
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Graphix: View the (JSON) World Through Graph-Tinted Glasses

Permalink

https://escholarship.org/uc/item/10j9t2wt

Author

Galvizo, Glenn Justo

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10j9t2wt
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Graphix: View the (JSON) World Through Graph-Tinted Glasses

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Glenn Justo Galvizo

Dissertation Committee:
Professor Michael J. Carey, Chair

Professor Chen Li
Assistant Professor Faisal Nawab

Dmitry Lychagin, Apache AsterixDB Project

2023

© 2023 Glenn Justo Galvizo

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF CODE LISTINGS vii

LIST OF TABLES ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE THESIS xii

1 Introduction 1

2 Related Work 4
2.1 Graph Processing Systems . 4
2.2 Native Graph Databases . 5
2.3 Database Graph Extensions . 6

3 Background 9
3.1 Apache AsterixDB . 9
3.2 Social Network Example . 10
3.3 SQL for JSON: SQL++ . 12

4 Graph Model 16
4.1 Property Graph Model . 17
4.2 CREATE GRAPH Statement . 19

4.2.1 Social Network Example . 23
4.2.2 Multiple Dataset Example . 26
4.2.3 Derived Property Example . 29

5 Query Model 32
5.1 SQL++ Query Extension . 32

5.1.1 SQL-1999 Recursive Queries . 33
5.1.2 Cypher Query Language . 35
5.1.3 SQL-2023 Property Graph Queries 37

ii

5.1.4 gSQL++ FROM Clause Extension . 39
5.2 Pattern Matching Queries . 41

5.2.1 Graph Pattern Matching . 41
5.2.2 gSQL++ for Pattern Matching . 44

5.3 Navigational Queries . 50
5.3.1 Path Finding (Navigation) . 51
5.3.2 gSQL++ for Navigation . 56

5.4 Complex gSQL++ Examples . 60
5.4.1 Optional Subgraph Matching . 60
5.4.2 Negative Subgraph Matching . 62
5.4.3 Subgraph Reachability . 64
5.4.4 Shortest Path Finding . 66
5.4.5 Cheapest Path Finding . 68

6 Implementation 72
6.1 Graphix Architecture . 72

6.1.1 CREATE GRAPH Lifecycle . 75
6.1.2 gSQL++ Query Lifecycle . 77

6.2 Hyracks Runtime Engine . 79
6.2.1 Hyracks by Example . 80
6.2.2 Recursion Foundations . 93
6.2.3 Property #1: Liveness . 97
6.2.4 Property #2: Safety . 99
6.2.5 Property #3: Mortality . 101
6.2.6 Fixed Point Operator (1-Machine) . 103
6.2.7 Fixed Point Operator (n-Machines) 106
6.2.8 Additional Hyracks Operators . 115
6.2.9 “Paths Not Traveled” (Alternatives) 122

6.3 Abstract Syntax Tree Rewriter . 126
6.3.1 gSQL++ AST Rewriting . 127
6.3.2 gSQL++ Lowering to SQL++ . 130

6.4 Algebricks Query Optimizer . 137

7 Evaluation 143
7.1 Experimental Setup . 143
7.2 Operational IS-X Queries . 146
7.3 Operational IC-X Queries . 149
7.4 Analytical BI-X Queries . 156

8 Conclusion 164
8.1 Conclusion . 165
8.2 Future Work . 167

Bibliography 169

iii

Appendix A Benchmark Detail 176
A.1 Graphix DDLs . 176
A.2 Graphix Queries (in gSQL++) . 187

iv

LIST OF FIGURES

Page

2.1 Comparison of different architectures for processing graphs. 7

3.1 Illustration of documents in the example social network database. 10
3.2 SQL++ railroad diagram illustrating the Selection production. 13

4.1 Illustration of “disconnected” edges that may exist in a graph. 17
4.2 Starting productions (as railroad diagrams) for defining a graph in Graphix. 20
4.3 Graphix railroad diagram illustrating the VertexConstructor production. . . 21
4.4 Graphix railroad diagram illustrating the EdgeConstructor production. . . . 22

5.1 gSQL++ railroad diagram describing the FROM clause extension. 39
5.2 Illustration of an graph instance and a graph query pattern. 42
5.3 gSQL++ railroad diagram detailing the productions for pattern matching. . . 45
5.4 gSQL++ railroad diagram detailing the productions for vertex patterns. . . . 46
5.5 gSQL++ railroad diagram detailing the productions for edge patterns. 47
5.6 Illustration of an edge labeled graph instance (used in Table 5.2). 54
5.7 gSQL++ railroad diagram detailing the productions for path patterns. 56
5.8 Illustration of a graph instance (used in Subsection 5.4.4). 67
5.9 Depiction of shortest path finding with the GROUP BY and GROUP AS clauses. . 68

6.1 Diagram illustrating the Graphix and AsterixDB software stack. 73
6.2 Architecture diagram detailing the processes in a two-node Graphix cluster. . 74
6.3 Illustration of different units of work in a Hyracks job. 80
6.4 Graph of Hyracks activities that execute a 1-hop query. 82
6.5 Graph of Hyracks tasks that execute a 1-hop query. 85
6.6 Graph of Hyracks activities that execute a 3-hop query. 87
6.7 Graph of Hyracks activities that execute a 1-to-3-hop query. 89
6.8 Graph of Hyracks activities that execute a 1-to-3-hop query without sorting. 90
6.9 Visualization of independent path growth in a Hyracks activity graph. 92
6.10 High level graph of Hyracks activities for executing unbounded recursion. . . 95
6.11 Illustration of a task forwarding its output buffer to another task. 96
6.12 Illustration of a mechanism to prevent liveness violations. 98
6.13 Illustration of a mechanism to prevent safety violations. 100
6.14 Illustration of a mechanism to prevent mortality violations. 102
6.15 Graph of Hyracks activities that execute an unbounded path query. 104

v

6.16 Diagram detailing the decoration of an activity instance. 105
6.17 Graph of three Hyracks task clusters executing some cyclic computation. . . 107
6.18 Diagram detailing the internal processes of the FIXED POINT operator. 109
6.19 Algorithm (as a FSM) describing the actions of a FIXED POINT coordinator. . 111
6.20 Algorithm (as a FSM) describing the actions of a FIXED POINT participant. . 114
6.21 Activity graph that illustrates how the PBJ (JOIN) operator executes. 117
6.22 Activity graph that illustrates how the TOP K operator executes. 120
6.23 Potential alternative solution #1 to realize recursion in Hyracks. 123
6.24 Potential alternative solution #2 to realize recursion in Hyracks. 125
6.25 Demonstration of the shared vertex pattern AST rewrite. 129
6.26 Transformation of a gSQL++ query into an equivalent SQL++ query. 132
6.27 Transformation of a gSQL++ query into a nearly equivalent SQL++ query. . 134
6.28 Description of the anchor and recursive members of a navigational query. . . 136
6.29 Graph of Algebricks operators to realize a navigational query. 139

7.1 LDBC social network database (SNB) schema diagram. 144
7.2 Plots comparing Graphix vs. Neo4j for queries IS−X at SF=1. 147
7.3 Plots comparing Graphix vs. Neo4j for queries IS−X at SF=100. 147
7.4 Plots comparing Graphix vs. Neo4j for queries IC−X at SF=1. 150
7.5 Plots comparing Graphix vs. Neo4j for queries IC−X at SF=100. 151
7.6 Plots comparing Graphix vs. Neo4j for queries BI−X at SF=1. 160
7.7 Plots comparing Graphix vs. Neo4j for queries BI−X at SF=100. 161

vi

LIST OF CODE LISTINGS

3.1 Set of “schema-first” dataset DDLs (CREATE TYPE and CREATE DATASET). . . . 11
3.2 Set of “schema-never” dataset DDLs (CREATE TYPE and CREATE DATASET). . . 12
3.3 SQL++ query that correlates two datasets in the SELECT clause. 14
3.4 Example set of JSON results for the query in Listing 3.3. 14
3.5 SQL++ GROUP AS query to return groups formed by a GROUP BY clause. 15
3.6 Example set of JSON results for the query in Listing 3.5. 15

4.1 Graphix CREATE GRAPH DDL to define a property graph view. 24
4.2 Set of dataset DDLs used to define additional datasets for Subsection 4.2.2. . 27
4.3 VERTEX definition of a CREATE GRAPH DDL that maps two datasets. 27
4.4 EDGE definition of a CREATE GRAPH DDL that maps two datasets. 28
4.5 SQL++ query to compute a weight property between two users. 30
4.6 EDGE definition of a CREATE GRAPH DDL that includes a computed property. . 30

5.1 Recursive SQL query that computes the transitive closure for three users. . . 34
5.2 Cypher query that computes the transitive closure for three users. 36
5.3 SQL/PGQ graph creation DDL for the graph used in Listing 5.4. 38
5.4 SQL/PGQ query that computes the transitive closure for three users. 38
5.5 gSQL++ query that computes the transitive closure for three users. 40
5.6 gSQL++ query that specifies a graph pattern in the FROM clause. 49
5.7 Example result found in the result set of the query in Listing 5.6. 49
5.8 gSQL++ query that specifies a RPQ (path pattern) in the FROM clause. 58
5.9 Example result found in the result set of the query in Listing 5.8. 58
5.10 gSQL++ query that specifies optional pattern matching with LEFT MATCH. . . 61
5.11 gSQL++ query that specifies optional pattern matching with LEFT JOIN. . . . 61
5.12 Example set of JSON results for the queries in Listing 5.10 and Listing 5.11. 61
5.13 gSQL++ query that specifies negative pattern matching. 63
5.14 Alternative query to Listing 5.13 that explicitly JOINs vertex patterns. 63
5.15 Example set of JSON results for the queries in Listing 5.13 and Listing 5.14. 63
5.16 gSQL++ query that determines the reachability between vertex groups. . . . 65
5.17 Alternative to Listing 5.16 that uses GROUP BY instead of SELECT DISTINCT. . 65
5.18 Example set of JSON results for the queries in Listing 5.16 and Listing 5.17. 65
5.19 gSQL++ query that determines the shortest path between vertex groups. . . 67
5.20 gSQL++ query that determines the cheapest path between vertex groups. . . 69

6.1 gSQL++ query that specifies an unbounded path of REPLY OF edges. 79
6.2 gSQL++ query that specifies a path of exactly 1 REPLY OF edge. 82

vii

6.3 gSQL++ query that specifies a path of exactly 3 REPLY OF edges. 87
6.4 gSQL++ query that specifies a path of 1 to 3 REPLY OF edges. 89
6.5 gSQL++ query that specifies the shortest path of REPLY OF edges. 121
6.6 “SQL++”-like translation of a navigational pattern matching query. 137

viii

LIST OF TABLES

Page

5.1 Table describing different morphism classes for some example graph instance. 43
5.2 Table enumerating all “non-repeat-edge” paths for some example graph instance. 55

6.1 Table summarizing the notation used for all graphs of Hyracks activities. . . 83

7.1 Table comparing Graphix vs. Neo4j for queries IS−X and IC−X at SF=1. 153
7.2 Table comparing Graphix vs. Neo4j for queries IS−X and IC−X at SF=100. . . 154
7.3 Table comparing Graphix vs. Neo4j for queries BI−X at SF=1. 162
7.4 Table comparing Graphix vs. Neo4j for queries BI−X at SF=100. 163

ix

ACKNOWLEDGMENTS

I could not have undertaken this journey without my advisor, Professor Michael J. Carey.
His consistent positive attitude and patience made the weekly meetings we had an hour
I could always look forward to. In addition to technical knowledge he brought to every
conversation, Professor Carey always made these conversations “fun” and engaging. He has
been an amazing advisor that has not only deepened my knowledge and appreciation for
databases, but has helped shape me into the individual I am today.

Sincere thanks to Professor Chen Li and Professor Faisal Nawab for providing me with
invaluable feedback during my many Graphix presentations and really helping me further
my communication skills. I am also grateful to Dmitry Lychagin for joining my dissertation
committee. His help in reviewing the code I pushed to the AsterixDB codebase and his
guidance during my internship at Couchbase advanced my software engineering skills.

Special thanks goes to Vinayak Borkar for his help in formulating ideas for realizing recursion
in Hyracks. Thanks should also go to Professor Yannis Papakonstantinou for his review of
the first Graphix paper and his continued support after presenting my work at UC San
Diego. Many thanks to Amarnath Gupta and Professor Subhasis Dasgupta from UC San
Diego for their input on the first Graphix paper as well. I would also like to acknowledge
UCI student Sushrut Borkar for his help “alpha-testing” early versions of Graphix. Thanks
to Rodney (JT Douglas) for his work on the Graphix logo.

I am also thankful for my friends and colleagues from the Information Systems Group and the
HPI Research Center at UC Irvine. The weekly reading groups, the various events, and the
interactions we had has helped sustain me throughout this endeavor. Thank you Eliot Wong-
Toi, Harry Bendekgey, Gavin Kerrigan, Markelle Kelly, Federica Zoe Ricci, Pratyoy Das,
Vishal Chakraborty, Sadeem Saleh Alsudais, Yiming Lin, Nada Lahjouji, Ashwin Gerard
Colaco, and every other ISG + HPI @ UC Irvine student.

I’d like to acknowledge Ian Maxon and Wail Alkowaileet for helping me with the Apache
processes and also being wonderful people to chat and drink with. Lastly, I’d like to men-
tion my colleagues (from both the AsterixDB project and Couchbase). Thank you Shiva
Jahangiri, Chen Luo, Gift Sinthong, Thomas Hütter, Till Westmann, Ali Alsuliman, Vijay
Sarathy, and Murali Krishna.

This research was supported in part by NSF awards IIS-1838248, IIS-1954962, and CNS-
1925610, by the HPI Research Center in Machine Learning and Data Science at UC Irvine,
and by the Donald Bren Foundation (via a Bren Chair).

x

VITA

Glenn Justo Galvizo

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Masters of Science in Computer Science 2021
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2019
University of Hawaii at Manoa Honolulu, Hawaii

PUBLICATIONS

Multi-valued Indexing in Apache AsterixDB Jan 2023
Information Systems (Special issue on DOLAP 2022: Design, Optimization, Languages
and Analytical Processing of Big Data)

On Multi-Valued Indexing in AsterixDB Mar 2022
International Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP) co-located with the 25th International Conference on Extending
Database Technology

SOFTWARE

Graphix Extension https://graphix.ics.uci.edu/

An extension for Apache AsterixDB that enables navigational pattern matching queries
on a property graph view of data in AsterixDB, in-situ.

Apache AsterixDB https://asterixdb.apache.org/

A scalable, open-source Big Data management system (BDMS) that provides storage,
indexing, and management for large semi-structured data.

xi

https://graphix.ics.uci.edu/
https://asterixdb.apache.org/

ABSTRACT OF THE DISSERTATION

Graphix: View the (JSON) World Through Graph-Tinted Glasses

By

Glenn Justo Galvizo

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Michael J. Carey, Chair

The increasing prevalence of large graph data has produced a variety of research and appli-

cations tailored toward graph data management. Users aiming to perform graph analytics

will typically start by importing existing data into a separate graph-purposed storage en-

gine. The cost of maintaining a separate system (e.g., the data copy, the associated queries,

etc. . .) just for graph analytics may be prohibitive for users with Big Data. Furthermore,

using separate systems for mixed-model analytics (e.g., JSON and graph) requires special-

ized solutions. In this thesis, we introduce Graphix and show how it enables property graph

views of existing document data in AsterixDB, a Big Data management system boasting a

partitioned-parallel query execution engine.

This thesis starts with a description of how Graphix property graphs naturally extend the

AsterixDB document model to define vertices and edges. We detail how users can specify

Graphix graphs in a manner that handles a wide variety of document-to-graph mappings

while maintaining the schema-flexibility offered by AsterixDB. Next, we explain how users

can query their Graphix graphs. The Graphix query language (gSQL++) minimally ex-

tends AsterixDB’s query language (SQL++) to express synergistic graph and traditional

(multi-model) analytics. After describing the user model aspects of Graphix, we detail how

AsterixDB was extended to accommodate a recursive graph query construct: path finding.

xii

We focus on how the AsterixDB runtime layer was extended to realize semi-synchronous,

partitioned-parallel recursion. We later discuss how to extend the query optimization layer

as well as the query parsing and AST rewriting layer to reuse as much of AsterixDB as pos-

sible. This thesis concludes with an evaluation of Graphix against a native graph database,

Neo4j. We show that Graphix is able to scale horizontally to perform on-par with (and in

some cases, even outperform) Neo4j for many kinds of operational and analytical queries

— ultimately illustrating that users might not need a separate graph database just to issue

graph queries.

xiii

Chapter 1

Introduction

Research in the field of graph data management has seen an explosion over the past decade.

Teams developing applications with a graph-only workload in mind from the start have a

large selection of graph databases to chose from. These types of users however, are not the

norm — the typical user of a graph database also has non-graph-workloads that they must

design around [60]. This design effort is further complicated when dealing with Big Data

and out-of-core workloads. A common architecture that these types of users employ involves

the stitching of multiple, more narrow-purpose systems together. For example, consider a

two-DBMS (database management system) architecture composed of a document DBMS D

and a graph DBMS G to analyze the relationships found in D. This architecture has several

consequences:

1. Some form of ETL (extract-transform-load) pipeline must be developed to duplicate

the data from database D to G and then maintained to ensure consistency.

2. Additional storage, compute resources, development, and maintenance need to be al-

located to accommodate both D and G (increasing the cost to own the data).

3. Multi-model workloads (i.e., analytics over D and G) require specialized solutions.

1

Furthermore, graph databases like Neo4j are limited by their inability to scale outward,

leaving users of such databases with few options when their queries run slower than desired

(or not at all) due to excessive data volume. In this thesis, we challenge the two-DBMS

architecture previously described. We describe the following desiderata for a new architecture

that enables both graph and non-graph workloads:

In-Situ (Zero Copy) Query Processing .

To avoid the complexities that come with creating and maintaining multiple copies

of data, both users and systems should not duplicate data for the sole purpose of

managing different user models.

Synergistic Graph and Traditional Analytics .

Users familiar with one data model should not have additional barriers to work with

other models of the same data. The “accidental complexity” involved in integrating

multiple user models should be minimized.

Partitioned-Parallel, Scalable Execution .

Users should be able to work with data volumes larger than memory. Users should not

have to sacrifice performance to realize all of the aforementioned points.

We find that most existing solutions satisfy 1/3 of the points above. Graphix is our solu-

tion to satisfy these desiderata: it takes a view-based approach to answering graph queries

on JSON data in-situ and at scale (i.e., to view the JSON world through “graph-tinted”

glasses). The contributions of this work include: 1) a graph view user model and DDL that

naturally extends an underlying document model, 2) a query extension for expressing graph

and traditional (multi-model) analytics in synergy, 3) a description of how to translate navi-

gational pattern matching queries into partitioned-parallel executions, and 4) a performance

comparison with a native graph database.

The rest of this thesis is organized as follows: Chapter 2 describes related work around

querying graph data. Chapter 3 reviews (i) Apache AsterixDB, the Big Data management

2

system used for this research, (ii) AsterixDB’s query language SQL++, and (iii) a running

social network example database. Chapter 4 introduces the graph model of Graphix, demon-

strating how users can map existing data to a graph view. Chapter 5 details our query model

and query language extension: gSQL++. Chapter 6 explains the implementation and archi-

tecture of Graphix. Chapter 7 details an evaluation of Graphix against the native graph

database Neo4j. Chapter 8 concludes this thesis and lists some potential future work.

3

Chapter 2

Related Work

The database community has had no shortage of work trying to tackle the management of

large graphs. While many graph problems can (and have) been solved using non-graph-

purposed systems, in this chapter we consider systems whose user model deals with graph-

specific abstractions. Related work can be grouped into three areas: (i) graph processing

systems, (ii) (native) graph databases, and (iii) database graph extensions for non-graph-

purposed databases.

2.1 Graph Processing Systems

Big Graph processing systems such as Pregel [42] and Giraph [10] were designed to provide

a vertex-oriented message-passing-based abstraction for distributed graph algorithms to run

on shared-nothing clusters in a bulk-synchronous-parallel (BSP) fashion. Another system

designed for graph processing is GraphX [26], which uses a simpler API (Resident Distributed

Graphs, or RDGs) and adopts Spark as its runtime. In an effort to provide similar vertex-

centric abstractions without the need for bulk synchronization, systems like GraphLab [41]

4

and GiraphUC [30] were designed to process large graphs in an asynchronous manner. A

graph processing system that used the same runtime engine as Graphix is Pregelix [13],

designed to gracefully scale distributed graph algorithms for out-of-core workloads. While

Big Graph processing systems have been shown to be highly performant and scalable [75],

their “think like a vertex” paradigm still requires users to develop a program to interact

with their APIs. We contrast graph processing systems with more traditional database

systems, where a declarative query language like SQL is used to build ad-hoc queries with

less developer effort. Our work is largely orthogonal to graph processing systems, as we

target the specific problem of navigational pattern matching and not all graph algorithms.

Keeping with the informal motto of AsterixDB, “one size fits a bunch”, Graphix aims to

target “a bunch” of use cases really well as opposed to targeting all use cases with a user-

model impedance mismatch.

2.2 Native Graph Databases

Native graph databases like Neo4j [49] and TigerGraph [69] were designed to challenge

traditional relational database systems by building a new database from the ground-up

(storage, execution, and user model) with graph primitives in mind. Amazon Neptune [4],

while not a native graph database (since it is built on top of AWS’s existing data platforms),

presents users with only a graph data model. The two leading graph user models are the

property graph model and the resource description framework (RDF) graph model. In the

property graph model, users reason about their data as a directed multi-graph of labeled

vertices and edges, where each vertex and edge can possess a set of key-value pairs (known as

properties). In the RDF model, users reason about their data as a directed graph of labeled

edges captured in the form of subject-predicate-object triples. Property graphs have seen

significantly more adoption and are supported by all three of the aforementioned systems [67].

5

With respect to the query model of graph databases, there are two leading query languages

for the property graph model — Cypher [25] and Gremlin [57] — and one standardized

language for the RDF model — namely SPARQL [55].

Use of graph databases requires users of existing non-graph-databases to build ETL pipelines

to copy their data over to the chosen graph database. In addition to the increased cost to own

the data, native graph databases like Neo4J are unable to scale horizontally. TigerGraph

and Amazon Neptune are offerings that have the ability to scale horizontally, but they still

suffer from the problem of requiring duplicate copies of data. In contrast, Graphix operates

on existing data in-situ without a need to stitch separate systems together.

2.3 Database Graph Extensions

Work on extending existing, non-graph-purposed systems with graph extensions can be split

into two areas: (i) re-purposing an existing system to handle a graph data model, and

(ii) translating queries for a graph data model into the query model understood by an existing

system. While the former (Item i) has seen a lot of interest [64, 38], these systems possess the

same flaw as graph databases from the previous section: they require maintaining duplicate

copies of existing data. We will focus on the latter work (Item ii) which most closely relates

to Graphix. We give a high-level comparison between graph processing systems, graph (+

non-graph) database systems, and database graph extensions in Figure 2.1.

Unipop Graph [72] and Cytosm [25] are middleware systems that translate graph queries into

queries for another system. Cytosm translates Cypher queries into queries on a relational

store, but it does not support unbounded recursion. Unipop Graph translates Gremlin and

SPARQL queries into one or more queries on a NoSQL or relational store, but it performs

its joins outside of the underlying database. Neither project has had any updates in over 5

6

Figure 2.1: Comparison between graph processing systems, graph + non-graph database
systems, and database graph extensions.

years. Graphix, on the other hand, is a derivative of AsterixDB, allowing it to a) perform

joins closer to the data, and b) extend the optimizer and runtime to leverage information

about the original graph query.

Prominent non-open-source offerings include Oracle Spatial and Graph [54], DataStax En-

terprise Graph [20], and IBM Db2 Graph [68]. Oracle Spatial and Graph gives users the

option to load their existing data into memory as a graph and issue their queries in-core, or

to translate a limited subset of graph queries into equivalent SQL queries on existing data

(allowing for out-of-core execution). DataStax Enterprise Graph allows users to query their

underlying Cassandra (column family) store with Gremlin. While Cassandra has an excel-

lent ability to scale outward, DataStax Enterprise Graph inherits its significant limitations

for analytics (i.e., queries require careful physical tuning via index creation before being able

to execute). IBM Db2 Graph, in contrast to the two aforementioned systems, was designed

with a similar goal as Graphix: to allow users to execute both graph and relational analytics

on existing data, in-situ. What Graphix does differently than IBM Db2 Graph is two-fold:

7

(1) Graphix users operate on a flexible underlying data model (i.e., a document model vs.

a traditional relational model), simplifying the user model when reasoning over graphs and

the source data. (2) Graphix presents a unified query model, allowing users to integrate nav-

igational pattern matching with the underlying query language. The query model behind

IBM Db2 Graph clearly separates its graph analytics component (written in Gremlin) and

its relational analytics component (written in SQL), resulting in a less-than-synergistic user

model.

8

Chapter 3

Background

3.1 Apache AsterixDB

Apache AsterixDB is a Big Data management system (BDMS) designed to be a highly scal-

able platform for document storage, search, and analytics [2]. AsterixDB possesses a flexible,

semi-structured data model that accommodates a range of use cases —from “schema-first”

to “schema-never”. To query AsterixDB, SQL++ (detailed later this chapter in Section 3.3),

a generalized form of SQL that enables the querying of semi-structured data, is used. To

scale horizontally it follows a shared-nothing architecture, where each node independently

accesses storage and memory. All nodes are managed by a central cluster controller that

serves as an entry point for user requests and coordinates work amongst the individual As-

terixDB nodes. After a query arrives at the cluster controller, the query is translated into

a logical plan and subsequently rewritten in a rule-based and cost-based manner to produce

an optimized physical plan [11]. This optimized physical plan is then translated into a job

that can run across all nodes in the cluster [12]. Datasets in AsterixDB are hash-partitioned

across the cluster on their primary key into primary B+ tree indexes, where the data records

9

Figure 3.1: Example documents of two Users, two Messages, and their relationships.

reside, with secondary indexes being local to the primary data on each node. Both inter-

nal datasets and secondary indexes are LSM (Log-Structured Merge) based, enabling fast

ingestion performance [3].

3.2 Social Network Example

To aid in illustrating several Graphix concepts, we introduce a running example: a social

network. We start by designing our social network database as a collection of documents.

Two major entities are captured in this example: (i) Users and (ii) Messages. Three rela-

tionships are captured in our social network: (I) a User may post one or more Message(s),

(II) a Message may reply to exactly one Message, and (III) a User may know one or more

10

� �
1 CREATE TYPE UsersType AS {
2 id : bigint ,
3 name : { first : string ,
4 last : string },
5 join date : string ,
6 languages : [string]?,
7 knows : [bigint]
8 };
9 CREATE DATASET Users (UsersType) PRIMARY KEY id;

11 CREATE TYPE MessagesType AS {
12 id : bigint ,
13 user id : bigint ,
14 posted on : string ,
15 content : string ,
16 is draft : boolean ,
17 reply id : bigint ?
18 };
19 CREATE DATASET Messages (MessagesType) PRIMARY KEY id; � �

Listing 3.1: Set of “schema-first” dataset definitions for the Users and Messages datasets.

other User(s). Examples of these entities and relationships are given in Figure 3.1. We

highlight three parts of our social network schema that differ from a similar schema in the

traditional relational model:

1. Data can be nested, as shown by the name field of the two User documents.

2. Many-to-many relationships can be folded into a single entity, as shown by the knows

arrays of the two User documents.

3. A field present in one document of some collection may not be present in another

document of that same collection, as shown by the languages field of the two User

documents and the reply id field of the two Message documents.

To describe the documents from Figure 3.1 in AsterixDB, we’ll need to define the types of the

Users and Message datasets. In Listing 3.1, we define the Users and Messages datasets using

the UsersType and MessagesType respectively. The UsersType defines the mandatory fields

id, name, join date, and knows as well as their types. UsersType also has one optional field:

11

� �
1 CREATE TYPE GenericType AS {
2 id : uuid
3 };
4 CREATE DATASET Users (GenericType) PRIMARY KEY id AUTOGENERATED ;
5 CREATE DATASET Messages (GenericType) PRIMARY KEY id AUTOGENERATED ;� �
Listing 3.2: Set of “schema-never” dataset definitions for the Users and Messages datasets.

languages. In the case of AsterixDB, “optional” means that the languages field could be

associated with a NULL value or the languages field could be absent (i.e., MISSING) from the

document entirely. The MessagesType defines the mandatory fields id, user id, posted on,

content, and is draft. MessagesType also has one optional field: reply id.

In Listing 3.2, we show how we could instead define the Users and Messages dataset with an-

other set of DDLs. Here, both the Users and Messages datasets share the same GenericType

in their definition. GenericType defines a id field which serves as an auto-generated primary

key for both Users and Messages. In contrast to the schema-first definition given by List-

ing 3.1, the DDLs in Listing 3.2 represent a schema-never approach to defining the social

network datasets. AsterixDB accepts both definitions (as well as a range of possibilities

in between), which means that Graphix must also accommodate the same range of schema

flexibility.

3.3 SQL for JSON: SQL++

SQL++ is a query language purposed for JSON, semi-structured data, while being backwards-

compatible with SQL [52, 14]. This backwards compatibility enables easy adoption by ex-

isting SQL users. A SELECT query in SQL++ is expressed using the Selection production

in Figure 3.2a. Following Figure 3.2a from left to right, SQL++ users are able to: (a) express

common table expressions (CTEs) using the WITH clause, (b) union results of queries using

the UNION ALL operator, (c) sort records using the ORDER BY clause, and (d) limit the number

12

WithClause

QueryBlock

UnionOption

OrderByClause LimitClause

OffsetClause

(a) SQL++ grammar for the Selection production.

SelectClause

StreamGenerator

StreamGenerator SelectClause

(b) SQL++ grammar for the QueryBlock production.

FromClause

LetClause WhereClause GroupByClause

LetClause HavingClause

(c) SQL++ grammar for the StreamGenerator production.

Figure 3.2: Grammar used to define a Selection in SQL++.

of results using the LIMIT clause. The QueryBlock (Figure 3.2b) production is where SQL++

slightly deviates from SQL: In SQL++, we can either place the SELECT clause at the start of

the query (conforming to standard SQL) or at the end of the query to more closely reflect

how queries are processed. We choose the latter style for the SQL++ queries (and as we’ll

see later, the gSQL++ queries) in this paper. Lastly, we have the StreamGenerator produc-

tion (Figure 3.2c) which captures the FROM, LET (a SQL++ clause that binds an expression

to a variable), WHERE, GROUP BY, and HAVING clauses. Conceptually, the StreamGenerator

production generates a tuple streams of bound variables.

In SQL++, FROM clause variables are allowed to be bound to any JSON element. In contrast,

SQL only binds FROM clause variables to regularized and structured tuples. Subqueries in

SQL++ are first-class citizens, allowing for greater composability than SQL subqueries (which

are restricted to returning scalar or NULL values). To demonstrate these features, suppose

we want to issue a query on our social network to find users with non-NULL last names

13

� �
1 FROM
2 Users u
3 WHERE
4 u.name.last IS NOT NULL
5 SELECT
6 u.id AS uid ,
7 (FROM
8 Messages m
9 WHERE
10 m.user id = u.id
11 SELECT VALUE
12 m.id) AS mids; � �

Listing 3.3: SQL++ query that correlates two datasets in the SELECT clause.

� �
1 { "uid": 2, "mids": [10001 ,10003 ,10010 ,10011] }
2 { "uid": 9, "mids": [10002 ,10089] }
3 { "uid": 16, "mids": [] } � �

Listing 3.4: Result set for the query in Listing 3.3.

and all messages they have written. A legal way to express this query in SQL++ is given

in Listing 3.3. We illustrate two more features of SQL++ that are not present in SQL:

1. In SQL++, subqueries can be used to build arrays of documents. In Listing 3.3, we use

a subquery to create records containing arrays of message IDs.

2. In SQL++, the SELECT clause is used to bind variables of tuples from the StreamGenerator

production to documents. The SELECT VALUE variant is used to return arrays of the

expression m.id (i.e., arrays of integers), instead of arrays of documents containing

m.id.

Assume that executing our Listing 3.3 query yields the three results in Listing 3.4. We see

that the user id = 16 has not written any messages, therefore the mids array in their result

record is empty.

14

� �
1 FROM
2 Users u
3 GROUP BY
4 SUBSTR (u.join date , 0, 4)
5 GROUP AS g
6 HAVING
7 COUNT (∗) < 12
8 SELECT
9 SUBSTR (u.join date , 0, 4) AS join year ,
10 (FROM g SELECT VALUE g.u.id) AS uids; � �

Listing 3.5: SQL++ GROUP AS query to return groups formed by a GROUP BY clause.

� �
1 { " join year ": "2017", "uids": [2] }
2 { " join year ": "2021", "uids": [64 ,65 ,66 ,67 ,68 ,69 ,70 ,71 ,72 ,73 ,74] } � �

Listing 3.6: Result set for the query in Listing 3.5.

Another noteworthy aspect of SQL++ is its GROUP AS clause, allowing users to query over

groups that they create through the SQL GROUP BY clause. Contrast this with SQL, whose

GROUP BY clause only allows reasoning over aggregate values of groups. Suppose we want to

group all Users by their join year and return the groups of user IDs for groups that have less

than 12 elements. We can use the SQL++ query in Listing 3.5 to realize this grouping, with

an example result set given in Listing 3.6. Both results in Listing 3.6 have uids arrays that

adhere to the HAVING clause, where the length of both arrays are less than 12. Given that

SQL++ is the query language used by AsterixDB, SQL++ also serves as the foundation for

the Graphix query language extension: gSQL++.

15

Chapter 4

Graph Model

Having described the social network schema in Section 3.2, we will now use Graphix to

define a graph view that users can issue queries on. The task of authoring these graph views

will typically be left to the database designers, or, users who are intimate with the existing

database design (though this is not to say that other types of users cannot create their own

views). The purpose of this mapping step is to provide logical data independence for defined

graph views, isolating the other “actors on the scene” (i.e., administrators, data analysts,

application programmers, etc. . .) from the underlying AsterixDB data model.

In this chapter, we will first discuss the graph modeling constructs available for users to

define a graph schema with. We will then walk through how Graphix users can build a

mapping from valid SQL++ expressions to a set of definitions for vertices and edges in a

graph.

16

Figure 4.1: Example of “disconnected” edges that may exist in a graph.

4.1 Property Graph Model

The graph model that Graphix targets is the property graph model. At the core of the model

are vertices and edges that connect vertices, but the property graph model adds a few more

constructs that have made the model flexible enough for expressing schemata in a variety

of domains. Specifically, a property graph a) is directed, b) is vertex and edge labeled,

c) permits parallel edges (i.e., more than one edge can connect the same two vertices), and

d) associates a set of key-value pairs (known as properties) with each vertex and edge.

We define a property in Graphix as the tuple G = (V, E, I, λ) where: 1) V is a finite set

of vertices, 2) E is a finite set of edges, 3) λ is a labeling function for vertices and edges

(formally, λ : (V ∪ E) → B where B is the universe of all labels∗), and 4) I is a finite set of

incidence triples I ⊂ (V × E × V). A single vertex v ∈ V is defined as a set of key-value

pairs. A single edge e ∈ E is defined in the exact same way: as set of key-value pairs. For

some vertex or edge x ∈ (V ∪E), λ(x) can be thought of as the “type” or “class” of the input

vertex or edge. Finally, we move to our incidence triple set: (v1, e, v2) ∈ I denotes that

edge e ∈ E connects source vertex v1 ∈ V and destination vertex v2 ∈ V . (v1, e, v2) ̸∈ I

denotes one of three cases (visually given in Figure 4.1):

1. v1 is not connected to e and e is not connected to v2;

2. v1 is connected to e, but e is not connected to v2; and

3. v1 is not connected to e, but e is connected to v2.

∗In other graph databases like Neo4j, vertices and edges may possess a non-negative number of labels
(making the range of λ a power set of B). In Graphix, we instead require that each vertex and edge must
have a single label.

17

We also note that this definition for I technically defines G as a property hypergraph, where

a single edge may connect more than two vertices. A directed hyperedge e ∈ E (i.e., an edge

in a hypergraph) that connects one vertex v1 ∈ V to two other vertices v2 ∈ V , v3 ∈ V is

implied by the existence of the two incidence triples (v1, e, v2) and (v1, e, v3). We contrast

our property graph definition with formalisms found in other literature [5, 8] that specify a

more traditional incidence function (i.e., one that maps edges E to pairs of vertices (V ×V)).

One of the design philosophies underlying Graphix (and AsterixDB) is to “accept the data

as is”. A few ill-formed edges or vertices should not impede the processing of graph data,

hence we assume a hypergraph structure for our graph data in the remainder of this thesis.

We contrast the property graph model against the older RDF (resource description frame-

work) model, the latter of which was designed to provide standards for processing “data

about data”. At the heart of the RDF model lies a collection of (s, p, o) triples, where s

refers to a subject, p refers to a predicate (i.e., an edge label), and o refers to an object.

Given XI , a set of Information Resource Identifiers (IRIs), XB, a set of “blank” nodes (used

to help declare the existence of a predicate), and XL, a set of literals, an (s, p, o) triple is

described below:

(s, p, o) ∈ (XI ∪XB)×XI × (XI ∪XB ∪XL) (4.1)

We can loosely visualize a collection of (s, p, o) triples as a graph where each vertex belongs

to the set (XI ∪XB ∪XL) and each edge belongs to the set XI . Note that our vertex and

edge sets are not disjoint: edges can be used to described other edges. This general notion of

what “resources” are in IRIs is what makes such a feature possible, allowing users to describe

a wide variety of graph structures. The RDF∗ model further generalizes what resources are

by allowing (s, p, o) triples themselves to be the subject of another triple (i.e., enabling

triples about triples).

18

In spite of the RDF model’s age, the property graph model has seen significantly more

adoption by graph database vendors [67]. In an effort to store existing RDF data into

property graph databases, the problem of defining efficient transformations between the

property graph model and the RDF model (as well as the richer RDF∗ model) has been

studied in [9, 1]. The decision to use property graphs over RDF triples in Graphix was

influenced not only by existing industry solutions, but also with the similar modeling concepts

found in both documents and property graphs. As we demonstrate in this chapter and the

next (Chapter 5), we can leverage this similarity for a synergistic user model.

4.2 CREATE GRAPH Statement

To start, let us consider a document in AsterixDB. For our discussion, a document can either

a record from an AsterixDB dataset or an object-valued result of an AsterixDB query. We

formally define a document as “a set of key-value pairs”. A document in AsterixDB shares

the exact same definition for a vertex and edge in the previous section. Thus, we draw

attention to central point in this chapter and the next:

A Graphix vertex is an AsterixDB document (either materialized or non-materialized).

A Graphix edge is an AsterixDB document (either materialized or non-materialized).

An instance of a vertex is assigned a single label and contains two sets of fields: (a) a set of

fields that are denoted (but not enforced) as its primary key, and (b) an optional set of fields

that correspond to the properties of the vertex. An instance of an edge in Graphix is assigned

a single label and is always directed, which allows us to define an edge in three distinct sets of

fields: (i) a set of fields that form a foreign key reference to a source vertex, known as the edge

source key, (ii) a set of fields that form a foreign key reference to a destination vertex, known

as the edge destination key, and (iii) an optional set of fields that correspond to the properties

19

CREATE GRAPH QualifiedName

IF NOT EXISTS

AS GraphConstructor

(a) Grammar for the CREATE GRAPH statement.

WITH WithTerm

,

(b) Grammar for the WITH clause.

GRAPH Identifier AS GraphConstructor

Variable AS Expr

(c) Grammar for the WithTerm production.

VertexConstructor , VertexConstructor

EdgeConstructor

(d) Grammar for the GraphConstructor production.

Figure 4.2: Starting productions (as railroad diagrams) for defining a graph in Graphix.

of an edge. To realize the incidence triple set I, both the edge source key and edge destination

key are later (graphs are non-materialized in Graphix) used in queries to construct a two-way

JOIN between three document collections: 1) a source vertex document collection DSOURCE,

2) an edge document collection DEDGE, and 3) a destination vertex document collection DDEST

such that: DSOURCE ▷◁1 DEDGE ▷◁2 DDEST. The ▷◁1 represents an INNER JOIN using the primary

key of DSOURCE and the source key of DEDGE, and the ▷◁2 represents an INNER JOIN using the

primary key of DDEST and the destination key of DEDGE. We describe more on how queries on

Graphix graphs are realized in Chapter 6.

Figure 4.2 illustrates the starting productions for defining a graph in Graphix. A user can

create a managed graph with the CREATE GRAPH statement (Figure 4.2a), allowing the graph

to be stored in Graphix and used in future requests. Managed graphs will also prevent the

deletion of datasets, views, and functions that are used in the graph itself. Graphix users

can also define temporary graphs in the context of a single query with the WITH clause,

which is particularly useful when initially building and debugging graph mappings. In both

the CREATE GRAPH production and WITH clause, a graph G = (V, E, I, λ) is specified using

20

VertexDefinition VertexConstructorDetail AS QualifiedName

Selection

(QualifiedName

Selection

)

(a) Graphix grammar for the VertexConstructor production.

PRIMARY KEY (NestedField

,

)

(b) Graphix grammar for the VertexConstructorDetail production.

VERTEX (: LabelName)

(c) Graphix grammar for the VertexDefinition production.

Figure 4.3: Grammar used to define a vertex (VertexConstructor) in Graphix.

the GraphConstructor production in Figure 4.2d. Modeling each part of G as piecewise

functions, each VertexConstructor and EdgeConstructor production specifies some portion

of our graph.

A single VertexConstructor determines two items: 1) V b ⊂ V , a subset of our graph vertices

that belong to the entire graph, and 2) λVC(b), a labeling sub-function that belongs to the

greater labeling function λ. The VertexConstructor production given in Figure 4.3 starts by

defining a label LabelName b that will group / classify this working set of vertices V b ⊂ V .

We define λVC(b) : V b → b as a constant function that maps all vertices v ∈ V b to our label

b. As we’ll see later in Chapter 5, the ASCII-art syntax of Figure 4.3c mirrors how vertex

patterns are specified in queries. After defining our label, users must then specify i) the

primary key associated with all vertices in V b, and ii) a query (or dataset) that returns a

collection of documents where each document is a vertex v ∈ V b. We expect that every

vertex has the declared primary key, though Graphix does not enforce this key constraint.

21

EdgeDefinition EdgeConstructorDetail AS Selection

(Selection)

(a) Graphix grammar for the EdgeConstructor production.

SOURCE KEY (NestedField

,

) DESTINATION KEY (NestedField

,

)

(b) Graphix grammar for the EdgeConstructorDetail production.

EDGE VertexDefinition -[: LabelName]- >

< -[: LabelName]-

VertexDefinition

(c) Graphix grammar for the EdgeDefinition production.

Figure 4.4: Grammar used to define an edge (EdgeConstructor) in Graphix.

At this point of our discussion, we would to draw attention to how other view-based graph

mapping systems define vertex properties. In systems like Oracle Graph [54], Cytosm [63],

and DuckPGQ [66] properties are explicitly enumerated. In Graphix, the query (or dataset)

used to define our subset of vertices V b implicitly defines the vertex properties of v ∈ V b.

A Graphix graph schema does not pre-declare the properties of its vertices (and edges),

mirroring the same schema flexibility offered by AsterixDB.

A single EdgeConstructor determines three items: 1) Eb ⊂ E, a subset of our graph edges

that belong to the entire graph, 2) λEC(b), a labeling sub-function that belongs to the greater

labeling function λ, and 3) IEC(b) ⊂ I, a subset of incidence triples. The EdgeConstructor

production in Figure 4.4 starts by defining the incidence triple set IEC(b) using the same

ASCII-art syntax used to express edge patterns in queries. More specifically, we use the

label bleft from the leading VertexDefinition production and the label bright from the trailing

VertexDefinition production. IEC(b) is defined as the two-way JOIN between the collection of

left vertices Vleft, the collection of edges Eb, and the collection of right vertices Vright, where

22

Vleft and Vright are given below:

Vleft = {v | λ(v) = bleft ∧ v ∈ V } (4.2)

Vright = {v | λ(v) = bright ∧ v ∈ V } (4.3)

Similar to the VertexConstructor production, the LabelName in the EdgeDefinition produc-

tion defines the label b that will group / classify this working set of edges Eb ⊆ E. We define

λEC(b) : Eb → b as a constant function that maps all edges e ∈ Eb to our label b. To describe

how the aforementioned JOIN should be realized, users then specify three more items: i) the

source key associated with all edges in Eb, ii) the destination key associated with all edges

in Eb, and iii) a query that returns a collection of documents where each document is an

edge e ∈ Eb. Again, we expect that every edge contains its declared source and destina-

tion keys, though Graphix (and AsterixDB) do not enforce any foreign key constraints. In

the next section, we detail examples of both the VertexConstructor and EdgeConstructor

productions.

4.2.1 Social Network Example

Listing 4.1 describes the mapping of the Users and Messages datasets from Section 3.2 (an

example of which is given in the replicated Figure 3.1 below for ease of reference) to the

property graph SocialNetworkGraph, which is composed of two types of vertices and three

types of edges:

1. Starting on Line 2, we define the collection of all vertices labeled User to be the dataset

Users. The primary key of the User vertex collection is the primary key of the Users

dataset: id. The properties of an individual User vertex are all the fields of the mapped

Users document.

23

� �
1 CREATE GRAPH SocialNetworkGraph AS
2 VERTEX (: User)
3 PRIMARY KEY (id)
4 AS Users ,
5 VERTEX (: Message)
6 PRIMARY KEY (id)
7 AS (FROM
8 Messages m
9 WHERE
10 NOT m.is draft
11 SELECT
12 m.∗),
13 EDGE (: User) −[: KNOWS]−>(:User)
14 SOURCE KEY (source id)
15 DESTINATION KEY (dest id)
16 AS (FROM
17 Users u,
18 u.knows k
19 SELECT
20 u.id AS source id ,
21 k AS dest id),
22 EDGE (: User) −[: WROTE]−>(:Message)
23 SOURCE KEY (user id)
24 DESTINATION KEY (message id)
25 AS (FROM
26 Messages m
27 SELECT
28 m.user id AS user id ,
29 m.id AS message id ,
30 m.posted on AS posted on),
31 EDGE (: Message) −[: REPLY OF]−>(:Message)
32 SOURCE KEY (source id)
33 DESTINATION KEY (dest id)
34 AS (FROM
35 Messages m
36 SELECT
37 m.id AS source id ,
38 m.reply id AS dest id ,
39 m.posted on AS posted on); � �

Listing 4.1: CREATE GRAPH DDL to create a property graph view.

24

Duplicate of Figure 3.1. Example documents of two Users, two Messages, and their relation-
ships in the SocialNetworkGraph.

2. Starting on Line 5, we define the collection of all vertices labeled Message to be the result

of the query specified after AS: all Message documents that are not drafts. Again, the

primary key and properties are taken directly from the underlying dataset: Message.

This vertex mapping demonstrates a unique feature of Graphix when compared to

other view-based graph systems: the ability to define any query as a vertex (or edge),

not just existing stored datasets. To realize more complex vertex mappings, SQL++

clauses like UNION ALL, JOIN, and GROUP BY could be used to construct the appropriate

query.

3. Starting on Line 13, we define the collection of all KNOWS edges to be a query that uses

the Users dataset to return two fields: source id and dest id. source id is defined to

be the edge’s source key, and dest id is defined to be its destination key. No additional

25

properties (outside of the key fields) are defined for KNOWS edges. This edge mapping

demonstrates a natural approach to handle relationships that are captured by arrays:

we utilize the existing query language (SQL++) that is purposed to handle nested data

to return a normalized collection of (source key, destination key) pairs.

4. Starting on Line 22, we define the collection of all WROTE edges to be a query that uses

the Messages dataset to return three fields: user id, message id, and posted on. The

source key is defined to be user id, the destination key is defined to be message id,

and posted on is defined to be an additional property of the WROTE edge.

5. Starting on Line 31, we define the collection of all REPLY OF edges to be a query that

uses the Messages dataset to return three fields: source id, dest id, and posted on.

The source and destination keys are defined respectively as source id, dest id, and

posted on is again defined as an additional property.

4.2.2 Multiple Dataset Example

Subsection 4.2.1 covers the most expected graph mapping examples, but the flexibility of

CREATE GRAPH enables graphs to be defined over a wide variety of underlying, connected data.

To start, we will cover multi-dataset mappings.

The CREATE GRAPH statement from Subsection 4.2.1 was built using two datasets that are

managed internally by AsterixDB.We will now consider the case where more than one dataset

maps to a single labeled vertex or edge collection. Suppose that our social network graph

must include users from another organization (dubbed OrgB here). New message documents

will populate the existing Messages dataset referencing these OrgB users. For this example,

these new users exist in another AsterixDB dataverse (the OrgB dataverse) separate from our

original datasets. Our graph mapping will now consider two new datasets: (1) OrgB.Users

26

� �
1 CREATE DATAVERSE OrgB;

3 CREATE TYPE OrgB.UsersType AS {
4 userId : bigint ,
5 firstName : string ,
6 lastName : string
7 };
8 CREATE DATASET OrgB.Users (OrgB.UsersType) PRIMARY KEY userId ;

10 CREATE TYPE OrgB.KnowsType AS {
11 startId : bigint ,
12 endId : bigint ,
13 creationDate : string
14 };
15 CREATE DATASET OrgB.Knows (OrgB.KnowsType)
16 PRIMARY KEY startId , endId; � �

Listing 4.2: Set of DDLs to define two additional datasets: OrgB.Users and OrgB.Knows.

� �
1 VERTEX (: User)
2 PRIMARY KEY (id)
3 AS (FROM
4 Users u
5 SELECT
6 u.id AS id ,
7 u.name AS name ,
8 u.∗
9 UNION ALL
10 FROM
11 OrgB.Users bu
12 LET
13 name = { "first": bu.firstName ,
14 "last" : bu.lastName }
15 SELECT
16 bu.userId AS id ,
17 name AS name) � �
Listing 4.3: Alternative (:User) vertex definition which includes the newly defined dataset
OrgB.Users†.

27

� �
1 EDGE (: User) −[: KNOWS]−>(:User)
2 SOURCE KEY (source id)
3 DESTINATION KEY (dest id)
4 AS (FROM
5 Users u,
6 u.knows k
7 SELECT
8 u.id AS source id ,
9 k AS dest id
10 UNION ALL
11 FROM
12 OrgB.Knows bk
13 SELECT
14 bk.startId AS source id ,
15 bk.endId AS dest id ,
16 bk.creationDate AS creation date) � �
Listing 4.4: Alternative KNOWS edge definition which includes the newly defined dataset
OrgB.Knows.

and (2) an M:N relationship dataset between different users in OrgB.Users: OrgB.Knows.

Listing 4.2 describes a set of AsterixDB DDLs to define OrgB.Users and OrgB.Knows.

We will start by redefining our (:User) vertex, which must now include the union of the

Users and OrgB.Users dataset. We can easily accomplish this with a UNION ALL query in

our vertex definition. The (:User) vertex definition is given in Listing 4.3. In contrast to

SQL, SQL++ relaxes the restriction that both queries involved in the UNION ALL must be

union-compatible (greatly simplifying the Users ↔ OrgB.Users alignment step). To align

the id field from Users, we rename the userId field from the OrgB.Users dataset to id. To

align the composite name field from Users, we bind the variable name to an object composed

of the firstName and lastName fields from the OrgB.Users dataset. All remaining properties

inherited from the Users dataset (e.g., the birthdate and the languages fields) are captured

using in the “u.∗” term of the first SELECT clause.

†The first SELECT clause could be replaced with “SELECT VALUE u”, but is expressed as such for clarity.

28

To define our KNOWS edge to include the relationships captured in the OrgB.Knows dataset,

we will express another UNION ALL query in Listing 4.4. We leverage SQL++ to define a

mapping that handles M:N relationships from both nested data (the Users dataset and the

knows array) and normalized data (the new OrgB.Knows dataset). The union-compatible

relaxation from SQL++ is leveraged again to add the creationDate field of the OrgB.Knows

dataset as a property to the KNOWS edge (a property that is not found in edges mapped from

the knows array of a Users document).

4.2.3 Derived Property Example

The CREATE GRAPH statement from Subsection 4.2.1 was built using fields directly defined

with the documents of the underlying datasets (Users and Messages). We will now illustrate

how computed properties can be defined in Graphix. Suppose we want to attach a weight

property ω to all KNOWS edges such that edges between users who have written many messages

weigh more than edges between users who are less active posters. As we’ll see in Section 5.4,

we can later leverage attributes like ω to express queries like cheapest path. To compute ω,

we’ll use the SQL++ query in Listing 4.5.

The logical data independence provided to Graphix users for their graphs means that we

have several options at their disposal to realize adding ω as a new property. We will look

towards the least invasive option, which involves redefining the KNOWS edge definition from

our CREATE GRAPH statement (although other options, e.g., creating a new dataset to hold

the result of Listing 4.5, might be preferred if computing ω on-the-fly is too expensive). The

new KNOWS edge definition is given in Listing 4.6. We highlight that no updates were made

to the underlying data by changing the CREATE GRAPH definition.

We remark that Graphix users can also use graph queries in the bodies of vertex and edge

definitions. For an example of such a pattern, see Subsection 5.4.5. If we further generalize

29

� �
1 FROM
2 Users u1 ,
3 u1.knows k,
4 Messages m1 ,
5 Messages m2
6 WHERE
7 u1.id = m1.user id AND
8 k = m2.user id
9 GROUP BY
10 u1.id AS source id ,
11 k AS dest id
12 LET
13 omega = COUNT (DISTINCT m1.id) +
14 COUNT (DISTINCT m2.id)
15 SELECT
16 source id AS source id ,
17 dest id AS dest id ,
18 omega AS omega; � �
Listing 4.5: SQL++ query to compute the weight attribute ω between two users that know
each other.

� �
1 EDGE (: User) −[: KNOWS]−>(:User)
2 SOURCE KEY (source id)
3 DESTINATION KEY (dest id)
4 AS (FROM
5 Users u1 ,
6 u1.knows k,
7 Messages m1 ,
8 Messages m2
9 WHERE
10 u1.id = m1.user id AND
11 k = m2.user id
12 GROUP BY
13 u1.id AS source id ,
14 k AS dest id
15 LET
16 omega = COUNT (DISTINCT m1.id) +
17 COUNT (DISTINCT m2.id)
18 SELECT
19 source id AS source id ,
20 dest id AS dest id ,
21 omega AS omega) � �
Listing 4.6: Alternative KNOWS edge definition which includes the ω weight attribute from List-
ing 4.5.

30

the concept of expressing computed attributes, we remark that Graphix’s graph model can

also be used to support hypernode graph structures [40] (where the vertices and edges of

one graph could be used to define the vertex sets of another graph). The Graphix graph

model is highly flexible, leveraging the advantages of 1) the underlying document model’s

self-describing nature to handle complex graph structures while also being amenable to

schema evolution, and 2) the underlying query language SQL++, which is able to handle

schema-heterogeneity across all documents used to define vertices and edges.

31

Chapter 5

Query Model

A query model describes the constructs available for use when expressing queries. In this

chapter, we will first motivate our decision to extend SQL++ to specify graph queries (as

opposed to using an existing standard or graph language). We will then introduce two

essential constructs for building graph queries: 1) pattern matching, and 2) navigation. By

integrating the two aforementioned concepts with AsterixDB’s current query model, users

can express a rich set of graph queries that leverage modern SQL constructs (e.g., window

functions, grouping sets) and SQL++ constructs (e.g., the GROUP AS clause) together with

navigational pattern matching.

5.1 SQL++ Query Extension

When designing the query language for Graphix, special care and attention was given towards

deciding how users should be able to specify graph queries. On one end of the solution

spectrum, we could have simply used an existing graph query language. On the other end of

the solution spectrum, we could have used the existing recursive features of the SQL standard

32

to extend SQL++ for use in Graphix. Our desiderata for issuing graph queries on existing

AsterixDB data searches for a solution somewhere in the middle: a) brevity (balancing

“Turing-complete” with ease-of-use), b) maintenance (avoiding the accidental complexity

users would incur by working with two different query languages), and c) synergy (being

able to intuitively integrate existing SQL / SQL++ language features with graph query

constructs).

5.1.1 SQL-1999 Recursive Queries

Recursion in SQL was introduced into the 1999 standard, and, while Turing complete, has

resulted in less-than-user-friendly queries to solve basic problems like reachability. Recursion

in SQL is expressed using a CTE (common table expression) that contains a reference to the

CTE itself. The query body of a recursive CTE is composed of two parts: an anchor member

and a recursive member. The anchor member of a recursive CTE is logically executed once,

while the recursive member is executed until a least fixed-point is reached (i.e., there are no

other tuples left to process). To guarantee the existence (and uniqueness) of this least fixed-

point, the recursive member of a recursive CTE must be monotonic. Recursive-aggregate-

SQL (RaSQL) [28] and recent research from Hirn and Grust [31] propose modifications that

slightly relax this monotonicity constraint for more practical semantics, however, such work

still goes against our desired “brevity” for common graph queries. As we’ll see in the next

section, if we sacrifice Turing-completeness and target graph constructs (i.e., vertices, edges,

and paths), then we can express much more user-friendly queries.

We will now walk through an example. Suppose we want to see if three users are transitively

connected to each other. This query can be expressed in recursive SQL as follows: Beginning

on Line 2 in Listing 5.1, we start by anchoring the navigation at $id1 and 1) grabbing the

IDs for the next user to visit (luk), 2) initializing an array for cycle detection (vu) and 3) and

33

� �
1 WITH RECURSIVE Visited AS
2 (SELECT
3 u1.knows AS luk ,
4 ARRAY [u1.id] AS vu ,
5 ARRAY [1 ,0 ,0] AS v
6 FROM
7 Users u1
8 WHERE
9 u1.id = $id1
10 UNION ALL
11 SELECT
12 u2.knows AS luk ,
13 rv.vu | | u2.id AS vu ,
14 CASE
15 WHEN u2.id = $id2
16 THEN ARRAY[rv.v [0],1, rv.v [2]]
17 WHEN u2.id = $id3
18 THEN ARRAY[rv.v [0], rv.v [1] ,1]
19 ELSE rv.v
20 END AS v
21 FROM
22 Visited rv ,
23 Users u2
24 WHERE
25 u2.id = ANY(rv.luk) AND
26 NOT u2.id = ANY(rv.vu))
27 SELECT
28 COUNT (∗) > 0 AS connected
29 FROM
30 Visited rv
31 WHERE
32 (SELECT
33 SUM(v) = 3
34 FROM
35 UNNEST (rv.v) v); � �
Listing 5.1: Recursive SQL query (in PostgreSQL dialect) to find if three users are transitively
connected to each other.

34

an output array (v). Subsequent iterations will execute the recursive member on Line 11,

which will “traverse” to another user u2 using the user IDs luk from the previous iteration.

To avoid traversing over cycles, a check is specified to determine if the ID of the current

user is in the visited array vu. If the current user has one of the IDs we are interested in,

the output array is updated by performing a bitwise OR operation with the current output

array. The results that the recursive member yields to the next iteration includes the next

set of user ids, an updated visited array to include u2, and the status of the output array.

If there any results from the recursive CTE such that the output array has a length of 3,

then we know that all three users of interest have been visited at some point. Otherwise, we

conclude that there exists no path that connects $id1, $id2, and $id3.

To get around the short-term memory restriction inherent to recursive CTEs, Listing 5.1

accumulates state from previous iterations in the vu and v arrays. Ultimately, we are only

interested in the existence of a single row (one where v contains all “1” values). The outer

WHERE clause and outer COUNT(∗) > 0 aggregate predicate in the SELECT clause tells us that

we can stop as soon as find such a row, but recognizing such a pattern is non-trivial. A query

optimizer would have to, at a minimum, 1) recognize that v is a bit vector, 2) recognize that

SUM(v) = 3 is concerned with a specific bit vector, and 3) recognize that the recursive member

is performing a bitwise OR. Recursive SQL, while very powerful and Turing complete, requires

SQL users to define hard-to-optimize constructs for graph queries (e.g., cycle prevention, edge

traversal) themselves.

5.1.2 Cypher Query Language

Cypher is arguably the current leader for querying property graphs [25], though there is

a growing effort to standardize [33, 24] and bridge the gap between other similar query

languages [73, 7] to build a standard graph query language (known as GQL). A defining

35

� �
1 MATCH
2 (u1:User {id: $id1 }),
3 (u2:User {id: $id2 }),
4 (u3:User {id: $id3 }),
5 (u1)−[: KNOWS ∗] −(u2),
6 (u2)−[: KNOWS ∗] −(u3),
7 (u3)−[: KNOWS ∗] −(u1)
8 RETURN
9 COUNT (∗) > 0 AS connected ; � �
Listing 5.2: Cypher query to find if three users are transitively connected to each other.

characteristic of all these languages are their MATCH clause, allowing users to specify navi-

gational graph patterns via a user-friendly ASCII-art syntax. Recursion in a MATCH clause

is enabled through the use of edge-labeled regular expressions between vertices in graph

patterns. While not as computationally powerful as the Pregel model — or the recursive

SQL-99 standard [32] — graph computations such as reachability and shortest path can be

written in a much more succinct and natural manner in Cypher.

We contrast the query in the previous section (Listing 5.1) with the much easier-to-read

equivalent Cypher query in Listing 5.2: We highlight two main differences between these

queries:

1. In the recursive SQL query, a user has to explicitly handle (and prevent) cycles. In

Cypher, cycles are implicitly pruned by forbidding traversal over duplicate edges.

2. In the recursive SQL query, a user has to specify how the navigation is performed.

Listing 5.1 starts the navigation at $id1. In the Cypher query, a user does not specify a

starting point, allowing the query optimizer to (more easily) choose a more appropriate

starting point (say, $id2 or $id3) if $id1 is a super-node with a lot of matching records

in a user’s knows array.

The MATCH clause from Cypher clearly appeals to both users and query engine developers

for the common task of reachability, but, as discussed in our desiderata, adopting Cypher

36

as a second language for Graphix would require users to write (and maintain) queries in

two different query languages. Furthermore, SQL is the de facto standard query language.

Extending SQL++ (which extends SQL) allows the query language of Graphix to build on the

decades of work that has gone into SQL. As an example, consider the SQL 2003 standard,

which includes a collection of rich OLAP operations (window functions, window clauses,

grouping sets, etc. . .). We believe that navigational graph pattern matching can and should

compliment existing (and future) operations like these.

5.1.3 SQL-2023 Property Graph Queries

The ISO/IEC JTC1 SC32 working group for database languages (WG3, the same group

that maintains and enhances SQL) have developed a graph pattern matching sub-language

(GPML) for use in not only GQL, but also in the recently released SQL/PGQ part of the

latest SQL-2023 standard [21]. SQL/PGQ enables GPML queries over relational data via

a property graph view, where the results of evaluating a GPML are logically available as a

table to further manipulate. Revisiting our reachability example, suppose that we built a

property graph named UserKnowsGraph using the DDL in Listing 5.3.∗ Listing 5.4 illustrates

a similar Cypher-like query but rooted in SQL. The result of a GRAPH TABLE is a table whose

structure is dictated by the trailing COLUMNS term.

GRAPH TABLE explicitly requires SQL/PGQ users to condense the result of their query into a

table before being used by the remainder of the query. Only then can we apply concepts

like JOIN, GROUP BY, OVER, etc. . . Fundamentally, a SQL query revolves around structured

tables, and SQL/PGQ draws a clear “line in the sand” between the relational world and

the graph world. Users cannot apply constructs like GROUP BY and JOIN to graph elements

without first representing the result of the GPML query as a table. To move beyond these

∗We assume the existence of a Knows table to model the “user knows user” relationship. DuckPGQ requires
that each vertex is defined with a single table and that each edge is defined with a single table.

37

� �
1 CREATE PROPERTY GRAPH UserKnowsGraph
2 VERTEX TABLES (
3 Users
4 PROPERTIES (
5 id ,
6 name ,
7 join date ,
8 languages
9)
10 LABEL User
11)
12 EDGE TABLES (
13 Knows
14 SOURCE KEY (source id) REFERENCES Users (id)
15 DESTINATION KEY (dest id) REFERENCES Users (id)
16 PROPERTIES (source id , dest id)
17 LABEL KNOWS
18 SOURCE User
19 DESTINATION User
20); � �
Listing 5.3: SQL/PGQ graph creation DDL in DuckPGQ dialect [66]. This graph is used in
the Listing 5.4 query.

� �
1 SELECT
2 COUNT (∗) > 0 AS connected
3 FROM
4 GRAPH TABLE (
5 UserKnowsGraph ,
6 MATCH
7 (u1:User WHERE u1.id = $id1),
8 (u2:User WHERE u2.id = $id2),
9 (u3:User WHERE u3.id = $id3),
10 (u1)−[: KNOWS] −∗(u2),
11 (u2)−[: KNOWS] −∗(u3),
12 (u3)−[: KNOWS] −∗(u1)
13 COLUMNS (
14 u1.id ,
15 u2.id ,
16 u3.id
17)
18) AS v � �
Listing 5.4: SQL/PGQ query to find if three users are transitively connected to each other
using the graph defined in Listing 5.3.

38

FROM FromTerm

,

(a) SQL++ grammar for the FromClause production.

GRAPH QualifiedName

MATCH

MatchExpr

MatchStep

NamedExpr

UnnestStep

JoinStep

(b) SQL++ grammar for the FromTerm production.

Figure 5.1: Grammar extension used to define specify navigational graph pattern matching
in a SQL++ FROM clause.

limitations, we will have to consider a different user model to map from, as we’ll see in the

following section.

5.1.4 gSQL++ FROM Clause Extension

We now move to gSQL++, a SQL++ extension that enables the integration of graph pattern

matching (borrowed from both Cypher and SQL/PGQ) with existing SQL and SQL++ con-

structs. In contrast to SQL/PGQ, gSQL++ maps from a document model to a graph model

by extending SQL++. To start, we recognize that Cypher’s MATCH clause is more-or-less an

analog to the FROM clause in SQL: both the MATCH clause and FROM clause specify iteration

variable bindings that will be used in other clauses downstream. In SQL++, the FROM clause is

composed of one or more FromTerm productions. The most fundamental change that gSQL++

makes to SQL++ is therefore in the FromTerm. Our intent with Graphix was to make gSQL++

a strict superset of SQL++. As seen in Figure 5.1b, all SQL++ queries are valid gSQL++

queries. Users follow the bottom path to express their standard SQL++ FromTerm. To express

a gSQL++ FromTerm, users follow the top path (the grammar surrounded by the red dashed

lines) and specify:

39

� �
1 FROM
2 GRAPH UserKnowsGraph
3 (u1:User WHERE u1.id = $id1),
4 (u2:User WHERE u2.id = $id2),
5 (u3:User WHERE u3.id = $id3),
6 (u1)−[: KNOWS ∗] −(u2),
7 (u2)−[: KNOWS ∗] −(u3),
8 (u3)−[: KNOWS ∗] −(u1)
9 SELECT
10 COUNT (∗) > 0 AS connected ; � �

Listing 5.5: gSQL++ query to find if three users are transitively connected to each other.

1. the GRAPH keyword;

2. the name of the graph (i.e., QualifiedName); and

3. the graph query patterns (i.e., MatchExpr and zero or more MatchStep productions).

For completeness, we give the gSQL++ query to find if three users are transitively connected

to each other in Listing 5.5.† Note that aggregation (the COUNT(∗)) is logically performed

on the graph pattern itself and not a table of the query graph pattern. At a high level,

the MatchExpr and MatchStep productions specify variable bindings to graph constructs (i.e.,

vertices, edges, and paths). Following our design decisions from our graph model (Chapter 4),

we highlight a similar point: every bound variable from a FromTerm (both gSQL++ and

SQL++) represents a document in AsterixDB’s data model. This simple mapping is what

makes gSQL++ so powerful. For both paths of Figure 5.1b, a gSQL++ user is able to operate

on any bound variable as if it were a SQL++ variable binding. Consequently, all clauses and

constructs from SQL++ are also available to use on vertices, edges, and paths. In contrast to

GRAPH TABLE from SQL/PGQ, users are able to directly perform operations from the parent

query model on graph constructs for truly synergistic document and graph analytics.

†Listing 5.5 shows the use of undirected paths, which is not currently implemented at the time of writing.

40

5.2 Pattern Matching Queries

Having discussed the vehicle for where to include our graph query constructs, we will now

delve into the foundations of modern graph query languages. We will first review the prob-

lem of pattern matching, which is central to many modern languages like SPARQL and

Cypher and covers many common graph computations (e.g., neighborhood queries, diamond

pattern finding, triangle counting, etc. . . as surveyed in [59]). We will conclude by describing

pattern matching in gSQL++, emphasizing the use of existing SQL clauses to cover common

extensions to pattern matching queries found in other graph query languages.

5.2.1 Graph Pattern Matching

To start, we are given a) a graph instance GD = (ID, VD, ED) where ID, VD, and ED are

incidence triples, vertices, and edges from the graph instance respectively, and b) a query

pattern GQ = (IQ, VQ, EQ) where IQ, VQ, and EQ are incidence triples, vertices, and edges

from the query pattern respectively. The problem of pattern matching involves finding M , a

set of morphisms (i.e., graph mappings) from the query pattern to a subgraph of the graph

instance:

M = {(mv, me) | mv : VQ → VD ∧ me : EQ → ED} (5.1)

The exact definition of mv and me vary from system to system. We specify four classes of

morphisms used for pattern matching below:

Homomorphism A morphism m = (mv, me) such that all incident vertex-edge-vertex

query pattern triples imply the same incidence in the graph instance: (vi, e, vj) ∈

IQ =⇒ (mv(vi), me(e), mv(vj)) ∈ ID where vi ∈ VQ, e ∈ EQ, and vj ∈ VQ.

Informally, a homomorphism defines a mapping from the query pattern to a subgraph

of the graph instance that preserves edge adjacency.

41

(a) An example (hyper)graph instance GD that
possesses four vertices and three edges.

(b) An example graph query pattern GQ that
possesses three vertices and two edges.

Figure 5.2: An example graph instance GD and query pattern GQ.

Vertex Isomorphism A constrained homomorphism m = (mv, me) such that mv is in-

jective. Informally, a vertex isomorphism defines a homomorphism where one graph

instance vertex vD ∈ VD is mapped to exactly one query pattern vertex vQ ∈ VQ.

Edge Isomorphism A constrained homomorphismm = (mv, me) such thatme is injective.

Similar to a vertex isomorphism, an edge isomorphism defines a homomorphism where

one graph instance edge eD ∈ ED is mapped to exactly one query pattern edge eQ ∈ EQ.

In a non-hypergraph setting, edge isomorphism implies vertex isomorphism, however,

hyperedges (edges in a hypergraph) break this implication.

(Total) Isomorphism A constrained homomorphism m = (mv, me) such that both mv

and me are injective. Informally, a total isomorphism is the most restrictive, defining a

homomorphism where exactly one graph instance vertex vD ∈ VD is mapped to exactly

one query pattern vertex vQ ∈ VQ and one graph instance edge eD ∈ ED is mapped to

exactly one query pattern edge eQ ∈ EQ.

To illustrate the differences between each morphism class, we assume the graph instance GD

in Figure 5.2a and the query pattern GQ in Figure 5.2b. Table 5.1 describes all possible

homomorphisms from GQ to subgraphs of GD, where each row describes the subgraph being

mapped to. Morphisms m1 to m8 are all totally isomorphic, as no graph instance vertex is

mapped from more than one query pattern vertex and no graph instance edge is mapped

from more than one query pattern edge. Morphisms m9 and m10 describe morphisms that

42

mi x1 x2 x3 y1 y2 Homomorphic?
Vertex

Isomorphic?
Edge

Isomorphic?
Totally

Isomorphic?

m1 v1 v2 v3 e1 e3 ✓ ✓ ✓ ✓

m2 v1 v2 v4 e1 e3 ✓ ✓ ✓ ✓

m3 v1 v2 v3 e2 e3 ✓ ✓ ✓ ✓

m4 v1 v2 v4 e2 e3 ✓ ✓ ✓ ✓

m5 v3 v2 v1 e3 e1 ✓ ✓ ✓ ✓

m6 v3 v2 v1 e3 e2 ✓ ✓ ✓ ✓

m7 v4 v2 v1 e3 e1 ✓ ✓ ✓ ✓

m8 v4 v2 v1 e3 e2 ✓ ✓ ✓ ✓

m9 v3 v2 v4 e3 e3 ✓ ✗ ✓ ✗

m10 v4 v2 v3 e3 e3 ✓ ✗ ✓ ✗

m11 v1 v2 v1 e1 e2 ✓ ✓ ✗ ✗

m12 v1 v2 v1 e2 e1 ✓ ✓ ✗ ✗

m13 v1 v2 v1 e1 e1 ✓ ✗ ✗ ✗

m14 v1 v2 v1 e2 e2 ✓ ✗ ✗ ✗

m15 v3 v2 v3 e3 e3 ✓ ✗ ✗ ✗

m16 v4 v2 v4 e3 e3 ✓ ✗ ✗ ✗

Table 5.1: A table describing different morphisms from the query pattern in Figure 5.2b to
subgraphs of the graph instance in Figure 5.2a.

are edge isomorphic but not vertex isomorphic (as shown by e3 mapped from both y1 and

y2). Morphisms m11 and m12 describe morphisms that are vertex isomorphic but not edge

isomorphic (as shown by v1 mapped from bound x1 and x3). The remaining morphisms (m13

to m16) are only homomorphic, as shown by y1 and y2 mapped to the same graph instance

edge and x1 and x3 mapped to the same graph instance vertex.

Languages like SPARQL, Oracle PGQL, and the GPML of GQL evaluateGQ using homomor-

phism semantics, while Cypher evaluates GQ using edge isomorphism semantics (i.e., total

isomorphism in Neo4j’s non-hypergraph setting). To express homomorphisms in Cypher,

users can get around the more restrictive semantics by dividing GQ into sub-patterns GQ1 ,

GQ2 , . . . GQN
for the underlying database to solve. By default, Graphix evaluates GQ using

total isomorphism semantics, though these semantics are explicitly tunable with the com-

43

piler flag graphix.semantics.pattern to generalize pattern matching to any of the other

morphism classes.

We now move toward labeled graphs to finally align our pattern matching problem with

our graph model in Chapter 4. We extend the pattern matching problem to qualify the

satisfiable morphisms based on a labeling function λ. Specifically, we define a) a graph

instance GD = (VD, ED, ID, λD) where λD assigns graph instance vertices and edges

a single label, and b) a query pattern GQ = (VQ, EQ, IQ, λQ) where λQ assigns query

pattern vertices and edges a set of labels. The problem of labeled graph pattern matching

involves finding a subset of all morphisms Mλ ⊂ M from the query pattern to a subgraph

of the graph instance that satisfy the labeling constraints. We describe this extension of the

pattern matching problem in Equation 5.2, which many users of graph databases have grown

to expect support for in modern graph query languages:

Mλ =

(mv, me) s.t.

λD(mv(vQ)) ∈ λQ(vQ) ∧ λD(me(eQ)) ∈ λQ(eQ) ∧

vQ ∈ VQ ∧ eQ ∈ EQ ∧

(mv, me) ∈ M

 (5.2)

where M is defined by one of the aforementioned morphism classes (i.e., homomorphism,

edge isomorphism, vertex isomorphism, and total isomorphism).

5.2.2 gSQL++ for Pattern Matching

Continuing from the FromTerm production in Section 5.1, we will now describe the MatchExpr

production and the optional MatchStep production (with MatchStep fully described in Sec-

tion 5.4). The MatchExpr production allows users to describe query patterns GQ to match

against a graph GD in Graphix. As shown in Figure 5.3, a single MatchExpr contains one or

more pattern expressions (PatternExpr), which describes a series of query vertex patterns

44

PatternExpr

,

(a) gSQL++ grammar for the
MatchExpr production.

INNER

LEFT

OUTER

MATCH MatchExpr

(b) gSQL++ grammar for the MatchStep production.

VertexPattern

EdgePattern

PathPattern

(c) gSQL++ grammar for the PatternExpr production.

Figure 5.3: Grammar used to describe the MatchExpr, MatchStep, and PatternExpr produc-
tions.

(VertexPattern), query edge patterns (EdgePattern), and query path patterns (PathPattern,

detailed further in Section 5.3). In alignment with graph instance vertices and edges being

represented as documents in the AsterixDB data model, query pattern vertices and edges

(as well as paths, as seen in the next section) are “objects” (similarly defined as sets of

key-value pairs) in the SQL++ query model. To reference graph elements for use in SQL++

constructs, we define an additional function in our formalism, ϑ, that maps query pattern

vertices, edges, (and later paths) to “iteration variables”. Iteration variables are defined in

the same manner as SQL++: references to an item of a result set being iterated over [14].

For pure graph pattern matching gSQL++ queries, this result set refers to the morphism set

M .

Figure 5.4 describes the grammar for a vertex pattern vQ ∈ VQ. A vertex pattern is specified

using parentheses, optionally containing a) a variable used to partially define the variable-

assigning function ϑ for vQ, b) a set of labels BvQ used to partially define the labeling

function λQ such that λQ(vQ) = BvQ , and c) a WHERE clause shorthand for further qualifying

the “mapped-to” graph vertices (i.e., mv(vQ) for some morphism m ∈ M). We note that

vertex filtering can also be performed in the WHERE clause inline with the containing FROM

45

(

VertexDetail

)

(a) gSQL++ grammar for the VertexPattern production.

Variable : LabelSet WHERE Expr

(b) gSQL++ grammar for the VertexDetail production.

LabelName

|

(c) gSQL++ grammar for the
LabelSet production.

Figure 5.4: Grammar used to describe a query pattern vertex (i.e., the VertexPattern,
VertexDetail, and LabelSet productions).

clause. To highlight the simplicity of the gSQL++ language extension, we will use the latter

style. Finally, the absence of a label set in the context of labeled pattern matching logically

denotes a query pattern vertex that can be universally matched (formally, λQ(vQ) = B where

B is the universe of labels).

We will now describe the VertexPattern production through example. Consider five instances

of VertexPattern that describe five vertex patterns:

1. (x1:Message)

2. (:Message)

3. (x3)

4. (x4:Message WHERE x4.id = 10000)

5. (x5:User|Message)

Item 1 defines a vertex pattern v1 that is assigned the variable ϑ(v1) = x1 and is labeled as

λQ(v1) = {Message}. Item 2 defines an unnamed vertex pattern v2 with the label λQ(v2) =

{Message}. Item 3 defines a vertex pattern v3 that is assigned the variable ϑ(v3) = x3

and possesses all labels λQ(v3) = B. Item 4 defines a vertex pattern v4 that is assigned

the variable ϑ(v4) = x4, is labeled as λQ(v4) = {Message}, and contains a WHERE clause

shorthand for the conjunct x4.id = 10000. Finally, Item 5 defines a vertex pattern v5 that

is assigned the variable ϑ(v5) = x5 and is labeled as λQ(v5) = {User, Message}.

46

-

[

EdgeDetail

] - >

< -

[

EdgeDetail

] -

(a) gSQL++ grammar for the EdgePattern production.

Variable : LabelSet WHERE Expr

(b) gSQL++ grammar for the EdgeDetail production.

Figure 5.5: Grammar used to describe a query pattern edge (i.e., the EdgePattern and
EdgeDetail productions).

Figure 5.5 describes the grammar for an edge pattern eQ ∈ EQ. Following the grammar

of a PatternExpr (see Figure 5.3c), we note that an edge pattern can only be specified

between two vertex patterns. We refer to the left vertex pattern of an edge pattern eQ as

LEFT(eQ) and the right vertex pattern as RIGHT(eQ). An edge pattern is specified using the

notation −[]−> (denoting a left-to-right directed edge pattern), <−[]− (denoting a right-to-

left directed edge pattern), and −[]− (denoting an undirected edge pattern). The syntax for

each describes the existence of a triple in the incidence set IQ:

()−[eQ]−>() =⇒ (LEFT(eQ), eQ, RIGHT(eQ)) ∈ IQ

()<−[eQ]−() =⇒ (RIGHT(eQ), eQ, LEFT(eQ)) ∈ IQ

()−[eQ]−() =⇒ (LEFT(eQ), eQ, RIGHT(eQ)) ∈ IQ ∨ (RIGHT(eQ), eQ, LEFT(eQ)) ∈ IQ

(5.3)

As far as the edge detail goes, an edge pattern may optionally contain a) a variable used to

partially define ϑ for eQ, b) an set of labels BeQ used to partially define the labeling function

λQ such that λQ(eQ) = BeQ , and c) another WHERE clause shorthand for further qualifying

the “mapped-to” graph edges (i.e., me(eQ) for some morphism m ∈ M).

47

We will now describe the EdgePattern production through example. Consider the expression

(u:User)−[w:WROTE]−>(m:Message). This expression defines two vertex patterns v1, v2, and

one edge pattern e. v1 is assigned the variable ϑ(v1) = u, v2 is assigned the variable ϑ(v2) = m,

and e is assigned the variable ϑ(e) = w. v1 is labeled as λQ(v1) = {User}, v2 is labeled as

λQ(v2) = {Message}, and e is labeled as λQ(e) = {WROTE}. We note that the left vertex

pattern of e is LEFT(e) = v1, and the right vertex pattern of e is RIGHT(e) = v2. The

EdgePattern expression is directed left-to-right, therefore the triple (v1, e, v2) exists in the

incidence set: (v1, e, v2) ∈ IQ.

Listing 5.6 illustrates a pattern matching query in gSQL++. The graph GD is specified

using GRAPH SocialNetworkGraph on Line 2, with the query pattern GQ specified on Line 3

and Line 4. The vertex patterns consist of VQ = {vu, vf , vm, vr}, the edge patterns consist

of EQ = {ek, ew, ero}, and the incidence triple set consists of IQ = {(vu, ek, vf), (vf , ew, vm),

(vm, ero, vr)}. For simplicity, we denote the subscript of each graph element as its bound

variable (e.g., ϑ(vu) = u). The labeling function λQ assigns the following vertices and edges

to labels: λQ(vu) = λQ(vf) = {User}, λQ(vm) = λ(vr) = {Message}, λQ(ek) = {User},

λQ(ew) = {WROTE}, λQ(ero) = {REPLY OF}. For all morphisms M that map GQ to subgraphs

of GD, the result of Listing 5.6 returns the application of each morphism (mv, me) ∈ M to all

vertex and edge patterns in GQ. Logically, after Line 3, a gSQL++ user is free to manipulate

the mapped vertices and edges using the variables bound to the query pattern vertices and

edges (e.g., using u, m, and w to reference mv(vu), mv(vm), and me(ew) respectively).

Assume that Listing 5.7 describes a result in the result set for the query in Listing 5.6. As

with all SQL++ queries, a result in gSQL++ is a value in the AsterixDB data model. For

our current example, we have a document whose top level fields (e.g., "u", "k", etc. . .) refer

to the variables bound in the graph pattern. More generally, the absence of a projection in

SQL++ and gSQL++ (as denoted by SELECT ∗) means that a result is a document whose top

level fields are the names of all variables in scope. With respect to result size, the number

48

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[k:KNOWS]−>(f:User)−[w:WROTE]−>(m: Message),
4 (m)−[ro: REPLY OF]−>(r: Message)
5 WHERE
6 u.id = 94
7 SELECT ∗; � �
Listing 5.6: gSQL++ query to find the replies r to messages m of a user f known by some
other user u whose ID field is equal to 94.

� �
1 {
2 "u" : { "id" : 94,
3 "name" : { "first": " Mococo ", "last": " Abyssgard " },
4 " join date " : "2023 −07 −30",
5 "knows" : [55 ,90 ,91 ,92 ,93] },
6 "k" : { " source id " : 94,
7 " dest id " : 91 },
8 "f" : { "id" : 91,
9 "name" : { "first": "Bijou", "last": " Koseki " },
10 " join date " : "2023 −07 −29",
11 "knows" : [90 ,91 ,92 ,93 ,94] },
12 "w" : { " user id " : 91,
13 " message id ": 30820 ,
14 " posted on " : "2023 −08 −14: T00 :00:12 Z" },
15 "r" : { "id" : 30820 ,
16 " user id " : 91,
17 " posted on " : "2023 −08 −14: T00 :00:12 Z",
18 " content " : "Try the pet store down the street !",
19 " reply id " : 30819 ,
20 " is draft " : FALSE },
21 "ro": { " source id " : 30820 ,
22 " dest id " : 30819 ,
23 " posted on " : "2023 −08 −14: T00 :00:12 Z" },
24 "m" : { "id" : 30819 ,
25 " user id " : 93,
26 " posted on " : "2023 −08 −13: T10 :02:23 Z",
27 " content " : "Does anyone know where to buy dog food?",
28 " is draft " : FALSE }
29 } � �

Listing 5.7: One result found in the result set of the query in Listing 5.6.

49

of results returned the query in Listing 5.6 is equal to the size of the morphism set |M |.

Assuming that the morphism set initially starts off as |M | = n0, we describe a sequence of

updates to the graph and the size of the result set for the same query in Listing 5.6 after

each update:

t = 1 User 91 writes one more reply to another message. Observing that a “REPLY OF”-labeled

edge represents a 1:1 relationship, the result size increases by one: |M | = n0 + 1.

t = 2 User 94 adds another user to their “knows” list. Observing that a “WROTE”-labeled

edge represents a 1:N relationship, the result size increases by the number of replies to

messages that our new user has posted. For our example, suppose that this new user

has posted 5 replies. The result size thus increases by 5: |M | = n0 + 1 + 5.

t = 3 User 91 writes a top-level message that isn’t a reply to any other message. This

update to the graph does not increase the result size, as “user knows a user who

posted a message” isn’t a subgraph (from GD) that matches GQ. A subgraph must be

fully matched, unless the “reply of message” query sub-pattern is specified as optional

(see Subsection 5.4.1).

For more complex examples of graph pattern matching queries in gSQL++, see Subsec-

tion 5.4.1 and Subsection 5.4.2.

5.3 Navigational Queries

SQL++ (or more generally, non-recursive SQL) can directly express each query in Section 5.2.

In fact, early versions of non-recursive Graphix acted more as a “transpiler” for gSQL++ to

SQL++. Most graph query languages, however, are often characterized by another construct:

the ability to express transitivity between two query pattern vertices. Specifically, we in-

troduce the notion of a path: a query construct that describes the relationship between two

50

query pattern vertices using two sequences of graph instance vertices and graph instance

edges. In this section we will first detail how paths are described using regular expressions,

and then explain how these regular expressions are specified in gSQL++.

5.3.1 Path Finding (Navigation)

To start, we are given a graph instance GD = (ID, VD, ED) where ID is the incidence

triple set, VD is a set of graph vertices, and ED is sets of edges. A path p = (Vp, Ep) is a

two-tuple consisting of a sequence of vertices Vp = (v1, v2, . . . vn) and a sequence of edges

Ep = (e1, e2, . . . em), where p possess the following properties:

1. all path vertices exist in the graph instance v ∈ Vp =⇒ v ∈ VD;

2. all path edges exist in the graph instance e ∈ Ep =⇒ e ∈ ED;

3. there exists at least one vertex |Vp| > 0;

4. there are two vertices per edge |Vp| = |Ep|+ 1; and

5. for an edge EP [i] at position i of EP and two vertices VP [i], VP [i+1] at positions i and

i+ 1 of VP , all graph elements are related: (VP [i], EP [i], VP [i+ 1]) ∈ ID.

Given two graph instance vertices v1 ∈ VD, v2 ∈ VD, the unconstrained problem of path

“finding” involves finding all paths from v1 (the source vertex) to v2 (the destination vertex):

Pv1.v2 = {(Vp, Ep) | v1 = Vp[1] and v2 = Vp[N]}. For paths containing cycles, enumerating

all satisfiable paths is impossible (i.e., a longer path can always be found). Consequently,

all graph query languages solve variations of the path finding problem that guarantee finite

results (assuming that the graph is also finite). We list the most common variations below:‡

‡We only consider variants that preserve the paths, ruling out problem variants that ask instead about
the existence of a path between two vertices (e.g., SPARQL’s problem variant).

51

Any k Paths The “any k paths” problem (alt. the “reachability” problem when k = 1)

involves finding any k-sized subset of paths Pv1.v2 from vertex v1 to vertex v2. We

denote this subset as P
ANY(k)
v1.v2 , where P

ANY(k)
v1. v2 ⊂ Pv1.v2 and |PANY(k)

v1.v2 | = k.

Shortest k Paths The “shortest k paths” problem involves finding some k-sized subset of

paths P
SHO(k)
v1.v2 ⊂ Pv1.v2 where the path set has exactly k paths |P SHO(k)

v1.v2 | = k and for all

paths (Vi, Ei) ∈ P
SHO(k)
v1.v2 , there exists no other shorter path: |Ei| ≤ |Ej| ∀ (Vj, Ej) ∈

(Pv1.v2 \ P
SHO(k)
v1.v2).

Cheapest k Paths The “cheapest k paths” problem is a generalization of the k short-

est paths problem that adds a weight function c : E → R.§ Here, we are inter-

ested in finding some subset of paths P
CHE(c,k)
v1.v2 ⊂ Pv1.v2 where the path set is k-sized

|PCHE(c,k)
v1.v2 | = k and for all paths (Vi, Ei) ∈ P

CHE(c,k)
v1.v2 , there exists no other cheaper

path:
|Ei|∑
n=0

c(Ei[n]) ≤
|Ej |∑
m=0

c(Ej[m]) ∀ (Vj, Ej) ∈ (Pv1.v2 \ P
CHE(c,k)
v1.v2).

All No-Repeat-Edge Paths The “all non-edge repeating paths” problem is a variant that

does not quantify the entire path set, but rather independently qualifies each path

itself. Here, we are interested in finding the subset of all paths between v1 and v2,

PNRE
v1.v2

⊂ Pv1.v2 , where the edge sequence of every path contains no duplicates: (Vi, Ei) ∈

PNRE
v1.v2

=⇒ every ei ∈ Ei is unique.

All No-Repeat-Vertex Paths The “all non-vertex repeating paths” problem is similar to

the all non-edge repeating paths problem, but constrains that every vertex in a path is

unique rather than every edge. Here, we are interested in finding the subset of all paths

between v1 and v2, P
NRV
v1.v2

⊂ Pv1.v2 where the vertex sequence of every path contains no

duplicates: (Vi, Ei) ∈ PNRE
v1.v2

=⇒ every vi ∈ Vi is unique.

All No-Repeat-Anything Paths In a hypergraph setting, we may have instances where

a path repeats an edge but not a vertex: PNRE
v1.v2

̸⊂ PNRV
v1.v2

. Consequently, we define the

“all non-vertex-and-edge repeating paths” problem, where both the vertex and edge

sequences of every path are constrained. Here, we are interested in finding the subset

§As we will later see, in gSQL++ the weight function c has a wider domain of all paths: c : Pv1.v2 → R.

52

of all paths between v1 and v2, P
NRA
v1.v2

⊂ Pv1.v2 where both the vertex sequence of every

path contains no duplicates and the edge sequence of every path contains no duplicates:

(Vi, Ei) ∈ PNRA
v1.v2

=⇒ every vi ∈ Vi is unique ∧ every ei ∈ Ei is unique.

Path finding queries in Cypher, by default, represent questions in the “all non-edge repeating

paths” problem class. To ask a “shortest path” question, Cypher users must use special func-

tions to change the problem class (i.e., through their shortestPath and allShortestPaths

functions). To ask a “cheapest path” question, Neo4j Cypher users must call a different

path function from their data science plugin that has a parameter for a weight (i.e., the

gds.shortestPath.dijkstra function). The GPML of SQL/PGQ is slightly more unified,

giving users various prefix keywords (e.g., SHORTEST for shortest path, ANY for any path,

etc. . .) to modify the problem class, but as we’ll see, gSQL++ can be used to express all of

the aforementioned problem classes in a much more uniform manner.

We now turn to regular path queries (abbr. RPQs), which is another query construct found

in modern graph query languages that allows users to further qualify paths p between two

vertices v1 ∈ VD, v2 ∈ VD. RPQs are regular expressions over an alphabet of all edge labels in

the graph instance B. Given a regular expression r and some path p = (Vp, Ep), let LANG(r)

represent the language accepted by an automaton that simulates r and WORD(p) represent a

sequence of edge labels for p (i.e., the sequence (λ(Ep[1]), λ(Ep[2]), . . . λ(Ep[m])). We are

interested in finding all paths PRE(r) that match the regular expression: p ∈ PRE(r) =⇒

WORD(p) ∈ LANG(r). Attention must be given to the operations we permit in our regular

language, otherwise evaluation becomes intractable (as illustrated in [44]). We point to the

following operation set, which define how RPQs are expressed in gSQL++ and how RPQs were

expressed in earlier versions of Cypher before moving to the GPML of the GQL standard:

Alternation Given two expressions s1 and s2 where |s1| = 1 and |s2| = 1 (i.e., s1 and

s2 are either single symbol words or alternations of single symbol words), the regular

expression r = s1 |s2 defines a language LANG(r) where every word w ∈ LANG(r) has a

53

Figure 5.6: An example edge-labeled graph instance GD that possesses five vertices and nine
edges.

length of one |w| = 1 and the language is union of the languages associated with the

operands LANG(r) = LANG(s1) ∪ LANG(s2). To match r here involves finding paths that

consist of a single edge e ∈ ED where the single symbol word λ(e) exists in LANG(r).

Quantification Given an expression s where |s| = 1 (i.e., s is either a single symbol word

or an alternation of single symbol words), assume the regular expression r = s{m,n}

where m ∈ ({0} ∪ Z) is a non-negative integer and n ∈ Z is an optional positive

integer that is greater than or equal to m. r defines a language LANG(r) where all

words w ∈ LANG(r) have a length between m and n: w =⇒ m ≤ |w| ≤ n. Unbounded

repetition of s is denoted via s{m, }, where the upper limit n is excluded. We also note

the following shorthand operators for quantification: a) the Kleene closure s∗ = s{0, },

and b) the positive closure s+ = s{1, }.

Figure 5.6 describes a directed edge-labeled graph instance GD of five vertices and nine

edges. We note that the incidence triples that capture e5 and e7 (i.e., (vSTART, e5, v2) and

(v2, e7, vSTART)) induce a cycle in our graph instance. If we enumerate all “non-repeating-

edge” paths from vertex vSTART to vertex vEND, we get the results in Table 5.2. Now suppose

we are given six RPQs to match the paths of Table 5.2 against:

1. r1 = (a|b|c)∗

2. r2 = a∗

3. r3 = (a|b)∗

4. r4 = (a|c)∗

5. r5 = a{2,5}

6. r6 = b∗

54

pi Vi (Vertex Sequence of pi) Ei (Edge Sequence of pi) WORD(pi)

p1 (vSTART, vEND) (e1) a
p2 (vSTART, v1, vEND) (e2, e3) ca
p3 (vSTART, v1, vEND) (e2, e4) ca
p4 (vSTART, v2, v1, vEND) (e5, e1, e3) aaa
p5 (vSTART, v2, v1, vEND) (e5, e1, e4) aaa
p6 (vSTART, v2, v3, vEND) (e5, e8, e9) abb
p7 (vSTART, v2, vSTART, vEND) (e5, e7, e1) aca
p8 (vSTART, v2, vSTART, v1, vEND) (e5, e7, e2, e3) aca
p9 (vSTART, v2, vSTART, v1, vEND) (e5, e7, e2, e4) aca

Table 5.2: A table describing all “non-repeating-edge” paths between vSTART and vEND in the
graph instance of Figure 5.6.

r1 matches all nine paths. r2 matches all paths that only consist of a-labeled edges: p1, p4,

and p5. r3 matches paths that only consist of a-labeled edges or b-labeled edges: p1, p4, p5,

and p6. r4 matches paths containing only a-labeled edges and c-labeled edges (i.e., all paths

in except for p6). r5 matches all paths that only consist of a-labeled edges whose word size

is between 2 and 5: p4 and p5. Finally, r6 matches no paths in GD, as there exists no path

from vSTART to vEND that is only composed of b-labeled edges.

Note that concatenation is not a supported operation, eliminating the possibility of back-

tracking while trying to find a match. For the same reason, negation is not a supported

operation. Such an operation set may seem too restrictive for non-trivial problems, but

when combined with pattern matching (and later all of SQL++), users can express a rich set

of path finding queries. We will now define the problem of navigational pattern matching.

We extend the definition for a query pattern GQ to now include a set of regular path queries:

GQ = (VQ, EQ, IQ, λQ, RQ). We expand the types of incidence triples found in IQ to

include RPQs: IQ ⊂ (VQ × (RQ ∪EQ)× VQ). We do not expand the domain of the labeling

function λ, as RPQs are not (at least formally) graph patterns to match GD against. In

addition to finding morphisms (mv, me) ∈ M that map the query pattern (VQ, EQ, IQ) to

the graph instance GD, the problem of navigational pattern matching is also concerned with

finding all paths PRE(r) for all RPQs r ∈ RQ between the incident vertices of r itself (i.e.,

55

- [PathDetail] -

>

< - [PathDetail] -

(a) gSQL++ grammar for the PathPattern production.

Variable : LabelName

(LabelSet)

RepetitionQuantifier

(b) gSQL++ grammar for the PathDetail production.

{

IntegerLiteral

,

IntegerLiteral

}

+

*

(c) gSQL++ grammar for the RepetitionQuantifier production.

Figure 5.7: Grammar used to describe a RPQ (i.e., the PathPattern, PathDetail, and
RepetitionQuantifier productions).

where (mv(v1), r, mv(v2)) ∈ IQ for v1 ∈ VQ ∧ v2 ∈ VQ). The existence of a path pr ∈ PRE(r)

for some RPQ r implies that the word of the path WORD(pr) exists in the accepting language

LANG(r). Modern graph languages are expected to, at a minimum, provide query constructs

for solving navigational pattern matching problems.

5.3.2 gSQL++ for Navigation

We will now continue (and ultimately conclude) our discussion about the MatchExpr produc-

tion by defining the PathPattern production. A PathPattern allows users to describe RPQs

in conjunction with the pattern matching constructs of Section 5.2 to express navigational

pattern matching queries. Figure 5.7 describes the grammar for a path pattern, used to spec-

ify RPQs rQ in gSQL++. We refer to the left vertex pattern of a path pattern as LEFT(rQ),

56

and the right vertex pattern of a path pattern as RIGHT(rQ). Similar to an EdgePattern,

a PathPattern can be left-directed (−[]−>), right-directed (<−[]−), and undirected (−[]−).

The syntax for each describes the existence of a triple in our incidence set IQ:

()−[rQ]−>() =⇒ (LEFT(rQ), rQ, RIGHT(rQ)) ∈ IQ

()<−[rQ]−() =⇒ (RIGHT(rQ), rQ, LEFT(rQ)) ∈ IQ

()−[rQ]−() =⇒ (LEFT(rQ), rQ, RIGHT(rQ)) ∈ IQ ∨ (RIGHT(rQ), rQ, LEFT(rQ)) ∈ IQ

(5.4)

With respect to the path detail, the PathPattern production contains two items: 1) a variable

used to partially define our variable mapping function ϑ for rQ, and 2) a regular expression

of edge labels (rQ itself) using the LabelSet and RepetitionQuantifier productions.

Listing 5.8 illustrates a navigational pattern matching query in gSQL++. The graph GD

is specified using GRAPH SocialNetworkGraph on Line 2. The query pattern GQ is specified

on Line 3 and Line 4. The vertex patterns consist of VQ = {vu, vf , vm, vr}, the edge patterns

consist of EQ = {ek, ew1 , ew2 , ero}, and the path patterns consists of RQ = {rk} where the

regular expression rk = KNOWS∗. The incidence triple set consists of IQ = {(vu, rk, vf),

(vu, ew1 , vm), (vf , ew2 , vr), (vr, ero, vm)}. For simplicity, we again denote the subscript of each

graph element as its bound variable (e.g., ϑ(vu) = u). The labeling function λQ assigns

the following vertices and edges to labels: λQ(vf) = λQ(vu) = {User}, λQ(vr) = λQ(vm) =

{Message}, λQ(ew1) = λQ(ew2) = {WROTE}, λQ(ero) = {REPLY OF}.

Assume that Listing 5.9 describes a result in the result set for the query in Listing 5.8. We

observe that a path p = (Vp, Ep) is represented in gSQL++ as a document of two fields: an

array-valued field "Vertices", used to describe the sequence of vertices Vp, and an array-

valued field "Edges", used to describe the sequence of edges Ep. The first element of the

vertex sequence is the document bound to u, while the last element of the vertex sequence

is the document bound to the incident vertex v. As with vertex and edge instances, users

can manipulate paths using the same SQL++ query constructs they would use for any other

57

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (f:User)<−[k:KNOWS +]−(u:User)−[w1:WROTE]−>(m: Message),
4 (f)−[w2: WROTE]−>(r: Message)−[ro: REPLY OF]−>(m)
5 WHERE
6 u.id = 67 AND
7 f.id = 60
8 SELECT
9 u,
10 k,
11 f; � �
Listing 5.8: gSQL++ query to return all paths of KNOWS edges between two users u, f where
f has written a reply for some message written by u.

� �
1 {
2 "u": { "id" : 67,
3 "name" : { "first": "Ouro", "last": " Kronii " },
4 " join date " : "2021 −08 −22",
5 " languages " : ["en", "kr"],
6 "knows" : [59 ,65 ,66 ,68 ,69] },
7 "k": { " Vertices ": [
8 { "id" : 67,
9 "name" : { "first": "Ouro", "last": " Kronii " },
10 " join date " : "2021 −08 −22",
11 " languages " : ["en", "kr"],
12 "knows" : [59 ,65 ,66 ,68 ,69] },
13 { "id" : 59,
14 "name" : { "first": "Gura", "last": "Gawr" },
15 " join date " : "2020 −09 −13",
16 "knows" : [56 ,57 ,58 ,60 ,67] },
17 { "id" : 60,
18 "name" : { "first": " Amelia ", "last": " Watson " },
19 " join date " : "2020 −09 −13",
20 "knows" : [56 ,57 ,59 ,60] }
21],
22 "Edges": [{ " source id " : 67, " dest id " : 59 },
23 { " source id " : 59, " dest id " : 60 }] },
24 "f": { "id" : 60,
25 "name" : { "first": " Amelia ", "last": " Watson " },
26 " join date " : "2020 −09 −13",
27 "knows" : [56 ,57 ,58 ,59] }
28 } � �

Listing 5.9: One result found in the result set of the query in Listing 5.8

58

document. The vertices of a path can be accessed using k.Vertices (or using the Graphix

function VERTICES(k)) and the edges of a path can be accessed using k.Edges (or, using the

Graphix function EDGES(k)). With respect to result size, the number of results returned by

the query in Listing 5.8 is determined by the size of the morphism set |M | multiplied by the

number of satisfying paths |P | in the graph instance GD. Assuming that the morphism set

size initially starts off as n
|M |
0 and the path set size initially starts off as n

|P |
0 , we describe a

sequence of updates to the graph and the size of the result set for the same query in Listing 5.8

after each update:

t = 1 User 60 writes another message replying to one of user 67’s messages. Observing that

a “REPLY OF”-labeled edge represents a 1:1 relationship, the result size increases by a

factor of the path set size n
|P |
0 . The result size is now (n

|M |
0 + 1)× n

|P |
0 .

t = 2 Users 60 and 67 add a mutual user to their “knows” list. The result size increases by

a factor of morphism set size (n
|M |
0 + 1). The result size is now (n

|M |
0 + 1)× (n

|P |
0 + 1).

t = 3 User 67 adds a user to their “knows” list that isn’t in user 60’s “knows” list. This

update does not increase the path set size, as this added edge does not yield a new

path from user 67 to 60. Consequently, this update does not increase the result size.

t = 4 User 67 writes a new message that does not have any replies. This update to the graph

also does not increase the result size, as “user posts a message” is not a subgraph (from

GD) that matches the query. A query pattern must be fully matched.

For more complex examples of navigational pattern matching queries in gSQL++, see Sub-

section 5.4.3, Subsection 5.4.4, and Subsection 5.4.5.

59

5.4 Complex gSQL++ Examples

In this section, we will provide a series of more complex gSQL++ queries to illustrate the

implications of defining vertices, edges, and paths as documents in SQL++. These include:

i) optional subgraph matching, ii) negative subgraph matching, iii) subgraph reachability,

iv) shortest path finding, and v) cheapest path finding.

5.4.1 Optional Subgraph Matching

Mirroring LEFT JOIN in SQL (and SQL++), LEFT MATCH in gSQL++ allows users to specify an

optional navigational query pattern GOPT
Q attached to some mandatory query pattern GREQ

Q

where one or more vertices are shared between both patterns (formally, ∃ v ∈ V OPT
Q such that

v ∈ V REQ
Q). Listing 5.10 depicts a gSQL++ query with a LEFT MATCH clause which asks for all

users u1, and optionally any users u2 that u1 knows where u2 has posted a reply to one of u1’s

messages. In Listing 5.10, the mandatory query pattern GREQ
Q consists of one vertex labeled

User (specified on Line 3) and the optional query pattern GOPT
Q is specified on Line 5, Line 6,

and Line 7. Note that the vertex pattern bound to the variable u1 is shared across both

GREQ
Q and GOPT

Q . If we assume that executing the Listing 5.10 query yields the three results

in Listing 5.12, we observe that the first two results have matched both GREQ
Q and GOPT

Q while

the third result only matches GREQ
Q .

To explain the semantics of LEFT MATCH, we can leverage gSQL++’s interoperability with

SQL++ to express an alternative to the query in Listing 5.10. Listing 5.11 details an al-

ternative to Listing 5.10 where LEFT JOIN is used in place of LEFT MATCH. The LEFT JOIN

condition consists of an equality of the "id" property (i.e., the primary key given for “User”-

labeled vertices in the definition of GD — more detail is given in Subsection 6.3.2) of the

vertex pattern bound to the u1 variable and the "id" property of the inner vertex pattern

60

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)
4 LEFT MATCH
5 (u1)−[: KNOWS]−>(u2:User),
6 (u2)−[: WROTE]−>(m2: Message),
7 (m2)−[: REPLY OF]−>(:Message)<−[:WROTE]−(u1)
8 SELECT DISTINCT
9 u1.name.first AS u1 name ,
10 u2.name.first AS u2 name ; � �
Listing 5.10: gSQL++ query to enumerate users u1, and optionally the users u2 known by u1
that have posted a reply to a message posted by u1.

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)
4 LEFT JOIN
5 (FROM
6 GRAPH SocialNetworkGraph
7 (u1i:User)−[: KNOWS]−>(u2:User),
8 (u2)−[: WROTE]−>(m2: Message),
9 (m2)−[: REPLY OF]−>(:Message)<−[:WROTE]−(u1i)
10 SELECT
11 u1i.id AS id ,
12 u2 AS u2) AS u1ku2
13 ON u1ku2.id = u1.id
14 SELECT DISTINCT
15 u1.name.first AS u1 name ,
16 u1ku2.u2.name.first AS u2 name ; � �
Listing 5.11: gSQL++ alternative to the query in Listing 5.10 that uses LEFT JOIN instead
of LEFT MATCH.

� �
1 { " u1 name ": "Mel", " u2 name ": "Choco" }
2 { " u1 name ": "Choco", " u2 name ": "Mel" }
3 { " u1 name ": "Aqua" } � �

Listing 5.12: Result set for the queries in Listing 5.10 and Listing 5.11.

61

bound to the u1i variable. From our alternative query, we can infer that LEFT MATCH does not

include partially matched patterns within its containing query pattern GOPT
Q . For example,

the subgraph from GD “user knows a user that posted a message” does not fully match the

query pattern, as such a result would not be returned in the LEFT JOIN right-hand subquery

(starting on Line 5 and ending on Line 12).

5.4.2 Negative Subgraph Matching

Both the SQL standard and SQL++ do not explicitly support an “anti-JOIN” clause. Instead,

SQL and SQL++ users can express a universally negative predicate that should hold for each

“positive” record (typically via a “NOT EXISTS” subquery conjunct in the WHERE clause).

gSQL++ users are expected to use this same universal logic to express “anti-navigational-

query-patterns”. Given a positive query pattern GPOS
Q and a negative query pattern GNEG

Q

where one or more vertices are shared between both patterns (formally, ∃ v ∈ V POS
Q such that

v ∈ V NEG
Q), negative pattern matching involves finding the difference in matches to subgraphs

of GD. Listing 5.13 illustrates an example of negative pattern matching query where GPOS
Q is

specified on Line 3 and GNEG
Q is specified on Line 9. If we assume that Listing 5.15 contains a

result found in the result set of the query in Listing 5.13, we observe that the resulting user

has an empty knows list.

Listing 5.13 also illustrates a gSQL++ shorthand for expressing shared vertex patterns across

different query patterns. In this example, the vertex pattern bound to the variable u is shared

between the positive query pattern GPOS
Q and the negative query pattern GNEG

Q even though

both are specified in different query blocks. Again, we can leverage gSQL++’s interoper-

ability with SQL++ to express an alternative to the query in Listing 5.13. In Listing 5.14,

we illustrate an alternative that does not leverage this vertex pattern sharing shorthand.

In Listing 5.14, no vertex patterns are shared between the positive query pattern GPOS
Q and

62

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(:Message)
4 WHERE
5 CONTAINS (m.content , u.name.first) AND
6 NOT EXISTS (
7 FROM
8 GRAPH SocialNetworkGraph
9 (u)−[: KNOWS]−>(:User)
10 SELECT ∗
11)
12 SELECT DISTINCT VALUE
13 u; � �
Listing 5.13: gSQL++ query to enumerate all users u that a) possess an empty “knows” list
and b) have posted at least one message m whose content contains their first name.

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m: Message)
4 WHERE
5 CONTAINS (m.content , u.name.first) AND
6 NOT EXISTS (
7 FROM
8 GRAPH SocialNetworkGraph
9 (ui:User)−[: KNOWS]−>(:User)
10 WHERE
11 ui.id = u.id
12 SELECT ∗
13)
14 SELECT DISTINCT VALUE
15 u; � �
Listing 5.14: gSQL++ alternative to the query in Listing 5.13 that explicitly performs a JOIN
between vertex patterns.

� �
1 {
2 "id" : 12,
3 "name" : { "first": "Aqua", "last": " Minato " },
4 " join date ": "2018 −08 −08",
5 "knows" : []
6 } � �
Listing 5.15: Result found in the result set for the queries in Listing 5.13 and Listing 5.14.

63

negative query pattern GNEG
Q . Instead, the vertex pattern bound to the variable u is explicitly

joined with the vertex pattern bound to the variable ui (using SQL / SQL++). gSQL++

gives Graphix users the ability to choose between either style.

5.4.3 Subgraph Reachability

For well-connected graphs that follow the power law [17] (i.e., the number of vertices with

degree x is proportional to x−α where α is a constant), it might be infeasible to enumerate

all paths in the graph itself. In these graphs, asking instead about the existence of any

path between two vertices may be more appropriate. The reachability problem is a member

of the path finding class of problems that is only concerned with the existence of a path,

rather than counting all satisfiable paths themselves. Both Listing 5.16 and Listing 5.17

detail navigational pattern matching reachability queries in gSQL++ that involve the RPQ

r = KNOWS+. The WHERE clause in both queries define the vertices that should be incident to

the resulting paths. In Listing 5.16, we ask for the DISTINCT endpoints of the path pattern

bound to the variable k and not the path pattern itself, reducing the overall difficulty¶ of

the current path finding problem. Listing 5.17 asks for distinct endpoints as well, but does

so using a GROUP BY clause. Both the SELECT DISTINCT and GROUP BY are query constructs

from SQL / SQL++, again allowing gSQL++ users to apply their existing knowledge on SQL

duplicate elimination to the problem of vertex reachability. Graphix is able to recognize

this reduction in problem difficulty for queries that contain an aggregation of incident vertex

patterns to path patterns to generate a query plan that does not enumerate all paths.

For completeness, assume that the execution of the query in Listing 5.16 yields the five

results in Listing 5.18. From the result set, we can conclude that a) user 56 is connected to

¶Proving the existence of some path satisfying an RPQ r is tractable with the operation set of Subsec-
tion 5.3.1, however, enumerating / counting all paths that satisfy r is at least #P-complete [43].

64

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)−[k:KNOWS+]−>(u2:User)
4 WHERE
5 u1.id IN [56 ,57 ,58] AND
6 u2.id IN [90 ,91 ,92]
7 SELECT DISTINCT
8 u1.id AS u1 id ,
9 u2.id AS u2 id ; � �
Listing 5.16: gSQL++ query to determine the reachability via “KNOWS”-labeled edges between
two groups of vertices.

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)−[k:KNOWS+]−>(u2:User)
4 WHERE
5 u1.id IN [56 ,57 ,58] AND
6 u2.id IN [90 ,91 ,92]
7 GROUP BY
8 u1.id AS u1 id ,
9 u2.id AS u2 id
10 SELECT
11 u1 id ,
12 u2 id ; � �
Listing 5.17: gSQL++ alternative to the query in Listing 5.16 that specifies duplicate elimi-
nation via a GROUP BY clause.

� �
1 { " u1 id ": 56, " u2 id ": 90 }
2 { " u1 id ": 56, " u2 id ": 91 }
3 { " u1 id ": 56, " u2 id ": 92 }
4 { " u1 id ": 57, " u2 id ": 90 }
5 { " u1 id ": 57, " u2 id ": 91 } � �

Listing 5.18: Result set for the queries in Listing 5.16 and Listing 5.17.

65

users 90, 91, and 92, b) user 57 is connected to users 90 and 91, c) user 58 is not connected

to users 90, 91, and 92.

5.4.4 Shortest Path Finding

The shortest path problem is another member of the path finding class of problems (more

formally defined in Subsection 5.3.1), which asks for the path (or one of the paths) that have

the least amount of edges among all (satisfiable) paths. Assume that we have the graph

in Figure 5.8, and that we are interested in finding three paths: i) the shortest path from

vertex v56 to vertex v90, ii) the shortest path from vertex v56 to vertex v91, and iii) the

shortest path from vertex v56 to vertex v92. Listing 5.19 depicts how we would express such

a shortest path finding query in gSQL++. To start, Line 3 defines a query pattern containing

the RPQ r = KNOWS+ and vertex patterns (assigned the variables u1 and u2) incident to

the path pattern (assigned the variable k). The WHERE clause in the subsequent two lines

define the exact vertices that should be incident to the resulting paths (u1.id = 56 and

u2.id IN [90,91,92]). The GROUP BY clause in Line 7 then aggregates all possible paths

from u1 to each u2 and binds each group of paths to the variable g. To fetch the shortest

path from u1 to each u2, the subquery in Line 12 is used. Due to the GROUP BY clause, this

subquery is logically executed for each u2 instance. Each path g.k from u1 to a u2 instance

is sorted (in ascending order) by the number of hops in g.k. To quantify the hops in a path,

LEN(g.k.Edges) is used to count the number of edges a given path possesses. Once sorted,

only the shortest path (or one of the shortest paths, if there are ties) is returned due to the

LIMIT 1. Finally, the [0] on Line 21 is used to access the sole element of that is returned

by the subquery (needed since in SQL++ / gSQL++, subqueries always return a multiset

— ORDER BY subqueries return an array, hence the need for the array access) [14]. As with

our previous section on reachability, Graphix is able to recognize this reduction in problem

difficulty to generate a query plan that avoids enumerating all paths.

66

Figure 5.8: Example graph instance GD that possesses seven vertices and eight edges. The
shortest path to each endpoint (v90, v91, v92) from vertex v56 is colored and dashed.

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)−[k:KNOWS+]−>(u2:User)
4 WHERE
5 u1.id = 56 AND
6 u2.id IN [90 ,91 ,92]
7 GROUP BY
8 u1.id AS u1 id ,
9 u2.id AS u2 id
10 GROUP AS g
11 LET
12 shortestPath = (
13 FROM
14 g
15 SELECT VALUE
16 (FROM g.k.Vertices v SELECT VALUE v.id)
17 ORDER BY
18 LEN(g.k.Edges) ASC
19 LIMIT
20 1
21)[0]
22 SELECT
23 u2 id ,
24 shortestPath ; � �
Listing 5.19: gSQL++ query to find the shortest path of “KNOWS”-labeled edges from one user
to a set of other users.

67

� �
1 { "u1": v56, "u2": v90, "k": v56

e1−−−−→ v90 }
2 { "u1": v56, "u2": v91, "k": v56

e2−−−−→ v58
e3−−−−→ v57

e7−−−−→ v91 }
3 { "u1": v56, "u2": v91, "k": v56

e4−−−−→ v57
e7−−−−→ v91 }

4 { "u1": v56, "u2": v91, "k": v56
e5−−−−→ v64

e6−−−−→ v57
e7−−−−→ v91 }

5 { "u1": v56, "u2": v92, "k": v56
e1−−−−→ v90

e8−−−−→ v92 }
6 { "u1": v56, "u2": v92, "k": v56

e9−−−−→ v92 } � �ww�� �
1 { "u1": v56, "u2": v90, "k": v56

e1−−−−→ v90 } � �� �
1 { "u1": v56, "u2": v91, "k": v56

e2−−−−→ v58
e3−−−−→ v57

e7−−−−→ v91 }
2 { "u1": v56, "u2": v91, "k": v56

e4−−−−→ v57
e7−−−−→ v91 }

3 { "u1": v56, "u2": v91, "k": v56
e5−−−−→ v64

e6−−−−→ v57
e7−−−−→ v91 } � �� �

1 { "u1": v56, "u2": v92, "k": v56
e1−−−−→ v90

e8−−−−→ v92 }
2 { "u1": v56, "u2": v92, "k": v56

e9−−−−→ v92 } � �
Figure 5.9: Example records in scope before the GROUP BY clause (on top) and after the
GROUP BY clause (on bottom).

To better illustrate the functionality of the Listing 5.19 subquery, consider all paths in Fig-

ure 5.8, which is conceptually in scope before the GROUP BY clause. We visualize the records

in scope at the top of Figure 5.9. The GROUP BY generates three collections of documents,

illustrated with the grouping at the bottom of Figure 5.9. Finally, the Listing 5.19 subquery

executes over each group, yielding a single-element array containing the record with the

shortest path for each endpoint user (i.e., the highlighted record).

5.4.5 Cheapest Path Finding

The cheapest path problem is the last member of the path finding class of problems we

will address (more formally defined in Subsection 5.3.1), which generalizes the shortest path

problem to find a path that minimizes the sum of some weight property of a path’s edges.

Suppose that we want to minimize the sum of some property ω for paths of KNOWS edges. For

68

� �
1 WITH
2 GRAPH WeightedSocialNetworkGraph AS
3 VERTEX (: User)
4 PRIMARY KEY (id)
5 AS Users ,
6 EDGE (: User) −[: KNOWS]−>(:User)
7 SOURCE KEY (source id)
8 DESTINATION KEY (dest id)
9 AS (FROM
10 GRAPH SocialNetworkGraph
11 (u1:User)−[: KNOWS]−>(u2:User),
12 (u1) −[: WROTE]−>(m1: Message),
13 (u2) −[: WROTE]−>(m2: Message)
14 GROUP BY
15 u1.id AS source id ,
16 u2.id AS dest id
17 LET
18 omega = COUNT (DISTINCT m1.id) +
19 COUNT (DISTINCT m2.id)
20 SELECT
21 source id AS source id ,
22 dest id AS dest id ,
23 omega AS omega),
24 FROM
25 GRAPH WeightedSocialNetworkGraph
26 (u1:User)−[k:KNOWS+]−>(u2:User)
27 WHERE
28 u1.id IN [56 ,57 ,58] AND
29 u2.id IN [90 ,91 ,92]
30 GROUP BY
31 u1.id AS u1 id ,
32 u2.id AS u2 id
33 GROUP AS g
34 SELECT VALUE
35 (FROM
36 g
37 LET
38 cost = (FROM g.k.Edges e SELECT VALUE SUM(e.omega))[0] ,
39 uids = (FROM g.k.Vertices v SELECT VALUE v.id)
40 SELECT
41 cost AS cost ,
42 uids AS uids
43 ORDER BY
44 ABS(cost) ASC
45 LIMIT 1)[0]; � �
Listing 5.20: gSQL++ query to find the cheapest ω-weighted path of “KNOWS”-labeled edges
between two sets of users.

69

two incident “User”-labeled vertices (vui
, vuj

) to some “KNOWS”-labeled edge, suppose that

we define ω as the total number of messages written by vui
and vuj

. Listing 5.20 depicts a

cheapest ω path finding query between two groups of vertices within a temporary graph in

gSQL++. From Line 1 to Line 23, we define a temporary graph WeightedSocialNetworkGraph

that only exists in the context of the working query. On Line 25, we define the graph

instance GD to use with the navigational query pattern GQ defined in Line 26. Similar to

the previous two section, GQ consists of two vertex patterns incident to one path pattern

which defines the RPQ r = KNOWS+. The WHERE clause defines the vertices that should be

incident to the resulting paths. The GROUP BY clause and subsequent subquery performs

the same aggregation and filtering over each group of paths as the shortest path query

in Listing 5.19, but instead sorts on the sum of edge weights as opposed to the number of

edges.

We divide our further discussion of Listing 5.20 into two parts: 1) the creation of the graph

WeightedSocialNetworkGraph, and 2) the subquery on Line 35. Starting with our WITH GRAPH

clause, we point to Subsection 4.2.3 for a description of derived properties for managed

Graphix graphs (i.e., Graphix graphs defined with the CREATE GRAPH statement). We would

now like to remind the reader of an important point made in Chapter 4: we can define

Graphix graph vertices and edges using queries. “Queries” here not only includes SQL++

queries, but also gSQL++ queries. After defining a collection of “User”-labeled vertices for

the temporary graph, we define a collection of “KNOWS”-labeled edges (incident to “User”-

labeled vertices) with a gSQL++ query on on Line 9. Our gSQL++ query builds a collection

of edges / documents that:

1. performs a pattern matching query against the SocialNetworkGraph graph where GQ

is the pattern “users that know other users and the messages each user has posted”;

2. groups each pattern matching result by the two user vertices;

70

3. computes an omega field for each group that represents the number of messages in the

group itself; and

4. returns the declared source key, destination key, and the computed omega field.

Focusing on Line 35, we reiterate that this subquery is conceptually executed for each (u1 id,

u2 id) group of paths. On Line 38, a cost field is defined as the SUM of an edge’s omega field

for some path. Each path g.k is then sorted in ascending order by its associated ABS(cost).

Finally, the cheapest path is returned using LIMIT 1. The use of “ABS(cost)” here instead

of simply “cost” signals (i.e., hints) to Graphix there are no negative weights. Similar to

the previous two sections, Graphix is able to recognize this reduction in problem difficulty

to generate a query plan that does not enumerate all paths. We remark that our use of

subqueries on groups in the previous two sections is a characteristic inherent to SQL++

itself. gSQL++ enjoy the benefits of issuing full gSQL++ queries over collections of vertices,

edges, and paths thanks to SQL++’s natural support for reasoning about groups and nested

data.

71

Chapter 6

Implementation

Graphix was designed as an extension of AsterixDB to leverage the language features, query

plan optimizer and parallel runtime engine of AsterixDB. In this chapter, we will address

different layers of the AsterixDB software stack and describe the changes made to each layer.

After giving a high-level overview of the Graphix architecture, we will detail our changes to

the runtime layer (Hyracks) to realize semi-synchronous recursion. We will then illustrate

the Graphix-specific AST-level rewrites that occur immediately after query parsing. We

conclude this chapter with our loop-accommodating extensions to the optimization layer

(Algebricks).

6.1 Graphix Architecture

From a software engineering standpoint, Graphix falls in the same line of Apache AsterixDB

extensions as BAD (Big Active Data) [35] and Couchbase Analytics∗ [18]. These systems

∗Couchbase Analytics chooses to use a subset of hardened AsterixDB features (e.g., no support for schema
definition at the time of writing), and is not a “true” extension by definition — however, Couchbase Analytics
uses the same extension machinery as Graphix.

72

Figure 6.1: High level overview of the Graphix and AsterixDB software stack.

were designed to not only leverage the underlying runtime and optimizer layers, but also

AsterixDB’s data model and query language. We contrast this family of extensions with

past projects that either a) only extended the Hyracks runtime engine (Pregelix) or b) only

extended the Algebricks query optimizer and the Hyracks runtime engine (Apache VXQuery,

Hivesterix). We also contrast Graphix with applications built on top of Apache AsterixDB:

Graphix is not middleware, which allows it to reason about the original gSQL++ query in

the Algebricks and Hyracks layers. A high level overview of how Graphix and the AsterixDB

software stack are composed is given in Figure 6.1. We highlight the fact that existing

AsterixDB users do not have to make any changes to their workflow here: both Graphix and

AsterixDB users issue their queries through the same API endpoint.

Without loss of generality, we will assume the two-machine architecture in Figure 6.2 to

host the social network database from Section 3.2 for the remainder of this chapter. Both

AsterixDB and Graphix boast shared-nothing architectures, where clusters of machines in-

73

Figure 6.2: Architecture for the two-node Graphix example cluster that supports the social
network database.

74

dependently manage their own storage and compute while relaying data across a network.

In the Figure 6.2 architecture, we have two machines: machine A and machine B. Machine

A hosts two processes: (1) the cluster controller process, and (2) a node controller process.

The former is responsible for managing user requests and distributing work amongst the

cluster, while the latter is responsible for executing work given by the cluster controller. In

contrast, machine B only hosts one process: a node controller process that accepts work

from the cluster controller process on machine A. To scale outward in this architecture, we

would spawn more node controller processes on different machines.

With respect to storage, the node controllers on both machine A and machine B work with

their own partition of the data. Machine A additionally hosts all of the Graphix and As-

terixDB metadata (e.g., the schema of the datasets, the indexes built for each dataset, the

graphs we have defined, etc. . .). The data partitioning assigned to each machine is de-

termined using a hash of each dataset’s primary key (the id field for the Users dataset,

and the id field for the Messages dataset). Physically, each dataset partition is repre-

sented as an LSM-based B+ tree. For this chapter, we will also consider a secondary index

messagesUserIdx on the user id field of the Messages dataset. Secondary indexes in Aster-

ixDB are local to each machine, e.g., the messagesUserIdx on machine A will only contain

index entries that point to Message records contained on machine A. Consequently, sec-

ondary index searches can be performed in parallel without data transfer between machines.

Physically, secondary indexes are also represented as LSM-based B+ trees.

6.1.1 CREATE GRAPH Lifecycle

To better detail the Graphix + AsterixDB architecture, we will first describe the lifecycle of

a CREATE GRAPH statement from Section 4.2. Given a CREATE GRAPH request from a user to

the cluster controller on machine A, the following actions are taken:

75

1. The CREATE GRAPH is lexed and parsed into an AST (abstract syntax tree) T (CG).

2. To enforce ACID across all metadata datasets, a metadata transaction is initialized.

3. T (CG) is analyzed to determine what metadata entities (e.g., datasets, dataverses,

views, etc. . .) the CREATE GRAPH depends on.

4. All dependencies of T (CG) are then serialized and stored into a metadata dataset

(GraphDependency) on the metadata node (i.e., machine A for our example). In both

Graphix and AsterixDB, all database metadata (e.g., dataset schema, dataset indexes,

view definitions, etc. . .) are persisted on a single designated metadata node.

5. For all VertexConstructor productions of T (CG), the following information is extracted

into an array of objects (Vertices):

(a) the vertex label

(b) the primary key fields

(c) the raw vertex body text

For all EdgeConstructor productions of T (CG), the following information is extracted

into an array of objects (Edges):

(a) the label of the source vertex

(b) the label of the destination vertex

(c) the label of the edge

(d) the source key fields

(e) the destination key fields

(f) the raw edge body text

6a. If the labels associated with Vertices and Edges are not valid (i.e., the vertex labels

referenced by an edge are not defined), then the metadata transaction is aborted and

machine A responds to the user with an error message.

6b. If the labels associated with Vertices and Edges are valid, then Vertices and Edges

are serialized with the graph name and stored in a metadata dataset (Graph) on the

metadata node. The metadata transaction is finalized, and machine A responds to the

user indicating success.

76

After a CREATE GRAPH has been issued, references to the created graph will search the meta-

data to resolve the graph structure. Once a DROP GRAPH statement is issued, the corresponding

entries in the Graph and GraphDependency metadata datasets are deleted (making the dropped

graph no longer resolvable). Similar to other metadata entities with dependencies, if a user

attempts to drop a graph that some other metadata entity depends on (or vice-versa), then

Graphix will raise an error.

6.1.2 gSQL++ Query Lifecycle

Given a single gSQL++ query Q from a user to the cluster controller on machine A, the

following steps and transformations are taken to execute Q in a partitioned-parallel fashion:

1. The query Q is first lexed and parsed into an abstract syntax tree T 0(Q). Given that

gSQL++ is an extension of SQL++, this abstract syntax tree (AST) uses a combination

of gSQL++ specific nodes and SQL++ nodes.

2. Using the CREATE GRAPH definition associated with the graph of T 0(Q) (named in the

FROM clause after the GRAPH keyword), unlabeled vertex and edge patterns are assigned

labels that logically adhere to the mapping of the aforementioned CREATE GRAPH.

3. All of the gSQL++ AST nodes in T 0(Q) are translated into SQL++ compatible AST

nodes. We denote this resulting AST as T 1(Q).

4. T 1(Q) is transformed again through a set of AsterixDB SQL++ AST rewrites (e.g., WITH

clause inlining, GROUPING SETS, etc. . .). For historical reasons, these AST rewrites are

separate from AsterixDB’s algebraic-level rewrites. We denote the final AST as T 2(Q).

5. T 2(Q) is then translated into an initial Algebricks query plan P 0(Q). P 0(Q) then

undergoes a set of Graphix and AsterixDB heuristic-based logical rewrites to produce

an optimized logical plan P 1(Q).

77

6. The optimized logical plan P 1(Q) then undergoes a set of Graphix and AsterixDB

physical rewrites to produce an optimized physical plan P 2(Q). P 2(Q) differs from

P 1(Q) in that each operator in P 2(Q) now has an associated physical implementation

(e.g., a JOIN operator could be physically realized with a nested-loop algorithm, a

hash-based algorithm, etc. . .) associated with it.

7. P 2(Q) is then transformed into a Hyracks job J(Q). J(Q) is then expanded into a

more detail graph of activities (e.g., a hash JOIN has two activities: one to build the

hash table and one to probe). The activity graph of J(Q) is logically divided along

each blocking edge (e.g., the build phase of a hash JOIN must execute before the probe

phase) to build another graph of activity clusters. This activity cluster graph is then

used to define groups of activity clusters that can be run in parallel while respecting

the blocking (sequencing) requirements of J(Q). These groups are known as stages.

8. Iterating through each stage, the cluster controller process then distributes the stage

instance to all node controller processes, which execute the same computation but on

different partitions of the data. Once each stage has been iterated over and executed,

a result is assembled and then handed back to the user by machine A.

Steps (1) to (3) are unique to Graphix, where Graphix acts (somewhat) on top of AsterixDB.

Step (4) is shared by both AsterixDB and Graphix. Steps (5) to (6) are shared by both

Graphix and AsterixDB, but Graphix has an additional set of rewrite rules to handle looping

constructs. Steps (7) to (8) are largely decoupled from the data model of Graphix and

AsterixDB, hence they are also shared by both Graphix and AsterixDB. The implementation

effort behind Graphix contributes back to AsterixDB by offering Hyracks operators that can

realize navigational queries, potentially enabling any future work that also requires recursion.

78

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Listing 6.1: gSQL++ query to find a) a specific user u, b) messages m1 written by u, c)
messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

6.2 Hyracks Runtime Engine

Having described how gSQL++ queries are processed in Graphix at a high level, we will now

describe how Graphix executes directed graphs of operators with cycles using a platform

(Hyracks) that was purposed for executing directed acyclic graphs of operators. For the

remainder of this chapter, we will focus on the execution of the following query (or some

variation of this query) using the two-machine architecture in Figure 6.2:

Running Query Example

Given a starting user’s ID ($uid), find all messages they have written m1 plus all reply

chains r from m1 to messages m2.

We express this in gSQL++ with the query in Listing 6.1. This section will build upon

bounded variants of Listing 6.1, detailing the intricacies of Hyracks as we a) define the ad-

ditional problems that arise due to cyclic graphs in Hyracks (i.e., liveness, safety, and mor-

tality), b) work towards a solution remedying these problems for a single machine Graphix

cluster, and ultimately c) construct a solution that remedies these same problems in a dis-

tributed setting. We will also describe a few “paths not traveled”, explaining a handful of

other potential solutions we did not explore. Last but not least, in addition to the operators

79

Figure 6.3: Illustration of different units of work in a Hyracks job.

required to realize recursion, we will detail two additional operators that the query optimizer,

Algebricks, can leverage to optimize navigational query plans.

6.2.1 Hyracks by Example

Hyracks is the runtime engine used by AsterixDB, enabling partitioned-parallel data-flow

computations on shared-nothing clusters of machines. The top-level unit of work in Hyracks

is a job, described as a directed graph of operators and connectors. Hyracks operators

consume and produce data, while connectors redistribute data between operators. A Hyracks

operator is composed of one or more activities, each of which specify logic for handling a

frame of data. As an example, the hash JOIN operator is composed of two activities: one

to build the hash table, and another to probe the hash table (i.e., execute the JOIN). Each

activity later becomes instantiated as several identical tasks that are distributed to different

partitions to then realize the associated Hyracks job.† Figure 6.3 illustrates the different

units of work in Hyracks. A Hyracks operator may also specify blocking requirements on

their activities (e.g., a hash JOIN operator must run the activity to build its hash table before

†AsterixDB uses Hyracks to distribute an identical set of activity instances to all partitions, but Hyracks
itself has the potential for different distribution strategies.

80

running the activity to probe its hash table), which the Hyracks scheduler then uses to define

groups of activities (known as stages) to execute in series.

At runtime, data in Hyracks is pushed from producers to consumers in the units of fixed-size,

contiguous byte-arrays known as frames. All activity developers are consequently tasked with

implementing a set of methods that operate on frames. The primary carriers of data are

records, which are contained within frames. Activities and connectors are typically written

in a way that maximizes the number of records in a frame before being sent to downstream

consumers, although this is not a Hyracks requirement. Hyracks was designed to be data

model agnostic, thus the contents of a frame is not inherent to Hyracks. As long as all

Hyracks activities and connectors in a job agree to some frame format, Hyracks will move

data through a job appropriately. As we will see later, this flexibility allows us implement a

rich set of features for inter-operator communication.

Single Hop Example .

We will now describe Hyracks by example. We begin with the non-recursive query in List-

ing 6.2. We can answer this query using the activity graph given in Figure 6.4. For all

activity diagrams in this chapter, we use the notation detailed in Table 6.1. Starting from

the PIDX SEARCH activity on the bottom left, a search is performed for a user record (u)

whose primary key (id) is equal to $uid. The next step involves looking for this user’s

messages by searching the secondary index on the user id of Messages: messagesUserIdx.

Because secondary indexes are local to each machine and messages are hash partitioned on

message id, the outbound connector of the PIDX SEARCH needs to broadcast the user record

that PIDX SEARCH found to the corresponding SIDX SEARCH activity on all partitions. A sec-

ondary index entry in AsterixDB contains the primary key of the corresponding record, so

to retrieve the complete Messages records (m1), a primary index search is performed. To

minimize the number of index lookups, all matching primary key values (message id values)

81

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF {1,1}]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Listing 6.2: gSQL++ query to find a) a specific user u, b) messages m1 written by u, c)
messages m2 that m1 replied to, and d) reply chains r from m1 to m2 where the length of r is
equal to 1.

Figure 6.4: Hyracks activity graph to realize the 1-hop query in Listing 6.2.

82

Symbol Symbol Name Concept Description

⊏⊐ Rectangle Activity Denotes a Hyracks activity. Rectangle colors
denote different Hyracks operators (e.g., the
two activities of a SORT operator will be the
same orange color).

⊏⊐+ Stacked
Rectangles

Activity Group Denotes a Hyracks activity group connected
with 1:1 Hyracks connectors. Data flows from
bottom to top in a pipelined manner.

h(. . .) Text Under
Rectangles

Activity
Partitioning

Denotes the partitioning of an activity group.

→ Black Arrow 1:1 Connector Denotes an explicit 1:1 Hyracks connector.

99K Dashed Black
Arrow

M:N Hash
Partition
Connector

Denotes a M:N hash-partition Hyracks con-
nector. The h(. . .) underneath the destina-
tion activity denotes the partitioning key.

⇒ Double Black
Arrow

M:N Broadcast
Connector

Denotes a M:N broadcast Hyracks connector.

⇀ Harpoon Black
Arrow

Wait-For
Activity

Relationship

Denotes a blocking edge (i.e., a wait-for re-
lationship) between two activities. Does not
denote data (record) transfer.

Table 6.1: Table summarizing the notation used for all activity diagrams in this chapter.

undergo a sort before performing the actual index search [27]. External sorting in Hyracks

involves two activities: (1) consuming all of the upstream input and performing a textbook

external sort, followed by (2) merging and forwarding the sorted results downstream. Ac-

tivity (1) must finish before activity (2), and thus the activity diagram includes a blocking

edge (denoted by the harpoon arrow). Once the Messages PIDX SEARCH activity has been

performed, Hyracks has evaluated the (u:User)−[:WROTE]−>(m1:Message) graph pattern.

To find a path of length 1, a zero-length path (assigned the variable r) is built. This zero-

length path accumulates all traversed vertices and edges. As denoted by CREATE PATH(m1),

r includes just the starting vertex record. To evaluate a single REPLY OF hop is to logically

perform a self-JOIN with Messages (assigned the variable m2) using m1.reply id and m2.id.

This self-JOIN is realized by performing another PIDX SEARCH with m1.reply id as the search

83

key. Knowing that Messages is hash-partitioned on its primary key (id), the tuples contain-

ing ⟨u,m1, r⟩ are forwarded to the appropriate machine using a) the same hash function h

used to partition the Messages dataset, and b) the Messages search key: m1.reply id. Again,

the number of index lookups are minimized by performing a local external sort before per-

forming the actual PIDX SEARCH. After performing this primary index search, the record t

is built to capture the traversal of the REPLY OF edge. To conclude the evaluation of the

(m1)−[r:REPLY OF{1,1}]−>(m2:Message) pattern, the previous vertex (m2) and the edge (t)

used to traverse to the previous vertex are appended to the path object (r) to build a new

path object (assigned the variable r bound to APPEND TO PATH(m2, t, r)). ⟨u,m1,r,m2⟩ is

then sent back to the cluster controller process to give back to the Graphix user (shown by

RESULT SINK).

Figure 6.5 visualizes the data transfer between machines in a Graphix cluster for the activity

graph in Figure 6.4. Aside from the final result distribution, data is exchanged at two points:

once at the broadcast connector originating from the Users PIDX SEARCH activity, and again

at the hash-partition connector originating from the CREATE PATH(m1) activity. All other

computation (i.e., the SORT, the PIDX SEARCH, and the ASSIGNs) is performed locally at each

partition. We conclude this section by noting that this approach meets our first design

objective for navigational queries:

Design Objective 1

To realize Graphix, navigational queries should be performed in a partitioned-parallel

manner.

A navigational query in Graphix should (ideally) execute faster given more machines by

being able to leverage not just additional CPUs, but also increased aggregate memory (i.e.,

when more of the total graph fits into memory) and increased disk throughput (i.e., when

the total graph can be loaded into memory faster).

84

Figure 6.5: Instance of the activity graph in Figure 6.4 to realize the 1-hop query in List-
ing 6.2.

85

Three Hop Example .

Having described how Hyracks can be used to evaluate a single-hop gSQL++ query, we will

now discuss how we can extend the previous section to handle m-hop gSQL++ queries where

m is constant (i.e., we explicitly specify the number of hops to traverse). Consider the

query in Listing 6.3, where we are now interested in finding the reply chains r of length 3.

Figure 6.6 describes an activity graph to realize our query. Aside from a few variable name

changes (r ↔ r0, h1 ↔ m2, t1 ↔ t, and r ↔ r1) , the left half of the diagram remains

unchanged from Figure 6.4: to find a path r of m = 3 hops, a path with a single hop (m = 1)

must first be found. This single hop path in Figure 6.6 is assigned the variable r1. From

r1, the same activities used to perform to first hop are used to execute the second hop and

third hops. To evaluate the second hop, Hyracks must a) hash partition on the PIDX SEARCH

key (h1.reply id), b) sort all tuples by the PIDX SEARCH key, c) perform the PIDX SEARCH to

traverse to the next vertex h2, d) assemble the edge record t2, and finally e) append to the

existing path to form a path of two edges and three vertices (r2). The third hop repeats

the exact same process, and concludes with Hyracks sending the tuple ⟨u, m1, r, m2⟩ to

the RESULT SINK.

We finish this section by noting that this approach meets a second design objective for

navigational queries:

Design Objective 2

To realize Graphix, navigation should not require any special auxiliary structures to

be built beforehand.

To determine if a path exists between two vertices, Graphix simply perform many depth-first

searches using a series of JOINs (either realized as a sequence of index searches like our current

example, or using hash-JOINs). As a reminder, Graphix targets a range of queries that access

a few vertices (i.e., highly interactive queries) to a larger fraction (i.e., analytical queries)

86

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF {3,3}]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Listing 6.3: gSQL++ query to find a) a specific user u, b) messages m1 written by u, c)
messages m2 that m1 replied to, and d) reply chains r from m1 to m2 where the length of r is
equal to 3.

Figure 6.6: Hyracks activity graph to realize the 3-hop query in Listing 6.3.

87

of the entire graph. Graphix does not target queries that iterate over the entire graph, as

such use cases are more suited toward graph processing systems like Pregelix. Immediately

after a Graphix user issues a CREATE GRAPH (or specifies one in the WITH clause), they should

be able to query that graph. To determine if a path exists between two vertices, Graphix

should not have to scan all vertices as a preprocessing step (e.g., spending |V |3 time in the

case of Floyd-Warshall).

One-to-Three Hop Example .

The previous two examples dealt with paths of fixed-length hops. In Listing 6.4, we now

consider a variable-length path r of 1 to 3 hops. To realize our query, the activity graph in

the previous section is extended to yield the intermediate paths (illustrated in Figure 6.7).

More specifically, after the first hop (the activity generating r1) and the second hop (the

activity generating r2), a REPLICATE activity followed by a MATERIALIZE activity is added.

The REPLICATE activity duplicates its output (one connector to the subsequent MATERIALIZE

activity, and another to the EXTERNAL SORT activity), while the MATERIALIZE activity is re-

sponsible for writing all computed records to disk for use in the last stage. The last stage

includes the generation of the third hop (the activity generating r) as well as a sequence of

UNION ALL activities to feed results to the RESULT SINK. We note that Hyracks stages contain

mutually exclusive sets of activities. Algebricks chooses to generate a plan with a single

RESULT SINK: even though the tuples after the first hop are not manipulated before reaching

the RESULT SINK, using a single RESULT SINK means that the intermediate results must be

materialized before being used in the final stage.

Figure 6.8 describes an alternative activity graph that no longer sorts before performing

searches on the primary index in order to avoid the blocking needed for run generation fol-

lowed by merging. If we can ensure that the activities used to calculate the first, second, and

third hops are all contained within a single stage, then Hyracks does not need to needlessly

88

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF {1,3}]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Listing 6.4: gSQL++ query to find a) a specific user u, b) messages m1 written by u, c)
messages m2 that m1 replied to, and d) reply chains r from m1 to m2 where the length of r is
between 1 and 3.

Figure 6.7: Hyracks activity graph to realize the 1-to-3-hop query in Listing 6.4.

89

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF {1,3}]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.4: gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2 where the length
of r is between 1 and 3.

Figure 6.8: Hyracks activity graph to realize the 1-to-3-hop query in Listing 6.4 without
sorting.

90

materialize. Figure 6.8 demonstrates an approach that meets our third design objective for

navigational queries:

Design Objective 3

To realize Graphix, our implementation should not block globally to evaluate a single

hop at a time, as each path grows independently per hop.

Leveraging their independence property, Graphix should be able to evaluate paths in a

more pipelined manner when compared to traditional graph processing system methods

(synchronous evaluation is common). The activities used to evaluate a hop should not

contain any blocking edges, ultimately forbidding plans involving operations like aggregation,

sorting, and materialization. While these restrictions ultimately limit the expressiveness of

the computations that can be performed, we would like to remind the reader that we are using

Hyracks as a compilation target for gSQL++ queries. Recursion in gSQL++ is only expressed

in the form of navigation, so such plans will not be generated. We point to GiraphUC [30]

and Mitos [29] for other systems that also leverage similar independence properties, though

for more general recursion.

To further illustrate (and emphasize) how each path grows independently of one another,

consider the example in Figure 6.9. In this example, the user u has written one message m1

where the reply chain to both messages has a branching factor of 2 (resulting in 21+22+23 =

14 total paths). Focusing on the orange filled record after the third hop ⟨u, m11, r31, h31⟩,

we observe that the path r31 is composed of the previous two hops:

r31 = APPEND TO PATH (h31, t31, r21) (6.1)

r21 = APPEND TO PATH (h21, t21, r11) (6.2)

r11 = APPEND TO PATH (h11, t11, r01) (6.3)

r01 = CREATE PATH (m11) (6.4)

91

Figure 6.9: Runtime visualization of the Hyracks activity graph in Figure 6.8, demonstrating
how paths grow independently of one another.

92

r3 ultimately contains all vertices and edges involved in its traversal, all of which can thus

be accessed directly later downstream.‡ As seen in Section 5.3, a path in Graphix is an object

containing two array-valued fields: Vertices and Edges. The CREATE PATH function returns a

record with a single entry in the Vertices array (in Equation 6.1, m11) and an empty Edges

array. The APPEND TO PATH function returns a record that extends the Vertices and Edges

arrays of the input path record. If we factor out the use of previous paths in Equation 6.1,

we get the following:

r31 = path with vertices (m11, h11, h21, h31) and edges (t11, t21, t31) (6.5)

r21 = path with vertices (m11, h11, h21) and edges (t11, t21) (6.6)

r11 = path with vertices (m11, h11) and edges (t11) (6.7)

r01 = path with vertex (m11) and zero edges (6.8)

6.2.2 Recursion Foundations

We will now discuss recursion for Graphix in Hyracks. As a reminder, Graphix only gen-

erates recursive Hyracks jobs that do not possess any blocking edges in-the-loop. Systems

like Mitos [29] and Naiad [46] similarly enable the specification of explicitly looping data

flows,§ however these systems were designed for more general iterative computation (e.g.,

computations like PageRank and K-Means). In the context of a system like Hyracks, a re-

cursive solution should ideally a) utilize the Hyracks computational model of operators and

connectors to explicitly express data flow cycles, b) work with a distributed shared-nothing

cluster of machines, c) respect some (aggregate) memory budget (spilling to disk when this

budget is exceeded), and d) serve as a compilation target for jobs generated by Algebricks.

‡Graphix possesses an optimization that minimizes the vertex and edge information contained in a path
object when the contents of a path are not required. See Section 6.4 for more details.

§We contrast explicit cyclic data flows (e.g., those generated by Graphix for use in Hyracks) with systems
that issue acyclic data flows while externally managing the looping aspects. See Subsection 6.2.9 for an
example of such a solution.

93

Consider our original query (Listing 6.1, repeated below for ease of reference) where r is

unbounded. Recognizing the commonalities used to evaluate the first, second, and third hops,

it follows that the solution involves using a UNION ALL and a REPLICATE activity to repeat the

hop finding until all reply chains are found. We depict such an activity graph in Figure 6.10,

where the UNION ALL now precedes the PIDX SEARCH. The REPLICATE activity is used to

forward tuples to the RESULT SINK and back to the UNION ALL (to next perform the next hop).

To handle cycles in the data, a SELECT activity is added before the APPEND TO PATH activity

to avoid forwarding paths that repeat edges, vertices, or both (we refer back to Section 5.3

for a more formal discussion about handling cycles). All activities in the loop of Figure 6.10

are surrounded by a “lively, safe, mortal” block, which describes a hypothetical protocol

implemented by each surrounded activity to solve three problems that arise due to the

presence of cycles in a Hyracks graph of activities: 1) the problem of liveness, where no

progress is being made, 2) the problem of safety, where activity instances deadlock due to an

over-allocation of resources, and 3) the problem of mortality, where activity instances never

terminate.

We begin our discussion with a review of the “internals” of Hyracks activities. A Hyracks

activity must, at a minimum, implement the IFrameWriter interface.¶ The IFrameWriter

interface consists of the following methods, all of which are only called by their upstream

activity.

1. open(), which performs any initialization (e.g., the instantiation of some objects, the

allocation of memory, etc. . .) and subsequently calls open() for its own downstream

activities;

2. nextFrame(f), which accepts an input frame f and performs some computation using

the contents of the frame;

¶Activities that act as a source in an activity cluster (i.e., activities that do not have any input to
themselves) do not implement this interface, but source activities cannot appear inside of a cyclic activity
graph (otherwise they would not be sources). For the sake of clarity, we will consider each activity as both
a producer and consumer in this section.

94

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.1. gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

Figure 6.10: High level overview of a Hyracks activity graph to realize the query in Listing 6.1.

95

Figure 6.11: Depiction of task t1 forwarding its output buffer to task t2.

3. flush(), which eagerly forwards any partial frame data that the activity currently has

buffered to its downstream activities;

4. fail(), which performs any required actions to fail in a “safe” manner and subsequently

calls fail() for its own downstream activities; and

5. close(), which a) deallocates any acquired resources, b) forwards any partial frame

data that the activity currently has buffered to its downstream activities, and c) calls

close() for its own downstream activities.

The typical lifecycle of a Hyracks activity instance (i.e., a task) involves (i) getting its own

open() method called and calling open() for its own (downstream) consumers, (ii) accepting

full frames of tuples from an upstream producer via its own nextFrame(f) method and calling

the nextFrame(f) method for its own consumers when the activity’s output buffer becomes

full, and finally (iii) getting its own close() method called and calling close() for its own

consumers.

Now consider the two-task cluster composed of tasks t1 and t2. Task t1’s output is con-

nected to task t2’s input, and task t2’s output is connected to task t1’s input. We point

to Figure 6.11, which depicts an instance of t1 directly pushing a frame to t2 by call t2’s

nextFrame(f) method. To reflect how most Hyracks activities implement the IFrameWriter

interface, the activities associated with t1 and t2 will only call each other’s nextFrame(f)

method when: 1) their own output buffer frame is full or 2) their upstream producer has

indicated that it has no tuples left to offer (i.e., by having calling its own close() method

96

called). This IFrameWriter implementation maximizes the information held in a frame be-

fore the activity itself forwards the output buffer frame downstream, ultimately leading to

better utilization of frame-transferring resources like network bandwidth. Moving back to

our example in Figure 6.11, we note that task t1 is forwarding a full frame from its output

buffer to the input of t2. Task t2 has a partial frame, so it does not forward its output to t1

yet.

6.2.3 Property #1: Liveness

We will now consider the liveness property, which describes a group of tasks that are always

“making progress”. In the context of navigation, liveness describes a group of tasks that

will eventually generate all (satisfiable) paths. The top portion of Figure 6.12 demonstrates

a violation of this liveness property: two tasks (of the same configuration as Figure 6.11)

possess the potential to perform more work but will not due to their “forward when full”

implementation. t1 has a partially full output buffer that it could forward to t2 but does

not. Similarly, t2 has a partially full output buffer that it could forward to t1 but does not.

A starting point to remedy this liveness violation involves adding the following requirements

for each task within a loop: i) the ability to forward partially full output buffers, and ii) some

method of invoking the former ability. We note that the former has already been implemented

for all activities, as the flush() method (originally purposed for AsterixDB feeds), so our

solution only needs to consider the latter (i.e., by invoking the flush() method).

At a high level, to guarantee liveness we must first implement a form of inter-task commu-

nication beyond the method calls provided by the IFrameWriter interface. Our solution is

an in-band one (see Subsection 6.2.9 for a description of a potential alternative out-of-band

solution) that leverages the IFrameWriter interface that each task already implements: 1) we

define two classes of frames: (i) a data frame, full of tuples, and (ii) a new message frame

97

Figure 6.12: A depiction of a liveness violation (top) and a mechanism to prevent such
violations (bottom).

used to pass information to other tasks downstream. 2) we non-invasively “decorate” each

activity that may violate liveness (i.e., those inside of a loop) to recognize and act on these

new message frames. The bottom portion of Figure 6.12 depicts our solution in action: the

decorated activity instance t2 generates and forwards a message frame containing a RELEASE

directive to the decorated activity instance t1 using t1’s nextFrame(f) method, and t1 then

calls flush() to forward its partial frame to the input of t2. In order to get task t2 to forward

its partial frame, t1 would need to send a message frame to t2 (not depicted). Message frames

can be viewed as a form of “punctuation” [71], which (in the context of stream processing)

98

are used as signals for stream processors to release state. Note that Figure 6.12 is a partial

solution: we will detail when and who generates these message frames after addressing the

two other properties.

6.2.4 Property #2: Safety

Our second property of interest is the safety property, which (for our purposes) describes

a group of tasks that will never deadlock. The top portion of Figure 6.13 demonstrates a

violation of this safety property: both tasks (of the same configuration as the previous two

examples) have full input and output buffers, thus no progress can be made. The resources in

contention here are frames (specifically, frames used to perform network I/O). In Figure 6.13,

task t1 has reserved all frames within its budget and is prepared to send these frames to task

t2. t2, however, cannot receive these frames from t1 since t2 has reserved all frames within

its budget and is prepared to send these frames to task t1. Neither t1 nor t2 is aware of the

fact that their actions are causing a deadlock.

To remedy this deadlock violation, we designate (at compile time) one task within a cyclic

task group to avoid acquiring “shared resources” by simply moving any acquired frames (via

its nextFrame(f) method) to a separate secondary buffer. This separate buffer possesses

its own memory budget with the ability spill to disk when full. After some point, the task

associated with the designated task will then forward everything stored in its secondary

buffer, repeating this buffer-and-forward process until all frames are exhausted. The bottom

portion of Figure 6.13 depicts our solution in action: task t1 is designated to store each frame

sent by t2 to its own secondary buffer. After t2 has given all of its frames to t1, t1 then forwards

all of the frames in its secondary buffer to task t2. At a glance, this buffer-and-forward

process may seem like Graphix is performing some global synchronization at each step of

the computation. We remind the reader here of the granularity of our explanations and

99

Figure 6.13: A depiction of a safety violation (top) and a mechanism to prevent such viola-
tions (bottom).

100

examples thus far: we have been working with tasks (i.e., activity instances, not activities).

As we will later see, Graphix can perform this buffer-and-forward process locally without

any need for inter-partition synchronization.

6.2.5 Property #3: Mortality

The last property we will consider is the mortality property, which guarantees that every

task will eventually terminate (i.e., call close()) when there is no work left to do. For task

groups with cycles, we can easily show a violation of this mortality property. The top portion

of Figure 6.14 demonstrates two tasks t1, t2 that could terminate but do not. In order for

task t1 to finish, its upstream producer t2 must call t1’s close() method. Conversely, task

t2 will only call the close() of t1 when task t1 calls t2’s close() method. Clearly, neither

t1 nor t2 can call close(). This termination problem is inherent to all Hyracks jobs with

cycles, as a task is only aware of its upstream producers (indirectly via the IFrameWriter

interface).

We will first detail our solution for a single partition and later show that we can remedy this

mortality violation globally so as to adhere to our previously defined “non-globally-blocking”

objective. To start, we note that a task t can only reason about the termination status of

task t’s immediate upstream producer (i.e., by having t’s own close() method invoked).

Our solution requires i) designating (at compile time) a task to call close() when there

exists no tuples left to process, ii) getting all tasks within the loop to report on their status,

and iii) sending the statuses of each task from (the previous item, ii) to the designated

“close()-er” task. Graphix realizes all of the former requirements by extending the use of

message frames in the liveness section (Subsection 6.2.3). The bottom portion of Figure 6.14

demonstrates a high level overview of this extension for our example two-task cluster. The

first step starts with task t2 giving the RELEASE directive along with an uncolored marker

101

Figure 6.14: A depiction of a mortality violation (top) and a mechanism to prevent such
violations (bottom).

102

inside a message frame to task t1 via t1’s nextFrame(f) method. If task t1 has tuples left

to process, it will color in the marker. Our example shows t1 pushing an uncolored marker

frame downstream (back to t2), denoting that t1 has no tuples left to process. Task t2 sees

that t1 has left the marker uncolored and therefore it calls the close() method of t1. t1 will

subsequently call the close() method of t2 (not depicted), terminating the computation.

Our use of message frames was inspired by the use of punctuation in the FFP (flying fixed

point) operator [15] for the problem of cyclic stream processing.

6.2.6 Fixed Point Operator (1-Machine)

Returning to our original query (Listing 6.1), Figure 6.15 defines an activity graph that

satisfies our liveness, safety, and mortality properties. As described in previous three sec-

tions (Subsection 6.2.3, Subsection 6.2.4, and Subsection 6.2.5), the solution to each problem

caused by cycles in the task graph involved (at a minimum) elevating the responsibility of

some designated task. Starting at the bottom right, we define a new activity group con-

taining a FIXED POINT operator that essentially elevates the responsibility of the UNION ALL

of Figure 6.10. Instances of the FIXED POINT operator are responsible for: (i) generating

message frames with the RELEASE directive and an uncolored marker to forward to their

immediate downstream task (e.g., the PIDX SEARCH); (ii) buffering incoming frames from

the REPLICATE task to maintain safety; and (iii) determining whether or not it is appropri-

ate to call close(). Each task in the loop (t ∈ TLOOP, where TLOOP represents a cyclic task

group) have been decorated with “MESSAGE AWARE”. A decorated activity acts as a proxy

for the open(), close(), flush(), and fail() methods of t, but alters the functionality of

nextFrame(f) upon receiving a message frame to: (a) call t’s flush() method; (b) color the

marker of the message frame if the previous flush() call sent any tuples downstream; and

(c) forward the potentially modified message frame to its downstream consumer. We depict

this task decoration in Figure 6.16. To localize the use of message frames (thus avoiding

103

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.1. gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

Figure 6.15: Hyracks activity graph to realize the query in Listing 6.1 that is live, safe, and
mortal.

104

Figure 6.16: Illustration of decorating an activity instance (i.e., task) to non-invasively add
message-handling functionality.

having to decorate all downstream activities in a plan with MESSAGE AWARE), a MESSAGE SINK

activity is used to only forward data frames downstream.

Note that the “modify-and-forward” action that each decorated task performs here for mes-

sage frames allows the FIXED POINT to reason about the status of all tasks in the loop after

generating the message frames. For an instance of the activity graph in Figure 6.15, the

following actions allow the FIXED POINT instance to reason about the status of its looping

task group:

1. the FIXED POINT instance pushes the message frame (denoted as fm) to the decorated

PIDX SEARCH task (via the PIDX SEARCH task’s nextFrame(f) method);

2. the decorated PIDX SEARCH task calls its own flush() method, colors the marker in fm

if flush() forwarded any tuples, and forwards fm to its downstream decorated ASSIGN

task (via the ASSIGN task’s nextFrame(f) method);

3. the decorated ASSIGN task calls its own flush() method, colors the marker in fm if

flush() forwarded any tuples, and forwards fm to the decorated SELECT task;

4. the decorated SELECT task calls its own flush() method, colors the marker in fm if

flush() forwarded any tuples, and forwards fm to the decorated ASSIGN task;

105

5. the decorated ASSIGN task calls its own flush() method, colors the marker in fm if

flush() forwarded any tuples, and forwards fm to the decorated REPLICATE task;

6. the decorated REPLICATE task calls its own flush() method, colors the marker in fm

if flush() forwarded any tuples, and forwards fm to its downstream to both the

MESSAGE SINK task (which will ultimately drop the marker frame to prevent it from

reaching the RESULT SINK) and the FIXED POINT.

If FIXED POINT receives a message frame containing a marker that has been colored, then

FIXED POINT knows that at least one task within the loop has generated more tuples (thus, it

would be erroneous to call close()). In the case of a colored marker, FIXED POINT generates

a new message frame containing the RELEASE directive and an uncolored marker to push

downstream. If FIXED POINT receives a message frame containing a marker that has not

been colored, then FIXED POINT can conclude that the task loop has no tuples left to process

if and only if there are no other task groups (see the next section for reasoning about the

distributed case). When FIXED POINT has no tuples left to process, FIXED POINT calls the

close() method of its downstream consumer to close all activities within the loop.

6.2.7 Fixed Point Operator (n-Machines)

Our previous section detailed the principles for navigational queries on a single partition.

One of the desideratum for Graphix, however, was to execute graph queries in a partitioned-

parallel manner. In this section, we will discuss how to apply the previously described

principles in a distributed setting.

We begin our discussion by reviewing the granularity of a Hyracks stage (i.e., an activity

cluster): a Hyracks stage executes on a cluster of machines, where each machine executes (in

parallel) computation (i.e., a task cluster) expressed using smaller predefined computation

blocks (i.e., a task). Consider two activities AA and AB, and group of activities FP that

106

Figure 6.17: Example cyclic Hyracks activity group realized across three machines as three
task clusters.

compose the FIXED POINT operator. The output of activity AB connects to the input of the FP

activity group via a hash partitioned connector, the output of the FP activity group connects

to the input of activity AA via a 1:1 connector, and the output of activity AA connects to

the input of activity AB via a 1:1 connector. Given a cluster of three machines, Hyracks

realizes our group of activities as three task clusters: 1) a task cluster of {tA1, tB1, FP1}, 2) a

task cluster of {tA2, tB2, FP2}, and 3) a task cluster of {tA2, tB2, FP2}. We depict these task

clusters in Figure 6.17.

The liveness and safety properties of the previous section do not require coordination from

tasks outside of their partition. Our mortality property, however, requires the consideration

of all tasks across all task clusters to avoid premature / incorrect calls to close(). Similar

to how we designated the FIXED POINT task group to manage the termination of a single

task cluster, we designate one FIXED POINT task group out of all FIXED POINT task groups to

coordinate the termination for every task cluster. In Figure 6.17 (and by default in Graphix),

we designate the FIXED POINT in the first machine as the “coordinator” to manage this task

cluster state. To facilitate communication between each FIXED POINT across machines, a

107

custom communication channel is used between the designated FIXED POINT instance and

the other FIXED POINT instances‖ (depicted in Figure 6.17 by the sparse dotted lines).

To minimize the network chatter between machines and to reduce the message-to-data-

frame ratio during runtime, message frames do not travel across the network at partitioned

or broadcast connectors. Instead, each FIXED POINT task group (with the exception of

the designated coordinator task group) only receives message frames for tasks local to the

FIXED POINT’s specific task cluster. For example, the FIXED POINT FP3 in Figure 6.17 only

needs to manage tasks tA3 and tB3. FP3 then summarizes and transmits the status of tasks

tA3 and tB3 to the coordinator FIXED POINT FP1. Similarly, FP2 manages tasks tA2 and tB2

(transmitting a summarized status of tA2 and tB2 to the coordinator FIXED POINT FP1). Using

the statuses transmitted by FP2 and FP3 (as well as its own status on tasks tA1 and tB1), the

coordinator FP1 is able to reason about and act on the termination status of every task of

the activity group.

Figure 6.18 demonstrates the individual processes that compose the FIXED POINT operator

distributed across our original two machine setup. We give an overview each block of Fig-

ure 6.18 below:

Recursive Task The task contained within a looping task cluster. In the activity graph

of Figure 6.15, the instances of the decorated REPLICATE activity refer to the recursive

input tasks.

Anchor Task The task used to initialize the start of the loop. In the activity graph of Fig-

ure 6.15, the instances of the ASSIGN (ro <= CREATE PATH(m1)) activity refer to the

anchor input tasks.

‖In practice, this communication channel between different FIXED POINT task groups is realized using an
M:N hash-partitioned connector with a self-loop connecting the FIXED POINT back to itself. Consequently,
we did not need to modify the task distribution infrastructure built for AsterixDB.

108

Figure 6.18: Internal processes of the FIXED POINT operator, realized as a set of activities
(which are then realized as a set of tasks).

Output Task The immediate downstream task of the FIXED POINT task group. In the

activity graph of Figure 6.15, the instances of the decorated PIDX SEARCH activity refer

to the output tasks.

Input Manager The task that performs the UNION ALL of data frames and manages the

transmission (and eventual receipt) of message frames. This task captures all the

functionality of the previous section to preserve the liveness and safety properties. The

input manager task is also used by the election participant task to call the close()

method of the output task.

Event Queue The task that (a) listens for “events” from the election coordinator, and

(b) listens for events from the election participants (only applicable to the desig-

109

nated coordinator FIXED POINT task group). Each received event at this event queue

is buffered to be read on-demand by the election processes.

Election Participant The task that (a) collects the status of its local task cluster (via the

input manager task), (b) transmits this aforementioned status to the election coordi-

nator’s event queue, and (c) listens for coordinator-related events (e.g., when to call

close()) via the election participant.

Election Coordinator The task that works in tandem with every election participant pro-

cess across each machine to guarantee that each looping task cluster has no tuples left

to offer downstream.

To scale the FIXED POINT operator outward (and generalize to larger Hyracks/AsterixDB

clusters of size n), Graphix simply duplicates the Fixed Point Operator Runtime task set in

node controller #2 (abbrv. NC2) of Figure 6.18 to NC3, NC4, . . ., NCn.

We now move to the actions the coordinator FIXED POINT must take to inform each “partic-

ipant” FIXED POINT that it can call close(). Figure 6.19 depicts the algorithm the election

coordinator task performs (illustrated as a state machine). The coordinator begins at the

STARTING state, where it take no action until its local anchor input is exhausted (i.e., when

the anchor input task calls the close() method of the input manager belonging to the same

task group as the election coordinator task). The next state is the WAITING state. To move

from the WAITING state, each election participant must first send the REQ event to the coor-

dinator. This REQ event is given to the coordinator by a participant when the participant

itself observes that there are no tuples (we detail the participant state machine next). When

the coordinator receives a REQ event from each participant, the coordinator can conclude

that each participant has observed a lack of tuples in its local task cluster for some instant.

Calling close() now would be erroneous, however, because task clusters give tuples to other

task clusters asynchronously. We can easily visualize an example where a participant sends

REQ to the coordinator, only to receive tuples immediately after transmitting its status. To

110

Figure 6.19: State machine representing the algorithm the FIXED POINT coordinator executes
to terminate its associated set of looping task clusters.

111

handle this asynchronous nature, the status checking that each task cluster performs is se-

rialized in order to guarantee correctness [70, 45]. Skipping ahead to the VOTING B state to

CLOSED transition, we see the election coordinator process coordinating the serialization of

this status checking to reach the CLOSED state:

1. a participant is drawn (without replacement) from all participants and sent a VOTE

event to re-transmit its message frame and check the status of its local task cluster;

2. the participant replies with an ACK (denoting that the participant has observed no

tuples locally);

3. the previous two steps are repeated for all participants; and

4. the TERMINATE event is sent to all participants.

If any participant replies with a NACK (denoting that the participant has observed tuples

locally), our coordinator sends the CONTINUE event to each participant while transitioning

back to the WAITING state. The coordinator then waits until each participant transmits a

new REQ event to perform another election.

To minimize the impact of serializing the task cluster status checking, the status checking is

divided into two phases: the A phase and the B phase. During the A phase, the coordinator

is in the VOTING A state. Instead of serializing the status checking, the coordinator broadcasts

the VOTE ON A event to each participant. The purpose of this stage is to increase the liveness

/ throughput of the looping computation, as the message frame that each participant uses

to check the status of its local task cluster also contains the RELEASE directive to flush the

buffers of its corresponding tasks. A participant during the A phase responds with either

ACK ON A or NACK ON A. When all participants vote with ACK ON A, the coordinator moves to

the B phase which executes the aforementioned serialized status checking.

To conclude our discussion on the FIXED POINT operator, we describe the algorithm that every

election participant task performs in Figure 6.20. A participant begins in the STARTING state,

112

where it does not perform any election related actions until its local anchor input task calls

the close() method of the input manager task. The next state is the OBSERVING state, where

we expect a participant to spend the majority of its runtime (relative to the processing

of the loop). To transition out of the OBSERVING state into the WAITING state, the election

participant task works with the input manager task to push a message frame with the RELEASE

directive and an uncolored marker. Using the aforementioned “modify-and-forward” actions

of every decorated task in the loop, the message frame will eventually arrive back to the

input manager task. If the marker is colored in, the participant stays in the OBSERVING state

and pushes a new message frame with an uncolored marker. If the marker is not colored

in, the participant transitions to the WAITING state. Note that a local task cluster never has

more than one message frame in circulation (illustrating another design point to minimize

the message-to-data-frame ratio).

Once a participant is in the WAITING state, the participant sends a REQ event to the coordina-

tor. While in this state, the participant does not transmit any message frames. Only upon

receiving the VOTE ON A response event from the election coordinator can the participant move

to the next state: VOTING A. In the VOTING A state, a participant will repeat its status check-

ing procedure (i.e., sending the message frame with a RELEASE directive and an uncolored

marker). If a participant receives an uncolored marker in return, the participant sends the

ACK A event to the election coordinator. If a participant receives a colored marker in return,

the participant sends the NACK A event to the election coordinator and eagerly returns back

to the OBSERVING state (denoted by the dashed line). An eager transition back to OBSERVING

is meant to increase the throughput of tuples, as the participant is already aware that the

coordinator is going to respond with CONTINUE. The self-loop “RECEIVE CONTINUE” transi-

tions for the OBSERVING and WAITING states address two cases where a participant receives

the CONTINUE response from the coordinator after an eager transition out of the VOTING A

state.

113

Figure 6.20: State machine representing the algorithm that every FIXED POINT participant
executes to work with its coordinator to call close().

114

When a participant receives the VOTE ON B event, it again repeats its status checking pro-

cedure. If a participant receives a colored marker, the participant replies with NACK B and

waits∗∗ for the subsequent CONTINUE event to transition back to the OBSERVING state. When

a participant receives an uncolored marker in return, the participant sends the ACK B event

to the election coordinator. Once all participants have sent ACK B back to the coordinator,

the coordinator will broadcast TERMINATE to every participant. Finally, each participant will

call its downstream task’s close() method to terminate the loop computation.

6.2.8 Additional Hyracks Operators

In addition to the aforementioned FIXED POINT and MESSAGE SINK operators, Graphix also

provides two additional operators to optimize navigation: i) the PERSISTENT BUILD JOIN

operator, used to evaluate edge hops using hybrid hash join principles, and ii) the TOP K

operator, used to bound the number of paths yielded by a looping activity group. In this

section, we detail both operators.

Persistent Build JOIN (PBJ) Hyracks Operator .

Each activity graph for navigation thus far has assumed the existence of a primary index

on the JOIN field used to evaluate each edge hop (e.g., the primary index of the id field for

the Messages dataset). Graphix, however, should work independently of how the underlying

data is represented. For non-indexed data, we initially considered a nested-loop JOIN for

each edge hop for each path, but such a direction would not benefit from the plethora of

research that has gone into hash JOINs over the years [36]. Knowing that an edge hop is

∗∗In contrast to the previous A phase, a participant does not wait for other participants after sending
NACK B in the B phase. Thus, it simply waits to receive the inevitable CONTINUE event to simplify our state
machine.

115

always realized as an equi-JOIN (see Section 6.3 for more details), we instead decided to use

and extend the optimized hybrid-hash JOIN Hyracks operator.

Given the equi-JOIN R ▷◁ S, a hash JOIN requires two activities: 1) the build activity, which

scans R (or S) to build a hash table to load into memory, and 2) the probe activity, which

iterates through all of S (or R) to probe the hash table and evaluate the JOIN itself. To handle

data volumes larger than memory, Hyracks provides a hybrid-hash JOIN operator that extends

the previous activities to leverage the disk when appropriate. More specifically, hybrid-hash

JOIN will “partition” (not to be confused with partitioning across machines in a cluster) R

and S according to some hash function while operating the two aforementioned activities,

with some partitions being spilled to disk [62]. Once the probe activity has exhausted all

of its input (i.e., when the close() method is called for the probe), hybrid-hash JOIN will

recursively build, probe, partition, and spill until every probe tuple has been considered.

The Hyracks hybrid-hash JOIN operator in particular contains several optimizations to be

more robust to skew [37], making this JOIN operator a good candidate for evaluating vertices

with a high degree.

In order to use hybrid-hash JOIN for path navigation, our operator must be able to forward

any spilled tuples when a message frame containing the RELEASE directive is received and

not have to rebuild the hash table after forwarding. In the context of the existing Hyracks

hybrid-hash JOIN operator, we note that hash table used for the initial probe is discarded

to maximize the memory available to perform the spilled-tuple-JOINing. For navigational

queries in Graphix, we provide an extended version of the optimized hybrid-hash JOIN that

persists the initial hash table in memory. All Hyracks operators must adhere to a memory

budget [39], thus we add an additional parameter α to the hybrid-hash JOIN. Given a memory

budget M , α determines the ratio of memory dedicated to (i) persisting the hash table in

memory (α ·M) vs. (ii) performing the spilled-tuple-JOINing action ((1−α) ·M). By default,

we set α = 0.5 (though potential future work involves finding a more optimal ratio).

116

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.1. gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

Figure 6.21: Hyracks activity graph to realize the query in Listing 6.1 using PBJ operator
(whose constituent activities are surrounded by the red dotted box) to evaluate navigational
edge hops.

117

Figure 6.21 depicts an activity graph using the previously specified operator (denoted as

persistent build JOIN, or “PBJ” for short). In the stage prior to navigation, Graphix will

first scan the entire Messages dataset to “partition”, build the hash table, and spill Messages

tuples if necessary. In the same stage, Graphix will (in parallel) run the PIDX SEARCH →

SIDX SEARCH → EXTERNAL SORT activity group. Once both of the aforementioned activity

groups have finished, the next stage starts to perform the navigation itself. When the JOIN

activity of PBJ receives a message frame with the RELEASE directive, it calls the close()

method of the original Hyracks optimized hybrid-hash JOIN to yield all spilled tuples and

maintain the liveness property.

Hash Partitioned Top-k Hyracks Operator. .

Recall from our discussion on subgraph reachability (Subsection 5.4.3) that enumerating all

paths will yield a massive number of results for large enough graphs. For the majority of

queries, however, most users are concerned with a select few (k) paths between two vertices

v1, v2. As discussed in Subsection 5.4.4 and Subsection 5.4.5, users can express which k

paths they are interested in using some monotonically increasing weight function (realized

in Graphix using a SQL++ GROUP BY . . . GROUP AS clause). In this section we introduce the

TOP K operator, used to supplement the evaluation of shortest k paths, cheapest k paths,

and any k paths (i.e., reachability) queries.

At a high level, the TOP K operator constructs a hash-distributed LSM-based B+ tree where

(a) the sort key is composed of the endpoint vertices of a path, and (b) the payload is the

weight associated with the path. For each tuple in a frame (where a tuple contains endpoint

vertices (v1, v2), a path p, and the weight associated with a path c(p)), a TOP K instance will

first look up the endpoint vertices (v1, v2) in the B+ tree. If there exists no entry in the

B+ tree with these endpoints, TOP K will forward the tuple downstream and store the tuple

118

⟨v1, v2, c(p)⟩ in the tree. If an entry with the key (v1, v2) is found in the B+ tree, TOP K takes

one of three actions:

1. If TOP K finds fewer than k other entries with the search key (v1, v2), it forwards the

tuple downstream and stores the tuple ⟨v1, v2, c(p)⟩.

2. If TOP K finds exactly k existing entries with the search key (v1, v2), TOP K must then

determine if the working tuple has a lower c(p) value than any other entry in the B+

tree. If TOP K finds that the working tuple has a higher c(p) value, then TOP K does not

forward the working tuple downstream.

3. If TOP K finds exactly k existing entries with the search key (v1, v2) and TOP K finds

that the working tuple has a lower c(p) value than any of the matching k B+ entries,

TOP K will a) delete the B+ entry with the largest c(p) value, b) forward the working

tuple downstream, and c) store the tuple ⟨v1, v2, c(p)⟩.

We note that a tuple yielded by a TOP K instance might not necessarily be in the final set

of k tuples containing the cheapest paths, as a cheaper path may be discovered later in the

process. These false positives need to be filtered out by other operators downstream.

Consider the shortest path query in Listing 6.5, which asks for the shortest path of REPLY OF

edges between two vertices m1 and m2. Figure 6.22 depicts an activity graph using the TOP K

operator to realize the Listing 6.5 query. In the ASSIGN immediately above the APPEND TO PATH

ASSIGN activity, leng (i.e., the weight of a path r1) is computed by determining the path

length LEN(r1.Edges). The outbound connector of this ASSIGN activity then hash partitions

its output on the B+ tree search key (m1.id, h1.id) to distribute the work across all task

clusters. At the TOP K activity, paths r1 will be selectively filtered out according to the

criteria above. All paths outside the loop (after the MESSAGE SINK activity) are given to

1) an EXTERNAL SORT activity, followed by 2) a FORWARD SORT activity (to merge and forward

the results of the SORT activity), followed by 3) a (pre-clustered) GROUP BY activity sequence to

ultimately group all filtered paths by their endpoints m1 and m2. The activity group attached

119

Figure 6.22: Hyracks activity graph to realize the shortest path query in Listing 6.5 without
enumerating all paths.

120

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 GROUP BY
8 m1.id AS m1 id ,
9 m2.id AS m2 id
10 GROUP AS g
11 LET
12 shortestPath = (
13 FROM
14 g
15 SELECT VALUE
16 g.r
17 ORDER BY
18 LEN(g.r.Edges) ASC
19 LIMIT
20 1
21)[0]
22 SELECT
23 m1 id ,
24 m2 id ,
25 shortestPath ; � �
Listing 6.5: gSQL++ query to find the a) messages m1 written by a specific user u, b) messages
m2 that m1 replied to, and c) the shortest reply chain r from m1 to m2.

to the right of the GROUP BY is a subplan that corresponds to the shortestPath subquery

in Listing 6.5. As demonstrated in the shortest path example of the query model section

(see Subsection 5.4.4), the subplan corresponding to the shortestPath subquery executes

once per group. If TOP K does not yield any false positives for some group g, the TUPLE SOURCE

activity in the subplan iterating over g will yield a single tuple to its downstream activity

(the ASSIGN). If TOP K did, however, yield false positives for some group g, the subsequent

EXTERNAL SORT, FORWARD SORT, and LIMIT activities in the subplan performs the removal of

false positives.

121

6.2.9 “Paths Not Traveled” (Alternatives)

Having detailed the approach Graphix takes to handle navigational queries in Hyracks, this

section will briefly describe a few “paths not taken” (i.e., solutions that we did not use).

Recall that the FIXED POINT operator is responsible for a) forwarding a message frame with

the RELEASE directive downstream to get all tasks within the loop to invoke their own flush()

method, b) buffering all tuples that arrive at its input, and c) calling close() method of its

downstream task to terminate the loop. This section describes two alternative approaches

for maintaining liveness, safety, and mortality: i) the use of a manager process that directly

communicates with each task in the loop, and ii) the use of an external recursion manager

for circumventing the liveness, safety, and mortality properties that are inherent to cyclic

activity graphs.

Figure 6.23 describes a potential alternative activity graph to our original activity graph

in Figure 6.15 which would a) decorate each activity in-the-loop with a MANAGER AWARE dec-

orator (not to be confused with our original MESSAGE AWARE decorator), b) introduce a new

MANAGER process that directly communicates to each decorated activity, and c) sit in the

middle of the REPLICATE and UNION ALL activities. To maintain the liveness property, the

MANAGER process would directly inform each activity in-the-loop (via the MANAGER AWARE dec-

orator) to call the decorated activity’s flush() method. To maintain the safety property,

the MANAGER process would maintain a secondary buffer to hold the incoming tuples from

the REPLICATE activity. To maintain the mortality property, the MANAGER process would be

responsible for calling the close() method of the UNION ALL activity after correctly reasoning

that there exists no tuples left to process. This Figure 6.23 solution is reminiscent of how

data flow systems like Naiad [47] track progress. While Naiad is able to minimize the chatter

its MANAGER process uses to track progress, Naiad ultimately requires explicit management

of each and every activity in-the-loop. We contrast this potential solution to our original

122

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.1. gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

Figure 6.23: Potential alternative Hyracks activity graph to realize the query in Listing 6.1
that relies on some manager process directly communicating with each task in-the-loop.

123

solution in Figure 6.15, where the FIXED POINT operator is agnostic of any computation that

occurs in the loop.

Figure 6.24 describes a potential alternative activity graph to our original activity graph

in Figure 6.15 which would a) cut the original Hyracks job (i.e., the operator graph) along

the operator subgraph to compute the path, b) execute each path hop synchronously as a

single job via an external recursion manager, and c) terminate when this external recursion

manager observes no work. At a high level, Figure 6.24 can also be thought of as the “bulk-

synchronous-parallel” (BSP) potential alternative to recursion in Graphix. Note that the

activity graph to execute each edge hop here is acyclic. Consequently, liveness, safety, and

mortality (with respect to a single Hyracks job) do not need to be addressed. Recursion is

realized in Figure 6.24 via an external recursion manager. This external recursion manager is

responsible for issuing the same Hyracks job until a least fixed point is reached. Figure 6.24

is the approach adopted by Pregelix [13], a graph processing system that acts on top of

Hyracks to realize graph computations like PageRank. We argue, however, that Figure 6.24

assumes too little about the specific problem of path navigation in Graphix. We contrast this

alternative solution to our original solution in Figure 6.15, which leverages the fact that path

navigation in a shared-nothing cluster of machines does not require Hyracks to synchronize

for each and every path hop.

We conclude this discussion of recursion in Hyracks with a few high level characteristics of

our FIXED POINT operator and message passing solution:

Semi Synchronous Evaluation Task clusters across different node controllers operate

asynchronously with different partitions of the data. Paths in Graphix grow inde-

pendently of one another. Synchronization is only required for the final phase (i.e.,

phase B) of termination.

Minimally Invasive Design Existing pipelineable Hyracks activities did not need to be

rewritten to be used in a cyclic activity graph. Engineering-wise, the message aware

124

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u:User)−[: WROTE]−>(m1: Message),
4 (m1)−[r: REPLY OF +]−>(m2: Message)
5 WHERE
6 u.id = $uid
7 SELECT
8 u, m1 , m2 , r; � �
Duplicate of Listing 6.1. gSQL++ query to find a) a specific user u, b) messages m1 written
by u, c) messages m2 that m1 replied to, and d) reply chains r from m1 to m2.

Figure 6.24: Potential alternative Hyracks activity graph to realize the query in Listing 6.1
using an external recursion manager plus a bulk-synchronous-parallel evaluation style.

125

decorator could be generalized to solve other problems that require in-band message

passing.

Message-Sparse Protocol Only the FIXED POINT is allowed to generate message frames.

Only one message is ever in transit for a single task cluster. Messages do not travel

across the network (between different node controllers).

Loosely Coupled Design No sole “process” possesses more responsibility than necessary.

In the spirit of Hyracks, tasks in-the-loop (that are not in the FIXED POINT task group)

do not manage information about other tasks. Participant FIXED POINT instances are

unaware of the computation in the loop and do not manage information about other

participants.

6.3 Abstract Syntax Tree Rewriter

As outlined earlier, the abstract syntax tree (AST) rewriter in Graphix serves to rewrite

the gSQL++ AST T 0(Q) generated immediately parsing (via a JavaCC generated parser)

into a SQL++-compatible AST T 1(Q). We denote the transformation of T 0(Q) to T 1(Q) as

“lowering”. The SQL++-compatible AST T 1(Q) then undergoes the same set of AST-level

rewrites as a standard SQL++ query to generate an AST T 2(Q) which then is translated into

an Algebricks logical plan P 0(Q). In this section, we will bridge our query model discussion

(Chapter 5) and our graph model discussion (Chapter 4). We divide this section into two

parts: a) a high level overview of the sets of SQL++ and gSQL++ AST rewrites, and b) a

description of the gSQL++ to SQL++ AST lowering.

126

6.3.1 gSQL++ AST Rewriting

An AST rewrite rule accepts an AST T (Q) as input and (potentially) modifies T (Q) in place

to create T ′(Q). We contrast the AST rewriter to Algebricks in the next section, where rules

are executed by a rule controller (adding an additional layer of abstraction). Rules are

implemented using a visitor design pattern, which defines operational logic for each AST

node.

At a high level, the gSQL++ T 0(Q) to T 1(Q) rewrites consist of the following:

1. Verifying that all MatchExpr AST nodes define well-formed query patterns in the

gSQL++ query model. This verification includes:

(a) ensuring that all vertex labels, edge labels, and RPQ (regular path query) symbols

exist in the graph being queried (note that in contrast to Neo4j, the universe of

all labels is known at compilation time for Graphix);

(b) checking that the minimum m and maximum n bounds of an RPQ (if defined)

satisfy 0 ≤ m ≤ n; and

(c) forbidding the reuse of edge and path variables (i.e., all edges and paths have a

one-to-one correspondence with a triple in the query pattern incident set).

2. Fetching the description of the graph being queried GD = (VD, ED, ID, λD) using the

name defined in the corresponding FromTerm AST node (i.e., the name after the GRAPH

token). Implementation-wise, this action involves a metadata query to the metadata

node or a fetch from the metadata cache (local to the cluster controller process itself).

If the graph being queried is a temporary one (i.e., one defined in a WITH GRAPH clause),

this step can be skipped as GD is already fully defined.

3. Resolving vertex labels, edge labels, edge directions, RPQ symbols, and path pattern

directions using:

(a) the description of the graph being queried GD;

127

(b) the labels assigned to each vertex and edge pattern (via the labeling function λQ);

(c) the symbols of each path pattern RPQ (via the RQ set); and

(d) the directions of each edge / path pattern (via the incidence triple set IQ).

This resolution is currently an exhaustive process: all combinations of labels, sym-

bols, and directions are considered before being pruned according to the graph schema

dictated by the ID incidence set description. For example, an unlabeled edge pattern

between two vertex “User”-labeled patterns cannot possess the label “REPLY OF”. Simi-

larly, an undirected edge pattern eQ ∈ EQ labeled “WROTE” connecting a “User”-labeled

vertex pattern on the left and a “Message”-labeled vertex pattern on the right can only

be directed from left-to-right because a (:Message) cannot “write” a (:User) according

to the definition of ID. Future work involves a more “bottom-up” approach to schema

resolution (IQ and λQ) that avoids enumerating all possibilities.

4. Rewriting all shared vertex patterns (e.g., the vertex sharing in the negative pattern

matching example in Subsection 5.4.2) to a) not share vertex patterns, and b) to be

explicitly correlated in SQL++ via a JOIN. An example of this AST rewrite is given

in Figure 6.25.

5. Finally lowering the gSQL++ AST T 0(Q) to use SQL++ AST nodes T 1(Q) for use in

the SQL++ AST rewrite set (described more in the next section).

Once all gSQL++ AST nodes have been factored out, the AST T 1(Q) undergoes the same

set of AST rewrites as a normal SQL++ query would immediately after SQL++ parsing in

AsterixDB. These include (but are not limited to) (i) WINDOW function and expression rewrites,

(ii) GROUPING SETS rewrites, (iii) RIGHT OUTER JOIN rewrites, (iv) the user-defined-function

(UDF) and view inlining rewrites, and (v) the WITH clause inlining rewrite. After the SQL++

rewrites (T 1(Q) to T 2(Q)), the AST is finally translated into an Algebricks logical plan.

We contrast the two step rewrite process T 0(Q) → T 1(Q) → T 2(Q) to the one step rewrite

process that avoids the SQL++ AST rewrites altogether (i.e., T 0(Q) → T 2(Q)). Defining

T 1(Q) as an intermediate AST not only decreases the engineering maintenance cost (i.e.,

128

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)−[: WROTE]−>(:Message)
4 WHERE
5 NOT EXISTS (
6 FROM
7 GRAPH SocialNetworkGraph
8 (u1)−[: KNOWS]−>(:User)
9 SELECT ∗
10)
11 SELECT ∗; � �ww�� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (u1:User)−[: WROTE]−>(:Message)
4 WHERE
5 NOT EXISTS (
6 FROM
7 GRAPH SocialNetworkGraph
8 (u1 inner :User) −[: KNOWS]−>(:User)
9 WHERE
10 u1 inner.id = u1.id
11 SELECT ∗
12)
13 SELECT ∗; � �
Figure 6.25: Example of the shared vertex pattern AST rewrite transformation. The modified
lines are highlighted in green.

129

“main branch” AsterixDB maintainers do not have to replicate their work specifically for

Graphix), but also mirrors the implementation philosophy found in the Hyracks section of

this chapter and (to be found) in the Algebricks section of this chapter: to incorporate and

reuse as much of AsterixDB as possible.

6.3.2 gSQL++ Lowering to SQL++

We now move to the final rules of the gSQL++ AST T 0(Q) to T 1(Q) rewrite set, which per-

forms the actual lowering. We acknowledge that the specific problem of translating bounded

graph queries into SQL has been studied extensively before in the context of the RDF model

and SPARQL, with early attempts using correlated sub-queries to express the connection

between vertices [76]. To help solve the problem of translating gSQL++ queries into SQL++

queries, we borrow SPARQL to SQL translating methods from Elliott et al. [22] to create

SQL++ ASTs that are more amenable to optimization (i.e., easier for us to reason about at

the Algebricks layer). Our desiderata for this section includes (i) avoiding superfluous query

nesting, and (ii) minimizing the number of JOIN operations.

To start, consider the gSQL++ query and its equivalent SQL++ query in Figure 6.26. The

first subquery from Line 2 to Line 7 of the SQL++ query (bottom) refers to the (m:Message)

vertex pattern in the gSQL++ query (top). This first subquery comes from the Message

vertex body in the CREATE GRAPH of Listing 4.1 and is bound to the variable m. The second

subquery from Line 8 to Line 13 of the SQL++ query refers to the <−[w:WROTE]− edge pattern

in the gSQL++ query. This second subquery comes from the (:User)−[:WROTE]−>(:Message)

edge body in the CREATE GRAPH DDL and is bound to the variable w. The Users u after the

previous two subqueries refers to the (u:User) vertex pattern. Similar to the first and second

subqueries, the “Users” from Users u comes from the definition of a (:User) vertex in the

CREATE GRAPH DDL. To correlate each term in the FROM clause, two conjuncts are added to

130

� �
1 CREATE GRAPH SocialNetworkGraph AS
2 VERTEX (: User)
3 PRIMARY KEY (id)
4 AS Users ,
5 VERTEX (: Message)
6 PRIMARY KEY (id)
7 AS (FROM
8 Messages m
9 WHERE
10 NOT m.is draft
11 SELECT
12 m.∗),
13 EDGE (: User) −[: KNOWS]−>(:User)
14 SOURCE KEY (source id)
15 DESTINATION KEY (dest id)
16 AS (FROM
17 Users u,
18 u.knows k
19 SELECT
20 u.id AS source id ,
21 k AS dest id),
22 EDGE (: User) −[: WROTE]−>(:Message)
23 SOURCE KEY (user id)
24 DESTINATION KEY (message id)
25 AS (FROM
26 Messages m
27 SELECT
28 m.user id AS user id ,
29 m.id AS message id ,
30 m.posted on AS posted on),
31 EDGE (: Message) −[: REPLY OF]−>(:Message)
32 SOURCE KEY (source id)
33 DESTINATION KEY (dest id)
34 AS (FROM
35 Messages m
36 SELECT
37 m.id AS source id ,
38 m.reply id AS dest id ,
39 m.posted on AS posted on); � �

Duplicate of Listing 4.1. CREATE GRAPH DDL describing the SocialNetworkGraph.

131

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (m: Message)<−[w:WROTE]−(u:User)
4 WHERE
5 u.id = 70
6 SELECT
7 m.id AS mid ,
8 w.message id AS w mid ,
9 w.user id AS w uid ,
10 u.id AS u id ; � �ww�� �
1 FROM
2 (FROM
3 Messages m
4 WHERE
5 NOT m.is draft
6 SELECT
7 m.∗) m,
8 (FROM
9 Messages m
10 SELECT
11 m.user id AS user id ,
12 m.id AS message id ,
13 m.posted on AS posted on) w,
14 Users u
15 WHERE
16 u.id = 70 AND
17 m.id = w.message id AND
18 u.id = w.user id
19 SELECT
20 m.id AS mid ,
21 w.message id AS w mid ,
22 w.user id AS w uid ,
23 u.id AS u id ; � �

Figure 6.26: Example of a gSQL++ query being lowered into an equivalent SQL++ query.

132

the WHERE clause: m.id = w.message id and u.id = w.user id. The access to the id field of

m is defined using the PRIMARY KEY line of the (:Message) vertex definition. The access to

the message id and user id fields of w is defined from the DESTINATION KEY and SOURCE KEY

lines of the (:User)−[:WROTE]−>(:Message) edge definition respectively. Finally, the access

to the id field of u is defined from the PRIMARY KEY line of the (:User) vertex definition.

Now consider another translation of the same gSQL++ query (from Figure 6.26) to a nearly

equivalent SQL++ query in Figure 6.27. In comparison to SQL++ query in Figure 6.26,

the SQL++ query of Figure 6.27 a) removes the nesting of m, b) pushes the NOT m.is draft

condition to the outer WHERE clause, and c) rewrites w and u subqueries as objects built fields

from m. The latter rewrite (i.e., replacing subqueries in the FROM clause with objects) is legal

if Graphix can guarantee that no properties of w or u are required. For example, if the SELECT

clause was SELECT u or SELECT u.name, then Graphix would not be able to rewrite the u term

of the FROM clause in this way. We also note that the changes Graphix make preserve w and

u as variables available for the rest of the query to use. This preservation allows Graphix

to minimize the total number of edits it makes to the original gSQL++ query. The gSQL++

AST lowering rewrite does not modify any conditions found in the original WHERE clause

(e.g., the u.id = 70 conjunct) nor does the lowering rewrite modify the GROUP BY, SELECT,

ORDER BY, or LIMIT clauses. The lowered SQL++ query in Figure 6.27 is equivalent to its

initial gSQL++ query if (and only if):

1. the id field used in u.id is the primary key of the Messages dataset;

2. the id field used in m.id is the primary key of Users; and

3. every user id field of a record in the Messages dataset points to an existing record in

the Users dataset (i.e., there exists no dangling foreign keys).

While the first two points can potentially be inferred from the metadata about each dataset,

AsterixDB (and Graphix) cannot infer the last point without evaluating the JOIN between m

and u. Graphix provides a compiler flag graphix.evaluation.minimize−joins (disabled by

133

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (m: Message)<−[w:WROTE]−(u:User)
4 WHERE
5 u.id = 70
6 SELECT
7 m.id AS mid ,
8 w.message id AS w mid ,
9 w.user id AS w uid ,
10 u.id AS u id ; � �ww�� �
1 FROM
2 Messages m
3 LET
4 w = { " user id " : m.user id ,
5 " message id ": m.id ,
6 " posted on " : m.posted on },
7 u = { "id" : m.user id }
8 WHERE
9 u.id = 70 AND
10 NOT m.is draft AND
11 m.id = w.message id AND
12 u.id = w.user id
13 SELECT
14 m.id AS mid ,
15 w.message id AS w mid ,
16 w.user id AS w uid ,
17 u.id AS u id ; � �
Figure 6.27: Example of a gSQL++ query being lowered into a nearly equivalent SQL++

query.

134

default) to give Graphix users the option to factor out as many JOINs as possible at the cost

of a potentially different result set (for the aforementioned edge cases above).

Figure 6.26 and Figure 6.27 illustrates gSQL++ lowering where the initial gSQL++ query can

be directly lowered into an equivalent SQL++ query. Figure 6.28 depicts another gSQL++

lowering example for a navigational query that has no SQL++ equivalent. To represent Line 2

and Line 3 of the gSQL++ query in Figure 6.28, the gSQL++ AST rewriter divides Line 3

into two parts: i) a non-recursive “anchor” subquery used to initialize navigation, and ii) a

recursive subquery that references the vertex and evaluates each edge hop. The bottom left

of Figure 6.28 represents the anchor subquery translation, where Graphix builds zero-length

paths using the definition body for the starting vertex pattern. This zero-length path, ro,

is constructed using the private Graphix function CREATE PATH. In the SELECT clause of the

anchor subquery, Graphix logically yields (a) the starting vertex m1 AS start vertex, (b) the

initial path ro AS this path, and (c) the working vertex m1 AS this vertex to the subquery

on the right.

The bottom right of Figure 6.28 represents the recursive subquery translation, where Graphix

JOINs the previous iteration (depicted as <PREV ITER> prev), the edge pattern (bound to the

variable roe here), and the next vertex pattern (bound to the variable nm here). To “grow”

the path, Graphix uses the private Graphix function APPEND TO PATH, which appends the edge

roe and the next vertex nm to the previous path prev.this path. In the SELECT clause of the

recursive subquery, Graphix logically yields (a) the starting vertex prev.start vertex (the

exact same vertex bound in the anchor subquery), (b) the extended path ro AS this path,

and (c) the vertex Graphix just traversed to, nm AS this vertex, to the next iteration of

the same recursive subquery. Note the application of the same AST rewriter techniques for

non-navigational gSQL++ queries to anchor and recursive subqueries in Figure 6.28 (e.g.,

representing the REPLY OF edge as an expression from prev). Navigational ASTs benefit

135

� �
1 FROM
2 GRAPH SocialNetworkGraph
3 (m1: Message)−[ro: REPLY OF +]−>(m2: Message)
4 SELECT ∗; � �ww� (anchor subquery)

� �
1 FROM
2 Messages m1
3 LET
4 ro = CREATE PATH (m1)
5 WHERE
6 NOT m1.is draft
7 SELECT
8 m1 AS start vertex ,
9 ro AS this path ,

10 m1 AS this vertex ; � �

ww� (recursive subquery)

� �
1 FROM
2 <PREV ITER> prev ,
3 Messages nm
4 LET
5 pn = prev.this vertex ,
6 roe = {
7 " source id ": pn.id ,
8 " dest id ":
9 pn.reply id ,
10 " posted on ":
11 pn.posted on
12 },
13 ro = APPEND TO PATH (
14 prev.this path ,
15 roe ,
16 nm
17)
18 WHERE
19 prev.m.id = roe.source id
20 AND roe.dest id = nm.id
21 SELECT
22 prev.start vertex ,
23 ro AS this path ,
24 nm AS this vertex ; � �

Figure 6.28: gSQL++ query to find all messages m1 and their reply chains ro to other messages
m2, followed by two “SQL++-like” subqueries that represent the translation of the path
pattern ro. The non-SQL++ features are surrounded by angle brackets.

136

� �
1 FROM
2 <LOWERED PATH PTRN> p
3 LET
4 m1 = p.start vertex ,
5 ro = p.this path ,
6 m2 = p.this vertex
7 SELECT ∗; � �
Listing 6.6: “SQL++-like” translation of the gSQL++ query in Figure 6.28. The non-SQL++

features are surrounded by angle brackets.

from the same AST rewrites as ASTs generated from SQL++ queries by considering the

non-iterative computation inside (and outside) the loop.

Given the anchor and recursive ASTs of a PathPattern expression, Graphix encloses both

ASTs in a special “black-box” AST node that exposes a) the variable bound to the source

vertex pattern (p.start vertex), b) the variable bound to the path pattern (p.this path),

and c) the variable bound to the last visited vertex pattern (p.this vertex). Listing 6.6

depicts how the gSQL++ query in Figure 6.28 is translated in a manner that exposes m1,

ro, and m2 from the “black-box” AST node <LOWERED PATH PTRN> (bound to the variable

p). Similar to the second gSQL++ lowering example of Figure 6.27, Listing 6.6 demonstrates

how Graphix localize the path pattern translation. The translated query encapsulates the

anchor and recursive subqueries, allowing the downstream clauses (e.g., the GROUP BY, the

SELECT, etc. . .) to treat m1, ro, and m2 like any other SQL++ variable.

6.4 Algebricks Query Optimizer

Algebricks is a data-model agnostic query optimizer used by AsterixDB. With respect to

the AsterixDB stack, Algebricks sits between the previously discussed AST rewriter and

the Hyracks runtime engine. In this section we will bridge the two layers: we will describe

how the constructs from a gSQL++ AST are further optimized (beyond AST rewrites) and

137

later assembled into a Hyracks job, ultimately concluding the description of the Graphix

implementation.

We begin with an overview of Algebricks. Similar to Hyracks, Algebricks expects a directed

acyclic graph of operators as input. Given an Algebricks plan and a set of Algebricks rules,

Algebricks (specifically, an Algebricks rule controller) will invoke each rule for each operator

in the plan. Algebricks rule developers implement the IAlgebraicRewriteRule interface,

which is composed of two methods:

1. rewritePre(plan, context), which is invoked for some subgraph of the entire query

plan during its pre-order traversal; and

2. rewritePost(plan, context), which is invoked for some subgraph of the entire query

plan during its post-order traversal.

We contrast the IAlgebraicRewriteRule interface above with the IFrameWriter interface

that Hyracks operator developers have to implement. By design, Hyracks operators consider

frames in isolation (without the need to consider other operators). On the other hand,

Algebricks rules works in units of query plans. The “DAG” assumption of a query plan is

present in ∼150 Algebricks rules implemented in AsterixDB. Furthermore, many of these

existing rules (e.g., predicate pushdown, secondary index insertion, etc. . .) are rules that a

recursive computation can benefit from. Our reasons to keep Algebricks query plans acyclic

are twofold: (i) to avoid the costly engineering effort involved in assessing and rewriting

these rules (and imposing new requirements for future Algebricks rules), and (ii) to apply

existing (and future) rules to our recursive computation.

Similar to our gSQL++ AST rewriting section, Graphix divides a cyclic computation into

two parts: 1) an anchor member (a computation that is performed once), and 2) a recursive

member (a computation that is performed until a least fixed-point is reached). We introduce

four new Algebricks operators to model the ASTs found in Subsection 6.3.2:

138

Figure 6.29: Query plan depicting the use of four new Algebricks operators to realize a
recursive query.

1. MESSAGE SINK, used to generate the corresponding MESSAGE SINK Hyracks operator.

2. FIXED POINT, used to logically the model the union of the anchor member and the

recursive member.

3. RECURSIVE HEAD, used to logically forward tuples†† to the RECURSIVE TAIL operator.

4. RECURSIVE TAIL, used to logically provide tuples for the recursive member to use.

All four of these operators are used in the gSQL++ AST translation to an Algebricks query

plan. We depict how each operator is assembled in an Algebricks query plan in Figure 6.29.

We highlight the absence of cycles, allowing existing Algebricks rules to retain their “DAG”

assumption of a query plan. Once a plan for a navigational query is optimized, Algebricks

will realize the cycle of Hyracks operators by replacing the RECURSIVE HEAD operator with a

††In the context of Algebricks, each operator provides a set of logical properties (e.g., schema, used
variables, etc. . .). The RECURSIVE HEAD operator forwards the logical properties it receives from its upstream
operator to the RECURSIVE TAIL operator.

139

REPLICATE Hyracks operator that feeds into the downstream operator of the RECURSIVE TAIL

operator.

We conclude this section by highlighting three specific rules for navigational queries: (i) the

rule to recognize the applicability of an index for edge traversal, (ii) the rule to minimize

the information in a path during runtime, and (iii) the rule to determine the path finding

problem class (e.g., reachability, shortest path, cheapest path).

Edge Traversal Rule As mentioned in Subsection 6.2.8, the default JOIN method used to

perform an edge hop during navigation is PBJ (persistent-build JOIN). For navigational

queries that only require access to a handful of vertices, however, performing an INLJ

(index nested loop JOIN) is more appropriate. The Edge Traversal Rule is an “adapter”

rule for AsterixDB’s existing Join Access Method Rule, which determines the applica-

bility of an index for use in evaluating a JOIN. In order to use INLJ for edge hops,

Graphix additionally requires that a) the path pattern is annotated with the indexnl

hint, or b) the graphix.evaluation.prefer−indexnl compiler flag is raised. Potential

future work involves leveraging the cost based optimizer of AsterixDB (realized as an

Algebricks rule) to automate this decision.

Path Minimization Rule For queries containing path patterns whose bound variable is

not used downstream, the cost associated with maintaining path objects at runtime

can be reduced. The Path Minimization Rule is used to recognize when path objects

are not required outside of path navigation. If the variable bound to a path pattern is

not used beyond the RECURSIVE HEAD operator, then the Path Minimization Rule will

a) represent vertices in a path object using the vertex’s primary key, and b) represent

edges in a path object using the edge’s source and destination keys. Potential future

work involves leveraging the TOP K operator to avoid the maintenance of a runtime

path altogether.

140

Navigational Problem Class Rule The initial Algebricks plan for a navigational query

will always enumerate all paths. The Navigational Problem Class Rule is used to

recognize when a reachability or shortest/cheapest path query is being expressed. This

rule starts by locating a FIXED POINT operator and either a) a DISTINCT operator, or

b) a GROUP BY operator. If a DISTINCT operator is found, the following conditions

must hold for the Navigational Problem Class Rule to insert a TOP K operator into the

recursive query plan subgraph:

1. The DISTINCT key must contain functionally dependent variables attached to the

incident vertex patterns but not a functionally dependent variable attached to the

path pattern. For example, the path pattern expression (u1:User) −[k:KNOWS+]−>

(u2:User) must have a DISTINCT clause like DISTINCT u1,u2 but not DISTINCT

u1,k,u2.

If a GROUP BY operator is found, the following conditions must hold for the Navigational

Problem Class Rule to insert a TOP K operator into the recursive query plan subgraph:

1. The GROUP BY key must contain functionally dependent variables attached to the

incident vertex patterns but not a functionally dependent variable attached to the

path pattern. For example, the path pattern expression (u1:User) −[k:KNOWS+]−>

(u2:User) must have a GROUP BY clause like u1,u2 but not GROUP BY u1,k,u2.

2. If there exists no subquery operating on the variable bound to the group, then

Graphix changes the problem class from “all paths” to “reachability”.

3. If there exists a subquery operating on the group variable, it must contain (i) a

LIMIT clause whose value is a constant integer (defining the k for TOP K), and (ii) an

ORDER BY clause whose expression is functionally dependent on the path pattern

variable and whose expression is guaranteed to be non-negative. The ORDER BY

expression defines the weight variable used for the TOP K operator. Graphix will

then change the problem class from “reachability” to “cheapest path”.

141

Additional future work with respect to Graphix + Algebricks is to incorporate more rules

that take loops into account (e.g., loop unrolling, magic sets) [58, 61, 34, 19]. In the context

of planning path queries specifically, we point to work from Yakovets, Godfrey, and Gryz [74].

142

Chapter 7

Evaluation

In this chapter, we describe a set of experiments that measure the end-to-end query per-

formance of Graphix against a leading graph database, Neo4j.∗ We reiterate that Graphix

is meant to operate on existing JSON data with latent graph structure. Graphix was not

designed with the sole purpose of executing graph queries in the smallest amount of time

(although we do observe some competitive performance for many queries in this chapter).

Nonetheless, we report our findings in this chapter.

7.1 Experimental Setup

All experiments in this chapter are based on the LDBC social network database (abbrv.

LDBC SNB) [6], which is summarized visually in Figure 7.1. To model this database as a

Graphix graph, we first modeled the database as a collection of (AsterixDB) documents as an

application would do. This approach more closely reflects the intended use case of Graphix:

to augment (not replace) existing AsterixDB instances. Our AsterixDB representation of

∗TigerGraph, a distributed graph database, was initially also considered for comparison, but their free
“community” edition is limited to 50GB graphs on a single node.

143

Figure 7.1: Entities and their relationships in the LDBC social network database (copied
from [6]).

the Figure 7.1 database consists of 14 datasets that leverage nested objects and arrays when

appropriate. In particular, we highlight the following non-1NF features of our AsterixDB

datasets:

1. The “hasTag” M:N relationship between a Forum entity and a Tag entity is folded into

Forum side via an array of Tag (non-enforced) foreign key references. This same folding

is performed for the “hasTag” M:N relationship between a Message entity and a Tag.

2. The “workAt” M:N relationship between a Company entity and a Person entity is folded

into the Person side via an array of objects. Each object in this array contains a

Company (non-enforced) foreign key reference and an attribute about the relationship

itself (e.g., the year the person joined the company). This same kind of folding is

performed for the “studyAt” M:N relationship.

3. The Post and Comment entities are both captured in the Messages dataset. To distin-

guish between Post and Comment documents, a Boolean flag isPost is included in each

Message document.

Each AsterixDB dataset was declared using the primary key given in the LDBC benchmark

specification. Once the JSON documents representing the social network were loaded into

144

AsterixDB, the Graphix graph was then defined using a CREATE GRAPH statement. To give

Graphix the ability to evaluate edge hops using an index-nested-loop-JOINs approach, sec-

ondary indexes were created for each foreign key reference. We give the full set of DDLs

used for evaluation in Section A.1.

The results reported in this chapter used AWS EC2 t2.2xlarge instances, each with (i) 32GB

of memory, (ii) 8 vCPUs, and (iii) EBS gp3 SSDs at 3000 IOPS. We compared a Neo4j

instance (version 5.13) on a single AWS instance against Graphix clusters of various sizes

(n = {1, 2, 4, 8, 16, 32}). With respect to data itself, LDBC’s data generator produces

networks that adhere to the Homophily principle (i.e., persons with similar interests and

behavior know each other) and with vertex degrees similar to Facebook. Our evaluation

consists of two LDBC scale factors:

SF=1 raw data size ≃1GB, 3.7 million vertices, 10.2 million edges — this scale factor

was used to evaluate the archetypal in-core scenario, where a single machine can fit

the entire graph into memory; and

SF=100 raw data size ≃100GB, 312.0 million vertices, 1.1 billion edges — this scale

factor was used to evaluate the archetypal out-of-core scenario, where a single machine

cannot fit the entire graph into memory (and consequently must work with its disk

and/or other machines).

The workload for our experiments is composed of read-only queries from: a) the LDBC

interactive workload [23], which is a “graph-based parallel” to the TPC-C benchmark for

relational-based on-line transaction processing, and b) the LDBC business intelligence work-

load [65], which is a “graph-based parallel” to the TPC-H benchmark for relational analytics.

Queries were issued to each system remotely using a separate AWS node in the same region,

with our results reporting the end-to-end response time (i.e., starting from the time the query

was issued to the time all results were received). The driver used to issue Neo4j queries was

written in Python and uses the neo4j.GraphDatabase.driver class from the neo4j=5.4.0

145

package. The driver used to issue Graphix queries was also written in Python and uses the

requests=2.28.2 package to issue POST requests to the query service REST API endpoint

of the Graphix cluster controller. All Neo4j queries were directly copied from the official

LDBC SNB GitHub repositories. All gSQL++ queries are given in Section A.2. All arti-

facts used for the experiments in this paper can be found at: https://github.com/graphix-

asterixdb/benchmark.

7.2 Operational IS-X Queries

In this section, we detail our first set of experiments comparing Neo4j against Graphix

clusters of varying size for the LDBC SNB “interactive short” queries (abbrv. IS−X). All

IS−X queries anchor on a specific vertex (either a Message or Person) via its primary key

and traverse a small portion of the graph from its anchor. Consequently, we observed that

IS−X queries executed faster than queries in the other two query suites (i.e., the “interactive

complex” and “business intelligence” suite). Each IS−X query was given a deadline of 3

minutes (after which the query was terminated), though nearly all results are in the sub-

second range.

Figure 7.2 and Figure 7.3 both illustrate several plots comparing the median execution

time of all IS−X queries for scale factors SF=1 and SF−100 respectively. The execution times

for Figure 7.2 and Figure 7.3 are also given in Table 7.1 and Table 7.2 respectively. Starting

with Figure 7.2, we observe that Neo4j consistently ran faster than Graphix for all IS−X runs

at SF=1. These results are not surprising — Neo4j is better equipped for handling these

types of low-latency in-core graph queries when compared to Graphix for two reasons:

Query Plan Cache Neo4j caches its query plans to avoid compiling the same query again,

while Graphix has no such cache (although an AsterixDB query plan cache is actively

146

https://github.com/graphix-asterixdb/benchmark
https://github.com/graphix-asterixdb/benchmark

0

0.1

0.2

0.06
0.03T

im
e
(s
)

Query IS−1

0

0.1

0.2 0.17

0.04

Query IS−2

0

0.1

0.2

0.06
0.04

Query IS−3

0

0.1

0.2

0.04 0.03

Query IS−4

0

0.1

0.2

0.05
0.03T

im
e
(s
)

Query IS−5

0

0.1

0.2
0.13

0.03

Query IS−6

0

0.1

0.2

0.11

0.03

Query IS−7

Figure 7.2: Several plots showing a Graphix cluster of n=1 (in blue) against a Neo4j instance
(in green) for the IS−X query suite at SF=1.

0

0.2

0.4

0.07 0.04T
im

e
(s
)

Query IS−1

0

0.2

0.4
0.26

0.39

Query IS−2

0

0.2

0.4

0.13

Query IS−3

0

0.2

0.4

0.05 0.04

Query IS−4

0

0.2

0.4

0.06 0.04T
im

e
(s
)

Query IS−5

0

0.2

0.4

0.16

0.05

Query IS−6

0

0.2

0.4

0.13
0.07

Query IS−7

Figure 7.3: Several plots showing a Graphix cluster of n=1 (in blue) against a Neo4j instance
(in green) for the IS−X query suite at SF=100. Neo4j did not consistently finish query IS−3
in under 3 minutes.

147

being developed). Even when Graphix is given the same query twice in a row, it will

currently needlessly repeat the AST rewriting, the Algebricks optimization, and the

Hyracks job distribution.

Network Protocol Neo4j uses a custom binary network protocol (Bolt [48]) to communi-

cate between a client and a server, while Graphix only exposes a REST API (which

uses HTTP between the client and server). Using a specialized network protocol here

allows Neo4j to reduce the number of bytes sent between a client and a server.

For these short queries and graph size, we note that parallelism is not beneficial. Increasing

the size of a Graphix cluster (as observed in Table 7.1) increases the query execution time.

We attribute this to i) the overhead of distributing Hyracks stages to every node controller

and/or ii) the overhead of collecting the query result from every node controller.† Neverthe-

less, applications that do not require sub 100ms response times for short-read queries (in

the manner of IS−X) for in-memory graphs would benefit from using Graphix.

Moving to Figure 7.3, we observe similar Graphix performance for all IS−X queries at SF=100.

Neo4j, however, runs IS−2 slower than Graphix clusters of n ≤ 4. Furthermore, Neo4j is not

able to run IS−3 consistently under 3 minutes. We observed a few runs of Neo4j executing

IS−3 under the 3 minute timeout, though Neo4j was unable to consistently run below this

timeout for our experiments. For IS−3 in particular, we ascribe this Neo4j inconsistency

to the −[:KNOWS]−> edge being traversed. The KNOWS-edge degree distribution of (:Person)

vertices follow the power law, where a few vertices possess significantly more KNOWS edges

than the rest of the population. Both Graphix and Neo4j evaluate edges for IS−X queries

using an index-nested-loop-JOIN. Graphix, however, places a SORT operator on the JOIN key

before the PIDX SEARCH operator to minimize the total number of index lookups. Neo4j does

†The impact of the FIXED POINT operator is most likely minimal here (for the IS−X queries) as only IS−2
and IS−6 are recursive. Furthermore, the edges that IS−2 and IS−6 traverse (i.e., the REPLY OF edges) do
not branch.

148

not perform any such sort, resulting in more random I/O for high degree vertices. For short

read queries, Graphix is able to achieve consistent performance for small and large graphs.

7.3 Operational IC-X Queries

In this section, we detail our second set of experiments comparing Neo4j against Graphix

clusters of varying size for the LDBC SNB “interactive complex” queries (abbrv. IC−X). The

IC−X queries differ from the IS−X queries in that IC−X queries traverse a larger portion of

the graph. All IC−X queries specify a) a starting (anchor) Person vertex via its primary key,

and b) a small number of “destination” vertices. The latter is generally specified for IC−X

queries using some low selectivity predicate on the destination vertex itself (e.g., where the

destination vertex was created between some date range), though queries IC−13 and IC−14

explicitly specify a single destination vertex via its primary key. We observed that IC−X

queries typically took longer to complete than the IS−X suite of queries but executed faster

than the analytical queries of the “business intelligence” suite (in the next section). For our

experiments, we gave each IC−X query a deadline of 30 minutes (after which, the query would

be terminated).

Figure 7.4 and Figure 7.5 both illustrate several plots comparing the median execution time

of all IC−X queries for scale factors SF=1 and SF−100, respectively, against the size of a Graphix

cluster. Neo4j does not scale horizontally, therefore its results in all plots are depicted as

a straight line. Queries IC−2, IC−7, and IC−8 are only displayed at n = 1 as they do not

benefit from parallelism. The execution times for Figure 7.4 and Figure 7.5 are also given

in Table 7.1 and Table 7.2 respectively. For Figure 7.4, we draw similar conclusions for

the IC−X query suite (compared to the IS−X query suite): Neo4j outperforms Graphix for

low latency queries over small (in-memory) graphs. The exception for Figure 7.4 is query

IC−12, which Neo4j does not consistently execute under the 30 minute timeout for both

149

1 16 32
0

2

4

6

8

T
im

e
(s
)

Query IC−1

1
0

0.1

0.2

0.3 0.26

0.08

Query IC−2

1 16 32
0
2
4
6
8
10

Query IC−3a

1 16 32
0
2
4
6
8

10
Query IC−3b

1 16 32
0

5

10

T
im

e
(s
)

Query IC−4

1 16 32
0

20

40

60

Query IC−5

1 16 32
0

5

10

Query IC−6

1
0

0.1

0.2

0.3

0.13
0.06

Query IC−7

1
0

0.1

0.2

0.3

0.11
0.05T

im
e
(s
)

Query IC−8

1 16 32
0
2
4
6
8

10
Query IC−9

1 16 32
0

1

2

Query IC−10

1 16 32
0

0.5

1

Query IC−11

1 16 32
0

0.5

1

1.5

2

Cluster Size (n)

T
im

e
(s
)

Query IC−12

1 16 32
0

0.01

0.02

0.03

Cluster Size (n)

Query IC−13

1 16 32
0

0.05

0.1

Cluster Size (n)

Query IC−14

Figure 7.4: Several plots showing a Graphix cluster of varying size (in blue) against a Neo4j
instance (in green) for the IC−X query suite at SF=1. Queries IC−2, IC−7, and IC−8 are shown
at n = 1. Neo4j and Graphix (for n < 32) were not able to consistently execute query IC−12
underneath the 30 minute timeout. Graphix was unable to execute IC−13 and IC−14 in under
30 minutes.

150

1 16 32
0

200

400

600

800

T
im

e
(s
)

Query IC−1

1 16 32
0

20

40

Query IC−2

1 16 32
0

200

400

Query IC−3a

1 16 32
0

500

1,000
Query IC−3b

1 16 32
0

20

40

60

T
im

e
(s
)

Query IC−4

1 16 32
0

200

400

Query IC−5

1 16 32
0

100

200

300

400
Query IC−6

1
0

0.2
0.4
0.6
0.8
1

0.75
0.61

Query IC−7

1
0

0.2

0.4 0.33 0.34

T
im

e
(s
)

Query IC−8

1 16 32
0

100

200

Query IC−9

1 16 32
0

50

100

150

Query IC−10

1 16 32
0

20

40

60

Query IC−11

1 16 32
0

500

1,000

1,500

Cluster Size (n)

T
im

e
(s
)

Query IC−12

1 16 32
0

0.02

0.04

Cluster Size (n)

Query IC−13

1 16 32
0

0.1

0.2

Cluster Size (n)

Query IC−14

Figure 7.5: Several plots showing a Graphix cluster of varying size (in blue) against a Neo4j
instance (in green) for the IC−X query suite at SF=100. Queries IC−7 and IC−8 are shown at
n = 1. Neo4j and Graphix were not able to execute query IC−12 underneath the 30 minute
timeout. Graphix was unable to execute IC−13 and IC−14 in under 30 minutes. Neo4j was
unable to finish queries IC−3a and IC−3b in under 30 minutes.

151

SF=1 and SF=100. Only at n = 32 is Graphix able to consistently execute this query. Both

Neo4j and Graphix in our evaluation start from the anchor (:Person) vertex and walk from

there, though LDBC suggests that walking backwards from the destination might be a better

evaluation strategy for some (:Person) vertices [6]. Increasing Graphix to n = 32 illustrates

a “brute-force” approach to not-as-(consistently)-efficient evaluation strategies that Neo4j

cannot utilize: the approach of adding more machines.

Graphix at larger values of n generally performs better than Graphix at smaller values of

n if the query executes for longer than one second (queries IC−3a, IC−3b, IC−5, IC−9, and

IC−10). Queries IC−1, IC−4, and IC−6 illustrate data points that warrant further investigation.

Queries IC−1 and IC−6 show an initial negative correlation of execution time and n, but a

positive correlation for n > 4. We do not observe this same upward trend at SF=100. Query

IC−4 demonstrates a strange increase in execution time at n = 4 (relative to the previous

data point, n = 2), a pattern that is also observed for SF=100.

We now bring our attention to queries IC−13 and IC−14, two queries for which Graphix

was unable to record any runs under the 30 minute timeout. Neo4j is able to significantly

outperform Graphix for these queries due to the bidirectional BFS (breadth-first-search)

approach that Neo4j takes to evaluate shortest paths:

Bidirectional BFS At a high level, Graphix evaluates all navigational queries using BFS:

given some starting set of vertices, Graphix branches out from the starting vertices

in parallel until the destination vertices are reached. For query plans that include

the TOP K operator (see Subsection 6.2.8), Graphix can (loosely) bound the length

of the paths it enumerates; however, power law degree distributions (e.g., the KNOWS

edges connecting (:Person) vertices together) imply the existence of significantly more

shorter paths than longer paths [16]. If Graphix is given an explicit destination vertex

(e.g., queries IC−13 and IC−14), Graphix does not leverage this information to poten-

tially avoid having to traverse the massive number of shorter paths before reaching the

152

Q
u
er
y

N
eo
4j

(n
=
1)

G
ra
p
h
ix

(n
=
1)

G
ra
p
h
ix

(n
=
2)

G
ra
p
h
ix

(n
=
4)

G
ra
p
h
ix

(n
=
8)

G
ra
p
h
ix

(n
=
16
)

G
ra
p
h
ix

(n
=
32
)

IS
−1

28
.7
m
s

62
.6
m
s

62
.5
m
s

61
.9
m
s

75
.7
m
s

80
.0
m
s

94
.3
m
s

IS
−2

41
.7
m
s

16
6.
2
m
s

18
3.
2
m
s

26
9.
0
m
s

38
8.
5
m
s

47
1.
5
m
s

60
5.
6
m
s

IS
−3

35
.8
m
s

60
.6
m
s

76
.2
m
s

11
9.
5
m
s

18
3.
3
m
s

23
1.
0
m
s

29
9.
3
m
s

IS
−4

25
.2
m
s

41
.1
m
s

42
.1
m
s

40
.5
m
s

52
.1
m
s

57
.1
m
s

68
.0
m
s

IS
−5

25
.0
m
s

51
.3
m
s

53
.4
m
s

65
.1
m
s

90
.6
m
s

10
6.
9
m
s

13
1.
2
m
s

IS
−6

29
.5
m
s

12
7.
8
m
s

13
5.
9
m
s

18
4.
6
m
s

26
6.
5
m
s

33
5.
2
m
s

46
4.
9
m
s

IS
−7

31
.0
m
s

10
8.
1
m
s

12
9.
8
m
s

21
6.
0
m
s

33
2.
7
m
s

41
8.
3
m
s

49
5.
2
m
s

IC
−1

98
.0
m
s

8.
1
s

3.
8
s

2.
2
s

1.
6
s

1.
9
s

3.
6
s

IC
−2

75
.9
m
s

26
1.
9
m
s

18
5.
8
m
s

18
1.
1
m
s

21
6.
4
m
s

24
3.
5
m
s

27
9.
4
m
s

IC
−3

a
1.
2
s

9.
3
s

5.
0
s

2.
9
s

2.
0
s

1.
7
s

1.
7
s

IC
−3

b
1.
4
s

9.
3
s

5.
2
s

2.
9
s

2.
0
s

1.
6
s

1.
8
s

IC
−4

10
4.
8
m
s

12
.9
s

1.
7
s

3.
6
s

70
6.
6
m
s

1.
1
s

75
6.
3
m
s

IC
−5

50
4.
1
m
s

72
.2
s

43
.0
s

20
.5
s

9.
5
s

5.
4
s

11
.6
s

IC
−6

1.
1
s

10
.4
s

6.
3
s

3.
7
s

2.
4
s

2.
8
s

9.
6
s

IC
−7

59
.5
m
s

12
6.
6
m
s

11
8.
7
m
s

16
9.
0
m
s

25
9.
9
m
s

31
7.
2
m
s

38
6.
3
m
s

IC
−8

46
.0
m
s

10
6.
3
m
s

11
1.
9
m
s

15
0.
4
m
s

22
0.
6
m
s

28
6.
7
m
s

44
9.
0
m
s

IC
−9

1.
1
s

9.
2
s

4.
8
s

2.
3
s

1.
6
s

1.
4
s

1.
9
s

IC
−1

0
33
9.
8
m
s

2.
6
s

1.
7
s

1.
1
s

96
4.
7
m
s

91
3.
7
m
s

97
6.
6
m
s

IC
−1

1
65
.5
m
s

76
0.
9
m
s

68
2.
1
m
s

48
0.
0
m
s

52
7.
0
m
s

75
4.
6
m
s

1.
2
s

IC
−1

2
>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

1.
9
s

IC
−1

3
32
.1
m
s

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

IC
−1

4
98
.4
m
s

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

T
ab

le
7.
1:

T
ab

le
co
m
p
ar
in
g
th
e
m
ed
ia
n
ex
ec
u
ti
on

ti
m
es

of
IS

−X
an

d
IC

−X
q
u
er
ie
s
at

sc
al
e
fa
ct
or

SF
=1

fo
r
N
eo
4j

an
d
d
iff
er
en
t

G
ra
p
h
ix

cl
u
st
er

co
n
fi
gu

ra
ti
on

s.
N
eo
4j

an
d
G
ra
p
h
ix

(f
or

n
<

32
)
w
er
e
n
ot

ab
le

to
co
n
si
st
en
tl
y
ex
ec
u
te

q
u
er
y

IC
−1

2
u
n
d
er
n
ea
th

th
e
30

m
in
u
te

ti
m
eo
u
t.

G
ra
p
h
ix

w
as

u
n
ab

le
to

ex
ec
u
te

IC
−1

3
an

d
IC

−1
4
in

u
n
d
er

30
m
in
u
te
s.

153

Q
u
er
y

N
eo
4j

(n
=
1)

G
ra
p
h
ix

(n
=
1)

G
ra
p
h
ix

(n
=
2)

G
ra
p
h
ix

(n
=
4)

G
ra
p
h
ix

(n
=
8)

G
ra
p
h
ix

(n
=
16
)

G
ra
p
h
ix

(n
=
32
)

IS
−1

40
.4
m
s

73
.8
m
s

75
.7
m
s

72
.8
m
s

77
.9
m
s

83
.3
m
s

93
.3
m
s

IS
−2

38
7.
7
m
s

26
4.
4
m
s

30
4.
3
m
s

34
1.
4
m
s

39
9.
0
m
s

47
5.
2
m
s

61
0.
1
m
s

IS
−3

>
3
m
in

(T
/O
)

12
6.
7
m
s

11
1.
9
m
s

14
5.
0
m
s

19
6.
5
m
s

24
2.
9
m
s

31
2.
3
m
s

IS
−4

35
.5
m
s

47
.6
m
s

49
.8
m
s

48
.6
m
s

52
.8
m
s

58
.2
m
s

72
.2
m
s

IS
−5

35
.1
m
s

62
.2
m
s

62
.6
m
s

75
.0
m
s

93
.5
m
s

11
1.
2
m
s

13
1.
1
m
s

IS
−6

54
.2
m
s

15
8.
6
m
s

16
7.
3
m
s

20
8.
5
m
s

28
1.
0
m
s

34
7.
8
m
s

46
4.
4
m
s

IS
−7

74
.8
m
s

13
2.
7
m
s

15
2.
3
m
s

23
1.
0
m
s

33
5.
8
m
s

41
7.
5
m
s

49
6.
0
m
s

IC
−1

11
.2
s

76
0.
8
s

20
0.
0
s

41
.4
s

11
.3
s

5.
9
s

5.
5
s

IC
−2

46
.0
s

12
.5
s

5.
8
s

2.
9
s

74
3.
9
m
s

29
5.
2
m
s

31
2.
9
m
s

IC
−3

a
>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

45
1.
8
s

21
7.
2
s

11
2.
6
s

43
.6
s

23
.8
s

IC
−3

b
>
30

m
in

(T
/O
)

96
8.
5
s

44
8.
9
s

21
7.
2
s

11
2.
8
s

43
.7
s

24
.1
s

IC
−4

15
.7
s

50
.0
s

27
.7
s

56
.1
s

5.
9
s

2.
5
s

2.
6
s

IC
−5

45
8.
5
s

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

64
.0
s

29
.7
s

IC
−6

36
5.
0
s

27
5.
3
s

13
2.
2
s

76
.8
s

39
.4
s

10
.0
s

11
.9
s

IC
−7

60
8.
6
m
s

75
4.
4
m
s

46
6.
0
m
s

44
3.
1
m
s

46
0.
7
m
s

33
4.
6
m
s

38
2.
8
m
s

IC
−8

33
6.
7
m
s

32
6.
2
m
s

26
6.
4
m
s

31
2.
8
m
s

37
4.
3
m
s

31
3.
0
m
s

45
1.
6
m
s

IC
−9

16
3.
0
m
s

24
7.
9
s

10
3.
9
s

52
.9
s

25
.1
s

4.
9
s

4.
2
s

IC
−1

0
15
0.
2
s

89
.0
s

45
.4
s

28
.7
s

11
.6
s

2.
7
s

1.
9
s

IC
−1

1
4.
2
s

55
.1
s

67
.8
s

34
.0
s

16
.0
s

7.
6
s

4.
6
s

IC
−1

2
>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

IC
−1

3
51
.4
m
s

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

IC
−1

4
26
1.
9
m
s

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

>
30

m
in

(T
/O
)

T
ab

le
7.
2:

T
ab

le
co
m
p
ar
in
g
th
e
m
ed
ia
n
ex
ec
u
ti
on

ti
m
es

of
IS

−X
an

d
IC

−X
q
u
er
ie
s
at

sc
al
e
fa
ct
or

SF
=1

00
fo
r
N
eo
4j

an
d
d
iff
er
en
t

G
ra
p
h
ix

cl
u
st
er

co
n
fi
gu

ra
ti
on

s.
N
eo
4j

d
id

n
ot

co
n
si
st
en
tl
y
fi
n
is
h
q
u
er
y

IS
−3

in
u
n
d
er

3
m
in
u
te
s.

N
eo
4j

an
d
G
ra
p
h
ix

w
er
e
n
ot

ab
le

to
ex
ec
u
te

q
u
er
y

IC
−1

2
u
n
d
er
n
ea
th

th
e
30

m
in
u
te

ti
m
eo
u
t.

G
ra
p
h
ix

w
as

u
n
ab

le
to

ex
ec
u
te

IC
−1

3
an

d
IC

−1
4
in

u
n
d
er

30
m
in
u
te
s.

N
eo
4j

w
as

u
n
ab

le
to

fi
n
is
h
q
u
er
ie
s

IC
−3

a
an

d
IC

−3
b
in

u
n
d
er

30
m
in
u
te
s.

154

destination. Neo4j, on the other hand, is able to perform a bidirectional BFS: given

a starting vertex and destination vertex, Neo4j walks from both endpoints until the

traversals intersect [50]. For queries IC−13 and IC−14 in particular, Neo4j is able to

perform well using this strategy with both small and large graphs (as we will see next).

Future work with respect to Graphix involves implementing bidirectional BFS in Graphix

to handle queries with more than one anchor point.

Figure 7.5 describes our evaluation of the IC−X queries for SF=100. Queries IC−7 and IC−8

are only displayed at n = 1 as they do not benefit from parallelism. For all other queries,

Graphix benefits significantly from horizontal scaling. Queries IC−1, IC−4, IC−9, and IC−11

perform worse than Neo4j on Graphix with n = 1, but larger clusters of Graphix (n ≥ 8)

are able to either outperform Neo4j (e.g., IC−1, IC−4) or perform on-par with Neo4j (e.g.,

IC−9, IC−11). Queries IC−2, IC−6, and IC−10 execute faster than Graphix at n = 1 when

compared to Neo4j, with Graphix executing these same queries even faster on larger values

of n. Neo4j is unable to record any runs for query IC−3a and is unable to consistently execute

IC−3b under the 30 minute timeout. Graphix, on the other hand, is able to execute IC−3a

and IC−3b consistently in under 30 minutes and is able to achieve better performance as n

increases. For all queries except IC−8 (which already executes in sub-second time), IC−12,

IC−13, and IC−14, Graphix is able to leverage parallel processing to lower the execution time

to under one minute.

We will now address the IC−X queries where Graphix does not perform favorably for SF=100:

IC−5 (for n < 16), IC−12, IC−13, and IC−14. Graphix was unable to consistently record runs

underneath 30 minutes for all values of n for query IC−12, and was unable to record any

runs underneath 30 minutes for queries IC−13 and IC−14. Graphix at n < 16 was not able to

record any runs underneath 30 minutes for query IC−5. Graphix at n ≥ 16 is not only able

to execute query IC−5, but executes it 7× faster at n = 16 and 15× faster at n = 32 as

compared to Neo4j. To execute queries IC−5 and IC−12 for Big Data, choosing the correct

155

JOIN tree and physical operators is essential. Integrating AsterixDB’s cost based optimizer

with Graphix would help generate query plans that are better suited to each individual

query. We observe that Neo4j executes queries IC−13 and IC−14 in sub-second time in spite

of the larger data. To execute IC−13 and IC−14 for Big Data in Graphix, again, would involve

implementing some form of bidirectional BFS.

7.4 Analytical BI-X Queries

In this section, we detail our third and final set of experiments, comparing Neo4j against

Graphix clusters of varying size for the LDBC social network benchmark “business intelli-

gence” queries (abbrv. BI−X). In contrast to the IS−X and IC−X query suites from the previous

section, a larger fraction of the graph (i.e., not the entire graph) is accessed in the BI−X suite

of queries. For our experiment, the BI−X queries were expected to to take the longest to

complete (relative to the IS−X and IC−X query suites). The deadline for each BI−X query was

set to 5 hours, after which the query would be terminated.

Figure 7.6 and Figure 7.7 both illustrate several plots comparing the median execution time

of all BI−X queries for scale factors SF=1 and SF−100, respectively, against the size of a

Graphix cluster. Again, Neo4j does not scale out, so its results in all plots are depicted as a

straight line. The execution times for Figure 7.6 and Figure 7.7 are also given in Table 7.3

and Table 7.4 respectively. Queries BI−4 (as well as BI−6, BI−11, and BI−12 for Neo4j only) are

not included in our results due to mistakes‡ that occurred during the benchmarking process.

We leave BI−6, BI−11, and BI−12 in for Graphix to characterize how Graphix performs with

larger values of n. Query BI−15 was not considered for evaluation due to its requirement

for nested recursion (which Graphix does not support at the time of writing). Nevertheless,

‡Queries BI−4, BI−6, and BI−12 were accidentally left out of the query set during the benchmarking
process. Due to time constraints, we were unable to rerun our experiments again to include these three
missing queries.

156

both BI−4 and BI−15 are listed with the rest of the BI−X queries in Section A.2 to demonstrate

the Graphix query model.

Starting with Figure 7.6, we note that Neo4j does not dominate Graphix for the majority

of the BI−X queries at SF=1 (though Neo4j does still outperform Graphix for many queries

here at this low scale factor). For queries BI−1, BI−2a, BI−10a, BI−16a, BI−18, BI−19a, and

BI−19b, Graphix performs worse than Neo4j for low values of n (4 ≲ n). For Graphix

clusters with larger n values, Graphix executes these queries faster (or on-par with) Neo4j.

Graphix is unable to outperform Neo4j for the remainder of the queries here (for SF=1),

though Graphix at higher values of n still (generally) perform better than Graphix at lower

values of n. One outlier of interest (for Graphix) is query BI−17. This query involves two

Kleene-closure RPQs (e.g., −[:REPLY OF∗]−>) and 11 edge patterns, making BI−17 one of the

more difficult queries to evaluate. Graphix at n = 1 executes BI−17 in 35min and exhibits

a significant decrease in running time for 2 ≤ n ≤ 8. Beyond n > 8, however, Graphix

executes BI−17 slower than Graphix with n = 2. One suspect for this large variation is the

set of FIXED POINT operators used to evaluate each RPQ. Other BI−X queries containing an

unbounded RPQ (BI−3, BI−9, BI−12, BI−19{a|b}) also exhibit a similar increase in execution

time for increasingly larger values of n (though still lower in execution time when compared

to n = 1). Queries BI−20{a|b} also specify unbounded RPQs, but instead demonstrate a

(nearly) positive correlation up to n = 4 and n = 8 respectively, after which Graphix executes

BI−20a and BI−20b faster with larger cluster sizes. Future work involves characterizing the

effect of n on determining termination for different workloads.

We now move to Figure 7.7, where Graphix at all values of n demonstrates better perfor-

mance than Neo4j for five of the displayed BI−X queries. With respect to the single-worker

comparison, Graphix was able to outperform Neo4j for queries BI−1, BI−2a, BI−8a, BI−9, and

BI−18. We observed a few runs of Neo4j executing BI−2a and BI−8a under the 5 hr timeout,

though Neo4j was unable to consistently run below this timeout for our experiments. To

157

explain why Graphix is able to execute many of these queries faster than Neo4j with the

same hardware, we will focus on a few key points used by Graphix to evaluate queries BI−1

and BI−2{a|b}:

Vertex Layout Query BI−1 involves two scans of all vertices with the Message label. Neo4j

stores all of its vertices in one physical file, meaning that a scan of all Message vertices

requires also scanning all non-Message-labeled vertices [56]. In contrast, the Message

vertices in Graphix have a 1:1 mapping with a single AsterixDB dataset (and therefore,

a single collection partition per worker). As a consequence, Graphix has to scan less

vertex data.

Intermediate Result Size Query BI−2{a|b} involves the evaluation of three edges and two

aggregations. Neo4j chooses to enumerate all possible mappings in its query plan before

performing its aggregation. Graphix on the other hand, recognizes that the two aggre-

gations are independent from one another. It is then able to reduce the intermediate

result size by interleaving the aggregation and the edge evaluations (leading to better

performance).

Hybrid Hash Joins When evaluating an edge, Graphix has several parallel JOIN algo-

rithms at its disposal. In the case of query BI−2{a|b}, Graphix evaluates all three

edges with hybrid hash JOINs. We contrast this JOIN algorithm with Neo4j’s edge eval-

uation approach, which is akin to an index-nested-loop JOIN, which is not as performant

for JOINs that are not selective [27].

Queries BI−2b, BI−3, BI−5 and BI−7, and BI−8b are another demonstration of how Graphix

is able to outperform Neo4j when the cluster size n is increased, despite Neo4j executing

these two queries faster than Graphix with n = 1. On the other hand, BI−10{a|b} BI−17,

and BI−20{a|b} are examples of Neo4j executing queries that Graphix (for all values of

n) is unable to execute in under 5 hours. Neither Neo4j nor Graphix are able to execute

queries BI−16b and BI−19{a|b} under 5 hours. We suspect that the majority of the BI−X

158

queries that Graphix was unable to execute could be remedied by modifying the query plan.

BI−18 was a query that we used for benchmarking the earlier (and non-recursive version) of

Graphix. For this earlier benchmark, BI−18 was a query that Neo4j executed significantly

faster than Graphix for all values of n. After refactoring the query to change the JOIN order

and supplying query hints to change the physical JOIN operator, Graphix was able to beat

Neo4j’s execution time for BI−18. We suspect that a cost-based approach to determining this

JOIN order and JOIN physical operator would help Graphix here not only to execute many of

these queries under the 5 hour timeout but also to potentially best Neo4j in execution time.

159

1 16 32
0

2

4

6

8
T
im

e
(s
)

Query BI−1

1 16 32
0

5

10

Query BI−2a

1 16 32
0

5

10

Query BI−2b

1 16 32
0

5

10

Query BI−3

1 16 32
0

5

10

T
im

e
(s
)

Query BI−5

1 16 32
0

5

10

15

Query BI−7

1 16 32
0

5

10

Query BI−8a

1 16 32
0

5

10

Query BI−8b

1 16 32
0

20

40

T
im

e
(s
)

Query BI−9

1 16 32
0
20
40
60
80

100
Query BI−10a

1 16 32
0

10

20

Query BI−10b

1 16 32
0

10

20

30

40
Query BI−13

1 16 32
0

20

40

T
im

e
(s
)

Query BI−14a

1 16 32
0

10

20

30

40
Query BI−14b

1 16 32
0

10

20

30

Query BI−16a

1 16 32
0

10

20

30
Query BI−16b

1 16 32
0

1,000

2,000

T
im

e
(s
)

Query BI−17

1 16 32
0

0.5

1

1.5

Query BI−18

1 16 32
0

10

20

Query BI−19a

1 16 32
0

10

20

Query BI−19b

1 16 32
0

2

4

6

8

Cluster Size (n)

T
im

e
(s
)

Query BI−20a

1 16 32
0

5

10

Cluster Size (n)

Query BI−20a

Figure 7.6: Several plots showing a Graphix cluster of varying size (in blue) against a Neo4j
instance (in green) for the BI−X query suite at SF=1. Graphix was unable to consistently
execute queries BI−10a and BI−10b in under 5 hours at n ≤ 2.

160

1 16 32
0

1,000

2,000
T
im

e
(s
)

Query BI−1

1 16 32
0

500

1,000

Query BI−2a

1 16 32
0

500

1,000

Query BI−2b

1 16 32
0

500

1,000

1,500

2,000
Query BI−3

1 16 32
0

500

1,000

1,500

T
im

e
(s
)

Query BI−5

1 16 32
0

2,000

4,000

6,000

8,000
Query BI−7

1 16 32
0

5,000

10,000
Query BI−8a

1 16 32
0

2,000
4,000
6,000
8,000

Query BI−8b

1 16 32
0

1,000

2,000

3,000

T
im

e
(s
)

Query BI−9

1 16 32
0

200

400

600

Query BI−10a

1 16 32
0

50

100

Query BI−10b

1 16 32
0

2,000

4,000

Query BI−13

1 16 32
0

5,000

10,000

T
im

e
(s
)

Query BI−14a

1 16 32
0

1,000

2,000

3,000

4,000
Query BI−14b

1 16 32
0

5,000

10,000

15,000

Query BI−16a

1 16 32
0

500

1,000

Query BI−16b

1 16 32
0

200

400

600

800

T
im

e
(s
)

Query BI−17

1 16 32
0

50

100

150

Query BI−18

1 16 32
0

5,000

10,000

15,000

Query BI−19a

1 16 32
0

5,000

10,000

15,000

Query BI−19b

1 16 32
0

50

100

Cluster Size (n)

T
im

e
(s
)

Query BI−20a

1 16 32
0

50

100

Cluster Size (n)

Query BI−20a

Figure 7.7: Several plots showing a Graphix cluster of varying size (in blue) against a
Neo4j instance (in green) for the BI−X query suite at SF=100. Both Neo4j and Graphix (for
all n) were unable to finish queries BI−16a, BI−19a, and BI−19b in under 5 hours. Neo4j
was additionally unable to finish queries BI−2a and BI−8a in under 5 hours. Graphix was
additionally unable to finish queries BI−10{a|b}, BI−17, and BI−20{a|b} in under 5 hours.

161

Q
u
er
y

N
eo
4j

(n
=
1)

G
ra
p
h
ix

(n
=
1)

G
ra
p
h
ix

(n
=
2)

G
ra
p
h
ix

(n
=
4)

G
ra
p
h
ix

(n
=
8)

G
ra
p
h
ix

(n
=
16
)

G
ra
p
h
ix

(n
=
32
)

BI
−1

3.
0
s

7.
6
s

3.
8
s

2.
0
s

1.
2
s

72
7.
9
m
s

54
7.
3
m
s

BI
−2

a
95
9.
0
m
s

10
.1
s

5.
3
s

2.
8
s

1.
7
s

1.
1
s

97
0.
0
m
s

BI
−2

b
13
6.
8
m
s

10
.2
s

5.
3
s

2.
8
s

1.
7
s

1.
1
s

96
4.
4
m
s

BI
−3

1.
2
s

13
.6
s

10
.0
s

7.
9
s

5.
8
s

4.
9
s

6.
1
s

BI
−5

90
.7
m
s

11
.8
s

6.
5
s

3.
6
s

2.
0
s

1.
2
s

90
5.
5
m
s

BI
−6

N/
A

28
.3
m
in

16
.7
m
in

49
9.
3
s

30
7.
5
s

14
5.
7
s

77
.2
s

BI
−7

86
.2
m
s

16
.6
s

9.
2
s

4.
4
s

2.
5
s

1.
5
s

1.
0
s

BI
−8

a
8.
1
s

12
.3
s

6.
6
s

3.
6
s

2.
3
s

1.
5
s

1.
3
s

BI
−8

b
25
9.
5
m
s

12
.0
s

6.
0
s

3.
5
s

2.
2
s

1.
5
s

1.
3
s

BI
−9

3.
2
s

41
.3
s

27
.5
s

18
.4
s

8.
8
s

6.
9
s

8.
3
s

BI
−1

0a
36
6.
6
m
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

93
.0
s

35
.0
s

16
.8
s

9.
4
s

BI
−1

0b
22
1.
7
m
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

26
.3
s

12
.1
s

7.
5
s

5.
0
s

BI
−1

1
N/

A
4.
4
s

3.
8
s

2.
2
s

1.
4
s

1.
2
s

1.
2
s

BI
−1

2
N/

A
19
5.
8
s

22
.7
s

12
.6
s

7.
1
s

5.
9
s

6.
5
s

BI
−1

3
67
6.
2
m
s

38
.0
s

20
.2
s

9.
8
s

5.
3
s

3.
2
s

2.
5
s

BI
−1

4a
2.
5
s

43
.1
s

25
.9
s

16
.8
s

13
.2
s

11
.0
s

10
.8
s

BI
−1

4b
12
0.
9
m
s

36
.8
s

22
.6
s

15
.5
s

12
.7
s

10
.4
s

10
.4
s

BI
−1

6a
5.
8
s

35
.1
s

20
.7
s

9.
9
s

5.
3
s

3.
3
s

2.
6
s

BI
−1

6b
11
4.
5
m
s

27
.3
s

14
.5
s

7.
2
s

4.
2
s

2.
6
s

1.
9
s

BI
−1

7
71
1.
6
m
s

35
.0
m
in

28
.7
s

14
.6
s

7.
9
s

30
5.
0
s

18
8.
9
s

BI
−1

8
52
4.
6
m
s

1.
5
s

72
5.
7
m
s

50
9.
8
m
s

61
6.
6
m
s

57
1.
4
m
s

55
0.
1
m
s

BI
−1

9a
16
.0
s

22
.2
s

16
.5
s

10
.4
s

6.
8
s

5.
6
s

6.
7
s

BI
−1

9b
15
.5
s

23
.0
s

16
.7
s

10
.6
s

6.
7
s

5.
6
s

6.
6
s

BI
−2

0a
1.
3
s

4.
9
s

3.
8
s

6.
5
s

7.
4
s

2.
3
s

2.
0
s

BI
−2

0b
97
9.
8
m
s

8.
0
s

11
.4
s

12
.7
s

7.
4
s

7.
1
s

5.
8
s

T
ab

le
7.
3:

T
ab

le
co
m
p
ar
in
g
th
e
m
ed
ia
n
ex
ec
u
ti
on

ti
m
es

of
BI

−X
q
u
er
ie
s
at

sc
al
e
fa
ct
or

SF
=1

fo
r
N
eo
4j

an
d
d
iff
er
en
t
G
ra
p
h
ix

cl
u
st
er

co
n
fi
gu

ra
ti
on

s.
N
eo
4j

d
o
es

n
ot

h
av
e
an

y
va
lu
es

fo
r
q
u
er
ie
s

BI
−6
,

BI
−1

1,
an

d
BI

−1
2.

G
ra
p
h
ix

w
as

u
n
ab

le
to

co
n
si
st
en
tl
y

ex
ec
u
te

q
u
er
ie
s

BI
−1

0a
an

d
BI

−1
0b

in
u
n
d
er

5
h
ou

rs
at

n
≤

2.

162

Q
u
er
y

N
eo
4j

(n
=
1)

G
ra
p
h
ix

(n
=
1)

G
ra
p
h
ix

(n
=
2)

G
ra
p
h
ix

(n
=
4)

G
ra
p
h
ix

(n
=
8)

G
ra
p
h
ix

(n
=
16
)

G
ra
p
h
ix

(n
=
32
)

BI
−1

40
.6
m
in

74
8.
6
s

37
3.
8
s

18
3.
1
s

91
.4
s

35
.6
s

19
.9
s

BI
−2

a
>
5
h
r
(T

/O
)

22
.5
m
in

64
9.
2
s

31
1.
2
s

12
9.
4
s

53
.5
s

29
.5
s

BI
−2

b
35
5.
2
s

22
.5
m
in

64
7.
6
s

30
9.
8
s

13
3.
0
s

52
.9
s

29
.6
s

BI
−3

20
.9
m
in

>
5
h
r
(T

/O
)

30
.4
m
in

19
.5
m
in

67
6.
2
s

49
5.
9
s

46
7.
2
s

BI
−5

48
.3
s

23
.9
m
in

82
0.
0
s

48
5.
3
s

24
7.
9
s

99
.6
s

43
.7
s

BI
−6

N/
A

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−7

34
9.
4
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

12
7.
8
m
in

25
.8
m
in

35
6.
0
s

73
.4
s

BI
−8

a
>
5
h
r
(T

/O
)

16
0.
2
m
in

39
.4
m
in

61
1.
5
s

15
3.
8
s

60
.8
s

34
.8
s

BI
−8

b
51
.2
m
in

14
8.
2
m
in

38
.5
m
in

57
6.
1
s

14
7.
2
s

59
.2
s

33
.6
s

BI
−9

60
.1
m
in

>
5
h
r
(T

/O
)

52
.0
m
in

38
.0
m
in

25
.8
m
in

87
4.
4
s

54
9.
8
s

BI
−1

0a
67
4.
3
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

0b
13
2.
4
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

1
N/

A
20
.1
m
in

43
0.
4
s

24
3.
7
s

13
3.
1
s

83
.0
s

67
.7
s

BI
−1

2
N/

A
>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

3
86
.1
m
in

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

17
7.
8
s

BI
−1

4a
16
4.
3
m
in

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

19
.9
m
in

62
5.
8
s

57
8.
0
s

BI
−1

4b
33
.6
s

62
.6
m
in

29
.4
m
in

83
9.
5
s

37
5.
0
s

17
6.
6
s

10
9.
1
s

BI
−1

6a
>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

6b
38
.5
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

21
.9
m
in

BI
−1

7
75
3.
6
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

8
16
9.
0
s

>
5
h
r
(T

/O
)

94
.1
s

46
.7
s

28
.6
s

30
.5
s

33
.1
s

BI
−1

9a
>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−1

9b
>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−2

0a
10
0.
4
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

BI
−2

0b
10
4.
1
s

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

>
5
h
r
(T

/O
)

T
ab

le
7.
4:

T
ab

le
co
m
p
ar
in
g
th
e
m
ed
ia
n
ex
ec
u
ti
on

ti
m
es

of
BI

−X
q
u
er
ie
s
at

sc
al
e
fa
ct
or

SF
=1

00
fo
r
N
eo
4j

an
d
d
iff
er
en
t
G
ra
p
h
ix

cl
u
st
er

co
n
fi
gu

ra
ti
on

s.
N
eo
4j

d
o
es

n
ot

h
av
e
an

y
va
lu
es

fo
r
q
u
er
ie
s

BI
−6
,

BI
−1

1,
an

d
BI

−1
2.

B
ot
h
N
eo
4j

an
d
G
ra
p
h
ix

(f
or

al
l

n
)
w
er
e
u
n
ab

le
to

fi
n
is
h
q
u
er
ie
s

BI
−1

6a
,

BI
−1

9a
,
an

d
BI

−1
9b

in
u
n
d
er

5
h
ou

rs
.
N
eo
4j

w
as

ad
d
it
io
n
al
ly

u
n
ab

le
to

fi
n
is
h
q
u
er
ie
s

BI
−2

a
an

d
BI

−8
a
in

u
n
d
er

5
h
ou

rs
.
G
ra
p
h
ix

w
as

ad
d
it
io
n
al
ly

u
n
ab

le
to

fi
n
is
h
q
u
er
ie
s

BI
−6
,

BI
−1

0b
,

BI
−1

2,
BI

−1
7,

BI
−2

0a
,
an

d
BI

−2
0b

in
u
n
d
er

5
h
ou

rs
.

163

Chapter 8

Conclusion

In this thesis we have introduced Graphix, an Apache AsterixDB extension that takes a view-

based approach to perform ad-hoc, partitioned-parallel, and synergistic graph plus document

analytics on JSON data in-situ. In contrast, current solutions (reviewed in Chapter 2) fall

short on either i) the “in-situ” aspects (e.g. native graph databases), ii) the “partitioned-

parallel” (e.g. graph databases like Neo4j), iii) the “ad-hoc” aspects (e.g. graph processing

systems), or iv) the “synergistic” aspects (e.g. existing database graph extensions). This

thesis has detailed (a) an example social network database in AsterixDB (Chapter 3), (b) how

users can define a graph on top of existing AsterixDB data (Chapter 4), (c) how users can

query the graphs that they define (Chapter 5), (d) what goes on “underneath-the-hood” to

realize Graphix queries (Chapter 6), and (e) a performance evaluation versus a native graph

database (Chapter 6). We conclude this thesis here with: 1) a summary of this thesis, and

2) potential future work for Graphix.

164

8.1 Conclusion

Chapter 2 reviewed several existing solutions for managing large graph data. Big Graph

processing systems have been shown to be highly performant and scalable, but their “think

like a vertex” paradigm still requires users to develop a program. Graph databases allow users

to reason about their data like a graph, but require users of existing non-graph-databases

to build ETL pipelines to copy their data over to the chosen graph database. We concluded

this review chapter with database graph extensions, which focus on translating queries for

a graph data model into the query model understood by an existing system. Graphix is a

graph extension for AsterixDB.

Chapter 3 described the running example for this thesis: a social network in AsterixDB.

AsterixDB is a Big Data management system (BDMS) that is designed to be a highly scal-

able platform for document storage, search, and analytics. The semi-structured data model

provided by AsterixDB allows users to a) reason about their data with rich(er) concepts

than a traditional relational model (e.g., arrays, nested objects), and b) flexibly specify a

range of dataset type definitions between schema-first to schema-never. We concluded this

chapter by discussing SQL++, AsterixDB’s query language that is purposed for querying

semi-structured data while also being backwards compatible with SQL.

Chapter 4 explained the graph user model of Graphix. A Graphix graph a) is directed,

b) is vertex and edge labeled, c) permits parallel edges, and d) associates properties with

each vertex and edge. Furthermore, a Graphix graph is a hypergraph which relaxes the

constraint that each edge associates exactly two vertices. A managed Graphix graph is

defined using a CREATE GRAPH DDL, and an unmanaged Graph graph is defined using the

WITH clause. Vertices and edges in Graphix are AsterixDB documents (either materialized

or non-materialized), which allows Graphix to utilize SQL++ and even gSQL++ subqueries

to define the vertices and edges of a graph. This chapter concluded by giving examples of

165

the CREATE GRAPH DDL to handle 1) the social network example, 2) multi-dataset mappings,

and 3) derived properties.

Chapter 5 detailed the query model of Graphix. Existing approaches to issuing ad-hoc graph

queries involve a) the SQL-1999 recursive CTE (which result in less-than-user-friendly queries

for simple computations like reachability), b) the Cypher query language (which forces users

of existing data to adopt a new query language just for graph data), and c) the recent SQL-

2023 SQL/PGQ (which draws a clear “line in the sand” between the relational world and the

graph world). gSQL++, the query language for Graphix, is a minimal extension to SQL++

that allows users to bind variables in the FROM clause directly to graph query constructs.

gSQL++ specifically allows users to specify navigational pattern matching queries, where

users can bind vertex patterns, edge patterns, and path patterns to iteration variables that

are semantically indistinguishable from other non-graph SQL++ variables. We concluded this

chapter by illustrating the implications of defining vertices, edges, and paths as documents

in SQL++ with i) optional subgraph matching, ii) negative subgraph matching, iii) subgraph

reachability, iv) shortest path finding, and v) cheapest path finding.

Chapter 6 presented the implementation underlying Graphix. This chapter led with an

architectural overview of Graphix, detailing the lifecycle of a CREATE GRAPH statement and

a gSQL++ query. All gSQL++ queries undergo two rewriting steps (one at the AST layer

after parsing, another at the query plan optimization layer) that are designed to reuse and

incorporate as much of AsterixDB as possible. After a gSQL++ query is optimized, Graphix

translates the query plan into a job that AsterixDB’s runtime engine, Hyracks, will distribute

across the cluster. To realize Graphix, Hyracks needed to be extended in order to run recur-

sive execution plans. We detailed the three essential properties to realize semi-synchronous

partitioned-parallel recursion in Hyracks: 1) liveness, 2) safety, and 3) mortality. After

explaining how Graphix performs recursion, we detailed two operators (PBJ and TOP K) to

potentially optimize path traversals.

166

Chapter 7 evaluated Graphix against a native graph database, Neo4j. Specifically, we mea-

sured how performant a no-ETL + in-situ approach to graph queries for existing data is

against a database tailored for graphs (modeling the scenario where a user performed the

costly ETL and was then subsequently able to query their graph). In general, we observed

that Graphix is generally able to leverage larger cluster sizes to execute queries faster than

smaller sized Graphix clusters. We found that Graphix is able to perform on par with (and

even outperform) Neo4j for many queries on larger graphs, however the JOIN order and JOIN

physical operator impacts the performance of Graphix. Furthermore, we saw that Neo4j

benefits from a bidirectional BFS technique for shortest path finding that can be orders of

magnitude faster than Graphix.

8.2 Future Work

Future work with respect to Graphix can be divided into three categories: i) implementation,

ii) evaluation, and iii) exploration. Starting with query model features, Graphix currently

does not implement multi-label query patterns (e.g., (:User|Message)) and undirected path

patterns (e.g., −[:KNOWS∗]−). Graphix also does not currently allow for nested recursion,

though gSQL++ does allow such queries to be expressed (see BI−15 in Section A.2). The

recent introduction of SQL/PGQ and Neo4j’s push to migrate Cypher towards the GQL

standard suggests that gSQL++ should perhaps also revisit how its navigational query pat-

terns should be expressed. For example, Graphix currently provides users with the option to

modify the pattern matching semantics via the graphix.semantics.pattern compiler option

at the query level. SQL/PGQ and GQL, however, allow users to modify the pattern matching

semantics for each individual query pattern via a keyword prefix (e.g., WALK, TRAIL, etc. . .),

ultimately allowing the user to express potentially easier-to-read queries. On the subject

of path navigation in Hyracks, hierarchical queries expressed using Oracle’s CONNECT BY [53]

167

could potentially be realized in AsterixDB by leveraging the recursion implementation of

Graphix.

Potential future work for evaluating Graphix performance includes specifically characteriz-

ing the FIXED POINT operator (e.g., recording the number of voting periods before a loop is

terminated, measuring the number of messages exchanged between each participant), char-

acterizing the “endgame” of a recursive computation (e.g., how full each frame is during

the last iterations of a loop), and determining the relationship between data size / graph

structure and the size of a Graphix cluster. Chapter 7 would also benefit from a comparison

against a native partitioned-parallel graph database like TigerGraph to compare speedup

factors (as a function of the cluster size) for Graphix.

With respect to exploration, Chapter 7 demonstrated the need for cost-based optimization

to determine the JOIN order and JOIN physical operators and a bidirectional BFS strategy to

adequately handle power-law graphs. For graphs with a larger average diameter (potentially

resulting in longer average paths), potential future work could involve leveraging the TOP K

operator to remove the use of path objects in operations like transitive closure. Exploring

alternative JOIN operators like worst-case-optimal-JOIN [51] to handle large intermediate re-

sults in between JOIN operations could be another piece of potential future work for Graphix.

To realize iterative full-graph algorithms like PageRank, potential future work could involve

leveraging Pregelix to work in tandem with Graphix to handle a larger set of use cases.

Finally, in the area of visual exploratory analysis / development, a Graphix user interface

project is currently being developed to act as a “Neo4j Browser”-esque parallel for Graphix

(see https://github.com/graphix-asterixdb/visualizer).

168

https://github.com/graphix-asterixdb/visualizer

Bibliography

[1] G. Abuoda, D. Dell’Aglio, A. Keen, and K. Hose. Transforming RDF-star to Property
Graphs: A Preliminary Analysis of Transformation Approaches (Extended Version),
2022.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey,
I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S. Kim,
C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann. AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB
Endowment, 7:1905–1916, 2014.

[3] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey, M. Dreseler,
and C. Li. Storage Management in AsterixDB. Proceedings of the VLDB Endowment,
7(10):841–852, June 2014.

[4] Amazon. Amazon Neptune: Serverless Graph Database Designed for Superior Scalabil-
ity and Availability. Available at https://aws.amazon.com/neptune/.

[5] R. Angles. The Property Graph Database Model. In Alberto Mendelzon Workshop on
Foundations of Data Management, 2018.

[6] R. Angles, J. B. Antal, A. Averbuch, P. A. Boncz, O. Erling, A. Gubichev, V. Haprian,
M. Kaufmann, J.-L. Larriba-Pey, N. Mart́ınez-Bazan, J. Marton, M. Paradies, M.-D.
Pham, A. Prat-Pérez, M. Spasic, B. A. Steer, G. Szárnyas, and J. Waudby. The LDBC
Social Network Benchmark. ArXiv, abs/2001.02299, 2020.

[7] R. Angles, M. Arenas, P. Barceló, P. A. Boncz, G. Fletcher, C. Gutiérrez, T. Lindaaker,
M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. G-CORE: A Core
for Future Graph Query Languages. Proceedings of the 2018 International Conference
on Management of Data, 2017.

[8] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of
Modern Query Languages for Graph Databases. ACM Computing Surveys, 50(5), sep
2017.

[9] R. Angles, H. Thakkar, and D. Tomaszuk. Mapping RDF Databases to Property Graph
Databases. IEEE Access, 8:86091–86110, 2020.

169

https://aws.amazon.com/neptune/

[10] Apache Giraph. Apache Giraph, an Iterative Graph Processing System Built for High
Scalability. Available at https://giraph.apache.org.

[11] V. Borkar, Y. Bu, E. P. Carman, N. Onose, T. Westmann, P. Pirzadeh, M. J. Carey,
and V. J. Tsotras. Algebricks: A Data Model-Agnostic Compiler Backend for Big Data
Languages. In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC
’15, page 422–433, New York, NY, USA, 2015. Association for Computing Machinery.

[12] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A Flexible and
Extensible Foundation for Data-Intensive Computing. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, ICDE ’11, page 1151–1162, USA,
2011. IEEE Computer Society.

[13] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(ger) Graph
Analytics on a Dataflow Engine. Proceedings of the VLDB Endowment, 8:161–172,
2014.

[14] D. Chamberlin. SQL++ for SQL Users: A Tutorial. Couchbase Incorporated, 2018.

[15] B. Chandramouli, J. Goldstein, and D. Maier. On-the-Fly Progress Detection in Itera-
tive Stream Queries. Proceedings of the VLDB Endowment, 2(1):241–252, aug 2009.

[16] F. Chung and L. Lu. The Average Distances in Random Graphs with Given Expected
Degrees. Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002.

[17] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-Law Distributions in Empirical
Data. SIAM Review, 51(4):661–703, nov 2009.

[18] Couchbase. Couchbase Analytics Service, Parallel Data Management Enabling Com-
plex Analytial Queries. Available at https://docs.couchbase.com/server/current/
analytics/introduction.html.

[19] S. Dar, R. Agrawal, and H. Jagadish. Optimization of Generalized Transitive Closure
Queries. In [1991] Proceedings. Seventh International Conference on Data Engineering,
pages 345–354, 1991.

[20] DataStax. DataStax Enterprise Graph: A Distributed Cassandra Graph Database
Optimized for Enterprise Applications. Available at https://www.datastax.com/

products/datastax-graph.

[21] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin, T. Lindaaker, V. Marsault,
W. Martens, J. Michels, F. Murlak, S. Plantikow, P. Selmer, O. van Rest, H. Voigt,
D. Vrgoč, M. Wu, and F. Zemke. Graph Pattern Matching in GQL and SQL/PGQ. In
Proceedings of the 2022 International Conference on Management of Data, SIGMOD
’22, page 2246–2258, New York, NY, USA, 2022. Association for Computing Machinery.

[22] B. Elliott, E. Cheng, C. Ogbuji, and Z. M. Özsoyoglu. A Complete Translation from
SPARQL into Efficient SQL. In International Database Engineering and Applications
Symposium, 2009.

170

https://giraph.apache.org
https://docs.couchbase.com/server/current/analytics/introduction.html
https://docs.couchbase.com/server/current/analytics/introduction.html
https://www.datastax.com/products/datastax-graph
https://www.datastax.com/products/datastax-graph

[23] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D. Pham,
and P. Boncz. The LDBC Social Network Benchmark: Interactive Workload. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, page 619–630, New York, NY, USA, 2015. Association for Computing
Machinery.

[24] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault, W. Martens,
F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoč. A Researcher’s Digest of GQL.
In F. Geerts and B. Vandevoort, editors, 26th International Conference on Database
Theory (ICDT 2023), volume 255 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1:1–1:22, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[25] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow,
M. Rydberg, P. Selmer, and A. Taylor. Cypher: An Evolving Query Language for
Property Graphs. Proceedings of the 2018 International Conference on Management of
Data, 2018.

[26] J. E. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. GraphX:
Graph Processing in a Distributed Dataflow Framework. In USENIX Symposium on
Operating Systems Design and Implementation, 2014.

[27] G. Graefe. Modern B-Tree Techniques. Foundations and Trends in Databases,
3(4):203–402, Apr. 2011.

[28] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang, L. Ding, and C. Zan-
iolo. RaSQL: Greater Power and Performance for Big Data Analytics with Recursive-
Aggregate-SQL on Spark. In Proceedings of the 2019 International Conference on Man-
agement of Data, SIGMOD ’19, page 467–484, New York, NY, USA, 2019. Association
for Computing Machinery.

[29] G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J.-A. Quiané-Ruiz, and V. Markl. Effi-
cient Control Flow in Dataflow Systems: When Ease-of-Use Meets High Performance.
In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 1428–
1439, 2021.

[30] M. Han and K. S. Daudjee. Giraph Unchained: Barrierless Asynchronous Parallel Exe-
cution in Pregel-like Graph Processing Systems. Proceedings of the VLDB Endowment,
8:950–961, 2015.

[31] D. Hirn and T. Grust. A Fix for the Fixation on Fixpoints. In Conference on Innovative
Data Systems Research, 2023.

[32] ISO Central Secretary. Information Technology — Database Languages — SQL —
Part 2: Foundation (SQL / Foundation). Standard ISO/IEC 9075-2:1999, International
Organization for Standardization, Geneva, CH, 1999.

171

[33] ISO/IEC. Graph Query Language GQL Standard. Available at https://www.

gqlstandards.org.

[34] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaida. On the Optimization of Recur-
sive Relational Queries: Application to Graph Queries. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, page
681–697, New York, NY, USA, 2020. Association for Computing Machinery.

[35] S. Jacobs, M. Y. S. Uddin, M. J. Carey, V. Hristidis, V. J. Tsotras, N. Venkatasubrama-
nian, Y. Wu, S. Safir, P. Kaul, X. Wang, M. A. Qader, and Y. Li. A BAD Demonstration:
Towards Big Active Data. Proceedings of the VLDB Endowment, 10:1941–1944, 2017.

[36] S. Jahangiri. Managing Complex Join Queries in Big Data Management Systems. PhD
Thesis, University of California, Irvine, Irvine, CA, December 2022. Available at https:
//escholarship.org/uc/item/2hv8408v.

[37] S. Jahangiri, M. J. Carey, and J.-C. Freytag. Design Trade-Offs for a Robust Dynamic
Hybrid Hash Join. Proceedings of the VLDB Endowment, 15(10):2257–2269, jun 2022.

[38] G. Jin, N. Anzum, and S. Salihoglu. GRainDB: A Relational-core Graph-Relational
DBMS. In 12th Conference on Innovative Data Systems Research, CIDR, pages 9–12,
2022.

[39] T. Kim, A. Behm, M. Blow, V. Borkar, Y. Bu, M. J. Carey, M. Hubail, S. Jahangiri,
J. Jia, C. Li, C. Luo, I. Maxon, and P. Pirzadeh. Robust and Efficient Memory Man-
agement in Apache AsterixDB. Software: Practice and Experience, 50(7):1114–1151,
2020.

[40] M. Levene and A. Poulovassilis. The Hypernode Model and its Associated Query Lan-
guage. In Proceedings of the 5th Jerusalem Conference on Information Technology,
1990. ’Next Decade in Information Technology’, pages 520–530, 1990.

[41] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Dis-
tributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud.
In Proceedings of the VLDB Endowment, 2012.

[42] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a System for Large-Scale Graph Processing. Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, 2010.

[43] W. Martens and T. Trautner. Evaluation and Enumeration Problems for Regular Path
Queries. In B. Kimelfeld and Y. Amsterdamer, editors, 21st International Conference
on Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, volume 98 of
LIPIcs, pages 19:1–19:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[44] A. O. Mendelzon and P. T. Wood. Finding Regular Simple Paths in Graph Databases.
In Proceedings of the 15th International Conference on Very Large Data Bases, VLDB
’89, page 185–193, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

172

https://www.gqlstandards.org
https://www.gqlstandards.org
https://escholarship.org/uc/item/2hv8408v
https://escholarship.org/uc/item/2hv8408v

[45] J. Misra. Detecting Termination of Distributed Computations Using Markers. In Pro-
ceedings of the Second Annual ACM Symposium on Principles of Distributed Computing,
pages 290–294, 1983.

[46] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
A Timely Dataflow System. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 439–455, New York, NY, USA, 2013.
Association for Computing Machinery.

[47] D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi. Incremen-
tal, Iterative Data Processing with Timely Dataflow. Communications of the ACM,
59(10):75–83, sep 2016.

[48] Neo4J. Bolt Protocol Documentation. Available at https://neo4j.com/docs/bolt/
current/.

[49] Neo4j. Neo4j, the Graph Data Platform. Available at https://neo4j.com.

[50] Neo4j. Shortest Path Planning. Available at https://neo4j.com/docs/

cypher-manual/current/appendix/tutorials/shortestpath-planning/.

[51] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-Case Optimal Join Algorithms.
Journal of the ACM (JACM), 65(3):1–40, 2018.

[52] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ Semi-structured Data
Model and Query Language: A Capabilities Survey of SQL-on-Hadoop, NoSQL and
NewSQL Databases. A Computing Research Repository, abs/1405.3631, 2014.

[53] Oracle. Hierarchical Queries. Available at https://docs.oracle.com/cd/B13789_01/
server.101/b10759/queries003.htm.

[54] Oracle. Oracle Spatial and Graph: Spatial and Graph Analytic Services and Data
Models that Support Big Data Workloads. Available at https://www.oracle.com/

database/technologies/bigdata-spatialandgraph.html.

[55] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C rec-
ommendation, W3C, Jan. 2008. https://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/.

[56] J. Rocha. Understanding Neo4j’s Data on Disk. Available at https://neo4j.com/

developer/kb/understanding-data-on-disk/.

[57] M. A. Rodriguez. The Gremlin Graph Traversal Machine and Language. Proceedings
of the 15th Symposium on Database Programming Languages, 2015.

[58] Y. Sagiv. Optimizing Datalog Programs. In Proceedings of the Sixth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Principles of
Database Systems ’87, page 349–362, New York, NY, USA, 1987. Association for Com-
puting Machinery.

173

https://neo4j.com/docs/bolt/current/
https://neo4j.com/docs/bolt/current/
https://neo4j.com
https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/shortestpath-planning/
https://neo4j.com/docs/cypher-manual/current/appendix/tutorials/shortestpath-planning/
https://docs.oracle.com/cd/B13789_01/server.101/b10759/queries003.htm
https://docs.oracle.com/cd/B13789_01/server.101/b10759/queries003.htm
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/

[59] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The Ubiquity of Large
Graphs and Surprising Challenges of Graph Processing. Proceedings of the VLDB En-
dowment, 11(4):420–431, dec 2017.

[60] S. Salihoglu and M. T. Özsu. Response to “Scale Up or Scale Out for Graph Processing”.
IEEE Internet Computing, 22:18–24, 09 2018.

[61] M.-C. Shan and M.-A. Neimat. Optimization of Relational Algebra Expressions Con-
taining Recursion Operators. In Proceedings of the 19th Annual Conference on Computer
Science, CSC ’91, page 332–341, New York, NY, USA, 1991. Association for Computing
Machinery.

[62] L. D. Shapiro. Join Processing in Database Systems with Large Main Memories. ACM
Transactions on Database Systems, 11(3):239–264, aug 1986.

[63] B. A. Steer, A. Alnaimi, M. A. B. F. G. Lotz, F. Cuadrado, L. M. Vaquero, and J. Var-
venne. Cytosm: Declarative Property Graph Queries Without Data Migration. Pro-
ceedings of the Fifth International Workshop on Graph Data-management Experiences
& Systems, 2017.

[64] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. SQLGraph: An
Efficient Relational-Based Property Graph Store. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’15, page 1887–1901,
New York, NY, USA, 2015. Association for Computing Machinery.

[65] G. Szárnyas, J. Waudby, B. A. Steer, D. Szakállas, A. Birler, M. Wu, Y. Zhang, and
P. Boncz. The LDBC Social Network Benchmark: Business Intelligence Workload.
Proceedings of the VLDB Endowment, 16(4):877–890, 2022.

[66] D. ten Wolde, T. Singh, G. Szárnyas, and P. Boncz. DuckPGQ: Efficient property Graph
Queries in an Analytical RDBMS. In Proceedings of the Conference on Innovative Data
Systems Research, jan 2023.

[67] Y. Tian. The World of Graph Databases from An Industry Perspective. ACM SIGMOD
Record, 51:60 – 67, 2022.

[68] Y. Tian, E. L. Xu, W. Zhao, M. H. Pirahesh, S. J. Tong, W. Sun, T. Kolanko, M. S. H.
Apu, and H. Peng. IBM Db2 Graph: Supporting Synergistic and Retrofittable Graph
Queries Inside IBM Db2. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 345–359, New York, NY, USA,
2020. Association for Computing Machinery.

[69] TigerGraph. TigerGraph: The World’s Fastest and Most Scaleable Graph Platform.
Available at https://www.tigergraph.com.

[70] R. W. Topor. Termination Detection for Distributed Computations. Information Pro-
cessing Letters, 18(1):33–36, 1984.

174

https://www.tigergraph.com

[71] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting Punctuation Semantics
in Continuous Data Streams. IEEE Transactions on Knowledge and Data Engineering,
15:555–568, 2003.

[72] Unipop. Unipop Graph: Analyze Data from Multiple Sources Using the Power of
Graphs. Available at https://github.com/unipop-graph/unipop.

[73] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a Property Graph Query
Language. In International Workshop on Graph Data Management Experiences and
Systems, 2016.

[74] N. Yakovets, P. Godfrey, and J. Gryz. Query Planning for Evaluating SPARQL Property
Paths. In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD ’16, page 1875–1889, New York, NY, USA, 2016. Association for Computing
Machinery.

[75] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big Graph Analytics Platforms. Founda-
tions and Trends in Databases, 7(1–2):1–195, jan 2017.

[76] F. Zemke. Converting SPARQL to SQL. Technical Report, W3C, 10 2006.

175

https://github.com/unipop-graph/unipop

Appendix A

Benchmark Detail

In this appendix, we detail i) the DDLs and SQL++ transformation queries to model the

LDBC social network benchmark CSV set in a more natural JSON representation for As-

terixDB, and ii) the queries in gSQL++ used to realize the LDBC interactive and business

intelligence workloads in Graphix.

A.1 Graphix DDLs

create-s1.sqlpp: AsterixDB script that defines the LDBC social network benchmark en-
tities and relationships in AsterixDB (with a document model). .� �
1 DROP DATAVERSE SNB.Native IF EXISTS ;
2 CREATE DATAVERSE SNB.Native ;
3 USE SNB.Native ;

5 CREATE TYPE MessageType AS {
6 id : bigint ,
7 imageFile : string ?,
8 creationDate : datetime ?,
9 locationIP : string ,

10 browserUsed : string ,
11 language : string ?,
12 content : string ?,
13 length : int ,
14 creatorId : bigint ,
15 forumId : bigint ?,
16 placeId : bigint ,

176

17 replyOfMessageId : bigint ?,
18 isPost : boolean ,
19 tags : [bigint]
20 };
21 CREATE TYPE ForumType AS {
22 id : bigint ,
23 title : string ,
24 creationDate : datetime ,
25 moderatorId : bigint ?,
26 tags : [bigint]
27 };
28 CREATE TYPE PersonType AS {
29 id : bigint ,
30 firstName : string ,
31 lastName : string ,
32 gender : string ,
33 birthday : date ,
34 creationDate : datetime ,
35 locationIP : string ,
36 browserUsed : string ,
37 placeId : bigint ,
38 language : [string],
39 email : [string],
40 universities : [{
41 organizationId : bigint ,
42 classYear : int
43 }],
44 companies : [{
45 organizationId : bigint ,
46 workFrom : int
47 }]
48 };
49 CREATE TYPE KnowsType AS {
50 startId : bigint ,
51 endId : bigint ,
52 creationDate : datetime
53 };
54 CREATE TYPE LikesType AS {
55 personId : bigint ,
56 messageId : bigint ,
57 creationDate : datetime
58 };
59 CREATE TYPE PersonTagType AS {
60 personId : bigint ,
61 tagId : bigint ,
62 creationDate : datetime
63 };
64 CREATE TYPE ForumPersonType AS {
65 forumId : bigint ,
66 personId : bigint ,
67 joinDate : datetime
68 };
69 CREATE TYPE TagType AS {
70 id : bigint ,
71 name : string ,
72 url : string ,
73 tagClassId : bigint
74 };
75 CREATE TYPE TagClassType AS {
76 id : bigint ,
77 name : string ,
78 url : string ,
79 isSubclassOf : bigint ?
80 };
81 CREATE TYPE OrganizationType AS {
82 id : bigint ,
83 name : string ,
84 url : string ,

177

85 placeId : bigint
86 };
87 CREATE TYPE LocationType AS {
88 id : bigint ,
89 name : string ,
90 url : string ,
91 containerId : bigint ?
92 };

94 CREATE DATASET Messages (MessageType) PRIMARY KEY id;
95 CREATE DATASET Forums (ForumType) PRIMARY KEY id;
96 CREATE DATASET Persons (PersonType) PRIMARY KEY id;
97 CREATE DATASET Knows (KnowsType) PRIMARY KEY startId , endId ;
98 CREATE DATASET Likes (LikesType) PRIMARY KEY personId , messageId ;
99 CREATE DATASET PersonTag (PersonTagType) PRIMARY KEY personId , tagId ;

100 CREATE DATASET ForumPerson (ForumPersonType) PRIMARY KEY forumId , personId ;
101 CREATE DATASET Tags (TagType) PRIMARY KEY id;
102 CREATE DATASET TagClasses (TagClassType) PRIMARY KEY id;
103 CREATE DATASET Universities (OrganizationType) PRIMARY KEY id;
104 CREATE DATASET Companies (OrganizationType) PRIMARY KEY id;
105 CREATE DATASET Cities (LocationType) PRIMARY KEY id;
106 CREATE DATASET Countries (LocationType) PRIMARY KEY id;
107 CREATE DATASET Continents (LocationType) PRIMARY KEY id; � �

transform-a1.sqlpp: Query used to define the posts in the Messages dataset. Each dataset
represents an AsterixDB external dataset defined with the CSV collection generated by the
LDBC’s social network graph generator. .� �
1 FROM
2 SNB.FromDatagen.Post p,
3 SNB.FromDatagen.PostHasCreatorPerson phcp ,
4 SNB.FromDatagen.PostIsLocatedInCountry pilic
5 LET
6 tags = (
7 FROM
8 SNB.FromDatagen.PostHasTagTag phtt
9 WHERE

10 phtt.PostId = p.id
11 SELECT VALUE
12 phtt.TagId
13),
14 forumId = (
15 FROM
16 SNB.FromDatagen.ForumContainerOfPost fcop
17 WHERE
18 fcop.PostId = p.id
19 SELECT VALUE
20 fcop.ForumId
21)[0]
22 WHERE
23 p.id = phcp.PostId AND
24 p.id = pilic.PostId
25 SELECT
26 p.id AS id ,
27 p.imageFile AS imageFile ,
28 DATETIME (p.creationDate) AS creationDate ,
29 p.locationIP AS locationIP ,
30 p.browserUsed AS browserUsed ,
31 p.language AS language ,
32 p.content AS content ,
33 p.length AS length ,
34 phcp.PersonId AS creatorId ,
35 forumId AS forumId ,
36 pilic.CountryId AS placeId ,

178

37 /∗ replyOfMessageId does not exist for Posts. ∗/
38 TRUE AS isPost ,
39 tags AS tags; � �
transform-a2.sqlpp: Query used to define the comments in the Messages dataset. Each
dataset represents an AsterixDB external dataset defined with the CSV collection generated
by the LDBC’s social network graph generator. .� �
1 FROM
2 SNB.FromDatagen.Comment c,
3 SNB.FromDatagen.CommentHasCreatorPerson chcp ,
4 SNB.FromDatagen.CommentIsLocatedInCountry cilic
5 LET
6 tags = (
7 FROM
8 SNB.FromDatagen.CommentHasTagTag chtt
9 WHERE

10 chtt.CommentId = c.id
11 SELECT VALUE
12 chtt.TagId
13),
14 replyOfCommentId = (
15 FROM
16 SNB.FromDatagen.CommentReplyOfComment cpoc
17 WHERE
18 cpoc.Comment1Id = c.id
19 SELECT VALUE
20 cpoc.Comment2Id
21)[0] ,
22 replyOfPostId = (
23 FROM
24 SNB.FromDatagen.CommentReplyOfPost crop
25 WHERE
26 crop.CommentId = c.id
27 SELECT
28 VALUE crop.PostId
29)[0]
30 WHERE
31 c.id = chcp.CommentId AND
32 c.id = cilic.CommentId
33 SELECT
34 c.id AS id ,
35 /∗ imageFile does not exist for Comments. ∗/
36 DATETIME (c.creationDate) AS creationDate ,
37 c.locationIP AS locationIP ,
38 c.browserUsed AS browserUsed ,
39 c.content AS content ,
40 c.length AS length ,
41 chcp.PersonId AS creatorId ,
42 /∗ forumId does not exist for Comments. ∗/
43 cilic.CountryId AS placeId ,
44 IF MISSING OR NULL (replyOfPostId , replyOfCommentId) AS replyOfMessageId ,
45 FALSE AS isPost ,
46 tags AS tags; � �
transform-b.sqlpp: Query used to define the Forums dataset. Each dataset represents an
AsterixDB external dataset defined with the CSV collection generated by the LDBC’s social
network graph generator. .� �
1 FROM

179

2 SNB.FromDatagen.Forum f
3 LET
4 tags = (
5 FROM
6 SNB.FromDatagen.ForumHasTagTag fhtt
7 WHERE
8 fhtt.ForumId = f.id
9 SELECT VALUE

10 fhtt.TagId
11),
12 moderatorId = (
13 FROM
14 SNB.FromDatagen.ForumHasModeratorPerson fhmp
15 WHERE
16 fhmp.ForumId = f.id
17 SELECT VALUE
18 fhmp.PersonId
19)[0]
20 SELECT
21 f.id AS id ,
22 f.title AS title ,
23 DATETIME (f.creationDate) AS creationDate ,
24 moderatorId AS moderatorId ,
25 tags AS tags; � �
transform-c.sqlpp: Query used to define the Persons dataset. Each dataset represents an
AsterixDB external dataset defined with the CSV collection generated by the LDBC’s social
network graph generator. .� �
1 FROM
2 SNB.FromDatagen.Person p,
3 SNB.FromDatagen.PersonIsLocatedInCity pilic
4 LET
5 universities = (
6 FROM
7 SNB.FromDatagen.PersonStudyAtUniversity psau
8 WHERE
9 psau.PersonId = p.id

10 SELECT
11 psau.UniversityId AS organizationId ,
12 psau.classYear AS classYear
13),
14 companies = (
15 FROM
16 SNB.FromDatagen.PersonWorkAtCompany pwac
17 WHERE
18 pwac.PersonId = p.id
19 SELECT
20 pwac.CompanyId AS organizationId ,
21 pwac.workFrom AS workFrom
22)
23 WHERE
24 p.id = pilic.PersonId
25 SELECT
26 p.id AS id ,
27 p.firstName AS firstName ,
28 p.lastName AS lastName ,
29 p.gender AS gender ,
30 DATE (p.birthday) AS birthday ,
31 DATETIME (p.creationDate) AS creationDate ,
32 p.locationIP AS locationIP ,
33 p.browserUsed AS browserUsed ,
34 pilic.CityId AS placeId ,
35 SPLIT (p.email , ';') AS email ,

180

36 SPLIT (p.language , ';') AS language ,
37 universities AS universities ,
38 companies AS companies ; � �
transform-d.sqlpp: Query used to define the Knows dataset. The PersonKnowsPerson
dataset represents an AsterixDB external dataset defined with the PersonKnowsPerson CSV
collection generated by the LDBC’s social network graph generator. .� �
1 FROM
2 SNB.FromDatagen.PersonKnowsPerson pkp
3 SELECT
4 DATETIME (pkp.creationDate) AS creationDate ,
5 pkp.Person1Id AS startId ,
6 pkp.Person2Id AS endId
7 UNION ALL
8 FROM
9 SNB.FromDatagen.PersonKnowsPerson pkp

10 SELECT
11 DATETIME (pkp.creationDate) AS creationDate ,
12 pkp.Person2Id AS startId ,
13 pkp.Person1Id AS endId ; � �
transform-e.sqlpp: Query used to define the Likes dataset. Each dataset represents an
AsterixDB external dataset defined with the CSV collection generated by the LDBC’s social
network graph generator. .� �
1 FROM
2 SNB.FromDatagen.PersonLikesComment plc
3 SELECT
4 DATETIME (plc.creationDate) AS creationDate ,
5 plc.PersonId AS personId ,
6 plc.CommentId AS messageId
7 UNION ALL
8 FROM
9 SNB.FromDatagen.PersonLikesPost plp

10 SELECT
11 DATETIME (plp.creationDate) AS creationDate ,
12 plp.PersonId AS personId ,
13 plp.PostId AS messageId ; � �
transform-f.sqlpp: Query used to define the PersonTag dataset. The
PersonHasInterestTag dataset represents an AsterixDB external dataset defined with
the PersonHasInterestTag CSV collection generated by the LDBC’s social network graph
generator. .� �
1 FROM
2 SNB.FromDatagen.PersonHasInterestTag phit
3 SELECT
4 phit.PersonId AS personId ,
5 phit.InterestId AS tagId ,
6 DATETIME (phit.creationDate) AS creationDate ; � �

181

transform-g.sqlpp: Query used to define the ForumPerson dataset. The
ForumHasMemberPerson dataset represents an AsterixDB external dataset defined with the
ForumHasMemberPerson CSV collection generated by the LDBC’s social network graph gen-
erator. .� �
1 FROM
2 SNB.FromDatagen.ForumHasMemberPerson fhmp
3 SELECT
4 fhmp.ForumId AS forumId ,
5 fhmp.PersonId AS personId ,
6 DATETIME (fhmp.creationDate) AS joinDate ; � �
create-s3a.sqlpp: AsterixDB script used to load the “dynamic” entities of the LDBC
social network graph into AsterixDB as managed datasets. .� �
1 LOAD DATASET SNB.Native.Messages
2 USING localfs (
3 ("path"=" $DATA PATH / Messages.adm "),
4 (" format "="adm")
5);
6 LOAD DATASET SNB.Native.Forums
7 USING localfs (
8 ("path"=" $DATA PATH / Forums.adm "),
9 (" format "="adm")

10);
11 LOAD DATASET SNB.Native.Persons
12 USING localfs (
13 ("path"=" $DATA PATH / Persons.adm "),
14 (" format "="adm")
15);
16 LOAD DATASET SNB.Native.Knows
17 USING localfs (
18 ("path"=" $DATA PATH / Knows.adm "),
19 (" format "="adm")
20);
21 LOAD DATASET SNB.Native.Likes
22 USING localfs (
23 ("path"=" $DATA PATH / Likes.adm "),
24 (" format "="adm")
25);
26 LOAD DATASET SNB.Native.PersonTag
27 USING localfs (
28 ("path"=" $DATA PATH / PersonTag.adm "),
29 (" format "="adm")
30);
31 LOAD DATASET SNB.Native.ForumPerson
32 USING localfs (
33 ("path"=" $DATA PATH / ForumPerson.adm "),
34 (" format "="adm")
35); � �
create-s3b.sqlpp: AsterixDB script used to transform the each “static” entity’s CSV
collection (generated from the LDBC’s social network graph generator) to directly populate
the corresponding AsterixDB managed datasets. .� �
1 USE SNB.Native ;

3 INSERT INTO Tags (
4 FROM

182

5 SNB.FromDatagen.Tag t,
6 SNB.FromDatagen.TagHasTypeTagClass thttc
7 WHERE
8 thttc.TagId = t.id
9 SELECT

10 t.∗,
11 thttc.TagClassId AS tagClassId
12);
13 INSERT INTO TagClasses (
14 FROM
15 SNB.FromDatagen.TagClass tc
16 LET
17 isSubclassOf = (
18 FROM
19 SNB.FromDatagen.TagClassIsSubclassOfTagClass tcisotc
20 WHERE
21 tcisotc.TagClass1Id = tc.id
22 SELECT VALUE
23 tcisotc.TagClass2Id
24)[0]
25 SELECT
26 tc.∗,
27 isSubclassOf AS isSubclassOf
28);

30 INSERT INTO Universities (
31 FROM
32 SNB.FromDatagen.Organisation o,
33 SNB.FromDatagen.OrganisationIsLocatedInPlace oilip
34 WHERE
35 o. `type ` LIKE 'University ' AND
36 oilip.OrganisationId = o.id
37 SELECT
38 o.id AS id ,
39 o.name AS name ,
40 o.url AS url ,
41 oilip.PlaceId AS placeId
42);
43 INSERT INTO Companies (
44 FROM
45 SNB.FromDatagen.Organisation o,
46 SNB.FromDatagen.OrganisationIsLocatedInPlace oilip
47 WHERE
48 o. `type ` LIKE 'Company ' AND
49 oilip.OrganisationId = o.id
50 SELECT
51 o.id AS id ,
52 o.name AS name ,
53 o.url AS url ,
54 oilip.PlaceId AS placeId
55);

57 INSERT INTO Cities (
58 FROM
59 SNB.FromDatagen.Place p,
60 SNB.FromDatagen.PlaceIsPartOfPlace pipop
61 WHERE
62 p. `type ` = 'City ' AND
63 pipop.Place1Id = p.id
64 SELECT
65 p.id AS id ,
66 p.name AS name ,
67 p.url AS url ,
68 pipop.Place2Id AS containerId
69);
70 INSERT INTO Countries (
71 FROM
72 SNB.FromDatagen.Place p,

183

73 SNB.FromDatagen.PlaceIsPartOfPlace pipop
74 WHERE
75 p. `type ` = 'Country ' AND
76 pipop.Place1Id = p.id
77 SELECT
78 p.id AS id ,
79 p.name AS name ,
80 p.url AS url ,
81 pipop.Place2Id AS containerId
82);
83 INSERT INTO Continents (
84 FROM
85 SNB.FromDatagen.Place p
86 WHERE
87 p. `type ` = 'Continent '
88 SELECT
89 p.id AS id ,
90 p.name AS name ,
91 p.url AS url
92); � �
create-s4.sqlpp: AsterixDB script that defines a set of indexes for each foreign key of the
previously defined AsterixDB datasets. .� �
1 USE SNB.Native ;

3 CREATE INDEX messageForumIdIndex ON Messages (forumId);
4 CREATE INDEX messageCreatorIdIndex ON Messages (creatorId);
5 CREATE INDEX messagePlaceIdIndex ON Messages (placeId);
6 CREATE INDEX messageReplyOfIndex ON Messages (replyOfMessageId);
7 CREATE INDEX messageTagsIndex ON Messages (
8 UNNEST tags
9) EXCLUDE UNKNOWN KEY;

11 CREATE INDEX forumPersonPersonIdIndex ON ForumPerson (personId);
12 CREATE INDEX forumModeratorIdIndex ON Forums (moderatorId);
13 CREATE INDEX forumTagIndex ON Forums (
14 UNNEST tags
15) EXCLUDE UNKNOWN KEY;

17 CREATE INDEX knowsEndPersonIndex ON Knows (endId);

19 CREATE INDEX personPlaceIdIndex ON Persons (placeId);
20 CREATE INDEX personUniversitiesIndex ON Persons (
21 UNNEST universities
22 SELECT organizationId
23) EXCLUDE UNKNOWN KEY;
24 CREATE INDEX personsCompaniesIndex ON Persons (
25 UNNEST companies
26 SELECT organizationId
27) EXCLUDE UNKNOWN KEY;

29 CREATE INDEX personTagTagIdIndex ON PersonTag (tagId);
30 CREATE INDEX likesMessageIdIndex ON Likes (messageId);

32 CREATE INDEX tagTagClassIdIndex ON Tags (tagClassId);
33 CREATE INDEX tagClassesSubclassOfIndex ON TagClasses (isSubclassOf);

35 CREATE INDEX universitiesPlaceIdIndex ON Universities (placeId);
36 CREATE INDEX companiesPlaceIdIndex ON Companies (placeId);
37 CREATE INDEX citiesContainerIdIndex ON Cities (containerId);
38 CREATE INDEX countriesContainerIdIndex ON Countries (containerId); � �

184

create-s5.sqlpp: Graphix script used to define the SNBGraph graph with the aforemen-
tioned datasets. .� �
1 USE SNB.Native ;

3 DROP GRAPH SNBGraph IF EXISTS ;
4 CREATE GRAPH SNBGraph AS
5 VERTEX (: Message)
6 PRIMARY KEY (id)
7 AS Messages ,
8 VERTEX (: Forum)
9 PRIMARY KEY (id)

10 AS Forums ,
11 VERTEX (: Person)
12 PRIMARY KEY (id)
13 AS Persons ,
14 VERTEX (: Tag)
15 PRIMARY KEY (id)
16 AS Tags ,
17 VERTEX (: TagClass)
18 PRIMARY KEY (id)
19 AS TagClasses ,
20 VERTEX (: University)
21 PRIMARY KEY (id)
22 AS Universities ,
23 VERTEX (: Company)
24 PRIMARY KEY (id)
25 AS Companies ,
26 VERTEX (: City)
27 PRIMARY KEY (id)
28 AS Cities ,
29 VERTEX (: Country)
30 PRIMARY KEY (id)
31 AS Countries ,
32 VERTEX (: Continent)
33 PRIMARY KEY (id)
34 AS Continents ,

36 EDGE (: Message) −[: REPLY OF]−>(:Message)
37 SOURCE KEY (id)
38 DESTINATION KEY (replyOfMessageId)
39 AS (
40 FROM
41 Messages m
42 SELECT
43 m.id AS id ,
44 m.replyOfMessageId AS replyOfMessageId
45),
46 EDGE (: Message) −[: HAS CREATOR]−>(:Person)
47 SOURCE KEY (id)
48 DESTINATION KEY (creatorId)
49 AS (FROM Messages SELECT id , creatorId),
50 EDGE (: Message) −[: IS LOCATED IN]−>(:Country)
51 SOURCE KEY (id)
52 DESTINATION KEY (placeId)
53 AS (FROM Messages SELECT id , placeId),
54 EDGE (: Message) −[: HAS TAG]−>(:Tag)
55 SOURCE KEY (id)
56 DESTINATION KEY (tagId)
57 AS (
58 FROM
59 Messages m,
60 m.tags tagId
61 SELECT
62 m.id AS id ,
63 tagId AS tagId
64),

185

65 EDGE (: Forum) −[: CONTAINER OF]−>(:Message)
66 SOURCE KEY (forumId)
67 DESTINATION KEY (id)
68 AS (
69 FROM
70 Messages m
71 WHERE
72 m.isPost
73 SELECT
74 m.id AS id ,
75 m.forumId AS forumId
76),
77 EDGE (: Forum) −[: HAS MODERATOR]−>(:Person)
78 SOURCE KEY (id)
79 DESTINATION KEY (moderatorId)
80 AS (FROM Forums SELECT id , moderatorId),
81 EDGE (: Forum) −[: HAS MEMBER]−>(:Person)
82 SOURCE KEY (forumId)
83 DESTINATION KEY (personId)
84 AS (FROM ForumPerson fp SELECT VALUE fp),
85 EDGE (: Forum) −[: HAS TAG]−>(:Tag)
86 SOURCE KEY (id)
87 DESTINATION KEY (tagId)
88 AS (
89 FROM
90 Forums f,
91 f.tags tagId
92 SELECT
93 f.id AS id ,
94 tagId AS tagId
95),
96 EDGE (: Person) −[: KNOWS]−>(:Person)
97 SOURCE KEY (startId)
98 DESTINATION KEY (endId)
99 AS (FROM Knows k SELECT VALUE k),

100 EDGE (: Person) −[: HAS INTEREST]−>(:Tag)
101 SOURCE KEY (personId)
102 DESTINATION KEY (tagId)
103 AS (FROM PersonTag pt SELECT VALUE pt),
104 EDGE (: Person) −[: IS LOCATED IN]−>(:City)
105 SOURCE KEY (id)
106 DESTINATION KEY (placeId)
107 AS (FROM Persons SELECT id , placeId),
108 EDGE (: Person) −[: STUDY AT]−>(:University)
109 SOURCE KEY (id)
110 DESTINATION KEY (organizationId)
111 AS (
112 FROM
113 Persons p,
114 p.universities u
115 SELECT
116 p.id AS id ,
117 u.organizationId AS organizationId ,
118 u.classYear AS classYear
119),
120 EDGE (: Person) −[: WORK AT]−>(:Company)
121 SOURCE KEY (id)
122 DESTINATION KEY (organizationId)
123 AS (
124 FROM
125 Persons p,
126 p.companies c
127 SELECT
128 p.id AS id ,
129 c.organizationId AS organizationId ,
130 c.workFrom AS workFrom
131),
132 EDGE (: Person) −[: LIKES]−>(:Message)

186

133 SOURCE KEY (personId)
134 DESTINATION KEY (messageId)
135 AS (FROM Likes l SELECT VALUE l),
136 EDGE (: Tag) −[: HAS TYPE]−>(:TagClass)
137 SOURCE KEY (id)
138 DESTINATION KEY (tagClassId)
139 AS (FROM Tags SELECT id , tagClassId),
140 EDGE (: TagClass) −[: IS SUBCLASS OF]−>(:TagClass)
141 SOURCE KEY (id)
142 DESTINATION KEY (isSubclassOf)
143 AS (FROM TagClasses SELECT id , isSubclassOf),
144 EDGE (: University) −[: IS LOCATED IN]−>(:City)
145 SOURCE KEY (id)
146 DESTINATION KEY (placeId)
147 AS (FROM Universities SELECT id , placeId),
148 EDGE (: Company) −[: IS LOCATED IN]−>(:Country)
149 SOURCE KEY (id)
150 DESTINATION KEY (placeId)
151 AS (FROM Companies SELECT id , placeId),
152 EDGE (: City) −[: IS PART OF]−>(:Country)
153 SOURCE KEY (id)
154 DESTINATION KEY (containerId)
155 AS (FROM Cities SELECT id , containerId),
156 EDGE (: Country) −[: IS PART OF]−>(:Continent)
157 SOURCE KEY (id)
158 DESTINATION KEY (containerId)
159 AS (FROM Countries SELECT id , containerId); � �

A.2 Graphix Queries (in gSQL++)

short-1.sqlpp: SNB query IS−1 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: IS LOCATED IN]−>(city:City)
5 SELECT
6 person.firstName AS firstName ,
7 person.lastName AS lastName ,
8 UNIX TIME FROM DATE IN MS (person.birthday) AS birthday ,
9 person.locationIP AS locationIp ,

10 person.browserUsed AS browserUsed ,
11 city.id AS cityId ,
12 person.gender AS gender ,
13 UNIX TIME FROM DATETIME IN MS (person.creationDate) AS creationDate ; � �
short-2.sqlpp: SNB query IS−2 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 LET
2 topMessages = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (person : Person WHERE person.id = $personId),

187

6 (person)<−[:HAS CREATOR]−(message : Message)
7 SELECT VALUE
8 message.id
9 ORDER BY

10 message.creationDate DESC
11 LIMIT
12 10
13)
14 FROM
15 topMessages tm ,
16 GRAPH SNB.Native.SNBGraph
17 (message : Message) −[: REPLY OF ∗]−>(post: Message),
18 (post) −[: HAS CREATOR]−>(originalPoster : Person)
19 WHERE
20 tm /∗+ indexnl ∗/ = message.id AND
21 post.isPost
22 SELECT
23 message.id AS messageId ,
24 COALESCE (message.content , message.imageFile) AS messageContent ,
25 UNIX TIME FROM DATETIME IN MS (message.creationDate) AS messageCreationDate ,
26 post.id AS originalPostId ,
27 originalPoster.id AS originalPostAuthorId ,
28 originalPoster.firstName AS originalPostAuthorFirstName ,
29 originalPoster.lastName AS originalPostAuthorLastName
30 ORDER BY
31 messageCreationDate DESC ,
32 messageId DESC
33 LIMIT
34 $limit ; � �
short-3.sqlpp: SNB query IS−3 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person)−[knows : KNOWS]−>(friend : Person)
5 SELECT
6 friend.id AS personId ,
7 friend.firstName AS firstName ,
8 friend.lastName AS lastName ,
9 UNIX TIME FROM DATETIME IN MS (knows.creationDate) AS friendshipCreationDate

10 ORDER BY
11 friendshipCreationDate DESC ,
12 friend.id ASC; � �
short-4.sqlpp: SNB query IS−4 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (message : Message WHERE message.id = $messageId)
4 SELECT
5 UNIX TIME FROM DATETIME IN MS (message.creationDate) AS messageCreationDate ,
6 COALESCE (message.content , message.imageFile) AS messageContent ; � �
short-5.sqlpp: SNB query IS−5 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .

188

� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (message : Message WHERE message.id = $messageId),
4 (message) −[: HAS CREATOR]−>(person : Person)
5 SELECT
6 person.id AS personId ,
7 person.firstName AS firstName ,
8 person.lastName AS lastName ; � �
short-6.sqlpp: SNB query IS−6 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (message : Message WHERE message.id = $messageId),
4 (message) −[: REPLY OF ∗]−>(post: Message),
5 (post)<−[:CONTAINER OF]−(forum : Forum),
6 (forum) −[: HAS MODERATOR]−>(moderator : Person)
7 WHERE
8 post.isPost
9 SELECT

10 forum.id AS forumId ,
11 forum.title AS forumTitle ,
12 moderator.id AS moderatorId ,
13 moderator.firstName AS moderatorFirstName ,
14 moderator.lastName AS moderatorLastName ; � �
short-7.sqlpp: SNB query IS−7 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE and the compiler option
graphix.semantics.pattern was set to "edge−isomorphism". .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (message : Message WHERE message.id = $messageId),
4 (message) −[: HAS CREATOR]−>(messageAuthor : Person),
5 (message)<−[:REPLY OF]−(comment : Message),
6 (comment) −[: HAS CREATOR]−>(replyAuthor : Person)
7 LET
8 isKnows = EXISTS (
9 FROM

10 GRAPH SNB.Native.SNBGraph
11 (replyAuthor) −[: KNOWS]−>(messageAuthor)
12 SELECT
13 1
14)
15 SELECT DISTINCT
16 comment.id AS commentId ,
17 comment.content AS commentContent ,
18 UNIX TIME FROM DATETIME IN MS (comment.creationDate) AS commentCreationDate ,
19 replyAuthor.id AS replyAuthorId ,
20 replyAuthor.firstName AS replyAuthorFirstName ,
21 replyAuthor.lastName AS replyAuthorLastName ,
22 isKnows AS isKnows
23 ORDER BY
24 commentCreationDate DESC ,
25 replyAuthorId ASC; � �

189

complex-1.sqlpp: SNB query IC−1 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person)−[p: KNOWS{1,3}]−>(otherPerson : Person),
5 (otherPerson) −[: IS LOCATED IN]−>(locationCity :City)
6 LET
7 companies = (
8 FROM
9 otherPerson.companies opc ,

10 GRAPH SNB.Native.SNBGraph
11 (company : Company) −[: IS LOCATED IN]−>(companyCountry : Country)
12 WHERE
13 opc.organizationId /∗+ indexnl ∗/ = company.id
14 SELECT
15 company.name AS companyName ,
16 company.workFrom AS workFrom ,
17 companyCountry.name AS countryName
18),
19 universities = (
20 FROM
21 otherPerson.universities opu ,
22 GRAPH SNB.Native.SNBGraph
23 (university : University) −[: IS LOCATED IN]−>(universityCity :City)
24 WHERE
25 opu.organizationId /∗+ indexnl ∗/ = university.id
26 SELECT
27 university.name AS universityName ,
28 university.classYear AS classYear ,
29 universityCity.name AS cityName
30)
31 WHERE
32 otherPerson.firstName = $firstName
33 GROUP BY
34 person.id ,
35 otherPerson.id ,
36 otherPerson ,
37 locationCity ,
38 companies ,
39 universities
40 SELECT
41 otherPerson.id AS friendId ,
42 otherPerson.lastName AS friendLastName ,
43 MIN(LEN(EDGES (p))) AS distanceFromPerson ,
44 UNIX TIME FROM DATE IN MS (otherPerson.birthday) AS friendBirthday ,
45 UNIX TIME FROM DATETIME IN MS (otherPerson.creationDate) AS friendCreationDate ,
46 otherPerson.gender AS friendGender ,
47 otherPerson.browserUsed AS friendBrowserUsed ,
48 otherPerson.locationIP AS friendLocationIp ,
49 otherPerson.email AS friendEmails ,
50 otherPerson.speaks AS friendLanguages ,
51 locationCity.name AS friendCityName ,
52 universities AS friendUniversities ,
53 companies AS friendCompanies
54 ORDER BY
55 distanceFromPerson ASC ,
56 otherPerson.lastName ASC ,
57 otherPerson.id ASC
58 LIMIT
59 $limit ; � �

190

complex-2.sqlpp: SNB query IC−2 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS]−>(friend : Person),
5 (friend)<−[:HAS CREATOR]−(message : Message)
6 WHERE
7 message.creationDate < $maxDate
8 SELECT
9 friend.id AS personId ,

10 friend.firstName AS personFirstName ,
11 friend.lastName AS personLastName ,
12 message.id AS messageId ,
13 COALESCE (message.content , message.imageFile) AS messageContent ,
14 UNIX TIME FROM DATETIME IN MS (message.creationDate) AS messageCreationDate
15 ORDER BY
16 messageCreationDate DESC ,
17 messageId ASC
18 LIMIT
19 $limit ; � �
complex-3.sqlpp: SNB query IC−3 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId) −[: KNOWS{1,2}]−>(otherPerson : Person),
4 (otherPerson)<−[:HAS CREATOR]−(m1: Message) −[: IS LOCATED IN]−>(countryX : Country),
5 (otherPerson)<−[:HAS CREATOR]−(m2: Message) −[: IS LOCATED IN]−>(countryY : Country),
6 (otherPerson) −[: IS LOCATED IN]−>(city:City)
7 LET
8 endDate = $startDate + DURATION (CONCAT ("P", TO STRING ($durationDays), "D"))
9 WHERE

10 (m1.creationDate BETWEEN $startDate AND endDate) AND
11 (m2.creationDate BETWEEN $startDate AND endDate) AND
12 countryX.name = $countryXName AND
13 countryY.name = $countryYName AND
14 city.containerId != countryX.id AND
15 city.containedId != countryY.id
16 GROUP BY
17 person.id ,
18 otherPerson
19 GROUP AS g
20 LET
21 xCount = ARRAY COUNT ((FROM g SELECT DISTINCT g.m1.id)),
22 yCount = ARRAY COUNT ((FROM g SELECT DISTINCT g.m2.id))
23 SELECT
24 otherPerson.id AS personId ,
25 otherPerson.firstName AS personFirstName ,
26 otherPerson.lastName AS personLastName ,
27 xCount AS xCount ,
28 yCount AS yCount ,
29 xCount + yCount AS `count `
30 ORDER BY
31 `count ` DESC ,
32 personId ASC
33 LIMIT
34 $limit ; � �

191

complex-4.sqlpp: SNB query IC−4 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS]−>(:Person)<−[:HAS CREATOR]−(post: Message),
5 (post) −[: HAS TAG]−>(tag:Tag),
6 (person) −[: KNOWS]−>(:Person)<−[:HAS CREATOR]−(post2 : Message)
7 LET
8 endDate = $startDate + DURATION (CONCAT ("P", TO STRING ($durationDays), "D"))
9 WHERE

10 post.isPost AND
11 post2.isPost AND
12 (post.creationDate BETWEEN $startDate AND endDate) AND
13 (post2.creationDate BETWEEN $startDate AND endDate) AND
14 tag.id NOT IN post2.tags
15 GROUP BY
16 tag.name AS tagName
17 SELECT
18 tagName AS tagName ,
19 COUNT (DISTINCT post.id) AS postCount
20 ORDER BY
21 postCount DESC ,
22 tagName ASC
23 LIMIT
24 $limit ; � �
complex-5.sqlpp: SNB query IC−5 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. There exists a semantically
equivalent LEFT MATCH variant for this query, however the listing below was used for the
benchmark. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId) −[: KNOWS{1,2}]−>(otherPerson : Person),
4 (otherPerson)<−[h: HAS MEMBER]−(forum : Forum)
5 LEFT JOIN
6 (
7 FROM
8 SNB.Native.Messages p
9 WHERE

10 p.isPost
11 SELECT
12 p.forumId AS forumId ,
13 p.creatorId AS creatorId
14) post ON post.forumId = forum.id AND post.creatorId = otherPerson.id
15 WHERE
16 h.joinDate > $minDate
17 GROUP BY
18 forum
19 SELECT
20 forum.title AS forumTitle ,
21 COUNT (DISTINCT post) AS postCount
22 ORDER BY
23 postCount DESC ,
24 forum.id ASC
25 LIMIT
26 $limit ; � �

192

complex-6.sqlpp: SNB query IC−6 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS{1,2}]−>(: Person)<−[:HAS CREATOR]−(post: Message),
5 (post) −[: HAS TAG]−>(tag:Tag),
6 (post) −[: HAS TAG]−>(otherTag :Tag)
7 WHERE
8 tag.name = $tagName AND
9 post.isPost

10 GROUP BY
11 otherTag
12 SELECT
13 otherTag.name AS tagName ,
14 COUNT (DISTINCT post) AS postCount
15 ORDER BY
16 postCount DESC ,
17 tagName ASC
18 LIMIT
19 $limit ; � �
complex-7.sqlpp: SNB query IC−7 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person)<−[:HAS CREATOR]−(message : Message),
5 (message)<−[likes : LIKES]−(friend : Person)
6 LET
7 isNew = friend.id NOT IN person.knows
8 GROUP BY
9 friend ,

10 isNew
11 GROUP AS g
12 LET
13 likeInfo = (
14 FROM
15 g
16 SELECT
17 g.likes.creationDate ,
18 g.message
19 ORDER BY
20 g.likes.creationDate DESC ,
21 g.message.id ASC
22 LIMIT
23 1
24)[0] ,
25 latency = GET DAY TIME DURATION (likeInfo.creationDate − likeInfo.message.creationDate)
26 SELECT
27 friend.id AS personId ,
28 friend.firstName AS personFirstName ,
29 friend.lastName AS personLastName ,
30 UNIX TIME FROM DATETIME IN MS (likeInfo.creationDate) AS likeCreationDate ,
31 likeInfo.message.id AS messageId ,
32 COALESCE (likeInfo.message.content , likeInfo.message.imageFile) AS messageContent ,
33 MS FROM DAY TIME DURATION (latency) / 60000 .0 AS minutesLatency ,
34 isNew AS isNew
35 ORDER BY
36 likeCreationDate DESC ,
37 personId ASC
38 LIMIT

193

39 $limit ; � �
complex-8.sqlpp: SNB query IC−8 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person)<−[:HAS CREATOR] −(: Message)<−[:REPLY OF]−(comment : Message),
5 (comment) −[: HAS CREATOR]−>(commentAuthor : Person)
6 WHERE
7 NOT comment.isPost
8 SELECT
9 commentAuthor.id AS personId ,

10 commentAuthor.firstName AS personFirstName ,
11 commentAuthor.lastName AS personLastName ,
12 UNIX TIME FROM DATETIME IN MS (comment.creationDate) AS commentCreationDate ,
13 comment.id AS commentId ,
14 comment.content AS commentContent
15 ORDER BY
16 commentCreationDate DESC ,
17 commentId ASC
18 LIMIT
19 $limit ; � �
complex-9.sqlpp: SNB query IC−9 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS{1,2}]−>(otherPerson : Person),
5 (otherPerson)<−[:HAS CREATOR]−(message : Message)
6 WHERE
7 message.creationDate < $maxDate
8 SELECT DISTINCT
9 otherPerson.id AS personId ,

10 otherPerson.firstName AS personFirstName ,
11 otherPerson.lastName AS personLastName ,
12 message.id AS messageId ,
13 COALESCE (message.content , message.imageFile) AS messageContent ,
14 UNIX TIME FROM DATETIME IN MS (message.creationDate) AS messageCreationDate
15 ORDER BY
16 messageCreationDate DESC ,
17 messageId ASC
18 LIMIT
19 $limit ; � �
complex-10.sqlpp: SNB query IC−10 for Graphix in gSQL++. For the benchmark, the
compiler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS]−>(:Person) −[: KNOWS]−>(friend : Person),
5 (friend) −[: IS LOCATED IN]−>(city:City)
6 LET

194

7 friendPosts = (
8 FROM
9 GRAPH SNB.Native.SNBGraph

10 (friend)<−[:HAS CREATOR]−(post: Message WHERE post.isPost)
11 SELECT VALUE
12 post.id
13),
14 commonPosts = (
15 FROM
16 friendPosts fp ,
17 GRAPH SNB.Native.SNBGraph
18 (commonPost : Message) −[: HAS TAG]−>(:Tag)<−[:HAS INTEREST]−(person)
19 WHERE
20 fp /∗+ indexnl ∗/ = commonPost.id
21 SELECT DISTINCT VALUE
22 fp
23),
24 commonPostCount = ARRAY COUNT (commonPosts),
25 commonInterestScore = commonPostCount − (ARRAY COUNT (friendPosts) − commonPostCount)
26 WHERE
27 ((GET MONTH (friend.birthday) = $month AND GET DAY (friend.birthday) >= 21) OR
28 (GET MONTH (friend.birthday) = (3 % 12) + 1 AND GET DAY (friend.birthday) < 22)) AND
29 NOT EXISTS (
30 FROM
31 GRAPH SNB.Native.SNBGraph
32 (person) −[: KNOWS]−>(friend)
33 SELECT
34 1
35)
36 SELECT
37 friend.id AS personId ,
38 friend.firstName AS personFirstName ,
39 friend.lastName AS personLastName ,
40 commonInterestScore AS commonInterestScore ,
41 friend.gender AS personGender ,
42 city.name AS personCityName
43 ORDER BY
44 commonInterestScore DESC ,
45 personId ASC
46 LIMIT
47 $limit ; � �
complex-11.sqlpp: SNB query IC−11 for Graphix in gSQL++. For the benchmark, the
compiler flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person WHERE person.id = $personId),
4 (person) −[: KNOWS{1,2}]−>(otherPerson : Person),
5 (otherPerson)−[w: WORK AT]−>(company : Company),
6 (company) −[: IS LOCATED IN]−>(country : Country)
7 WHERE
8 w.workFrom < $workFromYear AND
9 country.name = $countryName

10 GROUP BY
11 person.id ,
12 otherPerson.id ,
13 otherPerson ,
14 company.name AS organizationName ,
15 w.workFrom AS organizationWorkFromYear
16 SELECT
17 otherPerson.id AS personId ,
18 otherPerson.firstName AS personFirstName ,
19 otherPerson.lastName AS personLastName ,

195

20 organizationName AS organizationName ,
21 organizationWorkFromYear AS organizationWorkFromYear
22 ORDER BY
23 organizationWorkFromYear ASC ,
24 personId ASC ,
25 organizationName DESC
26 LIMIT
27 $limit ; � �
complex-12.sqlpp: SNB query IC−12 for Graphix in gSQL++. For the benchmark, the
compiler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (: Person)−[k: KNOWS WHERE k.startId = $personId]−>(friend : Person),
4 (friend)<−[:HAS CREATOR]−(comment : Message) −[: REPLY OF]−>(post: Message),
5 (post) −[: HAS TAG]−>(tag:Tag) −[: HAS TYPE]−>(tc: TagClass),
6 (tc) −[: IS SUBCLASS OF ∗]−>(tagClass : TagClass)
7 WHERE
8 NOT comment.isPost AND
9 post.isPost AND

10 tagClass.name = $tagClassName
11 GROUP BY
12 friend
13 GROUP AS g
14 LET
15 tagNames = (FROM g SELECT DISTINCT VALUE g.tag.name)
16 SELECT
17 friend.id AS personId ,
18 friend.firstName AS personFirstName ,
19 friend.lastName AS personLastName ,
20 tagNames AS tagNames ,
21 COUNT (DISTINCT comment.id) AS replyCount
22 ORDER BY
23 replyCount DESC ,
24 personId ASC
25 LIMIT
26 $limit ; � �
complex-13.sqlpp: SNB query IC−13 for Graphix in gSQL++. For the benchmark, the
compiler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person1 : Person)−[k: KNOWS+]−>(person2 : Person)
4 WHERE
5 person1.id = $person1Id AND
6 person2.id = $person2Id
7 GROUP BY
8 person1.id ,
9 person2.id

10 GROUP AS g
11 LET
12 shortestPathLength = (
13 FROM
14 g
15 SELECT VALUE
16 LEN(EDGES (g.k))
17 ORDER BY
18 LEN(EDGES (g.k)) ASC
19 LIMIT

196

20 1
21)[0]
22 SELECT VALUE
23 COALESCE (shortestPathLength , −1); � �
complex-14.sqlpp: SNB query IC−14 for Graphix in gSQL++. For the benchmark, the
compiler flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 WITH
2 GRAPH Complex14Graph AS
3 VERTEX (: Person)
4 PRIMARY KEY (id)
5 AS SNB.Native.Persons ,
6 EDGE (: Person) −[: KNOWS]−>(:Person)
7 SOURCE KEY (startId)
8 DESTINATION KEY (endId)
9 AS (

10 FROM
11 SNB.Native.Messages m1 ,
12 SNB.Native.Messages m2 ,
13 SNB.Native.Knows k
14 WHERE
15 k.startId = m1.creatorId AND
16 k.endId = m2.creatorId AND
17 (m1.replyOfMessageId = m2.id OR
18 m2.replyOfMessageId = m1.id)
19 GROUP BY
20 m1.creatorId AS startId ,
21 m2.creatorId AS endId
22 GROUP AS g
23 LET
24 w1 = (
25 FROM
26 g
27 WHERE
28 g.m1.isPost OR g.m2.isPost
29 SELECT VALUE
30 COUNT (∗)
31)[0] ,
32 w2 = (
33 FROM
34 g
35 WHERE
36 NOT g.m1.isPost OR NOT g.m2.isPost
37 SELECT VALUE
38 COUNT (∗)
39)[0] ∗ 0.5
40 SELECT
41 startId AS startId ,
42 endId AS endId ,
43 w1 + w2 AS weight
44)
45 FROM
46 GRAPH Complex14Graph
47 (person1 : Person)−[k: KNOWS+]−>(person2 : Person)
48 WHERE
49 person1.id = $person1Id AND
50 person2.id = $person2Id
51 GROUP BY
52 person1.id ,
53 person2.id
54 GROUP AS g
55 LET
56 cheapestPath = (

197

57 FROM
58 g
59 SELECT
60 (FROM VERTICES (g.k) kv SELECT VALUE kv.id) AS ids ,
61 (FROM EDGES (g.k) ke SELECT VALUE SUM(ke.weight))[0] AS cost
62 ORDER BY
63 ABS(cost) ASC
64 LIMIT
65 1
66)[0]
67 SELECT
68 cheapestPath.ids AS personIdsInPath ,
69 cheapestPath.cost AS pathWeight
70 ORDER BY
71 pathWeight DESC ; � �
bi-1.sqlpp: SNB query BI−1 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 LET
2 totalMessages = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (inner m : Message)
6 WHERE
7 inner m.creationDate < $datetime AND
8 inner m.content IS NOT NULL
9 SELECT VALUE

10 COUNT (inner m.id)
11)[0]
12 FROM
13 GRAPH SNB.Native.SNBGraph
14 (message : Message)
15 LET
16 year = GET YEAR (message.creationDate),
17 isComment = NOT message.isPost ,
18 lengthCategory = CASE
19 WHEN LENGTH (message.content) < 40
20 THEN 0
21 WHEN LENGTH (message.content) < 80
22 THEN 1
23 WHEN LENGTH (message.content) < 160
24 THEN 2
25 ELSE 3
26 END
27 WHERE
28 message.creationDate < $datetime AND
29 message.content IS NOT NULL
30 GROUP BY
31 year ,
32 isComment ,
33 lengthCategory
34 SELECT
35 year AS year ,
36 isComment AS isComment ,
37 lengthCategory AS lengthCategory ,
38 COUNT (∗) AS messageCount ,
39 AVG(LENGTH (message.content)) AS averageMessageLength ,
40 SUM(LENGTH (message.content)) AS sumMessageLength ,
41 COUNT (∗) ∗ 100 .0 / totalMessages AS percentageOfMessages
42 ORDER BY
43 year DESC ,
44 isComment ASC ,
45 lengthCategory ASC; � �

198

bi-2.sqlpp: SNB query BI−2 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (tagClass : TagClass WHERE tagClass.name = $tagClass),
4 (tagClass)<−[:HAS TYPE]−(tag:Tag)
5 LET
6 countWindow1 = (
7 FROM
8 GRAPH SNB.Native.SNBGraph
9 (m1: Message) −[: HAS TAG]−>(tag)

10 WHERE
11 m1.creationDate BETWEEN $date AND ($date + DURATION (" P100D "))
12 SELECT VALUE
13 COUNT (m1.id)
14)[0] ,
15 countWindow2 = (
16 FROM
17 GRAPH SNB.Native.SNBGraph
18 (m2: Message) −[: HAS TAG]−>(tag)
19 LET
20 startDate = ($date + DURATION (" P100D ")),
21 endDate = ($date + DURATION (" P200D "))
22 WHERE
23 m2.creationDate BETWEEN startDate AND endDate
24 SELECT VALUE
25 COUNT (m2.id)
26)[0]
27 SELECT
28 tag.name AS tagName ,
29 countWindow1 AS countWindow1 ,
30 countWindow2 AS countWindow2 ,
31 ABS(countWindow1 − countWindow2) AS diff
32 ORDER BY
33 diff DESC ,
34 tagName ASC
35 LIMIT
36 $limit ; � �
bi-3.sqlpp: SNB query BI−3 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (country : Country)<−[: IS PART OF] −(: City)<−[: IS LOCATED IN]−(person : Person),
4 (person)<−[:HAS MODERATOR]−(forum : Forum) −[: CONTAINER OF]−>(post: Message),
5 (post)<−[:REPLY OF ∗] −(message : Message),
6 (message) −[: HAS TAG]−>(:Tag) −[: HAS TYPE]−>(tagClass : TagClass)
7 WHERE
8 country.name = $country AND
9 tagClass.name = $tagClass AND

10 post.isPost
11 GROUP BY
12 forum AS forum ,
13 person.id AS personId
14 SELECT
15 forum.id AS forumId ,
16 forum.title AS title ,
17 UNIX TIME FROM DATETIME IN MS (forum.creationDate) AS creationDate ,
18 personId AS personId ,
19 COUNT (DISTINCT message.id) AS messageCount
20 ORDER BY
21 messageCount DESC ,

199

22 forumId ASC
23 LIMIT
24 $limit ; � �
bi-4.sqlpp: SNB query BI−4 for Graphix in gSQL++. This query was not used in the
benchmark due to a bug that was found after evaluation. Nonetheless, we list the (now
corrected) BI−4 query below to demonstrate the gSQL++ query model. .� �
1 LET
2 topForums = (
3 FROM
4 (
5 FROM
6 GRAPH SNB.Native.SNBGraph
7 (country : Country)<−[: IS PART OF]−(c:City),
8 (c)<−[: IS LOCATED IN]−(member : Person),
9 (member)<−[:HAS MEMBER]−(forum : Forum)

10 WHERE
11 forum.creationDate > $date
12 GROUP BY
13 forum ,
14 country
15 SELECT
16 forum AS forum ,
17 country AS country ,
18 COUNT (member) AS memberCount
19) AS t
20 GROUP BY
21 t.forum
22 SELECT VALUE
23 t.forum.id
24 ORDER BY
25 MAX(t.memberCount) DESC
26 LIMIT
27 100
28)
29 FROM
30 topForums tf ,
31 GRAPH SNB.Native.SNBGraph
32 (person : Person)<−[:HAS MEMBER]−(forum2 : Forum)
33 LET
34 messages = (
35 FROM
36 GRAPH SNB.Native.SNBGraph
37 (person)<−[:HAS CREATOR]−(message : Message),
38 (message) −[: REPLY OF ∗]−>(post: Message)<−[:CONTAINER OF] −(: Forum)
39 WHERE
40 post.isPost
41 SELECT
42 message.id
43)
44 WHERE
45 tf = forum2.id
46 GROUP BY
47 person
48 GROUP AS g
49 LET
50 messageCount = ARRAY COUNT ((FROM g, g.messages gm SELECT DISTINCT gm))
51 SELECT
52 person.id AS personId ,
53 person.firstName AS personFirstName ,
54 person.lastName AS personLastName ,
55 UNIX TIME FROM DATETIME IN MS (person.creationDate) AS creationDate ,
56 messageCount AS messageCount

200

57 ORDER BY
58 messageCount DESC ,
59 personId ASC
60 LIMIT
61 $limit ; � �
bi-5.sqlpp: SNB query BI−5 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to TRUE. There exists a semantically equivalent
LEFT MATCH variant for this query, however the listing below was used for the benchmark. . .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (tag:Tag WHERE tag.name = $tag)<−[: HAS TAG]−(m: Message),
4 (m) −[: HAS CREATOR]−>(person : Person),
5 SNB.Native.Likes liker ,
6 SNB.Native.Messages comment
7 WHERE
8 liker.messageId /∗+ indexnl ∗/ = m.id AND
9 comment.replyOfMessageId /∗+ indexnl ∗/ = m.id

10 GROUP BY
11 person.id AS personId
12 GROUP AS g
13 LET
14 messageCount = COUNT (DISTINCT m.id),
15 likeCount = (FROM g SELECT VALUE COUNT (DISTINCT g.liker.personId))[0] ,
16 replyCount = (FROM g SELECT VALUE COUNT (DISTINCT g.comment.id))[0]
17 SELECT
18 personId ,
19 replyCount ,
20 likeCount ,
21 messageCount ,
22 (messageCount + 2 ∗ replyCount + 10 ∗ likeCount) AS score
23 ORDER BY
24 score DESC ,
25 personId ASC
26 LIMIT
27 $limit ; � �
bi-6.sqlpp: SNB query BI−6 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to TRUE. There exists a semantically equivalent
LEFT MATCH variant for this query, however the listing below was used for the benchmark. . .� �
1 FROM
2 (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (tag:Tag WHERE tag.name = $tag),
6 (tag)<−[: HAS TAG]−(message1 : Message),
7 (message1) −[: HAS CREATOR]−>(person1 : Person)
8 LEFT JOIN
9 (

10 FROM
11 SNB.Native.Likes p2lm ,
12 SNB.Native.Messages p2m
13 WHERE
14 p2lm.personId = p2m.creatorId
15 SELECT
16 p2lm.messageId AS likedMessage ,
17 p2m.id AS createdMessage ,
18 p2m.creatorId AS id

201

19) p2 ON p2.likedMessage = message1.id
20 LEFT JOIN
21 (
22 FROM
23 SNB.Native.Likes l
24 SELECT VALUE
25 l
26) p3 ON p3.messageId = p2.createdMessage
27 GROUP BY
28 person1.id AS person1Id ,
29 p2.id AS person2Id
30 SELECT
31 person1Id ,
32 person2Id ,
33 COUNT (p3.personId) AS popularityScore
34) t
35 GROUP BY
36 t.person1Id AS person1Id
37 SELECT
38 person1Id AS personId ,
39 SUM(t.popularityScore) AS authorityScore
40 ORDER BY
41 authorityScore DESC ,
42 person1Id ASC
43 LIMIT
44 $limit ; � �
bi-7.sqlpp: SNB query BI−7 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (tag:Tag)<−[: HAS TAG] −(: Message)<−[:REPLY OF]−(comment : Message),
4 (comment) −[: HAS TAG]−>(relatedTag :Tag)
5 WHERE
6 tag.name = $tag AND
7 NOT comment.isPost AND
8 NOT EXISTS (
9 FROM

10 GRAPH SNB.Native.SNBGraph
11 (comment) −[: HAS TAG]−>(tag)
12 SELECT
13 1
14)
15 GROUP BY
16 relatedTag
17 SELECT
18 relatedTag.name AS tagName ,
19 COUNT (comment.id) AS commentCount
20 ORDER BY
21 commentCount DESC ,
22 tagName ASC
23 LIMIT
24 $limit ; � �
bi-8.sqlpp: SNB query BI−8 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 LET
2 personScores = (
3 FROM

202

4 (
5 FROM
6 GRAPH SNB.Native.SNBGraph
7 (person : Person) −[: HAS INTEREST]−>(tag:Tag)
8 WHERE
9 tag.name = $tag

10 SELECT
11 person.id AS id ,
12 100 AS score
13 UNION ALL
14 FROM
15 GRAPH SNB.Native.SNBGraph
16 (message : Message) −[: HAS TAG]−>(tag:Tag),
17 (message) −[: HAS CREATOR]−>(person : Person)
18 WHERE
19 tag.name = $tag AND
20 message.creationDate > $startDate AND
21 message.creationDate < $endDate
22 GROUP BY
23 person.id AS id
24 SELECT
25 id AS id ,
26 COUNT (message.id) AS score
27) AS t
28 GROUP BY
29 t.id
30 SELECT
31 t.id AS id ,
32 SUM(t.score) AS score
33)
34 FROM
35 GRAPH SNB.Native.SNBGraph
36 (p1: Person)
37 LEFT MATCH
38 (p1) −[: KNOWS]−>(p2: Person)
39 JOIN
40 personScores ps1 ON ps1.id = p1.id
41 LEFT JOIN
42 personScores ps2 ON ps2.id = p2.id
43 GROUP BY
44 p1.id AS id1 ,
45 ps1.score AS score
46 SELECT
47 id1 AS id ,
48 score AS score ,
49 SUM(ps2.score) AS friendsScore
50 ORDER BY
51 score + friendsScore DESC ,
52 id ASC
53 LIMIT
54 $limit ; � �
bi-9.sqlpp: SNB query BI−9 for Graphix in gSQL++. For the benchmark, the compiler flag
graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (person : Person)<−[:HAS CREATOR]−(post: Message),
4 (post)<−[:REPLY OF ∗] −(message : Message)
5 WHERE
6 post.isPost AND
7 (post.creationDate BETWEEN $startDate AND $endDate) AND
8 (message.creationDate BETWEEN $startDate AND $endDate)
9 GROUP BY

203

10 person
11 SELECT
12 person.id AS personId ,
13 person.firstName AS firstName ,
14 person.lastName AS lastName ,
15 COUNT (DISTINCT post.id) AS threadCount ,
16 COUNT (DISTINCT message.id) AS messageCount
17 ORDER BY
18 messageCount DESC ,
19 personId ASC
20 LIMIT
21 $limit ; � �
bi-10.sqlpp: SNB query BI−10 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to FALSE and the compiler option
graphix.semantics.pattern was set to "edge−isomorphism". .� �
1 LET
2 expertCandidates = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (person : Person)−[k: KNOWS{1, $maxPathDistance}]−>(epc: Person)
6 WHERE
7 person.id = $personId
8 GROUP BY
9 person.id AS personId ,

10 epc.id AS expertCandidatePersonId
11 HAVING
12 MIN(LEN(EDGES (k))) BETWEEN $minPathDistance AND $maxPathDistance
13 SELECT VALUE
14 expertCandidatePersonId
15)
16 FROM
17 expertCandidates ec ,
18 GRAPH SNB.Native.SNBGraph
19 (epc: Person) −[: IS LOCATED IN]−>(:City) −[: IS PART OF]−>(country : Country),
20 (epc)<−[:HAS CREATOR]−(message : Message),
21 (message) −[: HAS TAG]−>(:Tag) −[: HAS TYPE]−>(tagClass : TagClass),
22 (message) −[: HAS TAG]−>(tag:Tag)
23 WHERE
24 ec = epc.id AND
25 country.name = $country AND
26 tagClass.name = $tagClass
27 GROUP BY
28 epc.id AS personId ,
29 tag AS tag
30 SELECT
31 personId AS personId ,
32 tag.name AS name ,
33 COUNT (DISTINCT message) AS messageCount
34 ORDER BY
35 messageCount DESC ,
36 tag.name ASC ,
37 personId ASC
38 LIMIT
39 $limit ; � �
bi-11.sqlpp: SNB query BI−11 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to FALSE and the compiler option
graphix.semantics.pattern was set to "homomorphism". .

204

� �
1 FROM
2 (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (a: Person)−[k1: KNOWS]−>(b: Person)−[k2: KNOWS]−>(c: Person),
6 (a) −[: IS LOCATED IN]−>(:City) −[: IS PART OF]−>(country : Country),
7 (b) −[: IS LOCATED IN]−>(:City) −[: IS PART OF]−>(country),
8 (c) −[: IS LOCATED IN]−>(:City) −[: IS PART OF]−>(country),
9 (c)−[k3: KNOWS]−>(a)

10 WHERE
11 country.name = $country AND
12 a.id < b.id AND
13 b.id < c.id AND
14 (k1.creationDate BETWEEN $startDate AND $endDate) AND
15 (k2.creationDate BETWEEN $startDate AND $endDate) AND
16 (k3.creationDate BETWEEN $startDate AND $endDate)
17 GROUP BY
18 a.id AS aid ,
19 b.id AS bid ,
20 c.id AS cid
21 SELECT
22 1
23) AS g
24 SELECT
25 COUNT (g) AS gCount ; � �
bi-12.sqlpp: SNB query BI−12 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 LET
2 personMessages = (
3 FROM
4 SNB.Native.Persons p
5 LEFT JOIN
6 (
7 FROM
8 GRAPH SNB.Native.SNBGraph
9 (message : Message) −[: REPLY OF ∗]−>(post: Message)

10 WHERE
11 message.content IS NOT NULL AND
12 message.length < $lengthThreshold AND
13 message.creationDate > $startDate AND
14 post.language IN $languages AND
15 post.isPost
16 SELECT
17 message.id ,
18 message.creatorId
19) postMessages ON postMessages.creatorId = p.id
20 GROUP BY
21 p.id AS personId
22 SELECT
23 personId AS personId ,
24 COUNT (postMessages.id) AS messageCount
25)
26 FROM
27 personMessages pm
28 GROUP BY
29 pm.messageCount
30 SELECT
31 pm.messageCount AS messageCount ,
32 COUNT (pm.personId) AS personCount
33 ORDER BY
34 personCount DESC ,
35 messageCount DESC ;

205

� �
bi-13.sqlpp: SNB query BI−13 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to FALSE and the compiler option
graphix.semantics.pattern was set to "edge−isomorphism". .� �
1 LET
2 zombies = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (country : Country)<−[: IS PART OF] −(: City)<−[: IS LOCATED IN]−(zombie : Person)
6 LEFT MATCH
7 (zombie)<−[:HAS CREATOR]−(message : Message)
8 WHERE
9 zombie.creationDate < $endDate AND

10 country.name = $country AND
11 (message IS UNKNOWN OR zombie.creationDate < $endDate)
12 GROUP BY
13 zombie.id AS zombieId ,
14 zombie.creationDate AS zombieCreationDate
15 LET
16 yearDiff = GET YEAR ($endDate) − GET YEAR (zombieCreationDate),
17 monthDiff = GET MONTH ($endDate) − GET MONTH (zombieCreationDate),
18 months = 12 ∗ yearDiff + monthDiff + 1
19 HAVING
20 (COUNT (message.id) / months) < 1
21 SELECT VALUE
22 zombieId
23)
24 FROM
25 zombies z,
26 GRAPH SNB.Native.SNBGraph
27 (zombie : Person)
28 LET
29 zombieLikeCount = (
30 FROM
31 GRAPH SNB.Native.SNBGraph
32 (zombie)<−[:HAS CREATOR] −(: Message)<−[:LIKES]−(likerZombie : Person),
33 zombies lz
34 WHERE
35 likerZombie.id = lz AND
36 likerZombie.creationDate < $endDate
37 SELECT VALUE
38 COUNT (DISTINCT likerZombie.id)
39)[0] ,
40 totalLikeCount = (
41 FROM
42 GRAPH SNB.Native.SNBGraph
43 (zombie)<−[:HAS CREATOR] −(: Message)<−[:LIKES]−(likerPerson : Person)
44 WHERE
45 likerPerson.creationDate < $endDate
46 SELECT VALUE
47 COUNT (DISTINCT likerPerson.id)
48)[0] ,
49 zombieScore = CASE
50 WHEN totalLikeCount = 0
51 THEN 0.0
52 ELSE zombieLikeCount / totalLikeCount
53 END
54 WHERE
55 z = zombie.id
56 SELECT
57 zombie.id AS zombieId ,
58 zombieLikeCount AS zombieLikeCount ,

206

59 totalLikeCount AS totalLikeCount ,
60 zombieScore AS zombieScore
61 ORDER BY
62 zombieScore DESC ,
63 zombieId ASC
64 LIMIT
65 $limit ; � �
bi-14.sqlpp: SNB query BI−14 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 FROM
2 (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (co1: Country)<−[: IS PART OF]−(ci1:City)<−[: IS LOCATED IN]−(p1: Person),
6 (co2: Country)<−[: IS PART OF]−(ci2:City)<−[: IS LOCATED IN]−(p2: Person),
7 (p1) −[: KNOWS]−>(p2)
8 LET
9 c1 = EXISTS (

10 FROM
11 GRAPH SNB.Native.SNBGraph
12 (p1)<−[:HAS CREATOR] −(: Message) −[: REPLY OF]−>(m: Message),
13 (m) −[: HAS CREATOR]−>(p2)
14 SELECT
15 1
16),
17 c2 = EXISTS (
18 FROM
19 GRAPH SNB.Native.SNBGraph
20 (p1)<−[:HAS CREATOR] −(: Message)<−[:REPLY OF]−(m: Message),
21 (m) −[: HAS CREATOR]−>(p2)
22 SELECT
23 1
24),
25 c3 = EXISTS (
26 FROM
27 GRAPH SNB.Native.SNBGraph
28 (p1) −[: LIKES]−>(:Message) −[: HAS CREATOR]−>(p2)
29 SELECT
30 1
31),
32 c4 = EXISTS (
33 FROM
34 GRAPH SNB.Native.SNBGraph
35 (p1)<−[:HAS CREATOR] −(: Message)<−[:LIKES]−(p2)
36 SELECT
37 1
38),
39 c1Score = SWITCH CASE (c1 , TRUE , 4, FALSE , 0),
40 c2Score = SWITCH CASE (c2 , TRUE , 1, FALSE , 0),
41 c3Score = SWITCH CASE (c3 , TRUE , 10, FALSE , 0),
42 c4Score = SWITCH CASE (c4 , TRUE , 1, FALSE , 0),
43 c1c2Score = c1Score + c2Score ,
44 c3c4Score = c3Score + c4Score
45 WHERE
46 co1.name = $country1 AND
47 co2.name = $country2
48 SELECT DISTINCT
49 p1.id AS person1Id ,
50 p2.id AS person2Id ,
51 ci1.name AS city ,
52 c1c2Score + c3c4Score AS score
53) AS s

207

54 GROUP BY
55 s.city
56 GROUP AS g
57 LET
58 result = (FROM g SELECT VALUE g.s ORDER BY g.s.score DESC LIMIT 1)[0]
59 SELECT VALUE
60 result
61 ORDER BY
62 result.score DESC ,
63 result.person1Id ASC ,
64 result.person2Id ASC; � �
bi-15.sqlpp: SNB query BI−15 for Graphix in gSQL++. This query was not used in the
benchmark due to Graphix’s current lack of physical support for nested recursion (at the
time of writing). Nonetheless, we list the BI−15 query below to demonstrate the gSQL++

query model. .� �
1 WITH
2 GRAPH BI15Graph AS
3 VERTEX (: Person)
4 PRIMARY KEY (id)
5 AS SNB.Native.Persons ,
6 EDGE (: Person) −[: KNOWS]−>(:Person)
7 SOURCE KEY (startId)
8 DESTINATION KEY (endId)
9 AS (

10 FROM
11 GRAPH SNB.Native.SNBGraph
12 (personA : Person) −[: KNOWS]−>(personB : Person)
13 LET
14 w1 = (
15 FROM
16 GRAPH SNB.Native.SNBGraph
17 (personA)<−[:HAS CREATOR]−(comment : Message),
18 (comment) −[: REPLY OF]−>(post: Message),
19 (post) −[: HAS CREATOR]−>(personB),
20 (post)<−[:CONTAINER OF]−(forum : Forum)
21 WHERE
22 NOT comment.isPost AND
23 post.isPost AND
24 forum.creationDate BETWEEN $startDate AND $endDate
25 SELECT VALUE
26 COUNT (comment)
27)[0] ,
28 w2 = (
29 FROM
30 GRAPH SNB.Native.SNBGraph
31 (personA)<−[:HAS CREATOR]−(post: Message),
32 (post)<−[:REPLY OF]−(comment : Message),
33 (comment) −[: HAS CREATOR]−>(personB),
34 (post)<−[:CONTAINER OF]−(forum : Forum)
35 WHERE
36 NOT comment.isPost AND
37 post.isPost AND
38 forum.creationDate BETWEEN $startDate AND $endDate
39 SELECT VALUE
40 COUNT (comment)
41)[0] ,
42 w3 = (
43 FROM
44 GRAPH SNB.Native.SNBGraph
45 (personA)<−[:HAS CREATOR]−(c1: Message),
46 (c1) −[: REPLY OF]−>(c2: Message),

208

47 (c2) −[: HAS CREATOR]−>(personB),
48 (c2) −[: REPLY OF+]−>(post: Message),
49 (post)<−[:CONTAINER OF]−(forum : Forum)
50 WHERE
51 NOT c1.isPost AND
52 NOT c2.isPost AND
53 post.isPost AND
54 forum.creationDate BETWEEN $startDate AND $endDate
55 SELECT VALUE
56 COUNT (c1)
57)[0] ,
58 w4 = (
59 FROM
60 GRAPH SNB.Native.SNBGraph
61 (personA)<−[:HAS CREATOR]−(c2: Message),
62 (c2)<−[:REPLY OF]−(c1: Message),
63 (c1) −[: HAS CREATOR]−>(personB),
64 (c2) −[: REPLY OF+]−>(post: Message),
65 (post)<−[:CONTAINER OF]−(forum : Forum)
66 WHERE
67 NOT c1.isPost AND
68 NOT c2.isPost AND
69 post.isPost AND
70 forum.creationDate BETWEEN $startDate AND $endDate
71 SELECT VALUE
72 COUNT (c1)
73)[0]
74 SELECT
75 personA.id AS startId ,
76 personB.id AS endId ,
77 1.0 / (w1 + w2 + (0 .5 ∗ (w3 + w4)) + 1) AS weight
78)
79 FROM
80 GRAPH BI15Graph
81 (person1 : Person)−[k: KNOWS+]−>(person2 : Person)
82 LET
83 weight = ARRAY SUM ((FROM EDGES (k) ke SELECT VALUE ke.weight))
84 WHERE
85 person1.id = $person1Id AND
86 person2.id = $person2Id
87 GROUP BY
88 person1.id AS person1Id ,
89 person2.id AS person2Id
90 SELECT
91 SUM(weight) AS totalWeight
92 LIMIT
93 1; � �
bi-16.sqlpp: SNB query BI−16 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 LET
2 mc1 = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (person1 : Person)<−[:HAS CREATOR]−(message1 : Message) −[: HAS TAG]−>(tag:Tag)
6 WHERE
7 tag.name = $tagA AND
8 GET YEAR (message1.creationDate) = 2012 AND
9 (

10 FROM
11 GRAPH SNB.Native.SNBGraph
12 (person1)<−[:KNOWS]−(person2 : Person),
13 (person2)<−[:HAS CREATOR]−(message2 : Message),

209

14 (message2) −[: HAS TAG]−>(tag)
15 WHERE
16 GET DAY (message2.creationDate) = GET DAY ($dateA)
17 SELECT VALUE
18 COUNT (DISTINCT person2.id)
19)[0] < $maxKnowsLimit
20 GROUP BY
21 person1.id AS id
22 SELECT
23 id AS id ,
24 COUNT (DISTINCT message1.id) AS messageCount
25),
26 mc2 = (
27 FROM
28 GRAPH SNB.Native.SNBGraph
29 (person1 : Person)<−[:HAS CREATOR]−(message1 : Message) −[: HAS TAG]−>(tag:Tag)
30 WHERE
31 tag.name = $tagB AND
32 GET YEAR (message1.creationDate) = 2012 AND
33 (
34 FROM
35 GRAPH SNB.Native.SNBGraph
36 (person1)<−[:KNOWS]−(person2 : Person),
37 (person2)<−[:HAS CREATOR]−(message2 : Message),
38 (message2) −[: HAS TAG]−>(tag)
39 WHERE
40 GET DAY (message2.creationDate) = GET DAY ($dateB)
41 SELECT VALUE
42 COUNT (DISTINCT person2.id)
43)[0] < $maxKnowsLimit
44 GROUP BY
45 person1.id AS id
46 SELECT
47 id AS id ,
48 COUNT (DISTINCT message1.id) AS messageCount
49)
50 FROM
51 (
52 FROM
53 mc1
54 SELECT
55 mc1.id AS id ,
56 mc1.messageCount AS messageCountA ,
57 0 AS messageCountB
58 UNION ALL
59 FROM
60 mc2
61 SELECT
62 mc2.id AS id ,
63 0 AS messageCountA ,
64 mc2.messageCount AS messageCountB
65) AS t
66 GROUP BY
67 t.id
68 SELECT
69 t.id AS id ,
70 SUM(messageCountA) AS messageCountA ,
71 SUM(messageCountB) AS messageCountB
72 ORDER BY
73 messageCountA + messageCountB DESC ,
74 t.id ASC
75 LIMIT
76 $limit ; � �

210

bi-17.sqlpp: SNB query BI−17 for Graphix in gSQL++. For the benchmark, the com-
piler flag graphix.evaluation.prefer−indexnl was set to TRUE and the compiler option
graphix.semantics.pattern was set to "homomorphism". .� �
1 FROM
2 GRAPH SNB.Native.SNBGraph
3 (tag:Tag)<−[: HAS TAG]−(message1 : Message) −[: HAS CREATOR]−>(person1 : Person),
4 (message1) −[: REPLY OF ∗]−>(post1 : Message)<−[:CONTAINER OF]−(forum1 : Forum),
5 (forum1) −[: HAS MEMBER]−>(person2 : Person)<−[:HAS CREATOR]−(comment : Message),
6 (comment) −[: HAS TAG]−>(tag),
7 (forum1) −[: HAS MEMBER]−>(person3 : Person)<−[:HAS CREATOR]−(message2 : Message),
8 (comment) −[: REPLY OF]−>(message2) −[: REPLY OF ∗]−>(post2 : Message),
9 (post2)<−[:CONTAINER OF]−(forum2 : Forum)

10 LET
11 delta d = DURATION (CONCAT ("P", TO STRING ($delta), "H"))
12 WHERE
13 post1.isPost AND
14 post2.isPost AND
15 NOT comment.isPost AND
16 forum1.id != forum2.id AND
17 person2.id != person3.id AND
18 tag.name = $tag AND
19 message2.creationDate > message1.creationDate + delta d AND
20 NOT EXISTS (
21 FROM
22 GRAPH SNB.Native.SNBGraph
23 (forum2) −[: HAS MEMBER]−>(person1)
24 SELECT
25 1
26)
27 GROUP BY
28 person1.id AS person1Id
29 SELECT
30 person1Id AS person1Id ,
31 COUNT (DISTINCT message2.id) AS messageCount
32 ORDER BY
33 messageCount DESC ,
34 person1Id ASC
35 LIMIT
36 $limit ; � �
bi-18.sqlpp: SNB query BI−18 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to TRUE. .� �
1 LET
2 idPairs = (
3 FROM
4 GRAPH SNB.Native.SNBGraph
5 (tag:Tag WHERE tag.name = $tag)<−[:HAS INTEREST]−(person : Person),
6 (person) −[: KNOWS]−>(mutualFriend : Person)
7 SELECT
8 person.id AS personId ,
9 mutualFriend.id AS friendId

10)
11 FROM
12 idPairs idp1 ,
13 idPairs idp2
14 LET
15 mutualFriendId = idp1.friendId ,
16 person1Id = idp1.personId ,
17 person2Id = idp2.personId
18 WHERE
19 idp1.friendId = idp2.friendId AND

211

20 person1Id != person2Id AND
21 NOT EXISTS (
22 FROM
23 SNB.Native.Knows k
24 WHERE
25 k.startId /∗+ indexnl ∗/ = person1Id AND
26 k.endId /∗+ indexnl ∗/ = person2Id
27 SELECT VALUE
28 1
29)
30 GROUP BY
31 person1Id ,
32 person2Id
33 SELECT
34 person1Id AS person1Id ,
35 person2Id AS person2Id ,
36 COUNT (DISTINCT mutualFriendId) AS mutualFriendCount
37 ORDER BY
38 mutualFriendCount DESC ,
39 person1Id ASC ,
40 person2Id ASC
41 LIMIT
42 $limit ; � �
bi-19.sqlpp: SNB query BI−19 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 WITH
2 GRAPH BIGraph19 AS
3 VERTEX (: Person)
4 PRIMARY KEY (id)
5 AS SNB.Native.Persons ,
6 EDGE (: Person) −[: KNOWS]−>(:Person)
7 SOURCE KEY (startId)
8 DESTINATION KEY (endId)
9 AS (

10 FROM
11 (
12 FROM
13 SNB.Native.Messages m1 ,
14 SNB.Native.Messages m2
15 WHERE
16 m1.replyOfMessageId = m2.id
17 SELECT
18 m1.creatorId AS startId ,
19 m2.creatorId AS endId ,
20 m1.isPost AS m1IsPost ,
21 m2.isPost AS m2IsPost
22 UNION ALL
23 FROM
24 SNB.Native.Messages m1 ,
25 SNB.Native.Messages m2
26 WHERE
27 m2.replyOfMessageId = m1.id
28 SELECT
29 m1.creatorId AS startId ,
30 m2.creatorId AS endId ,
31 m1.isPost AS m1IsPost ,
32 m2.isPost AS m2IsPost
33) AS m12 ,
34 SNB.Native.Knows k
35 WHERE
36 k.startId = m12.startId AND
37 k.endId = m12.endId

212

38 GROUP BY
39 k.startId AS aid ,
40 k.endId AS bid
41 SELECT
42 aid AS startId ,
43 bid AS endId ,
44 1.0 / COUNT (∗) AS weight
45)
46 FROM
47 SNB.Native.Persons person1A ,
48 GRAPH BIGraph19
49 (person1B : Person)−[k: KNOWS+]−>(person2B : Person),
50 SNB.Native.Persons person2A
51 WHERE
52 person1A.placeId = $city1Id AND
53 person1B.placeId = $city2Id AND
54 person1A.id = person1B.id AND
55 person2A.id = person2B.id
56 GROUP BY
57 person1B.id AS id1 ,
58 person2B.id AS id2
59 GROUP AS g
60 LET
61 cheapestPathWeight = (
62 FROM
63 g
64 LET
65 cost = (FROM EDGES (g.k) ke SELECT VALUE SUM(ke.weight))[0]
66 SELECT VALUE
67 cost
68 ORDER BY
69 ABS(cost) ASC
70 LIMIT
71 1
72)[0]
73 SELECT
74 id1 AS person1id ,
75 id2 AS person2id ,
76 cheapestPathWeight AS totalWeight
77 ORDER BY
78 person1id ASC ,
79 person2id ASC; � �
bi-20.sqlpp: SNB query BI−20 for Graphix in gSQL++. For the benchmark, the compiler
flag graphix.evaluation.prefer−indexnl was set to FALSE. .� �
1 WITH
2 GRAPH BIGraph20 AS
3 VERTEX (: Person)
4 PRIMARY KEY (id)
5 AS SNB.Native.Persons ,
6 EDGE (: Person) −[: KNOWS]−>(:Person)
7 SOURCE KEY (startId)
8 DESTINATION KEY (endId)
9 AS (

10 FROM
11 GRAPH SNB.Native.SNBGraph
12 (personA : Person) −[: KNOWS]−>(personB : Person),
13 (personA)−[saA: STUDY AT]−>(:University)<−[saB: STUDY AT]−(personB)
14 GROUP BY
15 personA.id AS aid ,
16 personB.id AS bid
17 GROUP AS g
18 LET

213

19 weight = (
20 FROM
21 g
22 SELECT VALUE
23 MIN(ABS(g.saA.classYear − g.saB.classYear)) + 1
24)[0]
25 SELECT
26 aid AS startId ,
27 bid AS endId ,
28 weight AS weight
29)
30 FROM
31 GRAPH BIGraph20
32 (person2A : Person WHERE person2A.id = $person2Id)<−[k: KNOWS +] −(person1A : Person),
33 GRAPH SNB.Native.SNBGraph
34 (person1B : Person) −[: WORK AT]−>(company : Company)
35 WHERE
36 person1A.id = person1B.id AND
37 company.name = $company
38 GROUP BY
39 person1A.id AS id1 ,
40 person2A.id AS id2
41 GROUP AS g
42 LET
43 cheapestPath = (
44 FROM
45 g
46 LET
47 cost = (FROM EDGES (g.k) ke SELECT VALUE SUM(ke.weight))[0]
48 SELECT VALUE
49 cost
50 ORDER BY
51 ABS(cost) ASC
52 LIMIT
53 1
54)[0]
55 SELECT
56 id1 AS person1Id ,
57 cheapestPath.cost AS totalWeight
58 ORDER BY
59 totalWeight ASC ,
60 person1Id ASC
61 LIMIT
62 1; � �

214

	LIST OF FIGURES
	LIST OF CODE LISTINGS
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE THESIS
	Introduction
	Related Work
	Graph Processing Systems
	Native Graph Databases
	Database Graph Extensions

	Background
	Apache AsterixDB
	Social Network Example
	SQL for JSON: SQL++

	Graph Model
	Property Graph Model
	CREATE GRAPH Statement
	Social Network Example
	Multiple Dataset Example
	Derived Property Example

	Query Model
	SQL++ Query Extension
	SQL-1999 Recursive Queries
	Cypher Query Language
	SQL-2023 Property Graph Queries
	gSQL++ FROM Clause Extension

	Pattern Matching Queries
	Graph Pattern Matching
	gSQL++ for Pattern Matching

	Navigational Queries
	Path Finding (Navigation)
	gSQL++ for Navigation

	Complex gSQL++ Examples
	Optional Subgraph Matching
	Negative Subgraph Matching
	Subgraph Reachability
	Shortest Path Finding
	Cheapest Path Finding

	Implementation
	Graphix Architecture
	CREATE GRAPH Lifecycle
	gSQL++ Query Lifecycle

	Hyracks Runtime Engine
	Hyracks by Example
	Recursion Foundations
	Property #1: Liveness
	Property #2: Safety
	Property #3: Mortality
	Fixed Point Operator (1-Machine)
	Fixed Point Operator (n-Machines)
	Additional Hyracks Operators
	"Paths Not Traveled" (Alternatives)

	Abstract Syntax Tree Rewriter
	gSQL++ AST Rewriting
	gSQL++ Lowering to SQL++

	Algebricks Query Optimizer

	Evaluation
	Experimental Setup
	Operational IS-X Queries
	Operational IC-X Queries
	Analytical BI-X Queries

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendix Benchmark Detail
	Graphix DDLs
	Graphix Queries (in gSQL++)

