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Though our experience of the world often appears rich and detailed, less 

information is immediately accessible than our intuition would suggest. When viewing 

a complex scene – such as a crowded city street – information about irrelevant features 

of the environment is lost due to noisy neural processing, while information about 

relevant features (those selected by visual attention) is spared. Similarly, behavioral 

experiments demonstrate that when even modest amounts of information must be held 

briefly in mind (in visual working memory), the amount of available information 
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about each item is diminished, and this available information decreases with 

increasing information load. In what manner do visual representations across large-

scale neural activity patterns support these behavioral information processing limits? 

In three studies, we examined the fidelity with which human cortical neural activation 

patterns measured with functional magnetic resonance imaging represent visual 

information. To this end, we developed a novel analysis technique whereby we 

reconstruct images of visual stimuli using neural activation patterns measured over 

entire brain regions. Using this technique, we established that the neural representation 

of a relevant visual stimulus is enhanced in its amplitude over a noisy baseline in 

several visual and parietal cortical regions, suggestive of an increase in the 

representation’s information content. Subsequently, we demonstrated that under 

conditions where no information is available in a display, the maintenance of a larger 

number of items in visual working memory is accompanied by a degradation in each 

item’s representation amplitude, indicative of lower population-level information 

content. Finally, we evaluated the relationship between these two findings by directing 

participants to attend to one of several items held in visual working memory. 

Surprisingly, we discovered that degraded representations can recover with visual 

attention, and the degree of recovery was related to behavioral task performance. Such 

recovery of degraded information suggests that additional information must be 

available to the system but invisible to our measurements before attention is allocated. 

Together, these results demonstrate that behavioral limits on information processing 

are related to the fidelity with which visual information is represented in large-scale 

neural codes. 
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Chapter 1:  

Attention mitigates information loss in 

small- and large-scale neural codes 



Visual attention mitigates information
loss in small- and large-scale neural
codes
Thomas C. Sprague1, Sameer Saproo2, and John T. Serences1,3

1Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0109, USA
2Department of Biomedical Engineering, Columbia University, New York, NY, USA
3Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA

The visual system transforms complex inputs into ro-
bust and parsimonious neural codes that efficiently
guide behavior. Because neural communication is sto-
chastic, the amount of encoded visual information nec-
essarily decreases with each synapse. This constraint
requires that sensory signals are processed in a manner
that protects information about relevant stimuli from
degradation. Such selective processing – or selective
attention – is implemented via several mechanisms,
including neural gain and changes in tuning properties.
However, examining each of these effects in isolation
obscures their joint impact on the fidelity of stimulus
feature representations by large-scale population codes.
Instead, large-scale activity patterns can be used to
reconstruct representations of relevant and irrelevant
stimuli, thereby providing a holistic understanding
about how neuron-level modulations collectively impact
stimulus encoding.

Visual attention and information processing in visual
cortex
Complex visual scenes contain a massive amount of infor-
mation. To support fast and accurate processing, behav-
iorally-relevant information should be prioritized over
behaviorally-irrelevant information (Figure 1). For exam-
ple, when approaching a busy intersection while driving it
is crucial to detect changes in your lane’s traffic-light
rather than one nearby to prevent a dangerous collision.
This capacity for selective information processing, or se-
lective visual attention, is supported by enhancing the
amount of information that is encoded about relevant
visual stimuli relative to the amount of information that
is encoded about irrelevant stimuli. Importantly, under-
standing how relevant visual stimuli are represented with
higher fidelity requires considering more than only the
impact of attention on the response properties of individual
neurons. Instead, examining activity patterns across large

neural populations can provide insights into how different
unit-level attentional modulations synergistically improve
the quality of stimulus representations in visual cortex.

In the scenario above, neurons can undergo several
types of modulation in response to the relevant light
compared to one that is irrelevant: response amplitudes
can increase (response gain), responses can become more

Glossary

Bit: unit of entropy (base 2).

Decoder: algorithm whereby a feature or features about a stimulus (orienta-

tion, spatial position, stimulus identity, etc.) is/are inferred from an observed

signal (spike rate, BOLD signal). Typically, the signal is multivariate across

many neurons/voxels, but in principle a decoder can use a univariate signal.

Dynamic range: the set of response values a measurement unit can take. An

increase in the response gain of a unit will increase the range of possible

response values, and this will increase its entropy.

Encoding model: a description of how a neuron (or voxel) responds across a

set of stimuli (e.g., a spatial receptive field can be a good encoding model for

many visual neurons and voxels, see Box 2).

Entropy: a measure of uncertainty in a random process, such as a coin flip or

observation of a neuron’s spike count. A variable with a single known value will

have 0 entropy, whereas a fair coin would have >0 entropy (1 bit).

Feature space: after reconstruction using the IEM technique, data exist in

feature space, with each datapoint being defined by a vector of values

corresponding to the activation of a single feature-selective population

response (e.g., orientation, spatial position); common across all participants

and visual areas.

Inverted encoding model (IEM): when encoding models are estimated across

many measurement units, it may be possible to use all encoding models to

compute a mapping from signal space into feature space which allows

reconstruction of stimulus representations from multivariate patterns of neural

activity across the modeled measurement units (Box 2).

Multivariate: when analyses are multivariate, signals from more than one

measured unit are analyzed; utilizing information about the pattern of

responses across units rather than simplifying the data pattern by taking a

statistic over the units (e.g., mean).

Mutual information: the amount of uncertainty about a variable (e.g., state of

the environment) that can be reduced by observation of the state of another

random variable (e.g., the voxel or the neuron’s response).

Noise entropy: variability in one signal that is unrelated to changes in another

signal.

Receptive field (RF): region of the visual field which, when visually stimulated,

results in a response in a measured neuron or voxel (population RF, or pRF).

Tuning function (TF): the response of a neuron or voxel to each of several

values of a feature, such as orientation or motion direction.

Signal entropy: variability in one signal that is related to changes in another

signal.

Signal space: data as measured exist in signal space, with a dimension for each

measurement unit (fMRI voxel, EEG scalp electrode, electrocorticography

subdural surface electrode, animal single cell firing rate, or calcium signal);

cannot be directly compared across individual subjects without a potentially

suboptimal coregistration transformation.

1364-6613/

� 2015 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tics.2015.02.005

Corresponding authors: Sprague, T.C. (tsprague@ucsd.edu);
Serences, J.T. (jserences@ucsd.edu).
Keywords: vision; visual attention; stimulus reconstruction; information theory;
neural coding..
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reliable, and receptive field properties can shift (e.g., some
neurons will shift their spatial receptive field to encompass
the attended light). Thus, neural responses associated with
attended stimuli generally have a higher signal-to-noise
ratio and are more robust compared to responses evoked by
unattended stimuli. Accordingly, the behavioral effects
associated with visual attention are thought to reflect
these relative changes in neural activity: when stimuli
are attended, participants exhibit decreased response
times, increased discrimination accuracy, and improved
spatial acuity ([1–3] for reviews).

This selective prioritization of relevant over irrelevant
stimuli follows from two related principles of information
theory [4–7] (Box 1). First, the data-processing inequality
[7] states that information is inevitably lost when sent via
noisy communication channels, and that lost information
cannot be recaptured via any amount of further processing.
Second, the channel capacity of a communication system is

determined by the amount of information that can be
transmitted and received, and by the degree to which that
information is corrupted during the process of transmis-
sion. In the brain, channel capacity is finite because there
is a fixed (albeit large) number of neurons and because
synaptic connections are stochastic such that information
cannot be transmitted with perfect fidelity. Given this
framework, different types of attention-related neural
modulations can be viewed as a concerted effort to attenu-
ate the unavoidable decay of behaviorally-relevant infor-
mation as it is passed through subsequent stages of visual
processing [8,9]. This framing also highlights the impor-
tance of understanding how attention differentially
impacts responses across neurons, and, more importantly,
how these modulations at the single-unit level interact to
support population codes that are more robust to the
information-processing limits intrinsic to the architecture
of the visual system.

Sensory
image

Early cor�cal
representa�ons

Later cor�cal
representa�ons

More processing, less overall informa�on, informa�on preserved about a�ended features
TRENDS in Cognitive Sciences 

Figure 1. Attention filters behaviorally-relevant information. When viewing a complex natural scene (left), visual processing by a noisy neural system will necessarily result

in an overall loss of information. If your eyes were fixated on the center of the image, but you were directing attention to the temple nestled among the trees near the top,

information about the attended temple would be selectively preserved from degradation by noisy neural processing – such that, even at successively later stages of

computation, information about the attended location and/or features of the image is still maintained, despite substantial loss of information about unattended components

of the image (right panel).

Box 1. Information content of a neural code

Information is related to a reduction in uncertainty [4,5,7]. A code is

informative insofar as measurement of one variable (e.g., the firing

rate of a single neuron) reduces uncertainty about another variable

(e.g., feature of a stimulus). The amount of uncertainty in a random

variable (e.g., the outcome of a coin toss or the spiking output of a

cell) can be quantified by its entropy, which increases with

increasing randomness. Mutual information (MI) is a measure of

the reduction in uncertainty of one variable after knowing the state

of another variable. MI would be zero for independent variables

(e.g., two different coins), whereas MI would be high for two

variables that strongly co-vary.

If a neuron noisily responds at the same level to each feature

value, then the MI between the state of the stimulus and the state

of the neuron’s response is low because signal entropy (variability

associated with changes in the stimulus) is low and noise entropy

(variability unrelated to changes in the stimulus) is high (Figure IA).

Instead, if the neuron exhibits a Gaussian-like orientation tuning

function (TF; Figure IB,C), then MI is higher because more of the

variability in the neuron’s response is related directly to changes in

the state of the stimulus. In this latter case, if the amplitude of the

neuronal TF increases while noise remains approximately constant,

then the ratio of signal entropy to noise entropy increases,

resulting in greater MI between the neuron’s response and the

stimulus orientation. However, if the tuning width of the orienta-

tion TF changes, this could result in either an increase or decrease

in the information about the stimulus, and would be contingent

upon several factors such as the original tuning width, noise

structure, dimensionality of the stimulus, and the responses of

other neurons (Figure IF–H) [37,126–128]. For a widely-tuned

neuron, a decrease in tuning width would result in an increase in

signal entropy relative to noise entropy, increasing the information

content of the neuron about orientation. At the other extreme, for a

neuron perfectly tuned for a single stimulus value, with noisy

baseline responses to other values, a broadening in tuning would

result in greater variability associated with stimulus features, and

consequently greater information (Figure IF–H). Thus, an increase

in the amplitude of a neural response (under simple noise models)

will increase the dynamic range and entropy, whereas a change in

tuning width can either increase or decrease the information

content of a neural code.
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With this goal in mind, we first provide a selective
overview of recent studies that examine attentional mod-
ulations of single measurement units (e.g., single neurons or
single fMRI voxels) in visual cortex, with a focus on changes
in response amplitude and shifts in spatial sensitivity pro-
files. We then introduce a framework for evaluating how
attention-induced changes in large-scale patterns of activity
can shape information processing to counteract the inherent
limits of stochastic communication systems. This approach

emphasizes reconstructing representations of sensory
information based on multivariate patterns of neural sig-
nals and relating the properties of these reconstructions to
changes in behavioral performance across task demands.

Attention changes the response properties of tuned
neurons
Single-neuron firing rates in macaque primary visual
cortex (V1) [10–12], extrastriate visual areas V2 and V4
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Figure I. Comparison of unit-level information content (mutual information). For a cartoon example of neural tuning functions (TF; measured in arbitrary units, a.u.)

with no (A), intermediate (B) or high (C) feature selectivity, the overall entropy of the neural response (given equal stimulus probability) is the same (D) but the mutual

information (MI) between the neural response and the feature value (E) is much higher when the neuron exhibits selectivity [e.g., (C)] than when it is non-selective [e.g.,

(A)], with intermediate (Int.) selectivity [e.g., (B)] falling in between. In cases where attention narrows the selectivity of a unit, whether such a change results in improved

information content depends on the original selectivity before narrowing [127,128]. (F) A cartoon example of neural TFs for stimulus orientation with different tuning

widths (top, narrow tuning width/high selectivity; bottom, large tuning width/low selectivity). (G) When MI is plotted as a function of tuning width, it is apparent that any

changes in tuning width that are associated with attention can either increase or decrease MI depending on the original tuning width. Vertical lines indicate tuning width

values of example TFs in (F). (H) For a modest attention-related narrowing in tuning (e.g., �10% reduction in tuning width), a unit with a small tuning width may actually

carry less information with attention, whereas a unit with a large tuning width would carry more information. Note: panels (F–H) do not equate total entropy across

tuning widths [as in panels (A–C)], accounting for the differences in MI plots between panel (E) and panels (G,H).
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[12–19], motion-sensitive middle temporal area (MT)
[20–22], lateral intraparietal cortex (LIP) [23–27], and fron-
tal eye fields (FEF) [28–31] have all been shown to reliably
increase when either a spatial position or a feature of
interest is attended (Figure 2A). Heightened neural activity
can facilitate the propagation of responses to downstream
areas, leading to successively weaker distracter-associated
responses compared to target-associated responses. Howev-
er, even though most studies focus on increases in mean
firing rates, many studies also report that a substantial
minority of cells show systematic decreases in firing rates
with attention (particularly in excitatory cells, e.g., [32]), an
important issue when considering population-level neural
codes that we revisit below.

In addition to measuring attentional modulations in
response to a fixed stimulus set, researchers have also

parametrically varied stimuli while an animal maintains
a constant focus of attention to measure changes in feature
tuning functions (TFs) or spatial receptive fields (RFs; that
is, the response profile of a neuron to each member of a set of
stimuli, see Glossary). When an animal is cued to attend to a
visual feature, such as orientation [15,16], color [33], or
motion direction [34], neurons tuned to the cued feature
tend to respond more, while those tuned to uncued features
tend to respond less [35]. This selective combination of
response gain and suppression results in a larger range of
possible firing rates, or a larger dynamic range, and thus
increases encoding capacity such that different features will
evoke a more easily separable neural response (Figure 2B)
[36,37]. This increase in encoding capacity with an increase
in dynamic range is analogous to switching between a binary
and a greyscale image (e.g., a barcode and a black-and-white
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Figure 2. Attention improves the information content of small- and large-scale neural codes. When attention is directed towards a stimulus presented to a feature-selective

neuron, several types of responses are commonly observed. (A) Response amplitudes often increase, which increases the dynamic range of the response, and accordingly

improves the ability of the neuron to discriminate between two stimuli (B). This increased dynamic range enables improved discrimination of multiple stimulus feature

values. (C) Many neurons show changes in receptive field (RF) properties with attention such that the spatial profile of their response is focused around an attended

stimulus placed inside the RF. By contrast, population-level stimulus reconstructions (Box 2) enable assessment of the net impact of all unit-level response changes with

attention. (D) When participants are instructed to attend to the direction of motion of a moving dot stimulus (as opposed to its contrast), the amplitude of motion direction-

selective responses increases in both V1 and middle temporal area (MT). (E) When participants attend to a flickering checkerboard disc, the reconstructed stimulus image

(Box 2) has a higher amplitude than when they attend to the fixation point, especially in extrastriate visual regions of interest (ROIs) such as human area V4 (hV4). (F) When

motion is attended [see (D)] the mutual information between V1 and MT is greater than when stimulus contrast is attended, suggesting that attention maximizes the transfer

of relevant information between brain regions at a population level. Panels (A–C) are cartoon examples. Panels (D) and (F) were adapted from [9] with permission from the

Society for Neuroscience; panel (E) was adapted from [76] with permission from Nature Publishing Group, colormap adjusted.
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photograph): the number of states each pixel can take
increases, meaning that more states are discriminable.

When attending to a particular spatial position, the
spatial RF of many neurons can also shift to accommodate
the attended position in V4 [38], MT [39–42], and LIP [43],
and the endpoint of a saccadic eye movement in V4 [44] and
FEF [45]. In MT, for example, RFs shrink around the
locus of attention when animals are cued to attend to a
small region within a neuron’s spatial RF (Figure 2C)
[13,39,40]. However, when attention is focused immediate-
ly outside the penumbra of a neuron’s spatial RF, the RF
shifts and expands towards the focus of attention [41]. Fi-
nally, the tuning of V4 neurons to orientation and spatial
frequency (that is, their spectral receptive field) can un-
dergo shifts towards an attended target stimulus when an
animal is viewing natural images [46]. These changes in
the size and position of spatial RFs – coupled with
increases in response amplitude – may lead to a more-
robust population code via an increase in the number of
cells that respond to relevant features ([2,47,48] for re-
view). For example, an increase in single cell firing rates,
coupled with a shift in the selectivity profile of surrounding
spatial RFs towards the locus of attention, should gener-
ally increase the overall entropy of a population code, and
thereby the quality of information encoded about a rele-
vant stimulus (Box 1).

Attentional modulation of large-scale populations
Thus far we have discussed attentional modulations mea-
sured from single neurons in behaving monkeys. However,
perception and behavior are thought to more directly de-
pend on the quality of large-scale population codes
[36,49,50], and it is therefore also necessary to assay how
these small-scale modulations jointly impact the informa-
tion content of larger-scale neural responses. For example,
human neuroimaging methods including fMRI and EEG
provide a window into the activity of large-scale neural
populations [51–53], enabling the assessment of atten-
tion-related changes in voxel- or electrode-level signals that
reflect the aggregate responses of all constituent neurons.

The firing-rate increases observed in single neurons are
echoed by attention-related increases in fMRI blood oxygen
level-dependent (BOLD) activation levels [54–59] and am-
plitude increases in stimulus-evoked EEG signals [60–
65]. For example, when attention is directed to one of several
stimuli on the screen, the mean BOLD signal measured
from visual cortical regions of interest (ROIs) increases
[55–59,66,67]. In addition, when fMRI voxels are sorted
based on their selectivity for specific features such as orien-
tation ([37,68,69], see also [70]), color [71], face identity [72],
or spatial position [73], attention has the largest impact on
voxels that are tuned to the attended feature value.

In addition to changes in response amplitude, recently
developed techniques can also assess changes in the selec-
tivity of voxel-level tuning functions across different atten-
tion conditions. One newly developed method has been
used to evaluate how the size of voxel-level population
receptive fields (pRFs) changes with attentional demands
[74,75]. For example, several studies have measured pRF
size as participants view a display consisting of a central
fixation point and a peripheral visual stimulus that is used

to map the pRF. On different trials, participants either
attend to the peripheral mapping stimulus, or they ignore
the mapping stimulus and instead attend to the central
fixation point. Attending to the peripheral mapping stim-
ulus increases the average size of voxel-level pRFs mea-
sured from areas of extrastriate cortex where single-
neuron RFs are relatively large. However, no such size
modulations are observed in primary visual cortex where
single-neuron RFs are smaller [76–78]. At first, this result
appears to conflict with neurophysiology studies showing
that single-neuron RFs can either shrink or expand
depending on the spatial relationship between the neu-
ron’s RF and the focus of attention (see above and
Figure 2C) [39–42]. However, the response of a voxel
reflects the collective response of all single neurons that
are contained in that voxel. As a result, when the attended
mapping stimulus was anywhere in the general neighbor-
hood of the voxel’s spatial RF, many single-neuron RFs
within the voxel likely shifted towards the attended stim-
ulus. In turn, this shifting of single-neuron RFs towards
attended stimuli in the vicinity of the RF of a voxel should
increase the area of visual space over which the voxel
would respond (i.e., it would increase the size of the pRF
compared to when the fixation point is attended to, and
these neuron-level shifts would not occur).

The above studies examined how voxel-level pRFs
change when the RF mapping stimulus is attended. A
complementary line of work has addressed how attention
to a focused region of space alters pRFs measured using an
unattended mapping stimulus. In these studies attention
was directed either to the left or the right of fixation while a
visual mapping stimulus was presented across the full
visual field. The center of voxel-level pRFs shift towards
the locus of attention [79]; however, because the authors do
not report whether pRFs also change in size, it is challeng-
ing to fully interpret how shifting the center of a pRF would
support enhanced encoding of attended information (Box 1,
Figure 3). Furthermore, another study found that increas-
ing the difficulty of a shape-discrimination task at fixation
leads to a shift of voxel-level pRFs away from fixation and
also to an increase in their size. These modulations may
thus result in a lower-fidelity representation of irrelevant
stimuli in the visual periphery when a foveated stimulus is
challenging to discriminate [80].

Functionally similar examples of information shunting
have also been found in other domains: Brouwer and
Heeger [71] demonstrated that directing attention to a
colored stimulus during a color-categorization task nar-
rows the bandwidth of voxel-level tuning functions, im-
proving the discriminability of voxel responses for distinct
colors when the color value is important for the task.
Similarly, Ç ukur et al. [81] used a high-dimensional encod-
ing model (which describes the visual stimulus categories
for which each voxel is most selective) to show that attend-
ing to object categories shifts semantic space towards the
attended target to increase the number of voxels respon-
sive to a relevant category (see also [82,83]). Although
analogous single-unit neural data are not available for
comparison, these results support the notion that shifting
the feature selectivity profile of a RF is an important
strategy implemented by the visual system to combat
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limited channel capacity via increasing the sampling den-
sity for relevant information (Figure 1).

With all experiments evaluating responses at the large-
scale population level (e.g., the level of a single fMRI voxel),

it is important to note that these macroscopic measure-
ments reflect hemodynamic signals related to net changes
in the response across hundreds of thousands or more
neurons [51]. As a result, it is currently not possible to
unambiguously infer whether attentional modulations
measured at the scale of single voxels reflect changes in
neuron-level feature selectivity or if voxel-level modula-
tions instead reflect non-uniform changes in the response
amplitude of neural populations within a voxel that are
tuned to different feature values. Despite this limitation,
large-scale measurement techniques such as fMRI can
provide a unique perspective on the collective impact of
small-scale single-neuron modulations on the fidelity of
population codes, even though information about the spe-
cific pattern(s) of single-neuron modulations may be ob-
scured. In turn, changes in voxel-level selectivity can
support some important general inferences about the im-
pact of attention on the encoding capacity of large-scale
population responses (Box 1), which are not easily accessi-
ble via single-neuron recording methods.

Reconstructing region-level stimulus representations
The techniques used to measure single-neuron and single-
voxel response profiles help us understand how changes at
the level of single measurement units (whether single
neurons or single voxels) can impact encoding capacity
to facilitate perception and behavior. However, under-
standing how individual encoding units behave, either in
isolation or at the level of a population average, is only a
part of the picture. Indeed, different neurons and voxels
are often modulated in different ways even in the context of
the same experimental design: some units increase their
response amplitude, others decrease [32]; some show (p)RF
size increases, whereas others show decreases [39–42,76–
78,80]. To understand how these apparently disparate
modulations work together to impact the quality of re-
gion-level population codes, multivariate methods can be
used to directly infer changes in the overall information
content of neural response patterns.

An emerging means of evaluating information content of
population-codes is via stimulus reconstruction (Box 2).
Although population-level reconstruction methods have

Box 2. Inverted encoding models enable evaluation of aggregate effects of multiple unit-level response changes on the quality

of a neural code

When firing rates of single units or activation levels of single voxels are

measured in response to several different stimulus values (e.g., the

orientation of a grating or the position of a stimulus on the screen), it is

possible to fit an encoding model to the set of measured responses as a

function of feature value. Such an encoding model describes how the

neuron or voxel responds to different values of a stimulus, and an

accurate encoding model will predict how the neuron or voxel would

respond to a novel stimulus value. For example, the best-fit encoding

model for an orientation-selective unit would be a circular Gaussian

model (Figure IA), whereas the encoding model for a spatially selective

unit would be characterized by a 2D Gaussian model (Figure IB). Note

that the encoding models need not be visual: measuring firing rates of

hippocampal neurons in rodents as they forage for food often reveals a

particular region of the environment in which the neuron fires – its place

field – which could potentially be described by a 2D Gaussian encoding

model for spatial position within the environment.

While the process of estimating encoding models for many single

units or single voxels across the brain allows inferences to be made

about the manner in which information is measured, computed, and

transformed across different stages of processing, the approach

remains massively univariate: all encoding models are estimated in

isolation, and inferences about neural processing are based on

changes in these univariate encoding models in aggregate [76–

80]. By contrast, the inverted encoding model approach (IEM) utilizes

the pattern of encoding models estimated across an entire brain

region (e.g., primary visual cortex) to reconstruct the region-level

representation of a stimulus given a measured pattern of activation

across the measurement units (Figure IC). These approaches, as

implemented presently, rest on assumptions of linearity and are only

feasible for simple features of the environment (e.g., orientation,

color, spatial position) for which encoding properties are relatively

well understood. To date, this general approach has been used to

accurately reconstruct feature representations from fMRI voxel

activation patterns [9,71,76,88,89,94–101,124], patterns of spike rate

in rodent hippocampus [84,119], and human EEG signals measured

non-invasively at the scalp [90].
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Figure 3. Information content of units and populations. (A) As described in Box 1,

the mutual information (MI) between the response strength of a unit and the

associated stimulus value is a non-monotonic function of its tuning bandwidth. A

non-selective unit will have very low MI (as a result of little variability in response

associated with variability in the stimulus feature), but a highly selective unit will

also have low MI – because it has lower overall entropy. The particular selectivity

bandwidth for which a unit has greatest MI about a stimulus feature depends on

the shape of the tuning function (TF), noise properties, and the relative frequency

of occurrence of different feature values. (B) By contrast, for population-level

stimulus reconstructions, a narrower reconstructed stimulus representation is

more informative because it reflects a greater level of discriminability between

different stimulus feature values. Plotted are cartoon reconstructions of different

values of a stimulus. Each color corresponds to a different feature value, and each

point along each curve corresponds to the reconstructed activation of the

corresponding population response (as in Figure 2D,E).
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existed for decades [84,85], they have recently found wide-
spread application in the field of human neuroimaging
[71,75,86–94]. There are many variations on these meth-
ods, but all generally involve first estimating an encoding
model that describes the selectivity profile (feature TF or
spatial RF) of individual measurement units (e.g., single
neurons or single voxels). Next, these encoding models are
inverted and used to reconstruct the stimulus given a novel
pattern of responses across the entire set of units (Box 2).
Each computed stimulus reconstruction contains a repre-
sentation of the stimulus of interest. Thus, for features
such as color, orientation, or motion, the results of this

procedure reflect a reconstruction of the response across a
set of feature-selective populations [9,71,88–90,95–99]; for
models based on spatial position, the results reflect recon-
structed images of the visual scene viewed or remembered
by an observer [75,76,86,100,101]. We call this broad
framework – whereby patterns of encoding models are
inverted to reconstruct stimulus representations –
inverted encoding models (IEM).

The ability to reconstruct an image of visual stimuli
based on population-level activation patterns can be used
to assess how modulations observed at the level of mea-
surement units are combined to jointly constrain the

Encoding models: characterize single measurement unit selec�vity

Reconstruc�on: combine encoding models to reconstruct s�mulus and
characterize informa�on content

–90 –45 0 45 90
–0.4

0

0.4

0.8

1.2

1.6

Orienta�on

N
or

m
al

ize
d 

re
sp

on
se

Spa�al
selec�vity

Best-fit
encoding

model

Voxel 1 Voxel  2 Voxel  3 Voxel n

...

Combine all
encoding models

Da
ta

se
t  

1

Inverted
encoding

modelDa
ta

se
t  

2

Region-level
s�mulus

reconstruc�on
Visual

s�mulus

Single-trial
ac�va�on

pa�ern (V1)
S�mulus

representa�on

(A) (B)

(C)

(D)

Es�mated
encoding
models

Voxels
1 734Ac

�v
a�

on

Re
co

ns
tr

uc
te

d
po

pu
la

�o
n

re
sp

on
se

Max

MinM
ea

su
re

d
ne

ur
al

re
sp

on
se

Orienta�on
selec�vity

Max

Min

Best-fit encoding model

TRENDS in Cognitive Sciences 

Figure I. Encoding models and stimulus reconstruction. Measurements of neural responses to different stimulus feature values – such as orientation (A) or spatial

position (B) – often reveal selectivity for particular feature values (such as orientation TFs or spatial RFs). Such selectivity can be observed with single-unit firing rates,

calcium transients, fMRI BOLD responses, or even scalp EEG. When encoding models are measured for many neurons/voxels/electrodes, it is possible to combine all

encoding models to compute an inverted encoding model (IEM) (C). This IEM allows a new pattern of activation measured using a separate dataset to be transformed

into a stimulus reconstruction (D), reflecting the population-level representation of a stimulus along the features spanned by the encoding model (here, visual spatial

position). This reconstruction (right) reflects data from a single trial, which is inherently noisy. However, when many similar trials are combined (Figure 2E), high-fidelity

stimulus representations can be recovered.
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amount of information encoded about a stimulus. In con-
trast to multivariate classification analyses that partition
brain states into one of a set of discrete groups [91,102], or
Bayesian approaches that generate an estimate of the most
likely stimulus feature value [36,49,50,84,103–105], recon-
struction enables the quantification of stimulus represen-
tations in their native feature space rather than in signal
space. In turn, quantifying representations within these
reconstructions supports the ability to evaluate attributes
such as the amplitude or the precision of the encoded
representation. Moreover, because the IEM reconstruction
method involves an analog mapping from an idiosyncratic
signal space that differs across individuals and ROIs into a
common feature space, it is possible to directly compare
quantified properties of stimulus reconstructions as a
function of attentional demands. This approach thus com-
plements previous efforts to establish the presence of
stimulus-specific information by decoding which stimulus
of a set was most likely to have caused an observed pattern
of activation [75,87,106,107].

Because region-level stimulus reconstructions exploit
information contained in the pattern of responses across
all measurement units, they may be more closely linked to
behavioral measures than to the responses of single neu-
rons or even to mean response changes across a small
sample of neurons or brain regions [91,97,108–110]. In
addition, representations within these region-level recon-
structions can be subjected to similar information theoretic
analyses as described in Box 1 [9]. Instead of comparing
how the response of a small sample of neurons changes
with attention (Figure 3A), it is possible to evaluate how all
co-occurring response modulations constrain the ability of
a neural population to encode relevant information about a
stimulus (Figure 3B).

Although this approach can provide a unique perspec-
tive on the quality of large-scale population codes, stimu-
lus-reconstruction methods come at the cost of simplifying
assumptions about how information is encoded. For in-
stance, IEMs for simple features (Box 2) will not account
for information that is not explicitly modeled. Thus, an
IEM for reconstructing spatial representations of simple
stimuli [76,101] will not recover any information that was
represented about features such as color or orientation,
despite the known roles that many visual areas play in
encoding these stimulus attributes.

Reconstructions as an assay of population-level
information
Attention has been shown to induce a heterogeneous set of
modulations at the level of single measurement units such
as single cells or voxels. Variability in the magnitude or
sign of attention effects is often treated as noise, and the
impact of different types of attentional modulation on the
quality of stimulus representations is usually not consid-
ered (e.g., the joint influence of both gain and bandwidth
modulation). IEMs can be used to extend these unit-level
results and to evaluate how all types of attentional modu-
lation collectively influence the information content of
large-scale population codes.

Similarly to the information content of single-unit
responses, when the amplitude of a population-level

stimulus reconstruction increases above baseline, then
more of the variability in the reconstruction is directly
linked with changes in the stimulus (i.e., there is an increase
in signal entropy). Importantly, in contrast to single units
(Figure 3A, see also Box 1), when a population-level stimu-
lus reconstruction becomes more precise, the population
may support more precise inferences about stimulus fea-
tures by improving the discriminability of responses associ-
ated with different stimulus feature values (Figure 3B) (e.g.,
[71,96,97]). Such a change in stimulus reconstructions could
be supported by changes in the selectivity of individual
voxels/neurons, non-uniform application of neural gain
across the population, or any combination of these response
modulations at the unit level.

In one study where participants categorized colors,
voxel-level tuning functions for hue narrowed and re-
gion-level reconstructions of color response profiles were
more clustered in a neural color space compared to when
color was irrelevant [71]. This result provides evidence for
a neural coding scheme whereby relevant category bound-
aries for a given task are maximally separated. Because
more of the variability in the population response should be
associated with changes in the relevant stimulus dimen-
sion (greater signal entropy), this modulatory pattern
should provide a more-robust population code that can
better discriminate different categories in color space
(Figure 3B, see also [111,112]).

Similarly, directing attention to the direction of a moving
stimulus increased the amplitude of direction-selective
representations in both V1 and MT relative to attending
stimulus contrast (Figure 2D) [9]. This increase in the
dynamic range of responses gives rise to an increase in
the information content of the direction-selective represen-
tation in both areas (via an increase in signal entropy) when
motion was relevant compared to when it was irrelevant. In
addition, when attention was directed to motion, the efficacy
of feature-selective information transfer between V1 and
MT increased relative to when stimulus contrast was
attended (Box 1; Figure 2F). This task-dependent increase
in the transfer of information between brain regions sug-
gests that attention not only modulates the quality of signals
within individual cortical regions but also increases the
efficiency with which representations in one region influ-
ence representations in another [9]. Although the precise
mechanism for such information transfer remains un-
known, changes in synaptic efficacy [11] or synchrony of
population-level responses such as local field potentials
(LFP) and/or spike timing [113–115] likely contribute.

Spatial attention can change the amplitude of
single-neuron responses and their spatial selectivity
(Figure 2A–C). One study examined how all these
changes jointly modulate representations of a visual
stimulus within spatial reconstructions of the scene
[76]. Participants were asked to perform either a demand-
ing spatial attention task or a demanding fixation task in
the scanner. Their fMRI activation patterns were then
used to reconstruct stimulus representations from sever-
al visual ROIs. Although individual voxel-level pRFs
were found to increase in size with attention, no changes
were found in the size of stimulus reconstructions with
attention. This pattern of results indicates that attention
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does not sharpen the region-level stimulus representa-
tions in this task. However, the study did reveal atten-
tion-related increases in the amplitude of stimulus
representations (Figure 2E), and this corresponds to
more information about the represented stimulus (great-
er signal entropy) above a noisy, uniform baseline (noise
entropy, Box 1; Figure 3B). These results were echoed by
a recent report that linked attention-related increases in
the size and the gain of spatial pRFs in ventral temporal
cortex with improved population-level information about
stimulus position [77].

Concluding remarks and future directions
Selective attention induces heterogeneous  modulations
across single encoding units, and understanding how
these modulations interact is necessary to fully charac-
terize their impact on the fidelity of information coding

and behavior. At present, analysis techniques that
exploit population-level modulations have primarily been
implemented with data from large-scale neuroimaging
tools such as fMRI and EEG. Applying these analyses to
other methods such as two-photon in vivo calcium imag-
ing of neurons identified genetically [116,117] or by cor-
tical depth [118], and electrophysiological recordings
from large-scale electrode arrays in behaving animals
and humans [119,120], will help to bridge gaps in our
understanding of how the entire range of neuron-level
attentional modulations are related to population-level
changes in the quality of stimulus representations
(Box 3). Furthermore, the development of improved
modeling, decoding, and reconstruction methods as ap-
plied to both human neuroimaging and animal physiology
and imaging data should enable new inferences about the
mechanisms of attention in more complicated naturalistic

Box 3. Outstanding questions

� The IEM technique has recently been adapted for use with scalp EEG

signals that can provide insights about the relative timing of

attentional modulations of stimulus reconstructions with near-milli-

second precision [90]. How do these signals measured with scalp

electrodes carry information about features like orientation? And what

other types of neural signals (such as two-photon in vivo calcium

imaging [116]) can be used for image reconstruction via IEMs?

� Correlated variability among neurons is an important limiting factor

in neural information processing [108,129–133]. How can this

correlated variability be incorporated into the IEM approach, and

what are the scenarios in which correlated variability helps and

hurts the information content of a population code as measured via

stimulus reconstructions?

� It is possible to compute region-level feature-specific reconstruc-

tions across each of the many visual field maps in cortex [134–

136]. However, the role(s) of each of these visual field maps in

supporting visual perception and behavior remains largely un-

known. By comparing how properties of stimulus representations

vary across different visual field maps with measures of behavioral

performance, in combination with causal manipulations such as

TMS, optogenetic excitation or inhibition of subpopulations of

neurons, and electrical microstimulation, the relative contributions

of each region’s representation to behavioral output can be

compared, and accordingly the role(s) of the region in visual

behavior may be inferred.

� Application of IEMs for tasks requiring precise maintenance of, or

attention to, visual stimulus features such as orientation, color, or

motion direction [9,96,97,124] often reveal different results from

those requiring attention to or maintenance of spatial positions

[76,98,101]. Attending to a feature sharpens or shifts stimulus

reconstructions in a manner well-suited for performing the task,

whereas attending to a position enhances the amplitude of

stimulus reconstructions over baseline. How do the circum-

stances in which stimulus reconstructions change in their

amplitude differ from those in which reconstructions change

their precision?
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Figure 4. Using stimulus reconstructions to exploit and understand the net impact of heterogeneous response modulations. (A) Attentional modulations of different units

are often heterogeneous, reflecting combinations of amplitude increases, baseline changes, and selectivity changes. Thus, even though the mean attentional modulations

across units often point in the same direction across studies, there is substantial variability within a given sample of neurons (as shown here in simulated cartoon neural

TFs), and any information that is encoded by this variability is usually ignored. (B) When using the inverted encoding model (IEM) technique, which combines modulations

across all constituent units, it is possible to ascertain how different types of unit-level response modulations may contribute to stimulus reconstructions by selecting

measurement units post hoc that exhibit one type or another of response modulation (e.g., only bandwidth narrowing or broadening) to compute stimulus reconstructions.
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settings, potentially even during unrestrained movement
[50,91–94,121].

In addition, associating neural modulations with
changes in behavioral performance is crucially important
as a gold-standard method for evaluating the impact of
attention on the quality of perceptual representations. The
importance of this brain–behavior link was recently
highlighted by a study in which visual attention was
correlated with the modulation of single-neuron activity
in visual cortex (increased firing rate, among others).
However, these modulations in visual cortex were unaf-
fected even after attention-related improvements in behav-
ior were abolished by the transient inactivation of the
superior colliculus, an area that is thought to play an
important role in attentional control [122,123]. This obser-
vation places an important constraint on how we consider
different mechanisms of attention: attention results in
changes to neural codes in visual cortex that should
improve the information content about relevant stimulus
features compared to irrelevant features (e.g., firing-rate
modulations). However, these attention-related improve-
ments in the quality of local sensory representations will
not necessarily be transmitted to downstream areas, and
thus may have little or no impact on behavior. Thus, neural
responses, both at the neuronal and population levels, need
to be systematically evaluated against changes in behavior
to establish their overall importance in visual information
processing [124].

In future work, one promising approach is to selectively
lesion or alter the measured data, post-acquisition, by
using only units that show particular encoding or response
properties to compute stimulus reconstructions (e.g., mea-
surement units with RFs near or far from the attended
stimulus; measurement units that either increase or de-
crease in response amplitude or RF size [76]; Figure 4).
Reconstructions computed using only measurement units
with modulations most crucial for improving the fidelity of
the neural code for attended stimuli versus unattended
stimuli should be associated with increases in mutual
information between reconstructions and attended stimuli
relative to unattended stimuli, and this can be verified by
comparing the information content of reconstructions to
measures of behavioral performance across attention con-
ditions [97,98,124]. Using a similar approach, a recent
study evaluated the necessity of voxel-level attentional
gain on population-level information about spatial position
by artificially eliminating attention-related gain from their
observed pRFs. They found that pRF gain is not necessary
to improve position coding; changes in pRF size and posi-
tion were sufficient [77]. Finally, the information content of
region-level stimulus reconstructions computed in one
brain region can be compared to the information content
of those measured in other brain regions [125] at different
points in time to determine how information is trans-
formed across levels of the visual hierarchy. For example,
reconstructions in V1 should primarily reflect information
about relevant low-level sensory features, whereas down-
stream areas in the ventral temporal lobe should encode
information about more-holistic object properties such as
the features associated with relevant faces or scenes.
Comparing successive reconstructions across multiple

brain regions may highlight those features of visual scenes
undergoing attentional selection, how they are selected,
and what happens to features not selected (Figure 1).

By emphasizing the link between the information con-
tent of reconstructions across multiple stages of processing
and measures of behavioral performance, a more complete
picture will emerge about how differently tuned encoding
units at each stage – and their associated constellation of
attention-induced modulations – can give rise to a stable
representation that is more closely linked with the overall
perceptual state of the observer.
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Chapter 2:  

Attention modulates spatial priority 

maps in the human occipital, parietal 

and frontal cortices 



Prominent computational theories of selective attention posit that 
basic properties of visual stimuli are encoded in a series of interact-
ing priority maps that are found at each stage of the visual system1–6. 
The maps in different areas are thought to encode different stimulus 
features (for example, orientation, color or motion) on the basis of the 
selectivity of component neurons. Two general themes governing the 
organization of these maps have emerged. First, accurately encoding 
the spatial location of relevant stimuli is the fundamental goal of these 
priority maps, as spatial position is necessary to guide saccadic eye 
movements (and other exploratory and reflexive motor responses). 
Second, priority maps early in the visual system reflect primarily the 
physical salience of stimuli in the visual field, whereas priority maps 
in later areas increasingly index the behavioral relevance of stimuli 
independent of physical salience4,5.

Although many studies have investigated the influence of spatial 
attention on single-unit neural activity over the last several decades7–17,  
directly examining the impact of attention on the topographic profile 
across an entire spatial priority map is a major challenge because 
single units have access to a limited window of the spatial scene5. 
This is a key limitation, as the relationship between changes in the 
size and amplitude of individual spatial receptive fields (or voxel-
level receptive fields across populations of neurons) and changes in 
the fidelity of population-level spatial encoding are not related in a 
straightforward manner (ref. 18 discusses this issue with respect to 
population codes for orientation). For example, if spatial receptive 
fields are uniformly shrunk by attention while viewing a stimulus, the 
population-level spatial representation (or priority map) carried by all 
of those neurons might shrink or become sharper, but the code may 
be more vulnerable to uncorrelated noise (as there is less redundant 
coding of any given spatial position by the population). Alternatively, 
a uniform increase in spatial receptive field size might blur or increase 

the size of a spatial representation encoded by a population, but such 
a representation might be more robust to uncorrelated neural noise 
because of increased redundancy.

Further complicating matters is the observation that spatial recep-
tive fields have been shown to both increase and decrease in size with 
attention as a function of where the spatial receptive field is positioned 
relative to the attended stimulus. Spatial receptive fields tuned near an 
attended stimulus grow, and spatial receptive fields that fully encom-
pass an attended stimulus shrink10,19–23. These receptive field size 
changes occur in parallel to changes in the amplitude (gain) of neu-
ral responses with attention7–17. Thus, the net impact of all of these 
changes on the fidelity of population-level spatial representations is 
unclear, and addressing this issue requires assessing how attention 
changes the profile of spatial representations encoded by the joint, 
region-level pattern of activity.

Here we assessed the modulatory role of attention on the spatial 
information content of putative priority maps by using an encod-
ing model to reconstruct spatial representations of attended and 
unattended visual stimuli on the basis of multivariate blood oxygen 
level–dependent functional magnetic resonance imaging (BOLD 
fMRI) activation patterns within visually responsive regions of the 
occipital, parietal and frontal cortices. These reconstructions can be 
considered to reflect region-level spatial representations, and they 
allowed us to quantitatively track changes in parameters that charac-
terize the topography of spatial maps within each region of interest 
(ROI). Notably, this technique exploits the full multivariate pattern of 
BOLD signal across an entire region to evaluate the manner in which 
spatial representations are modulated by attention rather than com-
paring multivariate decoding accuracies or considering the univari-
ate response of each voxel in isolation. This approach can be used to 
examine mechanisms of attentional modulation that cannot be easily 
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Attention modulates spatial priority maps in the 
human occipital, parietal and frontal cortices
Thomas C Sprague1 & John T Serences1,2

Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of  
the visual cortex so that the location of an important object is associated with higher activation levels. Although studies of  
single-unit recordings have demonstrated attention-related increases in the gain of neural responses and changes in the size 
of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been 
investigated. Here we used functional magnetic resonance imaging and a multivariate encoding model to reconstruct spatial 
representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial 
representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority 
maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these 
spatial maps, particularly in higher visual areas, but does not substantively change their size.
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characterized by measuring changes in either the univariate mean 
BOLD signal or the decoding accuracy24–34 (Fig. 1).

Our results reveal that spatial attention increases the amplitude 
of region-level stimulus representations within putative priority 
maps carried by areas of the occipital, parietal and frontal cortices. 
However, we found little evidence that attention changes the size of 
stimulus representations in region-level priority maps, even though 
we observed increases in spatial filter size at the single-voxel level.  
In addition, the reconstructed spatial representations that are based on 
activation patterns in later regions of the occipital, parietal and frontal 
cortices showed larger attentional modulation than those from early 
areas, which is consistent with the hypothesis that the representations 
in later regions increasingly transition to more selectively represent 
relevant stimuli4,5. These changes in the gain of spatial representations 
should theoretically increase the efficiency with which information 
about relevant objects in the visual field can be processed and sub-
sequently used to guide perceptual decisions and motor plans18.

RESULTS
Manipulating attentional demands
To evaluate how task demands influence the topography of spatial rep-
resentations within different areas of the visual system, we designed a 
BOLD fMRI experiment that required participants to perform one of 
three tasks using an identical stimulus display (Fig. 2a). In each trial, 
participants (n = 8) maintained fixation at the center of the screen 
(Online Methods and Supplementary Fig. 1) while a full-contrast 
flickering checkerboard was presented in 1 of 36 spatial locations 
that sampled 6 discrete eccentricities (Fig. 2b). Participants reported 
either a faint contrast change at the fixation point (the attend fixation 
condition) or a faint contrast change of the flickering checkerboard 
stimulus (the attend stimulus condition) or performed a spatial work-
ing memory task in which they compared the location of a probe 
stimulus, T2, with the remembered location of a target stimulus, T1, 
presented within the radius of the flickering checkerboard (the spatial 
working memory condition; Fig. 2c). We included the spatial working 
memory task as an alternate means of inducing focused and sustained 
spatial attention around the stimulus position35.

On average, performance in the attend fixation task was slightly, 
although nonsignificantly, higher than that in the attend stimulus 
or spatial working memory task (Fig. 2d; main effect of condition, 

F(2,14) = 0.951, P = 0.41; attend fixation, 87.37  6.46% accuracy 
(mean  s.e.m.); attend stimulus, 81.00  6.67%; spatial working 
memory, 80.00  2.09%). However, we observed a different pattern 
of response errors across the three task demands: accuracy in the 
attend fixation condition was lowest in trials in which the flickering 
checkerboard stimulus was presented near the fixation, whereas accu-
racy dropped off with increasing stimulus eccentricity in the attend 
stimulus and spatial working memory tasks (Fig. 2d; condition × 
eccentricity interaction, F(10,70) = 7.235, P < 0.0001).

Reconstructed spatial representations of visual stimuli
To compare spatial representations carried within different brain 
regions as a function of task demands, we first functionally identified 
seven ROIs in each hemisphere of each participant using independent 
localizer techniques (Online Methods and Supplementary Table 1).

Next we used an encoding model34,36–38 to reconstruct a spatial rep-
resentation of the stimulus that was presented during each trial using 
activation patterns from each ROI (Fig. 3 and Supplementary Figs. 2 
and 3). This method results in a spatial representation of the entire vis-
ual field measured during each trial that is constrained by activation 
across all voxels within each ROI. As a result, we obtained average spatial 
representations for each stimulus position for each ROI for each task 
condition that accurately reflected the stimulus viewed by the observer 
(Fig. 4a and Supplementary Fig. 4). This method linearly maps high-
dimensional voxel space to a lower-dimensional information space that 
corresponds to visual field coordinates (Online Methods).

As a point of terminological clarification, we emphasize that we 
report estimates of the spatial representation of a stimulus display on 
the basis of the distributed activation pattern across all voxels within a 
ROI. Throughout the Results section, we therefore refer to our actual 
measurements as reconstructed spatial representations. However,  
in the Discussion, we interpret these measurements in the context of 
putative attentional priority maps that are thought to have a key role 
in shaping perception and decision making1–6.

Reconstructed spatial representations based on activation patterns 
in each ROI exhibited several qualitative differences as a function of 
stimulus eccentricity, task demands and ROI (which we quantify more 
formally below). First, representations were very precise in the primary 
visual cortex (V1) (Fig. 4a) and became successively coarser and more 
diffuse in areas of the extrastriate, parietal and frontal cortices (Fig. 4b).  

Figure 1 The effects of spatial attention on region-level priority maps. 

Spatial attention might act through one of several mechanisms to  

change the spatial representation of a stimulus within a putative  

priority map. (a) The hypothetical spatial representation carried across 

an entire region in response to an unattended circular stimulus.  

(b) Under one hypothetical scenario, attention might enhance the spatial

representation of the same stimulus by amplifying the gain of the spatial

representation (i.e., multiplying the representation by a constant greater

than 1). (c) Alternatively, attention might act through a combination of

multiple mechanisms such as increasing the gain, decreasing the size 

and increasing the baseline activity of the entire region (i.e., adding a 

constant to the response across all areas of the priority map). (d) Cross-

sections of a–c. This is not meant as an exhaustive description of different 

attentional modulations. (e) The different types of attentional modulation 

can give rise to identical responses when the mean BOLD response is 

measured across the entire expanse of a priority map. Simple Cartesian 

representations, such as those in a–c, may be visualized in early visual 

areas where retinotopy is well defined at the spatial resolution of the 

BOLD response. However, later areas might still encode precise spatial 

representations of a stimulus even when clear retinotopic organization 

is not evident, so using alternative methods for reconstructing stimulus representations, such as the approach described in Figure 3, is necessary to 

evaluate the fidelity of information encoded in putative attentional priority maps. Unattn, unattended; attn, attended.
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Similarly, representations of more eccentric stimuli were more diffuse 
compared to those of more foveal stimuli (for example, when com-
paring eccentric to foveal representations within each ROI). We also 
observed higher-fidelity representations of the upper visual field when 
using only voxels from the ventral aspects of V2 and V3 and higher-
fidelity representations of the lower visual field when using only voxels 
from the dorsal aspects of these regions (Supplementary Fig. 5a). 
These observations, which are consistent with known receptive field 
properties in nonhuman primates, confirm that our encoding-model 
method recovered known properties of these visual subregions and 
these reconstructions were not merely the result of fitting idiosyncratic 
aspects of our particular data set (i.e., overfitting noise). We further 
demonstrated this point by using the model to reconstruct representa-
tions of completely new stimuli (Supplementary Fig. 5b).

Second, the profile of reconstructed spatial representations within 
many regions also varied with task demands, which is consistent with 
the notion that these spatial representations reflect spatial maps of 
attentional priority. Notably, especially in human visual area V4 (hV4), 

the human middle temporal cortex (hMT+), the intraparietal sulcus 
(IPS) and the superior precentral sulcus (sPCS), the magnitude of 
the spatial representations increased when the participant was either 
attending to the flickering checkerboard stimulus or performing the 
spatial working memory task compared to when they were perform-
ing a task at fixation.

Size of spatial representations across eccentricities and ROIs
Before formally evaluating the effects of attention on the profile of 
spatial representations, we first sought to quantify changes in the 
size of these representations due to stimulus eccentricity and ROI 
for comparison with known properties of the primate visual system. 
To this end, we fit a smooth surface to the spatial representations 
associated with each of the three task conditions separately for each 
of the 36 possible stimulus locations in each ROI (Online Methods 
and Supplementary Fig. 2). These fits generated an estimate of 
the amplitude, baseline offset and size of the represented stimulus 
within each reconstructed spatial representation. We averaged the 

Figure 2 Task design and behavioral results. 

(a) Each trial consisted of a 500-ms 

target stimulus (T1), a 3000-ms flickering

checkerboard (6 Hz, full contrast, 2.33°  

(or 2.326°) diameter) and a 500-ms probe

stimulus (T2). T1 and T2 were at the same 

location in 50% of trials and were slightly 

offset in the remaining 50% of trials. During 

the stimulus presentation period, the stimulus 

dimmed briefly in 50% of trials, and 

the fixation point dimmed in 50% of trials  

(each independently randomly chosen). 

Participants maintained fixation throughout the experiment, and eye position measured during scanning did not vary as a function of either task 

demands or stimulus position (Supplementary Fig. 1). ITI, intertrial interval. (b) In each trial, a single checkerboard stimulus appeared at 1 of 

36 overlapping spatial locations with a slight spatial offset between runs (Online Methods). Each spatial location was sampled once per run. This 

six-by-six grid of stimulus locations probes six unique eccentricities, as indicated by the color code of the dots (which is not present in the actual 

stimulus display). (c) In alternating blocks of trials, participants detected either a dimming of the fixation point (attend fixation) or a dimming of the 

checkerboard stimulus (attend stimulus) or they indicated if the spatial position of T1 and T2 matched (spatial working memory). Notably, all tasks used 

a physically identical stimulus display—only the task demands varied. Each participant completed between four and six scanning runs of each of the 

three tasks. (d) For the attend fixation task, performance was better when the stimulus was presented at peripheral locations. In contrast, performance 

declined with increasing stimulus eccentricity in the attend stimulus and spatial working memory conditions. Error bars, s.e.m.

Figure 3 The encoding model that was used to reconstruct spatial 

representations of visual stimuli. Spatial representations of stimuli in each 

of the 36 possible positions were estimated separately for each ROI.  

(a) Training the encoding model. Shown is a set of linear spatial filters

that forms the basis set, or information channels, that we used to estimate

the spatial selectivity of the BOLD responses in each voxel (Online

Methods and Supplementary Figs. 2 and 3). The shape of these filters

determines how each information channel should respond in each trial

given the position of the stimulus that was presented (thus forming a

set of regressors or predicted channel responses). Then we constructed

a design matrix by concatenating the regressors generated for each trial.

This design matrix, in combination with the measured BOLD signal

amplitude in each trial, was then used to estimate a weight for each

channel in each voxel using a standard general linear model (GLM).

(b) Estimating channel responses. Given the known spatial selectivity

(or weight) profile of each voxel as computed in a, we then used the 

pattern of responses across all voxels in each trial in the test set to 

estimate the magnitude of the response in each of the 36 information 

channels in that trial. This estimate of the channel responses is thus 

constrained by the multivariate pattern of responses across all voxels 

in each trial in the test set and results in a mapping from voxel space 

(hundreds of dimensions) onto a lower-dimensional channel space (36 dimensions; Online Methods). We then produced a smooth reconstructed spatial 

representation for every trial by summing the responses of all 36 filters after weighting them by the respective channel responses in each trial. An 

example of a spatial representation computed from a single trial using data from V1 when the stimulus was presented at the location depicted in a is 

shown on the lower right.
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fit parameters obtained from each ROI across stimulus locations 
that were at equivalent eccentricities and then across participants 
(yielding six sets of fit parameters, with one set for each of the six 
possible stimulus eccentricities; Fig. 2b). We then used these fit 
parameters to make inferences about how the magnitudes and shapes 
of the spatial representations of stimuli from each ROI varied across  
stimulus positions.

First we quantified the accuracy of fits by computing the Euclidean 
distance between the centroid of the fit function and the actual loca-
tion of the stimulus across all eccentricities and task conditions. 
The estimated centroids were generally accurate and closely tracked 
changes in stimulus location (Fig. 4a). However, the distances between 
the fit centroids and the actual stimulus positions in sPCS were nearly 
double those of the next least-accurate region, hMT+ (sPCS, 3.01  
0.077° (mean  s.e.m.); hMT+, 1.68  0.17°). The error distances in all 
other areas were relatively small (V1, 0.67  0.084°; V2, 0.77  0.12°; 

In early visual ROIs of V1, V2, V3 and hV4, the size of the recon-
structed spatial representations increased with increasing eccentricity 
regardless of task condition (Fig. 5 and Online Methods; main effect 
of eccentricity, two-way analysis of variance (ANOVA) within each 
ROI, all P < 0.0004; unless otherwise specified, all statistical tests on 
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Figure 4 Task demands modulate spatial representations. 

(a) Reconstructed spatial representations of each of 36 flickering

checkerboard stimuli presented in a six-by-six grid. All 36 stimulus

locations are shown, with each location’s representation averaged

across participants (n = 8) using data from bilateral V1 during

attend stimulus runs. One participant was not included in this analysis

(AG3; Supplementary Fig. 4). Each small image represents the

reconstructed spatial representation of the entire visual field, and the

position of the image corresponds to the location of the presented

stimulus. (b) A subset of representations (corresponding to the upper

left quadrant of the visual field, represented by the dashed box in a) for

each ROI and each task condition. The results were similar for the other

quadrants (data not shown; Fig. 5 shows the aggregate quantification of

all reconstructions). All reconstructions in a and b are shown on the

same color scale.
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Figure 5 Fit parameters to reconstructed spatial representations averaged across like eccentricities. For each participant, we fit a smooth  

two-dimensional surface (Online Methods) to the average reconstructed stimulus representation in all 36 locations separately for each task condition 

and ROI. We allowed the amplitude, baseline, size and center (x, y coordinate) of the fit basis function to vary freely during the fitting. Fit parameters 

were averaged within each participant across like eccentricities and then averaged across participants. The size of the best-fitting surface varied 

systematically with stimulus eccentricity and ROI but did not vary as a function of task condition. In contrast, the amplitude of the best fitting surface 

increased with attention in hV4, hMT+ and sPCS (with a marginal effect in IPS). Shown are the main effect of task condition (*), eccentricity (†) and 

interaction between task and eccentricity (×) at the P < 0.05 level corrected for multiple comparisons (Online Methods). Gray symbols indicate trends at 

the P < 0.025 level uncorrected for multiple comparisons. Error bars, within-participant s.e.m.

V3, 0.75  0.095°; hV4, 1.16  
0.13°; IPS, 1.46  0.20°). Thus, 
the relatively low correspond-
ence between the estimated and 
actual stimulus positions on 
the basis of data from the sPCS 
suggests that the resulting fit  
parameters should be interpreted 
with caution (addressed further 
in the Discussion).
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P = 0.0003). For example, in hV4, the amplitude of the best fitting 
surface to the spatial representations of attended stimuli was higher 
during the attend stimulus and spatial working memory conditions 
as compared to the attend fixation condition (two-way ANOVA, main 
effect of task condition, P < 0.0001). We observed similar effects in 
hMT+ (two-way ANOVA, P = 0.0007) and sPCS (two-way ANOVA, 
P = 0.0007). A similar pattern was evident in IPS as well, but it did 
not survive correction for multiple comparisons (two-way ANOVA, 
uncorrected P = 0.011). Within individual ROIs, there was a signifi-
cant interaction between task condition and eccentricity in hMT+  
(P = 0.0003), with larger increases in amplitude observed for more 
eccentric stimuli. It is notable that this increase in the amplitude of 
spatial representations with attention corresponds to a focal gain mod-
ulation that is restricted to the portion of visual space in the immediate 
neighborhood of the attended stimulus. Changes in fit amplitude do 
not result from a uniform, region-wide increase in BOLD signal that 
equally influences the response across an entire ROI; such a general 
and widespread modulation would be accounted for by an increase 
in the baseline fit parameter (Supplementary Fig. 2). In addition, the 
impact of task condition on the amplitude of reconstructed spatial rep-
resentations was more pronounced in later visual areas (hV4, hMT+, 
IPS and sPCS) compared to earlier areas (V1, V2 and V3) (three-way 
interaction between ROI, condition and eccentricity, P = 0.043).

In addition to an increase in the fit amplitude of the reconstructed 
spatial representations, IPS and sPCS also exhibited a spatially global 
increase in baseline response levels across the entire measured spa-
tial representation in the attend stimulus and spatial working mem-
ory conditions compared to the attend fixation condition (Fig. 5 and 
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fit parameters to spatial representations employed a nonparametric 
permutation procedure and were corrected for multiple compari-
sons). This increase in size with eccentricity was expected, given the 
use of a constant stimulus size and the well-documented increase in 
the size of spatial receptive fields in early visual areas with increas-
ing eccentricity39. In addition, the size of the reconstructed stimulus 
representations also increased systematically from V1 to sPCS, which 
is consistent with the known expansion of mean spatial receptive 
field sizes in the parietal and frontal cortices40,41 (three-way ANOVA,  
significant main effect of ROI on fit size, P < 0.0001).

One alternative explanation is that the size of the represented 
stimulus increases with eccentricity because there is more trial-to-
trial variability in the center point of the represented stimulus within 
reconstructions at more peripheral stimulus locations. In turn, this 
increase in trial-to-trial variability would ‘smear’ the spatial repre-
sentations, leading to larger size estimates. However, our data speak 
against this possibility, as increased variability in the reconstructed 
stimulus locations would also result in lower estimated amplitudes, so 
increases in fit size and decreases in fit amplitude across conditions 
would always be yoked, and correlating the change in amplitude and 
the change in size within each eccentricity across each condition pair 
would reveal a negative correlation (for example, if the size of the 
spatial representation measured at a given eccentricity increased with 
attention, then the amplitude would decrease). No combinations of 
condition pair, eccentricity and ROI revealed a significant correlation 
between change in amplitude and change in size (all P > 0.05, corrected 
using the false discovery rate (FDR); Online Methods). Furthermore, 
in a follow-up analysis, we computed the population receptive field 
(pRF) for each voxel42, which revealed that voxels tuned to more 
eccentric visual field positions have a larger pRF size (Supplementary 
Table 2, Supplementary Results and Online Methods). This combi-
nation of analyses supports the conclusion that increases in fit size 
with increases in stimulus eccentricity are not due solely to increased 
variability in reconstructed spatial representations.

Effects of attention on spatial representations
Despite being sensitive to expected changes in representation size on 
the basis of anatomical properties of the visual system, task demands 
exerted a negligible influence on the size of the reconstructed spatial 
representations, with no areas showing a significant effect (hV4 was 
closest at P = 0.033, but this did not survive correction for multiple 
comparisons, and P values in all other regions were >0.147).

In contrast, the fit amplitudes in hV4, hMT+, IPS and sPCS were 
significantly modulated by task condition, with a higher amplitude 
in the attention and working memory conditions than in the fixation 
condition (Fig. 5; three-way ANOVA, main effect of task condition, 

Figure 6 Results are consistent when task  

difficulty is matched. (a) Performance of  

four participants who were rescanned while  

carefully matching task difficulty across all  

three experimental conditions. As in Figure 2d,  

the participants’ performance is better in the  

attend fixation task when the checkerboard is  

presented in the periphery, and performance in  

the attend stimulus and spatial working memory  

tasks is better when the stimulus is presented  

near the fovea. (b) A subset of illustrative  

reconstructed stimulus representations  

from V1, hV4, hMT+ and IPS0 and IPS1  

(IPS0/1) averaged across like eccentricities (correct trials only, with 

the number of averaged trials indicated as insets). Supplementary 
Figure 7 includes details about IPS subregion identification.
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Supplementary Fig. 6; two-way ANOVA, main effect of condition, IPS, 
P = 0.0014; sPCS, P = 0.0012). The spatially nonselective increases may 
reflect the fact that spatial receptive fields in these regions are often large 
enough to encompass the entire stimulus display40,41, so all stimuli might 
drive some increase in the response irrespective of spatial position.

Controlling difficulty across task conditions
Slight differences in task difficulty in the first experiment (Fig. 2d) 
might have contributed to the observed changes in spatial represen-
tations. To address this possibility, we ran four participants from 
the original cohort in a second experimental session while carefully 
equating behavioral performance across all three tasks (Fig. 6a). 
Overall accuracy during this second session did not differ signifi-
cantly across the three conditions, although we observed a similar 
interaction between task condition and stimulus eccentricity (Fig. 6a; 
two-way repeated-measures ANOVA, main effect of condition, F(2,6) 
= 0.043, P = 0.96; condition × eccentricity interaction, F(10,30) = 3.28,  
P = 0.005; attend fixation, 78.8  2.80% (mean  s.e.m.); attend stimulus,  
80.0  2.60%; spatial working memory, 79.8  1.76%). In addition,  
we also identified IPS visual field maps 0–3 (IPS0–IPS3) using stand-
ard procedures so that we could more precisely characterize the effects 
of attention on stimulus representations in subregions of our larger 
IPS ROI31,32,43,44 (Online Methods and Supplementary Fig. 7).

To ensure that behavioral performance was not unduly biasing our 
results, we reconstructed spatial representations using only correct  
trials (~80% of total trials; Fig. 6a). All representations were co-registered  
on the basis of stimulus eccentricity before averaging (the corre-
sponding eccentricity points are shown in Fig. 2b). Even though our  
sample size was smaller (n = 4 as compared to n = 8), the influence of 
attention on the topography of the spatial representations was similar 
to that in our initial observations (Fig. 6b). In addition, mapping 
out retinotopic subregions of the IPS revealed that the functionally  

defined IPS ROI (shown in Fig. 5) corresponds primarily to IPS0 and 
IPS1 (Supplementary Fig. 7a,b).

When examining best-fit surfaces to the spatial representations 
from this experiment (we computed the fits using co-registered 
representations and only correct trials for each participant; Fig. 7 
and Online Methods), we found that attention significantly modu-
lated amplitude across all regions (three-way ANOVA, main effect 
of task condition, P = 0.0162). When considered in isolation, only 
hV4 showed a significant change in amplitude with attention after 
correction for multiple comparisons (two-way repeated-measures 
ANOVA, P = 0.0022). However, we observed similar trends in V1, 
V2 and V3 (uncorrected P = 0.0243, 0.042 and 0.031, respectively). 
We found no significant main effect of task condition on the size of 
the representations (all P > 0.135, with the minimum P found for 
hMT+), and the overall baseline levels significantly increased as a 
function of task condition in hMT+ only (P = 0.00197). Across all 
ROIs, there was a main effect of eccentricity on fit size (three-way 
ANOVA, P = 0.0016) but no main effect of task condition on fit size 
(three-way ANOVA, P = 0.423).

pRFs expand with attention
For these same four participants, we computed the pRF42 for each 
voxel in V1, hV4, hMT+ and IPS0 using data from the behaviorally 
controlled replication experiment. We computed pRFs by first using 
the initial step of our encoding-model estimation procedure (Fig. 3a) 
to determine the response of each voxel to each position in the visual 
field (Supplementary Figs. 8 and 9 and Online Methods). We then 
fit each voxel’s response profile with the same surface that we used 
to characterize the spatial representations. By comparing pRFs com-
puted using data from each condition independently, we found that a 
majority of the pRFs in hV4, hMT+ and IPS0 increased in size during 
either the attend stimulus or spatial working memory condition as 
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Figure 7 Fit parameters to spatial representations after controlling for task difficulty. As in Figure 5, a surface was fit to the averaged, co-registered 

spatial representations for each participant. However, in this case, task difficulty was carefully matched between conditions, and representations were 

based solely on trials in which the participant made a correct behavioral response (Fig. 6b). The results are similar to those reported in Figure 5:  

attention acts to increase the fit amplitude of spatial representations in hV4 but does not act to decrease size. In hMT+, attention also acted in a 

nonlocalized manner to increase the baseline parameter. The statistics and symbols are as in Figure 5. Error bars, within-participant s.e.m.
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compared to the attend fixation condition. In contrast, pRF size in V1 
was not significantly modulated by attention (Supplementary Fig. 9 
and Supplementary Results).

To reconcile the results that voxel-level pRFs expanded with atten-
tion yet region-level spatial representations remained at a constant 
size, we simulated data using estimated pRF parameters from hV4  
(a region for which spatial representations increase in amplitude and 
pRFs increase in size; Online Methods) under different pRF modu-
lation conditions. In the first condition, we generated simulated 
data using pRFs with sizes centered around two mean values, which 
resulted in a pRF scaling across all simulated voxels (the average size 
across voxels increased, but some voxels decreased in size and others 
increased). Under these conditions, spatial representations increased 
in size (Supplementary Fig. 10a,b). In a second pRF modulation 
scenario, we used the fit pRF values from one participant’s hV4 ROI 
(Supplementary Fig. 8) to simulate data. In this case, spatial repre-
sentations remained the same size but increased in amplitude, which 
is consistent with our observations using real data (Figs. 5 and 7 and 
Supplementary Fig. 10c,d; this conclusion was also supported when 
we used pRF data from the other three observers to seed the simula-
tion). Thus, the pattern of pRF modulations across all voxels enhances 
the amplitude of spatial representations while preserving their size.

DISCUSSION
Spatial attention has previously been shown to alter the gain of single-
unit responses that are associated with relevant visual features such as 
orientation7–9,12,13,16,17 and motion direction11,14,15, as well as modu-
late the size of spatial receptive fields10,19–23. Here we show that these 
local modulations operate jointly to increase the overall amplitude of 
the region-level spatial representation of an attended stimulus without 
changing its represented size. Furthermore, these amplitude modula-
tions were especially apparent in later areas of the visual system such 
as hV4, hMT+ and IPS, which is consistent with predictions made by 
computational theories of attentional priority maps4,5.

We were able to reconstruct robust spatial representations across 
a range of eccentricities and for all three task conditions in all mea-
sured ROIs. Notably, even though we used an identical reconstruction 
procedure in all areas, the size of the reconstructed spatial representa-
tions increased from early to later visual areas (Fig. 5). Single-unit 
receptive field sizes across cortical regions are thought to increase 
in a similar manner39–41,45,46. In addition, representations of stimuli 
presented at higher eccentricities were larger than representations of 
stimuli presented near the fovea, which also corresponds to known 
changes in receptive field size with eccentricity39,42. Furthermore, 
simulating data under conditions in which we uniformly scaled the 
mean size of voxel-level pRFs revealed that such changes are detect-
able using our analysis method (Supplementary Fig. 10a,b). Thus, 
this technique is sensitive to detecting changes in the size of spatial 
representations of stimuli that are driven by known neural constraints 
such as relative differences in receptive field size across cortical ROIs 
and eccentricities, even though these factors are not built in to the 
spatial encoding model. Together these empirical and modeling 
results suggest that at the level of region-wide priority maps, the 
representation of a stimulus does not expand or contract under the 
attentional conditions tested here, and they underscore the impor-
tance of incorporating response changes across all encoding units 
when evaluating attentional modulations.

The quantification method we implemented for measuring changes 
in spatial representations across tasks, eccentricities and ROIs involved 
fitting a surface that was defined by several parameters: center loca-
tion, amplitude, baseline offset and size (Supplementary Fig. 2). 

Changes in activation that carry no information about stimulus loca-
tion (such as changes in general arousal or responsiveness to stim-
uli presented in all locations because of large receptive fields) will 
influence the baseline parameter, as such changes reflect increased 
or decreased signal across an entire region. In contrast, a change in 
the spatial representation that changes the representation of a visual 
stimulus would result in a change in the amplitude or size parameter 
(or both). Here we demonstrated that attention operates primarily 
by selectively increasing the amplitude of stimulus representations in 
several putative priority maps (Figs. 5 and 7) rather than increasing 
the overall BOLD signal more generally across entire regions.

Notably, spatial reconstructions based on activation patterns from 
sPCS were relatively inaccurate compared to other ROIs, and this ROI 
primarily exhibited increases in the fit baseline parameter (Fig. 5). 
This region, which may be a human homolog of the functionally 
defined macaque frontal eye field47,48 (FEF), might have showed 
degraded spatial selectivity in the present study because of the rel-
atively large size of spatial receptive fields observed in many FEF 
neurons (typically 20° diameter41) and the small area subtended by 
our stimulus display (9.31° across horizontally). Consistent with this 
possibility, previous reports of retinotopic organization in the human 
frontal cortex used stimuli that were presented at higher eccentricities 
in order to resolve spatial maps ( 10° (ref. 49) to 25° (ref. 45)).

Attentional priority maps
The extensive literature on spatial salience or priority maps1–6 postu-
lates the existence of one or several maps of visual space, each carry-
ing information about behaviorally relevant objects within the visual 
scene. Furthermore, priority maps in early visual areas (for example, 
V1) are thought to encode primarily low-level stimulus features (for 
example, contrast), whereas priority maps in later regions are thought 
to increasingly weight behavioral relevance over low-level stimulus 
attributes4. Although many important insights have stemmed from 
observing single-unit responses as a function of changes in atten-
tional priority (reviewed in ref. 5), these results provide information 
about how isolated pixels in a priority map change under different 
task conditions.

A previous fMRI study used multivariate decoding (classification) 
analyses to identify several frontal and parietal ROIs that exhibit 
similar activation patterns during covert attention, spatial working 
memory and saccade generation tasks32. These results provide strong 
support for the notion that common priority maps support represen-
tations of attentional priority across multiple tasks. Here we assessed 
how the holistic landscape across these priority maps measured using 
fMRI changed as attention was systematically varied. Our demonstra-
tion that spatial representation amplitude was enhanced with atten-
tion in later, but not earlier, ROIs supports the hypothesis that priority 
maps in higher areas are increasingly dominated by attentional factors 
and suggests that these attentional modulations of priority maps oper-
ate by scaling the amplitude of the behaviorally relevant item without 
changing its represented size.

pRFs
In addition to measuring spatial representations that are carried by 
the pattern of activation across entire visual regions, we also esti-
mated the voxel-level pRFs42 for a subset of participants and ROIs 
by adding constraints to our encoding-model estimation procedure 
(Supplementary Figs. 8 and 9 and Online Methods). This alterna-
tive tool has been used previously to evaluate the aggregate spatial 
receptive field profile across all neural populations within voxels that 
belong to different visual ROIs42.
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Changes in voxel-level pRFs can inform how a region dynami-
cally adjusts the spatial sensitivity of its constituent filters in order to 
modulate its overall spatial priority map. First, we replicated the typi-
cal results that voxel-level pRFs tuned for more eccentric visual field 
positions are larger in size (Supplementary Table 2) and that pRFs 
for later visual regions tend to be larger than pRFs for earlier visual 
regions (Supplementary Fig. 9). Second, results from this comple-
mentary analysis revealed that in regions that showed enhanced spa-
tial representation amplitude with attention (hV4, hMT+ and IPS0), 
pRF size increased (Supplementary Figs. 8 and 9), even though the 
corresponding region-level spatial representations did not increase in 
size (Fig. 7). This may seem like a disconnect, given that the particular 
pattern of pRF changes across all voxels within a region jointly shapes 
how the spatial priority map changes with attention. However, there 
is not necessarily a monotonic mapping between the size of the con-
stituent filters and the size of population-level spatial representations. 
Indeed, simulations based on the observed pattern of pRF changes 
with attention give rise to region-level increases in representation 
amplitude in the absence of changes in representation size, as we 
observed in our data (Supplementary Fig. 10). This finding, together 
with our primary results concerning region-level spatial representa-
tions, provides evidence that attentional modulation of spatial infor-
mation encoding is a process that strongly benefits from study at the 
large-scale population level.

Comparison to previous results
At the level of single-unit recordings, attention has been shown 
to decrease the size of MT spatial receptive fields when an animal 
is attending to a stimulus that is encompassed by the recorded  
neuron’s receptive field19–21 and to increase the size of spatial recep-
tive fields when an animal is attending nearby the recorded neuron’s 
receptive field20–22. In V4, spatial receptive fields appear to shift 
toward the attended region of space in a subset of neurons10. With 
respect to cortical space, these single-unit attentional modulations 
of spatial receptive fields suggest that unifocal attention may act to 
increase the cortical surface area that is responsive to a stimulus of 
constant size. Consistent with this prediction, our measured pRFs 
for extrastriate regions of hV4, hMT+ and IPS0 increased in size  
with attention.

In contrast, one previous report suggested that spatial attention 
instead narrows the activation profile along the cortical surface of 
the visual cortex in response to a visual stimulus50. However, this 
inference was based on patterns of intertrial correlations between 
BOLD activation patterns that were associated with dividing attention 
between four stimuli (one presented in each quadrant). These patterns 
were suggested to result from a combination of attention-related gain 
and narrowing of population-level responses50, that is, a narrower 
response along the cortical surface with attention.

We did not observe any significant attention-related changes in the 
size of the reconstructed spatial representations in either the primary 
visual cortex or other areas in the extrastriate, parietal or frontal corti-
ces. However, the tasks performed by observers and the analysis tech-
niques implemented were very different between these studies. Most 
notably, observers in the present study and in previous fMRI24–33 
and single-unit studies10,19–21 were typically required to attend to a 
single stimulus, whereas population-level activation narrowing was 
observed when participants simultaneously attended to the precise 
spatial position of four Gabor stimuli, one presented in each visual 
quadrant50. Furthermore, our observation that pRFs increased in size 
during the attend stimulus and spatial working memory conditions 
is compatible with the pattern of spatial receptive field changes in 

single units10,19–23, and our data and simulations show that these local 
changes can result in a region-level representation that changes only 
in amplitude and not in size (Supplementary Fig. 10).

Collectively, it seems probable that the exact task demands (uni-
focal as compared to multifocal attention) and stimulus properties 
(single stimulus as compared to multiple stimuli) may have a key role 
in determining how attention influences the profile of spatial repre-
sentations. Future work using analysis methods that are sensitive to 
region-level differences in spatial representations (for example, apply-
ing encoding models similar to that described here to data acquired 
when participants perform different tasks) in conjunction with care-
ful identification of neural receptive field properties across those 
task-demand conditions (for example, from simultaneous multiunit 
electrophysiological recordings or in vivo two-photon Ca2+ imag-
ing in rodents and primates) may provide complementary insights 
into when and how attention changes the shape and/or amplitude 
of stimulus representations in spatial priority maps and how those 
changes are implemented in the neural circuitry.

Notably, although our observations are largely consistent with 
measured receptive field changes at the single-unit level10,19–23, we 
cannot make direct inferences that such single-unit changes are in 
fact occurring. A number of mechanisms, including one in which 
only the gain of different populations is modulated by attention, could 
also account for the pattern of results we saw in both our region-level 
spatial representations (Figs. 5 and 7) and our pRF measurements 
(Supplementary Figs. 8 and 9). We note, however, that some neural 
mechanisms are highly unlikely given our measured spatial represen-
tations and pRFs. For example, we would not observe an increase in 
pRF size if spatial receptive fields of neurons within those voxels were 
to exclusively narrow with attention. As a result of these interpreta-
tional concerns, we restrict the inferences we draw from our results 
to the role of attention in modulating region-level spatial priority 
maps measured with fMRI and make no direct claims about spatial 
information coding at a neural level.

Information content of attentional priority maps
One consequence of an observed increase in the amplitude of recon-
structed priority maps is that the mutual information between the 
stimulus position and the observed BOLD responses should increase 
(a more complete discussion is provided in ref. 18). This increase 
can occur, in theory, because mutual information reflects the ratio of 
signal entropy (the variability in neural responses that is tied system-
atically to changes in the stimulus) to noise entropy (the variability 
in neural responses that is not tied to changes in the stimulus). Thus 
a multiplicative increase in the gain of the neural responses that are 
associated with an attended stimulus should increase mutual infor-
mation because it will increase the variability of responses that are 
associated with an attended stimulus location, which will in turn 
increase signal entropy. In contrast, a purely additive shift in all neu-
ral responses (reflected by an increase in the fit baseline parameter) 
will not increase the dynamic range of responses that are associated 
with an attended stimulus location, causing the mutual information 
to either remain constant (under a constant additive noise model) or 
even decrease (under a Poisson noise model, in which noise increases 
with the mean). Previous fMRI work on spatial attention has not 
attempted to disentangle these two potential sources of increases 
in the BOLD signal, highlighting the utility of approaches that can 
support more precise inferences about how task demands influence 
region-level neural codes24–33.

The information content of a neural code is not necessarily 
 monotonically related to the size of the constituent neural filters18. 
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Extremely small (pinpoint) or extremely large (flat) spatial filters each 
individually carry very little information about the spatial arrangement 
of stimuli within the visual field. Accordingly, the optimal filter size 
lies somewhere between these two extremes, and thus it is not straight-
forward to infer whether a change in filter size results in a more or less 
optimal neural code (in terms of information encoding capacity). By 
simultaneously estimating changes in filter size across an entire ROI sub-
tending the entire stimulated visual field, we were able to demonstrate 
that the synergistic pattern of spatial filter (pRF) modulations with atten-
tion jointly constrains the region-level spatial representation to maintain 
a constant represented stimulus size, despite most voxels exhibiting an 
increase in pRF size (Supplementary Figs. 8–10). Together our results 
demonstrate the importance of incorporating all available information 
across entire ROIs when evaluating the modulatory role of attention on 
the information content of spatial priority maps.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. Ten neurologically healthy volunteers (five female, 25  2.11 years 
of age (mean  s.d.)) with normal or corrected-to-normal vision were recruited 
from the University of California, San Diego (UCSD). All participants provided 
written informed consent in accordance with the human participants Institutional 
Review Board at UCSD and were monetarily compensated for their participation. 
For the original experiment, participants participated in two to three scanning 
sessions, each lasting 2 h. Data from two participants (one female) were excluded 
from the main analysis because of excessive head movement (AJ3) or unusually 
noisy reconstructions during attend fixation runs (AG3).

In the follow-up experiment in which behavioral performance was  
carefully controlled and IPS subregions were retinotopically mapped, four par-
ticipants of our original cohort were scanned for an additional two sessions, 
each lasting 1.5–2 h.

Stimulus. Stimuli were rear projected on a screen (90-cm width) located 380 cm 
from the participant’s eyes at the foot of the scanner table. The screen was viewed 
using a mirror attached to the headcoil.

We presented an identical stimulus sequence during all imaging runs while 
asking observers to perform several different tasks. Each trial began with the 
presentation of a small red dot (T1) that was presented for 500 ms, followed 
by a flickering circular checkerboard stimulus at full contrast (stimulus radius  
(rstim) = 1.163°, 1.47 cycles per degree) that was presented for 3 s and then a 
probe stimulus (T2) that was identical to T1. A 2-s intertrial interval separated 
each trial (Fig. 2a). T1 was presented between 0.176° and 1.104° from the center 
of the checkerboard stimulus along a vector of random orientation (in polar 
coordinates, 1 was randomly chosen along the range 0° to 360°, and r1 was uni-
formly sampled from the range 0.176° to 1.104°). This ensured that the location of 
T1 was not precisely predictive of the checkerboard location. In 50% of the trials, 
T2 was presented in the same location as T1, and in the remaining trials, T2 was 
presented between 0.176° and 1.104° from the center of the checkerboard along 
a vector oriented at least 90° from the vector along which T1 was plotted (r2 was 
uniformly sampled from the range 0.176° to 1.104°, and 2 was randomly chosen 
by adding between 90° and 270°, uniformly sampled, to 1). Polar coordinates 
used the center of the checkerboard stimulus as the origin. During the working 
memory condition (see below), participants based their response on whether T1 
and T2 were presented in the exact same spatial position.

The location of the checkerboard stimulus was chosen pseudorandomly 
in each trial from a grid of 36 potential stimulus locations spaced by 1.163°,  
or rstim. The stimulus location grid was jittered by 0.827° diagonally either up 
and to the left or down and to the right in each run, allowing for an improved 
sampling of space. All figures were presented aligned to a common space by 
removing jitter (see below).

In each run, there were 36 trials (1 trial for each stimulus location) and 9 null 
trials in which participants passively fixated for the duration of a normal trial  
(6 s). We scanned participants for between four and six runs of each task, always 
ensuring each task was repeated an equal number of times.

Tasks. Participants performed one of three tasks during each functional run  
(Fig. 2c). During attend fixation runs, participants responded when they detected 
a brief contrast dimming of the fixation point (0.33 s), which occurred in 50% of 
trials. During attend stimulus runs, participants responded when they detected 
a brief contrast dimming of the flickering checkerboard stimulus (0.33 s), which 
occurred in 50% of trials. During spatial working memory runs, participants 
made a button press response to indicate whether T2 was in the same location 
or a different location as T1. Notably, all three events (T1, checkerboard and T2) 
occurred during all runs, ensuring that the sensory display remained identical 
and that we were measuring changes in spatial representations as a function of 
task demands rather than changes as a result of inconsistent visual stimulation. 
For the follow-up behavioral control experiment, we dynamically adjusted the 
difficulty (contrast dimming or T1-T2 separation distance) to achieve a consistent 
accuracy of ~75% across tasks.

Eye tracking. Participants were instructed to maintain fixation during all runs. 
Fixation was monitored during scanning for four participants using an ASL LRO-
R long-range eye-tracking system (Applied Science Laboratories) with a sampling 
rate of 240 Hz. We recorded mean gaze as a function of stimulus location and task 

demands after excluding any samples in which neither the pupil nor the corneal 
reflection were reliably detected (Supplementary Fig. 1).

Imaging. We scanned all participants on a 3T GE MR750 research-dedicated 
scanner at UCSD. Functional images were collected using a gradient echo planar 
imaging (EPI) pulse sequence and an eight-channel head coil (19.2 × 19.2 cm 
FOV, 96 × 96 matrix size, 31 3-mm-thick slices with 0-mm gap, TR = 2,250 ms,  
TE = 30 ms, flip angle = 90°), which yielded a voxel size of 2 × 2 × 3 mm.  
We acquired oblique slices with coverage extending from the superior portion of 
parietal cortex to the ventral occipital cortex.

We also acquired a high-resolution anatomical scan (FSPGR T1-weighted 
sequence, TR/TE = 11/3.3 ms, TI = 1,100 ms, 172 slices, flip angle = 18°, 1 mm3 
resolution). Functional images were co-registered to this scan. Images were pre-
processed using FSL (Oxford, UK) and BrainVoyager 2.3 (BrainInnovations). 
Preprocessing included unwarping the EPI images using routines provided by 
FSL, slice-time correction, three-dimensional motion correction (six-parameter 
affine transform), temporal high-pass filtering (to remove first-, second- and 
third-order drift), transformation to Talairach space and normalization of signal 
amplitudes by converting to z scores. We did not perform any spatial smoothing 
beyond the smoothing introduced by resampling during the co-registration of 
the functional images, motion correction and transformation to Talairach space. 
When mapping IPS subregions, we scanned the participants using an identical 
pulse sequence but instead used a 32-channel Nova Medical headcoil.

Functional localizers. All the ROIs used were identified using independent local-
izer runs acquired across multiple scanning sessions.

Early visual areas were defined using standard retinotopic procedures51,52. We 
identified the horizontal and vertical meridians using functional data projected 
onto gray- and white-matter boundary surface reconstructions for each hemi-
sphere. Using these meridians, we defined the areas V1, V2v, V3v, hV4, V2d and 
V3d. Unless otherwise indicated, data were concatenated across hemispheres and 
across the dorsal and ventral aspects of each respective visual area. We scanned 
each participant for between two and four retinotopic mapping runs (n = 3 com-
pleted two runs, n = 3 completed three runs, and n = 2 completed four runs).

hMT+ was defined using a functional localizer in which a field of dots either 
moved with 100% coherence in a pseudorandomly selected direction or were 
randomly replotted on each frame to produce a visual ‘snow’ display53,54. Dots 
were each 0.081° in diameter and were presented in an annulus of between 0.63° 
and 2.26° around the fixation. During coherent dot motion, all dots moved at a 
constant velocity of 2.71° s−1. Participants attended the dot display for transient 
changes in velocity (during coherent motion) or replotting frequency (snow). 
Participants completed between one and three runs of this localizer (n = 2 com-
pleted one run, n = 3 completed two runs, and n = 3 completed three runs).

IPS and sPCS ROIs were defined using a functional localizer that required 
maintenance of a spatial location in working memory, a task that is commonly 
used to isolate IPS and sPCS, which is the putative human FEF47,49. A flickering 
checkerboard subtending half of the visual field appeared for 12 s, during which 
time two spatial working memory trials were presented. During the flickering 
checkerboard presentation, we presented a red target dot for 500 ms, which was 
followed 2 s later by a green probe dot for 500 ms. After the probe dot appeared, 
participants indicated whether the probe dot was in the same location or a dif-
ferent location as the red target dot. Here we limited our definition of IPS to the 
posterior aspect (Supplementary Table 1). ROIs were functionally defined with a 
threshold of FDR-corrected P < 0.05 or a more stringent threshold when patches 
of activation abutted one another. Participants completed between one (n = 2) 
and two (n = 6) runs of this scan.

We also used data from these IPS and sPCS localizer scans to identify voxels 
in all other ROIs that were responsive to the portion of the visual field in which 
stimuli were presented in the main tasks, as the large checkerboard stimuli 
subtended the same visual area as the stimulus array used in the main task. 
All ROIs were masked on a participant-by-participant basis such that further 
 analyses only included voxels with significant responses during this localizer task  
(FDR corrected P < 0.05).

Mapping IPS subregions. To determine the likely relative contributions of differ-
ent IPS subregions to the localized ROI measured for all participants, we scanned 
the four participants who made up the behaviorally controlled cohort presented 
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in Figures 6 and 7 using a polar angle mapping stimulus and an attentionally 
demanding task.

We used two stimulus types and behavioral tasks to define the borders between 
IPS subregions31,32,43,44. In all runs, we used a wedge stimulus spanning a 72° 
polar angle and presented between 1.75° and 8.75° eccentricity rotating with 
a period of 24.75 s. In alternating runs, the wedge was either a 4-Hz flicker-
ing checkerboard stimulus (black-white, red-green or blue-yellow) or a field of  
moving black dots (0.3°, 13 dots per square degree2, moving at 5° s−1, changing 
direction every 8 s). During checkerboard runs, participants quickly responded 
after detecting a brief (250 ms) contrast dimming of a portion of the checker-
board. During moving dots runs, participants quickly responded after detecting 
a brief (417 ms) increase in dot speed. Targets appeared with 20% probability 
every 1.5 s. Difficulty was adjusted to achieve approximately 75% correct per-
formance by changing the magnitude of the contrast dimming (checkerboard) 
or dot speed increment (moving dots) between runs. On average, participants 
performed with 84.1% accuracy in the contrast dimming task and 75.4% accuracy 
in the moving dots task. Two participants completed 14 runs (8 clockwise and  
6 counterclockwise), and one participant completed 10 runs (AC; 5 clockwise and 
5 counterclockwise). One participant was scanned with two different stimulus 
setups: half of all runs used the parameters described above and half used a wedge 
that spanned 60° of polar angle and rotated with a period of 36.00 s (AB; 6 runs 
clockwise, 6 runs counterclockwise).

Preprocessing procedures were identical to those used for the main task.  
To compute the best visual field angle for each voxel in IPS, we shifted the signals 
from counterclockwise runs earlier in time by twice the estimated hemodynamic 
response function (HRF) delay (2 × 6.75 s = 13.5 s), removed the first and last 
full cycle of data (we removed 22 TRs for all participants except AB, for which we 
removed 32 TRs) and then reversed the time series so that all runs correspond 
to the clockwise stimulus presentation. We then averaged these time-inverted 
counterclockwise runs with the clockwise runs. We computed the power and 
phase at the stimulus frequency (1/24.75 Hz or 1/36 Hz, participant AB) and 
subtracted the estimated HRF delay (6.75 s) to align the signal phase in each voxel 
with the visual stimulus position. We then projected maps onto the reconstructed 
cortical surfaces for each subject and defined IPS0–IPS3 by identifying the upper 
and lower vertical meridian responses (Supplementary Fig. 7a). Low statisti-
cal thresholds were used (computed using normalized power at the stimulus 
frequency) to identify the borders of IPS subregions. Voxels were selected for 
further analysis by thresholding their activation during the same independent 
localizer task that was used to functionally define IPS and sPCS.

Encoding model. To measure changes in spatial representations under differ-
ent task demands, we implemented an encoding model to reconstruct spatial 
representations of each stimulus used in the main task34,36–38. This technique 
assumes that the signal measured in each voxel can be modeled as the weighted 
sum of different discrete neural populations, or information channels, that have 
different tuning properties36. Using an independent set of training data, we esti-
mated weights that approximate the degree to which each underlying neural 
population contributed to the observed BOLD response in each voxel (Fig. 3a). 
Next, an independent set of test data was used to estimate the activation within 
these information channels on the basis of the activation pattern across all voxels 
within an ROI in each test trial using the information channel weights in each 
voxel that were estimated during the training phase (Fig. 3b).

This approach requires specifying an explicit model for how neural populations 
encode information. Here we assumed a simple model for visual encoding within 
each ROI that focused exclusively on the spatial selectivity of visually respon-
sive neural populations. To this end, we built a basis set of 36 two-dimensional  
spatial filters. We modeled these filters as cosine functions raised to a high power: 
f(r) = (0.5 cos(r /s) + 0.5)7 for r < s and 0 elsewhere (r is the distance from 
that filter’s center; Supplementary Fig. 2). This allowed the filters to maintain 
an approximately Gaussian shape while reaching 0 at a fixed distance from the 
center (s°), which helped constrain curve-fitting solutions (below). The s (size 
constant) parameter was fixed at 5rstim, which is 5.8153°. The 36 identical filters 
formed a six-by-six grid spanning the visual space subtended by the stimuli. 
Filters were separated by 2.094°, with the centers tiled uniformly from 5.234° 
above, below, left and right of the fixation (Fig. 3a). The full-width half-maxi-
mum (FWHM) of all filters was 2.3103° (Supplementary Figs. 2 and 3). This 
ratio of filter size to spacing was chosen to avoid high correlations between 

predicted channel responses (caused by too much overlap between channels, 
which can result in a rank-deficient design matrix) and to accomplish smooth 
reconstructions (if filters are too small, reconstructed spatial representations are 
‘patchy’; Supplementary Fig. 3 shows an illustration of reconstruction smooth-
ness as a function of the filter size to spacing ratio). All filters were assigned  
identical FWHMs so that known properties of the visual system, such as increas-
ing receptive field size with eccentricity and along the visual stream39–41, could 
be recovered without being built in to the analysis.

To avoid circularity in our analysis, we used a cross-validation approach 
to compute channel responses for every trial. First we used all runs but three  
(one run for each task condition) to create a training set that had an equal number 
of trials in each condition. Using this training set, we estimated channel weights 
within each voxel across all task conditions (i.e., runs one through five of the 
attend fixation, attend stimulus and spatial working memory tasks were used 
together to estimate channel weights, which were used to compute channel 
responses for run six of each task condition). The use of an equal number of 
trials from each condition in the training set ensures that channel weight estima-
tion is not biased by any changes in BOLD response across task demands. Next 
the weights estimated across all task demand conditions were used to compute 
channel response amplitudes for each trial individually. Trials were then sorted 
according to their task condition and spatial location.

During the training phase, we created a design matrix that contained the pre-
dicted channel response for all 36 channels in every trial (Fig. 3a). The predicted 
response for each channel was computed by filtering a mask over the portion 
of the display subtended by the stimulus on that trial by the channel’s basis  
function. The resulting design matrix was normalized to 1, such that reconstruc-
tion amplitudes are in units of BOLD z scores.

To extract relevant portions of the BOLD signal in every trial for computing 
channel responses, we took an average of the signal over two TRs beginning 
6.75 s after trial onset. This range was chosen by examination of BOLD HRFs 
and was the same across all participants. Qualitatively, results do not change 
when other reasonable HRF lags are used, such as using two TRs starting 4.5 s 
after the stimulus.

Using this approach, we modeled voxel BOLD responses as a weighted sum 
of channel responses comprising each voxel36,38. This can be written as a general 
linear model of the form

B WC1 1

where B1 is the BOLD response in each voxel measured during every trial (m 
voxels × n trials), W is a matrix that maps channel space to voxel space (m voxels ×  
k channels), and C1 is a design matrix of predicted channel responses in each trial 
(k channels × n trials). The weight matrix Ŵ was estimated by
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Then, using data from the held out test data set (B2), the weight matrix estimated 
above was used to compute channel responses for every trial (Ĉ2), which were 
then sorted by task condition and spatial position:
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Reconstructing spatial representations. To reconstruct the region-wide repre-
sentation of the visual stimulus viewed in every trial, we computed a weighted 
sum of the basis set using each channel response as the weight for the corres-
ponding basis function (Fig. 3b). Reconstructions were computed out to a 5.234° 
eccentricity across the horizontal and vertical meridians, although visual stimuli 
only subtended at a maximum 4.523° eccentricity across the horizontal or ver-
tical meridians. This was done to avoid edge artifacts in the reconstructions. 
Additionally, at this stage, the reconstructed visual fields were shifted to account 
for the slight jitter introduced in the presented stimulus locations and to align 
reconstructions from all trials. Runs in which stimuli were jittered up and to the 
left were reconstructed by moving the centers of the basis functions down and 
to the right, and runs in which stimuli were jittered down and to the right were 
reconstructed by moving the centers of the basis functions up and to the left. 
These shifts serve to counter the spatial jitter of stimulus presentation for visuali-
zation and quantification. By including spatial jitter during stimulus presentation, 
we are able to attain a more nuanced estimate of channel weights by sampling 72 
stimulus locations rather than 36.

(1)(1)

(2)(2)

(3)(3)
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We averaged each participant’s reconstructions at all 36 spatial locations for 
each task condition across trials. For Figure 4, all n = 8 participants’ average 
reconstructions for each task condition were averaged, and reconstructions 
from all ROIs and task conditions were visualized on a common color scale to 
illustrate differences in spatial representations across the different task condi-
tions and spatial locations. The three-by-three subset of reconstructions shown 
in Figure 4b was chosen as it is representative and results were similar for  
all quadrants.

For the follow-up control experiment, we plotted reconstructed spatial repre-
sentations from only correct trials by co-registering all representations for trials 
at matching eccentricities and then averaging across all co-registered representa-
tions for each participant at each eccentricity. We co-registered representations 
for like eccentricities to the top left quadrant (Fig. 6b). Representations were 
rotated in 90° steps and flipped across the diagonal (equivalent to a matrix trans-
pose operation on pixel values) as necessary.

Notably, this analysis depends on two necessary conditions. First, individual 
voxels must respond to certain spatial positions more than others, although the 
shape of these spatial selectivity profiles is not constrained to follow any particular 
distribution (for example, it need not resemble a Gaussian distribution). Second, 
the spatial selectivity profile for each voxel must be stable across time, such that 
spatial selectivity estimated on the basis of data in the training set can generalize 
to the held-out test set.

Curve fitting. To quantify the effects of attention on visual field reconstructions, 
we fit a basis function to all 36 average reconstructions for each participant for 
each task condition for each ROI using fminsearch as implemented in MATLAB 
2012b (which uses the Nelder-Mead simplex search method; Mathworks, Inc).

The error function used for fitting was the sum of squared errors between the 
reconstructed visual stimulus and the function

f r b a r s r s( ) ( . . cos( / ))0 5 0 5 7 for , 0 elsewhere

where r is computed as the Euclidean distance from the center of the fit function. 
We allowed the baseline (b), amplitude (a), location (x, y) and size (s) to vary as 
free parameters. The size s was restricted so as not to be too large or too small 
(confined to 0.5815° < s < 26.17°), and the location was restricted around the 
region of visual stimulation (x and y lie within stimulus extent borders +1.36° 
on each side).

Because of the number of free parameters in this function, we performed 
a two-step stochastic curve-fitting procedure to find the approximate best-fit 
function for each reconstructed stimulus. First we averaged reconstructions for 
each spatial location across all three task conditions and performed 50 fits with 
random starting points. The fit with the smallest sum squared error was used as 
the starting point around which all other starting points were randomly drawn 
when fitting to reconstructions from each task condition individually. When 
fitting individual task condition reconstructions, we performed 150 fits for each 
condition. We used parameters from the fit with the smallest sum squared error 
as a quantitative characterization of the reconstructed visual stimulus. Then we 
averaged the fit parameters across like eccentricities within each task condition, 
ROI and participant. For the follow-up control experiment, we performed an 
identical fitting procedure on each of the co-registered representations to directly 
estimate the best fit parameters at each eccentricity.

Excluded participant. For one participant (AG3), reconstructions from the 
attend fixation runs were unusually noisy and could not be well approximated by 
the basis function used for fitting. However, both the attend stimulus and spatial 
working memory runs for this individual exhibited successful reconstructions 
(Supplementary Fig. 4). As the estimated channel weights used to compute these 
stimulus reconstructions were identical across the three task conditions, only 
changes in information coding across task demands could account for this radical 
shift in reconstruction fidelity. Because this participant’s reconstructions could 
not be accurately quantified for the attend fixation condition, the reconstructions 
and fit parameters for this individual for all conditions have been left out of the 
data presented in the Results. However, as noted above, data from this participant 
are consistent with our main conclusion that attentional demands influence the 
quality of spatial representations.

(4)(4)

Evaluating the relationship between amplitude and size. It may be the case that 
our observation of increasing spatial representation size with increasing stimulus 
eccentricity is purely a result of intertrial variability in the reconstructed stimulus 
position. That is, the same representation could be jittered across trials, and the 
resulting average representation across trials would appear ‘smeared’ and would 
be fit with a larger size and smaller amplitude. If this were true, changes in these 
parameters would always be negatively correlated with one another—an increase 
in size across conditions would always occur with a decrease in amplitude.

To evaluate this possibility, for each eccentricity, ROI and condition pair 
(attend stimulus and attend fixation, spatial working memory and attend stimu-
lus, and spatial working memory and attend fixation), we correlated the change in 
size with the change in amplitude (each correlation contained eight observations, 
corresponding to n = 8 participants). To evaluate the statistical significance of 
these correlations, we repeated this procedure 10,000 times, each time shuffling 
the condition labels separately for size and amplitude, recomputing the difference 
and then recomputing the correlation between changes in size and changes in 
amplitude. This resulted in a null distribution of chance correlation values against 
which we determined the probability of obtaining the true correlation value by 
chance. After correction for FDR, no correlations were significant (all P > 0.05; 
of note, FDR is more liberal than Bonferroni correction).

Representations from the ventral and dorsal aspects of V2 and V3. For 
Supplementary Figure 5a, we generated reconstructions using a procedure 
identical to that used for Figure 4, except we only used voxels that were assigned 
to the dorsal or ventral aspects of V2 and V3 instead of combining voxels across 
the dorsal and ventral aspects, as was done in the main analysis.

Reconstructions of untrained (new) stimuli. For Supplementary Figure 5b, we 
estimated channel weights using all runs of all task conditions from the main task 
as a training set. We used these weights to estimate channel responses from the 
BOLD data taken from an entirely new data set, which consisted of responses to 
a hemi-annulus–shaped radial checkerboard (Supplementary Fig. 5b).

This new experiment featured four stimulus conditions: left-in, left-out,  
right-in and right-out. The inner hemi-annuli subtended at 0.633° to 2.262° 
eccentricity. The outer hemi-annuli subtended at 2.262° to 4.523° eccentricity.  
Stimuli were flickered at 6 Hz for 12 s in each trial while the participants  
performed a spatial working memory task on small probe stimuli presented at 
different points within the displayed stimulus.

The BOLD signal used for reconstruction was taken as the average of four 
TRs beginning 4.5 s after stimulus onset. These data were used as the test set. 
Otherwise, the reconstruction process was identical to that in the main experi-
ment, as were all other scan parameters and preprocessing steps.

pRF estimation. To determine whether the spatial sensitivity of each voxel across 
all trials and all runs changed across conditions, we implemented a new ver-
sion of a pRF analysis42,55. For this analysis, we estimated the unimodal, iso-
tropic pRF that best accounts for the BOLD responses to each stimulus position 
within every single voxel. This analysis is complementary to the primary analyses  
described above.

For four participants (those presented in Figs. 6 and 7 and Supplementary 
Fig. 7) and four ROIs for each participant (V1, hV4, hMT+ and IPS0, which 
were chosen because this set includes both ROIs with (hV4, hMT+ and IPS0) 
and without (V1) attentional modulation), we used data across all runs within 
each task condition and ridge regression56 to identify pRFs for each voxel under 
each task condition. We computed these pRFs using a method similar to that 
used to compute channel weights in the encoding model analysis (Fig. 3a and 
Online Methods; the univariate step 1 of the encoding model, see equation (1)). 
We generated predicted responses with the same information channels that were 
used for the encoding model analysis (Fig. 3a), and reconstructed pRFs for each 
task condition for a given voxel were defined as the corresponding spatial filters 
weighted by the computed weight for each channel (Supplementary Fig. 8a).

In the main analysis in which we computed spatial reconstructions on the 
basis of activation patterns across an entire ROI (Figs. 4 and 6c), any spatial 
information encoded by a voxel’s response could be exploited; this is true even if 
the voxel’s response to different locations was not unimodal (it need not follow 
any set distribution, as long as it responds consistently). However, univariate pRFs 
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computed on a voxel-by-voxel basis cannot be well characterized by an isotropic 
function if they are not unimodal57. Thus, to ensure that most of the pRFs were 
sufficiently unimodal to fit an isotropic function, we used ridge regression56,57 
when computing spatial filter weights for the pRF analysis. The regression  
equation for computing channel weights then becomes

ˆ ( )W C C I C BT T T
1 1

1
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where I is an identity matrix (k × k). To identify an optimal ridge parameter ( ), 
we computed the Bayes information criterion58 value across a range of  values 
(0 to 500) for each voxel using data concatenated across all three task condi-
tions. This allowed for an unbiased selection of  with respect to task condition.  
The  with the minimum mean Bayes information criterion value across all vox-
els within a ROI was selected, and this  was used to compute channel weights 
for each of the three task conditions separately. An increasing  value results in 
greater sparseness of the best-fit channel weights for each voxel, and a  value of 
0 corresponds to ordinary least-squares regression.

After computing pRFs for each task condition, we fit each pRF with the same 
function that was used to fit the spatial representations (equation (4)) using a 
similar optimization procedure. We restricted the fit size (FWHM) to be at most 
8.08°, which corresponds to nearly the full diagonal distance across the stimu-
lated visual field. This boundary was typically encountered only for hMT+ and 
IPS0 and served to discourage the optimization procedure from fitting large, 
flat surfaces. Then we computed an R2 value for each fit and used only voxels 
for which the minimum R2 across conditions was greater than or equal to the 
median of the minimum R2 across conditions from all voxels in that participant’s 
ROI (Supplementary Fig. 8a,b).

Because we only have a single parameter estimate for each condition for each 
voxel, we evaluated whether fit size is more likely to increase or decrease between 
each pair of task conditions (attend stimulus compared to attend fixation, spatial 
working memory compared to attend stimulus and spatial working memory 
compared to attend fixation) for each region for each participant by determining 
the percentage of voxels that lie above the unity line in a plot of one condition 
against another (Supplementary Fig. 8d).

Simulating data with different pRF properties. In order to assess whether our 
region-level multivariate spatial representation analysis would be sensitive to 
changes in voxel-level univariate pRFs, we generated simulated data using two 
different pRF modulation models.

For the first model (Supplementary Fig. 10a,b), we randomly generated  
500 pRF functions so as to uniformly sample the visual field for each of two 
conditions (condition A, smaller pRFs; condition B, larger pRFs). Across the two 
conditions, each simulated voxel’s pRF maintained its preferred position while its 
amplitude and baseline were each randomly and independently sampled across 
conditions from the same normal distribution (amplitude:  = 0.8513,  = 0.25; 
baseline:  = −0.1952,  = 0.25; these values were taken from the average-fit pRF 
parameters across all participants for hV4 in the attend fixation and attend stimu-
lus conditions; Supplementary Fig. 9a). pRF size (FWHM) was sampled from a 
normal distribution with  = 0.5 and a mean of  = 4.405° for condition A (mean 
of pRF size for hV4, attend fixation) and  = 4.89° for condition B (mean of pRF 
size for hV4, attend stimulus; an increase of 11%). In our simulation, this resulted 
in 79% of simulated voxels showing larger pRF sizes in condition B compared 
to condition A. For the second model (Supplementary Fig. 10c,d), we used the 
upper median split of fit pRFs for the single participant shown in Supplementary  
Figure 8c, hV4 ROI, to generate the simulated BOLD data. This allowed us to 
simulate region-level BOLD data for each attention condition tested in our experi-
ment and enabled us to determine whether the changes in univariate voxel-level 
pRF size we observed (Supplementary Fig. 9) are consistent with the multivariate 
region-level spatial representations presented in the main text (Figs. 5 and 7).

After generating voxel-level pRFs using each of the two models described 
above, we added noise to the simulated weights (Gaussian noise added independ-
ently to each channel weight,  = 0.1) and presented model voxels with six runs 
of all 36 spatial positions for each condition. We simulated each voxel’s BOLD 
response as the predicted channel response (response of corresponding spatial 
filter; Fig. 3a) to each stimulus weighted by the corresponding channel weights. 
We added Gaussian noise to the resulting BOLD data for each simulated voxel 
independently (  = 0.1). Then all analyses of multivariate spatial representations 
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proceeded identically to those described above. We computed spatial represen-
tations using estimated channel weights computed across all conditions within 
a model (i.e., condition A and condition B (Supplementary Fig. 10a,b) or 
attend fixation, attend stimulus and spatial working memory (Supplementary  
Fig. 10c,d)) and then fit the average spatial representations with a smooth surface 
(Online Methods) to determine the amplitude and size of each spatial representa-
tion. We then averaged these parameters across all 36 positions.

Statistical procedures. All behavioral analyses on accuracy data were performed 
using two-way repeated-measures ANOVA, with task condition and stimulus 
eccentricity modeled as fixed effects (three levels and six levels, respectively; 
Figs. 2d and 6a).

To assess whether fit parameters to reconstructed spatial representations reli-
ably changed as a function of task demands, we performed a multistage permu-
tation testing procedure. This nonparametric procedure was adopted because 
the spatial filters (basis functions) used to estimate the spatial selectivity of each 
voxel during the training phase (Fig. 3a) overlapped and were not independent 
(violating a key assumption of standard statistical tests).

For each parameter (the rows in Figs. 5 and 7), we first found ROI- 
parameter combinations that showed an omnibus main effect in a repeated- 
measures ANOVA (1 factor, 18 levels) corrected using a FDR algorithm59 across 
all ROIs. Then we computed F scores for a two-way repeated measures design 
with eccentricity and condition as factors (six levels and three levels, respectively) 
for ROIs with significant omnibus main effects.

For all tests, because we had a relatively small n (n = 8 for Fig. 5, and n = 4 
for Fig. 7 and Supplementary Fig. 7) and the range of parameters was in some 
cases restricted to be positive (size), we computed an F distribution for the null 
hypothesis that there is no main effect of the omnibus factor (omnibus test) or 
that there is no main effect of condition, eccentricity or their interaction (for a 
follow-up two-way test) by shuffling trial labels within each participant 100,000 
times. For each data permutation, we computed a new F score for the omnibus 
test, and for ROI-parameter combinations with a significant omnibus effect, we 
computed a main effect of condition, eccentricity and their interaction. P values 
were estimated as the probability that the F score computed based on the shuffled 
data was equal to or greater than the F scores computed using the actual data. 
These additional tests were corrected for multiple comparisons using Bonferroni’s 
method within each parameter. We also occasionally highlight trends in the data 
by reporting P values that did not reach significance under correction for mul-
tiple comparisons at this sample size as marginal effects, and such P values are 
always reported as being uncorrected in the text. For display purposes, marginally  
significant tests are shown in Figures 5 and 7 at uncorrected P < 0.025.

In addition, we performed a three-factor repeated-measures ANOVA with 
ROI, task condition and eccentricity modeled as fixed effects to determine 
whether the fit parameters changed across ROIs (n = 8 for Fig. 5, and n = 4 for 
Fig. 7). We implemented the same permutation procedure described above to 
compute P values (10,000 iterations).

To determine whether pRF size increases at higher eccentricities, we computed 
a linear fit to a plot of each voxel’s pRF size compared to its pRF eccentricity for 
each ROI for each condition for each participant (Supplementary Fig. 8c). To 
determine whether the slope of the fit line was reliably positive for a given ROI, 
participant and condition, we computed confidence intervals around the best-fit 
slopes using bootstrapping (resampled all voxels with replacement 10,000 times), 
and the related P value was defined as the as the probability that the slope was 

0. We used a Bonferroni-corrected significance threshold for 48 planned com-
parisons (4 ROIs × 4 participants × 3 conditions) of  = 0.001 (Supplementary 
Results and Supplementary Table 2).

To evaluate the statistical significance of the pRF size increase (Supplementary 
Fig. 9), we first performed a two-way repeated-measures ANOVA with ROI and 
condition modeled as fixed effects and participant modeled as a random effect in 
which we shuffled ROI and condition labels for each participant and recomputed 
the percentage of voxels that increased in size across each condition pair. We 
repeated this shuffling procedure 10,000 times and compared F scores computed 
using the real labels to the distribution generated using the shuffled labels, as 
described above. Then we compared whether each condition pairing resulted 
in a significant change in pRF size for each ROI by computing a T score testing 
against the null hypothesis that 50% of voxels show an increase in pRF size. As 
described above, we generated a null T distribution by shuffling condition labels 
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within each participant 10,000 times. For this analysis, we used a Bonferroni- 
corrected significance threshold for 12 planned comparisons (4 ROIs × 3 condi-
tions) of  = 0.0042.
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Supplementary Figure 1 Participants maintained fixation in the scanner during all three task conditions, related 
to Figure 2. Average horizontal and vertical gaze position across each 3 s trial in each task condition. Neither 
horizontal nor vertical gaze varied as a function of either stimulus position or task demands. 2-way ANOVA for 
each gaze direction, with task condition and stimulus position (grouped into 6 bins corresponding to x or y 
coordinate for horizontal and vertical gaze plots, respectively) as factors: minimum p for main 
effects/interactions = 0.2725, which was for main effect of vertical stimulus position on vertical gaze. Note that 
data from null trials were not entered into the ANOVA, but subjects maintained steady fixation on these trials as 
well. Eyetracking data gathered in the scanner for 4 of the 8 participants. Error bars ±1 S.E.M. across subjects. 
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Supplementary Figure 2 One-dimensional cross-section of 2D basis function, related to Figure 3. Cross-
section through the center of a single basis function (Figure 3a). FWHM is the full-width at half-maximum. The 
size constant, s, was set to 5rstim (see Online Methods: Encoding model, Supplementary Fig. 3), where rstim is 
1.17°. This corresponds to the distance from the center at which the filter amplitude reaches 0. 
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Supplementary Figure 3 The relationship between basis function size and spacing changes the smoothness of 
reconstructions, related to Figures 3 and 4. (a) For a constant spatial filter separation distance of  2.09° (which 
matches that used in the main analysis), we varied the size parameter (Supplementary Fig. 2) of 2 neighboring 
spatial filters, then plotted their sum as a function of position in space and filter size (which was continuously 
varied). Summed response is indicated by the image colorscale. (b) A slice from (a) at the FWHM of the filters 
used in the main analysis (dashed line in panel a). This value resulted in smooth reconstructions to which we  
could accurately fit surfaces to quantify the spatial representations (see Online Methods: Curvefitting), but also 
resulted in sufficient filter separation so that adjacent filters did not excessively overlap (see below). Smaller 
FWHM values would result in speckled reconstructed spatial representations which would be poorly fit using a 
single surface (this would be seen as a dipped black solid line in panel b; see panel a at small filter size values), 
and larger FWHM values would result in poorly discriminable predicted channel responses because neighboring 
filters would account for much of the same variance in the signal due to a high degree of overlap (see a, high 
FWHM values). At high enough FWHM values, the model cannot be estimated because overly high correlations 
between adjacent filters result in a rank deficient design matrix (Equation 1 in Online Methods). 
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Supplementary Figure 4 Poor reconstructions during attend fixation condition for participant AG3, related to 
Figure 4. Plotted as in Figure 4. All images on same color scale. Poor reconstructed spatial representations were 
measured during attend fixation runs across all ROIs, but more typical looking reconstructed spatial 
representations were observed for both of the other task conditions. Behavioral performance for this participant 
indicated they were awake and vigilantly performing the fixation task. This was the only participant with this 
issue, and their data were not included in Figures 4 or 5 (see Online Methods: Excluded participant). Note that 
the same estimated channel weight matrix was used here as was used to reconstruct spatial representations 
during the attend stimulus and spatial working memory tasks. Furthermore, note that these data support our 
conclusion of higher amplitude spatial priority maps with attention and they were excluded solely because of the 
noisy fits in the fixation condition. All of our reported effects would be more pronounced if this participant was 
included (see data included in the html version of this report).  
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Supplementary Figure 5 Encoding model does not overfit data and generalizes to novel stimuli, related to 
Figure 4. (a) Reconstructions from all 36 stimulus locations under the attend stimulus condition across all 8 
observers using voxels from only the ventral and dorsal aspects of V2 and V3. Color scale is identical to that 
used in Figure 4. Note that spatial reconstructions in the dorsal & ventral aspects of V2 and V3 are more robust 
in the lower and upper visual field, respectively. This pattern matches the known selectivity of dorsal and 
ventral areas V2 and V3. (b) Encoding model can be generalized to reconstruct novel stimuli that were not part 
of the training set. An encoding model trained using all attend fixation, attend stimulus & spatial working 
memory runs was able to accurately reconstruct a novel, untrained stimulus set acquired during a different 

scanning session on 7 of 8 participants presented in Figures 4-5 (novel test data was not available for this 8
th

 
participant, AA3). This novel stimulus display consisted of four half-circle stimuli presented at one of two 
eccentricities (see top row), and the model was able to reconstruct these four stimuli with a high degree of 
precision (see Online Methods: Stimulus reconstructions – novel stimuli for more details).   
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Supplementary Figure 6 sPCS exhibits larger responses, averaged across all voxels within the sPCS, in the 
attend stimulus and spatial working memory conditions, related to Figures 4 and 5. Both left and right sPCS 
exhibit strong hemodynamic responses to stimuli, with increased averaged (i.e. univariate) responses during 
attend stimulus and spatial working memory task conditions compared to the attend fixation condition. 
Additionally, this mean signal increase under conditions of attention to the stimulus or spatial working memory 
likely accounts for much of the significant increase in the baseline offset in the reconstructed stimulus 
representations reported in Figure 5. Error bars ±1 SEM across subjects. 
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Supplementary Figure 7 IPS ROI primarily corresponds to IPS 0/1, related to Figures 6 and 7.  (a) Polar angle 
preferences for each voxel plotted on the inflated surface of 4 participants’ cortical sheets. Maps are liberally 
thresholded to show any voxel with normalized power at the stimulus frequency > 0.005. Smooth polar angle 
transitions were used to delineate four retinotopic regions of IPS (termed IPS 0-3) in each of these 8 
hemispheres. Dashed lines: lower vertical meridian (LVM); solid lines: upper vertical meridian (UVM). (b) For 
each participant and each hemisphere we compared the number of overlapping voxels between our original 
localizer-defined IPS ROI (see Online Methods: Mapping IPS subregions) and each of these 4 retinotopically 
mapped IPS subregions . The original IPS ROI primarily overlaps with areas IPS 0 and 1, and is therefore 

AA3B

AC3B AI3B

AB3B

LVM UVMUVM

Right visual
 field

Left visual
 field

3

4

5

6

7

IPS0 IPS1 IPS2 IPS3

F
it 

si
ze

 (
°)

0

0.5

1.0

A
m

pl
itu

de
 

(B
O

LD
 Z

-s
co

re
)

- 0.1

0

0.1

0.2

B
as

el
in

e 
(B

O
LD

 Z
-s

co
re

)

Eccentricity (°)

0.8

1.8

2.5

3.0

3.4

4.1

0.8

1.8

2.5

3.0

3.4

4.1

0.8

1.8

2.5

3.0

3.4

4.1

0.8

1.8

2.5

3.0

3.4

4.1

0.8

1.8

2.5

3.0

3.4

4.1

a

c

IPS0 IPS1 IPS2 IPS3
0

1,000

2,000 AA3B

IPS0 IPS1 IPS2 IPS3
0

1,000

2,000 AB3B

IPS0 IPS1 IPS2 IPS3
0

1,000

2,000 AC3B

IPS0 IPS1 IPS2 IPS3
0

1,000

2,000 AI3B

b

N
um

be
r 

of
 o

ve
rla

pp
in

g 
vo

xe
ls

* †

*

† †

*

36



labeled as such in Figure 7. Blue: left hemisphere, Red: right hemisphere. (c) Fit parameters to reconstructed 
spatial representations estimated from activation patterns across each IPS subregion for these 4 participants 
(analysis identical to that implemented for Fig. 7). Critically, fit parameters in all regions are similar to those 
observed for the original IPS subregion (Fig. 7). Spatial representations of presented stimuli do not narrow in 
size when stimuli are attended or a target is remembered, but amplitude increases for representations in IPS0 (p 
= 0.012), and baseline increases in IPS3 (p = 0.002; statistics as in Figs. 5 & 7; error bars within-participant 
S.E.M.) 
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Supplementary Figure 8 Population receptive field analyses: example participant AA3B, related to Figure 7. 
(a) Reconstructed pRFs and best-fit isotropic function for voxels at each interquartile boundary. White dashed 
circles are plotted at half-maximum of fit function. Quartiles were split by minimum R2 across all task 
conditions (see Online Methods: Population receptive field estimation). Above each column of pRFs is the 
minimum R2 value across the 3 conditions shown below. The right 3 columns (top 50%) are voxels that were 
included in subsequent analyses. White horizontal scale bars correspond to 1° visual angle. (b) Distribution of 
R2 (colored lines) and minimum R2 across conditions (black lines) for each voxel, plotted as a cumulative 
distribution. (c) Size vs. eccentricity for each condition for each ROI. Each data point corresponds to a single 
voxel. Black circles/lines are the mean size at each eccentricity bin which contains  5 voxels (these are the 
points which are included in Supplementary Fig. 9a). All slopes for this example participant are significantly > 
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0 after Bonferroni correction across all 48 tests (4 participants × 4 ROIs × 3 conditions, corrected  = 0.001), 
except hMT+, spatial working memory condition (p = 0.006, see Online Methods: Statistical Procedures). (d) 
Distribution of pRF size for each voxel across condition pairs. The percentage of voxels which lie above the 
unity line (that is, the percentage of voxels for which the size increases) within a ROI and condition pair is used 
to evaluate whether task demands significantly change pRF size (see Supplementary Fig. 9b, Supplementary 
Results, Online Methods).     
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Supplementary Figure 9 Population receptive fields increase size with attention, related to Figure 7. (a) 
Summary of pRF size as a function of eccentricity across n = 4 participants. Each data point is plotted if  3 
participants each had  5 voxels within that eccentricity bin. Error bars S.E.M. across included participants. (b) 
Summary of pRF size changes across each condition pair. For each ROI for each participant, we computed the 
percentage of voxels in which the pRF size was greater for the first condition than the second (e.g., cyan bars 
indicate the percentage of voxels in which pRF size was greater for the attend stimulus condition than for the 
attend fixation condition; this corresponds to the percentage of voxels which lie above unity when plotted as in 
Supplementary Fig. 8d). Black asterisks indicate significant size changes across a condition pair for an ROI, 
Bonferroni-corrected (two-tailed t-test, see Online Methods: Statistical procedures). Gray asterisks indicate a 
significant size change using a one-tailed t-test. Error bars indicate S.E.M. across participants (n = 4). 
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Supplementary Figure 10 Simulations demonstrate that uniform changes in voxel-level pRFs are reflected in 
changes in region-level spatial representations, related to Figure 7. (a-b)  For 500 simulated voxels, we 
generated data for 2 conditions in which we only manipulated the simulated pRF size (condition B uses pRFs 
that were on average 11% larger than pRFs in condition A, which corresponds to the measured increase in pRF 
size between “attend stimulus” and “attend fixation” conditions in hV4 across all 4 participants). Under these 
conditions, the size of the multivariate spatial representations scaled with pRF size (a, smaller spatial 
representation sizes in condition A than in condition B). However, note that in this scenario, there is no change 
in fit amplitude (b). This demonstrates that (1) multivariate spatial representations are sensitive to changes in 
pRF size, given that the changes occur uniformly across a region, and (2) that our analysis technique can detect 
size changes mediated by uniform changes in pRF size in the absence of amplitude changes, were they 
occurring. This rules out an important possibility that representation size changes might be occurring in our 
dataset, but they could be too small to measure (see Results: Size of spatial representations across eccentricity 
and ROI). (c-d) In panels a-b we demonstrate that multivariate region-level spatial representations can increase 
in size, reflecting uniform changes in the underlying univariate voxel-level pRFs. Here, we used the fit pRF 
parameters for 1 example participant (AA3B, shown in Supplementary Fig. 8) and 1 ROI (hV4), which 
undergo non-uniform size changes across conditions, to simulate data for all 3 task conditions in the main 
experiment. Even with pRF size increases observed across conditions (Supplementary Fig. 8d), multivariate 
spatial representations are shown to maintain a constant size (c), but increase in amplitude (d, mirroring our data 
in Figs. 5, 7). This pattern of results was also found in the other three participants (not shown). This 
demonstrates a decoupling of pRF size/amplitude and the size/amplitude of multivariate region-level spatial 
representations, and underscores the importance of exploiting all of the information available in a region to 
estimate the fidelity of spatial encoding.  
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 X Y Z volume (mL) 

RH-IPS 27.78 ± 3.37 -71.21 ± 4.23 29.33 ± 3.38 0.961 ± 0.37 

LH-IPS -26.80 ± 2.38 -71.32 ± 5.44 27.35 ± 4.30 1.301 ± 0.57 

RH-sPCS 30.77 ± 6.36 -5.54 ± 5.00 49.67 ± 3.74 1.411 ± 0.37 

LH-sPCS -28.76 ± 4.22 -8.14 ± 4.44 46.95 ± 1.72 1.17 ± 0.28 

RH-hMT+ 39.54 ± 3.08 -66.15 ± 5.95 3.03 ± 4.06 1.01 ± 0.12 

LH-hMT+ -43.79 ± 6.55 -70.31 ± 5.60 3.32 ± 4.97 0.894 ± 0.20 

 

 

Supplementary Table 1 Mean ROI sizes and locations, related to Figures 4-5. Mean ± 1 standard deviation 
locations of ROI centers in Talairach coordinates and volumes for hMT+, IPS and sPCS ROIs. 
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Mean slope ±  
standard error 
across participants 
(significant 
participants/4) 

V1 hV4 hMT+ IPS0 

Attend fixation 0.332 ± 0.028 (4) 0.330 ± 0.038 (3) 0.484 ± 0.171 (3) 0.554 ± 0.032 (4) 

Attend stimulus 0.381 ± 0.030 (4) 0.536 ± 0.039 (4) 0.621 ± 0.190 (3) 0.479 ± 0.031 (4) 

Spatial WM 0.414 ± 0.055 (4) 0.495 ± 0.082 (4) 0.647 ± 0.148 (3) 0.451 ± 0.057 (4) 

 
 
Supplementary Table 2 pRF size vs. eccentricity slope, related to Figure 7. Each cell contains mean slope in 
units of pRF size (°)/eccentricity (°), as well as the number of participants with significantly nonzero size vs. 
eccentricity slopes. All participants, regardless of significance, are included in the mean and standard error. 
Number of significant participants is evaluated using a Bonferroni-corrected alpha value for 48 comparisons of 

 = 0.001. 
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Supplementary Results 

Population receptive fields (pRFs) 

As a complementary analysis, we identified pRFs for each voxel for each condition for a subset of participants 
and ROIs (see Online Methods: Population receptive field estimation). We restricted our analysis to the half of 
all voxels in each region for which reconstructed pRFs were well-fit with a unifocal isotropic function 
(Supplementary Fig. 8a). In our implementation of the pRF analysis, we reconstruct a map of the portion(s) of 
the visual field which best drive the BOLD response in each voxel (see Supplementary Fig. 8a for example 
pRFs in each ROI for 1 participant). Then, we fit a smooth 2d surface to each of these reconstructed pRFs, and 
use the best fit position and size to characterize pRF properties across different attention conditions (best fits 
shown by white circles in Supplementary Fig. 8a). Note that, while most fits appeared accurate, some “best” 
fits do not accurately capture the positive region of the pRF. To choose “good” fits without bias, we computed 
an R2 value for each condition. Then for every voxel we used the minimum R2 across conditions to determine a 
median R2 for every ROI for every participant (Supplementary Fig. 8b). Voxels with minimum R2 greater than 
or equal to the corresponding median value were included in subsequent analyses. 

Because our stimulus set and analysis method was not designed to evaluate pRFs at the resolution that dedicated 
pRF mapping protocols are (e.g., ref 42), we found generally larger pRFs than have been observed previously. 
However, we replicated the key pRF result that pRF size increases with eccentricity (Supplementary Fig. 8c, 
Supplementary Fig. 9a). At least 3 of the 4 participants had significantly positive slopes for each 
condition/ROI pairing (see Supplementary Table 2 for mean slopes and number of significant participants), 
and all significantly non-zero slopes were positive.  

Next, we compared whether the best-fit pRF size increased or decreased in more voxels between each pair of 
task conditions (attend stimulus vs. attend fixation, spatial WM vs. attend stimulus and spatial WM vs. attend 
fixation). Supplementary Fig. 8d shows this analysis for an example participant. At the group level, the 
percentage of voxels which lie above the unity line (Supplementary Fig. 9b) changed as a function of condition 
pair (significant main effect of condition pair, p = 0.007), and we also observed a condition × ROI interaction (p 
= 0.047). In 2 of 3 regions in which we observed significant increases in the amplitude of spatial representations 
with attention (Fig. 5, hV4 and IPS), we also observed significant size increases in at least one condition pair 
(hV4: spatial WM vs. attend fixation, p < 0.001; IPS0: spatial WM vs. attend fixation, p = 0.003; all others n.s. 
after Bonferroni correction for 12 comparisons,  = 0.0042).

Simulated spatial representations 

When pRF size is uniformly modulated across conditions (Supplementary Fig. 10a-b), we observed changes in 
the size of spatial representations. Spatial representation size reflects changes in pRF size. When pRF size was 
increased by 11%, spatial representation size increased by 9.28%. Our analysis method is thus sensitive to 
particular types of pRF modulation with attention, and so if pRF size is uniformly decreasing or increasing, the 
measured size of multivariate spatial representations would shrink or expand as a result. 

When we used best-fit pRFs to data from each condition from a single participant’s hV4 ROI, in which pRF size 
non-uniformly increases, we observed stable spatial representation size across conditions, as well as an increase 
in amplitude of spatial representations across attention conditions (Supplementary Fig. 10c-d), mirroring our 
results from the main text (Figs. 5, 7). This demonstrates that, while our analysis method is sensitive to changes 
in representation size as a result of uniform pRF modulation with attention (Supplementary Fig. 10a), such a 
modulation is not observed when we account for the more nuanced pattern of pRF modulations that is present in 
our dataset (Supplementary Fig. 10c). Additionally, these results demonstrate that while voxel-level univariate 
pRFs might be subject to particular types of modulation with attention, the size of multivariate region-level 
spatial representations can remain stable and either increase or decrease in amplitude. This result also 
underscores the importance of constraining estimates of modulations in spatial information content of a region 
by the modulatory pattern across all component units (voxel-level pRFs) within the region, as there is not a one-
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to-one mapping of changes in pRF size/amplitude to changes in the size/amplitude of region-wide spatial 
representations.  
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Summary

Working memory (WM) enables the maintenance andmanip-

ulation of information relevant to behavioral goals. Vari-
ability in WM ability is strongly correlated with IQ [1], and

WM function is impaired in many neurological and psychiat-
ric disorders [2, 3], suggesting that this system is a core

component of higher cognition. WM storage is thought to
be mediated by patterns of activity in neural populations

selective for specific properties (e.g., color, orientation,
location, and motion direction) of memoranda [4–13].

Accordingly, many models propose that differences in the
amplitude of these population responses should be related

to differences in memory performance [14, 15]. Here, we
used functional magnetic resonance imaging and an image

reconstruction technique based on a spatial encodingmodel
[16] to visualize and quantify population-levelmemory repre-

sentations supported by multivoxel patterns of activation
within regions of occipital, parietal and frontal cortex while

participants precisely remembered the location(s) of zero,

one, or two small stimuli. We successfully reconstructed im-
ages containing representations of the remembered—but

not forgotten—locations within regions of occipital, parietal,
and frontal cortex using delay-period activation patterns.

Critically, the amplitude of representations of remembered
locations and behavioral performance both decreased with

increasing memory load. These results suggest that differ-
ences in visual WM performance between memory load con-

ditions are mediated by changes in the fidelity of large-scale
population response profiles distributed across multiple

areas of human cortex.

Results

To assess the functional role that population codes in different
visually responsive occipital, parietal, and frontal regions of in-
terest (ROIs) play in spatial working memory (WM), we pre-
sented participants (n = 4, four scanning sessions each) with
two target stimuli (Figure 1A) followed by a postcue instructing
them to remember the location(s) of zero (R0), one (R1), or two
(R2) stimuli. In behavioral testing sessions performed outside
of the scanner, participants used a mouse click to indicate
the exact position of the remembered target. During scanning,
participants performed a two-alternative forced-choice (2AFC)
discrimination task in which they compared the position of a
probe stimulus to that of the corresponding remembered

target stimulus (Figure 1A). We chose to test precise memory
for spatial positions using either a recall task (outside the scan-
ner) or a ‘‘same/different’’ task (during scanning) so that partic-
ipants were required to encode exact spatial positions rather
than use a verbal code or only encode a single dimension
(e.g., ‘‘8 o’clock,’’ ‘‘far to the left’’).
Behavioral performance on the analog recall task performed

outside the scanner revealed lower mnemonic precision when
two target locations were remembered compared to when a
single target location was remembered (Figure 1C; p < 0.001,
resampling test). During scanning, response accuracy did
not significantly differ across set size conditions, although
three out of four participants performed slightly worse with
increasing set size (Figure 1D, p = 0.174, resampling test;
see the Experimental Procedures). However, response times
(RTs) were significantly longer when two stimuli were remem-
bered compared to when a single stimulus was remembered
(Figure 1E; p < 0.001, resampling test). Increased RTs during
scanning suggest that memory representations in the R2 con-
dition were degraded and were thus less accessible during
behavioral report, consistent with previous observations of
increased RTs after manipulations that impair spatial WM
(e.g., [17]). Together, the behavioral data recorded inside and
outside of the scanner are consistent with a degraded repre-
sentation of each remembered location in the R2 condition
compared to the R1 condition.
To characterize neural responses associated withWMmain-

tenance,wefirstcomparedaveragedblood-oxygenation-level-
dependent (BOLD) functional magnetic resonance imaging
(fMRI) responses in a set of functionally defined occipital (V1–
hV4 and V3A), parietal (IPS0–IPS3), and frontal (sPCS; thought
to be the human homolog of macaque frontal eye fields [18,
19]) ROIs as a function of memory load.We replicated previous
reports that BOLD responses in frontal and parietal ROIs were
larger on R2 trials compared to R1 trials [6, 20, 21] (Figure S1
available online). Interestingly, in early visual areas (V2–V3A
and hV4) we observed a larger mean BOLD amplitude on R0
trials compared toR1 or R2 trials (Figure S1B, p < 0.001, resam-
pling test). We also observed similar results using a com-
plementary exploratory analysis in which we searched for any
voxels with increased activation for larger memory loads
(Figure S1C).
Next, we used amultivariate image reconstruction technique

based on a spatial encoding model [16] to reconstruct remem-
bered locations in spatial WM based on the pattern of activa-
tion across all voxels within each ROI (Figure 2). In contrast to
analyses that focus solely on mean signal intensity (Figure S1),
neural firing rates, or multivariate classification accuracy, this
analysis uses an independently estimated model of the spatial
sensitivity profile across all voxels in each ROI to transform
BOLD activation patterns into an image of the remembered
stimulus position(s) carried by those patterns (Figure 2; Exper-
imental Procedures). Importantly, this analysis provides addi-
tional information compared to some other methods such as
univariate population receptive field (pRF) [22] estimation or
multivariate linear classification [9]: by yielding a reconstructed
image of the remembered stimulus location(s), covert infor-
mation held in WM can be directly visualized, quantified, and

*Correspondence: tsprague@ucsd.edu (T.C.S.), jserences@ucsd.edu

(J.T.S.)
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related to behavior [16]. These reconstructions can be thought
of as an image of the spatialWMcontents in visual field coordi-
nates (rather than coordinates relative to the cortical surface),
andwe interpret the focal bright spots found at target positions
as target representations.

Spatial WM reconstructions computed based on patterns of
delay-period activation from occipital (V1–hV4v/V3A), parietal
(IPS0–IPS3), and frontal (sPCS) cortex revealed highly robust
representations of remembered target positions on R1 trials,
but not on R0 trials (Figure 3; see Figure S2A for data from in-
dividual participants), suggesting that these images reflect
memory-related activation changes rather than lingering

sensory signals. Furthermore, reconstructed images contain
representations of both remembered target locations on R2
trials that were robust in many occipital and posterior parietal
ROIs (Figure 3C; V1–V3A, hV4, IPS0, and IPS1) but became
less separable in anterior parietal and frontal ROIs (IPS2–
IPS3 and sPCS). The relative decline in separability of R2 target
representations in these anterior parietal and frontal ROIs may
reflect the rather small screen size that we used relative to the
large size of spatial RFs typical of these ROIs [23, 24]. Finally,
we examined the temporal structure of WM reconstructions
from all ROIs over the course of the entire trial. We could
readily reconstruct images of both remembered locations dur-
ing target presentation when the positions were encoded into
WM, but we could only reconstruct images of locations held in
WM during the delay interval (Movie S1).
Next, we sought to quantify how spatial WM reconstructions

differ across ROIs and under differentmemory loads. To do so,
we rotated and shifted the reconstruction on each trial to a
common reference location such that the target positions
were in alignment and averaged all coregistered reconstruc-
tions together (Figure 2E; seeMovie S2 for coregistered recon-
structions through time). Then, because the target position
across all trials was now aligned, we quantified attributes
of the averaged target representation by fitting a 2D surface
(Figures 4A and 4B) characterized by several independent pa-
rameters (see Figures S4A–S4D for a demonstration that these
parameters reflect dissociable properties of target representa-
tions). The size parameter reflects the spread (full-width half-
maximum, FWHM) of the delay-period target representation:
an increased fit sizewould reflect a less spatially precise repre-
sentationof the remembered target location (note that here and
elsewhere,weuse ‘‘spatial’’with reference to visual fieldspace,
not cortical space). Theamplitudeparameter reflects theheight
of the target representation over baseline: increased fit ampli-
tude would correspond to a more prominent representation
of the target over baseline activation not related to the target
location. The baseline parameter reflects the non-spatially-se-
lective response amplitude (i.e., a constant offset across the
entire reconstructed visual field): a change in baseline reflects
a change in mean signal amplitude across an entire ROI that
does not carry spatial information and thus does not directly
change the spatial information content of the reconstruction.
Increasing memory load did not change the size of the best-

fit surfaces to the target representations within WM recon-
structions that were based on activation patterns in occipital
and posterior parietal ROIs (Figure 4D; V1–IPS0; all statistics
were computed via nonparametric resampling methods and
Bonferroni corrected for multiple comparisons; Table S1; see
the Experimental Procedures). However, fit surface size did
increase with memory load in anterior parietal (IPS2–IPS3)
and frontal (sPCS) ROIs. Note that in these ROIs, we did not
observe strongly disjoint target representations during R2 tri-
als (Figure 3C), so these size increases may partially reflect
an inability to separately quantify the representation of each
location. It is likely that a larger display and more stimulus
separation would enable a more accurate reconstruction and
quantification of each remembered target representation in
these anterior parietal and frontal areas (like in the early visual
and posterior IPS ROIs). We evaluated the possibility that
observed size increases may be partially an artifact of coregis-
tering reconstructions and averaging over target positions
on R2 trials, even if the ‘‘true’’ target representations are con-
stant in size, by simulating reconstructions under the null
assumption that target representations were equal in size

3.25°

0.6°

Time

Targets (500 ms)

Post-cue/delay (8000 ms)

Probe (500 ms)

Remember 1
Remember 2

A B
WM task: example trial Target locations

1 2
0

0.5

1

R
ec

al
l e

rro
r (

°)

1 2
0

25

50

75

100

Ac
cu

ra
cy

 (%
 c

or
re

ct
)

Memory load
1 2

300

400

500

600

700

R
es

po
ns

e 
tim

e 
(m

s)
Outside scanner

(recall)

**

D EC
Inside scanner

(2AFC)
Inside scanner

(2AFC)

Remember 0

Memory loadMemory load

Figure 1. Visual Spatial WM Task and Behavioral Performance

(A) Participants (n = 4) viewed two target stimuli and were postcued to

passively fixate for the remainder of the trial (remember zero), remember

the precise position of a single target stimulus (remember one), or

remember the precise position of both target stimuli (remember two). After

a 8 s delay, participants either determined whether a probe stimulus was

in exactly the same or a slightly different position as the corresponding

target (during fMRI scanning sessions, 0.1–1.5� offset) or precisely recalled

the remembered position using a computer mouse (during behavioral

sessions).

(B) So that implementation of a ‘‘digital’’ encoding strategy could

be discouraged, each target was presented within one of eight discs with

uniform jitter equally spaced around fixation and offset from horizontal

and vertical meridians.

(C) During behavioral testing sessions outside of the scanner, spatial posi-

tions were remembered less precisely with larger memory load as indicated

by increased behavioral recall error distance (p < 0.001), and this is qualita-

tively observed for each participant. Each symbol is a single participant, and

symbols match those presented in (D) and (E) and Figures S1 and S2.

(D) During scanning, behavioral accuracy was approximately equal across

set sizes (p = 0.174).

(E) Response times inside the scanner were significantly longer for larger

memory load trials (p < 0.001).

Throughout all figures, unfilled symbols refer to single-participant data;

filled symbols refer to across-participant means. Asterisks reflect signifi-

cant across-participant resampling tests; see the Experimental Procedures.

See also Figure S1.
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Figure 2. Inverted Spatial Encoding Model for Recon-

structing the Contents of Spatial WM

(A) Each participant was scanned for three to four inde-

pendent spatial mapping runs for encoding model

estimation per session (see the Supplemental Experi-

mental Procedures). Participants performed a chal-

lenging spatial WM task in which they determined

whether a probe stimulus (500 ms) was in the exact

same position or a slightly different position from a

remembered target position (500 ms; 2AFC; see [16]).

During the brief delay period (3,000 ms), a flickering

checkerboard stimulus was presented near the

remembered target position. This stimulus was irrele-

vant to the task performed by the participant but was

used to drive large sensory responses to estimate a

voxel-level encoding model used for computing recon-

structions in the main task (see C–E). We adjusted

difficulty on a run-by-run basis to maintain vigilance

and equate performance across participants and ses-

sions (73.738% 6 1.819% accuracy, mean 6 SEM).

(B) We presented the mapping stimulus at each of 36

positions arrayed across a 6 3 6 square grid (one trial

per position per run).

(C) To estimate spatial sensitivity profiles for each voxel,

we predicted the response of each of 36 hypothetical

‘‘information channels’’ (spatial filters) to each stimulus

used in the training runs [16]. Then, we took the

measured response of each voxel and the predicted hy-

pothetical channel responses to each stimulus position

and used ordinary least-squares linear regression to es-

timate the contribution of each information channel to

the signal observed in each voxel. This step is per-

formed on each voxel independently (see the Supple-

mental Experimental Procedures, Equation 3).

(D) For each collection of voxels for which we computed

reconstructions (ROIs, Figures 3 and 4; all voxels from

all ROIs, Figure 4) we computed a mapping from voxel

space into channel space (Supplemental Experimental

Procedures, Equation 4). In contrast to ‘‘population

receptive field’’ analyses [22], this step is multivariate

and must be performed using all voxels that contribute

to the image reconstruction. Using the computed linear

mapping, the measured activation pattern across all

voxels is transformed into ‘‘information space’’—the

amount each channel must have been active in order

to produce the measured voxel activation pattern. A

‘‘raw’’ reconstruction can be computed for any single

observation (e.g., one fMRI volume from area V1) by

computing a sum of the spatial filters that define the in-

formation channels weighted by the estimated channel

responses (right panel).

(E) When computing average reconstructions across all

trials (Figures 4C and S2B), we coregistered different

target positions on each trial to a common location by

first rotating the spatial filters around the fixation point

such that the target lies along the Cartesian x axis,

then shifting the filter centers horizontally such that

the target is positioned 3.25� from fixation along the

x axis (white dot in reconstructions shown in Figures

4C and S2B). For R0 and R2 trials, this is done for

each remembered target, and the coregistered recon-

structions aligned to each target are averaged. Impor-

tantly, this coregistration procedure enables us to

average the representations of spatial WM targets that

appeared at different positions in the display on

different trials.
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across memory load conditions and performing an identical
coregistration and quantification procedure as that used in
Figure 4. These simulations determined that fit target repre-
sentation size is artificially inflated by 8.62% on average due
to the coregistration and averaging procedure. Importantly,
our empirically observed size expansion in these regions
(IPS2, 24.8%; IPS3, 32.7%; sPCS, 19.6%) was substantially
larger than that induced by the analysis procedure itself (see
Figure S4E and the Supplemental Experimental Procedures),
suggesting that there are still important changes in target rep-
resentation size across memory load conditions.

The amplitude of best-fit surfaces decreased with
increasing memory load in striate and extrastriate occipital
(V1–hV4) and posterior parietal (IPS0–IPS1) ROIs, consistent
with predictions from a model in which increasing memory
load results in lower gain of population-level representations
of remembered stimuli [14, 15]. In contrast, fit amplitude
trended toward increasing, with greater memory load in ante-
rior parietal (IPS2–IPS3) and frontal (sPCS) ROIs (trend defined
as p < 0.05, uncorrected for multiple comparisons). This latter
result is consistent with previous demonstrations that average
delay-period activation levels increase in frontoparietal ROIs
with memory load [6, 20, 21] (Figure S1). Furthermore, simu-
lations confirm that the fit amplitude parameter captures
changes in the amplitude of the target representation and is
independent of changes in baseline or size (Figure S4).

Finally, the nonspatial baseline parameter significantly
increased with memory load in posterior parietal ROIs (IPS0–
IPS1). The fact that nonspatial baseline levels increased only
in IPS0–IPS1 with greater memory load suggests that previ-
ously documented univariate BOLD response increases in
the more anterior parietal and frontal ROIs (Figure S1A;
IPS2–IPS3 and sPCS) most likely correspond to a spatially
focal change in target representation amplitude as opposed
to spatially uninformative baseline modulations.

We observed population codes for remembered spatial
positions in all of the ROIs that we examined, and the

representations of remembered locations within these recon-
structed images changed in different ways with increasing
memory load (Figures 3 and 4). However, the activation pattern
across all these ROIs may provide additional information
above and beyond the activation pattern within any individual
ROI, and reconstructions computed using all these across-
ROI modulations may be more closely associated with behav-
ioral memory load effects than reconstructions computed
from individual ROIs alone (on the assumption that mnemonic
fidelity is a function of information represented acrossmultiple
brain regions).We tested this by computing reconstructions as
before (Figure 2), but using all voxels from the ten ROIs in each
participant (importantly, because this is a multivariate anal-
ysis, this is not equivalent to averaging reconstructions across
all ROIs; see the Supplemental Experimental Procedures).
Comparison of target representations within these WM recon-
structions computed using the combined ROI (Figures 4C and
4D, ‘‘all voxels combined’’) across memory load conditions re-
vealed each of the significant results found in the ROIs when
analyzed individually (Figures 4C and 4D): size broadened,
amplitude decreased, and baseline increased when two items
were remembered compared to when one item was remem-
bered (all p < 0.001, resampling test). As an additional explor-
atory analysis, we evaluated how these target representations
(Figures 4C and 4D) were related to behavioral performance by
computing and quantifying target representations within WM
reconstructions as described above using data from each
participant, ROI, and memory load individually. These results
are presented and discussed in Figures S2B and S2C.

Discussion

Here, we employed an image reconstruction approach imple-
mented using a multivariate inverted encoding model [8, 16,
25–28] to reconstruct the contents of spatial WM based on
activation patterns in occipital, parietal, and frontal regions
of human cortex. Prior studies have used measures like
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Image reconstructions for all target position ar-

rangements during remember zero (A), remember

one (B), and remember two (C) conditions from

each ROI. Each reconstruction is computed using

spatial filters that have been rotated around the

fixation point and flipped over the horizontal

meridian such that there are four possible target

arrangements (top panel; dashed yellow circles

indicate remembered target[s]). Targets ap-

peared uniformly within each of these four win-

dows. Early visual (V1–hV4) and parietal (IPS0–

IPS1) ROIs carry precise target representations

over the delay interval of a single remembered

position (remember one; B) or both remembered

positions (remember two; C). Reconstructions

from anterior parietal (IPS2–IPS3) and frontal

(sPCS) ROIs carry moderately precise target rep-

resentations when a single position is maintained

in WM, but they are not as disjoint when both po-

sitions are simultaneously held in WM (IPS, intra-

parietal sulcus; sPCS, superior precentral sulcus,

human homolog to macaque frontal eye fields

[18, 19]). Additionally, despite a significant reduc-

tion in average BOLD response during the delay

period in occipital ROIs (Figure S1), reconstructions contain robust representations of remembered stimuli. The color map is identical across all panels.

See also Figure S1, Figure S2A for spatial reconstructions from each individual participant, and Movie S1 for temporal unfolding of reconstructions across

the duration of the trial.
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classification accuracy to correlate behavioral performance
with the discriminability of neural activation patterns [6, 13].
Although these analyses have many advantages due to a rela-
tive lack ofmodel assumptions, changes in decoding accuracy
may result from many different types of neural response
pattern modulation [25, 29]. In contrast, by assuming a set of
spatial basis functions, our method allows us to assess
whether each region encoded information about the location
of a remembered stimulus (e.g., [5, 30]), as well as to visualize
and quantify the characteristics of these covert representa-
tions of target locations and relate different aspects of these
quantified representations to behavioral performance (e.g.,
[8, 16, 25, 27]). In addition, these findings reinforce the impor-
tance of measuring the effect of cognitive manipulations
on population-level estimates of mnemonic representations
rather than on particular properties of the underlying neural
generators, as these population-level representations can be

more closely associated with cognition and behavior than ac-
tivity changes in single neurons or voxels [8, 16, 25–29, 31–33].
These image reconstruction and quantification analyses

revealed lower amplitude and, in some anterior parietal and
frontal ROIs, broader target representations with increasing
memory load (Figure 4). From an information-theoretic
perspective, response variability (i.e., intertrial variability in
the reconstructed images) has two components: signal en-
tropy, which is variability associated with experimental manip-
ulations (remembered location), and noise entropy, which is
variability not associated with experimental manipulations.
The decrease in target representation amplitude under
increased memory load should lead to less variability that is
related to the remembered location(s) and thus to a decrease
in the signal entropy and information about the remembered
location. An increase in target representation size should
also decrease signal entropy, as increased size leads to
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Figure 4. Target Representations within WM Re-

constructions Are Less Informative with Greater

Memory Load

(A) To quantify the topography of the recon-

structed images averaged across trials within

each memory load condition, we fit a surface

to the average reconstruction that was centered

at its global maximum by allowing the size

(FWHM), amplitude, and baseline of the surface

to freely vary.

(B) Example surface used for fitting.

(C) All reconstructions from each ROI and mem-

ory condition (remember one and remember

two), rotated and shifted such that the exact

target position is aligned to the small white dot

(see Figure 2E).We combined trials across partic-

ipants and resampled all trials, with replacement,

from each memory condition and ROI and

quantified the averaged reconstruction on each

resampling iteration (see Figure S2 for recon-

structions and best-fit parameters for each

participant individually). The + and dotted circle

indicate the average best-fit smooth surface to

the target representation within the reconstruc-

tion (+ indicates the center, and the dashed line

is drawn at the FWHM of the fit surface). For

remember two, representations of each target

are averaged together before fitting. See Movie

S2 for temporal evolution of coregistered recon-

structions across the duration of the trial.

(D) Parameters describing best-fit surfaces to

target representations from each ROI and mem-

ory condition. Target representation size remains

constant in early visual areas (V1–hV4), but ampli-

tude decreases with larger memory load, sug-

gestive of a less informative population code

(Figure S3). Anterior parietal and frontal ROIs

have larger target representationswith increasing

memory load, as well as trends toward higher

amplitude representations, though some size in-

creases are introduced during the coregistration

and averaging procedure (see the Supplemental

Experimental Procedures, Simulating and fitting

target representations with known parameters;

Figure S4). The spatially nonselective baseline

parameter remains largely constant across mem-

ory load conditions, except in IPS0 and IPS1.

Black asterisks indicate significant differences

at p < 0.05, Bonferroni-corrected within each

parameter across tencomparisons (ROIs). Gray asterisks indicate trendsdefinedasp<0.05, uncorrected formultiple comparisons.All tests performedusing

resampling procedures (see the Experimental Procedures). Error bars indicate 95% confidence intervals computed via resampling of data pooled across

participants. See Table S1 for p values.

See also Figures S2–S4, Table S1, and Movie S2.
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more overlap between target representations for different
locations, which would decrease the ability of the population
code to discriminate between locations. In contrast, baseline
shifts should not strongly influence information content as an
additive shift in the entire reconstruction does not change
signal entropy [14, 16, 34] (Figure S3). Thus, the observation
of higher amplitude target representations corresponds to
higher information content of population codes about a spatial
position [14–16, 32–34] (Figure S3) and may be a consequence
of changes in delay-period neural gain associated with neu-
rons tuned to remembered locations [14]. In addition, modest
increases in target representation size in anterior IPS and
sPCS may reflect poorer mnemonic fidelity within particular
ROIs, echoing previous results that the dispersion (analogous
to size here) of reconstructed profiles of remembered features
(e.g., orientation) correlates with behavioral performance [8,
25, 27]. However, future work using larger spatial stimulus ar-
raysmay help tomore accurately disentangle and characterize
multiple WM representations in anterior IPS and sPCS.

We were able to reconstruct the covert contents of spatial
WM not only in occipital [4, 6–10, 13] and posterior parietal
regions [10, 13], but also in anterior parietal and frontal cortex
[5, 11]. These widespread modulations raise the possibility
that distributed WM representations can be optimized to
differentially contribute to complementary sensory (e.g.,
target localization) and motor (e.g., eye movements, reaches)
behaviors. Consistent with this idea, a recent demonstration
that induced alpha oscillations (which are often thought to
reflect synchronized activity of large-scale cortical networks
[35]) measured with scalp EEG can be used to reconstruct
remembered orientations also suggests that long-range, in-
teracting representations across much of human cortex
support the maintenance of information in WM [27]. The suc-
cessive representations of spatial position reported here may
thus allow for a common coordinate system with which low-
level stimulus features (such as spatial position and color)
that are represented in occipital cortex are bound with spatial
motor plans (such as eye movements and arm reaches [36])
that are more closely associated with representations in pa-
rietal and frontal cortex.

Experimental Procedures

Functional Magnetic Resonance Imaging

We scanned each participant for four sessions, each lasting 2 hr. Each ses-

sion included runs of the spatial WM task (Figure 1), an independent spatial

‘‘mapping’’ task (Figures 2A and 2B; Supplemental Experimental Proce-

dures) [16], and a visual localizer task (5 min each).

Encoding Model: Reconstructing Contents of Spatial WM

We modeled the response of each voxel as a linear combination of 36

spatially selective information channels (see [16]; Figure 2; Supplemental

Experimental Procedures). Using a separate set of training data during

which we presented a flickering checkerboard ‘‘mapping’’ stimulus at

different locations on the screen (Figures 2A and 2B), we estimated the rela-

tive contribution of all 36 information channels to the observed signal in

each voxel using ordinary least-squares regression (Figure 2C). Then, using

all of thesemeasured ‘‘channel weights’’ across a given ROI, combined with

the multivariate pattern of activation measured from that ROI during perfor-

mance of the main spatial WM task (Figure 1A), we computed the channel

responses that were most likely to produce the measured pattern of activa-

tion (Figure 2D). We combined these computed channel responses and the

spatial filters (information channels) to produce reconstructed images of the

spatial WM contents within each ROI for each measured pattern of activa-

tion (Figures 3 and 4, activation patterns measured 6.75–9 s after target

onset; Movies S1 and S2, activation patterns measured at each time point

during the trial).

Quantifying Target Representations in WM Reconstructions

We fit a surface to each reconstruction that was allowed to vary in its size,

amplitude, and baseline (Figures 4A and 4B). Its center was constrained

to be the position, in visual field coordinates, with the highest local recon-

struction amplitude (local average within a 0.5� radius).

Statistics

For group-level analyses (Figures 1C–1E, 4D, and S1B), we combined data

from all participants within a given ROI and memory load condition and re-

sampled all trials with replacement and computed a mean measurement

value for that resampling iteration (Figure 1C, behavioral recall error; Fig-

ure 1D, behavioral accuracy; Figure 1E, response time; Figure 4D, target

representation fit parameters; Figure S1B,mean BOLD signal). We repeated

this procedure 1,000 times to produce a resampled distribution of each

measured value for each memory load condition. We computed p values

for each ROI and each parameter as the two-tailed probability of observing

an effect in the opposite direction of the mean effect observed. Compari-

sons are Bonferroni corrected across ROIs for each parameter (Figure 4D,

ten comparisons) or across all comparisons performed (Figure S1B, 30 pair-

wise comparisons). All error bars are 95% confidence intervals derived from

these resampled distributions unless indicated otherwise (Figure S1A).

For exploratory individual-participant analyses (Figure S2C), we per-

formed an identical procedure but resampled only across each participant’s

data when computing confidence intervals.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, one table, and two movies and can be found with this

article online at http://dx.doi.org/10.1016/j.cub.2014.07.066.
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Supplemental Data 

Figure S1 Mean BOLD signal depends on WM maintenance, related to Figures 1 and 3. 

For each participant and each ROI we extracted the target-locked hemodynamic response function (HRF; event-related 
average) for each memory load condition. Then, we averaged HRFs across participants. Error bars ±1 SEM (across 
participants, n = 4, sessions 1 & 2). Time courses qualitatively replicate previous findings [S1] in which early IPS visual 
field maps (e.g., IPS0) show more transient activation, while later IPS visual field maps (e.g., IPS3) show more sustained 
activation during delay periods. (B) Average delay-period activation is significantly reduced during WM maintenance in 
occipital ROIs V2-V3A and hV4 (R1 < R0 and R2 < R0, p < 0.001, resampling test, see Supplemental Experimental 
Procedures). In contrast, delay-period activation is higher during WM maintenance in parietal and frontal ROIs (IPS1-
sPCS, R1 > R0 and R2 > R0, p < 0.024). In IPS2 and IPS3, we observed a trend (defined at uncorrected  = 0.05) towards 
greater delay-period activation during R2 than during R1 trials (p = 0.012 and 0.03, respectively). Despite these decreases 
in mean BOLD response with WM performance, we can still reconstruct robust spatial representations of 1 or 2 
remembered stimuli (Fig. 3B-C). All significant p-values pass a Bonferroni-corrected threshold for 30 comparisons of  = 
0.0017 (10 ROIs, 3 comparisons for each ROI: R2 vs. R0, R1 vs. R0, R2 vs. R1) and are indicated by asterisks in B. 
Trends, defined at uncorrected  = 0.05, are indicated by †. P-values presented in Table S1. Error bars 95% CI over 
resampled distribution pooled across participants. (C) For each participant we analyzed neuroimaging data using a 
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univariate general linear model (GLM) with 3 predictors corresponding to the 3 memory load conditions (Remember 0, 
Remember 1, and Remember 2). Here, we show significant voxels for the contrast Remember 2 > Remember 1, corrected 
within each participant for multiple comparisons using the false discovery rate as implemented in BrainVoyager 2.6.1 (q < 
0.05). Within 2 of 4 individual observers, we observe data similar to previous reports that increasing the number of 
remembered items results in increased BOLD responses in parietal and frontal cortex [S2–S4]. Note that even though 
there are few significant voxels in the remaining two participants, patterns of activation for both Remember 1 and 
Remember 2 conditions can be used to reconstruct spatial WM contents (albeit with lower amplitude, see Fig. S2). 
Symbols match those used in Figure 1C-E and Figure S2. 
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Figure S2 Individual-participant WM 
reconstructions and fit surface 
parameters compared to behavioral 
recall error, related to Figures 3-4 
(continued on next page) 
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Figure S2 (continued) Individual-participant WM reconstructions and fit surface parameters compared to behavioral 
recall error, related to Figures 3-4 

(A) Data as in Figure 3 displayed for each participant individually. Symbols match those used in Figure 1C-E and Figure
S1. Color scale is the same for all participants, memory load conditions, and ROIs within this panel. (B) Coregistered
spatial WM reconstructions for each participant for each memory load condition (R1: Remember 1, R2: Remember 2) for
each ROI reported in Figures 3 and 4 (coregistered as in Figure 4C). Black dot indicates the target position; black + is
mean centroid of best-fitting surface; black dashed circle is drawn around the mean centroid at the mean full-width half-
maximum (FWHM) of best-fitting surface. Color scale is the same for all participants, memory load conditions, and ROIs
within this panel. (C) Best-fit size, amplitude, and non-spatial baseline surface parameters to target representations for
each participant and each memory load condition. Error bars 95% CI computed via resampling all trials per condition
within each participant and ROI. Though we do not have adequate statistical power to identify whether an effect is
present, for any given ROI, these scatterplots suggest that target representation amplitude, more so than size or baseline, is
best correlated with behavioral recall performance (especially IPS0 and All voxels combined) such that high
representation amplitude is associated with better behavioral recall performance, both within and across participants.
These analyses imply that the amplitude of representations across the visual hierarchy provides the primary constraint on
behavioral performance in our spatial WM task, suggesting that the amplitude of population-level representations of
remembered locations are more closely related to their fidelity as indexed by corresponding measures of behavioral
performance than are other parameters, like their size [S5].
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Figure S3 Effects of different parameters on the information content of a target representation, related to Figure 4 

Population-level codes for a remembered spatial position can change in several ways, each of which may have different 
consequences on the information content of the population code for the remembered position. For a given remembered 
target position (A), a brain region carries a representation of the remembered position as a bivariate Gaussian-like 
representation (B). This representation could be modulated in several ways. If the size of the target representation 
decreased (C, F), this would reflect a more precise representation of spatial position, and could lead to more accurate 
localization of a remembered target. However, depending on the noise amplitude relative to the amplitude of the target 
representation, this type of modulation could be more susceptible to noise across trials, resulting in poor localization. 
Instead, an increase in the amplitude of the target representation (D, G) would increase the signal-to-noise ratio (SNR) of 
the population code even if the spatial precision (size) of the representation remained fixed. Because such an amplitude 
modulation would increase the SNR, this type of representational modulation would be more robust to high levels of 
cross-trial neural noise in the population code [S6, S7]. Alternatively, the baseline response level in the WM 
reconstruction could increase (E, H), which would not change the information content of the target representation given 
most reasonable noise models. For example, the absolute effect of a baseline shift on the information content of the 
population code depends on the across-trial noise distribution. If noise scales with the mean (e.g. Poisson noise) then a 
pure baseline shift would increase the noise level without a corresponding change in the amplitude of the target 
representation over baseline, which would decrease the information content of the neural code (i.e. noise would go up, but 
the dynamic range of stimulus-locked signals would remain the same). Under conditions of independent and identically 
distributed (IID) noise across positions and trials, a baseline shift would have no effect on the information content of the 
population code, as the dynamic range of the target representation amplitude over reconstruction baseline compared to the 
noise level would not change. However, note that under an unlikely scenario where noise decreases with the signal 
amplitude, a baseline shift would be beneficial, as increasing signal amplitude would decrease the corrupting influence of 
noise on the population-level target representation. All figures are modeled using the fit surface function (Equation 5) and 
adjustments either to the size (C, F), amplitude (D, G), or baseline (E, H) parameters. (F-H) slices through the center of 
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the representation. Note that combinations of these modulations are possible and these are meant only as illustrative 
examples. 
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Figure S4 Fits to simulated surfaces demonstrate sensitivity and specificity of fitting approach, related to Figure 4 

It may be the case that our fitting procedure is unable to assess changes in a given fit surface parameter independent of 
changes in another parameter. For example, changes in amplitude of the “true” target representation may be incorrectly 
attributed to changes in baseline. To address this concern, we generated simulated target representations using known 
parameters (vertical dashed lines in A-C, size: 5°; amplitude: 0.2, baseline: 0, approximately the values from R1 condition 
in the ‘All voxels combined’ analysis, Fig. 4D), then varied one parameter at a time while keeping all others constant. 
After generating simulated representations, we performed an identical surface fitting procedure to that performed using 
experimental data (see Supplemental Experimental Procedures: Simulating and fitting representations with known 
parameters; Fig. 4). We plot each fit parameter as a function of the target representation parameter that was varied. (A) 
Size was varied; (B) amplitude was varied; (C) baseline was varied. For each of these manipulations, only the fit 
parameter matching that which was manipulated changes as a function of parameter value; all others remain constant at 
the value indicated by the vertical dashed lines in their respective panels. An additional concern is that our narrow field of 
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view (FOV; 9.30°) over which we reconstruct WM contents and fit a surface to target representations may result in 
erroneous estimates of size, amplitude or baseline. To address this issue, we kept the simulated representation constant, 
but expanded the FOV over which we simulated target representations and fit surfaces (D). Best-fit size, amplitude, and 
baseline are largely constant across a wide range of FOVs. Importantly, we choose to maintain our original FOV, as that is 
the window over which we “trained” the spatial encoding model during the spatial mapping runs (Fig. 2A-C; 
Supplemental Experimental Procedures: Spatial encoding model). Allowing reconstructions to evaluate to 0 at high-
eccentricity positions (as would be the case with an artificially-enlarged FOV) may not capture properties of the actual 
target representations, and so we intentionally avoid this. Additionally, it might be that the coregistration and averaging 
procedure (Fig. 2E) may artificially inflate estimates of fit size on R2 trials relative to R1 trials, even if there were no 
“true” change in target representation size. If this were the case, our observations of size increases in anterior parietal and 
frontal ROIs (IPS2-3, sPCS) might be partially due to the analysis procedure. Importantly, this may disproportionately 
mask results for ROIs in which target representations are not readily separable during R2 trials (Fig. 3C).  To evaluate this 
possibility, we simulated reconstructions from both R1 and R2 trials under the null assumption that representations of the 
remembered target(s) do not change as a function of memory load. The representation parameters used to generate R2 
reconstructions from a given ROI were taken from the best-fit parameter values reported in Figure 4D. Results from this 
analysis are presented in E. Using actual target positions remembered by participants and an identical analysis procedure, 
fit size indeed increased by an average of 8.62% across all ROIs for R2 compared to R1, even when the “true” simulated 
representations were constant in size. However, this effect is small when compared to the actual (significant) size 
increases observed in IPS2 (simulated: 10.62%, measured: 24.93% [18.85% 31.59%], mean [95% CI]), IPS3 (simulated: 
11.73%, measured: 32.7% [23.28% 44.58%]), and sPCS (simulated: 8.25%, measured: 19.6% [13.50% 26.53%]). Because 
the size increases from simulations seeded with R1 representation parameters in these ROIs lie outside the 95% CIs of the 
observed size increases, the observed size changes are above and beyond those that would be expected given the analysis 
procedure alone. Finally, we also simulated the effect of increasing spatial overlap (via simulating reconstructions of 2 
targets with increasing sizes) in order to evaluate whether increased overlap alone can lead to overestimates of fit size. We 
observed a decrease in the size overestimation once we exceeded simulated representation sizes of 5.8°. Though the size 
of R1 target representations in IPS2 (5.591°), IPS3 (5.889°), and sPCS (5.696°) hover near this maximum bias point, the 
size increase we observe in those regions for R2 remains substantially larger than that introduced by the analysis 
procedure alone. In all simulations performed using realistic parameter values, we never observed a decrease in 
representation amplitude as a result of the coregistration and fitting procedure.    
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Table S1 P values for resampled tests reported in Figure 4D and Figure S1B. 

P-values derived from resampling tests described in Supplemental Experimental Procedures: Statistical methods. A value 
of 0 indicates p < 0.001 (due to 1,000 sampling iterations). Bold indicates significant test after correcting for multiple 
comparisons within parameter using Bonferroni’s method (Figure 4D 4D, All voxels 
combined ; Figure S1B, 30 comparisons,  = 0.0017). Italics indicate trends at p < 0.05, 
uncorrected for multiple comparisons.   

V1 V2 V3 V3A hV4 IPS0 IPS1 IPS2 IPS3 sPCS 
All voxels 
combined 

Figure 4D 

Size 0.824 0.682 0.362 0.73 0.244 0.022 0.004 0 0 0 0 

Amplitude 0 0 0 0 0 0 0.002 0.02 0.02 0.03 0 

Baseline 0.064 0.196 0.02 0.234 0.08 0 0 0.582 0.008 0.402 0 

Figure S1B 

R0 vs R1 0.004 0 0 0 0 0.148 0.024 0 0 0 

R0 vs R2 0.002 0 0 0 0 0.344 0.004 0 0 0 

R1 vs R2 0.720 0.428 0.682 0.628 0.938 0.650 0.298 0.012 0.030 0.584 
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Supplemental Experimental Procedures 

Participants 

We used 4 healthy participants from the UCSD community (aged 24-31 yrs, 2 female, all right-handed). All participants 
were experienced psychophysical observers, and data from these participants has been reported previously using the same 
participant identifiers [S5]. One participant (AA) was an author (TCS). All participants gave informed consent as 
approved by the UCSD Institutional Review Board and were compensated for their time ($20/hr fMRI sessions, $10/hr 
behavioral sessions). 

Stimulus & Task 

All participants took part in 4 fMRI testing sessions and 2-4 behavioral testing sessions. The size of the stimulus display 
was fixed across sessions. During each trial, two target stimuli were presented at pseudorandomly chosen positions on the 
screen for 500 ms, followed by a post-cue (fixation point changing color) and 8,000 ms delay interval. The color of the 
post-cue during this delay interval instructed participants to precisely remember the position of one target (matching the 
color of the fixation point; Remember 1), remember the position of both targets (purple fixation point; Remember 2), or to 
passively fixate and wait for the next trial to begin (only in some fMRI sessions; Fig. 1A; Remember 0). 

Each target was presented within one of 8 discs with 0.6° radius evenly spaced around a 3.25° circle, offset from the 
horizontal and vertical meridians. Both targets were presented in different discs. On every trial, the exact target position 
within the area of the disc was randomly chosen with uniform density to discourage alternative coding strategies (e.g., 
verbally labeling the location, such as “up and to the left”; “8 o’clock”, etc.).  

During fMRI scanning sessions, a probe stimulus appeared at the end of the delay period (500 ms). The probe stimulus 
was always presented near to and in the color of the remembered target during Remember 1 trials, and with equal 
probability in either color/location during Remember 2 trials (matching the color of the corresponding target). The probe 
stimulus was in exactly the same position as the target stimulus on 50% of trials, and an offset position in a random 
direction on the other 50% of trials. The magnitude of the offset was uniformly chosen from the range 0.1° - 1.5° at 0.2° 
steps. Participants performed a two-alternative forced-choice task at the end of each Remember 1 or Remember 2 trial, 
comparing whether the probe stimulus was in exactly the same or in a slightly different position relative to the 
corresponding target position.  

In the behavioral recall task performed outside the scanner, we instructed participants to use the mouse to click as 
accurately as possible at the remembered target position on the screen. For Remember 2 trials, the response was cued by a 
change in fixation color from purple to red or blue.   

During the first 2 fMRI sessions acquired for each participant we included Remember 0 trials, but these were dropped 
from the final 2 sessions in an effort to maximize data acquired during memory maintenance. Remember 0 trials were 
omitted from the behavioral recall task.  

In order to independently estimate a spatial encoding model for each voxel, participants also performed a “spatial 
mapping” task (Fig. 2A-B), which is similar to the Spatial WM condition in our previous work [S5]. Briefly, they 
remembered the exact position of a target dot (500 ms) over a brief delay interval (3,000 ms) and made a same/different 
2AFC judgment on a probe dot presented after the delay (500 ms). The principal difference between this task and the main 
spatial WM task described above (Fig. 1A) is the presentation of a high-contrast flickering checkerboard (1.163° radius) 
around the remembered target position (Fig. 2A). Also, these memory targets and interstitial delay-period checkerboards 
were presented on a 6 × 6 grid (spaced by 1.163°, Fig. 2B). This stimulus and spatial arrangement allowed us to drive a 
strong BOLD response and efficiently estimate the spatial sensitivity of each voxel across the entire visual field. Task 
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difficulty was adjusted between runs to ensure sufficient task engagement (mean ± standard error of accuracy: 73.738 ± 
1.819 %). 

Finally, observers also performed a spatial WM task while a large full-hemifield flickering checkerboard was presented. 
Data from this task was used to independently identify which voxels were significantly modulated by visual input from 
our stimulus display for inclusion in further analyses (see ROI definition).  

Behavioral analysis 

For each participant, we combined data across all behavioral recall sessions. We discarded trials in which errant clicks 
were made (responses > 7.0° eccentricity or within 1.0° of fixation; these typically were a result of accidentally pressing 
the mouse before moving the cursor or errant mouse movements; 11 of 3,264 trials discarded across all participants). 
Behavioral recall error was defined as the mean Euclidean distance between the response position and the correct target 
position across all trials for each condition within a participant.  

fMRI scanning 

We scanned all 4 participants for 4 sessions, with each session lasting 2 hrs. Each session included 3 types of runs: spatial 
mapping runs (Fig. 2A-B, 5 min each, 3-4 per session), used for encoding model estimation (Fig 2C), spatial WM main 
task runs (Fig. 1A; 2-3 per session, each subdivided over 4 shorter runs lasting 4-6 min each depending on whether 
Remember 0 trials were included), and visual localizer runs for identifying visually-responsive voxels involved in WM 
maintenance (6 min each, 1-3 per session). These participants were additionally scanned for another 1.5-2 hr session in 
order to map retinotopically organized IPS subregions IPS0-IPS3 using methods described previously (Methods and IPS 
retinotopic maps for 3 of 4 participants can be found in [S5]). 

We scanned all participants on a 3 T research-dedicated GE MR750 scanner at the UCSD Keck Center for Functional 
Magnetic Resonance Imaging using a 32 channel send/receive head coil (Nova Medical, Wilmington, MA). We acquired 
functional data using a gradient echo planar imaging (EPI) pulse sequence [S5] (19.2 × 19.2 cm field of view, 96 × 96 
matrix size, 31 3-mm-thick slices with 0-mm gap, obliquely-oriented through occipital, parietal & dorsal frontal cortex, 
TR = 2,250 ms, TE = 30 ms, flip angle = 90°, voxel size 2 × 2 × 3 mm, xyz).  

During each session we also acquired a high resolution anatomical scan (FSPGR T1-weighted sequence, TR/TE = 11/3.3 
ms, TI = 1,100 ms, 172 slices, flip angle = 18°, 1 mm3 resolution). Functional images were coregistered to a separate 
anatomical scan collected during a different session by aligning each session’s functional images to the respective 
session’s anatomical scan, and then aligning the anatomical scan to the target anatomical scan. Images were preprocessed 
as described previously [S5] using FSL (Oxford, UK) and BrainVoyager 2.3 (BrainInnovations). Preprocessing included 
unwarping the EPI images using routines provided by FSL, slice-time correction, three-dimensional motion correction 
(six-parameter affine transform), temporal high-pass filtering (to remove first-, second- and third-order drift), 
transformation to Talairach space and normalization of signal amplitudes by converting to Z-scores separately for each 
run. We did not perform any spatial smoothing beyond the smoothing introduced by resampling during the co-registration 
of the functional images, motion correction and transformation to Talairach space. All subsequent analyses were 
computed using custom code written in Matlab (version 2012a, The Mathworks, Inc).  

ROI definition 

All reported ROIs except sPCS were defined using standard retinotopic mapping procedures [S5, S8, S9]. For analysis, 
voxels from ROIs in the left and right hemispheres which showed a significant response to either hemifield during the 
visual localizer runs (across sessions, corrected using the false discovery rate (FDR, [S10]) across all measured voxels 
within each participant, q < 0.05) were concatenated to produce bilateral ROIs. We concatenated voxels from the dorsal 
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and ventral aspects of V2 and V3. The sPCS ROI was defined using voxels with significant activation localized in the 
posterior part of the superior precentral sulcus during the visual localizer runs, FDR-corrected for multiple comparisons. 
The “All voxels combined” ROI presented in Figure 4C was defined by concatenating all voxels from all 10 ROIs.  

fMRI analysis 

For each trial of the spatial mapping runs, we extracted the Z-scored BOLD signal from each voxel averaged over the two 
TRs occurring 6.75 – 9.00 s after target onset as the observed signal in that voxel for that trial. For each trial of the main 
spatial WM task runs, we extracted signal from each TR following the target onset and computed spatial representations 
for each TR independently.  

Spatial encoding model 

We implemented an inverted spatial encoding model [S5] to compute spatial WM reconstructions using the pattern of 
activation over subsets of voxels during each time point (TR) of the WM delay period. This method assumes (1) the 
BOLD signal reflects an approximately linear combination of neural responses within each voxel, (2) at least some voxels 
within each ROI have non-uniform responses to stimuli presented at different positions on the screen during the “training” 
phase of the analysis (Fig. 2A-C), and (3) a voxel’s estimated encoding model during the training phase is maintained 
during the main task runs.  

For this method we first estimated the spatial sensitivity profile of each voxel (Fig. 2A-C). Then, with novel data, we used 
the pattern of activation across all voxels of interest and the independently estimated spatial sensitivity profile estimated 
for each of those voxels to compute the reconstruction carried by the activity across all voxels in a ROI (Fig. 2D). In this 
implementation of the inverted encoding model we used entirely different datasets for estimating the encoding model and 
for reconstructing spatial WM contents (i.e., there is no need for a “leave-one-out” procedure). We trained and tested the 
encoding model using data from each session independently, then combined resulting reconstructions across sessions. 
Thus, we used 3-4 runs of “training” data from spatial mapping runs at a time for encoding model estimation, and 8-12 
runs of “testing” data for computing reconstructions. 

We modeled the response of each voxel as a linear combination of a grid of 36 spatial filters (or information channels; 
Fig. 2C) where B1 is the observed signal in each voxel on each trial (m voxels × n trials), C1 is the predicted responses for 
each channel on every trial (k channels × n trials; see below), and W is a matrix describing the mapping between “channel 
space” and “voxel space” (m voxels × k channels): =  (Equation 1) 

During the training phase, we estimated the spatial sensitivity profile of each voxel by first filtering all training stimuli 
(Fig. 2A-B) by a “basis set” of 36 spatial filters, each of the form: 

f(r) = 0.5 + 0.5 cos(r s)7 for r < s, 0 elsewhere (Equation 2) 

Where r is the distance from the center of the basis function, and s is a size constant which corresponds to the distance 
from the basis function center at which the function reaches zero (same function used in [S5]). Spatial filter centers are 
spaced by 1.86° and have a full-width at half-maximum (FWHM) of 2.31° (the corresponding size constant, s, is 5.82°).  

The resulting filtered predicted channel responses (C1, k channels × n trials) enter into an ordinary least-squares 
regression, along with the observed signal in each voxel (B1) to estimate the contribution of each spatial information 
channel to the observed response in each voxel across all training trials ( , m voxels × k channels): =   (Equation 3) 
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This step amounts to a simple general linear model of the form commonly implemented in fMRI analyses, and is 
performed on each voxel individually (i.e., it is a univariate analysis).  

Once the spatial sensitivity profile (“channel weights”, ) was estimated for each voxel using all spatial mapping runs 
within a session, we computed the pseudoinverse of the channel weights to obtain a mapping from the observed pattern of 
activation across all voxels within an ROI (“voxel space”) into estimated channel responses ( , k × n, “information 
space”): = (Equation 4) 

This mapping is computed using all voxels assigned to a given ROI (e.g., all V1 voxels, Figs. 3-4, or all voxels across all 
ROIs, Fig. 4), and is different for any given combination of voxels (i.e., it is a multivariate operation).  

The resulting estimated channel responses reflect the response of each information channel that is most likely to have 
given rise to the observed pattern of activation across all voxels within an ROI, given our linear model of observed BOLD 
responses as a function of information channel activation.    

To compute spatial WM reconstructions from each vector of channel responses (one 36-dimensional channel response 
vector for each fMRI data volume for each ROI) we computed a sum of the basis functions, each weighted by the 
corresponding estimated channel response for each channel response vector (Fig. 2D). For Figures 2-4 and Figure S2 we 
averaged reconstructions from 6.75 – 9.00 s (2 volumes during the delay period). For all Supplemental Movies, we did not 
average reconstructions across time. Each frame of the movies corresponds to a single fMRI data volume (averaged across 
all trials and participants). 

Critically, because we used data from an independent task (Fig. 2A-B) to estimate the encoding model which was then 
used to generate reconstructions during the memory task (Fig. 1A), we can be confident that stimulus-specific 
idiosyncrasies in the data (i.e., overfitting noise in a leave-one-out cross-validation design) were not responsible for our 
ability to reconstruct the contents of spatial WM.  

Coregistering reconstructions 

Because the representations of remembered targets within WM reconstructions are rather weak (especially compared to 
stimulus representations of flickering checkerboard stimuli, [S5]) we implemented several different coregistration 
procedures in order to visualize different aspects of the WM reconstructions. Because the pattern of BOLD activation was 
mapped into an information space, we can manipulate the functions describing information space in a manner that allows 
us to average target representations within the WM reconstructions from trials in which remembered visual stimuli 
appeared in different positions by effectively “rotating” the WM reconstructions in order to match target positions. That 
is, we can combine the target representations when the remembered stimulus was on the top left of the screen with the 
target representation when the remembered stimulus was at the top right of the screen. This removes any potential 
inhomogeneities in representations that are dependent upon particular screen positions and allows us to ascertain how 
target representations generally change across the visual system and across task demands independent of the exact 
position of a remembered stimulus. This is a unique ability afforded by this analysis method – it is otherwise very 
challenging to determine how one would average responses to stimuli at different parts of the screen in “voxel space”. 

First, we sought to qualitatively evaluate WM reconstructions for different stimulus arrangements across the 3 memory 
load conditions. We collapsed all trials in which the 2 target stimuli were an equal average angular distance apart. To do 
this, we rotated all reconstructions clockwise such that the non-probed target (for Remember 1, this was the non-cued 
target; for Remember 2, this was the target which was not probed at the end of the trial) appeared along the positive x axis, 
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and flipped reconstructions in which the probed stimulus was below the x axis across the horizontal midpoint such that 
there are four possible target arrangements (the four columns in Fig. 3, Fig. S2A, Movies S1A-C).  

Second, we sought to coregister reconstructions so that the remembered target was always centered at exactly the same 
position (along the x axis, 3.25° from fixation). We accomplished this by rotating each trial’s reconstruction by the 
angular distance between the target and the horizontal axis, then horizontally shifting the reconstruction to remove any 
remaining jitter (Fig. 2E). For Remember 0 and Remember 2 trials, we did this for each target in turn and averaged the 
resulting reconstructions (Fig. 4; Fig. S2B; Movie S2). Note that this procedure was identical across all ROIs, so any 
changes in WM reconstructions resulting directly from the coregistration procedure would be similar across all ROIs. 
Because the effects of memory load on target representations within WM reconstructions we observed are different across 
different ROIs, those effects must be due to changes in fidelity of the target representation rather than artifacts of the 
analysis procedure (see Fig. S4). 

Surface fitting 

For each exactly-coregistered WM reconstruction (aligned to optimally reveal the target representation) we fit a surface 
(Fig. 4A-B) parameterized by its position, size (s, distance from center at which surface reaches zero), amplitude (a) and 
baseline (b, non-spatially-selective) shift: 

f(r) = b + a(0.5 + 0.5 cos(r s))7 for r < s,   0 elsewhere       (Equation 5) 

To ensure robust fits, we restricted the position of the best-fit function to be the point on the reconstruction with the 
largest local average. The local average was computed across a disc 0.5° in radius (via convolution of each reconstruction 
with a circular disc). All other parameters (s, a, and b) were allowed to freely vary.  

We computed fits using fminsearch in MATLAB (R2012a, The Mathworks, Inc), which implements the Nelder-Mead 
algorithm. For every fit, we began from 10 different randomly selected initial values and chose the fit that minimized the 
sum of squared errors between the surface function and the coregistered WM reconstruction. 

Statistical procedures 

To evaluate behavioral effects of the memory load manipulation (Fig. 1) we performed a resampling test in which we 
resampled all valid trials across all participants (with a response, for RT/accuracy in the scanner, Fig. 1C-D; within a 
reasonable spatial response window, behavioral recall task, Fig. 1E) with replacement for each memory load condition 
1,000 times and computed the distribution of differences between R2 and R1 for inside-scanner accuracy, RT and outside-
scanner recall error. We defined p-values as the percentage of resampling iterations in which an effect was observed in the 
opposite direction of the mean effect and multiplied by two, as we did not make any a priori predictions about the 

 

When comparing best-fit parameters to target representations with WM reconstructions across memory load conditions 
(Fig. 4), we implemented an across-participant resampling procedure. We combined data across all 4 participants into one 
large pool of 1,248 trials per condition. Within each condition, we resampled across all trials, with replacement, 1,000 
times and computed an averaged WM reconstruction. We then implemented the surface fitting procedure described above 
to quantify the target representation on each resampling iteration, resulting in a resampled distribution of 1,000 best fit 
values for each parameter (size, amplitude, and baseline). Error bars on figures are 95% confidence intervals derived from 
this resampled fit parameter distribution. P-values are computed as the percentage of resampled iterations in which a 
difference opposite to the mean difference was observed (e.g., if Remember 2 had a larger value on average than 
Remember 1, p would correspond to the percentage of resampled iterations in which Remember 2 had a smaller value 
than Remember 1). All p-values were doubled (because we made no a priori hypothesis about the direction of the effect) 
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and compared against an alpha threshold corrected for multiple comparisons across 10 ROIs for each parameter using 
y p-

and are indicated using gray asterisks in Figure 4D (see also Table S1 for p-values for all comparisons in Fig. 4D). 
Because the results from the “All voxels combined” ROI include data from each of the other 10 ROIs, we performed 
statistics separately for the 10 constituent ROIs and for the combined ROI (that is, we corrected for 10 comparisons within 
each parameter when evaluating the statistical significance of each ROI separately, then performed no corrections when 
evaluating the statistical significance of the combined ROI). However, as can be seen in Table S1, correcting for an 
additional comparison would not change which tests are found to be significant. Since we computed 1,000 iterations in 
this resampling procedure, we only report p-values as < 0.001 if we do not observe an effect opposite the mean in the 
resampled distribution. It is possible that with more iterations we could see a result, and so it is inappropriate to report p = 
0. 

When evaluating statistical significance of mean delay-period BOLD responses (Fig. S1B), we resampled the average 
BOLD signal during the delay period (6.75 – 9.00 s after target onset, as in Figs. 3-4, S2) on each trial for each set size 
condition pooled across all participants (1,000 resampling iterations, resampling all trials of a given set size condition with 
replacement). Because we only included Remember 0 trials during Sessions 1 and 2, we only included those sessions in 
this analysis. Then, we compiled 3 resampled distributions corresponding to the difference between each pair of set size 
conditions (R0 vs. R1, R0 vs. R2, R1 vs. R2) and computed p-values as the percentage of resampled iterations in which a 
difference opposite to the mean difference was observed, doubled (as described above). To evaluate significance for this 
exploratory analysis, we corrected for multiple comparisons using Bonferroni’s method across all 30 computed p-values 
(3 pairwise comparisons for each of 10 ROIs; ). 

Simulating and fitting target representations with known parameters 

To evaluate the accuracy and sensitivity of our fitting procedure (Fig. 4A-B), we simulated WM reconstructions 
containing a target representation (or multiple target representations) with known parameters, then implemented the fitting 
procedure in the same way as used on the actual data (see Surface Fitting, above). We simulated target representations as 
a single surface (Equation 5) with fixed s, a, and b parameters, centered at (3.25°, 0°) and computed over a square field of 
view (FOV) from -4.65° to 4.65° along the x and y axes, sampled at a grid of 151 × 151 points (along each axis). Then, we 
varied a single parameter while keeping the others constant and plotted best-fit parameters as a function of the value of the 
single parameter that we varied (Fig. S4A-C). Additionally, we performed this same procedure while allowing the FOV to 
vary (Fig. S4D), but keeping all target representation parameters constant, in order to evaluate how allowing the 
representation to artificially return to “baseline” at distant edges of the reconstruction might influence the fitting routine. 

Finally, to quantify how the coregistration procedure (Fig. 2E) might result in changes in best-fit parameter estimates 
without any “true” changes in parameter values of the underlying target representations, we generated a simulated dataset 
in which we centered representations at the actual target positions participants remembered during scanning, performed an 
identical coregistration procedure as to that in the main analysis, and fit the resulting coregistered and averaged 
representations. We did this using the actual best-fit parameters for the R1 condition in each ROI plotted in Figure 4D 
(Fig. S4E).  
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Restoring latent visual working memory 

representations in human cortex 
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4.1: Introduction  

Even in the context of simple visual tasks, such as tracking multiple moving objects or 

identifying the colors associated with basic shapes, an observer’s ability to accurately 

represent sensory information declines rapidly as the complexity of the scene increases 

(Franconeri et al., 2013; Tsubomi et al., 2013). These processing limits are highlighted in 

working memory (WM) tasks, which require the maintenance and manipulation of a subset of 

sensory information that is no longer physically present in the environment (Baddeley and 

Hitch, 1974; Bays, 2015; Curtis and D’Esposito, 2003; D’Esposito and Postle, 2014; 

D’Esposito, 2007; Gazzaley and Nobre, 2012; Luck and Vogel, 2013; Ma et al., 2014; Postle, 

2015; Sreenivasan et al., 2014; Stokes, 2015). A classic finding in WM is that increasing the 

amount of information stored leads to impaired behavioral performance when recalling visual 

features (Bays and Husain, 2008; Bays, 2015, 2014; Keshvari et al., 2013; Ma et al., 2014; 

Zhang and Luck, 2008). Classically, WM representations are thought to be maintained by 

sustained spiking activity (Funahashi et al., 1989; Fuster and Alexander, 1971) accessible 

using fMRI activation patterns (Harrison and Tong, 2009; Serences et al., 2009) and the 

pattern of EEG alpha-band potentials across the scalp (Foster et al., 2015) during the delay 

period of a task. Accordingly, impaired performance with increasing set sizes is accompanied 

by a decrease in spike rates related to relevant memoranda in macaques, or by a decrease in 

the ability to differentiate fMRI activation patterns tied to different remembered items in 

humans (Buschman et al., 2011; Emrich et al., 2013; Landman et al., 2003a; Matsushima and 

Tanaka, 2014; Sprague et al., 2014). Importantly, the fidelity of activity patterns in these areas 

of visual cortex as measured with fMRI is tied to behavioral performance on WM tasks 

(Albers et al., 2013; Emrich et al., 2013; Ester et al., 2013; Reinhart et al., 2012; Sprague et 

al., 2014), which suggests that load-based modulations of WM-related activity patterns play a 

role in guiding behavior.  
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One general mechanism that might mediate this relationship between WM load effects 

and behavioral load effects is inter-item competition manifest as divisive normalization 

whereby the presence of each item’s representation suppresses all other representations, 

resulting in degraded spiking representations for each item (Bays, 2015, 2014; Carandini and 

Heeger, 2012; Franconeri et al., 2013). Such a mechanism would result in an irreversible loss 

of information encoded via active spiking representations because diminished spiking 

representations become permanently corrupted by noise as spike rates are reduced (Bays, 

2014). This loss of information is irreversible and cannot recover with any type of additional 

processing (Cover and Thomas, 1991; Saproo and Serences, 2014, 2010; Shannon, 1948; 

Sprague et al., 2015). 

However, the notion that increasing the number of items in WM leads to an obligatory 

and irreversible degradation of neural representations is complicated by results from 

behavioral experiments in which participants are given an informative retrospective cue (a 

“valid retro-cue”) during the delay-period that indicates which element in a memory array is 

going to be eventually relevant for behavior. Participants respond more quickly and more 

accurately on cued trials compared to a baseline condition using non-informative “neutral” 

retro-cues (Griffin and Nobre, 2003; Landman et al., 2003b; Makovsik and Jiang, 2007; 

Matsukura et al., 2007). While these results hint that neural WM representations improve 

following retrocues, it could potentially be the case that a retro-cue prevents representations 

from decaying further, but does not enhance their fidelity, or that WM representations remain 

unchanged but a cue improves access to static representations.   

To address this discrepancy, we hypothesized that behavioral retro-cue benefits are 

observed because active WM representations – those that are reflected in elevated firing rates 

and/or BOLD fMRI responses – can be augmented using information encoded via within-trial 

latent or “activity-silent” codes (Stokes, 2015; Stokes et al., 2013; Wolff et al., 2015). For 
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example, transient information might be encoded via subthreshold membrane potential 

depolarization, changes in synaptic efficacy (Briggs et al., 2013), item-related fluctuations of 

pre-synaptic calcium concentration (Mongillo et al., 2008), or some combination thereof. 

Importantly, these hypothesized latent codes would be effective within the current trial only, 

and are not directly related to the transfer of information into a stable form of long term 

memory (LTM) that is supported by a largely separable neural substrate involving the 

redistribution of receptors and/or protein synthesis which operates at a slower timescale than is 

relevant for representing information within a single trial (Milner et al., 1998; Squire and 

Wixted, 2011).  

In this framework, when participants are validly cued that one of several items in WM 

is relevant, the active representation of the cued item might be recovered based on these other 

potential transient sources of information that are each invisible to common neural measures 

such as spike rate or BOLD activation level. For example, a set of neurons carrying a transient 

latent WM representation in the form of elevated subthreshold membrane potential without a 

change in spike rate could be activated by input from another neuron or brain region, allowing 

the latent representation to contribute to the fidelity of an active (spiking) representation. 

While previous work has identified initial evidence for such transient latent representations of 

category-level information (LaRocque et al., 2013; Lepsien and Nobre, 2007; Lewis-Peacock 

and Postle, 2012; Lewis-Peacock et al., 2012), it remains unknown how the relative fidelity of 

each item’s representation is updated after presentation of a retro-cue, and how those 

representations are related to behavioral performance on a task requiring high-precision 

maintenance of feature values.  

The hypothesis that latent transient codes can bolster active neural representations 

makes several predictions. First, in line with existing data, behavioral performance and the 

fidelity of active neural WM representations should become degraded with increasing memory 
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load. However, a retro-cue indicating that only 1 item (of several) is relevant should lead to 

recovery of behavioral performance (e.g., LaRocque et al., 2015). Second, the recovery of 

mnemonic precision following a retro-cue should be accompanied by a corresponding 

recovery of an already-degraded active neural WM representation. Additionally, if latent 

representations contribute to behavior, the degree to which latent information facilitates the 

restoration of active neural representations following a retro-cue may co-vary with behavioral 

performance. Critically, direct evaluation of the fidelity of active WM representations in a 

stimulus-referred feature space (Sprague et al., 2015) is necessary to distinguish this 

hypothesis that retro-cues enable the restoration of degraded active representations to a more 

informative state from an alternative account whereby retro-cues enhance access to otherwise 

stable representations. 

We tested each of these predictions using a task where participants precisely 

maintained the spatial positions of 1 or 2 items in visual WM. On some trials, we presented a 

retro-cue midway through the delay interval validly cueing which item was relevant for 

behavior; on the remainder of trials we presented a non-informative neutral retro-cue. 

Consistent with previous results, we identified degraded behavioral performance and neural 

WM representations when more items were remembered (Emrich et al., 2013; Sprague et al., 

2014). However, when participants were cued during the delay which item was relevant, 

behavioral performance and neural WM representations each substantially improved. 

Together, these results demonstrate that degraded WM representations can recover, 

implicating the existence of information within latent neural codes that can support improved 

behavioral performance. 
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4.2: Results 

We tested the fidelity of WM representations using a mixture of behavioral and neural 

measures while participants performed a retro-cued spatial recall task. Participants held 1 

(Remember 1, R1) or 2 (Remember 2, R2) items from a 2-item display in spatial WM as 

indicated by the initial color of the central fixation point over a 16 s delay period. On some 

Remember 2 trials, we changed the color of the fixation point to provide either an informative 

“valid” (R2-valid) or an uninformative “neutral” (R2-neutral) retro-cue at the end of the first 

half of the delay interval that indicated which item(s) might be cued for recall at the end of the 

entire delay interval (Fig. 4-1A). We used fully reliable retro-cues to ensure that participants 

utilized the cue to optimize behavior. At the end of the delay period, participants recalled the 

exact horizontal or vertical position of one of the items by adjusting vertical or horizontal 

response bar, respectively (Fig. 4-1A, response coordinate randomly assigned on each trial). 

On Remember 1 and Remember 2-valid trials, the probed item was the only item that required 

active maintenance in WM during the second delay period, and on Remember 2-neutral trials, 

we randomly selected which of the two remembered items would be queried for recall. Note 

that Remember 2-neutral and Remember 2-valid trials were identical during the first delay 

period, and differed only during the second delay period when participants were cued to 

remember either 1 or 2 items (Fig. 4-1A). The Remember 2-valid condition allowed us to 

assess the manner in which an informative retro-cue influences behavioral performance and 

neural representational fidelity compared to performance when both items were remembered 

in the Remember 2-neutral condition. We pseudo-randomly chose target positions from an 

array of 6 invisible discs that were spaced equally along an imaginary circle 3.5° from fixation 

and which were rotated around fixation on every trial (Fig. 4-1B). Targets were randomly 

positioned within each disc so that discrete or verbal encoding strategies (e.g. “up and to the 

right” or “8 o’clock”) would not be adequate to support sufficiently accurate recall 
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performance on the task (Sprague et al., 2014). Each participant (n = 5) completed three 2-hr 

fMRI scan sessions (324 to 378 total trials per participant). We indexed behavioral 

performance on all trials after the end of the second delay period based on the distance 

between the response bar and the relevant target at the conclusion of a 3 s response period. We 

also collected additional behavioral data outside the scanner (1-3 sessions per participant), but 

do not include these data in our behavioral analyses due to a response artifact where 

participants performed worse on horizontal recall trials than vertical recall trials, likely due to 

the wider aspect ratio (width:height) of the LCD monitor used for behavioral testing (16:9) 

compared to the rear projection display used during scanning (4:3).  

Behavioral performance improves with a valid retro-cue 

Participants performed more poorly, as indicated by higher average recall error, on 

Remember 2-neutral trials as compared to Remember 1 trials (Fig. 4-1C; R1 vs. R2-neutral: p 

< 0.001, resampling test, see Experimental Procedures). This drop in recall accuracy is 

consistent with degraded neural representations that accompany increasing set sizes, and 

replicates previous findings (Sprague et al., 2014; see also:  Bays and Husain, 2008; Bays, 

2014; Emrich et al., 2013; Zhang and Luck, 2008). When one item was cued midway through 

the delay interval (Remember 2-valid trials), behavioral performance improved as compared 

to Remember 2-neutral trials (R2-neutral vs. R2-valid: p = 0.016). Performance was slightly 

worse on Remember 2-valid trials compared to Remember 1 trials (R1 vs. R2-valid: p = 

0.024), suggesting substantial but imperfect recovery of WM representations with valid cues. 

Reconstructing WM representations 

Changes in behavioral performance are consistent with changes in the quality of 

neural representations following a valid retro-cue. For example, increased response conflict 
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could result in poorer access to otherwise stable and robust neural WM representations when 2 

items are maintained as compared to one item. In order to isolate and assess the information 

content of WM representations from these other potential intervening factors, we implemented 

an inverted encoding model (IEM) to reconstruct images of the contents of spatial WM based 

on blood oxygenation level dependent (BOLD) fMRI activation patterns (Brouwer and 

Heeger, 2009; Ester et al., 2015, 2013; Sprague and Serences, 2013; Sprague et al., 2015, 

2014). We computed reconstructions in each of 10 independently-identified regions of interest 

(ROIs): retinotopic occipital visual areas (V1-hV4; V3A), retinotopic posterior parietal areas 

(IPS0-IPS3), and the superior precentral sulcus (sPCS; thought to be a human homolog to 

macaque frontal eye fields; the sPCS ROI was identified using an independent spatial WM 

localizer task; see Experimental Procedures and (Srimal and Curtis, 2008)). We also assayed 

representations encoded by the joint activation pattern across all these regions after 

concatenating voxels from all areas before computing reconstructions (“All ROIs combined”). 

The first step of the reconstruction analysis involved acquiring an independent set of 

mapping scans in which we presented a 1.083°-radius circular flickering checkerboard 

stimulus at each location on a triangular grid subtending the full extent of the stimulus display 

while participants performed a demanding spatial WM task near the stimulus location 

(following Sprague and Serences, 2013; Sprague et al., 2014; see Experimental Procedures 

and Figure 4-5A). We used responses to these mapping stimuli to estimate the spatial 

sensitivity of each voxel in each ROI by modelling voxel activation levels as a weighted sum 

of spatial information channels (spatial filters) arrayed across a hexagonal window on the 

visual field in a triangular grid (Fig. 4-4A; each filter can be thought of as hypothetical neural 

subpopulations with different spatial RF positions). Using the measured activation level in 

response to mapping stimuli presented in each location, we estimated the contribution each 

spatial channel made to the signal measured from each voxel – that is, the encoding model for 
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each voxel. This procedure is univariate, and was implemented using a general linear model 

(GLM; see Experimental Procedures: fMRI analysis: inverted encoding model).  

Then, using the estimated spatial sensitivity profile (or the pattern of channel weights) 

from all voxels within an ROI, we computed a mapping that transforms multivariate activation 

patterns measured during the WM task (Fig. 4-1A) from voxel space (1 response level from 

each voxel) into channel space (1 response level for each modeled channel). The resulting 

channel activation patterns (Fig. 4-4B) reflect the activation level in each modeled information 

channel that accounts for the observed activation pattern across all voxels in a given ROI, 

given our independently-estimated encoding model of the spatial selectivity of each voxel 

(Fig. 4-4A). Finally, we used these channel activation patterns to compute a sum of spatial 

filters, weighted by the corresponding activation level of each spatial channel. This produces a 

smooth image and yields a reconstruction of the contents of spatial WM in units of BOLD 

activation (due to the linear signal transformation) plotted in visual field coordinates. Thus, we 

obtain reconstructions of the entire visual field, and we refer to the light spots in these 

reconstructions appearing at position(s) held in spatial WM as “target representations”.  

Because target positions are unique on every trial of the experiment, we next rotated 

all WM reconstructions so that target positions were aligned across trials (see Sprague et al., 

2014; Experimental Procedures, Figure 4-5C). Due to this rotation that respects only the 

position of a WM target on each trial, any substantial target representation in the WM 

reconstructions at the aligned position reflects only activation that follows the position of the 

WM target across trials in channel information space (visual field coordinates). This is a key 

part of the analysis procedure, because across trials the only consistent feature in these aligned 

reconstructions is the location of the WM target. This approach is thus far more powerful than 

analyses performed in native voxel (brain) space, where translating and coregistering 

activation patterns across different stimulus locations would be challenging or impossible due 
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to difficulties associated with co-registering target representations encoded by the univariate 

responses of individual voxels that are idiosyncratically embedded in ROIs that vary in shape 

and size across participants. Moreover, the transformation of data from univariate native voxel 

space to an a priori defined information space allows for all voxels within each ROI to jointly 

constrain the estimated fidelity of the target representations (i.e. the target representations 

reflect a multivariate estimate that can exploit the information contained in the pattern of all of 

the individual voxel responses within a given ROI).  

Reconstructions track the dynamic contents of spatial WM 

First, we evaluated whether target representations in WM reconstructions track the 

remembered position(s) maintained by participants. We plotted WM reconstructions computed 

using activation patterns from each time point during the trial (0-20.25 s) averaged over all 

trials with similar WM target arrangements within each WM condition (colored discs in Fig. 

1B; note that reconstruction time courses are not adjusted for the hemodynamic delay, so 

changes in reconstructions lag changes in stimuli/WM contents by ~6 s). We combined trials 

with similar relative target arrangements (±60°, ±120°, ±180°), and rotated reconstructions to 

align all similar trials (see Experimental Procedures, Figure 4-5). On Remember 1 trials, 

reconstructions computed using an early time point (4.50 s) contain representations of both 

targets (example target arrangement condition shown in Fig. 4-6A). However, shortly 

thereafter, only the relevant target (yellow dashed circle) remains visible (6.75-18.00 s). While 

the target representation becomes less visually pronounced over the duration of the trial 

following the initial encoding transient, it remains visible throughout the late delay interval. 

The same pattern holds for Remember 2 trials with a neutral cue (Fig. 4-6B): representations 

of items maintained in WM persist in reconstructions after the initial sensory transient through 

the late delay period, though target representations are weaker than those in Remember 1 
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trials, especially during the late delay period. On Remember 2 trials with a valid cue (Fig. 4-

6C), we observed a transition from two simultaneous target representations (early delay) to 

one target representation (late delay) following the cue, confirming that these spatial 

reconstructions track the dynamically changing contents of WM over extended delay intervals. 

Furthermore, the representation of the cued item during the late delay period appears to be 

enhanced compared to each of the 2 target representations earlier in the delay period (after the 

encoding transient subsides at ~9.00 s).  

For several subsequent analyses of WM reconstructions, we focused on average 

reconstructions during the first delay period (Delay 1; 6.75-9.00 s after target onset) and 

during the second delay period (Delay 2; 15.75-18.00 s after target onset) after accounting for 

the hemodynamic delay. These delay-period target representations tracked the position(s) of 

item(s) in WM. When we binned trials by the relative position of WM targets (Fig. 4-1B), 

target representations always appeared nearby and only in the position(s) corresponding to the 

remembered item(s) during that condition and delay period (Fig. 4-7). Additionally, the 

quality of target representations always exhibited the same pattern across delay periods 

regardless of target arrangement – during the first delay period, representations degraded when 

2 items were maintained (Fig. 4-7A compared to Fig. 4-7C,E), and during the second delay 

period, a valid cue restored the cued representation to a high-fidelity state (Fig. 4-7E-F). 

Fidelity of WM target representations  

To quantify whether or not a target representation was robust in a given ROI, we 

computed reconstructions over an annulus around fixation (2.9-4.1°) and averaged these 

reconstructions across eccentricity, resulting in a 1-d reconstruction as a function of polar 

angle position (Fig. 4-4C; Experimental Procedures: Quantifying WM representations).  
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First, we plotted these rotated and aligned 1-d reconstructions as a function of time to 

evaluate the relative fidelity of WM representations over the entire trial duration (Fig. 4-8A). 

On Remember 1 and Remember 2-neutral trials, an initially high-fidelity representation during 

WM encoding subsides, but remains present in many ROIs throughout Delay 2 (e.g., V3A; 

IPS0). On Remember 2-valid trials, the cued item is robust even at late time points during 

Delay 2, often increasing in fidelity following the cue (Remember 2-valid, compare early and 

late time points, e.g. V1).  

To determine the strength of a WM representation in these 1-d polar angle 

reconstructions, we developed a “representational fidelity” metric. We define representational 

fidelity as the vector mean of a set of unit vectors pointing in each polar angle direction 

weighted by the reconstruction activation for the corresponding polar angle, projected on a 

unit vector pointing in the “correct” direction (here, always 0° polar angle, because we rotate 

all 1-d reconstructions to a common center; Fig. 4-4C; Experimental Procedures: Eq 5). If this 

metric is reliably greater than zero (statistically evaluated using a resampling procedure, see 

Experimental Procedures: Quantifying WM representations), then there is a consistently 

identifiable WM target representation in the corresponding reconstruction. In contrast, if the 

reconstruction has a uniform activation profile, then this metric will result in a value 

indistinguishable from zero. To visualize the dynamics of representational fidelity, we plotted 

the time course of this metric over the entire trial (Fig. 4-8B). The fidelity of the target 

representations gradually decreases over time on Remember 1 and Remember 2 trials, in 

which WM contents are held constant, but substantially recovers following the valid cue on 

Remember 2-valid cue trials when one item is cued to be relevant.  

Next, we compared 1-d polar angle reconstructions and representational fidelity 

during each delay period (Fig. 4-9). Importantly, we found significant representational fidelity 

in all ROIs across both delay intervals on Remember 1 and Remember 2-valid cue conditions 
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(p ≤ 0.001; one-tailed resampling test against 0, FDR corrected for multiple comparisons, see 

Experimental Procedures; all p-values available in Table 4-2). On Remember 2 trials with 

neutral cues we found representations in all ROIs during Delay 1 (p < 0.001), and all ROIs 

except IPS1, IPS2, and sPCS during Delay 2 (Fig. 4-9A; significant ROIs all p ≤ 0.039, 

maximum p-value V3A; non-significant ROIs all p ≥ 0.351, minimum p-value IPS1). 

Finally, we compared representational fidelity between each delay period within each 

cue condition (Fig. 4-9B). Representational fidelity significantly declined from Delay 1 to 

Delay 2 in V1-hV4, IPS0 and All ROIs combined on Remember 1 trials (p < 0.001; FDR-

corrected) and in V1-hV4, IPS0-IPS2, sPCS, and All ROIs combined on Remember 2-neutral 

trials (p ≤ 0.018, maximum p-value in hV4; two-tailed resampling test of differences in 

representational fidelity between Delay 1 & 2 against 0; all p-values in Table 4-3). In contrast, 

representational fidelity did not decline between delay periods on Remember 2-valid trials, 

and in fact fidelity was significantly higher during Delay 2, after the valid cue, than during 

Delay 1 in several occipital and parietal ROIs (V1, V3, IPS0-IPS3, and All ROIs combined; p 

≤ 0.022, maximum p-value in V3). In sum, these analyses identify reliable WM 

representations on Remember 2-neutral trials, even when they are not easy to visualize in the 

reconstructed WM images (Fig. 4-7), and quantify a significant enhancement of 

representations on Remember 2-valid trials following the cue (Fig. 4-9B).  

Relative target activation through time 

As an alternate means of evaluating whether WM reconstructions accurately track the 

contents of WM and the recovery of WM representations following a valid retro-cue, we also 

extracted the activation time course from each trial’s reconstruction over a narrow spatial 

window surrounding the exact target position on each trial. Then, we computed the difference 

between the extracted activation for the target queried at the end of the trial and for the non-
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queried target. These difference timecourses index the relative activation of each target 

representation across all voxels of each ROI. On Remember 1 trials, the single target 

representation should be consistently maintained across the entire trial, and its activation 

should be higher as compared to the non-remembered target representation. We observe this 

predicted pattern in all ROIs measured (Figure 4-10A). On Remember 2-neutral trials, the 

difference between target representation activation should be negligible (until the response 

period begins, at which time a visual transient occurs near the queried target’s position). No 

representation activation differences deviate from zero on these trials (Figure 4-10B). On 

Remember 2-valid trials we predicted a transition from no target activation differences to a 

substantial target activation difference following the cue (8.0 s), reflecting the relative 

enhancement of the cued target representation over the non-cued target representation. Many 

ROIs, especially retinotopic visual ROIs V1-V3A and posterior parietal regions (IPS0-1) show 

evidence of this transition in relative representation activation (Figure 4-10C).  

Quantifying properties of target representations  

Next, we sought to quantify how target representations change across memory loads 

and cueing conditions. For example, when multiple items are remembered representations 

could be lower-fidelity because they are “dimmer” above noisy background signals, as 

indexed by a lower amplitude over baseline, or because they are less spatially precise, as 

indexed by a larger size (Sprague et al., 2015, 2014). First, in each ROI during each delay 

interval for each WM condition, we precisely aligned all reconstructions across trials such that 

the target position was at an exactly known position (red dots, Fig. 4-11A,E; Figure 4-5D). 

Then, we fit a surface, defined by its size (reflecting the spatial precision of the 

representation), amplitude (reflecting the magnitude of the representation over spatially-global 

baseline levels in the reconstructions), and baseline (reflecting a spatially-global offset in the 
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reconstruction unrelated to WM target position), to each coregistered reconstruction using a 

resampling procedure (see Experimental Procedures; Fig 4-4D; Figure 4-5E). Because fits to a 

null representation (i.e., one with representational fidelity indistinguishable from 0, Figs 4-8 

and 4-9, Table 4-2) are impossible to interpret, we only consider and report comparisons of fit 

parameters between pairs of conditions in which each condition has non-zero representational 

fidelity. However, for completeness, we plot these fits in Figure 4-11 and Figure 4-13 and 

report statistical comparisons in Tables 4-4 and 4-5. 

First delay: increasing memory load degrades representation amplitude 

During the first delay, averaged reconstructions qualitatively appeared higher in 

amplitude during Remember 1 trials than Remember 2 trials under either cueing condition 

(both of which have identical WM contents during this delay period; Fig. 4-11A). Replicating 

previous results (Sprague et al., 2014), target representation amplitude during the first delay 

was higher on Remember 1 trials as compared to both Remember 2-neutral and Remember 2-

valid trials in visual (V1-V3A and hV4, all p < 0.001; Fig. 4-11C) and most parietal (IPS0-2, p 

≤ 0.014; maximum p-value IPS2, R1 vs R2-vaild) ROIs, as well as in reconstructions 

computed using all ROIs combined (p < 0.001; all comparisons of fit parameters based on 

resampling test between condition pairs and FDR-corrected for multiple comparisons within 

fit parameter, see Statistical Procedures and Table 4-4 for all p-values). As expected given the 

identical nature of the trials during the first delay interval, no ROIs exhibited unequal 

representation amplitude between Remember 2-neutral and Remember 2-valid conditions 

during Delay 1 (all p ≥ 0.158, minimum p-value in V3A). Fit baseline was significantly 

greater on Remember 2-neutral and -valid trials as compared to Remember 1 trials in V3, 

V3A, IPS0, and in reconstructions computed from all ROIs combined (Fig. 4-11D, p ≤ 0.018; 

maximum p-value All ROIs combined, R1 vs R2-neutral). In V1 and V2, a significantly 
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greater baseline was seen when comparing Remember 2-valid to Remember 1 trials (p ≤ 

0.002).  In V1 we also observed a significant difference between fit baseline for Remember 2-

neutral and Remember 2-valid representations (p = 0.006). Finally, WM representation size 

was significantly smaller on Remember 2-neutral trials as compared to Remember 1 trials in 

hV4 (p < 0.001, Fig. 4-11B). Though this finding is unexpected (a smaller representation is 

consistent with a more precisely-maintained spatial position; Sprague et al., 2015, 2014), this 

region remains an outlier in its observed size decrease with memory load. This may be 

because this is the only ventral stream region examined in this study, in part due to placement 

of the imaging volume to optimize coverage of parietal and dorsal occipital cortex. Future 

studies examining the fidelity of spatial WM representations in the ventral stream may help 

identify contributions of these regions to WM maintenance. 

These first delay results closely replicate our previous report in which we 

characterized how WM representations change as set size is manipulated from 1 to 2 items 

(Sprague et al., 2014). In that report, we found extensive evidence for decreases in WM 

representation amplitude with increasing set size across visual and posterior parietal cortex, 

which we fully reproduced here (Fig. 4-11C). Slight deviations between our results here and 

reported previously are likely due to refinements in the spatial mapping task and analysis 

procedure (Figure 4-5) between studies.   

Second delay: cued representation enhanced via amplitude changes 

During the second delay period, target representations appear weaker, though they are 

still identifiably present in many ROIs (Fig. 4-11E). Mean best-fit surfaces always appear near 

the true target position, indicating spatially-specific target-related signal in WM 

reconstructions. Because our fitting procedure did not restrict the best-fit position of surfaces 

to be near the “correct” position, the identification of WM representations nearby the true 



 

	
	

88 

target position suggests the presence of a WM target representation (see also Fig. 4-9A). WM 

representation amplitude was significantly higher during Remember 2-valid trials than 

Remember 1 trials in V1, V2, V3, V3A, sPCS, and All ROIs combined (Fig. 4-11G, p ≤ 

0.014, maximum p-value sPCS), and was higher than representation amplitude in Remember 

2-neutral trials in all individual ROIs with WM representations during these conditions (p ≤ 

0.01, maximum p-value IPS3; all p-values in Table 4-4). Additionally, several ROIs showed a 

similar set size effect for representation amplitude during the second delay as during the first 

delay, such that Remember 1 amplitude was significantly greater than Remember 2-neutral 

amplitude (V2, V3, V3A, hV4, IPS0, and All ROIs combined, p ≤ 0.012; maximum p-value 

hV4). Importantly, WM representation size during the second delay was always similar 

between Remember 1 and Remember 2-valid conditions, during which participants are 

maintaining the same number of items in WM (all p’s ≥ 0.07, minimum p-value in IPS3). 

Finally, fit baseline was greater during Remember 2-valid trials than Remember 1 and 

Remember 2-neutral trials in parietal and frontal cortex (Fig. 6h, R2-valid > R1: IPS0-IPS3, 

sPCS, All ROIs combined; R2-valid > R2-neutral: IPS3, All ROIs combined; all p < 0.001). 

We also observed a set size effect in which Remember 2-neutral baseline was greater than 

Remember 1 baseline in IPS0 and IPS3 (p ≤ 0.016). 

Improvements in WM representations of the cued item during the second delay of 

Remember 2-valid trials are primarily found in the representation amplitude, with additional 

increases in spatially-global reconstruction baseline levels. The former amplitude increases 

reflect increased information content about the cued target position over a noisy baseline 

(Saproo and Serences, 2014, 2010; Sprague et al., 2015, 2014), and the latter reflect non-

spatially-specific increased mean activation levels in these regions following an informative 

cue (see also Figure 4-3).  



 

	
	

89 

Behavioral performance varies with WM representation amplitude 

Finally, we examined whether the fidelity of the cued target representation on 

Remember 2-valid trials was related to participants’ behavioral recall error on each trial. 

Because WM representations appear to most consistently vary in their amplitude across 

manipulations of memory load both across and within trials (Fig. 4-11; and see Sprague et al., 

2014), we anticipated that changes in target representation amplitude would be most closely 

related to behavioral performance. Additionally, since behavioral performance is likely related 

to the overall fidelity of WM representations across many brain regions, we focused our 

analysis linking behavior and WM representations on reconstructions computed using voxels 

concatenated across ROIs (see Figure 4-13 for this analysis performed on each ROI 

individually).  

We separated trials into low- and high-recall error groups based on the median recall 

error within each condition, session, and participant to ensure that each participant is 

represented equally in each behavioral performance bin. During the first delay period, we saw 

no differences in the amplitude, size, or baseline offset of WM representations between low- 

and high-recall error trials for any WM condition (Fig. 4-12A-B, minimum p = 0.082 for R1 

baseline, all p-values listed in Table 4-5). However, during the second delay period, cued WM 

target representations were qualitatively improved (Fig. 4-12C), and quantitatively they were 

significantly higher in amplitude on low recall error trials compared to high recall error trials 

(Fig. 4-12D, p < 0.001). This observation suggests that participant performance is related to 

the signal-to-noise ratio (i.e. amplitude over baseline) of the validly-cued WM representation. 

When each ROI is examined individually, we never observed a significant change in any 

parameter except amplitude (V3, Remember 2-valid, delay 2; p < 0.001), which was in the 

same direction as reported for All ROIs combined (Fig. 4-12D; amplitude greater for low 

recall error than high recall error).   
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4.3: Discussion 

Behavioral judgments about sensory stimuli rely on population-level neural 

representations, and these representations decrease in fidelity as the amount of information 

increases (Drew et al., 2012, 2011; Tsubomi et al., 2013). When performing a demanding task 

in which stimuli that are used to guide behavior are no longer present in the display, only 

sustained internal representations held in working memory (WM) can be used, as no further 

information can be gathered from the environment. We used an image reconstruction 

technique (Fig. 4-4) to compare the fidelity of region-level WM representations across 

memory load conditions and replicated previous findings that behavioral performance (Fig. 4-

1) and neural representations (Figs. 4-8, 4-11) degrade with increasing load (Buschman et al., 

2011; Emrich et al., 2013; Landman et al., 2003a; Sprague et al., 2014). However, upon 

presentation of an informative cue indicating which WM representation was relevant for 

behavior, the fidelity of a degraded representation substantially recovered (Figs. 4-7 through 

4-11), and the quality of this recovered representation was related to behavioral performance 

on the task (Fig. 4-12). These data challenge the notion that WM representations rely 

primarily on active codes (e.g., spiking activity), for which degraded representations resulting 

from mutual suppression are permanently impaired (Bays, 2015, 2014). Instead, these data 

suggest that WM is supported by additional ‘spike-silent’ information that is manifest in a 

latent state inaccessible to typical measurement techniques (single unit firing rates or fMRI 

activation), but can be reinvigorated to an accessible, active state when task demands require 

an updated representation. Furthermore, this reinstantiation process appears nearly lossless, as 

behavioral performance and neural representational fidelity recover nearly fully.   

Our demonstration that a valid retro-cue enhances the fidelity of WM representations 

primarily via an increase in their amplitude bears a striking similarity to the effects of spatial 

attention on visual representations as measured neurally and behaviorally (Gazzaley and 
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Nobre, 2012; Itthipuripat and Serences, 2015; Lepsien and Nobre, 2007; Nobre et al., 2004; 

Saproo and Serences, 2014, 2010; Sprague and Serences, 2013; Sprague et al., 2015). 

However, in these experiments information used to improve neural representations and 

performance on the task is directly accessible in the sensory input to the visual system. As 

such, it is not possible to make strong inferences about the ability of neural codes to store 

“latent” information that can augment degraded representations, as information is still 

available in the environment during the performance of the task. By using a visual WM task, 

in which all information a participant can use to perform the task is necessarily represented in 

the nervous system and not in the display, we were able to demonstrate directly that latent 

information sources must be present in the brain to bolster neural representations above and 

beyond an initially degraded state which can then support improved behavioral performance.  

Sources of recovered information 

Both our behavioral (Fig. 4-1C) and neural (Figs. 4-7 through 4-12) results suggest 

that the fidelity of neural representations can improve following the presentation of an 

informative retro-cue. This raises an important issue: what was the format of this information 

before the cue appeared? In information theory, the data processing inequality theorem 

provides the strong constraint that the total information about one variable given the observed 

state of another variable (i.e. mutual information) can never increase with additional 

processing; it can at best remain constant (Cover and Thomas, 1991; Quian Quiroga and 

Panzeri, 2009; Saproo and Serences, 2014, 2010; Shannon, 1948; Sprague et al., 2015). 

Accordingly, we can conclude that the information used to complete the behavioral recall task 

more accurately following the presentation of a retro-cue must be, in some way, present in the 

system before the cue appears. However, WM item representations in fMRI-based image 

reconstructions before the retro-cue is presented were already degraded by this point in the 
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trial (Fig. 4-9; Sprague et al., 2014). This suggests that the restored representation results from 

neural response features inaccessible to or masked from our BOLD activation pattern 

measurements.  

One potential source of the restored representational fidelity is WM-related patterns of 

sub-threshold membrane potential and/or changes in short-term synaptic efficacy, as suggested 

by prior theoretical and computational modeling efforts  (Barak and Tsodyks, 2014; Mongillo 

et al., 2008; Stokes, 2015; Stokes et al., 2013). Both of these mechanisms render a circuit 

dynamically sensitive to input as a function of WM contents, and both processes may be 

difficult to detect with typical electrophysiological or neuroimaging techniques in animals or 

humans. Consistent with this view, a recent study found that motion-sensitive visual area MT 

did not carry information about the memorized stimulus over a brief delay interval via 

stimulus-related changes in spike counts (Mendoza-Halliday et al., 2014). However, changes 

in local field potentials (LFP) did co-vary with changes in the contents of WM. Such LFP 

changes may reflect changes in the membrane potentials of nearby neural populations, which 

could enable more robust mnemonic encoding following the re-allocation of attention (Griffin 

and Nobre, 2003; Landman et al., 2003b; Lepsien et al., 2011; Makovsik and Jiang, 2007) or a 

sweep of non-specific activity across the network (Mongillo et al., 2008; Stokes, 2015; Stokes 

et al., 2013; Wolff et al., 2015). In fact, Mendoza-Haliday and colleagues found evidence for 

such top-down control of LFP representations by identifying spike-field coherence between 

prefrontal spikes and LFP activity in the beta band (Mendoza-Halliday et al., 2014), and a 

recent study that decoded WM representations from EEG scalp potentials found evidence that 

nonspecific visual input can reveal such hidden states in visual WM (Wolff et al., 2015). 

Future experiments measuring membrane potentials of single cells while animals perform 

demanding WM tasks under varying load conditions (Buschman et al., 2011; Kornblith et al., 

2015; Landman et al., 2003a; Lara and Wallis, 2014, 2012) may reveal how such non-spiking 
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sources of neural information can augment more traditional neural population codes that are 

typically described solely in terms of spiking activity (Bays, 2014; Ma et al., 2006; Tan et al., 

2014).  

Accordingly, degradation in visual WM representations with greater load could be 

related to a neural normalization process (Bays, 2015, 2014; Carandini and Heeger, 2012; 

Franconeri et al., 2013; Ma et al., 2014) whereby each of several simultaneously-held 

representations mutually suppresses the spiking output of (but not the synaptic input to) all 

other WM representations. This could allow for latent information encoded via short-term 

synaptic plasticity of inputs or subthreshold membrane potentials to exert an influence on 

spiking activity of cells after the presentation of an informative cue (e.g. the mid-delay retro-

cue on R2-valid trials in the present study), perhaps by removing the suppressive influence of 

the irrelevant item on other representations. Then, depolarized membrane potentials caused by 

continued synaptic input, which is “latent” in this case because it does not cause spiking while 

both representations are present, would now enable reinvigoration of active neural 

representations as measured by spike rates due to reduced inhibitory drive. A similar 

normalization account has also been used to predict attentional modulations as a function of 

the spatial extent of items attended (Reynolds and Heeger, 2009), which is supported 

experimentally by EEG and behavioral measurements of representational fidelity (Herrmann 

et al., 2010; Itthipuripat et al., 2014). Accordingly, normalization of simultaneous 

representations may reflect a general neural constraint on representing information for the 

guidance of behavior. 

Fidelity of feature representations in WM 

Several previous studies cued participants to focus on a single item among multiple 

items maintained in WM. Lepsien and colleagues (2007) post-cued participants to remember 
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either a face or scene after both types of stimuli were encoded at the beginning of each trial, 

and Lewis-Peacock, LaRocque and colleagues cued participants during the delay period to 

focus on one from among two different stimulus categories presented at the start of each trial 

(LaRocque et al., 2013; Lewis-Peacock and Postle, 2012; Lewis-Peacock et al., 2012). These 

studies found evidence for enhanced representations of the cued item category by either 

comparing mean signal amplitude in different category-selective ROIs (Lepsien and Nobre, 

2007) or comparing multivariate classifier evidence for each item category during the delay 

interval before and after the post-cue (LaRocque et al., 2013; Lewis-Peacock and Postle, 2012; 

Lewis-Peacock et al., 2012). These studies suggest that cueing one of several items in WM 

can effectively trigger a switch in the focus of attention to internal category-level 

representations and accordingly enhance information about the relevant category (LaRocque 

et al., 2013; Lepsien and Nobre, 2007; Lewis-Peacock and Postle, 2012; Lewis-Peacock et al., 

2012). However, these studies did not evaluate the fidelity of WM representations of the 

category members themselves (i.e., are the retro-cued face representations in FFA more 

informative about which face is in WM?). Moreover, they do not establish if behavioral 

benefits following a retro-cue are due to improved representational fidelity of precise feature 

information in WM or due to more efficient selection of available information at the end of the 

delay period.  

In contrast, we show here that latent information can be revealed by (1) cueing 

participants to one of several items of the same category (spatial positions) and (2) 

quantitatively evaluating the feature-specific information content of WM representations 

carried by fMRI activation patterns throughout the trial. Our results thus conceptually replicate 

the general finding that the contents of visual WM are dynamic and can be modulated by 

delay-period cues (Fig. 4-6). However, we show here that such cues can directly enhance the 
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fidelity with which an individual cued item is represented via the use of latent information 

(Figs. 4-9 and 4-11) in a manner related to behavioral performance (Fig. 4-12).  

Working memory vs recall from long-term memory 

It could be the case that the improved behavioral performance and restored 

representational fidelity following a valid retrocue are a result of recalling precise spatial 

positions from long-term memory (LTM) rather than performing computations on items held 

in active maintenance within WM. Recent behavioral studies have found that high-fidelity 

feature representations can be recalled from LTM (Brady et al., 2013; Sutterer and Awh, 

2015) in tasks in which participants first study a set of item-feature pairs where the items are 

photographs or drawings of distinguishable objects, then must recall the precise feature value 

(e.g., color) associated with each item in a later test. Performance on these tasks is nearly as 

robust as when maintaining an item in WM, suggesting the possibility that participants may 

transfer spatial positions to LTM during our long delay intervals and recall feature values 

when given a valid cue. 

However, we argue that there are several reasons this is not likely the case. First, these 

studies use unique stimulus-feature value pairs on each trial such that each stimulus can be 

used as a “tag” for retrieving a given feature value associated with that stimulus. In our task, 

all stimuli are essentially identical (red and blue dots), and so there are no distinguishing 

features from trial to trial except the relevant feature values on that trial (their spatial 

positions). As such, representations from each trial would likely become intermingled and 

difficult to disentangle by a long-term memory system. Second, in previous work recall from 

LTM was poorer than WM for a single item (Brady et al., 2013), suggesting that this 

information would not likely augment performance in a substantial way. However, it remains 

possible that information encoded into LTM is divergent or complementary to that actively 
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maintained within WM, in which case the restoration of information in WM could be possible 

(that is, “noise” in each representation could be “averaged out”). Further study is necessary to 

evaluate this possibility.  
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4.4: Conclusions 

By reconstructing and quantifying representations of each item held in visual spatial 

WM over an extended delay interval, we show that post-cuing an item accessible only in WM 

can enhance the fidelity of its item-specific representation. In many areas, this post-cue leads 

to the recovery of representational fidelity similar to that observed in trials during which only 

a single item was maintained. Furthermore, behavioral performance is related to the amplitude 

of the cued representation, demonstrating that our observed representations support behavioral 

performance. Information theoretic constraints preclude spike-based models from accounting 

for these post-cue effects because spike-based models predict that a loss of spiking integrity 

should be irreversible. Thus, these data suggest the maintenance of additional information 

about the cued item in a latent, high-fidelity state that can restore degraded active 

representations in response to changing behavioral demands. Finally, representations of 

information in neural activity patterns may more broadly rely on such sub-threshold 

components that are not typically assayed in neuroimaging or electrophysiological 

experiments. 
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4.6: Experimental Procedures 

Participants 

Five participants (4 female; aged 23-29 yrs) naïve to the purpose of the experiment 

were recruited from the UC San Diego community. We used a small sample size, but acquired 

substantial data from each participant to maximize sensitivity to subtle WM representations, 

similar to our previous report (Sprague et al., 2014). Participant identifiers are identical to 

those used in previous reports to facilitate comparison of data across experiments (Ester et al., 

2015; Sprague and Serences, 2013; Sprague et al., 2014). Participants AI and AL participated 

in the experiments reported in Sprague & Serences (2013). Participant AI participated in the 

experiments reported in Sprague et al (2014). Participants AI, AL and AP participated in Ester 

et al (2015).  Participants gave written informed consent as approved by the UCSD 

Institutional Review Board and were compensated for their time ($20/hr for fMRI sessions, 

$10/hr for behavioral sessions).  

Spatial WM retro-cueing task 

All participants underwent 3 fMRI scanning sessions and 1 retinotopic mapping 

scanning session, each lasting 2 hrs. Participants also completed 2-4 behavioral sessions, each 

lasting 1-1.5 hrs. The size of the stimulus display was fixed across all behavioral and scanning 

sessions. However, the size of the screen, which constantly contained a gray background, 

differed (inside scanner: 18.18° × 13.64°, aspect ratio 4:3; outside scanner: 44.71° × 25.15°, 

aspect ratio 16:9).  

We adapted a spatial WM task reported previously (Sprague et al., 2014). On each 

trial, we presented 2 target stimuli (a red and a blue dot, 0.15° diameter) for 500 ms at 

pseudorandom locations 3.5° from fixation on average. Following target presentation, the 
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fixation point (square, 0.2°/side) immediately changed color to either red, blue, or purple. A 

red or blue fixation cue (1/3 of trials) indicated the target to be maintained in WM over the 

delay interval (Remember 1). A purple fixation cue (2/3 of trials) indicated both targets should 

be maintained in WM (Remember 2). After an 8,000 ms delay interval (Delay 1), the fixation 

cue changed color once again. On Remember 1 trials, the cue always changed to black, 

indicating participants should maintain the encoded target in WM over the subsequent second 

delay interval. On ½ of Remember 2 trials (1/3 of trials overall), the fixation cue turned black, 

providing a neutral cue as to which target was relevant for behavior (Remember 2-neutral 

condition). On the remaining ½ of Remember 2 trials (1/3 of trials overall), the fixation cue 

changed from purple to either red or blue, cueing the participants with 100% validity to 

remember only one of the targets (Remember 2-valid condition). Following this cue change, 

participants continued to maintain 1 or 2 items in WM over an additional 8,000 ms delay 

interval (Delay 2). 

At the end of each trial after both delay intervals, participants recalled the exact 

horizontal or vertical coordinate of the item cued by the color of the fixation point. The 

response coordinate was randomly chosen on every trial so that participants could not 

implement a uni-dimensional encoding scheme (i.e., encode only x or y coordinate). 

Participants responded by adjusting the position of a gray horizontal bar up or down (for y 

coordinate trials) or a vertical bar left or right (for x coordinate trials) using either a computer 

keyboard or an MR-compatible button box (bar thickness: 0.02°). We took the adjusted bar 

coordinate at the end of a 3,000 ms response window as the participant’s response. 

Target locations were drawn from an isoeccentric ring 3.5° from fixation at 60° polar 

angle intervals along the ring, where the starting angle was jittered by up to ±15° on each trial. 

The position of the second target relative to the first target was always offset from the first 

target by 60°, 120°, or 180° in either direction (clockwise or counterclockwise, see colored 
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discs in Fig. 1B). This resulted in a minimum target separation distance of 2.3° and a 

maximum separation distance of 8.2°. By using random target positions on each trial, we 

ensured that participants maintained precise spatial locations in WM rather than using 

alternative coding strategies, like verbally labeling the location(s). Additionally, constraining 

relative target positions within one of several discs allowed for comparison of data from trials 

with similar target arrangements (Figs. 3-4).  

We counterbalanced trials for target position (1 of 6 discs), relative target position (1 

of 3 relative angular separation distances, Fig. 1B), and memory condition (Remember 1, 

Remember 2-neutral, or Remember 2-valid), resulting in 54 trials per full counterbalanced 

repetition. Each full set of trials (or “super-run”) was broken up into 3 runs, each with 18 

trials, each 19.5 s long. Trials were separated by a random inter-trial interval chosen from a 

uniform distribution from 3 to 6 s.  

Spatial mapping task 

Inside the scanner, participants completed 4 runs per session of a spatial mapping task 

used to estimate voxel-level encoding models for reconstruction analyses described below. On 

each trial, participants remembered the exact position of a single target stimulus over a 3,000 

ms delay interval during which a flickering checkerboard disc (6 Hz, full-field flicker, 1.083° 

radius, 1.474 cycles/°; Figure S3A) was presented nearby the memorized location. Following 

checkerboard presentation, participants indicated whether a probe stimulus (black dot) was 

either to the left or right or above or below the remembered stimulus position, as cued by an 

oriented bar at fixation (horizontal bar: respond left vs. right; vertical bar: respond above vs. 

below; probe and response bar presented for 750 ms). Participants could respond until the 

beginning of the next trial (after 2,000 – 4,500 ms inter-trial interval, uniform distribution). 

We maintained performance at ~75% correct by adjusting the target-probe separation distance 
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between runs, but due to a programming error, accuracy was computed incorrectly during 

scanning (“null” trials were counted as incorrect responses, so actual accuracy on task trials 

was ~89%, not ~75%, Figure S3 caption). To ensure participants did not just encode one target 

coordinate dimension (x or y), the irrelevant coordinate was jittered on each trial by a small 

amount, preventing a scenario in which the presentation of the probe stimulus added certainty 

to the position maintained in WM. Each run included 6 null trials (no target/mapping 

stimulus/probe presented) during which participants passively fixated until the subsequent trial 

began. 

During each run of this spatial mapping task the checkerboard stimuli were presented 

at each of 36 positions arrayed along a hexagonal grid (see Figure S3B-C) and the target 

position was randomly chosen from a uniform disc centered at the checkerboard position with 

radius 0.542°. On each run, we rotated the angular orientation of the entire hexagonal grid by 

15° polar angle (Figure S3C). Across sessions, we rotated the “baseline” angular orientation of 

the grid by 5° polar angle. This resulted in 4 × 3 × 36 = 432 unique stimulus positions across 

all scanning sessions. We used different grid orientations (and thus stimulus positions) on each 

scanning run to maximize the number of unique stimulus positions so that we could estimate 

as robust a spatial encoding model as possible (see below), as well as to ensure our model was 

not identifying peculiarities specific to a given set of mapping stimulus positions. 

Localizer task 

To focus our neuroimaging analyses to voxels responsive during spatial WM 

maintenance over the area subtended by our display setup, we scanned each participant on 6-8 

runs (AI: 6, AL: 7, AS: 8, AR: 7, AP: 7) of a visual spatial WM localizer task similar to one 

we have described before (Sprague et al., 2014). On each trial we presented a flickering radial 

checkerboard annulus in one visual hemifield extending from 0.8° to 6.0° from fixation (1.25 
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cycles/° from fixation, 12° per polar angle cycle, 6 Hz contrast-reversing) for 10 s. During the 

stimulus interval, we presented 2 spatial WM trials in which participants remembered the 

precise position of 1 red dot over a 3 s delay interval. At the end of each delay interval, 

participants responded whether a green probe stimulus was to the left or to the right, or above 

or below, the remembered target position as indicated by a horizontal or vertical bar at 

fixation, respectively. WM targets could only appear within the stimulated hemifield. We 

maintained performance at ~75% by adjusting the task difficulty (target/probe separation 

distance) across trials. Stimulus epochs were separated by 3 – 5 s ITIs (uniform distribution). 

Each run contained 4 null trials that were the same duration as normal trials but did not 

contain checkerboard stimuli. 

Behavioral analysis 

For the main WM task, we defined behavioral recall error as the absolute distance 

along the relevant coordinate dimension (x or y) between the position of the response bar at 

the conclusion of the response window and the actual coordinate of the recalled target. We 

averaged all recall errors across all trials from scanning sessions within each participant.  

In fMRI analyses in which we split trials based on behavioral performance, we 

computed the median recall error within each WM condition (R1, R2-neutral, R2-valid) within 

each scanning session. Trials with recall error greater than or equal to the median value were 

labeled “high recall error” and trials with recall error less than the median value were labeled 

“low recall error” (Fig. 8 and Figure S5).  

fMRI acquisition 

We scanned all participants on a 3 T research-dedicated GE MR750 scanner located at 

the UCSD Keck Center for Functional Magnetic Resonance Imaging with a 32 channel 
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send/receive head coil (Nova Medical, Wilmington, MA) using identical sequences to those 

we have reported previously (Sprague and Serences, 2013; Sprague et al., 2014). We acquired 

functional data using a gradient echo planar imaging (EPI) pulse sequence (19.2 × 19.2 cm 

field of view, 96 × 96 matrix size, 31 3-mm-thick slices with 0-mm gap, obliquely-oriented 

through occipital, parietal & dorsal frontal cortex, TR = 2,250 ms, TE = 30 ms, flip angle = 

90°, voxel size 2 × 2 × 3 mm, xyz). 

To anatomically coregister images across sessions, and within each session, we also 

acquired a high resolution anatomical scan during each scanning session (FSPGR T1-weighted 

sequence, TR/TE = 11/3.3 ms, TI = 1,100 ms, 172 slices, flip angle = 18°, 1 mm3 resolution). 

For all sessions but one, anatomical scans were acquired with ASSET acceleration. For the 

remaining session, we used an 8 channel send/receive head coil and no ASSET acceleration to 

acquire anatomical images with minimal signal inhomogeneity near the coil surface, which 

enabled improved segmentation of the gray-white matter boundary. We transformed these 

anatomical images to Talairach space and then reconstructed the gray/white matter surface 

boundary in BrainVoyager 2.6.1 (BrainInnovations) which we used for identifying ROIs.  

fMRI preprocessing 

We preprocessed fMRI data similarly to our previous report (Sprague et al., 2014). 

We coregistered functional images to a common anatomical scan across sessions (used to 

identify gray/white matter surface boundary as described above) by first aligning all functional 

images within a session to that session’s anatomical scan, then aligning that session’s scan to 

the common anatomical scan. We performed all preprocessing using FSL (Oxford, UK) and 

BrainVoyager 2.6.1 (BrainInnovations). Preprocessing included unwarping the EPI images 

using routines provided by FSL, then slice-time correction, three-dimensional motion 

correction (six-parameter affine transform), temporal high-pass filtering (to remove first-, 
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second- and third-order drift), transformation to Talairach space (resampling to 2 × 2 × 2 mm 

resolution) in BrainVoyager, and finally normalization of signal amplitudes by converting to 

Z-scores separately for each run using custom MATLAB scripts. We did not perform any 

spatial smoothing beyond the smoothing introduced by resampling during the co-registration 

of the functional images, motion correction and transformation to Talairach space. All 

subsequent analyses were computed using custom code written in MATLAB (release 2014b, 

The Mathworks, Inc). 

One participant (AS) changed positions inside the scanner substantially during one 

session. As a result, the field inhomogeneities estimated with the field map scan used for 

unwarping were only accurate for half of the runs during this session and could not be used to 

unwarp the other half of scans. To mitigate this problem with the raw data, we did not perform 

unwarping on any session for this participant in order to maintain consistency in the analysis 

procedure across sessions for this participant. This did not appear to affect any aspect of their 

results.  

Identifying regions of interest (ROIs) 

We identified 10 ROIs using independent scanning runs from those used for all 

analyses reported in the text. For retinotopic ROIs (V1-V3, hV4, V3A, IPS0-IPS3), we 

utilized a combination of retinotopic mapping techniques. Each participant completed several 

scans of meridian mapping in which we alternately presented flickering checkerboard 

“bowties” along the horizontal and vertical meridians. Additionally, each participant 

completed several runs of an attention-demanding polar angle mapping task in which they 

detected brief contrast changes of a slowly-rotating checkerboard wedge (described in detail in 

Sprague and Serences, 2013). We used a combination of maps of visual field meridians and 

polar angle preference for each voxel to identify retinotopic ROIs (Engel et al., 1994; Swisher 
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et al., 2007). Polar angle maps computed using the attention-demanding mapping task for all 

participants are available in previous publications (AI: Sprague & Serences, 2013; AL and 

AP: Ester et al., 2015) or in Figure S6 (AR and AS). We combined left- and right-hemispheres 

for all ROIs, as well as dorsal and ventral aspects of V2 and V3 for all analyses by 

concatenating voxels.  

We defined superior precentral sulcus (sPCS) by plotting voxels active during either 

the left or right conditions of the localizer task described above on the reconstructed 

gray/white matter boundary of each participant’s brain and manually identifying clusters 

appearing near the superior portion of the precentral sulcus, following previous reports (Srimal 

and Curtis, 2008). 

The “All ROIs combined” region reported throughout the text consists of all voxels 

from all 10 individual ROIs concatenated together, and so all multivariate analyses involving 

this ROI reflect the net information content of the entire set of regions studied (see also 

Sprague et al., 2014).  

fMRI analysis: univariate 

For all ROI analyses, we used data from the localizer scans to identify voxels 

significantly active during checkerboard stimulus presentation and WM maintenance (FDR 

corrected, q = 0.05) for inclusion in further analyses. All analyses include only those voxels.  

We computed BOLD time series by extracting signal at each time point averaged over 

all voxels within an ROI on each trial from 0 to 24.75 s (0 to 11 TRs) after the beginning of 

the first delay (rounded to the nearest TR), then averaging time series over all trials. We 

extracted mean activation levels for each delay period by averaging the TRs 6.75-9.00 s after 

probe onset for Delay 1 and 15.75-18.00 s after probe onset for Delay 2.  
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fMRI analysis: inverted encoding model 

To reconstruct images of spatial WM contents, we implemented an inverted encoding 

model (IEM) for spatial position. This analysis involves first estimating an encoding model 

(sensitivity profile over the relevant feature dimension(s) as parameterized by a small number 

of modeled information channels) for each voxel in a region using a “training set” of data 

reserved for this purpose. Then, the encoding models across all voxels within a region are 

inverted to estimate a mapping used to transform novel activation patterns from a “test set” 

into activation patterns in a modeled set of information channels.  

We built an encoding model for spatial position based on a linear combination of 

spatial filters (Sprague and Serences, 2013; Sprague et al., 2015, 2014). Each voxel’s response 

was modeled as a weighted sum of each of 37 identical spatial filters arrayed in a hexagonal 

grid (Fig. 2A). Centers were spaced by 2.293° and each filter was a Gaussian-like function 

with full-width half-maximum of 2.523°:  

Equation 1:  𝑓 𝑟 = 0.5 + 0.5 cos +,-
.

/
	for r < s; 0 otherwise 

Where r is the distance from the filter center and s is a “size constant” reflecting the 

distance from the center of each spatial filter at which the filter returns to 0. Values greater 

than this are set to 0, resulting in a single smooth round filter at each position along the 

hexagonal grid (s = 6.349°; see Fig. 2A, Figure S3E for illustration of filter layout and shape; 

see also Sprague and Serences, 2013; Sprague et al., 2014). Each filter’s sensitivity ranges 

from 0 to 1.  

This hexagonal grid of filters forms the set of information channels for our analysis. 

Each mapping task stimulus is converted from a contrast mask (1’s for each pixel subtended 

by the stimulus, 0’s elsewhere) to a set of filter activation levels by taking the dot product of 

the vectorized stimulus mask and the sensitivity profile of each filter. This results in each 

mapping stimulus being described by 37 filter activation levels rather than 1,024 × 768 = 
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786,432 pixel values. Once all filter activation levels are estimated, we normalize so that the 

maximum filter activation is 1. 

We model the response in each voxel as a weighted sum of filter responses (which can 

loosely be considered as hypothetical discrete neural populations, each with spatial RFs 

centered at the corresponding filter position). 

Equation 2:   𝐵2 = 𝐶2𝑊  

Where B1 (n trials × m voxels) is the observed BOLD activation level of each voxel 

during the spatial mapping task (averaged over 6.75 – 9.00 s after WM target onset; Figure 

S3A), C1 (n trials × k channels) is the modeled response of each spatial filter, or information 

channel, on each trial of the mapping task (normalized from 0 to 1), and W is a weight matrix 

(k channels × m voxels) quantifying the contribution of each information channel to each 

voxel. Because we have more stimulus positions than modeled information channels, we can 

solve for W using ordinary least-squares linear regression: 

Equation 3:   𝑊 = 𝐶25𝐶2 62𝐶25𝐵2 

This step is univariate and can be computed for each voxel in the brain independently. 

Next, we used all estimated voxel encoding models within a ROI (𝑊) and a novel pattern of 

activation from the WM task (each TR from each trial, in turn) to compute an estimate of the 

activation of each channel (𝐶+, n trials × k channels) which gave rise to that observed 

activation pattern across all voxels within that ROI (B2, n trials × m voxels): 

Equation 4:   𝐶+ = 𝐵+𝑊5 𝑊𝑊5 62
 

The Moore-Penrose pseudoinverse of the estimated weight matrix from the training 

set (𝑊) is the inverted part of the IEM: all encoding models across all voxels are used, and 

this step is multivariate. This analysis is only feasible when more voxels are measured than 

information channels are modeled. The Moore-Penrose pseudoinverse acts as a linear mapping 
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from data measured in voxel space (B2) into channel space (𝐶+), and accordingly stretches, 

scales and skews voxel activation patterns during this transformation, but importantly does not 

result in any nonlinear transformations. This analysis can be considered a directed form of 

dimensionality reduction in which activation patterns are transformed from an idiosyncratic 

activation pattern across voxels (unique to each individual participant and ROI, and thus 

difficult to directly compare) to a common information space, common across ROIs and 

participants, which allows for direct manipulation, quantification, and comparison of 

activation patterns in an intuitive and stimulus-referred coordinate space. 

Once channel activation patterns are computed (Equation 4), we compute spatial 

reconstructions by weighting each filter’s spatial profile by the corresponding filter’s 

reconstructed activation level and summing all weighted filters together. This step aids in 

visualization, quantification, and coregistration of trials across WM target positions, but does 

not confer additional information.  

We analyzed all data within each session: the 4 mapping task runs for a given session 

were used to estimate the encoding model for each voxel, then that encoding model was 

inverted and used to reconstruct WM representations during all main WM task runs within 

that same session. Then, we averaged reconstructions over sessions within each participant.  

Because WM target positions were unique on each and every trial, direct comparison 

of WM reconstructions on each trial is not possible without coregistration of reconstructions 

so that WM targets appeared at a common position across trials. To accomplish this, we 

adjusted the center position of the spatial filters on each trial such that we could rotate (and 

sometimes translate) the resulting reconstruction. For Figures 3-4, we rotated each trial such 

that one target (the target not queried at the end of each trial) was on average centered at x = 

3.5° and y = 0° and the other target was in the upper visual hemifield (which required flipping 

½ of reconstructions across the horizontal meridian). For Figures 7 and 8 and Figure S5, we 
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coregistered each trial so that the queried target position was always centered at exactly x = 

3.5° and y = 0° by first rotating the reconstruction so that the target was aligned along the 

positive x Cartesian axis, then horizontally translating it so that its x coordinate was exactly 

3.5° (Figure S3D).  

Because we carefully designed our task such that we presented an equal number of 

trials for each target separation condition (+60°, +120°, +180°, -60°, -120°, and -180° polar 

angle) in order to minimize the potential for participants to discover geometric regularities in 

the target arrangements, there was an overabundance of trials at ±180° polar angle separation 

distance, which led to a non-uniform distribution of positions for the non-coregistered target 

(that is, there were double the number of trials with non-coregistered targets at 180° polar 

angle from the coregistered target as there were for ±60° and ±120°). As a result, we excluded 

the second half of 180° separation condition trials from each super-run from all 

reconstruction-based analyses. When the other half of these trials is included, there is often a 

noticeable “bump” along the negative x axis corresponding to the greater number of trials in 

which a non-coregistered target appeared near that position, which renders quantification of 

target representations via curvefitting methods (see below) suboptimal.  

Quantifying WM representations 

We took three approaches to WM representation quantification. First, we evaluated 

the “representational fidelity” for each reconstruction by determining the extent to which its 

target representation was reliably present. To accomplish this, we first reduced the 

reconstruction from a 2-d image to a 1-d line plot by averaging over each of 220 evenly-

spaced polar angle arms subtending 2.9-4.1° eccentricity (subset illustrated in Fig. 2C). The 

resulting 1-dimensional reconstruction reflects the average profile along an annulus around 

fixation. A target representation in these reconstructions would be a “bump” near 0° after the 
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reconstructions have been rotated to a common center (where 0° corresponds to the actual 

target polar angle). To reduce these 1-d reconstructions to a single number which could be 

used to quantify the presence of target representations (𝐹), we computed a vector mean of the 

1-d reconstruction (𝑟(𝜃), where 𝜃 is the polar angle of each point and 𝑟(𝜃) is the 

reconstruction activation) when plotted as a polar plot, as projected along the x axis (because 

the reconstructions were rotated such that the target was presented at 0°; Fig. 2C): 

Equation 5:   𝐹 = 𝑚𝑒𝑎𝑛(𝑟(𝜃) cos 𝜃) 

If F is reliably greater than zero, over a resampling procedure (see Statistical 

Procedures), this quantitatively demonstrates that the net activation over the entire 

reconstruction carries information above chance about the target position. This measure is 

independent of baseline activation level in the reconstruction, as the mean of 𝑟 𝜃  is removed 

by averaging over the full circle. We computed timecourses of representational fidelity (Fig. 

5B), as well as representational fidelity for each delay period (Fig. 6). To determine whether 

the cue on Remember 2-valid trials restores representations, we compared F between Delay 2 

and Delay 1 for each ROI. 

Additionally, we sought to evaluate the size, amplitude, and baseline of the WM target 

representation(s) from each WM condition and WM delay interval to establish how the 

information content of the population code changed across conditions. We followed 

procedures developed previously (Sprague et al., 2014) whereby we resampled with 

replacement all trials concatenated across all sessions from all participants from a condition 

1,000 times and computed a single mean coregistered reconstruction (Figs. 7-8, Figure S5) on 

each resampling iteration. Then, we fit the mean reconstruction with a round Gaussian-like 

function parameterized by its center position, size, amplitude, and baseline: 
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Equation 6:   𝑓 𝑟 = 𝑏 + 𝑎 0.5 + 0.5 cos +,-
.

/
 for r < s; 0 

otherwise 

Where r is the distance from the center of the surface, s is the size constant (as in Eq. 

1), and a and b are the amplitude and baseline, respectively. Because there are many free 

parameters and some reconstructions are noisy, we adopted several heuristics to constrain our 

optimization problem. First, we found the maximum point on the entire reconstruction and 

used this as the center position (Sprague et al., 2014). Then, we performed a search through 

different sizes of fit surface function (FWHM: 0.099° to 9.934° in 0.099° steps). At each 

search iteration, we used ordinary least squares linear regression to find the amplitude and 

baseline which minimized residual errors between the reconstruction and the fit function. 

Finally, we used the best-fit amplitude, baseline, and size parameters from this search 

procedure and the global maximum position on the reconstruction as seed values for a 

constrained nonlinear optimization fitting algorithm (Matlab’s fmincon function) subject to 

several constraints: position could not deviate more than one reconstruction “pixel size” 

(0.235° × 0.235°) from the global maximum position; size could not surpass the range used in 

the grid search procedure (0.099° to 9.934°), and amplitude/baseline could each not go below 

-5 or above 10 (BOLD Z-score units). This entire curvefitting procedure was repeated on each 

resampling iteration, for each condition described in the text (R1, R2-neutral, R2-valid broken 

down by Delay 1 and Delay 2 for Fig. 7, each of those broken down by High and Low recall 

error for Fig. 8 and Figure S5), resulting in 1,000 resampled estimates of each fit parameter on 

each condition for each ROI. Average resampled reconstructions over all resampling iterations 

are shown in Figure 7A,E, Figure 8A,C and Figure S5.   

As a third means of quantifying the integrity of WM representations, we evaluated the 

relative strengths of each target representation at each time point of the trial by extracting the 

average reconstruction activation within a 0.5° radius circle centered at each target position. 
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Then, we took the difference between the reconstructed target representation activation of the 

target probed at the end of each trial and that of the target which was not probed at the end of 

each trial (on R1 trials, the probed target was always the remembered target; on R2-neutral 

trials, the probed target was the target queried at the end of the trial; on R2-valid trials, the 

probed target was always the remaining target following the valid retro-cue; Figure S4). This 

allowed us to directly compare the strength of the representation through time for each target 

in a manner which did not require fitting a surface with many free parameters.  

Statistical procedures 

All statistical statements reported in the text are based on resampling procedures in 

which a variable of interest is computed over 1,000 iterations. In each iteration, all single-trial 

variables from a given condition are resampled with replacement and averaged, resulting in 

1,000 resampled averages for a given condition. We then subjected these distributions of 

resampled averages to pairwise comparisons by computing the distribution of differences 

between one resampled distribution (e.g., R1) and another resampled distribution (e.g., R2), 

yielding a new distribution of 1,000 difference values. We tested whether these difference 

distributions significantly differed from 0 in either direction by performing two one-tailed 

tests (p = proportion of values greater than or less than 0; null hypothesis that difference 

between conditions = 0) and doubling the smaller p value. For tests in which we compared 

whether representations were present in 1-d reconstructions using the representational fidelity 

measure, we performed one-tailed tests (null hypothesis that F ≤ 0). Because we performed 

1,000 iterations of this analysis, we cannot identify p values less than 0.001, so all 

comparisons in which resampled difference distributions were all greater than or less than 0 

are reported as p < 0.001. Because we performed many pairwise comparisons, we corrected all 

repeated tests within an analysis using the false discovery rate (Benjamini and Yekutieli, 
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2001) and a threshold of q = 0.05 (except for tests of behavioral performance, which were 

corrected using Bonferroni’s method due to the small number of comparisons performed). All 

p-values for all tests are reported in Supplementary Tables. All error bars reflect 95% 

confidence intervals as estimated using this resampling procedure.  
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Figure 4-1: An informative cue enables behavioral performance to recover on a visual 
spatial WM task 
We tested how cueing one of two items within spatial WM changed behavioral performance 
and neural WM representations. (A) On each trial, participants viewed 2 target stimuli (red 
and blue dots) for 500 ms and maintained the spatial position of either one or both targets as 
precisely as possible in spatial WM as cued by a change in fixation color during a WM delay 
interval (16 s total). On 33% of trials, participants were cued to maintain one of the two 
positions over the entire delay interval (fixation became red or blue, Remember 1; R1). On the 
remaining 67% of trials, the fixation point became purple, demanding participants maintain 
both locations (Remember 2; R2). This set of trials was further divided in half: on “neutral 
cue” trials, we gave no further information about which item was relevant (fixation point 
became black; R2-neutral condition); on “valid cue” trials the fixation point became red or 
blue after 8 s, reliably informing participants which target to recall at the end of the trial (R2-
valid condition). Participants responded by adjusting the position of a response bar to match 
the position of the target cued by the fixation color as precisely as possible. Cartoon stimuli 
shown (not to scale, see Experimental Procedures). Dashed yellow circles indicate positions 
maintained in WM and did not appear on the display. Yellow arrows indicate movement of 
response bar and did not appear on the display. (B) The two targets appeared at positions 
uniformly drawn from two circular discs, each with a 0.6° radius centered 3.5° from fixation. 
Targets never appeared within the same disc; they appeared ±60° (blue), ±120° (orange), or 
±180° (yellow) of polar angle apart on each trial. We randomly rotated the entire target 
arrangement on each trial so that across trials the targets could appear anywhere within the 
dashed annulus (see Experimental Procedures).  (C) All participants (n = 5) performed more 
poorly on R2-neutral trials than R1 trials, as indicated by higher recall error (p < 0.001, 
resampling test, see Experimental Procedures), demonstrating a robust memory load effect on 
recall precision (Bays and Husain, 2008; Wilken and Ma, 2004; Zhang and Luck, 2008). 
However, when we cued one of two positions in WM (R2-valid), performance improved as 
compared to R2-neutral trials for all participants (p = 0.016, resampling test), indicating that 
participants could improve the fidelity of WM representations as indexed behaviorally. 
Performance differed only marginally between R1 and R2-valid conditions (p = 0.024). Black 
asterisks indicate significant difference as determined by pairwise resampling test, corrected 
for 3 comparisons using Bonferroni’s method; gray asterisks indicate trends defined as p ≤ 
0.05, uncorrected. Each symbol in (C) is a single participant, and like symbols are used 
throughout all figures in which single-participant data is shown. See Figure S1 for recall error 
histograms for each condition and participant individually. 
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Figure 4-2: Recall performance recovers when one of two items is cued (histograms) 
Histograms of recall error across all trials for each participant and condition for data presented 
in Fig. 1C. Y axis indicates “proportion of trials”. Same participant identifiers used as in 
previous reports to facilitate comparison of data across experiments (Ester et al., 2015; 
Sprague and Serences, 2013; Sprague et al., 2014).   
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Figure 4-3: Univariate BOLD responses from all ROIs considered 
(A) Mean BOLD activation timecourse (event-related average, time-locked to beginning of
WM delay periods) averaged across all trials, all participants, and all voxels within each ROI.
Replicating previous work (Emrich et al., 2013; Harrison and Tong, 2009; Riggall and Postle,
2012; Serences et al., 2009; Sprague et al., 2014), we observe no substantial activation in
occipital ROIs (V1-hV4) in the univariate BOLD signal. For subsequent analyses, we
identified time points primarily corresponding to the delay period before the cue (Delay 1,
6.75-9.00 s; orange box), and the delay period after the cue (Delay 2; 15.75-18.00 s; blue box).
(B) Mean delay-period activation during Delay 1 (left) and Delay 2 (right) as a function of
WM condition. During Delay 1, we found trends towards increased activation with set size
(R2-neutral>R1 and/or R2-valid>R1) in sPCS. We also observed significantly higher
activation during R2-valid trials in hV4 as compared to R1, but not R2-neutral, trials. During
Delay 2, we observed significant cue-related activation (R2-valid>R1 and/or R2-valid>R2-
neutral) in hV4, IPS0-IPS3, and sPCS, as well as trends towards this effect in V1. Significant
tests reflect FDR-correction for all comparisons. Trends defined as p ≤ 0.05, uncorrected for
multiple comparisons. Error bars 95% confidence intervals via resampling all trials, with
replacement, 1,000 times (see Experimental Procedures: statistical procedures). All p-values
for this analysis presented in Table 4-1.
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Figure 4-4: Inverted encoding model (IEM) for reconstructing and quantifying spatial 
WM representations 
To evaluate whether fMRI-based measurements of spatial WM representations are modulated 
throughout the trial, we implemented an inverted encoding model (IEM) of visual space 
(Brouwer and Heeger, 2009; Ester et al., 2015; Sprague and Serences, 2013; Sprague et al., 
2015, 2014). (A) To estimate voxel-level encoding models, we modeled the response of each 
voxel as a weighted sum of 37 information channels, each defined as a round smooth spatial 
filter, spanning a hexagonal spatial grid. We used measured activation levels across all trials to 
estimate the contribution of each information channel to each voxel using a standard general 
linear model (GLM). This procedure results in a set of 37 weights for each voxel, each 
describing the contribution of the associated modeled information channel to the observed 
signal in that voxel. (B) Inverting the encoding models across all voxels enables 
reconstruction. After estimating encoding models for all voxels within an ROI, we used the 
pattern of encoding models across all voxels in an ROI to compute an IEM. Once activations 
are represented in our modeled information space, we compute a sum of spatial filters 
weighted by their estimated activation, resulting in a reconstructed image of the visual field 
which must have been maintained in WM in order to observe the measured activation pattern, 
given the measured voxel-level encoding models from the mapping task in that region. The 
“bright” (yellow) region in the reconstruction (right) is spatially consistent with the position 
held in WM (left, dashed circle) on this example trial, and we call these areas of elevated 
activation in WM reconstructions “target representations”. We reconstructed images at each 
time point in the trial (0 s to 24.75 s), and spatially coregistered all reconstructions across 
trials (see Experimental Procedures, Figure 4-5D) so that targets were centered at known 
positions, enabling us to average over trials in which different spatial positions were 
maintained in WM. (C) In order to assess whether a WM representation of a target was 
present in a reconstruction, we computed a “representational fidelity” metric by first extracting 
a 1-d reconstruction as a function of polar angle by computing the mean reconstruction 
activation from 2.9-4.1° from fixation (inside dashed black lines). Then, we used this 1-d polar 
angle reconstruction to compute a vector mean of a circular set of unit vectors, each weighted 
by its corresponding activation. We projected this vector mean onto a unit vector pointing in 
the polar angle direction of the WM target to generate a single-parameter metric of 
representational fidelity (subset of unit vectors shown as colored lines; vector mean shown as 
black arrow; polar angle reconstruction rotated so that 0° corresponds to target direction). On 
the polar plot, each radial ring corresponds to 0.2 units of BOLD Z-score. (D) We quantified 
several parameters of WM representations (amplitude, size, and spatially-nonspecific baseline 
offset) by fitting a 2-d surface to average coregistered reconstructions (Figure 4-5D) on each 
of 1,000 resampling iterations (Figs. 4-11, 4-12; Sprague et al., 2014). To assess statistical 
significance, we compared distributions of best-fit parameters between conditions (Fig. 4-11) 
or behavioral performance bins (Figure 4-12 and Figure 4-13). See Experimental Procedures 
for more details on identification and quantification of WM representations. 
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Figure 4-5: IEM procedures: mapping task, stimulus layout, and 
reconstruction coregistration  
(A) Participants performed 4 runs of a spatial mapping task during each fMRI scanning
session. On each trial, we presented a single WM target stimulus (red dot) for 500 ms,
followed immediately by a flickering checkerboard (1.083° radius; 6 Hz full-field flicker)
overlapping the WM target location. After 3,000 ms, a probe stimulus (black dot) appeared
slightly offset to either the left or right, or above or below, the remembered position (distance
varied across runs to equate difficulty) for 750 ms. Simultaneously, a horizontal or vertical bar
appeared at fixation, indicating the participant must make a 2AFC “left/right” or
“above/below” judgment in response to the question “was the probe dot [left/above] or
[right/below] [of] the remembered position?” before the end of the inter-trial interval (2-4.5 s).
All stimulus features are drawn to scale. Participants performed on average 87.69% correct
(target/probe separation distance adjusted across runs to maintain sufficient task difficulty).
(B) The position of the mapping stimulus varied on each trial along a hexagonal grid (black
circles), both inside and outside the range of eccentricities used for the main WM task (red
ring). This enabled us to reconstruct images of the contents of spatial WM across the entire
visual field subtended by the projector screen inside the scanner (Fig. 4-4), despite only
remembering items from a small range of positions in the WM task (Fig. 4-1). Blue dots
indicate the center of spatial filters used for image reconstruction (Fig. 4-4). (C) On each run
of the spatial mapping task, we rotationally offset the position of the mapping stimuli by a
fixed angular amount. Across sessions, we adjusted the “baseline” angle by 5° (session 1
arrangement shown here). (D) On each trial of the primary WM task (Fig. 4-1), the WM
targets appeared pseudo-randomly within the red dashed ring in (B). To align data across trials
in “information space”, we rotated basis functions so as to zero-out the polar angle component
of the WM target coordinate (1-d reconstructions & representational fidelity analyses; Figs. 4-
8 and 4-9). Then, for analyses in which we precisely aligned target positions (Figs. 4-11, 4-12
and 4-13), we also shifted them horizontally to precisely align the target position to the
coordinate x = 3.5°, y = 0° (see red dot, Fig 4-9A, D). For example, if a target appeared at 42°
polar angle (up and to the right) and 3.7° eccentricity, we first rotated each basis function by
42° polar angle clockwise, then shifted all basis functions horizontally 0.2° to the left, before
computing reconstructions. This means that we used a slightly different set of basis functions
for computing each trial’s reconstructions (same set of basis functions used for each time point
of each trial), eliminating any potential idiosyncrasies caused by the exact set of filter centers
we used. (E) Once we averaged coregistered reconstructions from all trials (on each
resampling iteration, see Experimental Procedures: Statistical procedures), we fit a surface
function (slice shown), which was shaped identically to each spatial filter, to the mean
reconstruction. We allowed the function to vary in its size, baseline, and amplitude, and its
position was constrained to be nearby the maximum pixel of the average reconstruction (see
Experimental Procedures).
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Figure 4-6: Delay-period image reconstructions reflect dynamic contents of WM 
We reconstructed the contents of spatial WM at each point in time during the trial using 
activation patterns from several visual, parietal, and frontal ROIs defined using independent 
localizers (subset shown for brevity). Here we show reconstructions from an example target 
arrangement condition in which the WM targets were separated by an average of ~120° polar 
angle (top row). Trials in which the targets were presented at different positions are all rotated 
to match the cartoons and averaged over trials and participants (n = 5, 3 2-hr scanning sessions 
each). Cartoons are shown at approximate times of trial events; see Fig. 1A for exact timings. 
Yellow dashed circles in the stimulus cartoons indicate position(s) held in WM at each point 
in time. Each image portrays the reconstructed contents of spatial WM using activation 
patterns at the indicated timepoint (column) after the beginning of the trial from each ROI 
(row). Reconstructions have not been adjusted for hemodynamic delay, so reconstructions lag 
changes in contents of WM by ~6 s. All images represent a 12° × 12° square visual field 
aperture and are plotted on the same colorscale. IPS: intraparietal sulcus; sPCS: superior 
precentral sulcus. (A) On Remember 1 trials, stable WM representations emerge ~6-9 s 
following the first delay cue and remain throughout the entire 16 s delay interval, though 
appear less pronounced at later timepoints. (B) On Remember 2-neutral trials, stable WM 
representations are preserved over the entire 16 s delay interval, though are substantially 
weaker than those on R1 trials. (C) On Remember 2-valid trials, there is a transition from 2 
representations during the first delay to a single representation during the second delay, 
tracking the contents of WM following the informative cue. Timepoint labels reflect time of 
each imaging volume relative to beginning of WM delay periods. 
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Figure 4-7: WM reconstructions track target positions 
WM reconstructions computed and plotted as in Fig. 4-6, for each target arrangement 
condition (see cartoons, top row) and averaged over 2 timepoints during each delay period 
(Delay 1: 6.75 and 9.00 s; Delay 2: 15.75 and 18.00 s). (A) During Delay 1, Remember 1 trials 
do not show evidence for WM target representations of the non-remembered target (red dot in 
this cartoon), and thus are unlikely to be contaminated by sensory transients (see also Sprague 
et al., 2014). Remember 2-neutral (C) and Remember 2-valid (E) trials have the same contents 
of WM during Delay 1, and WM reconstructions look qualitatively very similar (compare (C) 
and (E)). During Delay 2, WM representations on Remember 1 (B) and Remember 2-neutral 
(D) trials appear weaker than those during Delay 1, but continue to track the relevant positions 
in WM. During the second delay on Remember 2-valid trials (F), the non-cued position no 
longer appears visible, and the remaining position appears more strongly than during Delay 1 
(C,E). All reconstructions plotted on same color scale to facilitate comparison between 
conditions.
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Figure 4-8: Target representations persist across entire delay interval 
We computed reconstructions along radial vectors spanning the full circle and averaged 
reconstruction activation from 2.9-4.1° eccentricity, then rotated all reconstructions such that 
the probed target appeared at 0° (Fig. 4-4C; arrow in panel A). (A) Each plot shows the 
reconstructed target representations for a single ROI and WM condition throughout all time 
points of the trial, averaged over all participants. In some ROIs (e.g., V1, IPS0, and “All ROIs 
combined”), representations are qualitatively stronger during later time points than earlier time 
points on R2-valid trials, suggestive that the valid cue enhances WM representations. (B) To 
quantify whether WM representations were statistically present in each ROI during each delay 
interval of each WM condition, we computed a “representational fidelity” metric (see 
Experimental Procedures). If this score is reliably positive over a resampling procedure 
(corrected for multiple comparisons), we consider a WM representation to be present in the 
reconstruction. Plotted is WM representational fidelity computed for each time point. 
Although representational fidelity weakens later in the trial on Remember 1 and Remember 2-
neutral trials, representations can still be quantitatively identified. On Remember 2-valid trials, 
representational fidelity increases following the informative cue (rather than remaining 
constant for the remainder of the trial), indicating that the cue enables the remaining 
representation to be bolstered. Filled symbols at y = 0 indicate significant WM 
representations, corrected for multiple comparisons via FDR (q = 0.05; across all ROIs, WM 
conditions and time points); open symbols indicate non-significant trends at p ≤ 0.05; error 
bars mark 95% confidence intervals via resampling procedure. See also Figure 4-10 for an 
alternative means of evaluating the strength of WM representations and Figure 4-9 for 
quantitative comparison of representations across delay periods.  
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Figure 4-9: Valid cue recovers degraded WM representations 
(A) 1-d polar angle reconstructions as in Fig. 4-8A, averaged over each delay period. Black 

asterisks indicate significant WM representations (FDR-corrected); gray asterisks indicate 
non-significant trends (p ≤ 0.05; uncorrected; see Table 4-2 for all p-values from this 
analysis); error bars mark 95% confidence intervals via resampling procedure. Nearly all ROIs 
exhibit reliable WM representations during both delay periods, even though representations in 
some ROIs are difficult to visualize in reconstruction images (Fig. 4-7; e.g., R2-neutral, V3A, 
Delay 2). (B) To evaluate whether WM representations significantly change in fidelity across 
time, we directly compared delay-period representational fidelity for each ROI and condition 
(as in Fig. 4-7C). After a neutral cue (R1 and R2-neutral), the fidelity of representations 
substantially fades in many ROIs (as in Fig. 4-8B). In contrast, a valid cue significantly 
enhances WM representations in V1, V3, IPS0-IPS3 and All ROIs combined Asterisks 
indicate significant differences between delay periods, two-tailed, FDR-corrected for multiple 
comparisons (q = 0.05). Error bars mark 95% confidence intervals via resampling procedure. 
See Table 4-3 for all p-values from this analysis.
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Figure 4-10: Informative cue shifts target representations from R2- to R1-like state 
As an alternative visualization of the time course of WM target representations to those shown 
in Figures 4-6 and 4-8, we extracted the activation from each reconstruction within a 0.5° 
radius circular aperture centered at the exact target positions for each trial. We call this signal 
the “reconstruction activation”, as it reflects BOLD activation patterns transformed into visual 
field coordinates and extracted at the relevant visual field position. Then, we computed the 
difference between the activation at the probed target location and the non-probed target 
location (on R1 trials, the probed target was always the target in WM, on R2-neutral trials, the 
probed target was the one queried at the end of the trial; on R2-valid trials, the probed target 
was the validly-cued target in WM). (A) On Remember 1 trials, the remembered target 
representation shows elevated activation relative to the non-remembered target representation 
throughout the entire 16 s delay interval, despite the weakening target representations as 
visualized in reconstructions in Figs 4-6 and 4-7. (B) On Remember 2-neutral trials, both 
target representations are equal throughout the delay period, with the queried target 
representation becoming stronger once the response period begins (16.0 s). (C) On Remember 
2-valid trials, we see a transition from Remember 2-like target representations (both are equal, 
and so the difference is near zero) during the first delay period to Remember 1-like target 
representations (the remaining target representations recover) during the second delay period. 
Black triangle at 8.0 s indicates beginning of second delay interval. Units are BOLD Z-score. 
Dashed lines mark 95% CI via resampling, see Experimental Procedures: Statistical 
procedures. (D) We also computed mean delay-period reconstruction activation separately for 
probed (filled bars) and non-probed (open bars) target positions for each participant 
individually (each symbol reflects a single participant, as in Fig. 4-1C; Figure 4-1). Asterisks 
in panels A-C indicate a significant change between Delay 1 and Delay 2 (two-tailed); 
asterisks in panel d indicate that the probed target representation activation is greater than the 
non-probed target representation activation (one-tailed). All statistics computed using a 
resampling procedure (see Experimental Procedures: Statistical procedures). Black asterisks 
indicate a significant difference after FDR-correction for multiple comparisons (q = 0.05); 
gray asterisks indicate a non-significant trend defined using an uncorrected threshold of α = 
0.05). All p-values from this analysis available in Table 4-6.
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Figure 4-11: Target representations degrade with memory load and recover with valid 
retro-cue primarily through amplitude changes 
To quantify WM target representations, we coregistered reconstructions from each trial so that 
all targets appeared at the same position (red circle in a; see Figure 4-5D). We resampled all 
trials within each condition, with replacement, 1,000 times, computed an average 
reconstruction from the resampled trials, and fit a surface allowed to vary in its size (full-
width half-maximum; FWHM), amplitude, and baseline constrained to the position with 
maximum reconstruction activation for that resampling iteration (see Experimental 
Procedures; Fig. 4-4D). (A) Average reconstructions over all resampling iterations with best-
fit surfaces. Mean best-fit position and size are plotted on each reconstruction as a white + 
surrounded by a dashed circle drawn at the surface FWHM (note that these fits reflect the 
mean of best-fit parameters over resampling iterations, not the fit to the average 
reconstructions shown in (A)). (B) Best-fit parameters from surface fitting for each condition. 
We computed pair-wise p-values between all condition pairs (R1 vs. R2-neutral, R2-neutral 
vs. R2-valid, R1 vs. R2-valid) within each ROI, delay-period, and parameter via resampling 
(see Experimental Procedures). Black symbols indicate significant pairwise differences after 
FDR correction for all comparisons within a fit parameter (q = 0.05). Gray symbols indicate 
trends, defined as p ≤ 0.05, uncorrected for multiple comparisons. All correction for multiple 
comparisons considered all 10 individual ROIs because the “All ROIs combined” region is not 
independent of the others. Error bars indicate 95% confidence intervals obtained from the 
distribution of best-fit parameters to resampled reconstructions. All p-values from this analysis 
are shown in Table 4-4. 
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Figure 4-12: Amplitude of recovered representation on valid-cue trials indexes 
behavioral performance 
Within each participant, session, and WM condition, we performed a median split on trials 
based on recall error, then quantified low- and high-error reconstructions separately via a 
resampling procedure (as in Fig. 4-11). All data shown here are from reconstructions 
computed from all ROIs, concatenated (“All ROIs combined” in previous figures). For this 
analysis on each ROI independently, see Figure 4-13. (A) During the first delay, 
reconstructions were similar across recall error conditions. White plus and dashed white circle 
indicate mean fit position and mean size (full-width at half maximum; FWHM). Red circle 
indicates exact target position. (B) Quantified WM representations did not differ across recall 
error group (all p ≥ 0.082, resampling test; see Table 4-5 for p-values for all comparisons). (C) 
During the second delay, the cued representation on R2-valid trials is visibly more robust on 
low- compared to high-error trials. (D) The cued WM representation is related to behavioral 
performance selectively via representation amplitude: on trials when participants performed 
more accurately, cued representation amplitude was higher (p < 0.001). All other WM 
conditions and parameters showed no differences across behavioral performance bins (p ≥ 
0.136). Error bars mark 95% CI of fit parameters to resampled reconstructions (some lie 
behind circles). Asterisk indicates significant differences after FDR correction for multiple 
comparisons (q = 0.05).  
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Figure 4-13: Amplitude of recovered representation on valid-cue trials indexes 
behavioral performance in V3 
Data plotted as in Figure 4-11, with trials sorted based on behavioral recall performance. All 
resampling and fitting procedures are identical to those used for Figure 4-12. (A) Remember 1 
trials, Delay 1. IPS0 baseline trended to be larger on low recall error trials (p = 0.014) (B) 
Remember 1 trials, Delay 2. IPS3 amplitude trended to be larger for low recall error compared 
to high recall error trials (p = 0.028). (C) Remember 2-neutral trials, first delay. V2 baseline 
trended to be smaller for low recall error trials (p = 0.002). (D) Remember 2-neutral trials, 
second delay. In hV4, baseline trended to be smaller for low recall error trials (p = 0.046). In 
IPS1, Baseline trended to be larger for low recall error trials (p = 0.04). (E) Remember 2-valid 
trials, first delay. In V3, baseline trended to be larger for low recall error trials (p = 0.032). (F) 
Remember 2-valid trials, second delay. In V3, amplitude was significantly larger on low error 
trials (p < 0.001), and in hV4, amplitude trended towards being larger on low recall error trials 
(p = 0.008). All error bars 95% confidence intervals over resampled fitting iterations. Black 
asterisks indicate significant difference between low- and high-recall error trials for that WM 
condition, delay period, and fit parameter, FDR-corrected for multiple comparisons within 
each parameter (q = 0.05). Gray asterisks are trends, thresholded at α = 0.05, uncorrected for 
multiple comparisons. All p-values available in Table 4-5. 
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Figure 4-14: Retinotopic maps used to define IPS subregions for participants AR and 
AS Cortical topography of polar angle preference for each vertex, thresholded so that only 
vertices with power at the stimulus rotation frequency (1/36 Hz) greater than 0.005 the 
maximum across all voxels are shown. Solid and dashed lines mark upper and lower vertical 
meridian representations (UVM; LVM), respectively, used to define IPS0-IPS3. See Sprague 
and Serences, 2013 for retinotopic maps for participant AI; Ester et al., 2015 for participants 
AL and AP. 
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Table 4-1: Statistical comparisons for mean delay-period activation 
P-values for comparisons of mean delay-period activation over all voxels within each ROI 
between WM conditions (two-tailed). All p-values reflect pair-wise comparisons between 
conditions (R1 vs R2-neutral, R2-neutral vs. R2-valid, and R1 vs. R2-valid).  For all tables, a 
p-value of 0 indicates p < 0.001, the minimum p-value achievable per our resampling 
procedure with 1,000 iterations. Bold numbers indicate significant differences after FDR 
correction for all comparisons (q = 0.05, all comparisons and all individual ROIs). Italicized 
numbers indicate trends, defined using α = 0.05, uncorrected. Significant comparisons and 
trends are shown graphically in Figure 4-3. FDR threshold for V1-sPCS is p ≤ 0.006

Figure 4-3 Delay 1 Delay 2 
Comparison: R1 vs 

R2-
neutral 

R2-neutral 
vs. R2-valid 

R1 vs 
R2-valid 

R1 vs R2-
neutral 

R2-neutral 
vs. R2-valid 

R1 vs R2-
valid 

V1 0.772 0.056 0.098 0.85 0.048 0.026 
V2 0.872 0.162 0.228 0.87 0.056 0.068 
V3 0.854 0.118 0.084 0.902 0.086 0.152 
V3A 0.646 0.114 0.304 0.814 0.306 0.486 
hV4 0.106 0.136 0.006 0.288 0 0.064 
IPS0 0.938 0.07 0.076 0.98 0 0 
IPS1 0.886 0.04 0.056 0.464 0 0 
IPS2 0.956 0.154 0.124 0.216 0 0 
IPS3 0.74 0.212 0.354 0.226 0 0 
sPCS 0.752 0.044 0.024 0.14 0 0 
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Table 4-2: Statistical comparisons for significant delay-period representational fidelity 
P-values for comparisons between representational fidelity computed separately within each 
WM delay (one-tailed, against the null hypothesis that representational fidelity ≤ 0). P-value 
of 0 indicates p < 0.001, the minimum p-value achievable per our resampling procedure with 
1,000 iterations. Bold numbers indicate significant differences after FDR correction for all 
comparisons (q = 0.05, all conditions and all individual ROIs, and separately for “All ROIs 
combined” across all conditions, see Experimental Procedures). Italicized numbers indicate 
trends, defined using α = 0.05, uncorrected. Significant comparisons and trends are shown 
graphically in Figure 4-9A-B. FDR threshold for V1-sPCS is p ≤ 0.039, and for All ROIs 
combined is p < 0.001.

Representational 
fidelity (Fig. 4-9A-B) 

Delay 1 (one-tailed) Delay 2 (one-tailed) 

R1 R2-
neutra

l 

R2-
valid 

R1 R2-
neutra

l 

R2-
valid 

V1 0 0 0 0 0.001 0 
V2 0 0 0 0 0.002 0 
V3 0 0 0 0 0.009 0 

V3A 0 0 0 0 0.039 0 
hV4 0 0 0 0 0.002 0 
IPS0 0 0 0 0 0.023 0 
IPS1 0 0 0 0 0.351 0 
IPS2 0 0 0 0 0.476 0 
IPS3 0 0 0.001 0 0.003 0 
sPCS 0 0 0 0 0.454 0 

All ROIs combined 0 0 0 0 0 0 
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Table 4-3: Statistical comparisons for significant differences between Delay 1 and Delay 
2 representational fidelity 
P-values for comparisons of representational fidelity between Delay 1 and Delay 2 (two-
tailed). P-value of 0 indicates p < 0.001, the minimum p-value achievable per our resampling 
procedure with 1,000 iterations. Bold numbers indicate significant differences after FDR 
correction for all comparisons (q = 0.05, all conditions and all individual ROIs, and separately 
for “All ROIs combined” across all conditions, see Experimental Procedures). Italicized 
numbers indicate trends, defined using α = 0.05, uncorrected. Significant comparisons and 
trends are shown in Figure 4-9C. FDR threshold for V1-sPCS is p ≤ 0.022 and for All ROIs 
combined is p < 0.001.

Representational 
fidelity (Fig. 4-9C) 

Delay 1 vs. Delay 2 

R1 R2-
neutral 

R2-valid 

V1 0 0 0 
V2 0 0 0.084 
V3 0 0 0.022 

V3A 0 0 0.244 
hV4 0 0.018 0.116 
IPS0 0 0 0.002 
IPS1 0.088 0 0 
IPS2 0.9 0.01 0.004 
IPS3 0.402 0.162 0.006 
sPCS 1 0.014 0.656 

All ROIs combined 0 0 0 
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Table 4-4: Statistical comparisons for best-fit surface parameters between condition 
pairs within each delay period 
P-values for comparisons of parameters (size, amplitude, baseline) for best-fit surfaces to 
coregistered reconstructions between conditions for each delay period individually (two-
tailed). All p-values reflect pair-wise comparisons between conditions (R1 vs R2-neutral, R2-
neutral vs. R2-valid, and R1 vs. R2-valid).  P-value of 0 indicates p < 0.001, the minimum p-
value achievable per our resampling procedure with 1,000 iterations. Bold numbers indicate 
significant differences after FDR correction for all comparisons (q = 0.05, all conditions and 
all individual ROIs, and separately for “All ROIs combined” across all conditions, see 
Experimental Procedures). Italicized numbers indicate trends, defined using α = 0.05, 
uncorrected. Significant comparisons and trends are shown graphically in Figure 4-11.

Fig. 4-11  Param: Size Amplitude Baseline 

Delay ROI R1 vs 
R2-

neutral 

R2-
neutral 
vs R2-
valid 

R1 vs 
R2-

valid 

R1 vs 
R2-

neutral 

R2-
neutral 
vs R2-
valid 

R1 vs 
R2-

valid 

R1 vs 
R2-

neutral 

R2-
neutral 
vs R2-
valid 

R1 
vs 

R2-
valid 

1 V1 0.598 0.796 0.93 0 0.272 0 0.226 0.006 0 

1 V2 0.562 0.304 0.514 0 0.238 0 0.126 0.032 0.002 

1 V3 0.038 0.322 0.426 0 0.424 0 0.002 0.206 0 

1 V3A 0.088 0.53 0.008 0 0.158 0 0.006 0.422 0 

1 hV4 0 0.276 0.092 0 0.326 0 0.548 0.488 0.19 

1 IPS0 0.738 0.712 0.494 0 0.546 0 0.012 0.832 0.01 

1 IPS1 0.402 0.992 0.492 0.004 0.42 0 0.278 0.366 0.094 

1 IPS2 0.632 0.956 0.582 0.002 0.874 0.014 0.302 0.656 0.712 

1 IPS3 0.212 0.742 0.118 0.866 0.338 0.256 0.438 0.9 0.532 

1 sPCS 0.454 0.9 0.396 0.688 0.164 0.702 0.978 0.816 0.926 

1 All 
ROIs 

0.632 0.65 0.874 0 0.77 0 0.018 0.314 0 

2 V1 0.548 0.808 0.088 0.128 0 0 0.282 0.496 0.04 

2 V2 0.57 0.784 0.27 0.002 0 0 0.968 0.236 0.154 

2 V3 0.986 0.816 0.446 0 0 0 0.124 0.082 0.83 

2 V3A 0.166 0.394 0.506 0.004 0 0 0.414 0.464 0.104 

2 hV4 0.35 0.084 0.186 0.012 0 0.096 0.21 0.792 0.118 

2 IPS0 0.388 0.628 0.624 0 0 0.054 0.016 0.024 0 

2 IPS1 0.002 0.042 0.188 0 0 0.422 0.01 0 0 

2 IPS2 0.002 0.09 0.788 0.034 0.124 0.842 0.044 0 0 

2 IPS3 0.458 0.052 0.07 0.076 0.01 0.276 0.016 0 0 

2 sPCS 0.51 0.018 0.08 0.202 0 0.014 0.222 0 0 

2 All 
ROIs 

0.434 0.32 0.776 0 0 0 0.058 0 0 

FDR 
thresh: 

V1-
sPCS 

0.002 V1-
sPCS 

0.014 V1-
sPCS 

0.016 

All 
ROIs 

<0.001 All 
ROIs 

< 
0.001 

All 
ROIs 

0.018 
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Table 4-5: Statistical comparisons for best-fit surface parameters between low- and high-
recall error trials 
P-values for comparisons of parameters (size, amplitude, baseline) for best-fit surfaces to 
coregistered reconstructions between low recall error and high recall error trials (two-tailed, 
always equal number of trials in each bin per participant and session). P-value of 0 indicates p 
< 0.001, the minimum p-value achievable per our resampling procedure with 1,000 iterations. 
Bold numbers indicate significant differences after FDR correction for all comparisons within 
each parameter (q = 0.05, all conditions and all individual ROIs, and separately for “All ROIs 
combined” across all conditions, see Experimental Procedures; FDR thresholds indicated at 
bottom of table). Italicized numbers indicate trends, defined using α = 0.05, uncorrected. 
Significant comparisons and trends are shown graphically in Figure 4-12 and Figure 4-13. For 
the All ROIs combined comparisons, use of a threshold derived with Bonferroni’s method 
produces identical significant comparisons.

Param: Size Amplitude Baseline 

Delay ROI R1 R2-
neutral 

R2-
valid 

R1 R2-
neutral 

R2-
valid 

R1 R2-
neutral 

R2-
valid 

1 V1 0.818 0.6 0.522 0.052 0.534 0.876 0.586 0.696 0.116 

1 V2 0.632 0.526 0.576 0.744 0.42 0.864 0.684 0.002 0.228 

1 V3 0.326 0.904 0.918 0.886 0.8 0.458 0.272 0.4 0.032 

1 V3A 0.592 0.286 0.89 0.218 0.378 0.718 0.238 0.472 0.72 

1 hV4 0.634 0.548 0.872 0.35 0.408 0.762 0.53 0.302 0.244 

1 IPS0 0.926 0.532 0.962 0.522 0.396 0.944 0.014 0.804 0.854 

1 IPS1 0.272 0.972 0.93 0.15 0.212 0.124 0.406 0.92 0.61 

1 IPS2 0.824 0.188 0.698 0.16 0.898 0.792 0.28 0.37 0.982 

1 IPS3 0.31 0.356 0.662 0.63 0.478 0.3 0.616 0.77 0.684 

1 sPCS 0.8 0.548 0.728 0.804 0.696 0.172 0.986 0.686 0.312 

1 All ROIs 0.934 0.29 0.938 0.408 0.324 0.44 0.082 0.634 0.702 

2 V1 0.874 0.562 0.812 0.12 0.608 0.524 0.856 0.392 0.552 

2 V2 0.322 0.924 0.914 0.634 0.998 0.354 0.474 0.6 0.872 

2 V3 1 0.548 0.06 0.602 0.604 0 0.864 0.55 0.942 

2 V3A 0.488 0.416 0.272 0.89 0.156 0.262 0.294 0.316 0.978 

2 hV4 0.612 0.432 0.328 0.822 0.334 0.008 0.658 0.046 0.968 

2 IPS0 0.708 0.74 0.642 0.214 0.742 0.168 0.332 0.17 0.412 

2 IPS1 0.698 0.808 0.376 0.838 0.498 0.714 0.588 0.04 0.792 

2 IPS2 0.752 0.494 0.586 0.312 0.606 0.826 0.804 0.238 0.456 

2 IPS3 0.824 0.294 0.982 0.028 0.476 0.898 0.61 0.124 0.284 

2 sPCS 0.482 0.802 0.364 0.804 0.476 0.41 0.168 0.466 0.606 

2 All ROIs 0.438 0.662 0.136 0.686 0.946 0 0.294 0.642 0.78 

FDR 
thresh: 

V1-sPCS <0.001 V1-
sPCS 

< 0.001 V1-
sPCS 

<0.001 

All ROIs .0083 
(Bonferroni

) 

All 
ROIs 

0.0083 All 
ROIs 

0.0083 
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Table 4-6: Statistical comparisons for target activation differences between Delay 1 
and Delay 2 
P-values for comparisons of target activation differences (probed target – non-probed target) 
between Delay 1 and Delay 2 (two-tailed). P-value of 0 indicates p < 0.001, the minimum p-
value achievable per our resampling procedure with 1,000 iterations. Bold numbers indicate 
significant differences after FDR correction for all comparisons (q = 0.05, all conditions and 
all individual ROIs, and separately for “All ROIs combined” across all conditions, see 
Experimental Procedures). Italicized numbers indicate trends, defined using α = 0.05, 
uncorrected. Significant comparisons and trends are shown in Figure 4-10A-C. FDR 
thresholds for V1-sPCS and for All ROIs combined are p < 0.001. Identical comparisons 
remain significant when correcting with Bonferroni’s method.

V1 V2 V3 V3A hV4 IPS0 IPS1 IPS2 IPS3 sPCS All 
ROIs 

R1 0.326 0.948 0.672 0.774 0.722 0.486 0.166 0.182 0.55 0.96 0.954 

R2-
neutral 

0.772 0.39 0.63 0.836 0.71 0.416 0.624 0.426 0.428 0.5 0.888 

R2-valid 0 0 0 0 0 0 0 0 0.018 0.218 0 
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Table 4-7: Statistical comparisons between target activation for probed target and non-
probed target within each delay 
P-values for comparisons between probed target (PT) activation and non-probed target (NPT) 
activation computed separately within each WM delay (one-tailed, against the null hypothesis 
that PT ≤ NPT). P-value of 0 indicates p < 0.001, the minimum p-value achievable per our 
resampling procedure with 1,000 iterations. Bold numbers indicate significant differences 
after FDR correction for all comparisons (q = 0.05, all conditions and all individual ROIs, and 
separately for “All ROIs combined” across all conditions, see Experimental Procedures). 
Italicized numbers indicate trends, defined using α = 0.05, uncorrected. Significant 
comparisons and trends are shown in Figure 4-10D. FDR thresholds for V1-sPCS and for All 
ROIs combined are p < 0.001.

Condition: Remember 1 Remember 2 - 
neutral 

Remember 2- 
valid 

Delay: Delay 
1 

Delay 
2 

Delay 1 Delay 
2 

Delay 
1 

Delay 
2 

V1 0 0 0.905 0.821 0.787 0 
V2 0 0 0.915 0.577 0.803 0 
V3 0 0 0.638 0.88 0.908 0 

V3A 0 0 0.99 0.982 0.969 0 
hV4 0 0 0.667 0.826 0.969 0 
IPS0 0 0 0.99 0.905 0.911 0 
IPS1 0.018 0 0.844 0.958 0.665 0 
IPS2 0.006 0 0.346 0.745 0.428 0 
IPS3 0.001 0.002 0.091 0.39 0.257 0 
sPCS 0.076 0.085 0.252 0.561 0.255 0.016 

All ROIs 
combined 

0 0 0.928 0.932 0.864 0 
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