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Laboratory of Neural Systems, Rockefeller University BCS, MIT

Abstract
A glance at an object is often sufficient to recognize it and
recover fine details of its shape and appearance, even under
highly variable viewpoint and lighting conditions. How can
vision be so rich, but at the same time fast? The analysis-
by-synthesis approach to vision offers an account of the rich-
ness of our percepts, but it is typically considered too slow
to explain perception in the brain. Here we propose a ver-
sion of analysis-by-synthesis in the spirit of the Helmholtz ma-
chine (Dayan, Hinton, Neal, & Zemel, 1995) that can be im-
plemented efficiently, by combining a generative model based
on a realistic 3D computer graphics engine with a recognition
model based on a deep convolutional network. The recogni-
tion model initializes inference in the generative model, which
is then refined by brief runs of MCMC. We test this approach
in the domain of face recognition and show that it meets sev-
eral challenging desiderata: it can reconstruct the approximate
shape and texture of a novel face from a single view, at a level
indistinguishable to humans; it accounts quantitatively for hu-
man behavior in “hard” recognition tasks that foil conventional
machine systems; and it qualitatively matches neural responses
in a network of face-selective brain areas. Comparison to other
models provides insights to the success of our model.
Keywords: analysis-by-synthesis, 3d scene understanding,
face processing, neural, behavioral.

Introduction
Everyday vision requires us to perceive and recognize objects
under huge variability in viewing conditions. In a glance, you
can often (if not always) identify a friend whether you catch
a good frontal view of their face, or see just a sliver of them
from behind and on the side; whether most of their face is
visible, or occluded by a door or window blinds; or whether
the room is dark, bright, or lit from an unusual angle. You
can likewise recognize two images of an unfamiliar face as
depicting the same individual, even under similarly severe
variations in viewing conditions (Figure 1), picking out fine
details of the face’s shape, color, and texture that are invariant
across views and diagnostic of the person’s underlying phys-
iological and emotional state. Explaining how human vision
can be so rich and so fast at the same time is a central chal-
lenge for any perceptual theory.

The analysis-by-synthesis or “vision as inverse graphics”
approach presents one way to think about how vision can be
so rich in its content. The perceptual system models the gen-
erative processes by which natural scenes are constructed, as
well as the process by which images are formed from scenes;
this is a mechanism for the hypothetical “synthesis” of nat-
ural images, in the style of computer graphics. Perception
(or “analysis”) is then the search for or inference to the best
explanation of an observed image in terms of this synthesis

Figure 1: Same scene viewed
at two different angles, illus-
trating level of viewing vari-
ability in everyday vision.

model: What would have been the most likely underlying
scene that could have produced this image?

While analysis-by-synthesis is intuitively appealing, its
representational richness is often seen as making inference
highly impractical. There are two factors at work: First, in
rich generative models a large space of latent scene variables
leads to a hard search problem in finding a set of parame-
ters that explains the image well. Second, the posterior land-
scape over the latent variables may have multiple modes or
extended ridges of probability, making standard local search
or stochastic inference methods such as Markov Chain Monte
Carlo (MCMC) slow to burn in or mix, and potentially highly
sensitive to the viewing conditions of scenes.

Here, we propose an efficient and neurally inspired im-
plementation of the analysis-by-synthesis approach that can
recover rich scene representations surprisingly quickly. We
use a generic and powerful visual feature extraction pipeline
to learn a recognition model with the goal of approximately
“recognizing” certain latent variables of the generative model
in a fast feed-forward manner, and then using those initial
guesses to bootstrap a top-down search for the globally best
scene interpretation. The recognition model is learned in an
entirely self-supervised fashion, from scenes and correspond-
ing images that are hallucinations from the generative model.
We apply our approach to the specific problem of face per-
ception, and find that (1) our recognition model can identify
scene-generic latent variables such as object pose and lighting
in a single feed-forward pass, and (2) brief runs of MCMC in
the generative model are sufficient to make highly accurate
inferences about object-specific latents, such as the 3d shape
and texture of a face, when initialized by good guesses from
the feed-forward recognition model.

Our approach is inspired by and builds upon earlier propos-
als for efficient analysis-by-synthesis such as the Helmholtz
machine and breeder learning (Dayan et al., 1995; Nair,
Susskind, & Hinton, 2008), but it goes beyond prior work
in several ways:

• We apply this approach to much richer generative mod-
els than previously considered, such as near-photorealistic
graphics models of faces based on high-dimensional 3d
shape and texture maps, lighting and shading models, and

2751



varying (affine) camera pose. This lets us perceive and rec-
ognize objects under much greater variability in more nat-
ural scenes than previous attempts.

• We directly compare human perceptual abilities with our
model, as well as other recently popular approaches to vi-
sion such as convolutional neural networks (Krizhevsky,
Sutskever, & Hinton, 2012).

• We explore this approach as an account of actual neural
representations arising from single-unit cell recordings.

Face perception is an appealing domain in which to test our
approach, for several reasons. First, faces are behaviorally
significant for humans, hence an account of face perception
is valuable in its own right, although we also expect the ap-
proach to generalize to other vision problems. Second, virtu-
ally all approaches to computational vision have been tested
on faces (e.g., Taigman, Yang, Ranzato, & Wolf, 2014), of-
fering ample opportunities for comparing different models.
Third, the shape and the texture of faces are complex and
carry rich content. Therefore, it provides a good test bed for
models with rich representations. Finally, recent neurophys-
iology research in macaques revealed a functionally specific
hierarchy of patches of neurons selective for face process-
ing (e.g., Freiwald & Tsao, 2010). As far as high-level vi-
sion is concerned, this level of a detailed picture from a neural
perspective is so far unheard of. Therefore, faces provide an
excellent opportunity to relate models of high-level vision to
neural activity.

The rest of this paper is organized as follows. We first
introduce our efficient analysis-by-synthesis approach in the
context of face perception. Next, we test our model in a com-
putationally difficult task of 3D face reconstruction from a
single image. We then describe a behavioral experiment test-
ing people’s face recognition abilities under “hard” viewing
conditions, and show that our model best accounts for peo-
ple’s behavior. Finally, we show that our model bears some
qualitative similarity to neural responses in the Macaque face
processing system. We conclude with a discussion of quan-
titative comparisons between our model and alternatives that
use only variants of bottom-up, recognition networks.

Model
Our model takes an inverse graphics approach to face pro-
cessing. Latent variables in the model represent facial shape,
S, and texture, T , lighting direction, l, and head pose, r.
Once these latent variables are assigned values, an approxi-
mate rendering engine, g(·) generates a projection in the im-
age space, IS = g({S,T, l,r}). See Figure 2a for a schematic
of the model.

Following (Kulkarni, Kohli, Tenenbaum, & Mansinghka,
2015), we use the Morphable Face Model (MFM; Blanz
& Vetter, 1999) as a prior distribution over facial shapes
and textures, S and T , respectively. This model, obtained
from a dataset of laser scanned heads of 200 people, pro-
vides a mean face (both its shape and texture) in a part-
based manner (four parts: nose, eyes, mouth, and outline)

Likelihood

Light Pose

face_id

Approximate 
renderer

Sample

Light Pose

SampleObservation

(a) Generative model (c) With recognition model

Shape 
  - Nose      
  - Eyes 
  - Outline   
  - Mouth

Texture 
  - Nose      
  - Eyes 
  - Outline   
  - Mouth

face_id
Shape 
  - Nose      
  - Eyes 
  - Outline   
  - Mouth

Texture 
  - Nose      
  - Eyes 
  - Outline   
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(b) Random  
samples

Approximate 
renderer

Figure 2: (a) Overview of the inverse graphics model. (b)
Random draws from the model. (c) Training and the use of
the recognition model.

and a covariance matrix to perturb the mean face to draw new
faces by eigendecomposition. Accordingly, both the shape
and texture take the form of multivariate Gaussian random
variables: S ∼ N(µshape,Σshape) and T ∼ N(µtexture,Σtexture),
where µshape and µtexture are the mean shape and texture vec-
tors respectively, and Σshape and Σtexture are the covariance
matrices, each of which is set to be a unit diagonal matrix.
The dimensionality of S and T are 200 each. The prior dis-
tributions over lighting direction and head pose are uniform
over a discrete space (lighting direction could vary in eleva-
tion or azimuth in range −80◦ to 80◦; the head pose could
vary along the z-axis in range−90◦ to 90◦, or on the x-axis in
range −36◦ to 36◦). Figure 2b shows several random draws
from this model.

Given a single image of a face as observation, ID, and an
approximate rendering engine, g(·), face processing can be
defined as inverse graphics in probability terms:

P(S,T, l,r|ID) ∝ P(ID|IS)P(IS|S,T, l,r)P(S,T, l,r)δg(·) (1)

The image likelihood is chosen to be noisy Gaussian,
P(ID|IS) = N(ID; IS,Σ). We set Σ to 0.05 in our simulations.
Note that the posterior space is of high-dimensionality con-
sisting of more than 400 highly coupled shape, texture, light-
ing direction, and head pose variables, rendering inference a
significant challenge.

Recognition model
The idea of learning a recognition model to invert genera-
tive models has been proposed in various forms before (e.g.,
Dayan et al., 1995; Nair et al., 2008). We use a recognition
model consisting of a generically trained deep Convolutional
network (ConvNet) and linear mappings from that network to
the latent variables in the generative model. To obtain this
recognition model, we first used our generative model to hal-
lucinate images from 300 different faces (each defined by a
3d shape and texture vector), and rendered each distinct face
at 225 different viewing conditions (25 possible head poses×
9 possible lighting directions). Second, we used a ConvNet
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trained on ImageNet (a labeled dataset of more than million
images collected from the internet, Deng et al., 2009) that
is very similar in architecture to that of (Krizhevsky et al.,
2012) to obtain features for each of images in our dataset at
all layers of the network.1 In doing so, we first selected the
“face-selective” units in each layer of the network by running
a normal or a scrambled face test. The units that were acti-
vated twice as much to normal faces than to scrambled faces
on the average (out of responses to 75 normal + 75 scrambled
= 150 faces) were designated as “face-selective.” Finally, we
learn to construct bottom-up guesses for both scene-generic
variables (pose and lighting direction) and object-specific la-
tents (3d face shape and texture) via linear mappings from
face-selective units in intermediate layers of the ConvNet. We
have found that we can extract pose and lighting from the top
convolutional layer (TCL) of the ConvNet, with close to per-
fect accuracy, using a linear support vector machine (SVM)
for each combination of scene generic variables. We use a lin-
ear model with inputs from both TCL and the first fully con-
nected layer (FFL) of the ConvNet to predict the shape and
texture variables using Lasso regression (a schematic shown
in Figure 2c).

Inference
Given an image, ID, the recognition model described above
makes fast bottom-up guesses about all latent variables in
the generative model. Inference proceeds by fixing the head
pose and the lighting direction variables to their “recognized”
values, and then performing multi-site elliptical slice sam-
pling (Murray, Adams, & MacKay, 2009), a form of MCMC,
on the shape and texture vectors. At each MCMC sweep,
we iterate a proposal-and-acceptance loop over eight groups
of random variables: four shape vectors and four texture vec-
tors, with one vector pair for each of four face parts (For more
details see Kulkarni et al., 2015). In elliptical slice sampling,
proposals are based on defining an ellipse using an auxiliary
variable x ∼ N(0,Σ) and the current state of the latent vari-
ables, and sampling from an adaptive bracket on this ellipse
based upon the log-likelihood function.

3d reconstruction from single images
Humans are capable of grasping much of the 3d shape and
surface characteristics of faces or other objects from a sin-
gle view, and can use that knowledge to recognize or imag-
ine the object’s appearance from very different viewpoints.
We tested our model’s capacity to perform this challenging
task using a held-out set of faces (not among those used to
build the generative or recognition models) from (Blanz &
Vetter, 1999). Figure 3a shows several of these test faces
as inputs, reconstructions based on only the bottom-up pass
from the recognition model, and reconstructions from our full
model after initializing with the recognition model and run-
ning MCMC to convergence. In addition to frontal faces, our

1We used the Caffe system to extract features, and also to train
alternative networks that we describe later (Jia et al., 2014).
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Figure 3: (a) Top: input images from a held-out laser scanned
dataset (Blanz & Vetter, 1999). Middle: Reconstructions on
the basis of the initial bottom-up pass. We used our generative
process to visualize the shape and texture vectors obtained
only from the recognition model. Bottom: Reconstructions
after MCMC iterations. (b) The average and individual log-
likelihood scores arising from randomly initialized 96 differ-
ent chains vs. the recognition model initialized 96 chains.
The recognition model initialized chains converge fast in less
than 20 MCMC sweeps, and the variability across chains be-
comes much smaller.
model can reconstruct the shape and the texture of images of
faces under non-frontal lighting and non-frontal pose, demon-
strating robustness to non-standard viewing conditions and
motivating the behavioral studies we describe below.

Initializing inference for latent shape and texture variables
using the recognition model dramatically improves both the
quality and the speed of inference, as compared with the
standard MCMC practice of initializing with random val-
ues (or samples from the prior). Figure 3b shows the log-
likelihood traces of a number of chains for multiple input im-
ages that were initialized either randomly, or from the recog-
nition model. Recognition-initialized chains converge much
faster: In just a few MCMC sweeps, every chain reaches a
log-likelihood that is almost as good as the best randomly
initialized inference chains reach after tens or hundreds of
sweeps. Furthermore, in comparison to the random initial-
ization, recognition-model initialization leads to much lower
variance: Inferences become uniformly good, very quickly.

Behavioral experiment
On common benchmark tasks for machine face recognition,
the best systems now regularly report near-perfect perfor-
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Figure 4: (a) Stimuli from the experiment illustrating the variability of lighting, pose, and identities. (b) Participants’ average
performance across all possible test viewing conditions. (c) Participants’ and models’ accuracy. (d) Coefficients of mixed
effects logistic regression analyses. Error bars show standard deviations.

mance (e.g., Taigman et al., 2014). However, Leibo, Liao,
and Poggio (2014) observed that most face databases are
“easy”, in the sense that the faces in the images are often
frontal and fully visible. They found increasing viewing vari-
ability severely hurt the performance of these systems. Build-
ing upon this observation, we asked how well people can per-
form face recognition under widely varying pose and lighting
conditions. The task was a simple passport-photo verification
task: participants saw images of two faces sequentially, and
their task was to judge whether the images showed the same
person or two different people. Explaining human behavior
in this task provides a challenging test for our model, as well
as alternatives from the literature.

Participants
24 participants were recruited from Amazon’s crowdsourc-
ing web-service Mechanical Turk. The experiment took
about 10 minutes to complete. Participants were paid $1.50
($9.00/hour).

Stimuli and Procedure
The stimuli were generated using our generative model de-
scribed above (Figure 2a). A stimulus face could be viewed
at one of the five different poses (right profile to left profile)
and under five different lighting directions (from top to from
bottom), making a total of 25 possible viewing conditions.
A subset of the facial identities and the 25 possible viewing
conditions are shown in Figure 4a.

On a given trial, participants saw a study image for 750ms.
After a brief period of blank interval (750ms), they saw
the test image, which remained visible until they responded.
They were asked to fixate a cross in the center of the screen at
the beginning of each trial and between the study and the test
stimuli presentations. The viewing condition for the study
image was always frontal lighting at frontal pose (e.g., cen-
ter image in Figure 4a). The viewing condition for the test
image could be any of the remaining 24 possible combina-
tions of lighting and pose. Participants judged whether two

face images (study and test) belonged to the same person or
to two different people, by pressing keys “s” for same or “k”
for different on their keyboards.

There were a total of 96 trials, with 48 of the trials being
same trials. Each test image viewing condition was repeated
four times (4×24 = 96), split half between same and differ-
ent trials. The presentation order of the 96 pairs of images
was randomized across participants. None of the identities
was repeated except in the same trials, where the same iden-
tity was presented between the study image and correspond-
ing test image. On different trials, faces were chosen to be
as similar as possible while still remaining discriminable on
close scrutiny.

Results
Participants performed well despite the difficulty of the task:
Performance was above chance for all possible test face view-
ing conditions (Figure 4b), and ranged between 65% for light
at the bottom and right-profile pose to 92% for frontal light
and right-half profile pose. Overall, participants performed at
an average accuracy of 78% (red dot and the associated er-
ror bars in Figure 4c), a level of performance that challenges
even the most capable machine-vision systems.

Simulation details
We ran our model on the same 96 pairs of images that ex-
perimental participants saw. We ran at least 18 and at most
24 chains for each of the study and test images. Once ini-
tialized with the recognition model, each chain was run for
80 MCMC sweeps. Each chain simulated a participant in
our study. For a given image, the values of the latent shape
and texture variables from the last sample were taken as the
model’s representation of identity. We denote the representa-
tion of the study image i as studyi, and of the test image i as
testi for i ∈ 1, . . . ,96.

We calculated the performance of our model (and the alter-
native models that we introduce later) in the following man-
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ner. We first scaled the study and the test image representa-
tions independently to be centered at 0 and have a standard
deviation of 1.2 Then, for each pair i, we calculated the Pear-
son correlation coefficient between the representations of the
study and the test images, denoted as corri. Below, we used
these pair-specific correlation values to model people’s binary
responses (same vs. different) in regression analyses.

Finally, we need to obtain same vs. different judgments
from the model, to compare its performance with ground
truth. Similar to an ROC analysis, we searched for a thresh-
old correlation ∈ [−1,1] such that the model’s performance
will be highest with respect to ground truth. Pairs of corre-
lation values lower than the threshold were called different,
and the pairs of equal or higher correlation values than the
threshold were assigned same. We report results based upon
the threshold that gave the highest performance.

Simulation results
Our inverse graphics model performs at 78% (see Figure 4c),
matching the participants’ average performance. Matching
average level participant is an important criteria in eval-
uating a model, but only a crude one. We also tested
whether the internal representations of our model (corri for
i ∈ 1, . . . ,96) could predict participants’ same/different re-
sponses on unique stimuli pairs. We performed mixed ef-
fects logistic regression from our model’s internal represen-
tations (corri for i ∈ 1, . . . ,96) to participants’ judgments,
where we allowed a random slope for each participant us-
ing the lme4 package and R statistics toolbox (R Core Team,
2013). The coefficient and the standard deviation estimated
for our model are shown in Figure 4d. The internal repre-
sentations of our model can strongly predict participants re-
sponses, providing evidence for an inverse graphics approach
to vision (β̂ = 5.69,σ = 0.26, p < 0.01).

Macaque face patch system as inverse graphics
Encouraged by these behavioral findings, we next asked
whether our model could explain neural responses in the face-
processing hierarchy in the brain. Face processing is perhaps
the best understood aspect of higher-level vision at the neu-
ral level. The spiking patterns of neurons at different fMRI-
identified face patches in macaque monkeys show a hierarchi-
cal organization of selectivity: neurons in the most posterior
patch (ML/MF) appear to be tuned to specific poses, neurons
in AL (a more anterior patch) exhibit specificity to mirror-
symmetric poses, and those in the most anterior patch (AM)
show specificity to individuals but appear largely viewpoint-
invariant (Freiwald & Tsao, 2010).3

We ran our model on a dataset of faces generated using
our generative model, which mimicked the FV image dataset
from Freiwald and Tsao (2010). Our dataset contained 7 head

2This scaling step was not crucial for our model, but it was re-
quired to obtain the best out of other models that we will introduce
below.

3Recent studies suggest homologue architecture between human
and macaque face processing systems.

poses of 25 different identities under a fixed frontal lighting
direction. We compared the representational similarity ma-
trices of the population responses from Freiwald and Tsao
(2010) in patches ML/MF, AL, and AM, and the represen-
tational similarity matrices arising from the representations
of the different components of our recognition model: face-
selective TCL units, face-selective FFL units, and the fast
bottom-up guesses for shape and texture vectors.

ML/MF representations were captured best by the TCL
activations (pearson correlation 0.67), suggesting that pose-
specificity arises from a computational need to make inverse
graphics tractable. Our results also suggest that this layer
might carry information about the lighting of the scene, which
is experimentally not systematically tested yet. AL represen-
tations were best accounted by the FFL activations (pearson
correlation 0.67). Our model also provides a reason why mir-
ror symmetry should be found in the brain: Computational
experiments showed that mirror symmetry arises only at fully
connected layers (i.e., dense connectivity) and only when the
training data contains images of the same face from view-
points distributed across both left and right sides. Our model
captures AM patterns best via inferred latent shape and tex-
ture representations. The shape and texture vectors obtained
just using the recognition model (that is, without running any
MCMC iterations) captured AM responses best in compari-
son to all other layers in the recognition model (pearson cor-
relation 0.42), suggesting the possibility of a generative 3D
representation of shape and texture in the patch AM.

Discussion: Comparison to other models
In comparing our model against other approaches, we con-
centrated on alternatives that are based upon ConvNets, due
to their success in many visual tasks including face recog-
nition (DeepFace, Taigman et al., 2014), and the fact that
they are architecturally similar (or even identical, in some
cases) to our recognition model.4 We considered three al-
ternative models: (1) a baseline model, which simply is a
ConvNet trained on ImageNet (CNN baseline), (2) a Con-
vNet that is trained on a challenging real faces dataset called
SUFR-W introduced in Leibo et al. (2014) (CNN faces), and
(3) a ConvNet that is selected from a number of networks that
were all fine-tuned using samples from our generative model
(CNN optimized).

We focused on these alternative models’ ability to explain
our behavioral data. But we should note that ConvNets, on
their own, cannot do 3D reconstruction. Also, even though
each ConvNet can partially account for the neural data such
as the pose specificity at patch ML/MF, they are worse at ex-
plaining the other two patches. The performance of all alter-
native models on our behavioral task was assessed just as for
our model, with the only difference being that internal repre-

4We attempted to evaluate the DeepFace on our behavioral
dataset. However, email exchanges with its authors suggested that a
component of the model (3d spatial alignment) would not work with
images of profile faces. Accordingly, we estimate the performance
of that model on our behavioral dataset to be around 65%.
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sentations of images were obtained as the FFL layer activa-
tions when that image is input to the model. For the mixed
effects logistic regressions, a given pair of study and test im-
ages is represented by the correlation of the FFL activations
for each of the two images.

The baseline model (CNN baseline) performed at 67%
(Figure 4c). This is impressive given that the model was
not trained to recognize faces explicitly, and arguably justi-
fies our use of ConvNets as good feature representations. The
ConvNet trained on SUFR-W dataset (CNN faces) performed
at 72% (Figure 4c), closer to but significantly worse than
human-level performance. We should note that CNN faces
is remarkable for its identification performance on a held-out
portion of the SUFR-W dataset (67%; chance level = 0.25%).
The last ConvNet, CNN optimized, performed better than
people did with 86% (Figure 4c).

We are not the first to show that a computer system can
top human performance in unfamiliar face recognition. How-
ever, we argue that the discrepancy between people and
CNN optimized points to the computational superiority of
human face processing system: our face processing machin-
ery is not optimized for a single bit information (i.e., identity),
but instead can capture much richer content from an image of
a face. This comes with a cost of accuracy in our same vs.
different task. Our model accounts for the rich content vs.
accuracy trade-off by acquiring much richer representations
from faces while performing only slightly worse on identity
matching than an optimized ConvNet. 5

But, do people actually undertake the difficult chal-
lenge of 3d reconstruction when they look at unfamiliar
faces? Our data suggests so: internal representations of the
CNN optimized, corri for i ∈ 1, . . . ,96, is a worse fit to peo-
ple’s responses (also using a mixed effects logistic regression
model; β̂ = 3.97,σ = 0.22, p < 0.01; Figure 4d). Indeed,
none of the alternative models could account for participants’
precise patterns of same/different responses as well as our
model did(Figure 4d).

Do our computational and behavioral approaches extend
to other object categories? A representational aspect of our
model that lets us account for behavioral and neural data at
the same time is that it represents 3D content in the form
of a vector. Therefore, our approach should easily extend to
other classes of 3D objects that can be represented similarly
by vectors. Immediate possibilities include bodies, classes
of animals such as birds, generic 3D objects such as vases,
bottles, and so on. These object classes, in particular bod-
ies, are exciting future directions, where revealing neural re-
sults have also been accumulating, our psychophysics meth-
ods can be straightforwardly extended to, and a generalization
of our model already efficiently handles 3D reconstruction
tasks (Kulkarni et al., 2015).

5We should also note that if we average the results across all the
chains that we ran for each image, our model’s performance signifi-
canly increases to 89% too.

Conclusion
This paper shows that an efficient implementation of the
analysis-by-synthesis approach can account for people’s be-
havior on a “hard” visual recognition task. The same model
also solves a computationally challening task of reconstruct-
ing 3d shape and texture from a single image. Finally, it ac-
counts qualitatively for the main response characteristics of
neurons in the face processing system in macaque monkeys.
None of the alternative ConvNet models, lacking a generative
model and the capacity for top-down model-based inference,
can account for all three of this phenomena. These results
point to an account of vision with inverse graphics at its cen-
ter, supported by bottom-up recognition models that can be
learned from generative model fantasies in a self-supervised
fashion, that allow top-down processing to refine their ini-
tial guesses but still do most of the work of inference in a
bottom-up fashion, and that thereby enable even very rich
model-based inferences to proceed almost as quickly as the
fast feedforward processing of neural networks.
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