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Empirical Analysis of Sequence Alignments as Measures of Biological

Conservation

Detecting signatures of conservation between protein sequences is the primary tool for

understanding the biomedical properties and evolutionary relationships of genes and

genomes. This work used over 640,000 alignments to empirically analyze two cornerstones

of genomic analysis: the pairwise alignment of sequences used to establish putative regions

of biological conservation, and percent identity (or similarity) scores used to measure the

level of biological conservation present in a pairwise alignment. The focus was on

alignments and relationships which cannot be reliably detected with current methods;

superfamily versus family alignments were analyzed, as were alignments with marginal

significance by expectation score measures, including those in the "twilight zone" below

30% sequence identity. On the biological signal in distant alignments, an extreme value

distribution process was found to drive distant homolog alignments, indicating little or no

biological information could be gleaned from analyzing those alignments. On percent

identity and similarity measures, the length of an alignment was found to strongly predict the

number of identical- and positive-scoring residue pairs in the alignment. Commonly used

percent identity and percent similarity alignment measures were found misleading or

uninformative measures of biological similarity, and the “HSSP Relationship' between

alignment length and identity was reproduced as a mathematical artifact of predicting

alignment identity from alignment length. Applications and implications of these results for

improving and better interpreting a broad range of methods for calculating sequence

alignments between distant homologs were discussed.
zºn . /
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MOTIVATION

In order to develop new methods for analyzing the Human genome and other sequencing

project data, we need to better understand the methods we currently use. Virtually all

modern genome project scientists and wet-lab biologists rely on sequence alignments to

characterize biological similarities between the sequences they study. As described in this

work, alignment methods suggest that most sequence relationships fall in the “distant”

homolog' category. However, current tools generally fail when attempting to detect or

analyze biological similarities between distant homologs. Why? How much biological

information do alignments extract from distant homologs? What is the biological

meaning of numeric alignment scores for distant homolog alignments? The results

described herein help answer these questions.

A PRIMER ON SEQUENCE ALIGNMENTS AND SCORES: WHAT THEY ARE, HOW THEY

ARE CALCULATED

Sequence alignments and alignment scores attempt to characterize biological sequence

similarities indirectly, by using residue similarities (See Figure AP1). A sequence’s

residues are the observable outcome of mutations that were accepted or rejected by

natural selection during the sequence's evolutionary history. Residues that govern key

biological properties may undergo few changes over billions of years and multiple

'In other works, the term “homology” is often used as a loosely defined synonym for
“similarity”. We do not use that definition. Throughout this work we use the more precise
definition that homology means “having a common ancestor”. Thus, “homologs” are
sequences that evolved from the same ancestor gene. For further discussion on the use of
homology and related terms in sequence analysis see (26).
* Unless otherwise noted, our results are based on the PDB90tu alignment dataset that is
described in the methods sections of the chapter following this introduction.
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speciation events. Others may mutate until they have no detectable similarity to the

original ancestor residue. Regardless of retained similarity, two or more residues are

“homologous residues” when they are descended from the same ancestor residue in the

Same anceStor sequence' . Hence, two sequences are homologous when they contain one

or more homologous residues (i.e. if residues in each sequence descended from a

common ancestor residue, then some part of the sequences must share a common

ancestor). Technically, a residue with little or no change from an ancestor sequence is

called “conserved”, and a residue undergoing large changes is called “non-conserved”.

Conserved, homologous residues are “mutually conserved”. Usually, the ancestor

sequence can’t be directly observed or reconstructed, so one can’t necessarily tell when a

residue is conserved. Thus, homologous residues are often called “conserved” when they

are similar or identical, regardless of the nature of the ancestor sequence. A primary goal

of sequence alignments is to align homologous residues.

By identifying conserved residues, biological similarities between homologs can be

discovered'. For example, residues that play a key role in determining catalytic activity,

regulatory control, or risk for illness can be detected as conserved between sequences

from humans, fruit files, and bacteria. Conservation of a large number of residues, or of

key functional residues, suggests conservation of biological properties. Homology

between non-conserved residues can often be detected by association with conserved

* In this work and in the general literature, the term “homolog” refers to homologous
sequences unless otherwise noted.
* Non-homologs may also have residue similarities that correspond to biological
similarities. Short signal sequences that target proteins to particular locations in the cell
are one example. Non-homologs are commonly treated as lacking biological similarity in
sequence-alignment methods-development reports. We also treat non-homologs in this
manner unless otherwise noted.

-º
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homologous residues. Conserved residues are often interspersed with non-conserved

residues. A residue sandwiched between residues conserved across several sequences, for

example, is probably a non-conserved (i.e. homologous) residue. By mapping

homologous residues of all types, alignments delineate entire regions of two sequences

that have a common biological origin. Alignments may be inspected to see if particular

functional regions have been retained, and alignments may be scored in order to estimate

the overall level of conservation.

To generate useful biological information, computational tools need a method to identify

homologous residues. For non-homolog sequences, all residues paired in any possible

alignment are, by definition, non-homologous residues. When aligning homologous

sequences, many possible alignments would align non-homologous residues. Software

tools test many or all of the possible alignments, returning the one with the highest score

(the “optimal” alignment). Thus, the "raw" score used to select optimal alignments

provides a bridge between biological similarity and the algorithms used for comparing

strings of letters.

Raw alignment scores are models of biological sequence evolution. Raw scores generally

add scores from each set of paired residues, plus an insertion/deletion “indel” or “gap.”

penalty for unpaired residues. The basic model for scoring sequence alignments,

introduced by Sellers in 1974, can be thought of as":

* Theoretically, more than one alignment with the same optimal score may exist. In this
case, the choice of which optimal alignment is reported is tool dependent. Further
information on this and other aspects of the number of possible alignments can be found
in (39).
* Sellers' distance metric (32) is the foundation of sequence distance used in alignment
methods, as discussed in (33). This legacy is apparent when inspecting the scoring

4



Raw Alignment Score ~ Rejected Mutations - Indels

~ Similarity Scores|aligned residues] + Gap Penalties

For standard two sequence (“pairwise’) alignments, mutation scores for each two-residue

pair in the alignment are taken from a look-up table. Residue similarity score tables are

usually calculated from ratios (log-likelihoods) of the mutation and residue frequencies

observed in alignments of homolog sequences. Commonly used tables, such as the PAM

or BLOSUM matrices', give a positive or negative score to each type of residue mutation.

Mutations with a positive score are considered conservative, whereas those with a

negative score are considered non-conservative. Indel biology is usually modeled by

linear gap penalties: a fixed “open” penalty for starting a gap, plus an “extension” penalty

times the length of the gap. Linear penalties are used for reasons of computational

efficiency, and are suitable for short gaps". The choice of gap penalty parameters is often

heuristic, based on what each user feels gave good results in the past.

A completely “biologically accurate” or “correct” alignment would pair up all

- -
9 -homologous residues and no non-homologous residues". Automated alignment

methods of local pairwise alignments (see review (3)), multiple sequence alignments
(reviewed in (12)), and other methods including profile tools such as PSI-BLAST and
IMPALA (31). For broad mathematical treatments of alignment methods and scores, see
(39) and (10).
" For an informative comparison and discussion of many types of scoring matrices, see
(17, 37) and the recent review (14). The biological motivation and statistical justification
behind the original PAM and now-standard BLOSUM matrix series are found in (7) and
(15).
* For an investigation of gap penalties versus biological reality, see (5) and a more
statistical treatment in (2).
” The study of accuracy in alignments has gained increasing attention in recent years; for
an introduction to data-driven investigations of sequence alignment accuracy versus
structural alignments, see ((8, 30, 34)) and references therein. See also work and discussion
on near-optimal alignments (e.g. (10, 16, 22, 36, 38, 39)).
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techniques can have difficulty distinguishing conserved residues from high-scoring, non

homologous residues. Thus, when homologs are aligned some residues may be pared that

do not reflect biological conservation or residue homology. In practice, as alignment

scores decrease, so does overall alignment accuracy. Varying descriptions of alignment

“error”, “inaccuracy”, or “incorrectness” are occasionally used to estimate how well the

residues paired by alignment agree with those of an accurate alignment. Much more

commonly, a general-purpose alignment score is used to estimate the degree of similarity

between two Sequences.

For clarity, we emphasize that studies of homolog alignments are about alignments as

computed by current methods, rather than the existence or information contained in a

correct alignment. Our work, for example, addresses the ability of current methods to

calculate alignments and scores that reflect biological similarity. This is a necessary

limitation. If two sequences are homologous, then they have homologous residues that

can be paired in a correct alignment. However, we cannot go back in time and learn the

true evolutionary history of each residue in a naturally occurring sequence. Current

evidence may indicate that two residues are similar by various criteria, but that does not

prove they are homologous. An alignment of similar residues is simply the “best guess”

available to us. Improving current methods enables “better guesses.” Studies of

alignments, such as ours, thus deal with alignments as computed by current tools and the

scores used to extract biological information from those computed alignments.

Extreme value scores are a primary tool for distinguishing homologs from non-homologs.

Extreme value statistics were developed by Gumbel in the 1950’s for estimating the

-gº
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probability that at least one flood in a given year would be a severe flood". Unlike the

normal distribution, which estimates probabilities for a sum of several random numbers,

the extreme value distribution estimates probabilities for the maximum of several random

numbers. For two non-homologs, the score of each possible alignment is a random

number, and the reported alignment’s score is the maximum of those numbers. (This

highest-scoring possible alignment, rather than the most accurate one, is the “optimal”

alignment that methods like the Smith-Waterman local alignment algorithm report.)

Therefore, alignment scores for non-homologs follow an extreme value distribution (as

shown in Figure RNH 1). Extreme value statistics estimate the probability that two non

homolog sequences would generate a raw score equal-or-higher than the score of an

alignment of interest. If the probability is very low, then we reject the hypothesis that

non-homologs generated the alignment of interest. If two sequences are not non

homologs, we conclude they are homologs. Hence, rejection of the preceding hypothesis

means we have decided that the alignment score is “significant” and that homology

between those sequences has been “detected”. Longer sequences are more likely to have

a high alignment score by chance, as are sequences with unusual frequencies of rare (or

common) residues. Hence, modern extreme value statistics enable inclusion of

corrections for sources of bias such as sequence length and residue frequencies. When a

Search sequence is compared to a sequence database, the “expect” or “e-value” score

reported for an alignment equals the number of database sequences (“hits”) expected to

have an equal-or-higher score than that alignment without being homologs of our search

sequence. These scores have been empirically verified as accurate or conservative.

"For details (13); for a brief mathematical synopsis see also(11).

/*
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Hence, given an alignment with an e-value of 100, we would expect to see 100 non

homolog hits having raw scores greater-or-equal than the raw score of that alignment. A

* * * • * -2
- -“expect” or “e-value” score of 10 basically means that there is a 1% chance that an

observed alignment is due to non-homolog sequences.

Percent identity scores are used more often than statistical scores when measuring

similarity between two sequences". Percentage scores divide a basic mutation score

(without gap penalties) by a measure of length (See Table PSF1). These scores do not

involve nonlinear calculations or gap penalty selection, and admit few or no choices

about the mutation score parameters. Percent identity scores are widely held as intuitive

and easy to understand".

THE PROBLEMS WITH DISTANT HOMOLOG ALIGNMENTS AND ALIGNMENT SCORES

Many biological relationships between sequences are distant and hard to characterize

with alignments. Almost by definition, distant homologs lack residue conservation that is

easily characterized by any current software tools. Conceptually, homologs are “distant”

when they are separated by great evolutionary distances. In practice, homologs are

considered “distant” when they cannot be distinguished from non-homologs on the basis

of their alignment scores. Sequence alignment scores often define distant homology:

homologs below a alignment score cutoff are considered distant, those above the cutoff

are not. Common cutoffs include a 30% sequence identity “twilight zone” cutoff and e

value cutoffs of 10° to 10°.

" Percent identity scores are vociferously deprecated by some statistical
bioinformaticians. Nonetheless, percentage scores remain frequently used for judging
sequence similarity, as noted by the comparison of percentage and e-value scores in (41).
* For a straightforward interpretation of percent identity scores as exponentially related
to mutational distance, see the classic book (9)).

8



Most homologs are distant homologs. In other words, given any two sequences, we

generally cannot tell if they are homologs". Homology is more difficult to detect

between sequences that are more evolutionarily distant. Many sequences are clustered

into “families” of homologous sequences that also share similar biological characteristics;

when sequences in different families are homologous, those families are clustered into

“superfamilies”. Homologs in different families, “superfamily-level homologs”, are

generally believed to be more evolutionarily distant than homologs in the same family.

Recent studies indicate that only 4% of superfamily-level homology relationships are

detected by alignment methods".

Improved statistics and multiple-sequence methods have generally increased our ability

to reliably detect the homologies that were already evident by other means. When two

sequences are homologous to a third, alignments containing all three often make it

possible to determine if the first two are also homologs. (Technically, one homologous

"Numerous studies make this point; see (6, 18, 21, 24) and references therein. Techniques
to increase the effectiveness of alignment searches for particular applications are
discussed in (25). Using standard pairwise methods and default scoring parameters, our
analyses confirmed over 50% of homologs as distant under e-value (10° and 10’) and
twilight zone (30% percent alignment identity) cutoffs.
"For the SCOP database used in our work, homologs are classified into the same family
based on percent sequence identity or strong functional and structural similarity (19).
Hence, the family classification provides a somewhat fuzzy mix of sequence and non
sequence similarity information. Superfamily classification is more rigorous: if two
sequences are homologous by any criterion, they are in the same superfamily. Because
SCOP sequences each consist of only a single protein domain, homology is transitive for
SCOP sequences. Thus, each sequence is classified in exactly one family contained in
exactly one superfamily.
* Confusingly, some authors use “superfamily homologs” to indicate only homologs in
different families, while for others all family homologs are also superfamily homologs.
Throughout this text, we use the former definition.
"Detection of 4% or less on the SCOP reference database is shown for pairwise, profile,
and hidden Markov model methods in (18). Our data confirmed these results for pairwise
methods.

****



residue shared by all three sequences implies they are homologs.) When transitivity is

used, the final question, “is sequence A homologous to sequence B,” is answered

similarly well by multiple searches with traditional pairwise techniques, modern pairwise
- - 7alignments, or multiple-sequence methods".

Even when we know two sequences are distant homologs, it is difficult to calculate

alignments or scores that reflect the known biological similarity. Recent systematic

Studies have described the performance of widely used alignment tools on distant

homologs”. These studies confirm that alignment accuracy drops off sharply as

alignment scores approach cutoffs for distant homology. A similar trend is observed for

the correlation between alignment scores and measures of biological similarity. Detailed

plots in these studies compare x-axis measures of alignment-based sequence similarity,

including percent alignment identity and e-values, to y-axis measures of biological

similarity, including agreement with structure-based alignments, three-dimensional

RMSD structural similarity scores, beta-sheet and alpha-helical secondary structure

similarity, and functional similarity based on enzyme classifications and protein function.

A decrease in agreement between alignment accuracy, alignment scores, and various

measures of biological similarity is consistently observed for distant homologs. Some

tools are found to perform better than others on particular types of homolog data, but all

methods perform increasingly poorly as alignment scores drop. For all methods tested, on

" Performance benchmarks and analyses have become a popular topic in recent
publications. As examples, see (18), and references therein, for comparisons of pairwise,
iterative-pairwise, profile, and hidden Markov methods. (6) set the standard for modern
performance benchmarking, and illustrates the near equivalence of traditional Smith
Waterman and modern pairwise methods.
* See, for example, comparisons of sequence- and structure- alignments in (30, 34.40) and
references therein.

10



average over 50% of the residues aligned for the lower-scoring distant homologs were

inaccurately aligned. That is, most of the aligned residues were actually not homologous

residues. The reasons for the breakdown in alignment accuracy remain largely

unexplained.

As these difficulties suggest, advances in measuring similarities between distant

homologs are needed. The challenge is to identify the types of changes that should be

made to improve current alignment methods and scores for use with distant homologs.

OUR APPROACH TO SOLVING THE PROBLEMS

I believe that the universal breakdown of alignment-based methods on distant homologs

suggests a common point of failure. Some assumption in how new alignments are

calculated, or how fixed alignments are scored, seems at fault in all methods. One way to

detect the cause of this failure is to better understand how representative methods agree,

or disagree, with biological reality. As long as some aspect of biology continues to

influence the alignment process and the resulting scores, biological information remains

to be extracted with those methods. Alignment methods that reliably and correctly pair

homologous residues will enable new biological insights. Scoring methods that reliably

quantify an aspect of biological similarity that is present in an alignment would be

immediately useable. Hence, two objectives that enable improvements are: identify when

representative tools extract biological information from distant homolog alignments; and

clarify the physical aspects of alignments reflected by current similarity scores.

Towards these two objectives, we have studied pairwise alignments and their scores.

Pairwise alignment tools provide the most direct route to understanding the distant

homolog problem. Virtually all modern alignment methods use alignment and scoring

* Y

->
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concepts co-opted from the pairwise comparison literature. Many multi-sequence

methods calculate actual pairwise alignments as intermediate steps. Variants of pairwise

scores, such as percent identities and e-values, are used with alignments from all

methods. As the simplest tools for computing sequence similarity, pairwise alignment

methods may isolate the essential elements of sequence comparison that fail for distant

homologs.

We have taken a data-driven approach to studying pairwise alignments and scores. We

aligned real biological sequences to establish large-scale data sets. We compared

sequences that share known biological similarity—homology—but uncertain sequence

similarity. Consistent with other recent analyses of alignment tools, we performed all

against-all alignments on a standardized reference-sequence database. Unlike previous

studies, our general exploration of the data required the flexibility to isolate and analyze

many distinct aspects of alignment similarity. Exploring data in this way is difficult

because all-against-all alignment generates millions of alignments, and tens of millions of

data points. Relying on available resources to write software to parse and analyze aspects

of the data for each exploratory question seemed infeasible. Historically, limitations in

computational resources and training have limited large-scale, data-driven “big data”

research to asking narrow questions with custom-written software. Fortunately, advances

in computing technology are beginning to make flexible, big-data research accessible to

computational biologists with expertise in data-modeling, statistics, and database

management systems. In our work, data was warehoused in a commercial relational

database and analyzed using structured query language tools and standard statistical

suites. This type of data-driven analysis provides a new, promising methodology for

12



biological research. Moreover, the techniques we developed allowed us to identify

properties of pairwise alignments that remained unreported by other scientists during

three decades of previous research on alignments.

OUR RESULTS FOR DISTANT HOMOLOG ALIGNMENTS

Virtually all alignments computed for superfamily homologs appeared to reflect no

information about biological similarity, whatsoever. Overall, the information captured by

distant homologs' alignments appeared to depend on their evolutionary distance, not just

their score. Judging the biological information in distant homolog alignments—without

knowing the accurate alignment—appeared to open the door to improved distant

homolog methods.

In our analysis, we identified extreme-value distributions in superfamily homolog

alignments (see Figure RSF1, graph A). Extreme-value behavior suggests that these

homologs followed the same alignment process as non-homolog sequences. Extreme

value distributions are commonly observed for non-homolog sequences as well as for

randomly generated sequences. When an extreme-value process is observed, the

implication is that the alignment is “random”. By random we mean: “shuffling the

residue-types for each sequence would not be expected to change the number of correctly

aligned residues”. Regions aligned, residues paired, and scores calculated for random

alignments can reflect biological similarities forced into the calculations by similar

sequence lengths or unusual residue frequencies. However, random alignments

themselves do not add biological information beyond what was available without

aligning the sequences. For randomly aligned sequences, some homologous residues may

be paired by chance. Overall, however, such alignments are expected to be almost

13



entirely inaccurate. Randomly aligned sequences have “random accuracy”: mutating the

sequences’ residues many times without regard to conserving biological similarity, and

then re-aligning them, would not be expected to reduce the number of correctly paired

residues. Thus, “an alignment added no information” is the only new thing that a random

alignment can tell us about the biological similarities of two homologs.

Extreme values in distant homologs are not previously reported, but they are unsurprising

in hindsight. Our observations are consistent with the idea that homologs with few

conserved residues will have fewer high-scoring residues in a correct alignment. If the

residues paired in a random alignment give a higher similarity score than those in all non

random alignments, then it will be the random alignment that is reported by an alignment

program. Low scoring alignments are expected for many distant homologs. That

expectation is consistent with observing random alignments and an extreme value score

distribution for those homologs.

The information captured by distant homolog alignments may depend on evolutionary

distance, not just alignment scores. Distant homologs were separately analyzed as

family- and superfamily-level homologs (the former being more closely related than the

latter). Low-scoring family-level homologs' alignments gave different results than those

of similar-scoring superfamily-level homologs. Virtually all superfamily homologs were

low-scoring. These very distant homologs followed an extreme-value distribution,

suggesting they are randomly aligned (see Figure RNH 1). However, the situation was

less clear for family-level homologs. Family-level homologs did show a peak at low

scores. That peak that may indicate an extreme-value distribution mixed with other

distributions or alignment processes. However, when inspected individually, only some

ºf A.
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families exhibit a low-score peak (see Figure RSF1). This variation was not observed

when individual superfamilies were inspected. The lack of a peak suggests that some

families' low-scoring alignments do not reflect an extreme value process. A non-extreme

value process suggests these are not random alignments; biology is influencing SOInC

family alignments, even at scores where all superfamily alignments appeared to be

random.

Random homolog alignments may enable new insights into how to measure distant

homology. Alignment method analyses typically compare homolog alignments, which

are assumed to measure biological similarity, versus non-homolog alignments, which are

assumed not to reflect biological similarity. As noted, superfamily alignments appeared

to be randomly aligned, while many family alignments did not. To increase accuracy, we

suggest that analyses relying on current alignment tools should remove superfamily

homologs from alignment data assumed to reflect biological similarity. For studies

attempting to explore how alignment algorithms fail to capture biological similarity,

alignments that failed to capture biological similarity (randomly homolog alignments)

may provide better controls than alignments lacking any biological similarity to capture

(non-homolog alignments). For these studies, family and superfamily alignments should

be compared. Furthermore, comparisons between family- and superfamily- homologs

may use subsets selected for similarly computed similarity scores and similar biological

properties, like fold or catalytic activity. Through this process, confounding factors can

be minimized or eliminated, because both subsets are known a priori to share particular

biological similarities. These types of comparisons may also be useful between roughly
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defined extreme-value and non-extreme value family alignments, though such subsets

may be challenging to isolate.

Extreme-value fits to homolog data may provide a positive assay for capturing more

biological information with improved tools. By measuring a tools' ability to decrease the

extreme-value behavior of known distant homologs, improvements in existing tools can

be guided and validated. For example, if we take two methods and plot their distant

homologs' alignment scores, we can fit an extreme value distribution to those scores. We

can then compare the area under the two extreme-value curves". A decrease in area

indicates that more biology was captured by an alignment method. The method with

smaller area (fewer alignments) following an extreme value distribution is expected to

have fewer random alignments. So, comparing methods by their homolog extreme value

distributions provides a test for when we are capturing more, or less, biological

information in the alignments. Unlike existing assays that require sequences of known

structure, extreme-value homolog tests can be applied to sequences where their structure

is unknown. Hence, extreme-value homolog tests should enable alignment methods for

characterizing homologs without known structures, such as G-protein coupled receptors

and other transmembrane or non-globular proteins.

OUR RESULTS FOR DISTANT HOMOLOG SCORES

Percent identity scores took on new and unexpected meanings when applied to distant

homologs. Our data indicated that, for distant homologs,

"Non-homologs provide a control against trivial false-positives. Non-homologs should
generate similar extreme-value distributions under both algorithms.

*.** ** *
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• Percent alignment identity is a random number that is not an indicator of similarity in

any usual sense;

• Percent sequence identity scores simply tell if an alignment is full length.

Our results on percent identity measures changed how we interpret other historical works.

For distant homologs, the number of identities and the alignment length are highly

correlated (see Figure AID1). For both family and superfamily homologs, identities were

well described as a linear function of alignment length:

Identities = m *AlignmentLength + b + error

Fitting this equation to distant homolog alignment data, we found that alignment length

explained 90% of the variance in identities (fit parameters were m = 0.25 identities per

residue, b = 2.9 residues, error ~ 0 + 2.4 residues)".

Effectively, these two alignment properties reflect a single interchangeable number for

distant homologs. In light of this equivalence, percent alignment identity can be viewed

aS.

Percent Alignment Identity =

Identities Predictedldentities 25% + 2.9 + errorF - 0-

Alignment Length Alignmentlength AlignmentLength

Hence, all distant homologs with long alignments give approximately 25% alignment

identity. Shorter alignments deviate from the baseline when the difference in a few

* One might expect a fit to yield zero identities at zero alignment length. However,
current tools always report positive or identical residues at both alignment edges. (Score
optimization means negative scoring edge-residues would be trimmed before an
alignment is reported). Because they can align at either side of the gap, residues near gaps
are also biased to be positive or identical. These biases contribute to a non-zero intercept.

>

* *-* *

- *** * * * *
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residues (2.9 E2.4 residues) becomes noticeable when dividing by a short alignment

length. Hence, percent alignment identity appeared irrelevant as a measure of biological

similarity for distant homologs. Said differently, if pairwise alignments are calculated for

a sequence with two of its distant homologs, the first showing 18% alignment identity

and the second showing 28%, there is no reason to believe the second homolog is more

closely related to the sequence than the first homolog.

Percent sequence identity for distant homologs can be cast as:

Percent Sequence Identity =

Identities Predictedldentities 25 × Alignmentlength
MaxAlignmentlength MaxAlignmentLength MaxAlignmentLength

where MaxAlignmentLength is the length of the shortest sequence to be aligned, i.e. the

maximum possible alignment length. Hence, percent sequence identity appeared to have

a simple physical interpretation for distant homolog alignments: the percent aligned,

divided by four (up to a maximum of 100%).

In light of our results, it becomes clear that the HSSP curve" is not related to structural or

biological similarity between sequences. The HSSP curve is essentially the upper

boundary of alignment data from a scatterplot of alignment length versus percent

alignment identity (See Chapter III, Figure 2). This curve was introduced to describe a

boundary-relationship between sequence and structural similarity, and has been cited and

studied in several previous works. Given identities’ dependence on alignment length, the

* The HSSP curve is noted as a “principal result” of the classical work (28). As an
example that the HSSP curve continues to attract scientific attention, we simply note that
his been variously criticized, reproduced, updated, or otherwise discussed in references
including (1, 6, 21, 27).

**** * * *
ºrrºsº- * *

***** *
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HSSP curve is equivalent to plotting “X” vs. “1/X” with an error term. Hence, the HSSP

curve appeared to be a mathematical artifact of identities’ dependence on alignment

length. We concluded the HSSP curve does not merit further study or use.

PREDICTIONS AND A SYNTHESIS OF OUR RESULTS

We have discovered and explained several modes of failure for alignment methods and

scores on distant homologs. Ultimately, the hindsight of success in characterizing distant

homologs will be required to prove why current methods are failing. However, using

insights gained during our analyses, we advance several points and hypotheses.

Distant homolog alignments appear to fall into two basic types:

I. Alignments with a high-accuracy core bordered by long, inaccurate extensions

II. Random alignments

Type I (“anchor”) alignments encompass the closer distant homologs; these alignments

extract new information about biological conservation from the homologs’ sequences.

Type II (“random”) alignments encompass the more remote distant homologs; these

alignments are almost entirely inaccurate and extract no new information about biological

conservation from the homologs’ sequences. We now discuss each type in more detail.

Random alignments explain observations about distant homologs that appeared to follow

the same alignment process as non-homolog sequences. Like non-homolog alignments,

the raw scores of random alignments follow an extreme-value distribution. Almost all

superfamily homologs, and some low-scoring family homologs, produced characteristic

signatures suggesting their alignments were random. As previously discussed, the

residues in random alignments are likely to be paired without regard to which residues

*** -- **

* . . .
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were homologous. These alignments are almost wholly inaccurate and their scores do not

measure the aligned homologs’ biological similarity.

Anchor alignments explain observations about family-level distant homologs that did not

appear randomly aligned. Most of the residues aligned for same-family distant homologs

appear incorrectly but perhaps not randomly aligned. In our hands, the identity-length

relationship for distant family homologs suggested that their alignments extended by

adding one identical residue for each four residues that were added. Non-homolog

alignments behaved similarly, suggesting that the identity-length relationship was due to

non-biological alignment extensions. However, many distant family alignments did not

appear to follow an extreme-value process that would indicate they were randomly

aligned. These observations are consistent with a high-accuracy core alignment that

anchors a surrounding inaccurate alignment. Such an alignment would not be simply the

maximum of many possible random alignments, and hence would not be expected to

follow the same extreme-value score distribution as randomly aligned distant homologs.

Most of the length of the alignment, however, would be in the inaccurate extensions to

the anchor. By extending an average of four residues for every identical residue aligned,

long inaccurate extensions would dominate the identity-length relationship in the overall

alignment. In some cases, these inaccurate regions may not be physically contiguous with

the anchor; gaps may intervene. The final alignment could even be a tiling of accurately

and inaccurately aligned segments that were independently calculated. In all cases, an

accurate anchor would greatly constrain the number and type of alignments that are

possible for other regions of the sequences. Biologically accurate core alignments with

large inaccurate extensions have been previously observed in distant homologs, and are

* --

* * *

*** -

* *
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consistent with alignment edge-wander theory”. The anchor hypothesis advanced here

predicts that the inaccurate extensions will be statistically distinguishable from the

conserved anchor. Unlike the anchor, the inaccurate extensions should maintain an

approximately fixed ratio of aligned residues to identical residues. (A 4:1 ratio would be

expected under the conditions used in our alignment calculations). The anchor, however,

should contain accurately aligned, conserved residues that would be detectable as unusual

densities of high-scoring residue pairs. These high scoring residues may be distributed

throughout the anchor or clustered at the ends. Sliding windows, as used for

hydrophobicity plots, or formal scan statistics may be used to test these predictions.

Distant homolog alignments are probably not accurate enough to interpret the biological

meaning of their alignment scores. Most residue pairs in most distant homolog

alignments are incorrectly aligned. Moreover, these incorrectly aligned residues are not

paired based on biological similarities such as convergent evolution. The biological roles

of these residues are not a factor in how they are aligned. Hence, most residue pairs in

most distant homolog alignments contribute only random noise to alignment scores. For

random alignments, all residues contribute pure noise, and the resulting alignment scores

are random. For anchor alignments, residue-pair scores from an accurately aligned region

may be biologically meaningful. Standard alignment scores for distant homologs’ anchor

alignments will include a large random-noise error term, as most residue pairs are

expected to be in the incorrectly aligned extensions. Some scores may accurately measure

alignment properties. Percent sequence identity, for example, measures how much of the

* Alignment errors near gaps are generally expected, particularly for distantly related
sequences. For recent results on this topic, see (30) for distant homologs and (29) for close
homologs. Edge-wander theory is treated in (16).

********
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maximal alignment length was achieved. However, biological information that is lost in

the alignment process cannot be regained in the scoring process. Alignments’ divergence

from biological reality appears to prevent alignment scores from providing a reliable

measure of biological similarity.

The distinction between random alignments and anchor alignments makes testable

predictions about studies of distant homologs. These predictions are based on changes in

the level of signal and noise in distant homologs' alignment scores. As one prediction,

trends in agreement between biological similarities and alignment scores should be

different for distant family and superfamily homologs. These differences should reflect

the changes in noise versus score that occur in random and anchor alignments. Family

homologs with lower alignment scores may coincide with shorter anchor alignments and

lower accuracy alignments. Hence, the absolute level of biological information in family

homolog scores may decrease as the scores themselves decrease (i.e. lower scores may

indicate lower information, rather than lower biological similarity). Anchor alignments’

inaccurate extensions will also contribute noise in their alignment scores; the extensions’

contribution may increase at lower values for some alignment scores. The average level

of biological information, and noise, in distant superfamily homologs should both be

constant at different alignment scores. Virtually all superfamily homologs should

generate random, pure-noise alignments and scores. Hence, the agreement of biological

similarity and alignments (or their scores) should not strongly depend on alignment score

for distant superfamily homologs. In contrast, this agreement is predicted depend on the

magnitude of the alignment score for family homologs. A second prediction is that

trends-lines in population studies should demonstrate a qualitative change at scores where
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the proportion of Superfamily homologs increases. Alignment scores are often compared

to other biological properties in population studies that include both distant family and

distant superfamily homologs. Such “mixed population” studies analyze the signals of

random and anchor alignments into a single trend”. As alignment scores decrease, mixed

population studies of distant homologs generally observe growth in the discrepancy

between most alignment scores and most other measures of biological similarity. Noise

from inaccurately aligned regions in anchor and random alignments should both

contribute to these discrepancies. However, the contributions of random versus anchor

alignments should be distinguishable. The percentage of distant homologs that are

superfamily, rather than family, homologs increases rapidly as most alignment scores

decrease (see Figures ISF1 and PFH1). Our results predict that an increase in the

percentage of distant homologs that are superfamily homologs, and therefore random

homologs, should produce a corresponding drop in the observed agreement between

alignment scores and biological similarity scores. The solid curves in Figure ISFl

represent the fraction of homologs expected to contribute random alignments and scores

that are effectively pure noise. The dashed curves illustrate the decrease in homolog

alignments that contain biological information in mixed population studies. Virtually all

signal of biological similarity must come from non-random (i.e. family) alignments. The

percentage of alignments that are from family-level homologs (dashed curves) provides a

upper bound to the fraction of alignments that may be anchor alignments. (Some family

alignments may be random alignments). These anchor alignments and their scores may

contribute biological information. The dashed curves thus provide a practical upper

* As examples, see the systematic comparisons of alignment scores and biological
similarity in (30, 40,41) and references therein.

****
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23



bound to the fraction of distant homolog alignments that may contribute biological

information in mixed population studies. Thus, distant-homolog mixed-population studies

combine trends from two processes”: first, the changing fraction of alignments that

contribute pure noise (random alignments, solid curves) versus alignments that may

contain biological signal (anchor alignments, dashed curves); second, the change in the

information contained in non-random alignments at lower sequence similarity. The

distinction between these two processes is not generally made in studies of distant

homolog alignments. We suggest that the first process may dominate the disagreements

between alignment scores and biological similarity reported to occur in mixed population

studies of distant homolog alignments. Other differences in when signal, or noise, occur

in family and superfamily alignments also may have distinguishable statistical

characteristics. Overall, we suggest that alignment errors are probably the primary cause

of distant homologs’ sudden drop-off in agreement between alignment scores and

biological similarity scores.

The difficulties in computing similarities for distant homologs appear to arise because

current scoring methods don’t adequately model the biological events that occur at large

evolutionary distances. This can be changed. Moving forward, we suggest that

improvements in alignment raw scores should be the primary focus in developing

methods to characterize distant homologs with alignment methods. Advances in methods

that rely on accurate pairwise alignments, such as multiple-sequence methods and

* Statistical analysis of error trends by mixture-distribution fitting is beyond the scope of
this work. However, we refer the interested reader to references on mixture-models and
generalized linear models (20,35) with an initial basis for a two-component model:

Population 1: Biological Similarity Score - Alignment Score*(1+ Error,)
Population 2: Biological Similarity Score - Error?

****

******

24



improved alignment significance statistics, appear less important. As an immediate next

step, distant family homolog alignments should be studied to clarify sequence

characteristics that signify a boundary between accurately and inaccurately aligned

regions. These characteristics may enable improved gap penalties or raw alignment

scores that provide higher accuracy alignments for distant family homologs. Removing

accurately aligned regions and re-aligning the remainder may allow additional accurately

aligned regions to be reported and identified. Higher accuracy alignments would enable

functional characterization of distant homologs, by removing uncertainty in whether

aligned residues are truly conserved. Identifying an accurately aligned region proves

homology; new measures for identifying accurately aligned regions may also improve

homology detection. Once tools are developed for identifying regions that are accurately

aligned by current alignment scores, it may become feasible to reliably detect and

characterize the biological similarities of distant family and superfamily homologs.

* * * * *

*** *
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Raw Score Distribution for Non-Homolog Alignments, with Extreme-Value Fit
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Figure RNH1. Raw score distribution for non-homologs, with extreme-value fit.

Histograms and extreme value distribution curve fit for raw alignment scores for all non

homolog alignments from the PDB90tu dataset. Extreme value fit data was taken as raw

scores with histogram bin counts from this graph (bin width of one point raw score). Fit

was performed by nonlinear estimation on {Y = N + extreme(X, location, scale); using

quasi-Newton fitting. The curve fit yielded Y = 624971 * extreme(X, 26.0, 4.4); Rº-99.4%.

For the fit as shown, X = Raw Score, Y = No. of Alignments. For database

searching and p- or e-value estimation, the X term for the extreme value fit generally a

modified raw score that adds a correction factor for the length of the two sequences

aligned. We focused on analyzing alignment properties, rather than detecting homologs.

Hence, we used raw scores as directly observed from the alignments to allow direct

º
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attribution of cause and effect in our analysis. (In our hands, raw scores explained

approximately 98% of the variance in log(e-value) for distant homologs. Adding standard

correction factors to the raw score was not expected to change our results.) See (4) and

references therein for raw score correction factors in extreme value statistics. See (3) for an

introduction to approximations of the extreme value distribution often used in database

searches.
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SCORE NAME SCORE FORMULA

Identities
Percent Sequence Identity ——

|
-

MaxAlignmentlength
Identities

Percent Alignment Identity —-
9.

-

Alignment length
Positives

+Percent Sequence Similarity →
|

-
MaxAlignmentlength

Positives
-Percent Alignment Similarity —-

§
-

MaxAlignmentLength

P Aligned Alignment Length
-

t J/162 --

ercent Aligne MaxAlignmentlength
Table PSF1. Percentage score formulas. Alignment percentage

scores are based on a ratio dividing an observable alignment

property by a measure of length. AlignmentLength is the number

of residue positions aligned in an alignment (residues aligned

with gaps are not counted). MaxAlignmentLength is the longest

possible length of the alignment, equal to the number of residues

in the shortest sequence given to the alignment algorithm.

Identities is the number of alignment positions where all

residues are identical. Positives is the number of alignment

positions with a positive similarity score, where positive is

determined by the residue similarity scores used to calculate the

alignment.
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A. Raw Score Distribution for Different-Family Homologs, with Extreme-Value Fit
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B. Raw Score Distribution for Distant Same-Family Homologs
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Figure RSF1. Raw score distributions for superfamily and family homologs. Histograms

of raw alignment scores for alignments from the PDB90tu dataset. A. All superfamily

homolog alignments (i.e. homologs not in the same family) with extreme value

distribution curve fit. Fit parameters and variance explained by the fit (R') are shown in

the graph inset. Extreme value fit data was taken as raw scores with histogram bin counts

from this graph (bin width of one point raw score). Fit was performed by nonlinear

estimation on {Y = N + extreme(X, location, scale); using quasi-Newton fitting. B. All

same-family homologs below a distant-homolog cutoff at BLAST e-value <= 10°.
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A. Superfamily Alignments
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Figure RSF1. Raw score distributions for individual superfamilies and families.

Histograms for raw alignment scores for homolog alignments from the PDB90tU

dataset. A. Alignments for homologs from individual superfamilies. Note that

superfamily histograms exclude alignments between homologs in the same family. The

largest family from each superfamily is shown in the graph directly below it.

B. Individual family alignments.
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Figure AID1. Alignment length vs. identities for distant family and superfamily

homologs. Scatterplots show all distant alignments (BLAST e-values < 10°) from the

PDB90tU dataset, categorized as family or superfamily homologs. Linear fits and

variance explained by the fits (R') are shown in the graph insets. Note that high-density

areas in the plot may contain more data points than visually apparent, as points that

overlap will appear as a single point. A. All distant superfamily (not-same-family)

homologs. B. All distant family homologs. As discussed in (23) and Chapter III, non

homolog alignments score vs. alignment length relationships were similar to those of

distant homolog alignments; and positives followed a linear relationships similar to those

of identities.
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Figure ISF1. Distribution of distant superfamily and family alignments for common

alignment scores. All PDB90tu distant (BLAST e-values < 10’) homolog alignments

were categorized as family or superfamily alignments. Alignments for each category

were binned by alignment scores as shown in the graph. Histogram bars show the

number of alignments in each bin (left y-axis). Dark bars are for family alignments; light

bars are for superfamily alignments. The points and curve fits show the percentage of

family (triangles, dashed curve) or superfamily (crosses, solid curve) alignments in each

bin. Percentages (right y-axis) were calculated as the number of (superfamily or family)
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alignments in the corresponding x-axis score bin divided by the total number of

homolog alignments (family plus superfamily) in that bin. When interpreting

superfamily alignments as random alignments, the dashed curve illustrates the drop in

the percentage of distant homolog alignments that may contain biological information at

lower scores. The lack of a low-score family/Superfamily trend in the percent alignment

identity curves is consistent with that score being unrelated to alignment (or biological)

similarity for distant homologs.
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expands on Figure ISF1 by comparing trends when all PDB90tU homolog alignments

are included (“All”, solid lines), versus only distant PDB90tu homologs (“Distant”,

dashed lines). The y-axis shows the fraction of homologs that are in the same family in a

given dataset. The x-axis indicates both percent sequence identity and percent alignment

identity (“% Type” = “Sequence” or “Alignment”, respectively). Percent sequence

identity (dark lines) shows a steeper drop-off at lower scores when all, rather than only

distant, homologs are considered. This drop-off occurs later than for only distant

homologs, and appears at approximately 30-40% sequence identity. This drop-off in

family alignments is similar to drop-offs in agreement between biological similarity and

percent sequence identity as previously reported (see the recent studies (30, 40, 41) and
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references therein). The trends shown for percent alignment identity (light lines) suggest

that this score behaves very differently for distant and non-distant homologs. Raw score

and e-value results for all homologs were largely unchanged from those for distant

homologs (as in Figure ISFl), and are not shown.
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ABSTRACT

Motivation:

Functional genomics, understanding the function of genes and the organization of

genomes, is central to life Science research. Comparative analysis by sequence alignment

is the most rapid and widely used tool in functional genomics. Using current methods,

sequence comparison methods are unable to reliably detect common ancestry, homology,

in 60%–80% of cases where structural methods have already shown that common

ancestry exists. Towards improving sequence-analysis methods for functional genomics,

this work explored the empirical nature of the raw scores and statistical values that arise

between homologous proteins of little or no statistically significant sequence similarity.

Experiments:

We analyzed six hundred and forty thousand pairwise sequence alignments from an all

against-all alignment of the SCOP database; about ten thousand of these were alignments

between homologs.

Results:

To better understand the evolutionary distance when homology can no longer be reliably

detected, proteins were broken out into family and superfamily comparisons. Consistent

with previous reports, we found that 61% of family comparisons and only 4% of

superfamily relationships could be detected above a 1% confidence cutoff. Surprisingly,

we observed that the raw alignment scores of Superfamily relationships were well

described by an extreme value distribution, and that family relationships followed a

mixture distribution consistent with an extreme-value component for low-scoring

alignments. It is well known that alignments are increasingly random for low-scoring

!
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homologs. However, our results extended this intuitive understanding, quantitatively

suggesting that the raw scores of distantly related proteins were essentially random

numbers, dominated by non-biological alignments much like those observed between

unrelated proteins.

-

*** - *
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INTRODUCTION

The recently completed drafts of the Human Genome sequence (13, 26) have reaffirmed

our need to understand the functional and evolutionary relationships between genes, and

between genomes. Alignment and comparative analysis, of each gene's protein sequence

with previously studied sequences, is the principal method used for functional analysis of

genes by recent genome projects (1, 7, 13, 26).

Common ancestry, homology, is perhaps the most basic form of biological similarity

between genes captured by sequence comparison (e.g. (6, 9, 14)). Current methods for

detecting homology are unable to detect biological homology in 60-75% of the cases

from representative sets of proteins where common homology is known to exist by

structural (i.e. non-sequence) comparison methods (6, 14, 16).

Because many biological relationships cannot be detected by sequence comparison

methods, only 40-60% of newly sequenced genes can be annotated as homologs to gene

families or superfamilies that allow even the most rudimentary functional classification

(1, 7, 13, 26).

Several recent reports have analyzed the biological information (8, 22, 28) and homology

detection performance (6, 14, 21) of pairwise sequence analysis algorithms for distantly

related sequences. The most recent of these reports have highlighted the need to discern

when alignments pair biologically conserved residues, noted as alignment ‘quality’ or

biological ‘correctness’, (8, 22) and to distinguish the ability to detect homology at the

family versus the (more evolutionarily distant) superfamily level (14, 22).

ºrs a “*
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Superfamily relationships are much more difficult to detect and align correctly than

family-level relationships. Homology can be reliably detected between sequences in the

same family about 40% of the time, whereas homology can only be detected about 4% of

the time for sequences sharing only superfamily similarity (14). Sequences within the

same superfamily but different families are known to generate much lower quality

alignments than sequences in the same family, even when both alignments have the same

similarity scores (22). These results are not entirely surprising, given that sequences in

the same family must share substantial common biology or sequence similarity, whereas

any two sequences sharing homology—at any evolutionary distance—are classified into

the same superfamily (15). As most sequences’ homology relationships appear to be

distant rather than close (see Chapter III and (6, 14, 17, 22)), understanding the nature of

sequence statistics and alignments at the family and superfamily level appears critical to

improving homology detection and the functional annotation of genes and genomes.

To better understand the biological signal in comparisons of distantly related proteins, we

analyzed the alignment scores between sequences whose family and superfamily

evolutionary relationships (or lack thereof) are known a priori by non-sequence methods.

The alignments analyzed here, the PDB901U dataset (see Chapter III and (17)), consisted

of an all-against all alignment of the SCOP database (6, 15). Alignments were calculated

using the NCBI Gapped BLAST algorithm with default scoring parameters and a

permissive reporting cutoff, so that alignments even extremely distantly related

sequences would not be filtered from BLAST's output. In all, 642,924 alignments

including 9,314 homolog alignments (5,730 family- and 3,584 superfamily- alignments)

were analyzed.

*** * * * *
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We extended earlier studies by examining the raw-alignment-score distributions of very

low-significance homologs. In breaking these down into family- and superfamily

distance alignments, we quantified evidence that the alignments of distantly related

proteins were random and contained little or no biological signal. By characterizing the

biological signal that remained to be captured by future methods, we gained new

predictive insights into the barriers to detecting remote homologies.

º
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METHODS

Sequences, Sequence Databases, and Homology

We used PDB9010 dataset of 642,924 alignments from an all-against-all alignment of the

1,937 PDB90t sequence database, both described in Chapter III and (17). Briefly, these

sequences are a slightly reduced version of the SCOP PDB90D database of (6), with

extremely short sequences and one highly over represented family removed. The

alignments were calculated with the widely used gapped BLAST algorithm, using the

default alignment scoring parameters(BLOSUM62 scoring matrix, -11/-1 gap

open/extend penalty) and an extremely permissive alignment reporting cutoff

(“Expectation value” cutoff = 10,000) to allow reporting of even very low scoring

alignments. Alignments of a sequence to itself were removed from PDB90tu. PDB90tu

contains at most one gapped alignment for any pair of sequences; when BLAST results

reported an alignment between two sequences in both orders, i.e. “A&B" and “B& A", a

single alignment was kept with priority given to the higher scoring alignment.

“Homology' was taken as two sequences sharing the same SCOP class, fold, and

superfamily. ‘Superfamily similarity was taken as two sequences sharing the same

SCOP class, fold, and superfamily, but different SCOP families.

Measures and Formulas on Alignments

All alignment parameters, including ‘e-values' and Smith-waterman ‘raw scores', were

parsed directly from BLAST output and included in the PDB90tu database as described

in Chapter III and (17).

To allow direct comparison of extreme value parameters and raw scores, the ‘location’

and ‘scale' parameters commonly use in statistics were used in our extreme value fits
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rather than the Karlin-Altschul representation of ‘K’ and 'lambda” (2, 12). To allow

direct interpretation of the role of raw scores in the extreme-value process, fits were

performed without corrections for the lengths of the aligned sequences. For extreme

value curve fits, we note that

Y – u)
extreme(x, u, l) = }*Pººr" (x – u)expertº for raw score x, location u, and

scale l (c.f. (2, 11, 23)).

RESULTS

Tabulation of Family, Superfamily Homology Detection

A breakdown of homolog detection using statistical significance e-values for intra-family

(‘family’) alignments and inter-family-homolog (‘superfamily’) alignments is

summarized in Table BD 1.

Consistent with previous results ((14)), we observed that the transition from family to

superfamily relationships is coincident with an almost complete breakdown in the ability

to detect homology with pairwise alignments. We noted that many family (15%) and

superfamily (40%) alignments were not reported by BLAST at all, even at our extremely

permissive cutoff for reporting alignments (BLAST e-value P= 10,000; see Methods).

Overall, 48% of family- and 98% of superfamily- homolog pairs were not aligned with

enough sequence similarity to reach statistical significance; i.e. the biological relationship

between these homologs would not have been detected using their alignment scores.

Most (62%) of the reported family-level alignments had statistically significant sequence

similarity, whereas few (4%) reported superfamily-level alignments did, similar to the

findings of (14). Consistent with previous reports (e.g. (6)), the combined family and

**--- *
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superfamily alignments achieved statistical significance for only 29% of the possiblep y allg - y p

pairwise biological relationships.

Comparison of Superfamily. Family Alignment Score Distributions

To further explore the difficulties in detecting biological similarity across the family

superfamily barrier, we examined the raw scores that determined which of the many

possible alignments between homologs was ranked ‘optimal’ and hence reported by our

alignment software, BLAST. As (Figure IF1) shows, alignments of sequences within the

same family follow a broad distribution of raw scores with several smaller peaks at the

low end of the raw-score range. In stark contrast, superfamily alignments were almost

exclusively low-scoring and appeared to be concentrated around a single peak at the low

end of the score range.

Comparison of Superfamily and Non-Homolog Score Distributions

The single dominant peak in raw scores of distantly related alignments suggested that

inter-family alignments might be driven by a single random process, rather than by

capturing properties specific to each superfamily. Alignment scores for randomly

generated sequences (and non-homologous sequences) stem from a single random

alignment process: maximizing alignment score without constraints due to common

biological ancestry (see (2) and references therein). The biological accuracy of homolog

alignments is known to decrease at lower alignment scores (10, 22, 27). To investigate

similarities between distant homolog alignments and non-homolog alignments, we fit

extreme value distributions to the superfamily alignments and non-homolog alignments

in our data (Figure ES1). The superfamily homolog alignments’ extreme value fit had a

slightly higher location (raw score of 28.9 versus 26.0) and a somewhat broader distance

ºne -- *
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scale (5.8 versus 4.4) than the non-homologs (Figure ESl). This location difference of

2.9 raw score points is less than the raw score increase from one additional residue match

per alignment. (The lowest residue-pair match is score +4, e.g. Serine-Serine, for the

BLOSUM62 scoring matrix used in PDB90tU alignments). The homolog alignments also

appeared slightly heavy in the right-hand tail (e.g. raw score 50-80, Figure ESl), whereas

the non-homologs appeared somewhat heavier in the left-hand tail (raw score 10-20,

Figure ES1). Despite these differences, the variance explained by these fits indicated that

extreme value distributions explained our superfamily and non-homolog alignments

similarly well (R*=99.1% and 99.4%, respectively).

Single Family Score Distributions

To investigate the nature of alignment accuracy at family-level evolutionary distances,

we examined raw-score core distributions for the four families with the largest number of

PDB90tu alignments (Figure RF1).

For the Eukaryotic Protease family, one large peak appeared visually to have a location

and overall shape similar to that of unrelated sequences alignments (compare Figures

RF1 and ES1). This large peak appeared to be composed of smaller score-cluster peaks

located around raw scores of 28, 34, and 39. The score distributions for the Animal Virus

Protein (“AVP’), Globin, and Cl Set Domain (“C1') families were more evenly

dispersed; with Globins and Cls having density concentrated in the lower score range (0-

125). It was unclear if the visual peaks in the raw score distributions for the AVP, Globin,

and C1 families were justifiably explained as clusters of alignment scores. Overall, each

family’s alignment scores appeared to follow different distributions; proposed

implications of these distributions are addressed in the Discussion.

52



DISCUSSION

Superfamily Homologs Appeared Randomly Aligned

It is widely held that as evolutionary distances increase, the quality of alignments goes

down (see (22, 27)). Empirical and theoretical analyses support this conclusion.

Empirically, residue alignments based on three-dimensional structure comparison are

used as a gold standard for evaluation of sequence-based alignment accuracy. Family and

superfamily alignments based on sequence comparison often fail to agree with the

structural alignment for when the alignment score is low (e.g. (22)). Theoretically, if a

sub-region of a potential alignment is biologically correct, but the overall alignment has a

lower score than a different—and non-biological—alignment, then the non-biological

alignment will be reported as the ‘optimal' (see (27)).

For PDB90tu data, the median score for superfamily sequences' alignments (raw score =

31) was close to the median score for unrelated sequences' alignments (raw score = 27).

The difference of 4 raw score points is similar to the score from adding a single

additional residue match (e.g. for the BLOSUM62 scoring matrix used in calculating

PDB90tu alignments, Alanine-Alanine = +4; Threonine-Threonine = +5). These medians

suggested that scores for non-biological alignments were often higher than biological or

partly-biological alignments between PDB90tu superfamily homologs, and that many

PDB90tu superfamily alignments may have been random or mostly random.

A key signature of alignments between unrelated sequences (and between randomly

generated sequence) is that the alignments’ raw scores will follow an extreme value

distribution (12). This signature was present in PDB90tu non-homolog alignments

(Figure ES1). Surprisingly, the raw scores of superfamily alignments in our data followed
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an Extreme-value distribution similar to that of non-homolog alignments (Figure ES1).

An extreme value distribution explained both non-homolog- and superfamily

- • - -
2 a -alignments’ raw scores similarly well (R* = 99.4% and 99.1%, respectively).

We concluded that the bulk of PDB9010 superfamily alignments were dominated by an

alignment process similar to the one that occurs between non-homolog sequences. To wit,

PDB90tu superfamily alignments generally appeared to have little or no bias towards

pairing up residues that descended from the same ancestor residue or DNA codon.

Low-scoring Family Homologs May Be Randomly Aligned

Family alignments formed a peak that appeared visually consistent with an extreme-value

distribution process for low scoring alignments (Figure IF1, raw score 20-50 range). We

hypothesized that the family alignments were a mixture of biological and non-biological

processes, resulting in a mixture distribution with an extreme-value peak dominating the

lower raw scores and other (non-extreme-value) biological alignment processes

dominating the higher raw scores. We were unable to quantify this hypothesis using

Figure IF1, as the low score peak was broader on the right hand side than predicted by a

single extreme-value process, and the peak not well enough separated from other peaks of

unknown distributions to allow accurate single-distribution fits with available statistical

tools. (We felt that hand-adjustment of the extreme value scale and location parameters to

produce a visually appealing fit would add no new insights. As mixture distribution

fitting is not widely used in the sequence-analysis literature, we note that current

statistical tools and methods (4, 23, 25) are not well suited to fitting mixtures containing

extreme value distributions that closely overlap with other, possibly unknown,

distributions).

ºs--- -
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Several peaks appeared to be present in the lower-scoring range of family alignments

(e.g. Figure IF1, raw score ranges 20-50, 75-95). We hypothesized that these peaks

corresponded to random alignments for homologs within the same family.

Compared to superfamily homologs, family homologs have undergone fewer

evolutionary events (e.g. insertion/deletions in loop regions, repeated mutations of each

residue) that would cause random alignments to have the same scores as non-homolog

sequences' alignments. Hence, the variation in statistics for low-scoring family

alignments may be due to random alignments with higher score bias from biological

similarities that do not depend on an accurate alignment, including overall residue bias,

residue bias in overlapping secondary-structures, or common sequence lengths. This was

expected to cause a relatively uniform increase in the score of random alignments

between homologs.

Alternatively, a family’s alignments with scores centered on a low-score peak might be

anchored by a high-scoring core alignment segment that is biologically correct. Clusters

of family members sharing the same conserved, correctly aligned subsegment would have

raw alignment scores distributed around the same peak. This was expected to cause

multiple peaks in raw score for each family’s alignments, with each peak corresponding

to a random, extreme-value-distributed alignment score plus a non-random biologically

correct-core-alignment score that shifted the center of a baseline extreme-value

distribution rightward, to a higher score.

A striking difference between families in our analysis was the raw score distribution of

the AVP family compared to the other individual families analyzed (Figure RF1). The

AVP family appeared to support the conserved-core alignment similarity hypothesis, with
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multiple peaks and an overall distribution similar to that of superfamily homologs and

unrelated sequences. The lack of an apparent extreme-value peak for the other families

was consistent with the conclusion that that their alignment scores were driven by a

different process than the random alignment observed between non-homologous

Sequences.

Sequence Assays Use Non-Biological Alignments for Most Homologs

An extreme value distribution explained 97% of the raw score for non-significant

PDB90tU homolog alignments. The extreme value fit suggested that little or no

biological signal was captured in approximately 5,268 of these alignments (Figure AH1,

Table BD1). 3,383 homolog pairs had no PDB90tU alignment (Table BD1), i.e. they had

no alignment calculated by BLAST that scored above an expectation cutoff of 10,000. In

total, these 8,651 homology relationships represented over two thirds of all 12,697

homology relationships in the PDB90t sequences. Even if all family alignments were

assumed biologically accurate, Figure ES1 suggests that approximately 3,316

superfamily alignments, and hence 53% of all PDB90tU homology relationships, did not

receive alignment scores driven by biological residue parings. Hence, for most PDB90tU

homologs, the raw scores used in final e-values and statistical assays of sequence

homology appeared to be based on non-biological alignments.

We noted that our observed 1% cutoff for an extreme value fit to all low-significance

homolog alignments was close to the 1% cutoff for significant homology detection

(Figure AH1). We propose that this may be causal, and that the primary difficulty in

improving sequence comparison methods is that the distant alignments being analyzed

are random and contain little or no signal of biological conservation. To wit, the problem
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in developing assays for detecting remote homology may not overcoming the

‘background noise’ of unrelated sequences’ high-scoring alignments. Rather, it appeared

that most distant homolog alignments themselves are generally random, are part of the

background noise, and have no signal of biological conservation to be detected.

Improving the biological signal with more ancestrally correct alignments between low

scoring homologs appeared a requirement before methods could be devised for scoring

homologous relationships above the noise of non-homolog random alignments. An

emphasis on understanding alignment quality, rather than statistics of optimal alignments,

appeared indicated for reliably detecting distant evolutionary relationships (see (22, 24)).

Our Results May Apply to Alignment Algorithms in General

The data and results here for Smith-Waterman based alignments agreed with the accepted

intuition that weak sequence conservation results in lower quality alignments and with

data from previous reports. The PDB90tu alignment data have been analyzed as

consistent with those reported using a wide range of full and approximate Smith

Waterman based algorithms, scoring schemes, and data sets (see Chapter III and (17)).

Hence, we concluded that the analyses and results reported here were likely to apply to

Smith-Waterman-based algorithms in general.

The quantifiably random nature of PDB90tu alignments may extend to other alignment

methods, including structural alignment methods, hidden Markov models, and multiple

sequence profile methods (as proposed for relationships studied in Chapter III and (17)).

The randomness in the distant alignments reported by an algorithm may be tested by

comparing alignment scores for distantly related sequences versus unrelated sequences

for a common distribution. If distant homolog alignments show a score distribution that is
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the signature for alignments between unrelated sequences, as was seen for BLAST in

Figure ES1, the biological information in those alignments should be suspect.

Biological Applications and Better Alignments

Without accurate scores, it is difficult to tell the difference between non-homolog and

distant family relationships by alignment methods (e.g. (6, 9)). To our knowledge, we

have reported the first observation that distantly related homolog alignments follow an

extreme value distribution, and are thus likely to have little or no biological signal to be

gleaned from their alignments. At the time of this writing, datasets with many distant

homolog alignments comparable to those in PDB90tu remain commonly used in the

development of new methods for remote homology detection or comparisons of distant

biological conservation to other types of similarity (see Chapter III, (17) and references

therein.) Going forward, we propose that an initial examination of sequence alignment

score distributions could determine which subsets of a dataset's alignments are unlikely

to contain sufficient biological signal to support new biological conclusions.

Towards extracting useful information from particular distant alignments, we suggest that

extreme-value fits to homolog alignments (e.g. Figures ES1, AH1) may be used as

weighting factors or probabilities indicating the likelihood that that an alignment between

putative homologs would be randomly aligned. Similar pre-calculated fits are already

widely used in homology assays and the calculation of BLAST e-values (2, 3). A

weighting of alignments between known homologs could assign quantified confidence of

an alignment’s biological relevance in new meta-analysis procedures that combine

multiple sources of information to draw functional genomics conclusions (26), like
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intermediate sequence searches (18) or combining gene-expression, annotation text

similarity, genomic context, and other measures of gene function (e.g. (5, 19, 20)).

Towards generating better alignment algorithms, we suggest that the results reported here

may provide an assay for improving alignments of distant homologs without actually

knowing the correct alignment. A decrease in the number of superfamily, or distantly

related, homolog sequences following an extreme-value distribution should provide an

assay for scores and algorithms that provide improved biological alignments. An

advantage of aligning sequences and then analyzing their score distributions, rather than

the exact residues paired, is that the correct alignment between distantly related

sequences was not required to ascertain the distribution of distantly related sequences

(e.g. Figures IF1, ES1, AH1). This approach is valid for algorithms and scores that keep

an extreme-value maximum score for non-homolog sequences, but does not require three

dimensional structural comparisons or a priori knowledge of correct sequence

alignments.

It has been noted that family alignments are more biologically informative than

superfamily alignments, even at the same level of similarity (22). For families like the

Eukaryotic Proteases, Globins, and C1s, this may be explained by the fact that their

scores appeared dominated by a different (and presumably more biologically driven)

alignment process than occurs in superfamily alignments and non-homolog alignments

(see Figure RF1). Comparing families with scores in the same range, but with different

distributions (e.g. Eukaryotic Proteases versus AVPs, Figure RF1), may yield new

insights into the signatures in residue pairings that signify biological conservation rather

than random-but-high-scoring homolog alignments. Future analyses contrasting family
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and superfamily pairs chosen as comparable by non-sequence similarity methods—and

then aligned, scored, and tested for residue-by-residue accuracy using sequence

methods—may shed additional light on the relationship of evolutionary distance,

biological conservation, and sequence-alignment similarity.

CONCLUSION

A better understanding of alignments between distantly related sequences, and better

tools for using sequences to measure distant biological relationships, is vital to advancing

our understanding of the biomedical properties of genes, and genomes. It is widely

understood that alignments of distantly homologs are less biologically correct than

alignments of closely related sequences. Our data extended this understanding, providing

quantitative evidence that distant homologs' alignments followed an extreme-value

distribution, and that most of the residue pairings those alignments were largely random.

Our data suggested that most homolog relationships were not evaluated using

biologically meaningful relationships, and that the principal barrier to detecting remote

homology was calculating better homolog alignments, rather than improving homolog

alignment scores or lowering background noise from unrelated sequences. Because

distant homolog alignments followed a raw score distribution much like that of unrelated

sequences, we proposed that baseline fits of homolog alignment scores could provide

assays for improving existing alignment methods and weighting statistics for combined

evidence tools like intermediate sequence searches. Powerful tools and scientific

advances for using extreme-value fits of unrelated sequences have already provided

functional characterization of 40-60% the genes in each newly sequenced genome.
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Leveraging those works with extensions to distant-but-homologous alignments may

enable characterization of the remainder.
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Table BD1. Breakdown of homolog

detection level by evolutionary distance.

The non-percentage numbers in this 3x2

breakdown count all pairwise homology

relationships between the 1,937 PDB90t

Sequences. Percentages indicate row,

column, or table-total percentages of the

homolog relationship counts. ‘Family’

evolutionary distance indicates two

PDB90t sequences in the same SCOP

Evolutionary Distance ROW

Detection Level | Superfamily Family || Totals
Not Reported 2,355 1,028 3,383

Column 9% 40% 15%

Row % 70% 30%

Total % 19% 8%| 27%
Not Significant 3,435 2,205 5,640

Column 9% 58% 33%
Row % 61% 39%

Total % 27% 17%| 44%

Significant 149 3,525, 3,674
Column 96 2% 52%

Row % 4% 96%
Total % 1% 28%| 29%

Column Totals 5,939 6,758 12,697
Total % 47% 53%

family: ‘Superfamily' distance indicates two

PDB90t sequences in the same SCOP superfamily but different SCOP families (as noted

in the Methods). A “Significant’ detection level indicates a sequence pair with a

PDB90tU alignment scoring below a 1% significance cutoff, i.e. with BLAST e-value <

1%. “Not Significant’ indicates a PDB90tu alignment above that cutoff. “Not Reported’

indicates no PDB90tu alignment exists between those two homologous sequences. Note

that, just as in the PDB90tu alignment set, Sequence A & Sequence B and Sequence B

& Sequence A relationships are equivalent and do not count as two relationships, and

self relationships (i.e. Sequence A & Sequence A) are not included.

****
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Comparison of Family vs. Superfamily Alignment Score Distributions
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Figure IF1. Histogram of the alignment raw-scores for all PDB90tu alignments between

homologs, broken down by family and superfamily evolutionary distance. The ‘Percent

of Alignments’ is calculated as a percent of the total number of PDB90tU homolog

alignments (i.e. 9,314). Histogram bins width was five raw score points. Note that e

values are calculated from raw scores (see Methods) and the two are highly correlated.

For PB90tu homologs, the minimum raw score for an alignment having a statistically

significant e-value (i.e. e-value <= 1%) was 64; the maximum raw score corresponding to

a non-significant e-value (i.e. e-value - 1%) was 73.
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Extreme Value Fits to Superfamily and Non-Homolog Alignment Scores
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Figure ES1. Extreme value fits to superfamily and non-homolog alignment scores.

Histograms and extreme value distribution curve fits for all PDB90tu A. superfamily

alignments; B. non-homolog alignments. Fit data was taken as raw scores with histogram

bin counts from this graph (bin width of one point raw score). Fit was performed by

nonlinear estimation on {Y = N × extreme(X, location, scale); using quasi-Newton

fitting.
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Examples of Alignment Score Distributions Within Individual Families
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Figure RF1. Examples of alignment score distributions within individual families.

Histograms for the four PDB90t families with the most PDB90tu alignments (bins width

of one point raw score). Listed as (no. PDB90tu alignments, no. alignments below the

shown 250 raw-score cutoff), they were: Eukaryotic Proteases (580, 371), Animal Virus

Proteins (548, 454), Globins (496, 391), Cl Set Domains (361, 330). To provide a

familiar reference point, we note that that the C1 Set Domains are in the Immunoglobulin

superfamily.
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Extreme Value Fit to Homolog Alignment Scores
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Figure AH1. Extreme value fit to homolog alignment scores. A stacked histogram of

significant and non-significant scoring PDB90tu alignments (bin width was one point

raw score). The solid curve extreme-value fit explained 97% of the variance in the raw

score for the 5,640 non-significant (See Table BD1) PDB90tU alignments; this fit

predicted that 5,268 alignments with similarly distributed raw scores would have been

expected as results of a random extreme-value process. Note that an extreme value fit to

all shown data yielded Y = 5.305 * extreme(X, 29.7, 7.1), R2=92%. (Fit data was taken

as raw scores with histogram bin counts from this graph; fit was performed by nonlinear

estimation on {Y = N + extreme(X, location, scale); using quasi-Newton fitting.) The

black arrow indicates the 1% confidence cutoff for the non-significant homologs'

extreme value fit (solid curve at raw score = 62). The dashed curve indicates the extreme

Value fit to non-homolog alignments (taken from Figure ES1).
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ABSTRACT

Motivation

Sequence alignment scores such as percent similarity and percent identity are widely used

as measures of sequence similarity and biological conservation between genes, even at

low levels of similarity. These measures are less accurate for lower scoring alignments

but are viewed as intuitive and straightforward to interpret. In quantitative studies, they

routinely provide the sequence similarity “x-axis” for comparisons that include

alignments of marginal- to non-significant (‘weak’) extreme value similarity statistics.

This report explored the biological meaning of percentage-based scores on weak

similarity alignments.

Results

I calculated 642,924 alignments for Structural Classification Of Proteins database

sequences, using the BLAST approximate Smith-Waterman program, and analyzed the

redundancy of alignment length, number of identical residues, and number of positive

scoring residues. 99.9% of sequence pairs below the “twilight zone” sequence similarity

cutoff had weak similarity. For weak similarity sequences, a linear function of alignment

length strongly predicted the number of identical (R* > 81%) and positive-scoring (R* >

91%) residues in each alignment, in homolog and non-homolog alignments. Hence, for

comparing weak similarity sequences, (1) percent alignment identity, the ratio of

identical residues to alignment length, was not meaningful; (2) percent sequence identity,

the ratio of identical residues to sequence length, was equivalent to the more intuitive

“fraction aligned” measure; (3) ratios of similarity to alignment length or sequence
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length, including similarity as number of positive scoring residue pairs, were respectively

non-meaningful or replaceable by more intuitive “fraction aligned” measures; (4) the

HSSP boundary, the currently accepted relationship between alignment length and

percent alignment identity, was reproducible as an artifact of the high correlation between

alignment length and number of identical residues for non-homologs. These linear

relationships and conclusions have not been previously reported; however, the agreement

of my alignments with data from other publications (for programs including BLAST,

SSEARCH, and Max Hom) suggested that the results reported here are general properties

of Smith-Waterman based algorithms. Implications of these results for a broader range of

alignment methods, including structural alignments, PSI-BLAST, and Hidden Markov

Models are discussed.
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INTRODUCTION

A fundamental goal in life science research is to understand the biomedical properties

and evolutionary relationships of genes and genomes. Because of the tremendous cost

and time required to study each individual gene or hypothesized relationship using wet

lab measurements, genes' protein and DNA sequences are routinely compared for

signatures indicating the likelihood of shared ancestry, structure, or biomedical function.

When a measure of sequence-similarity can be formalized into a computational

algorithm, it may be translated into software and used as a conduit of information

between thousands to millions of previously studied gene sequences. Examples of

successful computational gene comparisons include the rooting of the tree of life (19), the

first established connection between oncogenes and normal growth factors (11), and the

mapping and analysis of the human genome (28).

Comparing sequences basically requires two steps: finding high-scoring alignments

between the sequences, and then ascertaining what biological properties—if any—those

alignments indicate are likely to be shared. Full- and approximate- Smith-Waterman

search algorithms (‘SW’s) efficiently calculate many (or all, respectively) possible ways

of pairing residues between two sequences and report the highest-scoring alignments as

optimal or near-optimal. SWS use alignment scores based on modern parameterizations

(4, 9, 13, 15, 20, 33) of Sellers' 1974 mutation plus “indel” (insertion/deletion) measure

of sequence evolution (29), and have been built into sophisticated, feature-rich software

suites (e.g. the FASTA/SSEARCH suite (21), the BLAST suite (5)) by leading academic

scientists. Decades of research on sequence alignments have provided accurate extreme

value statistics (‘EVS”) of SW scores for ‘non-homologous’ sequences (4, 15), i.e. those
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with no common ancestor. EVS scores are now an accurate positive assay for common

ancestry (“homology’) between genes, with a false positive error rate below 1% (6). Over

the last decade, functional and evolutionary assays on genes using the above-mentioned

suites and statistics have become a standard protocol for analyzing all new genes and

genomes, resulting in basic functional characterization for roughly 60% of newly

sequenced genes (e.g. (1, 8)).

Once an alignment between two sequences is calculated, measures of percent identity are

widely used to measure similarity between sequences. (percent alignment identity = 1/L;

percent sequence identity = I/Linux; 1 = identities, the number. of identical-residue pairs in

the alignment; L = alignment length, the number of non-gap residue pairs aligned; and

Linda = length of the shortest sequence, the maximum possible alignment length). As a

quantitative “x-axis” of sequence similarity, these percent identity measures remain used

to judge homologs' biological similarity, particularly for statistical comparison to protein

structure similarity (7, 24, 26, 34). Analyses using percent identity include alignments in

marginal, non-significant, or unreported EVS score ranges (e.g. (6, 22, 24, 26)). Heuristic

rules and percent identity cutoffs are effective positive assays for homology (10, 22, 24)

and are reported (22) (and disputed (6)) as useful homology assays when EVS

significance is marginal or non-existent.

To further the development of techniques for studying the 40% of genes, which remain

uncharacterized by current sequence alignment methods, I analyzed relationships of

alignment length, identity, and EVS scores for all pairwise alignments of Structural

Classification of Proteins (“SCOP”)(17) sequences generated by the NCBI gapped

BLAST (5) approximate SW software. SCOP provides prior knowledge of which
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sequence pairs are homologous, based on non-sequence methods (17), and is established

as a published standard for alignment evaluation with SW programs including BLAST (6,

26). BLAST results are essentially equivalent to those of other SW programs (3), and

BLAST allowed computationally tractable calculation of numerous low-scoring

alignments. Moreover, improving biological interpretations of BLAST alignments and

scores will directly impact the work of its many scientific users in whole genome

analysis, single-sequence searches by wet-lab biologists, and bioinformatics algorithm

development (6, 22, 26).

Unlike the methods of previous empirical studies addressing identity and alignment

length of biological sequences (6, 22, 25), this work focused on the direct relationship

between alignment length and number of identities rather than using their ratios to

measure sequence similarity; kept all alignments down to an extremely permissive cutoff

(BLAST EVS ‘expect cutoff = 10,000); and separately analyzed ‘strong similarity

(expect - 0.00001) and ‘weak’ similarity (expect ~ 0.00001) alignments. The

strong/weak similarity partition was chosen to separate alignments that indicated high

likelihood of the basic biological similarity of common ancestry (strong similarity) from

those where all biological similarity is unclear (weak similarity). Weakly similar genes

are exactly those that cannot be reliably compared for genomic annotation using SW

tools; * the empirical strong/weak partition was used, rather than the traditional

“twilight zone’ 25% sequence identity cutoff derived from evolutionary mutation distance

(10). Additionally, I observed that nearly all alignments (>99.9%) below 25% sequence

identity were weakly similar, indicating that analyses for weakly similar alignments

included most alignments below the twilight zone cutoff.

76



In contrast to previous studies’ focus on indirectly relating alignment length and percent

alignment identity through a cutoff boundary curve distinguishing homolog and non

homolog alignments (2, 6, 22, 24), my analysis indicated that, for weak similarity SW

alignments, the number of identities (I) was well predicted as a linear function of the

length of the alignment (L) plus a small error term (c) (Figure 1). Hence, for weak

similarity SW alignments, the percent alignment identity (I/L) was effectively dividing

alignment length by itself, i.e. L/L. The broad range of percent alignment identity widely

observed in short alignments was due to the increasing influence of the error term (£)

contribution (&L) as the alignment length (L) became small. Similarly, percent sequence

identity (I/Linux) was effectively equivalent to alignment length divided by sequence

length (L/Linux) plus a small error contribution (&Lnow).

These results indicated that common sequence-similarity measures of SW alignment

percent identity are not appropriate for analysis of weakly similar sequences, including

most “distant’ and twilight zone homologs. For these sequences, percent alignment

identity largely reflected an inflated error term, whereas the information in percent

sequence identity is more accurately reflected by fraction aligned as used in (26). Thus,

by way of example, plots using percent alignment identity of SW alignments (e.g. (22,

24)) are unlikely to be comparing actual differences in biological- or sequence- similarity

for their weakly-similar-sequence data points, and are potentially misleading for studying

distantly related proteins.
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METHODS

The Sequence Database

For comparison to a thorough and thoughtful published work on pairwise sequence

comparison, I used a slightly reduced version of the SCOP PDB90D sequence database

of (6) downloaded from http://sss.berkeley.edu/db/scopseq/sdqib90- 1.35.seg.fa (2,079

sequences). As BLAST's edge-correction terms are valid for sequences longer than “1/K”

(4, 16), with “gapped K”=0.047 in this study, sequences of length - 25 residues were

removed (18 removed). The Immunoglobulin V set domain family was over represented

and likely to introduce bias (26) and was removed; the Immunoglobulin V set domain

family had 124 members in the original PDB90-B dataset, compared to 39, 36, and 35 in

the next largest families (124 removed). The final dataset, PDB90t, had 1,937 sequences.

Calculating and Culling the Alignments

Alignments were generated using gapped BLAST version 2.0.1 ! from the NCBI toolkit,

downloaded from ftp://ftp.ncbi.nlm.nih.gov/toolbox/ncbi tools/ncbi.tar.gz. BLAST was

run with default alignment scoring parameters (BLOSUM62 scoring matrix, -ll/-l gap

open/extend penalty). The BLAST “Expectation value” cutoff parameter for reporting

alignments was set to 10,000, rather than the default value of 10.0, to force BLAST to

report even very low similarity alignments. PDB90t sequences were aligned all-against

all (1,072,242 alignments reported by BLAST). As this work is only interested in how

different sequences can be compared, alignments of sequences to themselves were

removed (1,937 removed). BLAST reports directional alignments, i.e. where swapping

the query and database target (“sbjct”) roles of two sequences may affect their reported

alignment and scores. Full SW algorithms may also be directional by reporting different
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alignments in each direction when several optimal alignments exist at the same raw score.

However, 20% of alignments returned by BLAST, an approximate SW, were reported in

on—but not the other—direction. To avoid double-counting bi-directional alignments in

my analysis, all alignments were made undirected by keeping the alignment of highest

raw score and choosing randomly to break raw score ties (427,381 removed). The final

alignment set, PDB9010, had 642,924 alignments.

Measures and Formulas on Alignments

To establish pairwise homology and non-homology between for PDB90t sequences

without resorting to sequence-comparison methods, sequences were checked for having

the same SCOP Class, Fold, and Superfamily; this YES/NO criterion was used to define

Homologous/Not-Homologous alignments as recommended by (6).

Alignment length was calculated as the number of non-gap residue pairs in the alignment,

while identities, positives, and expect score were taken as given by the BLAST. Visually,

for BLAST output, it can be verified that

Query 1 CAGT--KGCKYFSDDGTFVCEG 20
C G G + + G +G

Sbjct 6 CMGRGDSGGSWITSAGQ--AQG 26

would have alignment length 20, 5 identities, and 8 positives.

As noted in the Introduction, the percent identity of an alignment = % alignment identity

= identities/(alignment length); the percent identity of two sequences = % sequence

identity = identities/(shortest sequence length), where shortest sequence length =

min(query sequence length, database target sequence length) = the maximum possible

length of an alignment.

wº-ºº
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Analysis Tools and Miscellaneous

All sequence files and BLAST output were parsed using custom Perl software and stored

in an Oracle 8i" relational database with SQL*Loader" (18). Statistics, tabulations, and

curve fits were performed using the Statistica" and R data analysis packages (23, 32),

and custom software in Perl and Oracle 8i" PL/SQL (18).

RESULTS

Weakly Similar Alignment Set Compared to Twilight Zone and Non-Homolog Alignments

The twilight zone cutoff included homologs with sufficient sequence similarity to warrant

annotation as biologically similar based on SW alignment EVS scores, while excluding a

significant number of non-homolog alignments. 1,797 non-homolog alignments were

above the twilight zone cutoff, and 274 homolog alignments were below the twilight zone

cutoff but had strong similarity (i.e. would be identified as biologically related based on

their SW alignment similarities). All non-homolog alignments (100% =

633,610/633,610) were in the weakly similar set, and by definition no weakly similar

homologs had clear sequence evidence for biological similarity. Nonetheless, the weakly

similar set and twilight zone have substantial overlap. Over 95% of homolog alignments

(5,736/6,010) and 100% of non-homolog alignments (631,813/631,813) that fell below

the twilight zone cutoff were also weakly similar. 91% of homolog alignments

(5,736/6,332) and over 99% of non-homolog alignments (631,813/633,610) that were

weakly similar fell below the twilight zone cutoff. Overall, over 99% of weakly similar

alignments were below the twilight zone cutoff (637,549/639,942), and vice versa

(637,549/637,823).
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No. of Identities a Linear Function of Alignment Length for Distant Homologs

Ninety percent of the variance in the number of identities in weak similarity alignments

between homologs could be explained by the linear length-identity relationship, as shown

in Figure 1 (a), "Weak’. This relationship significantly weaker for strong similarity

homolog alignments (Figure 1 (a), 'Strong'), perhaps explaining why the weak-homolog

linear relationship has not been previously reported in empirical analyses which did not

partition alignments by EVS scores' significance for separate analysis (6, 22, 24). The

number of alignment residue-pairs with a positive BLOSUM62 similarity score

(‘positives’, or “P”) was also linearly related to the alignment length (P=2.8 + 0.43°L +

&(0.2.8), R*=96%) for weakly similar homologs and, to a lesser degree, for close

homologs (P=3.9 + 0.60°L + (0.21.1), Rº-83%).

No. of Identities a Linear Function of Alignment Length for Non-Homologs

Non-homolog alignments demonstrated the same functional relationship, between

alignment length and identities, as weakly similar homolog alignments (Figure 1 (b)).

The number of positives and alignment length were also linearly related for non-homolog

alignments (P=2.5 + 0.41* L + c (0,1.8), Rº-91%).

Alignment Length Predicts Percent Alignment Identity and the HSSP Curve

The relationship of alignment length and identity has been reported as a boundary,

between homolog and non-homolog alignments, of percent alignment identity and

alignment length (2, 22, 24). As Figure 2 empirically confirmed, the basic form of the

widely used HSSP exponential was predicted by the linear relationship between

alignment length and identity reported here. An HSSP-like boundary was reproduced by

an upper confidence interval of the simpler linear relationship between alignment length
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and identity (Figure 2. ‘Boundary’). This is consistent with the conclusion of (2) that

confidence intervals from a relationship between alignment length and identity reproduce

the HSSP curve’s shape. Other similarities between the results of (2) and those reported

here appeared to be superficial. The theoretically obtained identity-to-length ratio of

5.8% given in (2) differs substantially from the 23%-25% slope observed here, and it was

not evident that their average-residue-score arguments for calculating the identity over

length I/L ratio, lack of a constant intercept term in relating I and L, and inclusion of a VE

error term for predicting percent alignment identity were supported by my data. (E.g. a

least squares fit for m of the equation I = m *L (2) to the same non-homolog data used in

Figure 1 (b) gave m = 0.31, R* = 65%. Fitting I = m^L + Z'/VL gave m = 0.13, Z' = 1.0,

R* = 80%; visual inspection of this curve (not shown) revealed close agreement with the

linear relationship of Figure 1 (b), ‘Weak’, from 0 < L * 100 and poor fit to the data for L

> 100.) Hence, to my knowledge, the linear relationship of alignment length and identity

reported here, plus the empirical prediction of the HSSP boundary from this relationship,

have not been previously observed.

DISCUSSION

Linear Relationship Expected to Hold for SWAlgorithms in General

Approximate SW programs (e.g. BLAST (5), FASTA (21)) and full SW programs (e.g.

MaxHom (27), SSEARCH (21)) implement approximations of the same theoretical

algorithm (31) and are widely held to produce results that are essentially equivalent (3).

Moreover, the alignment scatterplot density (Figure 2) and upper boundary (Figure 2,

‘Boundary’) relating percent alignment identity and alignment length are consistent with

those reported for non-homologous alignments in previous studies (6, 22, 24). The spread
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of data points above the HSSP Curve (Figure 2) was also similar to that observed in

previous studies of comparable size (i.e. large) datasets (6, 22). These previous reports (6,

22, 24) used a mixture of different SW packages, data sets, homology criterion, scoring

matrices and parameters. Hence, the a priori expected similarity for alignment

characteristics from full- and approximate- SW programs, plus the observed agreement

between previous studies and the data reported here, suggest that the functional

relationship of alignment scores, identity, and length observed here hold for SW

algorithms in general.

As data points can overlap in scatterplots, the precise quantitative distribution of data

from previous studies cannot be determined from those reports (6, 22, 24). It cannot be

ruled out that the particular constants (e.g. slopes, intercepts, and standard deviations in

Figure 1) observed here would vary significantly under different experimental conditions.

Nonetheless, the 23%-25% limiting ratio for percent alignment identity of weakly similar

alignments predicted by a linear relationship in identity and alignment length (Figure 1)

closely agreed with the 24.8% limiting HSSP value (24).

The relationships reported here may hold for alignment algorithms which (like SW

methods) either act by extending alignments at their edges or evaluate alignments using

scores derived from Sellers 1974 mutation + indel similarity metric. This may be tested

by repeating the analyses of Figure 1 on alignments from structural alignment-by

extension methods (e.g. (7, 14, 30)) and generalized- or non-SW alignment tools such as

profile alignment tools (e.g. PSI-BLAST (5)) or Hidden Markov models (c.f. (12)).
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Basis of the HSSP Relationship

The HSSP curve defining the boundary of percent alignment identity and alignment

length for alignments between sequences of known and unknown homology is “a

principal result” from the seminal work of (24). Those authors suggest that the HSSP

curve exists due to a “physical theory of sequence-structure relation” (which they noted

was unknown at the time of that report) (24). My results indicated that the percent

alignment identity and alignment length boundary curve was a mathematical consequence

of a strong linear relationship between alignment length and identity for weakly similar

sequences (Fig 2, ‘Boundary’). This linear relationship held for non-homolog as well as

homolog alignments (Figure 1), indicating that structural similarity between the

sequences aligned was not required to explain an HSSP-like boundary. Rather, HSSP

type boundaries were observed to be artifacts of sequence-alignment algorithms and

scoring systems that generated a linear relationship between alignment length and

identities for weakly similar sequences.

Percent Identity and Similarity Measures Deprecated

Ratios of sequence length to identity or positives based on SW alignments are widely

used measures of similarity (e.g. (6, 10, 22, 24, 26, 34)). I suggest these be deprecated for

weakly similar sequences. Given that weakly similar alignments’ length strongly

predicted their number of identities, dividing one by the other appeared uninformative for

evaluating biological- or sequence- similarity between weakly similar sequences. For

shorter alignments, the wide range of percent alignment identity was explained by the

random error term & (c.f. Figure 1). As & had little dependence on alignment length,

dividing it by an increasingly short alignment length resulted in an increasing large
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spread in percent alignment identity. For longer alignments, the percent alignment

identity converged to the baseline of 23%-25%. Hence, graphs and analyses using percent

alignment identity for SW alignments must be carefully interpreted with the

understanding that differences in percent alignment identity are unlikely to indicate

differences in sequence similarity or biological similarity between weakly similar

sequences. This caution applies to most datasets capturing alignments for “distant”

homologs (e.g. (6, 22, 24, 26, 34)), since I observed that over 99% of sequence pairs

below the 25% sequence identity twilight zone cutoff were weakly similar.

Percent sequence similarity does not include an alignment length denominator, and

appeared a valid measure of sequence similarity for weakly similar sequences. However,

for SW alignments of weakly similar sequences I observed that (I/Limax) = 0.25°L/Limax(c.f.

Figure 1), indicating that percent sequence identity was a linear re-scaling of fraction

aligned (e.g. as used by (26)). As a measure of sequence similarity for weakly similar SW

alignments, fraction aligned was preferable to percent sequence identity because it

captured the intuitive physical basis underlying percent sequence identity: the ratio of the

observed alignment length and the maximum possible alignment length.

My analysis of percent identity measures relied on the linear relationship of a raw

similarity score and alignment length, rather than the weight given to each sequence-pair

match. Like identities, SW alignment positives was well predicted as a linear function of

alignment length for weakly similar sequences. Hence, “percent similarity” ratios of

positives (or other properties linearly related to alignment length) to alignment length

were deemed uninformative-at-best as measures of sequence similarity for SW

alignments of weakly similar sequences.
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CONCLUSION

It is widely recognized that the availability of reliable measures of sequence- and

biological- similarity for alignments between distantly related genes is a principal barrier

to understanding the biomedical properties of genes and genomes (c.f. (6, 12, 22, 26)). By

analyzing sequences sharing sequence similarity of low statistical significance, I

identified a strong empirical linear relationship between the length of alignments between

those sequences and the number of identical (and similar) residues reported in their

alignments. For these sequences, the alignment length predicted the observed number of

identical (and similar) residues. Widely used ratio measures of sequence similarity, such

as percent alignment identity, thus reflected virtually no information about actual

biological- or sequence- similarity for weakly similar or distantly related sequences. The

currently accepted relationship between alignment length and identity, the HSSP

boundary noted as a principal result of (24), was extended by demonstrating the HSSP

boundary could be reproduced by using alignment length alone to predict percent

alignment identity. Because they address basic measurable properties of any sequence

alignment, the experiments reported here can be repeated on the full range of methods for

comparative sequence analysis, including local structural alignments (e.g. (7, 14, 30)),

PSI-BLAST (5), and Hidden Markov Models (c.f. (12)). Such an analysis may reveal

whether the apparently non-biological length-identity relationship is a limitation of

current algorithms for calculating sequence alignments or the measures of similarity used

to score them.
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Figure 1. Alignment length versus number of identities for all PDB90tU alignments. For

each alignment subset, the graph shows a least squares linear fit with error term c(u,o),

where p and o are the mean and standard deviation of the fit error term, and Rº, the

percentage of the variation in the alignment subset explained by the given line and

equation. For simplicity, a 10-5 cutoff for strong/weak alignment similarity was selected

as comparable to a 1% marginal significance cutoff for directed alignments from 1,000

sequences using standard directed BLAST alignments. Note that these curve fits model
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the end pirically observed alignment data, and are not intended to address theoretical ■

alignments of arbitrarily short length (all 642,924 PDB90tu alignments had length > 10). ■ º A.

(a) All homolog alignments. Light triangles ('Strong’ equation) are the homolog pairs -

with a BLAST expect score less than 10–5 (6,332 alignments); dark circles (‘Weak’

equation) are the homologs at or greater than 10-5 (2,976 alignments). (b) All non

homolog alignments. All non-homolog alignments in PDB90tU had a BLAST expect

Score greater than 10-5, and are shown as dark circles (‘Weak’ equation) (633,610

alignments).

C
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Figure 2. Alignment length versus percent alignment identity for all non-homolog

PDB9010 alignments. Dark circles show the values of alignment length and percent

alignment identity as reported by BLAST. The “Baseline’ shows the mean relationship

between percent alignment identity and alignment length predicted by a linear

relationship between alignment length and identities for non-homologs. The “Baseline'

formula was calculated as I*/L, where I* equaled I as predicted from alignment length

using the ‘Weak’ equation of Figure 1 (b) with the error term & set to zero. By retaining a

non-zero error term, the ‘Boundary’ curve illustrates the functional agreement between

confidence intervals predicted by Figure 1 (b), ‘Weak’, and the empirically observed

upper boundary of non-homolog alignment length and percent alignment identity values.

The interval was chosen for visual clarity, as all but 128 of the 633,310 non-homolog

alignments fell within six o' (a = 1.50) of the identities prediction line in Figure 1 (b),

‘Weak’. The original HSSP. boundary curve, calculated using different parameters and
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smaller datasets (24), is included for comparison. The HSSP’ formula is percent

alignment identity = {1.00 if L-10; 2.90.15*L"** if 10 < L → 80; 0.247 if L>= 80} (24).

The elegant arcs and Swirls observed in the plotted points appeared to be Moiré patterns

(caused by plotting integers and their ratios) with no biological significance. Note that

each plotted point may represent many alignments sharing the same coordinates.
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ENTERING BIOINFORMATICS

I began bioinformatics research as a side-project, by looking for an interesting problem in

computational biology that matched my toolbox. To wit, I had begun research in an

experimental lab and sought an outside project to keep my skills in mathematics and

computer science fresh and sharp.

Earlier work in theoretical protein folding and molecular docking simulations drove me

to seek research where an answer could be easily tested. This is currently not practical for

the sub-nanosecond motions in a macromolecular-folding ensemble or the predicted rank

order of interaction energies for compounds dissolved in a time-averaged protein

structure. Thanks to genome projects and mutational studies, orthogonal data is often

available to evaluate a proposed gene family's evolutionary tree or conserved catalytic

motifs, thus making validated bioinformatics a fairly practical sport.

My passion for bioinformatics continues to grow as I see what is possible, but left

undone. Biology is beginning a transition much like early 20th century physics, when an

accumulation of data shattered the Newtonian view and allowed relativity and quantum

theory to be discovered. Starting in the 1990s, high-throughput experimental biology

began to provide the data required to predictively and quantitatively understand the

mechanical parts, regulatory interactions, and information processing machinery of living

systems. Medicine, science, and philosophy will make tremendous advances based on

subtle patterns extracted from accumulating petabytes of measurements on living

systems. I hope to contribute to that.
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Before I'd even thought about entering bioinformatics I had worked very hard to

understand mathematics, and then biology, at the graduate level. So it’s fair to say I was

an interdisciplinary person who entered the field, rather someone who prepared for it by

name. My principal preparation has been to follow my interests, striving to master the

hardest course in a new discipline shortly after entering it, and committing the time and

struggle required to become a peer with top students on their own turf in each discipline.

MY PREPARATION FOR RESEARCH

My formal preparation started at home with a precious new 48K Apple ][+ computer and,

later, biology in 10th grade. On entering college at the University of Texas, Austin, I had

to choose between biology and computer science (CS) majors. An underinformed vision

of personally collecting measurements from ten thousand neatly stacked petri dishes

drove me to computing. My background allowed me to test out of some lower-division

courses and take the CS core concurrently, which gave me the choice to graduate in two

years. But my freshman CS coursework was more application than theory, and left me

feeling more knowledgeable but like my mind hadn’t been stretched far enough. So I

decided to take a four-year plan where I explored physics, philosophy, and mathematics.

After my sophomore year I speculated that mathematics was somehow the natural

language of nature, and took a math class pretty much every semester, including

summers, until I graduated with a BA in mathematics and a BS in computer science.

Ultimately, my college work gave me helpful preparation in applied computer science,

artificial intelligence, logic, linguistics, wave mechanics, electrodynamics, quantum

mechanics, fractals, differential equations, vector-tensor analysis, geometric linear

algebra, and knot theory. At the time I regretted missing organic chemistry and intensive
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essay writing, but fortunately managed to pick these up later. (I’m still working on graph

theory and advanced algorithm design.)

For largely romantic reasons, I enrolled in the mathematics Ph.D. program at UT Austin

and was immediately slammed into the local bone-crusher course, Real Analysis with

Professor William Beckner. Every word of these brilliant lectures baffled my office

mates and me as we labored in our windowless office, trying to conjure intuition about

‘getting some control . . . over this set of duals for infinite dimensional spaces of smooth

functionals with compact support' (a.k.a. the graduate view on floating point numbers).

(Of note, graduate and undergraduate analysis are basically unrelated, particularly if you

haven’t had point-set topology. 25)

This seemingly futile struggle consumed four months of dawn-till-dusk struggle without

a glimpse of true understanding. It was only during my second year, as I caught myself

saying ‘. . . well, we have a little control under here . . . so if you can squeeze with that

inequality, you’ll get convergence’ that I realized that this course—which remains my

most treasured educational experience—had hammered down a lasting foundation for

rigorous axiomatic problem-solving.

A simultaneous and unexpected preparatory for bioinformatics was my mother's sudden

illness and death from lung cancer during my second semester. This, coupled with a

physicist’s good advice to “think really hard about what your whole career’s twenty or

thirty papers will do for this world”, created an enduring energy and resolve for focusing

* In retrospect, I highly recommend working through the standard Topology: A First
Course by JR Munkres (Prentice Hall, 1974) and then the less-well-known Real Analysis:
Modern Techniques and Applications by GB Folland (John Wiley and Sons, 1984) as a
hard but streamlined route to thinking in a structured, mathematical way.
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my time towards building widely useful tools for preventing disease and intensive-care

unit suffering. I mention this because my path, forging across several hard fields towards

an unseen goal, brought many periods of professional doubt and some narrow escapes

from the long arm of a few entrenched traditionalists. Instantly quadrupling my income

with a lucrative career in programmer-starved Silicon Valley has remained a tempting

option since my freshman year in college, as has choosing an easier class or accepting a

standard-but-poorly-understood experiment. So tremendous resolve, aided by

encouragement from friends and by luck, has proven essential for pursuing science.

My post-highschool training in biology began with the transition away from pure

mathematics. Not knowing the difference between microbiology and biochemistry, I

visited a visionary biologist who once gave me pocket money in exchange for washing

his lab’s glassware. He recommended protein folding and mining genomic data as the

top challenges in biology suited to my background. On his suggestion I also took physical

chemistry, graduate biochemistry, and two semesters of organic chemistry while applying

to biological Ph.D. programs. Like many physics and math students entering biology, I

chose to work on understanding biological systems from physical first principles, and

hence applied to the UC San Francisco Biophysics group to train under a well-known

giant in protein folding theory, Professor Ken Dill. While focusing primarily on

computational lab-work, I struggled to get a grip on this new field through the standard

graduate courses in spectroscopy, statistical mechanics, structural biology, drug-design,

macromolecular interactions, and experimental techniques in biophysics. After these

studies I felt I still couldn’t think like a true experimental biologist, so with this kind

advisor’s blessing I labored through the Biochemistry program’s core graduate studies in
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genetics, cellular biology, cell signaling, and biological regulatory mechanisms. This last

course, BioFeg, was widely held as the hardest course at UCSF, with a fail rate rumored

at 25%-40%. The course, with a dreaded oral cross-examination final, was based on

lectures coupled to critical discussions of the scientific literature. Two other students and

I supplemented these with weekly meetings for exchanging impromptu challenge-and

answer exercises like “In class Joachim said that the DNA replication fork clamp is

processive; how would you experimentally demonstrate that if given the purified proteins

and one week in a standard UCSF lab?” Like Real Analysis at Texas, many courses had

provided knowledge related to my current studies. But none truly forced me to use all

available angles on the subject to try and work through hard questions, many times a

week, in camaraderie with well-trained students whose research careers would be in that

field. BioFeg forced me to adopt the thinking skills that have proven effective to

biochemists and geneticists for zeroing in on truth in a complex interacting system.

Trying to identify a minimal basis of facts and propose specific answers consistent with

that basis, as I’d learned in mathematics and physics, simply made poor use of the

available data without producing useful predictions. Of note, a jewel among these

techniques was to develop experience in proposing controls to prevent reasonable but

unjustifiably specific conclusions, while devising assays to distinguish which broad

answers encompass a far narrower physical truth. The intersection of broad answers from

several assays, safeguarded by the right controls, could usually be applied to quickly

close in on a useful version of the truth. This also had the side-benefit of suggesting

additional experiments and testable predictions to further sharpen the picture.
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The rest of my training—including a year in experimental high-throughput assays and my

present research in computational bioinformatics with Professor Tony Hunt—has largely

been founded on self-study guided by many conversations with other scientists and kind

faculty mentors.

WHAT I'VE FOUND TO BE USEFUL

For scientific training: Striving to practice thinking skills, particularly through critical

reading and working through hard problems in camaraderie with peers who will be

researchers the topic’s field. Attending a conference early on to get a sense of the field.

For guidance and collaboration in an uncommonly cross-disciplinary field: Building a

network of supportive peers and mentors, based on people with a track-record of good

character rather than famous science. Building mutually supportive interactions rather

than accepting a competitive academic mindset. Seeking advice from multiple sources

with different perspectives and backgrounds.

For efficient productivity: Finding a source of funds for a laptop with software for

solitary thinking and computing in the library, and for purchasing unrequired, exploratory

books. (I find note-taking in the margins and multi-colored highlighters are key thinking

tools.)

For thriving in academia: Discovering that publications, rather than knowledge or ideas,

are the primary currency of biological academia. Productivity evaluations, continued

paychecks, and institutional acceptance are directly determined by your current or

anticipated publication record—with education provided as a reward and a means to
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generate better publications. Discarding the belief that faculty treat students as peers,

rather than free-lance employees who may become peers after the Ph.D.

For long-term success: Striving for practical honesty and good character under pressure.

Hard work and optimism.

WHAT I HAVE FOUND NOT USEFUL

Pitfalls of Judgement: Using recent history, rather than long-term track record, as a guide

to predicting people's actions in a complex organization. Focusing on laboratory work

rather than deep education during my first year. Jumping into a hot project rather than

beginning with writing down a plan of action, milestones, anticipated risks, introductory

background reading.

Obstacles of Circumstance: Lack of biologists’ infrastructure-funded support for network

bandwidth, computing horsepower, information technology, software purchasing, high

throughput data-generating equipment, and partnerships with data-rich industrial partners.

Pay rate qualifying poverty-line subsidies for electricity—in my late twenties. Seeing

others suffer due to years of underfunded healthcare in graduate school. Lack support for

basic research; I need to eat and also to feel like I have a future in my current field, which

is why I work so hard to learn the foundation that will carry me for twenty years, rather

than five. Currently, a Ph.D. removed from immediate commercial impact appears

guaranteed to be an exercise in preparing to work in another field if I want to have a

house and family as well as to contribute to science.

103



FOR BUILDING SUSTAINABLE CAREER SKILLS

I’ve developed a fair intuition about molecular evolution, and have a rack of my own

computational assays to apply in this area, so right now I’m building the machinery to do

terabyte-to-petabyte scale genome analysis. Very large databases, component-based

computing, and statistical techniques for large data-sets are all lacking in bioinformatics

toolkits right now. Building these tools will allow me to tackle the big questions of

biology for years to come. Our group should also be able to broaden our collaborative

base fairly soon by publishing some of this work for use by other people.

Strategically, I definitely see that there is a tremendous advantage in choosing to nurture

the therapeutic applications of my work. Research aligned with a therapeutic application

is better funded, draws in a broad group of brilliant colleagues, and has the personally

energizing potential to accelerate the cure of a major disease by 5-10 years. I’m still

doing basic research, but fortunately there happen to be substantial applications for

aspects of my work. Since I generally have at least 10-20 interesting ideas to pursue at a

given moment, I tend to choose the ones that will have biomedical applications even if it

adds extra overhead to develop them.

A point of note is that some strengths, like statistics, computing, or deep biological

intuition, take years to build and are also broadly useful. Anyone can pick up a quick

technique, but some abilities require multiple layers of training which are tractable at

each step but, collectively, are guaranteed to require years to attain”. That means other

* Having taught many students as a tutor and teaching assistant, I believe this is why
many have trouble with physics and math. Each course is tractable, but only if you have
all the layers below. Taking electromagnetics before geometric calculus, or geometric
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scientists needing those skills will have to spend those same years laying down those

skills, which gives me a modicum of Security in a field of rapidly changing technologies.

You can bet I quietly add another layer to some long-ramp-up-time skill on a regular

basis.

ACTIONS THAT PREPARE FOR UNANTICIPATED CHALLENGES

1. Building long-term relationships with people of good character, and seeking their

advice. I have been saved countless times by good unsolicited advice from kind

people, so I try to seek it more actively when I can.

Looking for synergistic collaborations with people who enjoy doing things I don’t,

and vice-versa, so that we form a fun, synergistic team in working towards a common

goal. I find these types of partnerships are more robust to challenges, thanks to a

broadened skill-base and many informed perspectives to anticipate challenges from

sides I that wouldn’t be trained to recognize.

Checking trade journals for technology that will provide data or techniques in my

field

Watching funding trends for new sustainable directions in the field and keeping my

Silicon Valley skills up-to-date. These, and my long-ramp-up-time strengths, could

pay the bills and keep me in science if bioinformatics crashes.

Trying to follow broad trends in politics, economics, technology, and society.

calculus before algebra, is like being forced to understand poetry in Spanish before
you’ve learned basic Spanish grammar: hard and frustrating.

105



5

s
6. Taking time to help people who are already working hard to help themselves without ■

stepping on anyone else; this has had a big return in the past and is an easy way of º,
giving back despite my tight schedule. C.

7. Reminding myself that I’m helping an adventure of discovery that will change our º
_Yunderstanding of nature aS fundamentally aS the

Newtonian/Euclidean-> Relativistic/Quantum view did in the early 1900s. Reasonable

facts indicate this will happen during my career, which encourages me to hang on

during the rough spots.

Author's Note of Dedication: My deepest appreciation to John Spikerman, William

Beckner, Ken Dill, Tony Hunt, Julie Ransom, and many, many kind people who selflessly 9.

encourage and support my growth and research. My ability to follow my dream is the Y.,

fruit of their patient advice, timely support, and guided license to pursue my own path.
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