 MAGs, of which 276 were medium or high 
quality, and dereplicated these at 99% identity into 257 MAGs. This 
MAG set encompassed novel bacterial orders (n = 3), families (n = 9), 
genera (n = 28) and species (n = 158), providing genomic blueprints 
for microbial decomposers dominated by Gammaproteobacteria and 
Actinobacteriota (Supplementary Table 5).

MAG and gene abundance mapping
To determine the abundance of the MAGs in each sample, we mapped 
reads from each sample to the dereplicated MAG set using bowtie2 
(v.2.3.5)74 with the following flags: -D 10 -R 2 -N 1 -L 22 -i S,0,2.50. Output 
sam files were converted to sorted BAM files using samtools (v.1.9)75. 
BAM files were filtered for reads mapping at 95% identity using the 
reformat.sh script with flag idfilter=0.95 from BBMap (v.38.90) (https:// 
sourceforge.net/projects/bbmap/). Filtered BAM files were input to 
CoverM (v0.3.2) (https://github.com/wwood/CoverM) in genome mode 
to output transcripts per million (TPM). To determine the abundance of 
genes across samples, we clustered the gene nucleotide sequences from 
the annotated assemblies output by DRAM using MMseqs2 (release 13) 
easy-linclust (v4e23d5f1d13a435c7b6c9406137ed68ce297e0fc)103 with 
the following flags: –min-seq-id 0.95–alignment-mode 3–max-seqs 
100000. We then mapped reads to the cluster representative using 
bowtie2 (ref. 74) and filtered them to 95% identity as described above 
for the MAGs. To determine gene abundance, filtered bams were input 
to coverM in contig mode to output TPM. Bacterial MAG feature tables 
were imported into QIIME2 (v.2020.8)79. Bacterial features that were not 
present for a total of 50 times and were found in less than six samples 
were removed from the dataset to reduce noise. Bacterial feature tables 
were collapsed at the phylum, class, order, family, genus and species 
GTDB taxonomic levels. Community diversity was compared between 
the MAG and 16S rRNA ASV feature tables to ensure that both data types 
demonstrate the same biological signal. Each table was filtered to 
contain samples with paired 16S rRNA and metagenomic data (that is, 
samples with both metagenomic and 16S rRNA data). Bray–Curtis dis-
similarity matrices were calculated for the TPM-normalized MAG abun-
dance table and rarified 16S rRNA ASV table. Procrustes/PROTEST104,105 
and Mantel tests were performed between the PCoA ordinations and 
distance matrices, respectively106. Results showed that the datasets 
were not significantly different from each other and confirmed their 
shared biological signal (Extended Data Fig. 10).

Metabolic interaction simulations
Higher-order (20 microbial members) co-occurrence patterns were 
calculated from the MAG relative frequency tables of each decom-
position stage (that is, early, active, advanced) for each facility using 
HiOrCo (v.1.0.0) (cut-off 0.001) (https://github.com/cdanielmachado/
HiOrCo). HiOrCo provides 100 iterations of co-occurring MAG com-
munities to improve simulation accuracy. No significantly co-occurring 
MAGs were detected at the FIRS facility during advanced decomposi-
tion; therefore, we continued the analyses using only early and active 
decomposition stages at FIRS. CarveMe (v.1.5.1)107 was used to con-
struct genome-scale metabolic models (GEMs) from each MAG using 
default parameters (https://github.com/cdanielmachado/carveme). 
GEMs from each co-occurring MAG community were input as a  
microbial community into SMETANA (v1.0.0) (https://github.com/ 
cdanielmachado/smetana) to compute several metrics that describe 
the potential for metabolic cooperative and competitive interactions 

between community members as described in refs. 34,35. Metrics 
include metabolic interaction potential (MIP), metabolic resource 
overlap (MRO), species coupling score (SCS), metabolite uptake score 
(MUS), metabolite production score (MPS) and SMETANA score. MIP 
calculates how many metabolites the species can share to decrease 
their dependency on external resources. MRO is a method of assessing 
metabolic competition by measuring the overlap between the minimal 
nutritional requirements of all member species on the basis of their 
genomes. SCS is a community size-dependent measurement of the 
dependency of one species in the presence of the others to survive. 
MUS measures how frequently a species needs to uptake a metabolite 
to survive. MPS is a binary measurement of the ability of a species to 
produce a metabolite. The individual SMETANA score is a combination 
of the SCS, MUS and MPS scores and gives a measure of certainty of a 
cross-feeding interaction (for example, species A receives metabolite 
X from species B). Simulations were created on the basis of a minimal 
medium, calculated using molecular weights, that supports the growth 
of both organisms, with the inorganic compounds hydrogen, water and 
phosphate excluded from analysis. A random null model analysis was 
performed to ensure that changes in co-occurring MAGs within each 
site and decomposition are driving interaction potential changes. For 
each site and decomposition stage, 100 20-member communities were 
generated by random selection without replacement using random.
sample(). Simulations to calculate MIP and MRO were performed as 
above. A detailed investigation into the potential molecules being 
cross-fed was performed on the late stages of decomposition for each 
facility: temperate-climate advanced decomposition and semi-arid 
active decomposition stages.

Metabolic efficiency simulations
Metabolic models and the Constraint Based Reconstruction and  
Analysis (COBRA) toolbox (v.3.0)108 were used to simulate differences 
in metabolic capabilities between samples that are spatiotemporally 
different. A general base growth medium, M0, containing a list of 
carbohydrates, amino acids, lipids and other vitamins and minerals 
adapted from a previous study109 was used. From this base medium, 
carbohydrate-rich, M1, amino acid-rich, M2, and lipid-rich, M3, media 
were defined. The carbohydrate-rich medium includes all compounds 
in the base medium but allows for higher uptake of carbohydrates than 
proteins and lipids, and vice versa. The COBRA toolbox108 in MATLAB 
was used to optimize overall ATP production from M1, M2 and M3 for 
each individual MAG in an aerobic condition. This assumption was 
made because the topsoil conditions in which decomposition hap-
pens are relatively aerobic. The calculated maximum ATP yields can 
be interpreted as the maximum capability of each MAG in extracting 
ATP from the growth media. Finally, the weighted average of total ATP 
production from the GEMs in a sample was calculated by multiplying 
the relative abundance of each MAG by the maximum total ATP produc-
tion and summing over all of the GEMs in a sample110.

Molecular networking and spectral library search
A molecular network was created using the Feature-Based Molecular 
Networking (FBMN) workflow (v.28.2)111 on GNPS (https://gnps.ucsd.
edu; ref. 77). The mass spectrometry data were first processed with 
MZMINE2 (v.2.53)112 and the results were exported to GNPS for FBMN 
analysis. The precursor ion mass tolerance was set to 0.05 Da and the 
MS/MS fragment ion tolerance to 0.05 Da. A molecular network was 
then created where edges were filtered to have a cosine score above 0.7 
and >5 matched peaks. Furthermore, edges between two nodes were 
kept in the network if and only if each of the nodes appeared in each 
other’s respective top 10 most similar nodes. Finally, the maximum size 
of a molecular family was set to 100, and the lowest-scoring edges were 
removed from molecular families until the molecular family size was 
below this threshold. The spectra in the network were then searched 
against GNPS spectral libraries77,111. All matches kept between network 
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spectra and library spectra were required to have a score above 0.7 and 
at least 6 matched peaks.

Metabolite formula and class prediction
Spectra were downloaded from GNPS and imported to SIRIUS (v.4.4)113 
containing ZODIAC114 for database-independent molecular formula 
annotation under default parameters. Formula annotations were 
kept if the ZODIAC score was at least 0.95 and at least 90% of the MS/
MS spectrum intensity was explained by SIRIUS as described by the 
less-restrictive filtering from ref. 114. A final list of formula identifica-
tions was created by merging ZODIAC identifications with library hits 
from GNPS (Supplementary Table 36). In the cases where a metabolite 
had both a ZODIAC predicted formula and an assigned library hit, 
the library hit assignment took precedence. The final formula list 
contained 604 formula assignments. Organic compound composi-
tion was examined in van Krevelen diagrams and assigned to major 
biochemical classes on the basis of the molar H:C and O:C ratios115. 
Since classification based on molecular ratio does not guarantee that 
the compound is part of a specific biochemical class, compounds  
were labelled as chemically similar by adding ‘-like’ to their assigned 
class (for example, protein-like). Furthermore, compound formulas 
were used to calculate the nominal oxidation state of carbon on the 
basis of the molecular abundances of C, H, N, O, P and S as described 
in ref. 116 (Supplementary Tables 37 and 38).

Metabolite feature table processing
The metabolite feature table downloaded from GNPS was normal-
ized using sum normalization, then scaled with pareto scaling117 and 
imported in QIIME2 (v.2022.2)79. This table contains all library hits, 
metabolites with predicted formulas and unannotated metabolites. 
PCoA clustering with Bray–Curtis and Jaccard distances confirmed 
clustering of processing controls separate from soil and skin samples.  
Five soil samples were removed for clustering with processing controls. 
Processing controls were removed from the dataset; then metabo-
lites absent from a minimum of 30 samples were removed to reduce 
noise. Bray–Curtis and Jaccard beta diversity group comparisons 
were performed between soil and skin samples using PERMANOVA 
(perm. = 999). The metabolite feature table was filtered to contain 
metabolites with chemical formulas based on GNPS library hits and/or  
predicted chemical formulas from ZODIAC. Differential abundance 
analyses were performed on these tables from the cadaver-associated 
soil and skin to test metabolite log-ratio change over decomposition 
stage using initial, day 0 samples as the reference frame, utilizing 
the Analysis of Composition of Microbiomes with Bias Correction 
(ANCOM-BC)118 QIIME2 (v.2022.2) plugin.

Joint-RPCA
The complete methodology including mathematical formulas for 
joint-RPCA can be found in Supplementary Text. Briefly, before joint 
factorization, we first split the dataset into training train and testing 
sample sets from the total set of shared samples across all input data 
matrices. The datasets included in this analysis were 16S rRNA gene 
abundances, 18S rRNA gene abundances, MAG abundances, MAG gene 
abundances, MAG gene functional modules and metabolites from the 
hip-adjacent decomposition soil. Each matrix was then transformed 
through the robust-centred-log-ratio transformation (robust-clr) to 
centre the data around zero and approximate a normal distribution42,119. 
Unlike the traditional clr transformation, the robust-clr handles the 
sparsity often found in biological data without requiring imputation. 
The robust-clr transformation was applied to the training and test set 
matrices independently. The joint factorization used here was built on 
the OptSpace matrix completion algorithm, which is a singular value 
decomposition optimized on a local manifold42,119. A shared matrix 
was estimated across the shared samples of all input matrices. For 
each matrix, the observed values were only computed on the non-zero 

entries and then averaged, such that the minimized shared estimated 
matrices were optimized across all matrices. The minimization was 
performed across iterations by gradient descent. To ensure that the 
rotation of the estimated matrices was consistent, the estimated 
shared matrix and the matrix of shared eigenvalues across all input 
matrices were recalculated at each iteration. To prevent overfitting 
of the joint-factorization, cross-validation of the reconstruction was 
performed. In this case, all the previously described minimization 
was performed on only the training set data. The test set data were 
then projected into the same space using the training set data esti-
mated matrices and the reconstruction of the test data was calculated. 
Through this, it can be ensured that the minimization error of the 
training data estimations also minimizes that of the test set data, which 
is not incorporated into these estimates on each iteration. After the 
training data estimates were finalized, the test set samples were again 
projected into the final output to prevent these samples from being 
lost. The correlations of all features across all input matrices were 
calculated from the final estimated matrices. Finally, here we treated 
the joint-RPCA with only one input matrix as the original RPCA119 but  
with the additional benefit of the addition of cross-validation for  
comparison across other methods.

Multi-omics ecological network visualization
The datasets included in this analysis were 18S rRNA gene abundances, 
MAG abundances, MAG gene functional modules and metabolites 
from the hip-adjacent decomposition soil. log ratios were generated 
using the joint-RPCA PC2 scores, chosen on the basis of the sample 
ordination, to rank each omics feature on the basis of association with 
either initial non-decomposition and early decomposition soil or late 
decomposition (that is, active and advanced) soil time periods. The 
log ratios are the log ratio of the sum of the top N-features raw-counts/
table-values over the sum of the bottom N ranked features raw-counts/
table-values, based on the PC2 loadings produced from the ordinal 
analysis since these were observed to change the most by decomposi-
tion stage. To prevent sample drop out in the log ratio due to sparsity, as 
described in refs. 120,121, between 2 and 1,500 numerator and denomi-
nator features for each omic were summed such that at least 90% 
of the sample were retained: metagenomics (MAGs) N-features = 30 
(99.2%), 18S N-features = 1,499 (90.1%), metagenomics (gene modules) 
N-features = 26 (100%) and metabolomics N-features = 238 (100%). The 
joint-RPCA correlation matrix was subset down to the total initial day 
zero, early, active or advanced decomposition-associated features used 
in the log ratios to generate the network visualizations. Only the top 
20% of correlations between selected nodes were retained to reduce 
noise in generating the network visualization.

Phylogenetic tree generation
Redbiom (v.0.3.9)122 was used to search for all publicly available AGP90 
and EMP69 studies for samples containing at least 100 counts of a key 
decomposer. The AGP samples were further filtered to only include 
gut and skin environments and the EMP samples were limited to only 
include soil and host environment. Next, the top 50 most abundant 
ASVs were taken from each environment along with the key decom-
posers and placed on a phylogenetic tree using Greengenes2 (release 
2022.10)123. The ASVs were then ranked according to the number of 
samples they were found in and visualized using EMPress (v.1.2.0)124.

Random forest regression modelling
Processed features tables from each ‘omic data type were used for 
random forest regression modelling with nested cross-validation 
(CV) to test ADD prediction power. Data were subset so that models 
were trained and tested for each sampling location separately (for 
example, soil adjacent to the hip, soil adjacent to the face, skin of the 
hip and skin of the face). Data were pre-processed for models using 
calour (v.2018.5.1) (http://biocore.github.io/calour/index.html) and 
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models were trained/tested using scikit-learn (v.0.24.2)125. Features with 
an abundance of zero in the dataset after filtering were removed. The 
facilities at which sampling was performed were included as features 
in the model to determine whether geographical location is impor-
tant for modelling. Samples from individual bodies were grouped 
together to prevent samples from a body being split between train 
and test sets to help prevent overfitting. Nested CV was performed 
to thoroughly test the accuracy and generalizability of the models. 
Hyperparameters tested for optimization were: max_depth = [None, 
4], max_features = [‘auto’, 0.2] and bootstrap = [True, False]. Nested 
CV was made of an outer CV loop and an inner CV loop. The outer loop 
was created by a LeaveOneGroupOut split wherein samples from one 
of the 36 bodies were set aside for model validation after the inner CV 
loop completes. The remaining 35 bodies were used for RandomFor-
estRegressor (n_estimators = 500) model training with the inner CV 
loop. The inner CV loop performed a LeaveOneGroupOut split as well 
so that 34 bodies were used to train a model, which was tested on the 
samples from the one withheld body in the inner CV loop. This inner 
CV was repeated until all 35 bodies within the inner loop were used as 
a test body once to determine which hyperparameters were best for 
prediction. The best-performing inner CV model was then used to 
predict the samples from the 36th body that was withheld at the outer 
CV loop, which now acts as a validation test set. Model accuracy was 
determined by calculating the MAE of the predicted ADD relative to 
the actual ADD of all the validation body samples. The prediction of 
the samples from the 36th body, which was completely withheld from 
the training of the model, allowed us to reduce overfitting and gain 
an estimate of the model accuracy. The entire nested CV process was 
repeated until each body was used as the outer CV loop validation body 
one time (that is, 36 iterations). The resulting 36 mean absolute errors 
of each body were used for determining model accuracy, generaliz-
ability and which data type performed the best. To ensure that we were 
using the complete dataset to determine the important taxa driving 
the models, the best-performing hyperparameters (bootstrap=False, 
max_depth=None, max_features=0.2) were used to train a RandomFor-
estRegressor (n_estimators = 1,000) model to extract the important 
features. Important features were ranked by their relative importance 
on a scale from 0–1, where the sum of all importances equals 1. A ran-
dom forest model using TBS from each sampling day as training data 
for ADD prediction was trained and tested using the same methodology 
to compare microbiome-based models to a more traditional method 
of assessing decomposition progression.

Lastly, we confirmed the accuracy and reliability of postmortem 
interval prediction with an independent test set of samples collected 
from bodies not represented in our models. The independent test 
set was collected from hip-adjacent soil and skin of the hip locations 
across three facilities (ARF, Forensic Anthropology Research Facility 
in San Marcos, Texas (FARF) and Research on Experimental and Social 
Thanatology in Quebec, Canada (REST)) (Supplementary Table 39). 
The independent test set was made up of temporal samples taken from 
each facility. ARF and REST samples consisted of three bodies with three 
timepoints taken from each body at each facility. At each timepoint, a 
soil sample was swabbed within the purge and outside the purge, and 
a skin sample was swabbed from the hip. One ARF body (B3.D4) did 
not have purge during the first timepoint; therefore, this sample was 
not collected. FARF provided samples from four bodies. Two bodies 
(2021.04 and 2021.45) had the same sampling procedure as ARF and 
REST, while the other two bodies (2021.39 and 2021.44) did not have 
purge during the first sampling timepoint; hence samples were not 
collected. Samples were collected, shipped, stored, DNA extracted 
and 16S rRNA V4 sequenced using the previously described methods. 
After data generation, amplicon sequence data were analysed in the 
Metcalf lab using QIIME2 (v.2020.8)79. Sequences were quality filtered 
and demultiplexed using the pre-assigned Golay barcodes. Reads were 
150 bp in length. Sequences were then classified into ASVs using the 

deblur denoising method80. Taxonomic identifiers were assigned to 
the ASVs using the QIIME feature-classifier classify-sklearn method81 
using the SILVA 132 99% classifier for the 515fb/806rb gene sequences. 
ASVs that were assigned to chloroplast or mitochondria (non-microbial 
sequences) were filtered out of the dataset before continuing analysis. 
Data were rarified to 5,000 reads per sample and collapsed to the SILVA 
database 7-rank taxonomic level (L7). Feature tables were split into soil 
and skin data; then the validation data table was matched to the original 
dataset so that sampling location and features were the same (that 
is, using only taxa found in hip-adjacent soil in both datasets). A ran-
dom forest regressor model (n_estimators=1000, max_depth=None, 
bootstrap=False, max_features=0.2) was built and fitted to predict the 
validation samples’ true ADD measurement. Randomly assigned ADDs 
were used as a null model.

Statistics and reproducibility
From March 2016 to December 2017, 36 human cadavers were sampled 
daily starting on the day of placement through 21 d of decomposition. 
The study encompasses three geographically distinct anthropological 
research facilities, and 3 cadavers were placed at each facility for each 
of the four seasons. Swab samples were collected from soil directly 
adjacent to the hip, face and a control, non-decomposition location. 
Swab samples were also collected from skin located on the hip and the 
face. No statistical method was used to predetermine sample size. The 
samples were randomized during processing. The investigators were 
not blinded to allocation during experiments and outcome assessment. 
Samples were excluded if not enough DNA was extracted, sequenced or 
if sequence quality was poor. Negative controls were included during 
DNA/metabolite extraction, amplification and library preparation. 
Linear statistical modelling was performed with linear mixed-effects 
models to a single dependent variable, and response variables were 
statistically assessed over ADD with a random intercept for individual 
bodies to account for repeated measures. Group comparisons were 
performed using Dunn Kruskal–Wallis H-test with multiple-comparison 
P values adjusted using the Benjamini–Hochberg method, two-tailed 
analysis of variance (ANOVA) with no multiple-comparison adjust-
ments, or PERMANOVA with a multiple-testing correction. Differential 
abundance analyses were performed using ANCOM-BC118 with initial, 
day 0 samples as the reference frame. Procrustes/PROTEST104,105 and 
Mantel tests were performed between PCoA ordinations and distance 
matrices, respectively106.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw amplicon and metagenomic sequencing data and sample metadata 
are available on the QIITA open-source microbiome study manage-
ment platform under study 14989 and ENA accession PRJEB62460 
(ERP147550). Dereplicated MAGs and DRAM output can be found pub-
licly on Zenodo (https://doi.org/10.5281/zenodo.7843104; https://
zenodo.org/record/7938240) and NCBI BioProject PRJNA973116. 
The mass spectrometry data were deposited on the MassIVE public 
repository (accession numbers: MSV000084322 for skin samples and 
MSV000084463 for soil samples). The molecular networking job can 
be publicly accessed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp
?task=1c73926f2eb5409985cc2e136062db2f. The GNPS database was 
accessed through https://gnps.ucsd.edu/. The GreenGenes2 database 
can be found at https://ftp.microbio.me/greengenes_release/. SILVA 
databases can be found at https://www.arb-silva.de/documentation/
release-1381/. The Earth Microbiome Project data and American Gut 
Project data can be found on EBI under accessions ERP125879 and 
ERP012803, respectively. 16S rRNA gene amplicon sequence data files 
from refs. 6,24,25,64,69,90,91 were obtained from QIITA92 under study 
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IDs 10141–10143 (ref. 6), 1609 (refs. 24,25), 13114 (ref. 69), 10317 (ref. 90),  
13301 (ref. 64) and 11204 (ref. 91). Data from ref. 16 were obtained 
from the NCBI Sequence Read Archive under BioProject PRJNA525153. 
Data from ref. 26 were obtained from the Max Planck Society Edmond 
repository (https://edmond.mpdl.mpg.de/dataset.xhtml?persistent
Id=doi:10.17617/3.UV4FBN). The GTDB data can be accessed at https://
data.gtdb.ecogenomic.org/releases/. Source data are provided with 
this paper.

Code availability
Analysis code, intermediate files and metadata are publicly available 
on Github (https://github.com/Metcalf-Lab/2023-Universal-micr
obial-decomposer-network). The complete mathematical algorithms 
for Joint-RPCA can be found in Supplementary Text.
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Extended Data Fig. 1 | Study Information. Average a) temperature data and b) 
total precipitation per location over experiment with cadaver placement dates. 
Temperature data was collected from local weather stations reported to the 
National Centers for Environmental Information. Total monthly precipitation 
data was collected from Weather Underground. The vertical line represents 

the date of placement and line color denotes the season the body placement 
is considered to have been placed. c) Upset plot illustrating the intersections 
between sample and omic types after extractions, processing and quality 
filtering that were used for further analyses. MetaG = metagenomics, Metab = 
metabolomics, 18S = 18S rRNA amplicon, and 16S = 16S rRNA amplicon.
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Extended Data Fig. 2 | Metabolome Comparison. Principal coordinate analysis 
(PCoA) of a) Jaccard and b) Bray-Curtis distances of all unique metabolites and 
all metabolomic samples show cadaver skin and cadaver-associated soil are 
significantly different community profiles. n = 1503 biologically independent 
samples. Significance was determined by PERMANOVA (permutations = 999). 
Van Krevelen diagram showed a strong presence of lipid-like, protein-like, 
and lignin-like classes within c) cadaver-associated soils and d) cadaver skin. 
Metabolites that matched database chemical formulas or had a significantly 
predicted chemical formula were assigned a Van Krevelen organic compound 
classification by their hydrogen:carbon and oxygen:carbon molar ratios. 
Colors correspond to organic compound classification. Nominal oxidation 
state of carbon (NOSC) scores for cadaver-associated e) soil and f) cadaver skin 
metabolites with assigned chemical formulas show significant decrease of 
thermodynamic favorability at all geographical locations over decomposition 
time measured by accumulated degree days (ADD). Soil: ARF n = 251, STAFS  

n = 250, and FIRS n = 245 biologically independent samples. Skin: ARF n = 250, 
STAFS n = 249, and FIRS n = 249 biologically independent samples. Data are 
presented as mean values +/− 95% CI. Significance measured with linear mixed-
effects models within each location and adding a random intercept for cadavers 
with two-tailed ANOVA and no multiple comparison adjustments. g) Lipid-like 
metabolites show an increased abundance in cadaver-associated soils over 
decomposition measured by accumulated degree days (ADD) and significantly 
increase in temperate soils. h) Protein-like metabolites are less abundant than 
lipid-like metabolites in cadaver-associated soils over decomposition measured 
by accumulated degree days (ADD) and significantly decrease in STAFS soil.  
ARF n = 251, STAFS n = 250, and FIRS n = 245 biologically independent samples. 
Data are presented as mean values +/− 95% CI. Significance measured with linear 
mixed-effects models within each location and adding a random intercept for 
cadavers with two-tailed ANOVA and no multiple comparison adjustments. 
Metabolite abundance normalized by center log ratio transformation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Community Assembly. Sankey diagram of the a) 257 
99% dereplicated, medium to high quality MAGs with Genome Taxonomy 
Database classifications and b) the average MAG abundances (given as 
transcript per million, TPM) at each decomposition stage within each location. 
Proteobacteria and Bacteroidota representation increases with decomposition 
while Actinobacteria representation decreases at each location. This MAG set 
encompassed novel bacterial orders (n=3), families (n=9), genera (n=28), and 
species (n=158). Proteobacteria is the highest represented phylum. c) Spearman 
correlation of the maximum ATP per C-mol for lipids, carbohydrates, and amino 
acids over ADD at each location represented by circle size. Metabolism efficiency 
is correlated with ADD in temperate climates. ARF n = 212, STAFS n = 198, and FIRS 
n = 158 biologically independent samples. Significance measured with linear 
mixed-effects models within each location and adding a random intercept for 
cadavers and denoted as p<0.05 (*), p<0.01 (**), and p<0.001 (***). ARF: Amino 
Acids p = <2e-16, STAFS: Amino Acids p = 1.18e-06, and Carbohydrate p = 4.22e-
04. d) The amino acid metabolism efficiency of the total community that can 
be attributed to O. alkaliphila and e) the carbohydrate metabolism efficiency 
of the total community that can be attributed to C. intestinavium increase over 
decomposition at temperate locations as a product of the genome’s metabolism 
efficiency and relative abundance. Data plotted with loess regression as mean 
values +/− 95% CI. ARF n = 212, STAFS n = 198, and FIRS n = 158 biologically 
independent samples. f) Pairwise comparisons to obtain beta nearest taxon index 

(βNTI) values focused on successional assembly trends by comparing initial  
non-decomposition soil to early decomposition soil then early to active, etc.  
(PL = placement, EA = early, AC = active, AD = advanced) in the 16S rRNA amplicon 
dataset. Relative abundance of assembly forces reveals that heterogeneous 
selection (βNTI > +2) pressure increases and homogenous selection (βNTI < -2)  
decreases over decomposition. Stochastic forces are a constant driver of 
community assembly (+2 > βNTI > -2). g) Predicted metabolic competition from 
metagenome-assembled genomes are site-specific and significantly altered over 
decomposition. STAFS: early-active p = 3.42e-11, early-advanced p = 1.23e-11, 
active-advanced p = 7.85-41, FIRS: early-active p = 0.042. h) Predicted metabolic 
cooperation and competition from metagenome-assembled genomes randomly 
subsampled into 20-member communities within each site and decomposition 
serves as a null model comparison signifying the importance of MAG co-
occurrence. ARF n = 201, STAFS n = 188, and FIRS n = 151 biologically independent 
samples. The lower and upper hinges of the boxplot correspond to the first and 
third quartiles (the 25th and 75th percentiles). The upper whisker extends from 
the hinge to the largest value no further than 1.5 * IQR from the hinge, and the 
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of 
the hinge. The center of the boxplot is represented by the median. Significance 
measured with Dunn Kruskal-Wallis H-test with multiple comparison p-values 
adjusted with the Benjamini-Hochberg method as denoted by p<0.05 (*), p<0.01 
(**), and p<0.001 (***).
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Extended Data Fig. 4 | Multi-omic Integration. a) ASV richness comparison 
between decomposition soil and control soil over the decomposition time frame 
reveals that bacterial richness decreases significantly at temperate locations. 
ARF n = 414, STAFS n = 316, and FIRS n = 310 biologically independent samples. 
Significance measured with linear mixed-effects models within each location 
and adding a random intercept for cadavers with two-tailed ANOVA and no 
multiple comparison adjustments. ARF and STAFS richness p = <2e-16. Denoted 
as p<0.05 (*), p<0.01 (**), and p<0.001 (***). b) Multi-omic joint-RPCA shows that 
microbial community ecology is impacted by season and geographical location. 
Multi-omic Joint-RPCA incorporates soil 16S rRNA, 18S rRNA, metabolomic, 
and metagenome-assembled genome data. All data types used the same n = 374 

biologically independent samples. Multi-omics joint-RPCA principal component 
scores show that c) facility variation is primarily explained by principal 
component 3 (PC3) and PC4, d) decomposition stage is primarily explained by 
PC2, e) season is primarily explained by PC1, and f) climate is primarily explained 
by PC3 and PC4 as described by the least overlap of PC values between groups. 
g) PC2 from the multi-omics joint-RPCA scores for each geographical location 
over decomposition stages shows the temperate climate locations are the most 
dynamic in their microbial ecology. Multi-omic Joint-RPCA incorporates soil 16S 
rRNA, 18S rRNA, metabolomic, and metagenome-assembled genome data. All 
data types used the same n = 374 biologically independent samples. Data in panel 
g are presented as mean values +/− 95% CI.
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Extended Data Fig. 6 | Decomposer ASVs Placed in Current Databases. 
Phylogenetic tree representing ASVs associated with the key decomposer nodes 
from the network placed along within the top 50 most abundant ASVs taken from 
AGP gut, AGP skin, EMP soil, and EMP host-associated datasets demonstrates key 
decomposers are largely phylogenetically unique. Innermost ring represents 
decomposer placement while outer rings represent AGP and EMP ASVs, for which 

bar height represents ASV rank prevalence within each environment. AGP and 
EMP ASVs were ranked according to the number of samples they were found in 
each environment. A lack of bars represents that the ASV was not present within 
the dataset. Decomposer ASVs are numbered clockwise with full taxonomy 
available in Supplementary Table 27.
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Top 6 Important Taxa in 16S rRNA Soil Hip Model
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Extended Data Fig. 8 | Longitudinal Abundances of Important Features. The 
6 most important SILVA level-7 taxa as determined in the 16S rRNA data from 
the a) skin of the face, b) skin of the hip, c) soil associated with the hip, and d) 
soil associated with the face for random forest regression models for predicting 
postmortem interval. Data plotted by the taxa and the normalized abundance 

change over ADD at each geographic location. Data plotted with loess regression 
and 16S rRNA soil face, soil hip, skin face, and skin hip datasets contain n = 600, 
616, 588, and 500 biologically independent samples, respectively. Data are 
presented as mean values +/− 95% CI.
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Extended Data Fig. 9 | 16S rRNA Random Forest Model Validation. a) Total 
body scores (TBS) used to train a random forest model for prediction of PMI 
(ADD) shows that TBS scores can predict PMI relatively accurately based on a low 
MAE but have higher variability in their predictions as represented by a higher 
residual value than microbiome-based models. Models built from 16S rRNA 
data using SILVA level-7 taxa from the skin and soil associated with the hip were 
validated with b) an independent test set of samples that were collected from 

cadavers at locations and climates not represented in our model and c) the same 
data where samples were given randomly assigned ADDs within the range of true 
ADDs to serve as a null model. Significance measured with linear mixed-effects 
models within each location and adding a random intercept for cadavers with 
two-tailed ANOVA and no multiple comparison adjustments. Data are presented 
as mean values +/− 95% CI.
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Extended Data Fig. 10 | Diversity Comparison between 16S rRNA and 
Metagenomic Data. PCoA ordination plots of Bray-Curtis dissimilarity 
matrices calculated from paired rarefied 16S rRNA feature abundances (left) 
and TPM-normalized MAG abundances (right) from the soil adjacent to the 

hip. Procrustes/PROTEST and mantel tests were performed between the PCoA 
ordinances and distance matrices, respectively. n = 480 biologically independent 
samples, respectively.
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