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This dissertation introduces a control mechanism for addressing neuronal growth problems,

which can be applied to neurological disorders such as spinal cord injuries, Parkinson’s disease,

and Alzheimer’s disease that limit neuronal functionality. We consider a recent medical therapy,

Chondroitinase ABC (ChABC), as a control mechanism for these conditions. ChABC aims

to treat these conditions by restoring neuron functionality through axon growth for damaged

neurons. It manipulates the extracellular matrix (ECM), a network of macromolecules and

minerals that surrounds neurons and regulates their activity. As a result, neurons produce tubulin

proteins, which cause the axon to elongate. This process is modeled as a Partial Differential

Equation (PDE), representing the behavior of tubulin concentration along the axon, with a moving
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boundary governed by Ordinary Differential Equations (ODE) consisting of the dynamics of

the axon length and tubulin concentration in the growth cone. In this dissertation, we propose

nonlinear design methods for a novel state feedback control law, an observer, and an output

feedback control law for a one-dimensional model of axonal elongation. We demonstrate the

robustness of the model to parameter changes of up to 40% relative to the original design and

analysis framework. We also address potential challenges, such as input delay, and propose a

compensation mechanism to overcome these issues. In addition to theoretical challenges, we

enhance the practical applicability of the proposed control law by introducing an event-triggered

control mechanism that allows users to update the control law in a sample-based manner. We

ensured local exponential stability and convergence of the closed-loop system, integrating the

plant dynamics with the proposed control law across all these techniques. The performance of the

designed control methods was validated through numerical simulations, demonstrating neuron

elongation by up to three orders of magnitude. These advancements offer promising avenues

for enhancing neural regeneration therapies and contribute significantly to the understanding

of neural growth dynamics, while also advancing theoretical control of Stefan-type moving

boundary PDE-ODE coupled systems.
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Chapter 1

The Foundation of Neuronal Growth and
Control

1.1 Understanding Neuronal Functionality

Neuroscience is a leading multidisciplinary field focused on understanding neuronal

functionality, drawing interest from medical science, engineering, biology, mathematics, and

other disciplines [44, 3, 43, 16, 93, 57]. Each of these disciplines play a role in understanding

how neurons function, how they are structured, and how to cure neuron-based diseases [87, 81].

To comprehensively study these aspects, researchers categorize neuronal functionality into two

major anatomical systems in vertebrate animals: the central nervous system (CNS) and the

peripheral nervous system (PNS).

The CNS is a complex network that integrates sensory information from the PNS and

coordinates bodily functions by sending commands back to the PNS. Essentially, it serves as the

control center for vertebrate animals, managing everything from basic reflexes to higher-order

cognitive processes. It consists of the brain and spinal cord. The PNS acts as the sensory and

motor interface of the nervous system. It gathers sensory signals from the environment and

transmits them to the CNS for processing. The PNS also carries commands from the CNS to

muscles and glands, enabling both voluntary and involuntary actions [4].

All this information is carried and processed by specialized cells known as neurons.

Neurons are the main cells in the nervous system whose objective is to obtain perception by
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transmitting electrical signals. This transmission process begins when a signal enters the neuron

through its dendrites and ends when the signal is relayed to another neuron at the axon terminal.

Dendrites are branch-like structures that extend from the soma, or cell body, which houses the

nucleus and organelles. The soma is crucial for maintaining the cell’s functions, as it manages

essential activities such as protein synthesis, ATP production, and RNA synthesis. When a

neuron receives a signal, the growth cone seeks chemical cues in the extracellular matrix. The

growth cone, a dynamic structure at the tip of the axon, plays a crucial role in sensing the cues.

These molecules create a pathway for the neuron to locate its target (post-synaptic) neuron, where

a synapse will form, allowing for the transmission of signals either electrically or chemically [26].

After detecting the path, the axon of the transmitter neuron elongates towards that direction, and

electrical signals propagate along the axon. Such elongation and propagation occur because of a

specific protein called ”tubulin” that extends the axon towards the target neuron. Free tubulin

monomers and dimers assemble and create microtubules which form the neuron’s cytoskeleton.

Finally, with the elongation of the axon and the formation of synapses, the transmission of the

signal is completed. The combination of these signals brings information to the central nervous

system (CNS), where it is processed. The CNS then produces a response, which is transmitted

back to the muscles to elicit an appropriate action.

1.2 Why Neuron Growth Matters: From Development to
Disease

Neuronal growth, the process described in the previous section, is vital for the nervous

system’s development and function in vertebrate animals. Specifically, it is crucial for brain

development [84], learning, memory formation [10], and recovery from injury [31]. During

embryonic development, neurons grow and extend their axons and dendrites, forming a complex

network within the brain and spinal cord. In addition, learning and memory formation are closely

related to neuron growth, particularly the synapses created during signal transmission. This
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process, known as synaptic plasticity, refers to the ability of synapses to strengthen or weaken

over time. These changes modify the connections between neurons based on the signals they

receive. Another key purpose of neuron growth is to repair injured neurons and regenerate new

ones. However, due to neurological disorders such as Alzheimer’s disease[64], Huntington’s

disease [13], Parkinson’s disease [14] and spinal cord injuries [63], neurons start to degenerate,

which causes neuronal growth to stop or to shrink. In Alzheimer’s disease, the buildup of

amyloid plaques and neurofibrillary tangles interferes with signal transmission, ultimately causing

synaptic dysfunction and the loss of neurons. Understanding and enhancing the neuron growth

process can slow down the progression of amyloid plaques and restore neural connectivity [88].

With certain therapies, it may be possible to remove this accumulation of material and promote

neuron growth to form synapses with target neurons. In Parkinson’s disease, neurons in the

midbrain and forebrain are gradually lost over time due to genetic and environmental factors, as

shown by clinical research. According to [68], both short- and long-distance axon growth can

help rebuild damaged neuronal circuits, such as those between the midbrain and forebrain, after

cell transplantation. When neurons are transplanted, axons typically grow only a short distance

from the transplants, and few axons reach their final target unless growth factor pathways are

used. Similarly, there can be regions in the spinal cord where neurons can be damaged because of

various factors such as injury, disease, or degenerative conditions. Damage to these neurons can

disrupt communication between the brain and the rest of the body, affecting movement, sensation,

and reflexes [85]. Therapeutic interventions that promote axonal growth for this injured lesion

have huge promises to solve this communication problem between the spinal cord and the body

[92]. However, solutions to these problems are still in the early stages, and mathematical models

are essential for improving our understanding and developing effective solutions.
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1.3 Modeling the Mysteries: Mathematical Approaches to
Neuron Growth

In this section, we introduce mathematical models of neuron growth. Two distinct models

describe this phenomenon: the transport-limited model and the mechanical forces model. The

transport-limited model uses the concept of mass uptake to explain neuronal growth [34]. The

mechanical forces model describes neuronal growth as being influenced by physical forces [90].

In the literature, these two models are represented using both ordinary differential equations

(ODE) and partial differential equations (PDE). Table 1.1 lists the literature for these models

along with the year they appeared. Recent research explores the interaction between these two

processes, proposing a model that couples mechanical and transport-limited mechanisms to

explain axonal growth. While experiments support the correlation between these processes

[72, 90, 2], as of our knowledge, no comprehensive systematic model currently exists.

Table 1.1. Mathematical models of neuron growth

Transport Limited Models Mechanically Mediated Growth

ODE Models

Van Veen et al. (1994),
Samuels et al. (1996),
Miller et al. (1997),

Van Ooyen et al. (2001),
Zubler et al. (2009),
Koene et al (2009)

Dennerll et al. (1989),
Li et al. (1995, 1996),

Goriely et al. (2015, 2017),
Anthonisen et al. (2019)

PDE Models

Hely et al. (2001),
McLean et al. (2004),
Graham et al. (2006),

Diehl et al. (2014)

O’Toole et al. (2008),
Recho et al. (2016),

1.3.1 Transport-limited models

The transport-limited models are based on diffusion and active transport of the proteins

specifically tubulin protein. They describe the movement of tubulin from soma to the end of the

neuron where the growth takes place. The authors of [82] and [96] propose that compartments

contain specific tubulin concentrations, and that these concentrations are exchanged between
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compartments through the diffusion and active transport of proteins. After diffusion and active

transport processes, tubulin monomers and dimers assemble and disassemble at the tip of the

neuron, causing elongation. The length of the neuron is determined by the distance between

compartments. This proposed model is also known as the zero-dimensional model, and it is

described by ordinary differential equations (ODEs). This model extended for neurons with

multiple branches [95]. In addition, the slow transport velocity of tubulin proteins sets theoretical

limits on axon length, as proposed by the model in [69]. Subsequently, these models were

adapted to apply to large-sclae neural networks, as detailed in [99]. Later, a tool for modeling the

growth and connectivity of these networks, NetMorph, is introduced in [47]. However, these

models are inadequate for explaining axon growth as they do not account for protein degradation.

Therefore, it was necessary to develop a model that captures protein concentration along the

entire length of the axon. The first attempt to create a model for this problem was made by

[40]. The authors considered the concentrations of tubulin and intracellular calcium (Ca) as key

factors responsible for the growth and branching of axons and dendrites. In their model, the

concentration changes of tubulin and Ca were explicitly modeled using PDEs. The PDE spatial

domain represents the length of the axon or dendrite and is divided into compartments to capture

variations in concentration along its length. This model fell short of representing axon growth

as a continuous process. The first continuum PDE-ODE model addressing axon growth driven

by tubulin was introduced in [67]. This model successfully incorporates both the production

of tubulin in the soma and its transport to the growth cone. The proposed model consists of a

reaction-advection-diffusion PDE that describes the dynamics of tubulin concentration along the

axon and an ODE that represents the axon length as a function of tubulin concentration at the

axon tip. This model identifies three distinct regimes of axon growth: short, moderate, and long.

Following this model, the authors of [36] analyze these three regimes and the transitions between

them with respect to changes in parameters. However, this model is inconsistent in representing

biological behavior because it does not account for the elongation of the axon, which implies

a moving boundary for the PDE. Instead, the model assumes a stationary PDE boundary. The

5



authors of [26] address the issue by representing the growth cone as a finite volume. This allows

them to track the concentration of tubulin more accurately within the axon. They also handle

tubulin polymerization separately with an ordinary differential equation (ODE). They effectively

incorporate the moving boundary of the PDE, making the model more aligned with the actual

biological processes of axon growth. Due to these advancements, we have adopted this model in

this dissertation and provide a detailed explanation of it in Chapter 2.

1.3.2 Mechanically mediated growth models

In this modeling strategy, the forces acting on axons or dendrites are considered the key

factors influencing neuron growth. Axonal growth is hypothesized to result of the application of

tension to the surface of the neuron’s cell body. This process is often described by well-known

spring-and-dashpot-type models which capture how the applied forces have both fluid and

solid-like properties and the neuron is a single unit without any spatial variation [24, 61, 60].

Following this model, a more comprehensive approach has been proposed, which considers the

neuron as a morphoelastic tubular compartment [35, 34]. In another model, the morphoelasticity

framework separates the applied stretch into an elastic component, representing immediate

deformation, and a growth component, reflecting long-term changes associated with neuronal

growth [5]. These models are at the cutting edge of research, with rapid advancements continually

enhancing our understanding of neuronal growth. Due to the presence of dissipative forces,

elongation driven by the growth cone does not meet the assumption of uniform longitudinal

tension. Therefore, a model that accounts for variations in longitudinal tension is needed. A PDE

model has been developed that integrates force generation at the growth cone, the viscoelastic

properties of the axon, and adhesions between the axon and the substrate, where longitudinal

tension varies [71]. This model is expanded by incorporating a three-compartment approach that

describes the three key states: collapsed, static, and motile [80]. These states come from the

interaction between the forces inside the neurite’s core and the surrounding membrane.
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1.4 Literature Review for Neuron Growth Control

As highlighted earlier, neural functionality is fundamental to the well-being of vertebrate

animals. However, conditions such as neurodegenerative diseases and spinal cord injuries can

severely impair this functionality. To address these disruptions, therapies are being developed that

focus on promoting axon elongation. This approach is crucial because elongating axons can help

restore lost connections within the nervous system, thereby recovering essential neural functions

and improving overall outcomes for affected individuals. Extensive research has been conducted

to promote neuron growth, with key techniques including the use of neurotrophic factors [41],

stem cell therapies [62], gene therapies [70], electrical stimulation, [37] and pharmacological

treatments [7]. Recently developed therapies such as ChABC have promising potential to cure

these disorders, specifically spinal cord injuries [6, 46]. ChABC therapy involves injecting

bacterial enzymes into the area where the degenerated neurons are located, which digest the

axon growth inhibitors [59, 32, 58]. After this therapy, axon growth sustains for a short distance,

starting from approximately 70 𝜇𝑚 and extending to 274.5 𝜇𝑚 for Dorsal Root Ganglia neurons,

as reported in [15]. However, this study does not provide any results related to long-distance

axon regeneration, a crucial factor for achieving functional recovery in spinal cord injury, where

growth spans from micrometers to millimeters. This mechanism motivates our design of the

control law in this paper to enhance axon elongation, aiming to achieve desired lengths in both

millimeters and micrometers.

1.5 Literature Review for PDE Control

PDE control, or in other words, control of infinite-dimensional systems, is typically

divided into two categories: in-domain control and boundary control. In-domain control refers

to the control of PDEs where the control inputs are applied directly within the spatial domain

of the system which influences the system’s dynamics at various spatial points. Some research

in this area, such as the work [94], has explored backstepping techniques for in-domain control
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by applying an additional differential transformation to cancel the residual term. This approach

aimed to address a common limitation in in-domain control strategies, where the control input

often fails to fully cancel the residual term, thereby potentially compromising the effectiveness

of the control strategy. In another work, the authors of [97], developed a state transformation

that reformulates the control input to function as a boundary control. They then applied the

classical boundary backstepping technique. However, in-domain control requires the control

input to influence the entire spatial domain which makes the mathematical analysis complicated.

Another drawback of in-domain control is actuation and sensing are non-intrusive, making it

challenging to effectively measure and influence the system without interfering with its natural

behavior. Boundary control of PDE systems has been intensively studied over the last two

decades [56]. Specifically, the utilization of the method of successive approximation in [86]

for backstepping transformation has enabled to obtaining of numerical and symbolic solutions

for kernel PDEs. Following this initial contribution, backstepping-based boundary control for

PDEs has been extended to the class of coupled PDE-ODE systems [53, 89, 91]. Following

this extension, [55] introduced input delay compensation for boundary control by considering

an input delay as a transport PDE. [54] also provides input delay compensation and control

for unstable reaction-diffusion PDE for arbitrarily long input delays. Although most studies

including the aforementioned ones considered a constant domain size in time, several prior work

have focused on the boundary control of the Stefan problem, formulated as a parabolic PDE with

a moving boundary governed by ODE, see [27, 73, 74, 66, 9, 28, 42] for instance. Recent study

[50] [51] have designed a backstepping-based control strategy for the Stefan problem, where the

authors have provided the global stability results for the nonlinear closed-loop systems by virtue

of the maximum principle. On the other hand, the local stability results for nonlinear hyperbolic

PDEs have been developed in several work [12, 8, 98]. However, without utilizing the maximum

principle, even the local stability results had not been achieved for nonlinear parabolic PDEs

with moving boundary besides our prior work [19].

While the aforementioned control designs operate in continuous time, certain technologies
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require control actions only when necessary due to energy, communication, and computation

constraints [38]. To address this, an event-triggered control strategy is proposed for PID

controllers in [1], and for state feedback and output feedback controllers for linear and nonlinear

time-invariant systems in [39] and [48]. In the context of PDEs, [83] introduced the first event-

triggered control design. Building on this foundation, [45] introduced a dynamic event-triggering

mechanism for hyperbolic PDEs and later for parabolic PDEs, where they proposed sampled-data

boundary control. The first event-triggered boundary control for parabolic PDEs was developed

by [29]. For Stefan problem, both static and dynamic event-triggered boundary control laws

were developed by the authors of [77] and [76]. Meanwhile, a new method called periodic

event-triggered control has emerged, where the triggering function is checked only periodically,

while the control input is updated aperiodically. In this area, the authors of [79] introduced a

periodic event-triggering mechanism for parabolic PDEs, followed by its application to moving

boundary PDEs in [78]. Additionally, an event-triggering mechanism was employed to transition

between safety, using Control Barrier Functions (CBFs), and stability for the Stefan problem

with actuator dynamics, as discussed in [49].

1.6 Research Objectives and Contributions

1.6.1 Innovations in neuron growth control

With the recent discovery of axon regenerability as discussed in the background section,

there is a significant potential for the application of control systems to regulate and guide this

regeneration toward achieving desired outcomes. Consequently, this dissertation represents the

pioneering research in the field of control systems related to axon regeneration, as it provides

the design and analysis of control laws and observers for neuronal axon growth. By connecting

theoretical control systems with biological processes, it provides a mathematical framework for

manipulating axon growth by controlling the flow of tubulin from the soma to the axon. This

approach allows researchers to systematically influence how axons grow, potentially leading to
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breakthroughs in treating neurodegenerative diseases, spinal cord injuries, and other conditions

where nerve regeneration is essential. Additionally, this innovation also opens up possibilities for

creating advanced prosthetics and artificial neural networks that work better with our nervous

system.

1.6.2 Theoretical advances in boundary control of PDEs

The advancement in this dissertation is not only valuable for neuroscience, but also it

introduces methodological and theoretical advances in the control of the Stefan-type moving-

boundary PDE-ODE systems. In our earlier work [50], where we developed control and state

estimators for the classical Stefan model, the relation from heat flux at the phase interface to the

position of the interface was of relative degree one. In our extension [52], in which advection and

reaction appear, as do in axon growth, the relative degree remained one. But in the axon growth,

the relation arising at the growth cone, from protein flux to the axon end location, is of relative

degree two. In addition, the ODE that represents the dynamics of tubulin concentration in the

growth cone is nonlinear, whereas in the classical Stefan model, it is a simple integrator. The

increase in the relative degree from one to two changes everything. First, the maximum principle

for parabolic PDEs is no longer applicable, and global stability is not achievable. Second, not

needing to meet the condition of the maximum principle, namely, that the inlet flux is above a

certain value (analogous to the heat flux needing to be positive in the classical Stefan model

of melting), comes as a blessing because there is no risk of model violation from the violation

of the maximum principle. In physical terms, the model remains valid even if the axon is a

little tubulin-starved relative to the equilibrium profile since the tubulin equilibrium profile at

the target length is strictly positive. So, local stability is not as catastrophic as in classical

Stefan-type melting where, if stability is not global, an island of solid may develop in the liquid

domain [50] and [52]. In the axon, slight undershooting of tubulin does not cause axon death.

Some of the contributions described above were presented only for the linearized system in our

earlier works, such as [19] and [21]. However, recognizing the limitations of linearization, we
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extended this work to a more comprehensive framework that couples partial differential equations

(PDEs) with nonlinear ordinary differential equations (ODEs) without relying on linearization,

as discussed in [23]. This extension allows for a more accurate representation of the complex,

nonlinear dynamics observed in neuronal systems. Furthermore, we introduced a method for

compensating input delays in control systems, as detailed in [20], which significantly advanced

the field by addressing a critical challenge in the compensating input time delay. Building on these

advancements, we continued to refine the theoretical foundations by developing event-triggering

[22] and periodic event-triggering mechanisms [18]. These mechanisms are designed to improve

the practicality and efficiency of control laws by ensuring that the control actions are triggered

only when necessary, rather than continuously. Additionally, we were the first to analyze the

closed-loop convergence of these mechanisms in a coupled PDE and nonlinear ODE setting,

providing important insights into their stability and effectiveness in complex systems.

1.7 Organization of the Dissertation

This dissertation is structured into nine chapters, each of which delves into different

aspects of the control of neuronal growth, with a particular focus on developing and applying

advanced control methods for this complex biological process.

• Chapter 1: The Foundation of Neuronal Growth and Control

This chapter presents the moving boundary PDE-ODE coupled model, explaining its

relevance to neuron growth. It covers the reference error system, control objectives, and

the development of closed-loop feedback control, focusing on Stefan-type PDE control for

managing moving boundaries.

• Chapter 2: Moving Boundary Neuron Growth Model

This chapter presents the moving boundary PDE-ODE coupled model, explaining its

relevance to neuron growth. It covers the reference error system, control objectives, and
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the development of closed-loop feedback control, focusing on Stefan-type PDE control

which is critical for managing the moving boundary conditions inherent in the model.

• Chapter 3: State Feedback Control Design

This chapter focuses on designing state feedback control for neuron growth using the

backstepping method. It begins by transforming the original neuron growth system into a

target system, followed by deriving the gain kernel solutions and the backstepping control

law. A detailed stability analysis of the system under state feedback control is presented.

The chapter also addresses challenges related to ensuring local stability over a non-constant

spatial interval and demonstrates the effectiveness of the control law through simulations.

• Chapter 4: Neuron Growth State Estimation

This chapter addresses the state of neuron growth through observer design that can estimate

the unmeasured states of the system. The observer error system is introduced, followed by

the application of the backstepping transformation for the desired observer design, with a

stability proof ensuring convergence of estimates to true states over time, and a discussion

on the well-posedness of the transformations to guarantee the observer’s reliability. Finally,

the chapter includes simulations that demonstrate the accuracy and robustness of the state

estimation process.

• Chapter 5: Observer-based Neuron Growth Control

Building on the observer design, this chapter presents an output-feedback control strategy. It

discusses the reference error states, stability under output-feedback control, and robustness

against system uncertainties, supported by simulation results.

• Chapter 6: Input Delay Compensation

This chapter extends the neuron growth model to include input delays, modeled as a

transport PDE. It adapts the backstepping method for delay-compensated control, providing
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stability proofs and ensuring local stability, with a final Lyapunov analysis confirming

effectiveness.

• Chapter 7: Event-triggered Control

The chapter introduces event-triggered control for neuron growth, focusing on axon growth

models with actuation at Robin boundary conditions. It covers continuous-time and

sampled-data control laws, avoidance of Zeno phenomena, and stability proofs, validated

by simulations.

• Chapter 8: Periodic Event-triggered Control

This chapter discusses periodic event-triggering mechanisms, where triggering occurs at

regular intervals. It covers the design of the periodic event-triggering function, stability

analysis, and simulations that demonstrate the advantages of this control approach.

• Chapter 9: Conclusion

The final chapter summarizes the key findings, discusses the implications of the research,

and suggests directions for future work, highlighting the broader impact of the control

methods developed in this dissertation.
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Chapter 2

Moving Boundary Neuron Growth Model

2.1 Introduction to the Moving Boundary PDE-ODE Cou-
pled Model

In this section, we introduce the moving boundary model for the neuron growth problem

that is proposed in [26]. In this model, axon growth is determined by the dynamic behavior of

tubulin proteins, which play a crucial role in the assembly and extension of microtubules that

form the structural framework of the axon. This model is based on two key assumptions that

form the foundation of its framework: tubulin is treated as a homogeneous continuum due to the

small size of free tubulin molecules, and axon growth is assumed to be solely dependent on the

dynamics of tubulin. With these assumptions, as proposed in [26, 25], axonal growth driven by

tubulin dynamics can be modeled as follows:

𝑐𝑡 (𝑥, 𝑡) =𝐷𝑐𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑐𝑥 (𝑥, 𝑡) −𝑔𝑐(𝑥, 𝑡), (2.1)

𝑐𝑥 (0, 𝑡) =− 𝑞s(𝑡), (2.2)

𝑐(𝑙 (𝑡), 𝑡) =𝑐c(𝑡), (2.3)

𝑙c ¤𝑐c(𝑡) =(𝑎−𝑔𝑙c)𝑐c(𝑡) −𝐷𝑐𝑥 (𝑙 (𝑡), 𝑡) − (𝑟g𝑐c(𝑡) + 𝑟g𝑙c) (𝑐c(𝑡) − 𝑐∞), (2.4)

¤𝑙 (𝑡) =𝑟g(𝑐𝑐 (𝑡) − 𝑐∞), (2.5)
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Figure 2.1. Schematic of neuron and state variables

where the tubulin concentration in the axon is 𝑐(𝑥, 𝑡). Subscript 𝑠 is used for the soma of the

neuron, and subscript 𝑐 is used for the cone of the neuron. The flux of concentration in the soma

is represented as 𝑞s(𝑡) and the tubulin concentration in the cone is denoted as 𝑐c(𝑡). 𝑙 (𝑡) is the

length of axon in 𝑥-coordinate. The physical locations of these states and a sample neuron are

shown in Figure 2.1. In (2.1), the constants 𝑔, 𝐷, and 𝑎 represent tubulin degradation rate, tubulin

diffusion constant, and tubulin velocity constant, respectively. The growth ratio is 𝑙c = 𝑉c
𝐴

which

depends on the cone cross-sectional area 𝐴, and a volume of the growth cone𝑉c. 𝑟g is the reaction

rate to create microtubules. 𝑟g is the lumped parameter defined as 𝑟g := 𝑟g𝑉c
𝜌𝐴g

where 𝜌 is the density

of assembled microtubules, and 𝐴g is the effective area of created microtubules growth. 𝑐∞ is

the equilibrium of the tubulin concentration in the cone. It causes the axon elongation to stop.

Steady-state analysis of the model

To achieve a desired axon length 𝑙s, we examine the steady-state solution (𝑐eq(𝑥), 𝑐∞, 𝑙s)

of the axonal growth model defined by equations (2.1)-(2.5). By setting the time derivative to

zero, we derive the steady-state solution as:

𝑐eq(𝑥) = 𝑐∞𝐾+𝑒
𝜆+ (𝑥−𝑙s) + 𝑐∞𝐾−𝑒

𝜆− (𝑥−𝑙s) , (2.6)
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where

𝜆+ =
𝑎 +

√︁
𝑎2 +4𝐷𝑔
2𝐷

, 𝜆− =
𝑎−

√︁
𝑎2 +4𝐷𝑔
2𝐷

, (2.7)

𝐾+ =
1
2
+ 𝑎−2𝑔𝑙c

2
√︁
𝑎2 +4𝐷𝑔

, 𝐾− =
1
2
− 𝑎−2𝑔𝑙c

2
√︁
𝑎2 +4𝐷𝑔

. (2.8)

The steady-state solution for the concentration flux in the soma, which is an input, is obtained as

𝑞∗s = −𝑐∞
(
𝐾+𝜆+𝑒

−𝜆+𝑙s +𝐾−𝜆−𝑒
−𝜆− 𝑙s

)
. (2.9)

or readers who are interested, a comprehensive discussion of steady-state solutions for various

parameters and their stability analysis can be found in [26].

2.2 Reference Error System and Control Objective

2.2.1 Reference error system

To achieve convergence of the system (2.1)-(2.5) to its steady-state solution, it is necessary

to subtract the steady-state solution from the current state of the system. Subsequently, we must

demonstrate that the resulting error system, representing the deviation from the steady-state,

asymptotically converges to zero. To facilitate this analysis, we introduce 𝑢(𝑥, 𝑡), 𝑧1(𝑡), 𝑧2(𝑡), and

𝑈 (𝑡) as the reference error states and the reference error input, respectively, defined as follows:

𝑢(𝑥, 𝑡) =𝑐(𝑥, 𝑡) − 𝑐eq(𝑥), (2.10)

𝑧1(𝑡) =𝑐c(𝑡) − 𝑐∞, (2.11)

𝑧2(𝑡) =𝑙 (𝑡) − 𝑙s, (2.12)

𝑈 (𝑡) =− (𝑞s(𝑡) − 𝑞∗s ). (2.13)
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The reference error system is obtained by subtracting the steady-state solution (2.6) from the

governing equations (2.1)-(2.5), resulting into

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (2.14)

𝑢𝑥 (0, 𝑡) =𝑈 (𝑡), (2.15)

𝑢(𝑙 (𝑡), 𝑡) =𝑐c(𝑡) − 𝑐eq(𝑙 (𝑡)), (2.16)

¤𝑧1(𝑡) =𝑎̃1𝑧1(𝑡) − 𝛽𝑢𝑥 (𝑙 (𝑡), 𝑡) − 𝜅𝑧1(𝑡)2 + 𝛽 𝑓1(𝑧2(𝑡)) − 𝛽𝑎̃2𝑧2(𝑡), (2.17)

¤𝑧2(𝑡) =𝑟g𝑧1(𝑡), (2.18)

where the constants in (2.14)-(2.18) are

𝑎̃1 =
𝑎− 𝑟g𝑐∞

𝑙c
−𝑔− 𝑟g, (2.19)

𝑎̃2 = 𝑐∞
(
𝜆2
+𝐾+ +𝜆2

−𝐾−
)
, (2.20)

𝛽 =
𝐷

𝑙c
, 𝜅 =

𝑟g

𝑙c
, (2.21)

and

𝑓1(𝑧2(𝑡)) =𝑐∞
(
𝑎−𝑔𝑙c
𝐷

−𝐾+𝜆+𝑒
𝜆+𝑧2 (𝑡) −𝐾−𝜆−𝑒

𝜆−𝑧2 (𝑡)
)
+ 𝑎̃2𝑧2(𝑡). (2.22)

Let 𝑋 ∈ R2 be an ODE state vector for the reference error states 𝑧1(𝑡) and 𝑧2(𝑡), defined by

𝑋 (𝑡) = [𝑧1(𝑡) 𝑧2(𝑡)]⊤. (2.23)
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Rewriting the system (2.16)–(2.18) with respect to 𝑋 (𝑡), a nonlinear coupled PDE-ODE reference

error system is given by

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (2.24)

𝑢𝑥 (0, 𝑡) =𝑈 (𝑡), (2.25)

𝑢(𝑙 (𝑡), 𝑡) =ℎ(𝑋 (𝑡)), (2.26)

¤𝑋 (𝑡) =𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡)) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡), (2.27)

where

𝐴 =


𝑎̃1 −𝛽𝑎̃2

𝑟g 0

 , 𝐵 =


−𝛽

0

 , (2.28)

𝑓 (𝑋 (𝑡)) = −𝜅𝑧2
1(𝑡) + 𝛽 𝑓1(𝑧2(𝑡)), (2.29)

ℎ(𝑋 (𝑡)) = 𝑧1(𝑡) + ℎ̃(𝑧2(𝑡)), (2.30)

ℎ̃(𝑧2(𝑡)) = 𝑐∞
(
1−𝐾+𝑒

𝜆+𝑧2 (𝑡) −𝐾−𝑒
𝜆−𝑧2 (𝑡)

)
. (2.31)

2.2.2 Linearized error system

Applying the linearization of 𝑋 (𝑡) around zero states to the nonlinear error system

(2.24)–(2.27) leads to the following linearized reference error system:

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (2.32)

𝑢𝑥 (0, 𝑡) =𝑈 (𝑡), (2.33)

𝑢(𝑙 (𝑡), 𝑡) =𝐻⊤𝑋 (𝑡), (2.34)

¤𝑋 (𝑡) =𝐴1𝑋 (𝑡) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡), (2.35)

19



where the vector 𝐻 ∈ R2 is defined as

𝐴1 =


𝑎̃1 𝑎̃3

𝑟g 0

 , 𝐻 =

[
1 − (𝑎−𝑔𝑙c)𝑐∞

𝐷

]⊤
, (2.36)

where

𝑎̃3 =
𝑎2 +𝐷𝑔− 𝑎𝑔𝑙c

𝐷2 . (2.37)

2.3 Towards Closed-loop Feedback Control

2.3.1 Control objective

Our main objective is to achieve a specified target axon length 𝑙𝑠 > 0 by designing an

appropriate control law for 𝑞s(𝑡). This involves deriving the steady-state solution (𝑐eq(𝑥), 𝑙𝑠)

for the system governed by equations (2.1)–(2.5), which reflects the equilibrium concentration

of tubulin 𝑐eq(𝑥). The control objective is formally defined as ensuring that the axon length

𝑙 (𝑡) asymptotically approaches the desired length 𝑙s and that the tubulin concentration 𝑐(𝑥, 𝑡)

stabilizes at the equilibrium distribution 𝑐eq(𝑥):

lim
𝑡→∞

𝑙 (𝑡) = 𝑙𝑠, (2.38)

lim
𝑡→∞

𝑐(𝑥, 𝑡) = 𝑐eq(𝑥). (2.39)

Remark 2.1. The given axon growth model and its steady-state solution primarily describe axon

elongation; however, the axon can retract under certain conditions. The scenario where axon

shrinkage occurs is detailed in [26]. This situation can be simplified by satisfying the following

inequality. If the inequality below is met for the system parameters and the tubulin concentration
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at the soma, the axon length will retract:

𝐾+𝑒
𝜆+ (𝑙0−𝑙s) +𝐾−𝑒

𝜆− (𝑙0−𝑙s) <
𝑐(0, 𝑡)
𝑐∞

< 1, (2.40)

The inequality (2.40) indicates that the tubulin concentration at the soma, 𝑐(0, 𝑡), should be

lower than the steady-state tubulin concentration at the growth cone, 𝑐∞, and that the ratio of

these two concentrations should be greater than the expression involving the initial axon length,

𝑙0, and the desired axon length, 𝑙s. When these conditions are satisfied:

lim
𝑡→∞

𝑙 (𝑡) = 𝑙𝑠 (2.41)

where 𝑙𝑠 ≤ 𝑙0. Biologically, when the tubulin concentration at the soma drops below that at the

growth cone, the usual balance of transport is disrupted, leading to a potential retraction of

the axon. In this scenario, if the diffusive transport back toward the soma is balanced by the

active transport toward the growth cone, the axon can stabilize at a new, shorter length that is

smaller than the initial axon length. As a result, the axon ceases to grow further and maintains

this reduced length over time.

2.3.2 Basic idea of Stefan type of PDE control

In this section, we present a basic idea of control of moving boundary PDE, Stefan

problem, which is adapted from [50]. The Stefan problem is a mathematical model that describes

the phase change process involving heat transfer and the movement of the boundary between
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phases. The problem is given by the following coupled PDE-ODE system

𝑇𝑡 (𝑥, 𝑡) =𝛼𝑇𝑥𝑥 (𝑥, 𝑡), 𝑥 ∈ (0, 𝑠(𝑡)), (2.42)

−𝑘𝑇𝑥 (0, 𝑡) =𝑞c(𝑡), (2.43)

𝑇 (𝑠(𝑡), 𝑡) =𝑇𝑚, (2.44)

¤𝑠(𝑡) =− 𝛽𝑇𝑥 (𝑠(𝑡), 𝑡), (2.45)

where 𝑇 (𝑥, 𝑡) explains the temperature evolution along the domain, 𝑥 ∈ [0, 𝐿], and 𝑠(𝑡) is the

moving interface between solid and liquid phases. The objective of the control design is to ensure

exponential convergence of moving interface, 𝑠(𝑡), to a set point, 𝑠r and exponential convergence

of the temperature profile, 𝑇 (𝑥, 𝑡), to uniform melting temperature, 𝑇𝑚.

To design a feedback control law for this goal, we define the reference error states as

𝑢(𝑥, 𝑡) =𝑇 (𝑥, 𝑡) −𝑇m, (2.46)

𝑋 (𝑡) =𝑠(𝑡) − 𝑠r (2.47)

which gives us

𝑢𝑡 (𝑥, 𝑡) =𝛼𝑢𝑥𝑥 (𝑥, 𝑡), 𝑥 ∈ (0, 𝑠(𝑡)), (2.48)

𝑢𝑥 (0, 𝑡) =−
1
𝑘
𝑞c(𝑡), (2.49)

𝑢(𝑠(𝑡), 𝑡) =𝑇𝑚, (2.50)

¤𝑋 (𝑡) =− 𝛽𝑢𝑥 (𝑠(𝑡), 𝑡). (2.51)

The idea behind backstepping is to transform the reference error system into a stable

target system, ensuring that the error diminishes over time. The state transformation method

known as backstepping (or Volterra transformation) is introduced to convert the original system
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into a target system, which takes the form of:

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −
∫ 𝑠(𝑡)

𝑥

𝑘 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦−𝜙(𝑥)⊤𝑋 (𝑡) (2.52)

where 𝑘 (𝑥, 𝑦) and 𝜙(𝑥)⊤ are gain kernels that need to be derived, and the desired target system is

given by

𝑤𝑡 (𝑥, 𝑡) =𝛼𝑤𝑥𝑥 (𝑥, 𝑡) +
𝑐

𝛽
¤𝑠(𝑡)𝑋 (𝑡), (2.53)

𝑤𝑥 (0, 𝑡) =0, (2.54)

𝑤(𝑠(𝑡), 𝑡) =0, (2.55)

¤𝑋 (𝑡) =− 𝑐𝑋 (𝑡) − 𝛽𝑤𝑥 (𝑠(𝑡), 𝑡). (2.56)

By taking the time and spatial derivatives of (2.52) along with the (2.48)-(2.51), and matching

with the target system, one can obtain the gain kernels as

𝑘 (𝑥, 𝑦) = 𝑐
𝛼
(𝑥− 𝑦), (2.57)

𝜙(𝑥) = 𝑐
𝛽
(𝑥− 𝑠(𝑡)). (2.58)

Next, it is time to derive the control law 𝑞c(𝑡) which is derived by taking the spatial derivative of

(2.52) which gives us

𝑤𝑥 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑘 (𝑥, 𝑥)𝑢(𝑥, 𝑡) −
∫ 𝑠(𝑡)

𝑥

𝑘𝑥 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦− ¤𝜙(𝑥− 𝑙 (𝑡))⊤𝑋 (𝑡) (2.59)

By substituting 𝑘 (𝑥, 𝑦) and 𝜙(𝑥)⊤, we get

𝑤𝑥 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −
∫ 𝑠(𝑡)

𝑥

𝑐

𝛼
𝑢(𝑦, 𝑡)𝑑𝑦− 𝑐

𝛽
𝑋 (𝑡) (2.60)

23



Finally, substituting 𝑥 = 0 and the boundary condition of Stefan problem and the target system,

one can get

0 = −1
𝑘
𝑞c(𝑡) −

∫ 𝑠(𝑡)

0

𝑐

𝛼
(𝑇 (𝑦, 𝑡) −𝑇m) 𝑑𝑦−

𝑐

𝛽
(𝑠(𝑡) − 𝑠r) (2.61)

Thus, the control law 𝑞c(𝑡) is

𝑞c(𝑡) = −𝑐
(
𝑘

𝛼

∫ 𝑠(𝑡)

0
(𝑇 (𝑦, 𝑡) −𝑇m) 𝑑𝑦−

𝑘

𝛽
(𝑠(𝑡) − 𝑠r)

)
(2.62)

The next step is to prove that the target system is stable. However, proving the stability of the

target system alone is insufficient, as our ultimate goal is to establish the stability of the original

system. To achieve this, we must convert the target system back to the reference error system.

This conversion is accomplished using the inverse transformation, which is given by:

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) +
∫ 𝑠(𝑡)

𝑥

𝑙 (𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 +𝜓(𝑥− 𝑠(𝑡))𝑋 (𝑡). (2.63)

By using the same strategy that we used to obtain direct transformation gain kernels, we

can obtain

𝑙 (𝑥, 𝑦) = 𝛽
𝛼
𝜓(𝑥− 𝑦), (2.64)

𝜓(𝑥) = 𝑐
𝛽

√︂
𝛼

𝑐
sin

(√︂
𝑐

𝛼
𝑥

)
. (2.65)

Finally, we can prove the stability of both the target system and the original system. This is

achieved using a straightforward method by applying Lyapunov analysis. To begin, we define the

Lyapunov functional as:

𝑉 =
1
2

∫ 𝑠(𝑡)

0
𝑤(𝑥, 𝑡)2𝑑𝑥 + 1

2

∫ 𝑠(𝑡)

0
𝑤𝑥 (𝑥, 𝑡)2𝑑𝑥 + 1

2
𝑋 (𝑡)2 (2.66)
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By taking the time derivative of this Lyapunov function, applying integration by parts, substituting

the boundary conditions, and using Young’s, Poincaré’s, and Agmon’s inequalities, we arrive at:

¤𝑉 ≤ −𝑏𝑉 + 𝑎 ¤𝑠(𝑡)𝑉 (2.67)

where

𝑎 =max
{
1,

8𝑠r𝑐

𝛼

}
, (2.68)

𝑏 =min
{
𝛼

4𝑠2
r
, 𝑐

}
(2.69)

Now, by introducing a new Lyapunov function𝑊 , defined by𝑊 =𝑉𝑒−𝑎𝑠(𝑡) , we can conclude that:

𝑉 (𝑡) ≤ 𝑒𝑎𝑠r𝑉 (0)𝑒−𝑏𝑡 (2.70)

which finally yields

| |𝑤 | |2H1
+ 𝑝𝑋 (𝑡)2 ≤ 𝑒𝑎𝑠r

(
| |𝑤0 | |2H1

+ 𝑝(𝑋 (0)2)
)
𝑒−𝑏𝑡 (2.71)

Using the inverse transformation, it is possible to demonstrate that the original system is

exponentially stable.

Motivated by the control law design and stability analysis of the Stefan problem, we

develop a control design and conduct a closed-loop analysis for the neuron growth problem.
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Chapter 3

State Feedback Control Design

3.1 Backstepping Control of Neuron Growth Problem

This section presents the main theorem of this dissertation. We extended the backstepping

method from its application in the classical Stefan problem to a nonlinear moving boundary

model that is coupled with a PDE-ODE system. We first state the theorem.

Theorem 3.1. Consider the closed-loop system consisting of the plant (2.24)–(2.27) with the

control law

𝑈 (𝑡) =
(

1
𝐷
𝐻⊤𝐵+𝛾

)
𝑢(0, 𝑡) − 1

𝐷

∫ 𝑙 (𝑡)

0
𝑝(𝑥)𝐵𝑢(𝑥, 𝑡)𝑑𝑥 + 𝑝(𝑙 (𝑡))𝑋 (𝑡), (3.1)

where

𝑝(𝑥) = 𝜙′(−𝑥)⊤−𝛾𝜙(−𝑥)⊤ (3.2)

and 𝜙(𝑥) represents a gain kernel. Suppose the control parameter 𝛾 > 0 is chosen to satisfy

𝛾 ≥ 𝑎
𝐷

. Then, there exist 𝑀̄ > 0, 𝑐 > 0, and 𝜅 > 0, such that, if 𝑍 (0) < 𝑀̄ then the following norm

estimate holds

𝑍 (𝑡) ≤ 𝑐𝑍 (0) exp(−𝜅𝑡), (3.3)
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for all 𝑡 ≥ 0, in terms of the H1-norm

𝑍 (𝑡) = | |𝑢(·, 𝑡) | |2H1 (0,𝑙 (𝑡)) + 𝑋
⊤𝑋, (3.4)

namely, the origin of the closed-loop systems is locally exponentially stable.

The proof is presented in the remainder of this section.

3.1.1 Transformation into target system

The state feedback control in this paper is designed by applying a backstepping transforma-

tion [56] to the linearized reference error system (2.32)–(2.35). The backstepping transformations

and the associated gain kernel functions are given in the remainder of this section. Referring to

[50], we consider the following backstepping transformation

𝑤(𝑥, 𝑡) =𝑢(𝑥, 𝑡) −
∫ 𝑙 (𝑡)

𝑥

𝑘 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦−𝜙(𝑥− 𝑙 (𝑡))⊤𝑋 (𝑡), (3.5)

where 𝑘 (𝑥, 𝑦) ∈ R and 𝜙(𝑥 − 𝑙 (𝑡)) ∈ R2 are the gain kernel functions to be determined. The

desired target system for the linearized error system is proposed as

𝑤𝑡 (𝑥, 𝑡) =𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑥 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)), (3.6)

𝑤𝑥 (0, 𝑡) =𝛾𝑤(0, 𝑡), (3.7)

𝑤(𝑙 (𝑡), 𝑡) =0, (3.8)

¤𝑋 (𝑡) =(𝐴1 +𝐵𝐾⊤)𝑋 (𝑡) +𝐵𝑤𝑥 (𝑙 (𝑡), 𝑡), (3.9)

where 𝐾 ∈ R2 is a feedback control gain vector chosen to make 𝐴1 + 𝐵𝐾 Hurwitz. With the

system matrices given in (2.28), by setting

𝐾 = [𝑘1 𝑘2]⊤, 𝑘1 >
𝑎̃1
𝛽
, 𝑘2 >

𝑎̃3
𝛽
, (3.10)
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we obtain 𝐴1+𝐵𝐾⊤ Hurwitz. The redundant nonlinear term ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)) ∈ R in (3.6) is present

due to the time-dependency of the moving boundary 𝑙 (𝑡) in the transformation (3.5), which is

described by

𝐹 (𝑥, 𝑋 (𝑡)) =
(
𝜙′(𝑥− 𝑙 (𝑡))⊤− 𝑘 (𝑥, 𝑙 (𝑡))𝐻⊤)

𝑋 (𝑡). (3.11)

3.1.2 Gain kernel solutions

By using the solution technique in [53] and [91], we first take the time derivative of (3.5)

together with the solution of (2.32)-(2.35), so we get

𝑤𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡)

−
∫ 𝑙 (𝑡)

𝑥

𝑘 (𝑥, 𝑦)
(
𝐷𝑢𝑦𝑦 (𝑦, 𝑡) − 𝑎𝑢𝑦 (𝑦, 𝑡) −𝑔𝑢(𝑦, 𝑡)

)
𝑑𝑦

−𝜙(𝑥− 𝑙 (𝑡))𝑇 (𝐴1𝑋 (𝑡) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡)) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)) (3.12)

Then, we take the spatial derivative of (3.12) and substituted 𝑥 = 𝑙 (𝑡) in both the transformation

(3.5) and its spatial derivative, so (3.12) becomes

𝑤𝑡 (𝑥, 𝑡)+¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)) = 𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑥 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡)

+𝑢(𝑥, 𝑡)
[
−2𝐷𝑘𝑦 (𝑥, 𝑥) −2𝐷𝑘𝑥 (𝑥, 𝑥)

]
+𝑢𝑥 (𝑙 (𝑡), 𝑡)

[
−𝐷𝑘 (𝑥, 𝑙 (𝑡)) −𝜙(𝑥− 𝑙 (𝑡))𝑇𝐵

]
+𝑢(𝑙 (𝑡), 𝑡)

[
−𝐷𝑘𝑦 (𝑥, 𝑙 (𝑡)) + 𝑎𝑘 (𝑥, 𝑙 (𝑡))

]
+
∫ 𝑙 (𝑡)

𝑥

𝑢(𝑦, 𝑡)
[
𝐷𝑘𝑥𝑥 (𝑥, 𝑦) −𝐷𝑘𝑦𝑦 (𝑥, 𝑦) − 𝑎𝑘𝑥 (𝑥, 𝑦) − 𝑎𝑘𝑦 (𝑥, 𝑦)

]
𝑑𝑦

+𝐷𝜙′′(𝑥− 𝑙 (𝑡))𝑇𝑋 (𝑡) − 𝑎𝜙′(𝑥− 𝑙 (𝑡))𝑇𝑋 (𝑡) −𝜙(𝑥− 𝑙 (𝑡))𝑇 [𝑔𝑋 (𝑡) + 𝐴1𝑋 (𝑡)] . (3.13)
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Finally, substituting the boundary conditions by matching with the target system (3.6)–(3.9), we

have the following PDEs and an ODE for gain kernels.

𝑘𝑥𝑥 (𝑥, 𝑦) − 𝑘𝑦𝑦 (𝑥, 𝑦) =
𝑎

𝐷

(
𝑘𝑥 (𝑥, 𝑦) + 𝑘𝑦 (𝑥, 𝑦)

)
, (3.14)

𝑘𝑥 (𝑥, 𝑥) + 𝑘𝑦 (𝑥, 𝑥) = 0, (3.15)

𝑘 (𝑥, 𝑙 (𝑡)) = − 1
𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤𝐵, (3.16)

𝐷𝜙′′(𝑥− 𝑙 (𝑡))⊤− 𝑎𝜙′(𝑥− 𝑙 (𝑡))⊤−𝜙(𝑥− 𝑙 (𝑡))⊤ (𝑔𝐼 + 𝐴1) −𝐷𝑘𝑦 (𝑥, 𝑙 (𝑡))𝐻⊤ + 𝑎𝑘 (𝑥, 𝑙 (𝑡))𝐻⊤ = 0,

(3.17)

𝜙(0) = 𝐻, (3.18)

𝜙′(0) = 𝑘 (𝑙 (𝑡), 𝑙 (𝑡))𝐻⊤ +𝐾⊤. (3.19)

By the conditions (3.14)–(3.16), the solution of 𝑘 (𝑥, 𝑦) is uniquely given by

𝑘 (𝑥, 𝑦) = − 1
𝐷
𝜙(𝑥− 𝑦)⊤𝐵. (3.20)

Substituting (3.20) into (3.17)–(3.19), the ODE of 𝜙(·) becomes

𝐷𝜙′′(𝑥− 𝑙 (𝑡))⊤−𝜙′(𝑥− 𝑙 (𝑡))⊤
(
𝐵𝐻⊤ + 𝑎𝐼

)
−𝜙(𝑥− 𝑙 (𝑡))⊤

(
𝑔𝐼 + 𝐴1 +

𝑎

𝐷
𝐵𝐻⊤

)
= 0, (3.21)

𝜙(0) = 𝐻, (3.22)

𝜙′(0)⊤ = − 1
𝐷
𝐻⊤𝐵𝐻⊤ +𝐾⊤. (3.23)

The solution to (3.21)-(3.23) is given by (see [91])

𝜙(𝑥)⊤ =

[
𝐻⊤ 𝐾⊤− 1

𝐷
𝐻⊤𝐵𝐻⊤

]
𝑒𝑁1𝑥


𝐼

0

 , (3.24)
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where the matrix 𝑁1 ∈ R4×4 is defined as

𝑁1 =


0 1
𝐷

(
𝑔𝐼 + 𝐴1 + 𝑎

𝐷
𝐵𝐻⊤)

𝐼 1
𝐷
(𝐵𝐻⊤ + 𝑎𝐼)

 . (3.25)

3.1.3 Backstepping control law

From the boundary condition (3.7) of the target system at 𝑥 = 0 and the kernel solutions,

we obtain the control law. Substituting 𝑥 = 0 into the transformation (3.5) and its spatial derivative,

and substituting (2.33), (3.7) and (3.20) into these equations, and setting the boundary condition

(3.7), the control input is described as follows

𝑈 (𝑡) =
(

1
𝐷
𝐻⊤𝐵+𝛾

)
𝑢(0, 𝑡) − 1

𝐷

∫ 𝑙 (𝑡)

0
𝑝(𝑥)𝐵𝑢(𝑥, 𝑡)𝑑𝑥 + 𝑝(𝑙 (𝑡))𝑋 (𝑡), (3.26)

where

𝑝(𝑥) = 𝜙′(−𝑥)⊤−𝛾𝜙(−𝑥)⊤. (3.27)

One can explicitly deduce the function 𝑝(𝑥) ∈ R2 by using the kernel solution.

3.2 Stability proof under state-feedback control

In this section, we outline the proof of Theorem 3.1, beginning with the formulation of

the nonlinear target system that results from applying the backstepping transformation (3.5).

3.2.1 Nonlinear target system.

While the control design in the previous section is pursued on a linearized reference error

system (2.32)–(2.35), we prove the local stability for the original nonlinear system (2.24)–(2.27)

under the designed linear control law, which is linear in 𝑢 and 𝑐c but not in 𝑙. The nonlinear target

system is obtained by applying the transformation (3.5) to the nonlinear system (2.24)–(2.27),
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arriving at

𝑤𝑡 (𝑥, 𝑡) =𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑥 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡))

−𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡)) −
(
𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵+ 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤𝐵

)
ℎ∗(𝑋), (3.28)

𝑤𝑥 (0, 𝑡) =𝛾𝑤(0, 𝑡), (3.29)

𝑤(𝑙 (𝑡), 𝑡) =ℎ∗(𝑋 (𝑡)), (3.30)

¤𝑋 (𝑡) =(𝐴+𝐵𝐾)𝑋 (𝑡) + 𝑓 (𝑋 (𝑡)) +𝐵𝑤𝑥 (𝑙 (𝑡), 𝑡), (3.31)

where

ℎ∗(𝑋 (𝑡)) = 𝑧1(𝑡) + ℎ̃(𝑧2(𝑡)) −𝐻⊤𝑋 (𝑡). (3.32)

3.2.2 How to ensure local stability on a non-constant spatial interval.

The stability property of the nonlinear target system (3.28)-(3.31) is equivalent to the

closed-loop system consisting of the plant (2.24)-(2.27) with the control law (3.1) when the

backstepping transformation (3.5) is invertible. We study the local stability of the target system

by imposing the following two properties

0 < 𝑙 (𝑡) ≤ 𝑙, (3.33)

| ¤𝑙 (𝑡) | ≤ 𝑣̄, (3.34)

for some 𝑙 > 𝑙s > 0 and 𝑣̄ > 0. We will derive the restricted initial state to satisfy these properties

for all 𝑡 ≥ 0 later.

32



3.2.3 Inverse Transformation.

By performing a similar procedure to the derivation of the direct transformation, one can

obtain the inverse transformation as

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡)+
∫ 𝑙 (𝑡)

𝑥

𝑞(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 +𝜑(𝑥− 𝑙 (𝑡))⊤𝑋 (𝑡), (3.35)

where the gain kernel functions 𝑞(𝑥, 𝑦) ∈ R and 𝜑(𝑥− 𝑙 (𝑡)) ∈ R2 satisfy

𝑞𝑥𝑥 (𝑥, 𝑦) − 𝑞𝑦𝑦 (𝑥, 𝑦) =
𝑎

𝐷

(
𝑞𝑥 (𝑥, 𝑦) + 𝑞𝑦 (𝑥, 𝑦)

)
, (3.36)

𝑞𝑥 (𝑥, 𝑥) + 𝑞𝑦 (𝑦, 𝑦) = 0, (3.37)

𝑞(𝑥, 𝑙 (𝑡)) = − 1
𝐷
𝜑(𝑥− 𝑙 (𝑡))⊤𝐵, (3.38)

𝐷𝜑
′′ (𝑥− 𝑙 (𝑡))⊤ + 𝑎𝜑′ (𝑥− 𝑙 (𝑡))⊤ +

(
𝑔𝐼 + 𝐴1 +𝐵𝐾⊤)

𝜑(𝑥− 𝑙 (𝑡))⊤ = 0, (3.39)

𝜑(0) = 𝐻, (3.40)

𝜑′(0) = 𝐾. (3.41)

The same solution technique employed in the previous chapter is equally applicable to (3.36)–

(3.41). Therefore, we can explicitly obtain the solution for (3.36)–(3.41).

3.2.4 Lyapunov analysis

Throughout the dissertation, norms on non-constant intervals are denoted as

| |𝑢(., 𝑡) | |𝐿2 (0,𝑙 (𝑡)) =

√︄∫ 𝑙 (𝑡)

0
𝑢(., 𝑡)2𝑑𝑥, | |𝑢(., 𝑡) | |H1 (0,𝑙 (𝑡)) =

√︄(∫ 𝑙 (𝑡)

0
𝑢(., 𝑡)2 +𝑢𝑥 (., 𝑡)2𝑑𝑥

)
,
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and the 𝐿2 norm is further shortened as | |𝑤 | | := | |𝑤(·, 𝑡) | |𝐿2 . Consider the following Lyapunov

functionals

𝑉1 =
1
2
| |𝑤 | |2, 𝑉2 =

1
2
| |𝑤𝑥 | |2, 𝑉3 = 𝑋 (𝑡)⊤𝑃𝑋 (𝑡), (3.42)

where 𝑃 > 0 is a positive definite matrix satisfying the Lyapunov equation:

(𝐴+𝐵𝐾⊤)⊤𝑃+𝑃(𝐴+𝐵𝐾⊤) = −𝑄, (3.43)

for some positive definite matrix 𝑄 > 0. We define the total Lyapunov function as

𝑉 = 𝑑1𝑉1 +𝑉2 +
𝛾

2
𝑤(0, 𝑡)2 + 𝑑2𝑉3, (3.44)

where 𝑑1 > 0 and 𝑑2 > 0 are to be determined.

Lemma 3.1. Assume that (3.33)–(3.34) are satisfied with

𝑣̄ = min
{
𝑔

4𝛾
,
𝐷

8𝑙

}
, (3.45)

for all 𝑡 ≥ 0. Then, for sufficiently large 𝑑1 > 0 and small 𝑑2 > 0, there exist positive constants

𝛽𝑖 > 0 for 𝑖 ∈ {1,2,3,4} such the following norm estimate holds for all 𝑡 ≥ 0:

¤𝑉 ≤ −𝛼𝑉 +
( 4∑︁
𝑖=1

𝛽𝑖𝑉
1+ 𝑖

2

)
, (3.46)

where 𝛼 = min
{
2𝑔 + 𝐷

4𝑙 ,
4𝑔+𝑑1𝐷

2 ,
𝜆min (𝑄)

2𝜆max (𝑃) ,
𝑑2 (2𝑑1𝐷+𝑔)

4

}
.

Proof. Taking the time derivative of the Lyapunov functions in (3.42) along the target system,
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one can obtain

¤𝑉1 = −𝐷 | |𝑤𝑥 | |2 −𝑔 | |𝑤 | |2 −
(
𝛾𝐷 − 𝑎

2

)
𝑤(0, 𝑡)2 + ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))𝑤(𝑥, 𝑡)𝑑𝑥

+ 1
2
¤𝑙 (𝑡)𝑤(𝑙 (𝑡), 𝑡)2 +

∫ 𝑙 (𝑡)

0
𝑤(𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))𝑑𝑥

−
∫ 𝑙 (𝑡)

0
𝑤(𝑥, 𝑡)𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵ℎ∗(𝑋)𝑑𝑥− 1

𝐷

∫ 𝑙 (𝑡)

0
𝑤(𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤𝐵ℎ∗(𝑋)𝑑𝑥, (3.47)

¤𝑉2 = −𝐷 | |𝑤𝑥𝑥 | |2 + 𝑎
∫ 𝑙 (𝑡)

0
𝑤𝑥𝑥 (𝑥, 𝑡)𝑤𝑥 (𝑥, 𝑡)𝑑𝑥−𝛾𝑔𝑤(0, 𝑡)2 −𝑔 | |𝑤𝑥 | |2 −𝛾𝑤(0, 𝑡)𝑤𝑡 (0, 𝑡)

− ¤𝑙 (𝑡)𝐹 (𝑙 (𝑡), 𝑋 (𝑡))𝑤𝑥 (𝑙 (𝑡), 𝑡) + ¤𝑙 (𝑡)𝛾𝐹 (0, 𝑋 (𝑡))𝑤(0, 𝑡) − 1
2
¤𝑙 (𝑡)𝑤𝑥 (𝑙 (𝑡), 𝑡)2

+ ¤𝑙 (𝑡)
∫ 𝑙 (𝑡)

0
𝐹𝑥 (𝑥, 𝑋 (𝑡))𝑤𝑥 (𝑥, 𝑡)𝑑𝑥−

∫ 𝑙 (𝑡)

0
𝑤𝑥𝑥 (𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤

(
𝑓 (𝑋 (𝑡)) + 𝑎

𝐷
𝐵ℎ∗(𝑋)

)
𝑑𝑥

−
∫ 𝑙 (𝑡)

0
𝑤𝑥𝑥 (𝑥, 𝑡)𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵ℎ∗(𝑋)𝑑𝑥, (3.48)

¤𝑉3 = −𝑋 (𝑡)⊤𝑄𝑋 (𝑡) + 𝜕𝑤
𝜕𝑥

(𝑙 (𝑡), 𝑡)2𝐵⊤𝑃𝑋 (𝑡) + 𝜅𝑋 (𝑡)⊤
(
𝑃𝑒1𝑒

⊤
1 𝑋 (𝑡)𝑒

⊤
1 + 𝑒1𝑋 (𝑡)⊤𝑒1𝑒

⊤
1 𝑃

)
𝑋 (𝑡)

+ 𝑓1(𝑋 (𝑡))𝑃𝑋 (𝑡) + 𝑋 (𝑡)⊤𝑃 𝑓1(𝑋 (𝑡)). (3.49)

Note that we selected 𝑘2 such that

𝑘2 ≥ max{−𝑎̃2,
𝑎̃3
𝛽
}, (3.50)

in order to demonstrate Hurwitz matrices of both 𝐴 + 𝐵𝐾⊤ and 𝐴1 + 𝐵𝐾⊤. Then, applying

Agmon’s inequality as

𝑤𝑥 (𝑙 (𝑡), 𝑡)2 ≤2𝑤𝑥 (0, 𝑡)2 +4𝑙 | |𝑤𝑥𝑥 | |2, (3.51)
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Poincare’s inequalities as

| |𝑤 | |2 ≤ 2𝑙𝑤(𝑙 (𝑡), 𝑡)2 +4𝑙2 | |𝑤𝑥 | |2, (3.52)

| |𝑤𝑥 | |2 ≤ 2𝑙𝑤𝑥 (0, 𝑡)2 +4𝑙2 | |𝑤𝑥𝑥 | |2, (3.53)

and Young’s inequality to (3.47)-(3.49) leads to

¤𝑉2 ≤− 𝐷
4
| |𝑤𝑥𝑥 | |2 −

𝛾𝑔

2
𝑤(0, 𝑡)2 − (𝑔− 𝑎

2

𝐷
) | |𝑤𝑥 | |2 −𝛾𝑤(0, 𝑡)𝑤𝑡 (0, 𝑡) + ¤𝑙 (𝑡)𝛾𝐹 (0, 𝑋 (𝑡))𝑤(0, 𝑡)

+ ¤𝑙 (𝑡)
∫ 𝑙 (𝑡)

0
𝐹𝑥 (𝑥, 𝑋 (𝑡))𝑤𝑥 (𝑥, 𝑡)𝑑𝑥 +

��¤𝑙 (𝑡)��
2

𝐹 (𝑙 (𝑡), 𝑋 (𝑡))2

−
∫ 𝑙 (𝑡)

0
𝑤𝑥𝑥 (𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤

(
𝑓 (𝑋 (𝑡)) + 𝑎

𝐷
𝐵ℎ∗(𝑋)

)
𝑑𝑥

−
∫ 𝑙 (𝑡)

0
𝑤𝑥𝑥 (𝑥, 𝑡)𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵ℎ∗(𝑋)𝑑𝑥, (3.54)

and

¤𝑉3 ≤− 𝜆min(𝑄)
2

𝑋⊤𝑋 +
4
��𝐵⊤𝑃

��2𝛾2

𝜆min(𝑄)
𝑤(0, 𝑡)2 +

8
��𝐵⊤𝑃

��2𝑙 | |𝑤𝑥𝑥 | |2
𝜆min(𝑄)

+ 𝜅𝑋 (𝑡)⊤
(
𝑃𝑒1𝑒

⊤
1 𝑋 (𝑡)𝑒

⊤
1 + 𝑒1𝑋 (𝑡)⊤𝑒1𝑒

⊤
1 𝑃

)
𝑋 (𝑡)

+ 𝑓1(𝑋 (𝑡))𝑃𝑋 (𝑡) + 𝑋 (𝑡)⊤𝑃 𝑓1(𝑋 (𝑡)). (3.55)

We choose the constants 𝑑1 and 𝑑2 to satisfy

𝑑1 ≥
2𝑎2

𝐷2 , 𝑑2 ≤ min

{
𝐷𝜆min(𝑄)
64𝑙

��𝐵⊤𝑃
��2 , 𝑔𝐷𝜆min(𝑄)

16𝑎 |𝐵⊤𝑃 |2

}
. (3.56)

Taking the square of (3.11), it follows that the redundant nonlinear terms that appear in (3.47),

(3.54) and (3.55) can be bounded by a quadratic norm of the ODE state. Namely, there exist
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positive constants 𝐿1 > 0, 𝐿2 > 0, 𝐿3 > 0 and 𝐿4 > 0 such that

𝐹 (0, 𝑋 (𝑡))2 ≤ 𝐿1𝑋
⊤𝑋, (3.57)

𝐹 (𝑙 (𝑡), 𝑋 (𝑡))2 ≤ 𝐿2𝑋
⊤𝑋, (3.58)∫ 𝑙 (𝑡)

0
𝐹𝑥 (𝑥, 𝑋 (𝑡))2𝑑𝑥 ≤ 𝐿3𝑋

⊤𝑋, (3.59)∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))2𝑑𝑥 ≤ 𝐿4𝑋

⊤𝑋. (3.60)

In addition, following (2.18), ¤𝑙 (𝑡) can be rewritten as

¤𝑙 (𝑡) = 𝑟g𝑒1𝑋, (3.61)

where 𝑒1 = [1,0] is the unit vector. Moreover, the following inequalities are given

∫ 𝑙 (𝑡)

0

(
𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵+ 1

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤𝐵

)2
𝑑𝑥 ≤ 𝐿𝑛1 , (3.62)∫ 𝑙 (𝑡)

0

(
𝜙(𝑥− 𝑙 (𝑡))⊤

)2
𝑑𝑥 ≤ 𝐿𝑛2 , (3.63)∫ 𝑙 (𝑡)

0

(
𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵+ 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤𝐵

)2
𝑑𝑥 ≤ 𝐿𝑛3 . (3.64)

By using (3.62)-(3.64) and applying Cauchy-Schwarz inequality, and using (3.47), (3.54) and

(3.55), recalling 𝛾 ≥ 𝑎
𝐷

, the time derivative of the total Lyapunov function (3.44) satisfies the

following inequality

¤𝑉 ≤−𝛼𝑉 + 𝛽1𝑉
3/2 +8𝑑2

1𝐷𝐿𝑛1ℎ
∗(𝑋)2 + 𝑑1

1
2
��𝑟g𝑒

⊤
1 𝑋

��ℎ∗(𝑋)2 +8𝑑2
1𝐷𝐿𝑛2 𝑓 (𝑋 (𝑡))2

+8𝐷𝐿𝑛2 𝑓 (𝑋 (𝑡))2 +8𝐷𝐿𝑛3ℎ
∗(𝑋)2, (3.65)
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where

𝛽1 =
𝑟𝑔

(
𝐿2 + 𝐿1𝛾 +

√
2(𝐿3 + 𝐿4)

)
2𝑑2𝜆min(𝑃)3/2 +

𝑟g(2+ 𝑑2
1)

2𝜆min(𝑃)1/2 +
2𝜅

��𝑃��
𝜆max(𝑃)3/2 . (3.66)

The next step is to bound the nonlinear terms in (3.65) which is defined in (3.32). Using the

exponential inequality

𝑒𝑥 − 𝑥−1 ≤ 𝑥2 for 𝑥 ≤ 1.79, (3.67)

we can first bound the nonlinear term ℎ∗(𝑋) term. By recalling ℎ∗(𝑋) from (3.32),

ℎ∗(𝑋) = 𝑐∞
(
1−𝐾+𝑒

𝜆+𝑧2 (𝑡) −𝐾−𝑒
𝜆−𝑧2 (𝑡)

)
+ (𝑎−𝑔𝑙c)𝑐∞

𝐷
𝑧2(𝑡), (3.68)

We can derive this bound by first showing that

𝑎−𝑔𝑙c
𝐷

= 𝜆+𝐾+ +𝜆−𝐾−, (3.69)

which leads to

ℎ∗(𝑋) = 𝑐∞
(
𝐾+(1+𝜆+𝑧2 − 𝑒𝜆+𝑧2) +𝐾−(1+𝜆−𝑧2 − 𝑒𝜆−𝑧2)

)
. (3.70)

It’s clear that both (1+𝜆+𝑧2 − 𝑒𝜆+𝑧2) and (1+𝜆−𝑧2 − 𝑒𝜆−𝑧2) are upper-bounded by 0 because

1+ 𝑥− 𝑒𝑥 ≤ 0 (3.71)

for any 𝑥 value. Since we need to take square of ℎ∗(𝑋 (𝑡)), we can write

ℎ∗(𝑋)2 = 𝑐2
∞

(
𝐾+ |1+𝜆+𝑧2 − 𝑒𝜆+𝑧2 | +𝐾− |1+𝜆−𝑧2 − 𝑒𝜆−𝑧2 |

)2
. (3.72)
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By using Young’s inequality, we get

ℎ∗(𝑋)2 ≤ 2𝑐2
∞𝐾

2
+ |1+𝜆+𝑧2 − 𝑒𝜆+𝑧2 |2 +2𝑐2

∞𝐾
2
− |1+𝜆−𝑧2 − 𝑒𝜆−𝑧2 |2. (3.73)

Since 1+ 𝑥− 𝑒𝑥 ≤ 0, we can write

ℎ∗(𝑋)2 ≤ 2𝑐2
∞𝐾

2
+

(
−1−𝜆+𝑧2 + 𝑒𝜆+𝑧2

)2
+2𝑐2

∞𝐾
2
−

(
−1−𝜆−𝑧2 + 𝑒𝜆−𝑧2

)2
. (3.74)

because −1− 𝑥 + 𝑒𝑥 ≥ 0 for all 𝑥. By using this argument and using (3.67), we can show that

𝑒𝑥 −1− 𝑥 ≤ 𝑥2 for 𝑥 ≤ 1.79 (3.75)

Similarly, we have

|ℎ∗(𝑋) |2 ≤ 2𝑐2
∞

(
𝐾2
+ (𝜆+𝑧2)4 +𝐾2

−(𝜆−𝑧2)4
)
. (3.76)

Then, we define

𝑘𝑛 = max{𝑐∞𝐾+𝜆
2
+, 𝑐∞𝐾−𝜆

2
−}, (3.77)

and this allows us to conclude that

|ℎ∗(𝑋) | ≤ 2𝑘𝑛𝑋⊤𝑋, (3.78)

Applying the same strategy, we also derive

𝑓 (𝑋 (𝑡)) ≤ 𝜅𝑋⊤𝑋 +2𝑘𝑚 |𝑋⊤𝑋 |3/2, (3.79)
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where

𝑘𝑚 = max{𝑐∞𝐾+𝜆
3
+, 𝑐∞𝐾−𝜆

3
−} (3.80)

for a sufficiently small norm of 𝑋 . Applying (3.78) and (3.79) to (3.65), we have the following

inequality

¤𝑉 ≤ −𝛼𝑉 + 𝛽1𝑉
3/2 + 𝛽2𝑉

2 + 𝛽3𝑉
5/2 + 𝛽4𝑉

3, (3.81)

where

𝛽2 =
8𝑑2

1𝐷
(
𝐿𝑛14𝑘2

𝑛 + 𝐿𝑛2𝜅
2) +8𝐷

(
𝐿𝑛2𝜅

2 + 𝐿𝑛34𝑘2
𝑛

)
𝜆min(𝑃)2 , (3.82)

𝛽3 =
𝑑1𝑟g

2𝜆min(𝑃)5/2 , (3.83)

𝛽4 =
32𝐷𝐿𝑛2𝑘

2
𝑚 |𝑃 |2(𝑑2

1 +1)
𝜆min(𝑃)3 , (3.84)

which completes the proof of Lemma 3.1.

3.2.5 Ensuring bounds on axon length and growth rate.

In this subsection, we prove important lemmas to conclude with Theorem 1 ensuring the

local stability of the closed-loop system. First, we give the following lemma.

Lemma 3.2. There exists a positive constant 𝑀1 > 0 such that in the region Ω1 := {(𝑤, 𝑋) ∈

H1 ×R2 |𝑉 (𝑡) < 𝑀1} the conditions (3.33) and (3.34) are satisfied.

Proof. By using (2.23) and the plant equation (2.5), 𝑋 (𝑡) can be described as

𝑋 (𝑡) =
[ ¤𝑙 (𝑡)
𝑟g(𝑡)

𝑙 (𝑡) − 𝑙s
]⊤
. (3.85)
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For any 𝑟 > 0, if |𝑋 | < 𝑟 then the following two inequalities hold:���� ¤𝑙 (𝑡)𝑟g

���� < 𝑟, ��𝑙 (𝑡) − 𝑙s�� < 𝑟. (3.86)

The first inequality tells that if 𝑟 < 𝑣̄
𝑟g

then the property of the system, (3.33), holds. Moreover,

the second inequality can be written as −𝑟 + 𝑙s < 𝑙 (𝑡) < 𝑟 + 𝑙s, and thus if both 𝑟 < 𝑙s and 𝑟 < 𝑙 − 𝑙s

hold, then the condition (3.34) holds. Therefore, the constant, 𝑟 , is chosen as

𝑟 = min
{
𝑣̄

𝑟g
, 𝑙s, 𝑙 − 𝑙s

}
. (3.87)

Since we know |𝑋 |2 ≤ 1
𝜆min (𝑃) 𝑋

⊤𝑃𝑋 ≤ 𝑑2
𝜆min (𝑃)𝑉 , we derive the setting𝑀1 =

𝜆min (𝑃)
𝑑2

𝑟2. If𝑉 (𝑡) < 𝑀1

holds then |𝑋 | < 𝑟 and thus the properties of the system, (3.33) and (3.34), are satisfied, by which

we can conclude Lemma 3.2.

Lemma 3.3. There exists a positive constant 𝑀 > 0 such that if 𝑉 (0) < 𝑀 then the conditions

(3.33) and (3.34) are satisfied and the following norm estimate holds:

𝑉 (𝑡) ≤ 𝑉 (0) exp
(
−𝛼

2
𝑡

)
. (3.88)

Proof. For a positive constant 𝑀 > 0, let Ω := {(𝑤, 𝑋) ∈ H1 ×R2 |𝑉 (𝑡) < 𝑀}. By Lemma 3.2,

it is easily shown that if 𝑀 ≤ 𝑀1 then Ω ⊂ Ω1, and thus the conditions (3.33) and (3.34) are

satisfied in the region Ω. Thus, by Lemma 1, the norm estimate (3.46) holds. Moreover, we set

𝑀 ≤ 𝑝∗ where 𝑝∗ is the root of the following polynomial with respect to 𝑉 (except 𝑝∗ = 0)

−𝛼
2
𝑉 + 𝛽1𝑉

3/2 + 𝛽2𝑉
2 + 𝛽3𝑉

5/2 + 𝛽4𝑉
3 ≤ 0. (3.89)

Since 𝛼 > 0, 𝛽𝑖 > 0 for 𝑖 = {1,2,3,4} exist, the root of the polynomial always exists. Now, we
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can see that applying 𝑉 (𝑡) < 𝑀 to (3.46) leads to

¤𝑉 ≤ −𝛼
2
𝑉, (3.90)

by which the norm estimate (3.88) is deduced. Since (3.88) is a monotonically decreasing

function in time, by setting 𝑀 = min{𝑀1, 𝑝
∗}, the region Ω is shown to be an invariant set. Thus,

if 𝑉 (0) < 𝑀 , then 𝑉 (𝑡) < 𝑀 for all 𝑡 ≥ 0, and one can conclude with Lemma 3.3.

Due to Lemma 3.3, and the equivalent norm estimate in the H1-norm between the target

system and the closed-loop system, one can obtain the local stability of the closed-loop system,

which completes the proof of Theorem 1.

3.3 Simulations

3.3.1 Parameter Values

We perform simulations for the axon growth model by incorporating the biological

parameters proposed by [26], which are shown in Table 3.1. The state-feedback controller

remains unaffected by the desired length, denoted as 𝑙𝑠. However, it is worth noting that the

desired length is employed in the steady-state solution for the concentration flux in the soma,

which serves as an input. In the simulation of the state-feedback control, as specified in (3.1), the

initial conditions are set as 𝑐0(𝑥) = 2𝑐∞ for tubulin concentration along the axon and 𝑙0 = 1𝜇m

for the axon length. The gain parameters of the closed-loop system are set as 𝑘1 = −0.1, and

𝑘2 = 1013.

Table 3.1. Biological constants and control parameters

Parameter Value Parameter Value
𝐷 10×10−12𝑚2/𝑠 𝑟g 0.053
𝑎 1×10−8𝑚/𝑠 𝛾 104

𝑔 5×10−7 𝑠−1 𝑙c 4𝜇𝑚
𝑟g 1.783×10−5 𝑚4/(𝑚𝑜𝑙𝑠) 𝑙𝑠 12𝜇𝑚
𝑐∞ 0.0119 𝑚𝑜𝑙/𝑚3 𝑙0 1𝜇𝑚
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(a) The axon length 𝑙 (𝑡) governed by the nonlinear ODE dynamics converges to the
desired length 𝑙s within 𝑡 = 3min.
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(b) Tubulin concentration 𝑐 (𝑥, 𝑡) governed by the nonlinear PDE-ODE dynamics con-
verges to the steady-state tubulin concentration, 𝑐eq (𝑥) along the axon within 𝑡 = 3 min.

Figure 3.1. The closed-loop response of the designed full-state feedback control system.

3.3.2 Axon elongation by up to three orders of magnitude

When the state feedback control law is applied to the nonlinear dynamics in (2.1)-(2.2), the

axon length, 𝑙 (𝑡), successfully converges to the desired axon length, 𝑙s in Figure 3.1a. Moreover,

Figure 3.1b demonstrates that the tubulin concentration along the axon also converges to the

equilibrium profile.

Simulation in Figure 3.1a and 3.1b are informative to understand how the proposed
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(a) The axon length 𝑙 (𝑡) governed by the nonlinear ODE dynamics converges to the
desired length by about 𝑡 = 36 hours.
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(b) Tubulin concentration 𝑐 (𝑥, 𝑡) governed by the nonlinear PDE-ODE dynamics con-
verges to the steady-state tubulin concentration, 𝑐eq (𝑥) along the axon by about 𝑡 = 10
hours.

Figure 3.2. The closed-loop response of the designed full-state feedback control system for
long-range elongation 𝑙s = 1.

control methods are effective to elongate the axon within one order of magnitude. However,

axon lengths for inhibitory interneurons in the spinal cord are around 1 𝑚𝑚 [17]. In Figure 3.2a

and 3.2b, we apply our proposed state feedback controller to elongate the axon from the very

small initial length, 𝑙0 = 1 𝜇𝑚 to three orders of magnitude of desired axon length, 𝑙s = 1 𝑚𝑚

for biological parameters in Table 3.1 and the equilibrium of the tubulin concentration in the
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cone, 𝑐∞. 𝑐∞ is chosen as 5.95×10−3 𝑚𝑜𝑙/𝑚3. The state feedback control law is applied to the

nonlinear dynamics in (2.1)-(2.2) by choosing the gains 𝑘1 = −5.3×105 and 𝑘2 = 1×1013. The

axon length, 𝑙 (𝑡), successfully converges to the desired long-range axon length, 𝑙s in Figure 3.2a.

Moreover, Figure 3.2b demonstrates that the tubulin concentration along the axon also converges

to equilibrium.

Acknowledgements

Chapter 3 has been published in Automatica 2024 with the title “Neuron growth control

and estimation by PDE backstepping” C. Demir, S. Koga, M. Krstic. Chapter 3, ‘also contains a

partial adaptation of the work contained in the conference paper“Neuron growth control by PDE

backstepping: Axon length regulation by tubulin flux actuation in soma” C. Demir, S. Koga, M.

Krstic, presented in the 60th IEEE Conference on Decision and Control 2021. The dissertation

author was the primary author of these publications.

45



Chapter 4

Neuron Growth State Estimation

In the state feedback control law designed in the previous section, measurements of

both the distributed tubulin concentration 𝑐(𝑥, 𝑡) along the domain and axon length 𝑙 (𝑡) are

required for the computation of the controller. The requirement of measuring the entire spatial

concentration profile limits the practical applicability of the controller. These measurements

can be obtained using advanced techniques. Immunofluorescence microscopy, for example,

allows for the quantification of tubulin concentration along the axon by detecting fluorescently

labeled antibodies that specifically target tubulin [33]. Axon length can be measured using

either manual tracing from microscopy images or automated image analysis software, both of

which offer accurate and reliable measurements [75]. However, accurately measuring tubulin

concentration along the entire length of an axon can be challenging [33]. To resolve the issue, we

develop a nonlinear observer to reconstruct the entire concentration profile from the boundary

measurements. The measured states are axon length 𝑙 (𝑡) and the tubulin flux at the cone,

𝑐𝑥 (𝑙 (𝑡), 𝑡).
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4.1 Observer Design

In this section, we introduce the observer design of the tubulin concentration profile along

the axon. The observer model with measured states is described by

𝑐𝑡 (𝑥, 𝑡) =𝐷𝑐𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑐𝑥 (𝑥, 𝑡) −𝑔𝑐(𝑥, 𝑡) + 𝑝1(𝑥, 𝑙 (𝑡)) (𝑐𝑥 (𝑙 (𝑡), 𝑡) − 𝑐𝑥 (𝑙 (𝑡), 𝑡)) , (4.1)

𝑐𝑥 (0, 𝑡) =𝑈 (𝑡), (4.2)

𝑐(𝑙 (𝑡), 𝑡) =𝑐𝑐 (𝑡), (4.3)

𝑙c ¤̂𝑐𝑐 (𝑡) =(𝑎−𝑔𝑙c)𝑐𝑐 (𝑡) −
(
𝑟g𝑐c(𝑡) + 𝑟g𝑙c) (𝑐c(𝑡) − 𝑐∞

)
−𝐷𝑐𝑥 (𝑙 (𝑡), 𝑡) + 𝑙1(𝑙 (𝑡) − 𝑙 (𝑡)), (4.4)

¤̂
𝑙 (𝑡) =𝑟g(𝑐𝑐 (𝑡) − 𝑐∞) + 𝑙2(𝑙 (𝑡) − 𝑙 (𝑡)), (4.5)

with the measurements

𝑦1(𝑡) = 𝑐𝑥 (𝑙 (𝑡), 𝑡), 𝑦2(𝑡) = 𝐶

𝑐𝑐 (𝑡)

𝑙 (𝑡)

 , (4.6)

where 𝐶 = [0 1]. Denoting the estimates of the tubulin concentration, 𝑐(𝑥, 𝑡), the following

theorem holds:

Theorem 4.1. Let the system properties (3.33) and (3.34) hold. Let 𝑐c(𝑡) be bounded as

c ≤ 𝑐𝑐 (𝑡) ≤ 𝑐, (4.7)

where 𝑐 > c > 0. Consider the plant (2.32)-(2.35) and the observer (4.1)-(4.5) with available

measurements (4.6), let 𝐿 = [𝑙1 𝑙2] be chosen as

𝑙1 >
𝑎̃𝑙2
𝑟𝑔
, 𝑙2 ≥ |𝑎̃ | +

2𝑟g𝑐

𝑙c
+4𝑟g +

1
2
, (4.8)

and let the observer gain be 𝑝1(𝑥, 𝑙 (𝑡)) = 𝐷𝑃(𝑥, 𝑙 (𝑡)) where 𝑃(𝑥, 𝑙 (𝑡)) is the solution to the
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following PDE

𝐷𝑃𝑦𝑦 (𝑥, 𝑦) −𝐷𝑃𝑥𝑥 (𝑥, 𝑦) + 𝑎𝑃𝑥 (𝑥, 𝑦) − 𝑎𝑃𝑦 (𝑥, 𝑦) = 𝜆𝑃(𝑥, 𝑦), (4.9)

𝑃(𝑥, 𝑥) = 𝜆

2𝐷
𝑥 +𝛾1, (4.10)

𝑃𝑥 (0, 𝑦) = 0, (4.11)

where 𝜆 > 0 is an arbitrary constant, and 𝛾1 is a constant satisfying 𝐷
𝑎
≤ 𝛾1. Then, the observer

error system is locally exponentially stable in the H1-norm, i.e., there exist 𝑀̃ , 𝑐2 > 0 and 𝜅 > 0

such that if Φ̃(0) < 𝑀̃ then the following norm estimate holds:

Φ̃(𝑡) ≤ 𝑐2Φ̃(0)𝑒−𝜅𝑡 , (4.12)

where Φ̃(𝑡) := | |𝑐− 𝑐 | |H1 (0,𝑙 (𝑡)) + |𝑋 − 𝑋̂ |.

In the remainder of this section, we provide the proof of Theorem 4.1.

4.1.1 Observer Error System

In order to prove Theorem 4.1, we first derive the observer error system. This is a critical

step because the observer error system captures the difference between the actual system states

and the estimated states provided by the observer. These states are given by

𝑐(𝑥, 𝑡) = 𝑐(𝑥, 𝑡) − 𝑐(𝑥, 𝑡), (4.13)

𝑐c(𝑡) = 𝑐c(𝑡) − 𝑐(𝑡), (4.14)

𝑙 (𝑡) = 𝑙 (𝑡) − 𝑙 (𝑡). (4.15)
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Thus, we have

𝑐𝑡 (𝑥, 𝑡) =𝐷𝑐𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑐𝑥 (𝑥, 𝑡) −𝑔𝑐(𝑥, 𝑡) − 𝑝1(𝑥, 𝑙 (𝑡)) (𝑐𝑥 (𝑙 (𝑡), 𝑡) − 𝑐𝑥 (𝑙 (𝑡), 𝑡)) , (4.16)

𝑐𝑥 (0, 𝑡) =0, (4.17)

𝑐(𝑙 (𝑡), 𝑡) =[1 0] 𝑋̃ (𝑡), (4.18)

¤̃𝑋 (𝑡) =
(
𝐴̃− 𝐿𝐶

)
𝑋̃ (𝑡) + 𝜅𝑒⊤1 𝑋̃ (𝑡) 𝑋̃ (𝑡)

⊤𝑒1 −2𝜅𝑐c(𝑡)𝑒⊤1 𝑋̃ (𝑡), (4.19)

where 𝑋̃ = [𝑐c(𝑡) 𝑙 (𝑡)]⊤ and

𝐴̃ =


𝑎̃1 0

𝑟g 0

 . (4.20)

4.1.2 Backstepping Transformation

As for the full-state feedback case, we now consider the following inverse backstepping

transformation

𝑐(𝑥, 𝑡) = 𝑤̃(𝑥, 𝑡) +
∫ 𝑙 (𝑡)

𝑥

𝑃(𝑥, 𝑦)𝑤̃(𝑦, 𝑡)𝑑𝑦, (4.21)

where 𝑃(𝑥, 𝑦) ∈ R is the gain kernel to be solved on the time-varying domain Ω0(𝑡) = {(𝑥, 𝑦) |0 ≤

𝑦 ≤ 𝑥 ≤ 𝑙 (𝑡)}. Let the target system be

𝑤̃𝑡 (𝑥, 𝑡) =𝐷𝑤̃𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤̃𝑥 (𝑥, 𝑡) − (𝑔 +𝜆)𝑤̃(𝑥, 𝑡) + ¤𝑙 (𝑡) (𝑄(𝑥, 𝑙 (𝑡)) −𝑃(𝑥, 𝑙 (𝑡))) 𝑤̃(𝑙 (𝑡), 𝑡),

(4.22)

𝑤̃𝑥 (0, 𝑡) =𝛾1𝑤̃(0, 𝑡), (4.23)

𝑤̃(𝑙 (𝑡), 𝑡) = [1 0] 𝑋̃ (𝑡), (4.24)

¤̃𝑋 (𝑡) = (𝐴− 𝐿𝐶) 𝑋̃ (𝑡) − 𝑓 ( 𝑋̃ (𝑡)) − 𝑐c(𝑡)𝐴2 𝑋̃ (𝑡), (4.25)
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where 𝑄(𝑥, 𝑦) ∈ R is also the gain kernel obtained from direct backstepping transformation and

𝐴2 =


2 𝑟g
𝑙c

0

0 0

 . (4.26)

Let the ODE observer gain 𝐿 be described as 𝐿 =

[
𝑙1 𝑙2

]⊤
, so one can show the conditions

for the gains as

𝑙1 >
𝑎̃1𝑙2
𝑟𝑔

, 𝑙2 > 𝑎̃1. (4.27)

which makes 𝐴− 𝐿𝐶 Hurwitz.

4.1.3 Well-posedness of backstepping transformations

Taking the time and spatial derivatives of (4.21) together with the solution of (4.22)-(4.24)

and the stability of 𝑋̃ (𝑡), we obtain (4.9)-(4.11). However, these PDEs do not have an analytical

solution. To ensure the well-posedness of the solution, we must prove that 𝑃(𝑥, 𝑦) is bounded.

To achieve this, we apply the method of successive approximations, which allows us to obtain a

numerical solution and to prove the boundedness of the solution.

Method of successive approximation

First, we present the lemma that establishes the well-posedness of (4.22)-(4.24).

Lemma 4.1. If property (3.33) hold for all time 𝑡. Then, for an arbitrary constant, 𝜆 > 0 and a

constant 𝐷
𝑎
≤ 𝛾1, the gain kernel PDE,

𝐷𝑃𝑦𝑦 (𝑥, 𝑦)−𝐷𝑃𝑥𝑥 (𝑥, 𝑦) + 𝑎𝑃𝑥 (𝑥, 𝑦) − 𝑎𝑃𝑦 (𝑥, 𝑦) = 𝜆𝑃(𝑥, 𝑦), (4.28)

𝑃(𝑥, 𝑥) = 𝜆

2𝐷
𝑥 +𝛾1, (4.29)

𝑃𝑥 (0, 𝑦) = 0, (4.30)
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has unique 𝐶2 solutions which are bounded by

|𝑃(𝑥, 𝑦) | ≤ 𝜆

2

(
1
𝑎
+ 𝑙

𝐷

(
𝑒

2𝑎
𝐷
𝑙 +1

))
𝑒
𝜆

(
1
𝑎
+ 𝑙
𝐷

(
𝑒

2𝑎
𝐷

𝑙+1
))
𝑥

. (4.31)

Proof. To prove this lemma, we apply the following transformation

𝑃(𝑥, 𝑦) = 𝑃̃(𝑥, 𝑦)𝑒 𝑎
2𝐷 (𝑥+𝑦) , (4.32)

so (4.9)-(4.11) become

𝑃̃𝑦𝑦 (𝑥, 𝑦) − 𝑃̃𝑥𝑥 (𝑥, 𝑦) =
𝜆

2𝐷
𝑃̃(𝑥, 𝑦), (4.33)

𝑃̃(𝑥, 𝑥) =𝑒− 𝑎𝑥
𝐷

(
𝜆

2𝐷
𝑥 +𝛾1

)
, (4.34)

𝑃̃𝑥 (0, 𝑦) =−
𝑎

2𝐷
𝑃̃(0, 𝑦), (4.35)

Now, we apply the spatial coordinate change which is

𝑥 = 𝑦, 𝑦̄ = 𝑥, 𝑃∗(𝑥, 𝑦̄) = 𝑃̃(𝑥, 𝑦) (4.36)

Then, we have

𝑃∗
𝑥𝑥 (𝑥, 𝑦̄) −𝑃∗

𝑦̄ 𝑦̄ (𝑥, 𝑦̄) =
𝜆

2𝐷
𝑃∗(𝑥, 𝑦̄) (4.37)

𝑃∗(𝑥, 𝑥) = 𝜆

2𝐷
𝑒−

𝑎𝑥̄
𝐷 𝑥 + 𝑒− 𝑎𝑥̄

𝐷 𝛾1 (4.38)

𝑃∗
𝑦̄ (𝑥,0) =−

𝑎

2𝐷
𝑃∗(𝑥,0) (4.39)

Next, we convert the gain kernel PDE into an integral equation by applying the following

51



transformation

𝜉 = 𝑥 + 𝑦, 𝜂 = 𝑥− 𝑦, 𝑃∗(𝑥, 𝑦̄) = 𝐺 (𝜉,𝜂) (4.40)

where (𝜉,𝜂) ∈ T1 which is introduced as T1 = {𝜉,𝜂 : 0 < 𝜉 < 2𝑙 (𝑡), 0 < 𝜂 < min(𝜉,2𝑙 (𝑡) − 𝜉)}.

This gives us

𝐺𝜉𝜂 (𝜉,𝜂) =
𝜆

8𝐷
𝐺 (𝜉,𝜂) (4.41)

𝐺 (𝜉,0) = 𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜉𝜉 + 𝑒− 𝑎

2𝐷 𝜉𝛾1 (4.42)

𝐺𝜉 (𝜉, 𝜉) −𝐺𝜂 (𝜉, 𝜉) = − 𝑎

2𝐷
𝐺 (𝜉, 𝜉) (4.43)

When we take integral of (4.41) from 0 to 𝜂 with respect to 𝜂, we get

𝐺𝜉 (𝜉,𝜂) = 𝐺𝜉 (𝜉,0) +
∫ 𝜂

0

𝜆

8𝐷
𝐺 (𝜉, 𝑠)𝑑𝑠 (4.44)

where

𝐺𝜉 (𝜉,0) =
𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜉

(
1− 𝑎𝜉

2𝐷

)
− 𝑎

2𝐷
𝑒−

𝑎
2𝐷 𝜉𝛾1 (4.45)

which leads us

𝐺𝜉 (𝜉,𝜂) =
𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜉

(
1− 𝑎𝜉

2𝐷

)
− 𝑎

2𝐷
𝑒−

𝑎
2𝐷 𝜉𝛾1 +

∫ 𝜂

0

𝜆

8𝐷
𝐺 (𝜉, 𝑠)𝑑𝑠. (4.46)

Next, we integrate (4.46) from 𝜂 to 𝜉 with respect to 𝜉, so we get

𝐺 (𝜉,𝜂) =𝐺 (𝜂,𝜂) +
∫ 𝜉

𝜂

𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜏

(
1− 𝑎𝜏

2𝐷

)
− 𝑎

2𝐷
𝑒−

𝑎
2𝐷 𝜏𝛾1𝑑𝜏

+
∫ 𝜉

𝜂

∫ 𝜂

0

𝜆

8𝐷
𝐺 (𝜏, 𝑠)𝑑𝑠𝑑𝜏 (4.47)
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In order to find 𝐺 (𝜂,𝜂), we can use (4.43), so

𝑑

𝑑𝜉
𝐺 (𝜉, 𝜉) = 𝐺𝜉 (𝜉, 𝜉) +𝐺𝜂 (𝜉, 𝜉)

= 2𝐺𝜉 (𝜉, 𝜉) +
𝑎

2𝐷
𝐺 (𝜉, 𝜉) (4.48)

By using (4.46) with 𝜂 = 𝜉, we get

𝐺𝜉 (𝜉, 𝜉) =
𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜉

(
1− 𝑎𝜉

2𝐷

)
− 𝑎

2𝐷
𝑒−

𝑎
2𝐷 𝜉𝛾1 +

∫ 𝜉

0

𝜆

8𝐷
𝐺 (𝜉, 𝑠)𝑑𝑠 (4.49)

Now, we substitute (4.49) in (4.48), so we obtain

𝑑

𝑑𝜉
𝐺 (𝜉, 𝜉) = 𝜆

2𝐷
𝑒−

𝑎
2𝐷 𝜉

(
1− 𝑎𝜉

2𝐷

)
− 𝑎

𝐷
𝑒−

𝑎
2𝐷 𝜉𝛾1 +

∫ 𝜉

0

𝜆

4𝐷
𝐺 (𝜉, 𝑠)𝑑𝑠+ 𝑎

2𝐷
𝐺 (𝜉, 𝜉) (4.50)

We can integrate (4.50) by using the variation of constants formula. Then, we receive

𝐺 (𝜉, 𝜉) =
∫ 𝜉

0

(
𝜆

2𝐷
𝑒−

𝑎
2𝐷 𝜏

(
1− 𝑎𝜏

2𝐷

)
− 𝑎

𝐷
𝑒−

𝑎
2𝐷 𝜏𝛾1 +

∫ 𝜏

0

𝜆

4𝐷
𝐺 (𝜏, 𝑠)𝑑𝑠

)
𝑒

𝑎
2𝐷 (𝜏−𝜉)𝑑𝜏 (4.51)

Substituting (4.51) in (4.47) with 𝜉 = 𝜂, we get

𝐺 (𝜉,𝜂) =
∫ 𝜂

0

(
𝜆

2𝐷
𝑒−

𝑎
2𝐷 𝜏

(
1− 𝑎𝜏

2𝐷

)
− 𝑎

𝐷
𝑒−

𝑎
2𝐷 𝜏𝛾1 +

∫ 𝜏

0

𝜆

4𝐷
𝐺 (𝜏, 𝑠)𝑑𝑠

)
𝑒

𝑎
2𝐷 (𝜏−𝜂)𝑑𝜏

+
∫ 𝜉

𝜂

𝜆

4𝐷
𝑒−

𝑎
2𝐷 𝜏

(
1− 𝑎𝜏

2𝐷

)
− 𝑎

2𝐷
𝑒−

𝑎
2𝐷 𝜏𝛾1𝑑𝜏 +

∫ 𝜉

𝜂

∫ 𝜂

0

𝜆

8𝐷
𝐺 (𝜏, 𝑠)𝑑𝑠𝑑𝜏 (4.52)

This can be written in the form of

𝐺 (𝜉,𝜂) = 𝐺0(𝜉,𝜂) +𝐹 [𝐺] (𝜉,𝜂) (4.53)
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which is

𝐺0(𝜉,𝜂) =
𝜆

2𝐷

∫ 𝜂

0

(
𝑒−

𝑎
2𝐷 𝜏

(
1− 𝑎𝜏

2𝐷

)
− 2𝑎
𝜆
𝑒−

𝑎
2𝐷 𝜏𝛾1

)
𝑒

𝑎
2𝐷 (𝜏−𝜂)𝑑𝜏

+ 𝜆

4𝐷

∫ 𝜉

𝜂

𝑒−
𝑎

2𝐷 𝜏
(
1− 𝑎𝜏

2𝐷

)
− 2𝑎
𝜆
𝑒−

𝑎
2𝐷 𝜏𝛾1𝑑𝜏 (4.54)

𝐹 [𝐺] (𝜉,𝜂) = 𝜆

4𝐷

∫ 𝜂

0

(∫ 𝜏

0
𝐺 (𝜏, 𝑠)𝑑𝑠

)
𝑒

𝑎
2𝐷 (𝜏−𝜂)𝑑𝜏 + 𝜆

8𝐷

∫ 𝜉

𝜂

∫ 𝜂

0
𝐺 (𝜏, 𝑠)𝑑𝑠𝑑𝜏 (4.55)

With the definition of 𝐺0, we let

𝐺𝑛+1 = 𝐹 [𝐺𝑛] (4.56)

and

𝑐 = sup
𝑥∈[0,𝑙 [𝑡]]

(
1− 𝑎𝑥

2𝐷
− 2𝑎𝛾1

𝜆

)
= 1 (4.57)

because 𝑎, 𝛾1, 𝐷, and 𝜆 are constants in (0,∞). We can simply find 𝐺0(𝜉,𝜂) as

|𝐺0(𝜉,𝜂) | ≤
𝜆

2𝐷
𝑐𝜂+ 𝜆

2𝑎
𝑐

≤ 𝜆

2𝑎
+ 𝜆

2𝐷
𝑙 (𝑡)

(
𝑒

2𝑎
𝐷
𝑙 (𝑡) +1

)
≤ 𝜆

2

(
1
𝑎
+ 𝑙

𝐷

(
𝑒

2𝑎
𝐷
𝑙 +1

))
≡ 𝑀 (4.58)

Now, suppose that

|𝐺𝑛 (𝜉,𝜂) | ≤ 𝑀𝑛+1 (𝜉 +𝜂)2

𝑛!
(4.59)
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Then,

|𝐺𝑛+1(𝜉,𝜂) | ≤
𝑀𝑛+1

𝑛!
𝜆

4𝐷

{∫ 𝜂

0

(∫ 𝜏

0
(𝜏 + 𝑠)𝑛𝑑𝑠

)
𝑒

𝑎 (𝜏−𝜂)
2𝐷 𝑑𝜏 + 1

2

∫ 𝜉

𝜂

∫ 𝜂

0
(𝜏 + 𝑠)𝑛𝑑𝑠𝑑𝜏

}
≤ 𝑀𝑛+1

𝑛!
𝜆

4𝐷

{
2𝐷
𝑎
𝑐+2𝑐𝑙 (𝑡)

}
(𝜉 +𝜂)𝑛+1

(𝑛+1)

≤ 𝑀𝑛+1

𝑛!

{
𝜆

2𝑎
+ 𝜆

2𝐷
𝑙

}
(𝜉 +𝜂)𝑛+1

(𝑛+1)

≤ 𝑀𝑛+2 (𝜉 +𝜂)𝑛+1

(𝑛+1)! (4.60)

By induction, we proved the equation (4.59). Thus,

𝐺 (𝜉,𝜂) =
∞∑︁
𝑛=0

𝐺𝑛 (𝜉,𝜂) (4.61)

which converges in T1 uniformly, and absolutely.In addition, it is a continuous and twice

differentiable. Then, 𝐺 has a bound

|𝐺 (𝜉,𝜂) | ≤ 𝑀𝑒𝑀 (𝜉+𝜂) (4.62)

Now, we suppose 𝐺′(𝜉,𝜂) and 𝐺′′(𝜉,𝜂) are two different solutions of (4.41)-(4.43).Then,

|Δ𝐺 (𝜉,𝜂) | = 𝐺′(𝜉,𝜂) −𝐺′′(𝜉,𝜂)

≤ 2𝑀𝑒2𝑀 (4.63)

Now, by using the (4.59), we get

|Δ𝐺 (𝜉,𝜂) | ≤ 2𝑀𝑛+1𝑒2𝑀 (𝜉 +𝜂)𝑛
𝑛!

(4.64)
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where

lim
𝑛→∞

2𝑀𝑛+1𝑒2𝑀 (𝜉 +𝜂)𝑛
𝑛!

= 0 (4.65)

Then, we can conclude the following result

|𝑃(𝑥, 𝑦) | ≤ 𝑀𝑒2𝑀𝑥 (4.66)

If (3.33) holds for all time, then (4.28)-(4.30) has a unique solution in 𝐶2 which is

bounded by (4.31). This completes the proof of Lemma 4.1.

4.2 Stability proof of designed observer

In this section, we outline the proof of Theorem 4.1, starting with the inverse transformation

that plays a crucial role in establishing the stability of the estimator.

4.2.1 Inverse Transformation

We use the following backstepping transformation

𝑤̃(𝑥, 𝑡) = 𝑐(𝑥, 𝑡) −
∫ 𝑙 (𝑡)

𝑥

𝑄(𝑥, 𝑦)𝑢̃(𝑦, 𝑡)𝑑𝑦. (4.67)

By applying (4.67) to the observer error system (4.16)–(4.19) and the target system (4.22)–(4.24),

the conditions for the kernel function are obtained as

𝐷𝑄𝑥𝑥 (𝑥, 𝑦) − 𝑎𝑄𝑥 (𝑥, 𝑦) −𝐷𝑄𝑦𝑦 (𝑥, 𝑦)

− 𝑎𝑄𝑦 (𝑥, 𝑦) = 𝜆𝑄(𝑥, 𝑦), (4.68)

𝑄(𝑥, 𝑥) = − 𝜆

2𝐷
𝑥 +𝛾1, (4.69)

𝑄𝑥 (0, 𝑦) = 𝛾1𝑄(0, 𝑦). (4.70)
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We follow the same logic that we used for obtaining the solution of inverse backstepping

transformation. First, we apply the following transformation 𝑄(𝑥, 𝑦) = 2𝑒 𝑎
2𝐷 (𝑥−𝑦)𝑄̃(𝑥, 𝑦) to

(4.68)-(4.70). Thus, the transformed kernel PDE is well-posed, so the solution of 𝑄(𝑥, 𝑦) exists,

which means direct transformation exists. Similar to the inverse transformation, the closed-form

solution of the direct kernel equation cannot be obtained. By applying the procedure in Section

4.1.3, we have the bound as |𝑄(𝑥, 𝑦) | ≤ Υ𝑒2Υ𝑥 .

4.2.2 Lyapunov analysis

We consider next the following Lyapunov function for the observer error target system

𝑉̃ = 𝑉̃11 + 𝑉̃12 + 𝑑2𝑉̃2 +
𝛾1
2
𝑤̃(0, 𝑡)2, (4.71)

where

𝑉̃11 =
1
2
𝑑1 | |𝑤̃ | |2, (4.72)

𝑉̃12 =
1
2
| |𝑤̃𝑥 | |2, (4.73)

𝑉̃2 =𝑑2 𝑋̃ (𝑡)⊤𝑃1 𝑋̃ (𝑡), (4.74)

where

𝑃1 =


𝛼̄(1+ 2𝑟g

𝑙2
) + 3

2 2𝛼̄

2𝛼̄ 𝛼̄(4+ 2𝑙1
𝑙2
)

 , (4.75)

where 𝛼̄ > 0, and makes 𝑃1 a positive definite matrix. In addition, we can denote that

𝐹 (𝑥, 𝑋̃ (𝑡)) =
(
𝑃(𝑥, 𝑋̃ (𝑡) + 𝑙s) −𝑄(𝑥, 𝑋̃ (𝑡) + 𝑙s)

)
𝐻⊤ 𝑋̃ (𝑡). (4.76)

Then, we state the following lemma.
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Lemma 4.2. Assume that assumptions (3.33) and (3.34) are satisfied for 𝑣̄ = 𝐷

8𝑙 , for all time 𝑡 ≥ 0.

Then, we conclude that for sufficiently large gain parameter 𝜆 > 0, 𝑑1 > 0, 𝑑2 > 0, and 𝛼̄ > 0, there

exists a positive constant 𝛼1 = min
{
𝑑1

𝐷
2 , 𝑑1 (𝐷 +2𝜆) , (𝑔 +2𝜆) , 𝛼

2𝜆max (𝑃)

}
and 𝛽1 = 𝑑2𝜅

𝜆max (𝑃1)
𝜆min (𝑃1)3/2

which satisfy the following norm estimate hold for all 𝑡 ≥ 0

¤̃𝑉 ≤ −𝛼1𝑉̃ + 𝛽1𝑉̃
3/2. (4.77)

Proof. Taking the time derivative of the Lyapunov functions along the target system (4.22)–(4.25),

we have

¤̃𝑉11 =𝑑1𝐷𝑤̃(𝑙 (𝑡), 𝑡)𝑤̃𝑥 (𝑙 (𝑡), 𝑡) − 𝑑1

(
𝐷𝛾1 −

𝑎

2

)
𝑤̃(0, 𝑡)2 − 𝑑1 ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝑤̃(𝑥, 𝑡)𝐹 (𝑥, 𝑋̃ (𝑡))𝑑𝑥

− 𝑎 𝑑1
2
𝑤̃(𝑙 (𝑡), 𝑡)2 − 𝑑1𝐷 | |𝑤̃𝑥 | |2 − 𝑑1(𝑔 +𝜆) | |𝑤̃ | |2 + 𝑑1

¤𝑙 (𝑡)
2
𝑤̃(𝑙 (𝑡), 𝑡)2, (4.78)

¤̃𝑉12 =𝐻
⊤(𝐴− 𝐿𝐶) 𝑋̃ (𝑡)𝑤̃𝑥 (𝑙 (𝑡), 𝑡) −

1
2
¤𝑙 (𝑡)𝑤̃𝑥 (𝑙 (𝑡), 𝑡)2 − 𝑤̃𝑥 (0, 𝑡)𝑤̃𝑡 (0, 𝑡) −𝐷 | |𝑤̃𝑥𝑥 (𝑥, 𝑡) | |2

+
∫ 𝑙 (𝑡)

0
𝑎𝑤̃𝑥𝑥 (𝑥, 𝑡)𝑤̃𝑥 (𝑥, 𝑡)𝑑𝑥− (𝑔 +𝜆)

(
| |𝑤̃𝑥 (𝑥, 𝑡) | |2 +𝛾1𝑤̃(0, 𝑡)2 − 𝑤̃(𝑙 (𝑡), 𝑡)𝑤̃𝑥 (𝑙 (𝑡), 𝑡)

)
− ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝑤̃𝑥𝑥 (𝑥, 𝑡)𝐹 (𝑥, 𝑋̃ (𝑡))𝑑𝑥, (4.79)

¤̃𝑉2 =𝑑2 𝑋̃
⊤ (𝐴− 𝐿𝐶)⊤𝑃1 𝑋̃ + 𝑑2 𝑋̃

⊤𝑃1 (𝐴− 𝐿𝐶) 𝑋̃ − 𝑑22𝑐c(𝑡) 𝑋̃⊤𝐴2𝑃1 𝑋̃

+ 𝑑2 𝑓 ( 𝑋̃) (𝑃1 𝑋̃ + 𝑋̃⊤𝑃1), (4.80)

where 𝑑1 > 0 and 𝑑2 > 0. Applying Young’s inequality, and by using (4.24)-(4.25) to the time

derivative of 𝑉̃11 in (4.78) leads to

¤̃𝑉11 ≤− 𝑑1

(
𝐷𝛾1 −

𝑎

2

)
𝑤̃(0, 𝑡)2 − 𝑑1𝐷 | |𝑤̃𝑥 (𝑥, 𝑡) | |2 − 𝑑1(𝑔 +𝜆) | |𝑤̃(𝑥, 𝑡) | |2 +

𝐷𝜖1
2
𝑤̃𝑥 (𝑙 (𝑡), 𝑡)2

− 𝑑1 ¤𝑙 (𝑡)
∫ 𝑙 (𝑡)

0
𝑤̃(𝑥, 𝑡)𝐹 (𝑥, 𝑋̃ (𝑡))𝑑𝑥,+

(
𝑑2

1
𝐷

2𝜖1
+ 𝑑1

𝑙 (𝑡)
2

− 𝑑1
𝑎

2

)
𝑤̃(𝑙 (𝑡), 𝑡)2, (4.81)

where 𝜖1 > 0 is an arbitrarily small constant. Similarly, using Agmon’s inequalities and Young’s
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inequality into the time derivative of 𝑉̃12 in (4.79) gives us

¤̃𝑉12 ≤𝛾2
1

(
𝐷𝜖1 + 𝜖2 + 𝜖3(𝑔 +𝜆) + 𝑣̄ +

𝑣̄𝜖5
2

)
𝑤̃(0, 𝑡)2 −

(
𝛾1(𝑔 +𝜆)

)
𝑤̃(0, 𝑡)2 −

(
𝐷 − 𝐷

4

)
| |𝑤̃𝑥𝑥 (𝑥, 𝑡) | |2

−
(
−2𝑙 (𝐷𝜖1 + 𝜖2 + 𝜖3(𝑔 +𝜆) + 𝜖4𝑣̄ + 𝑣̄)

)
| |𝑤̃𝑥𝑥 (𝑥, 𝑡) | |2 −

(
(𝑔 +𝜆) − 𝑎

2

𝐷

)
| |𝑤̃𝑥 (𝑥, 𝑡) | |2

−𝛾1𝑤̃(0, 𝑡)𝑤̃𝑡 (0, 𝑡) +
( (
𝑑2

1
𝐷

2𝜖1
+ 𝑑1

𝑎

2
+ 𝑑1

𝑣̄

2
+ (𝑔 +𝜆)

2𝜖3

)
+ 1

2𝜖2
𝜆max((𝑒⊤1 (𝐴− 𝐿𝐶))

2)
)
𝑋̃⊤ 𝑋̃

+ | ¤𝑙 (𝑡) |
2𝜖4

𝐹 (𝑙 (𝑡), 𝑋̃ (𝑡))2 + | ¤𝑙 (𝑡) |
2𝜖5

𝛾1𝐹 (0, 𝑋̃ (𝑡))2 + | ¤𝑙 (𝑡) |
∫ 𝑙 (𝑡)

0
𝑤̃𝑥 (𝑥, 𝑡)𝐹𝑥 (𝑥, 𝑋̃ (𝑡))𝑑𝑥, (4.82)

where 𝜖𝑖 > 0 for 𝑖 = {1, ...,5} are arbitrarily small constants. By applying Young’s inequality,

using Lyapunov equation, (3.78) and (3.79), the time derivative of 𝑉̃2 in (4.80) is obtained as

¤̃𝑉2 ≤−8𝑑2
𝑟2

g𝛼̄𝑐c(𝑡)
𝑙c𝑙2

𝑐c(𝑡)2 − 𝑑24𝛼̄𝑙2𝑙 (𝑡)2 + 𝑑2𝜅𝜆max(𝑃1)
��𝑋̃⊤ 𝑋̃

��3/2
, (4.83)

by picking

𝑙2 ≥ max


𝑎̃

2𝑐
𝑙c
+ 𝑎̃2+𝑎̃

2𝑟g
+ 𝑟g +1

,
2𝑐𝑟g

𝑙c
+ 𝑎̃2 +2𝑟g

 , (4.84)

𝛼̄ ≤ 3𝑙1𝑙2𝑙c
32c𝑟g +16𝑎̃𝑙2𝑙c

. (4.85)

Note that there exists 𝑙2 and 𝛼 for any physical values of 𝑐 and 𝑐. Now, we can derive the observer

gain 𝑙2 as

𝑙2 ≥ max


𝑎̃

2𝑐
𝑙c
+ 𝑎̃2+𝑎̃

2𝑟g
+ 𝑟g +1

,
2𝑐𝑟g

𝑙c
+ 𝑎̃2 +2𝑟g, 𝑎̃

 . (4.86)

In addition, one can show that

𝛼 = min

{
8𝑟2

g𝛼̄

𝑙2𝑙c
, 2𝛼̄𝑙2

}
, (4.87)
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which leads to

¤̃𝑉2 ≤ −𝑑2𝛼𝑋̃
⊤ 𝑋̃ + 𝑑2𝜅𝜆max(𝑃1)

��𝑋̃⊤ 𝑋̃
��3/2

. (4.88)

Then, we use Young’s and Cauchy-Schwarz inequalities for 𝐹 terms. There exist positive

constants 𝐿𝑖 > 0, for 𝑖 = 1,2,3,4, which yield similar bounds as those in (3.57)-(3.60) for 𝐹 (., .)

terms. With these inequalities and (4.81)-(4.83), (4.82) becomes

¤̃𝑉11 + ¤̃𝑉12 + ¤̃𝑉2 ≤− 𝐷
2
| |𝑤̃𝑥𝑥 (𝑥, 𝑡) | |2 − 𝑑1

𝐷𝛾1
2
𝑤̃(0, 𝑡)2 −

(
𝑑1(𝑔 +𝜆) −

𝑣̄𝜖6
2

)
| |𝑤̃(𝑥, 𝑡) | |2

− 𝑑1𝐷 | |𝑤̃𝑥 (𝑥, 𝑡) | |2 −
(
(𝑔 +𝜆) − 𝑎

2

𝐷
− 𝑣̄𝜖7

2

)
| |𝑤̃𝑥 (𝑥, 𝑡) | |2 −𝛾1𝑤̃(0, 𝑡)𝑤̃𝑡 (0, 𝑡)

+ 𝑑1
𝑣̄

2
𝐿1 | 𝑋̃ (𝑡) |2 +

(
𝑣̄𝐿2
2𝜖4

+ 𝑑2
1
𝑣̄𝐿3
2𝜖6

+ 𝑣̄𝐿4
2𝜖7

− 𝑑2𝛼
𝑑2

1𝐷

2𝜖1
+ 𝑑1𝑎

2
+ 𝑑1𝑣̄

2
+ 𝑔 +𝜆

2𝜖3

)
| 𝑋̃ (𝑡) |2

+ 𝑑2𝜅𝜆max(𝑃1) ( 𝑋̃⊤ 𝑋̃)3/2 + 1
2𝜖2

𝜆max((𝑒⊤1 (𝐴− 𝐿𝐶))
2) | 𝑋̃ (𝑡) |2. (4.89)

By the positive definiteness of 𝑃1, it holds that

𝜆min(𝑃1) 𝑋̃⊤ 𝑋̃ ≤ 𝑋̃⊤𝑃1 𝑋̃ ≤ 𝜆max(𝑃1) 𝑋̃⊤ 𝑋̃, (4.90)

where 𝜆min(𝑃1) > 0 and 𝜆max(𝑃1) > 0 are the smallest and the largest eigenvalues of 𝑃1. Finally,

by recalling 𝛾1 ≥ 𝐷
𝑎

, and choosing constants 𝑑1 and 𝑑2 as

𝑑1 ≥
2𝑎2 +𝐷𝑣̄𝜖7

𝐷2 , (4.91)

𝑑2 ≥
2
𝛼

(
𝐷

2𝜖1
+ 𝑑1

𝑎 + 𝑣̄
2

+ (𝑔 +𝜆)
2𝜖3

+
𝜆max((𝑒⊤1 (𝐴− 𝐿𝐶))

2)
2𝜖2

+
(
𝑑1
2
𝐿1 +

1
2𝜖4

𝐿2 +
𝑑2

1
2𝜖6

𝐿3 +
1

2𝜖7
𝐿4

)
𝑣̄

)
, (4.92)
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one can show that (4.89) leads to

¤̃𝑉 ≤− 𝑑1
𝐷𝛾1

2
𝑤̃(0, 𝑡)2 − 𝑑1 (𝐷 +2𝜆) 𝑉̃12 − (𝑔 +2𝜆) 𝑉̃11

−
𝛼

2𝜆max(𝑃1)
𝑉̃2 + 𝑑2𝜅

𝜆max(𝑃1)
𝜆min(𝑃1)3/2 𝑉̃

3/2
2

≤−𝛼1𝑉̃ + 𝛽1𝑉̃
3/2. (4.93)

Thus, Lemma 4.2 holds.

By using the same approach in Lemma 3.2, we set 𝑀̃ = min
{
𝑀̃1, 𝑚̃1

}
where 𝑀̃1 =

𝜆min (𝑃1)
𝑑2

𝑟2 and 𝑟 is defined in (3.87). In addition, the inequality (4.93) ensures that 𝑉̃ (𝑡) < 𝑚̃1 if

𝑉̃ (0) < 𝑀̃ where 𝑚̃1 =
𝛼2

1
4𝛽2

1
. Thus, it leads to

¤̃𝑉 ≤ −𝛼1
2
𝑉̃ . (4.94)

Thus, if 𝑉̃ (0) < 𝑀̃, then 𝑉̃ (𝑡) < 𝑀̃ for all 𝑡 ≥ 0. This allows us to conclude that the target

𝑤̃-system (4.22)-(4.25) is locally exponentially stable in H1-norm, following a similar strategy

utilized in state-feedback stability analysis.

Owing to backstepping transformation invertibility, the stability of 𝑤̃-system renders

the original 𝑐-system (4.16)-(4.19) locally exponentially stable. This completes the proof of

Theorem 4.1.

The estimation error flux in the cone is dominated by the length of the axon. It is bounded

by H1-norm over the lengthy calculations of estimation error over the length of the axon and

tubulin flux in the cone. Due to physically limited intuition, the axon cannot grow rapidly. This

underscores the importance of considering both axon length and tubulin flux within the cone to

ensure the convergence of the estimator.
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(a) The initial value of the gain, denoted as 𝑝, which starts at 𝑝 = 0.2×10−8 when
𝑥 = 0 𝑚 and 𝑙 (𝑡) = 4 𝜇𝑚 at 𝑡 = 0 𝑚𝑖𝑛, increases to 𝑝 = 2.25×10−8 when 𝑥 = 0 and
𝑙 (𝑡) = 16 𝜇𝑚 at 𝑡 = 2 𝑚𝑖𝑛.

Figure 4.1. Increase of the observer gain throughout the growth of the axon length.

4.3 Simulations: Estimation of unmeasured tubulin concen-
tration profile in a 4× growth

We perform the simulation of the state estimation of the tubulin concentration by

incorporating the biological parameters in Table 3.1. The observer gains for the decay rates

of ODE states are set as 𝑙1 = 1 and 𝑙2 = 12. The parameter 𝜆 for the decay rate of the PDE

state is chosen as 0.05 to obtain sufficiently fast convergence without causing a huge overshoot.

In addition, the initial conditions for the observer are chosen 𝑐(𝑥,0) = 0. In Figure 4.2a and

Figure 4.2b, the open-loop control, 𝑈 (𝑡) = 𝑏1 sin(𝜔𝑡) + 𝑏2 where 𝑏1 = 200, 𝑏2 = −10, and

𝜔 = 1.256 𝑟𝑎𝑑/𝑠, is applied to the plant and the estimator. Figure 4.2a and 4.2b show that the

observer governed by (4.1)-(4.5) converges to the unmeasured tubulin concentration generated by

(2.1)-(2.5), within 𝑡 = 1min when the open-loop controller defined above is applied. In addition,

the necessity of observer gain, 𝑝1(𝑥, 𝑙 (𝑡)), is demonstrated in Figure 4.1. In this figure, when

the axon grows for a long distance, the observer gain, 𝑝1(𝑥, 𝑙 (𝑡)), increases because more time

is needed to see the effect of the soma on the growth cone, which explains why observer gain

becomes higher and higher when the axon expands.
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(a) The response of the tubulin concentration under the open-loop control signal
𝑈 (𝑡) = 𝑏1 sin(𝜔𝑡) + 𝑏2.

(b) The estimated tubulin concentration given by the observer in (4.1)-(4.5),
successfully converges to the tubulin concentration and the axon length of the
plant in Figure Note that the rate of convergence of estimator is faster than the rate
of tubulin convergence of steady-state solution.4.2a.

Figure 4.2. Open-loop responses of the plant and observer.
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Chapter 5

Observer-based Neuron Growth Control

5.1 Output-feedback design

In this section, an output feedback control law is developed based on the estimated tubulin

concentration obtained through the observer proposed in 4, utilizing the measurements (4.6).

The block diagram in Figure 5.1 illustrates the closed-loop system, which integrates the plant

dynamics (2.1)–(2.5), the observer (4.1)–(4.5), and the control law (3.26).

Controller
PDE

𝑐𝑡 (𝑥, 𝑡 ) = 𝐷𝑐𝑥𝑥 (𝑥, 𝑡 ) − 𝑎𝑐𝑥 (𝑥, 𝑡 ) − 𝑔𝑐 (𝑥, 𝑡 ) ,
𝑐𝑥 (0, 𝑡 ) = −𝑞s (𝑡 ) ,
𝑐 (𝑙 (𝑡 ) , 𝑡 ) = 𝑐c (𝑡 )

ODE
¤𝑐c (𝑡 ) = (𝑎̃+ 2𝑟g𝑐∞

𝑙c
)𝑐c (𝑡 ) − 𝛽𝑐𝑥 (𝑙 (𝑡 ) , 𝑡 )

−𝜅𝑐c (𝑡 )2 − 𝑟g𝑐∞,
¤𝑙 (𝑡 ) = 𝑟g (𝑐𝑐 (𝑡 ) − 𝑐∞ ) ,

Observer
𝑐̂𝑡 (𝑥, 𝑡 ) = 𝐷𝑐̂𝑥𝑥 (𝑥, 𝑡 ) − 𝑎𝑐̂𝑥 (𝑥, 𝑡 ) − 𝑔𝑐̂ (𝑥, 𝑡 ) + 𝑝1 (𝑥, 𝑙 (𝑡 ) ) (𝑐𝑥 (𝑙 (𝑡 ) , 𝑡 ) − 𝑐̂𝑥 (𝑙 (𝑡 ) , 𝑡 ) ) ,

𝑐̂𝑥 (0, 𝑡 ) = −𝑞s (𝑡 ) ,
𝑐̂ (𝑙 (𝑡 ) , 𝑡 ) = 𝑐̂𝑐 (𝑡 ) ,

¤̂𝑐𝑐 (𝑡 ) = (𝑎̃+ 2𝑟g𝑐∞
𝑙c

) 𝑐̂𝑐 (𝑡 ) − 𝜅𝑐c (𝑡 )2 − 𝑟g𝑐∞ − 𝛽𝑐𝑥 (𝑙 (𝑡 ) , 𝑡 ) + 𝑙1 (𝑙 (𝑡 ) − 𝑙 (𝑡 ) )
¤̂
𝑙 (𝑡 ) = 𝑟g (𝑐̂𝑐 (𝑡 ) − 𝑐∞ ) + 𝑙2 (𝑙 (𝑡 ) − 𝑙 (𝑡 ) )

𝑈 (𝑡)

Measurements
𝑦1(𝑡) = 𝑐𝑥 (𝑙 (𝑡), 𝑡)
𝑦2(𝑡) = 𝐶𝑋 (𝑡)

𝑙 (𝑡)

𝑐(𝑥, 𝑡), 𝑐c(𝑡)

Figure 5.1. Block diagram of observer design and output feedback system

The following theorem applies to this control law:

Theorem 5.1. Consider the closed-loop system (2.14)-(2.18) with the measurements (4.6), and
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the observer (5.4)-(5.7) under the output feedback control law:

𝑈 (𝑡) = 𝐷𝛾2 − 𝛽
𝐷

𝑢̂(0, 𝑡) +𝜙′(−𝑙 (𝑡))⊤−𝛾2𝜙(−𝑙 (𝑡))⊤ 𝑋̂ (𝑡)

− 1
𝐷

∫ 𝑙 (𝑡)

0
(𝜙′(−𝑦)⊤−𝛾2𝜙(−𝑦)⊤)𝐵𝑢̂(𝑦, 𝑡)𝑑𝑦, (5.1)

where 𝛾2 ≥ 𝑎
𝐷

and 𝜙(𝑥) is defined in (3.24). Then, there exist 𝑀̄ > 0, 𝜅 > 0 and 𝜁 > 0 such that if

Γ(0) < 𝑀̄ then the following norm estimate holds:

Γ(𝑡) ≤ 𝜁Γ(0) exp (−𝜅𝑡) . (5.2)

where Γ(𝑡) := | |𝑢 | |2H1 (0,𝑙 (𝑡)) + |𝑋 |
2 + ||𝑢̂ | |2H1 (0,𝑙 (𝑡)) + | 𝑋̂ |

2. Namely, the closed-loop system is locally

stable in the sense of H1-norm.

5.1.1 Reference error states

For the output feedback analysis, we first define the reference error state, 𝑢̂(𝑥, 𝑡), for the

observer as

𝑢̂(𝑥, 𝑡) = 𝑐(𝑥, 𝑡) − 𝑐𝑒𝑞 (𝑥). (5.3)

By using (4.1)-(4.5), (2.10)-(2.13) and (5.3), we obtain the following nonlinear observer for the

reference error system

𝑢̂𝑡 (𝑥, 𝑡) =𝐷𝑢̂𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢̂𝑥 (𝑥, 𝑡) −𝑔𝑢̂(𝑥, 𝑡) + 𝑝1(𝑥, 𝑙 (𝑡)) (𝑢𝑥 (𝑙 (𝑡), 𝑡) − 𝑢̂𝑥 (𝑙 (𝑡), 𝑡)) , (5.4)

𝑢̂𝑥 (0, 𝑡) =𝑈 (𝑡), (5.5)

𝑢̂(𝑙 (𝑡), 𝑡) =𝑒1 𝑋̂ (𝑡) + ℎ̃(𝑧2(𝑡)), (5.6)

¤̂𝑋 (𝑡) =𝐴𝑋̂ (𝑡) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡) + 𝐿𝐶 (𝑋 (𝑡) − 𝑋̂ (𝑡)) + 𝑓 ( 𝑋̂ (𝑡)). (5.7)
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5.1.2 Target reference error states

The following transformation from (𝑢̂, 𝑋̂) into (𝑤̂, 𝑋̂) is implemented by using (3.5) and

(3.35). Taking the time and spatial derivatives of these transformations, the target 𝑤̂-system is

obtained as

𝑤̂𝑡 =𝐷𝑤̂𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤̂𝑥 (𝑥, 𝑡) −𝑔𝑤̂(𝑥, 𝑡) + ¤𝑙 (𝑡)𝐸 (𝑥, 𝑋̂ (𝑡)) + 𝑝1(𝑥, 𝑙 (𝑡))𝑢̃𝑥 (𝑙 (𝑡), 𝑡)

−
∫ 𝑙 (𝑡)

𝑥

𝑘 (𝑥, 𝑦)𝑝1(𝑦, 𝑙 (𝑡))𝑢̃𝑥 (𝑙 (𝑡), 𝑡)𝑑𝑦− 𝑓 ( 𝑋̂ (𝑡))𝜙(𝑥− 𝑙 (𝑡))⊤

−
(
𝜙′(𝑥− 𝑙 (𝑡))⊤ + 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤

)
𝐵ℎ∗( 𝑋̂ (𝑡)), (5.8)

𝑤̂𝑥 (0, 𝑡) =𝛾2𝑤̂(0, 𝑡), (5.9)

𝑤̂(𝑙 (𝑡), 𝑡) =ℎ∗( 𝑋̂ (𝑡)), (5.10)

¤̂𝑋 (𝑡) =(𝐴+𝐵𝐾) 𝑋̂ (𝑡) +𝐵𝑤̂𝑥 (𝑙 (𝑡), 𝑡) +𝐵𝑢̃𝑥 (𝑙 (𝑡), 𝑡)

+ 𝐿𝐶𝑋̃ (𝑡) + 𝑓 ( 𝑋̂ (𝑡)), (5.11)

where ℎ∗ is defined in (3.32) and we denote 𝐸 (𝑥, 𝑋̂ (𝑡)) = (𝜙′(𝑥 − 𝑋̂ (𝑡) − 𝑙s)⊤ − 𝑘 (𝑥, 𝑋̂ (𝑡) +

𝑙s)𝐻⊤) 𝑋̂ (𝑡) . By evaluating the spatial derivative of (3.5) at 𝑥 = 0, we derive the control law as

in (5.1).

5.2 Stability under output-feedback control

In this section, Theorem 5.1 is proven for output feedback control law.

5.2.1 Lyapunov Analysis

Define the Lyapunov function for closed-loop systems as

𝑉tot =𝑐1𝑉̃ (𝑡) +
𝑑3
2
| |𝑤̂ | |2 + 1

2
| |𝑤̂𝑥 | |2 +

1
2
𝛾2𝑤̂(0, 𝑡)2 + 𝑑4 𝑋̂ (𝑡)⊤𝑃̂𝑋̂ (𝑡), (5.12)
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where 𝑐1 > 0 is chosen to be sufficiently large, 𝑉̃ (𝑡) is defined in (4.71)–(4.74). Then, the total

Lyapunov function for the closed-loop output feedback system is also written as

𝑉tot(𝑡) =𝑐1
1
2

(
𝑑1 | |𝑤̃ | |2 + ||𝑤̃𝑥 | |2

)
+ 1

2

(
𝑑3 | |𝑤̂ | |2 + ||𝑤̂𝑥 | |2

)
+ 𝑐1𝑑2 𝑋̃ (𝑡)⊤𝑃𝑋̃ (𝑡) + 𝑑4 𝑋̂ (𝑡)⊤𝑃̂𝑋̂ (𝑡)

+ 1
2

(
𝑐1𝛾1𝑤̃(0, 𝑡)2 +𝛾2𝑤̂(0, 𝑡)2

)
. (5.13)

We state the following lemma.

Lemma 5.1. Properties (3.33) and (3.34) hold with,

𝑣̄ ≤ min
{
𝑔

3𝛾2
,
𝐷

8𝑙
,
𝑔 +𝜆
2𝛾1

}
, (5.14)

for all time 𝑡 ≥ 0. Then, for sufficiently large enough 𝑑3 > 0 and 𝑑4 > 0, there exist positive

constants 𝛼 > 0 and 𝛽 > 0 such that the following norm estimate holds

¤𝑉tot ≤−𝛼𝑉tot + 𝛽1𝑉
3/2
tot + 𝛽2𝑉

2
tot + 𝛽3𝑉

5/2
tot + 𝛽4𝑉

3
tot. (5.15)

Note that the properties (3.33) and (3.34) with (5.14) are enforced in our stability analysis

by restricting the initial conditions.

Proof. By applying Young’s, Cauchy-Schwarz, Poincare’s, and Agmon’s inequalities, with the

help of the system properties (3.33) and (3.34) we obtain

¤𝑉tot ≤−𝛼𝑉tot + 𝛽1𝑉
3/2
tot + 𝛽2𝑉

2
tot + 𝛽3𝑉

5/2
tot + 𝛽4𝑉

3
tot, (5.16)
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for

𝛼 = min
{

1
2
𝛼1, 𝑑3

𝐷

2
,
𝑔

2
, 𝑑4

𝜆min(𝑄̂)
4𝜆max(𝑃̂)

}
, (5.17)

𝛽1 = 𝛽+
𝑟g

𝜆min(𝑃̂)

(
𝐿5 + 𝐿6 + 𝐿8

2
+ 𝑑3

𝐿7
2𝜀3

)
+

2𝜅
��𝑃̂��

𝜆max(𝑃̂)3/2
, (5.18)

𝛽2 =
8𝑑2

3𝐷
(
𝐿𝑛14𝑘2

𝑛 + 𝐿𝑛2𝜅
2) +8𝐷

(
𝐿𝑛2𝜅

2 + 𝐿𝑛34𝑘2
𝑛

)
2𝜆min(𝑃̂)2

, (5.19)

𝛽3 =
𝑑3𝑟g

2𝜆min(𝑃̂)5/2
, (5.20)

𝛽4 =
32𝐷𝐿𝑛2𝑘

2
𝑚 |𝑃 |2(𝑑2

1 +1)
𝜆min(𝑃)3 , (5.21)

where 𝐿𝑖 for 𝑖 = {5,6,7,8} are bounds of the nonlinear terms as in (3.57)-(3.60) such that Lemma

5.1 holds.

To prove local stability, we need to show Lemma 2 to ensure the convergence in all time.

It satisfies that 𝑉tot(𝑡) < 𝑀1 holds for some 𝑀 > 0, then | 𝑋̃ | < 𝑟 where 𝑟 is defined in (3.87). If

𝑉tot(0) < 𝑀 , then 𝑉tot(𝑡) < 𝑀 for all 𝑡 > 0. In addition, ¤𝑙 (𝑡) can be written as ¤𝑙 (𝑡) = 𝑟g𝑒
⊤
1 𝑋 (𝑡), so

we can bound ¤𝑙 (𝑡) to handle in the norm equivalence as

| ¤𝑙 (𝑡) | ≤ 𝑟g
©­«
√︄

𝑉̃2
𝜆min(𝑃)

+

√︄
𝑉̂2

𝜆min(𝑃̂)
ª®¬ . (5.22)

The inequality above leads to | ¤𝑙 (𝑡) |2 ≤ 𝛿2𝑉tot(𝑡). Thus, it holds that

𝑉tot(𝑡) ≤ 𝑉tot(0) exp
(
−𝛼

2
𝑡

)
. (5.23)

The norm equivalence between the target and original systems is shown using the direct and

inverse transformations of both observer target and observer error target systems. First, let

Ψ = | |𝑤̂ | |2H1 (0,𝑙 (𝑡)) + | 𝑋̂ |
2 + ||𝑤̃ | |2H1 (0,𝑙 (𝑡)) + | 𝑋̃ |

2. (5.24)
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Using Agmon’s inequalities for 𝑤̂(0, 𝑡) and 𝑤̃(0, 𝑡) terms in 𝑉tot(𝑡), one can obtain positive

constants 𝑀 > 0 and 𝑀 < 0 such that

𝑀Ψ(𝑡) ≤ 𝑉tot(𝑡) ≤ 𝑀Ψ(𝑡) (5.25)

holds. Therefore, applying (5.25) to (5.23), we get

Ψ(𝑡) ≤ 𝑀

𝑀
exp

(
−𝛼

2
𝑡

)
Ψ(0). (5.26)

Now, we apply the norm equivalence argument to the transformations between the target systems,

(4.22)-(4.25) and (5.8)-(5.11) and observer error (4.16)-(4.19) and the reference error systems

(5.4)-(5.7). Let Φ(𝑡) be defined as

Φ(𝑡) = | |𝑐 | |2H1 (0,𝑙 (𝑡)) + | 𝑋̃ |
2 + ||𝑢̂ | |2H1 (0,𝑙 (𝑡)) + | 𝑋̂ |

2. (5.27)

Taking square of the transformations (4.21), (4.67), (3.5), and (3.35), and using Young’s and

Cauchy-Schwarz inequalities, one can see that there exist positive constants 𝑁 > 0, and 𝑁 < 0

such that

𝑁Φ(𝑡) ≤ Ψ(𝑡) ≤ 𝑁Φ(𝑡) (5.28)

holds. Applying (5.28) to (5.26), we get

Φ(𝑡) ≤ 𝑁

𝑁
exp

(
−𝛼

2
𝑡

)
Φ(0). (5.29)

In the last step, we can apply norm equivalence argument between (𝑐, 𝑋̃)-system and (𝑢, 𝑋)-system.
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Let Γ(𝑡) defined as

Γ(𝑡) = | |𝑢 | |2H1 (0,𝑙 (𝑡)) + |𝑋 |
2 + ||𝑢̂ | |2H1 (0,𝑙 (𝑡)) + | 𝑋̂ |

2. (5.30)

Now, by taking square of (2.10) and (4.13), one can show that there exists positive constants

𝐾 > 0 and 𝐾 > 0 such that

𝐾Γ(𝑡) ≤ Γ(𝑡) ≤ 𝐾Γ(𝑡) (5.31)

holds. Applying (5.31) to (5.29), we get

Γ(𝑡) ≤ 𝐾

𝐾
exp

(
−𝛼

2
𝑡

)
Γ(0). (5.32)

Namely, since the backstepping transformation for the target error system and for the observer

system are invertible, the local stability of (𝑤̃, 𝑋̃, 𝑤̂, 𝑋̂) guarantees the local stability of (𝑢, 𝑋, 𝑢̂, 𝑋̂),

which completes the proof of Theorem 5.1.

5.3 Simulations: Axon elongation by up to three orders of
magnitude

Under the closed-loop plant dynamics (2.1)-(2.5) with the output-feedback controller in

(5.1) and the observer in (4.1)-(4.5), the axon length converges to the desired length, one order

of magnitude higher than initial axon length, around by about 𝑡 = 3 minutes as shown in Figure

5.2a. Also, Figure 5.2b illustrates that the estimated tubulin concentration 𝑐(𝑥, 𝑡) converges to

the unmeasured actual tubulin concentration, 𝑐(𝑥, 𝑡). After the convergence, both estimated

and true tubulin concentrations converge to the steady-state solution, 𝑐eq(𝑥), which shows the

effectiveness of our proposed output feedback control law.

For three orders of magnitude of axon growth, the designed observer (4.1)-(4.5) and
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(a) The axon length 𝑙 (𝑡) of the plant (2.1)-(2.5) converges to the desired length 𝑙𝑠
by about 𝑡 = 3min.
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(b) The estimated tubulin concentration, 𝑐(𝑥, 𝑡) = 𝑢̂(𝑥, 𝑡) + 𝑐eq (𝑥), generated by
the observer in (4.1)-(4.5), converges to the true tubulin concentration, 𝑐(𝑥, 𝑡),
generated by nonlinear plant dynamics (2.1)-(2.5), and then both converge to the
steady-state solution, 𝑐eq (𝑥) by about 𝑡 = 2.5min. Note that the convergence of the
estimator to the plant is achieved faster than the convergence of the plant to the
desired equilibrium.

Figure 5.2. Close-loop response of the plant and observer.

output-feedback control law in (5.1) are applied to the plant (2.1)-(2.5) in Figure 5.3a and 5.3b.

The observer gains are chosen as 𝑙1 = −3×104, 𝑙2 = 10 and 𝜆 = 1×10−4 and the initial conditions

are chosen 𝑐(𝑥,0) = 0. In Figure 5.3a, the initial axon length, 𝑙0 = 1 𝜇𝑚, converges to the desired

axon length, 𝑙s = 1 𝑚𝑚 in 𝑡 = 37 hours, nearly one and half days. In Figure 5.3b, the estimated

tubulin concentration 𝑐(𝑥, 𝑡) first converges to the plant tubulin concentration 𝑐(𝑥, 𝑡) around 𝑡 = 5
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(a) The axon length 𝑙 (𝑡) governed by the nonlinear ODE dynamics converges to
the desired length 𝑙s = 1 mm by about 𝑡 = 37 hours.
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(b) Tubulin concentration 𝑐 (𝑥, 𝑡) governed by the nonlinear PDE-ODE dynamics
converges to the steady-state tubulin concentration, 𝑐eq (𝑥) along the axon by about
𝑡 = 10 hours.

Figure 5.3. The estimated tubulin concentration, 𝑐(𝑥, 𝑡) = 𝑢̂(𝑥, 𝑡) + 𝑐eq(𝑥), generated by the
observer in (4.1)-(4.5), converges to the unmeasured tubulin concentration, 𝑐(𝑥, 𝑡), generated by
nonlinear plant dynamics (2.1)-(2.5), and then both converge to the steady-state solution, 𝑐eq(𝑥)
by about 𝑡 = 15 hours. Note that the convergence of the estimator to the plant is achieved faster
than the convergence of the plant to the desired equilibrium.

mins and then both converge to the steady-state solution 𝑐eq(𝑥) around 𝑡 = 17 hours. In addition,

the tubulin concentration error, 𝑐(𝑥, 𝑡) = |𝑐(𝑥, 𝑡) − 𝑐(𝑥, 𝑡) |, converges to zero uniformly along the

spatial distribution in Figure 5.4.
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(a) When the length of axon, 𝑙 (𝑡), increases the observer gain, 𝑝1 (𝑥, 𝑙 (𝑡)) increases.

Figure 5.4. The estimation error, 𝑐(𝑥, 𝑡), between the estimated tubulin concentration 𝑐(𝑥, 𝑡) and
the plant tubulin concentration 𝑐(𝑥, 𝑡) converges to 0 uniformly along the axon length.

5.4 Robustness to Large Uncertainty in Diffusion, Advec-
tion, and Reaction

In this section, we illustrate the robustness of the proposed output-feedback control

under parameter uncertainty. Figure 5.5a shows the simulation result under a mismatch between

the parameters of the plant and those of the estimator. The plant parameters, 𝐷, 𝑎, and

𝑔, are set to have +%40 errors in the upper figure, and to have −20% errors in the lower

figure. Both plots show that the performance of the proposed observer-based output feedback

controller is robust to the parameter mismatch. Figure 5.5a illustrates that the actual axon length

converges successfully to the desired axon length. In addition, the convergence of the tubulin

concentration is observed in Figure 5.5b under the same parameter mismatch. In this figure, the

estimated tubulin concentration converges to the actual tubulin concentration and both converge

to the steady-state tubulin concentration. Note that the convergence of the estimated tubulin

concentration to the actual tubulin concentration is achieved before either one converges to the

steady-state concentration. The simulation study demonstrates a robust performance of the

proposed output-feedback controller under parameter mismatches.
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(a) Even when there is a parameters’ error in 𝐷, 𝑎, and 𝑔, the proposed controller
performs robustly enough for successfully achieving the convergence of the axon
length to the desired axon length.
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(b) The proposed observer also achieves an accurate estimation of the unmeasured
tubulin concentration governed by nonlinear plant dynamics.

Figure 5.5. Robustness study of the proposed observer and the output feedback control under
parameters’ mismatch between the plant and the estimator.
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Chapter 6

Input Delay Compensation

In the previous chapter, feedback and output-feedback control laws were introduced;

however, these did not account for any time delay between the injected input and the tubulin

concentration dynamics. Time delays are common in biological processes and add complexity

to the system. For example, the movement of essential proteins, such as tubulin, from the cell

body to the axon’s growth cone is not immediate, which introduces delays necessary for axon

growth [65]. In this chapter, we address this issue by implementing an input delay compensation

technique using a novel feedback control law. In this control law, the input time delay is modeled

as a transport PDE, and with certain parameter changes, the problem transforms into a coupled

neuron growth problem with a transport PDE as explicitly described in [55].
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6.1 Axon Growth Model with Input Delay

The model presented in this section is nearly identical to the one in Chapter 2, with the

key difference being the inclusion of an input time delay, 𝐷𝑒.

𝑐𝑡 (𝑥, 𝑡) =𝐷𝑐𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑐𝑥 (𝑥, 𝑡) −𝑔𝑐(𝑥, 𝑡), (6.1)

𝑐𝑥 (0, 𝑡) =− 𝑞s(𝑡 −𝐷𝑒), (6.2)

𝑐(𝑙 (𝑡), 𝑡) =𝑐c(𝑡), (6.3)

𝑙c ¤𝑐c(𝑡) =(𝑎−𝑔𝑙c)𝑐c(𝑡) −𝐷𝑐𝑥 (𝑙 (𝑡), 𝑡) − (𝑟g𝑐c(𝑡) + 𝑟g𝑙c) (𝑐c(𝑡) − 𝑐∞), (6.4)

¤𝑙 (𝑡) =𝑟g(𝑐𝑐 (𝑡) − 𝑐∞), (6.5)

6.1.1 The reference error system with input delay

First, we derive the reference error states by taking into account the input time delay,

where the states denoted as 𝑢(𝑥, 𝑡), 𝑧1(𝑡), 𝑧2(𝑡) and𝑈 (𝑡 −𝐷𝑒), are defined by

𝑢(𝑥, 𝑡) =𝑐(𝑥, 𝑡) − 𝑐eq(𝑥), (6.6)

𝑧1(𝑡) =𝑐c(𝑡) − 𝑐∞, (6.7)

𝑧2(𝑡) =𝑙 (𝑡) − 𝑙s, (6.8)

𝑈 (𝑡 −𝐷𝑒) =− (𝑞s(𝑡 −𝐷𝑒) − 𝑞∗s ). (6.9)
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From (6.1)-(6.5), by using (2.6)-(2.9), and (6.6)-(6.9), we obtain

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (6.10)

𝑢𝑥 (0, 𝑡) =𝑈 (𝑡 −𝐷𝑒), (6.11)

𝑢(𝑙 (𝑡), 𝑡) =ℎ(𝑋 (𝑡)), (6.12)

¤𝑧1(𝑡) =𝑎̃1𝑧1(𝑡) − 𝛽𝑢𝑥 (𝑙 (𝑡), 𝑡) − 𝜅𝑧1(𝑡)2 + 𝛽 𝑓1(𝑧2(𝑡)) − 𝛽𝑎̃2𝑧2(𝑡), (6.13)

¤𝑧2(𝑡) =𝑟g𝑧1(𝑡), (6.14)

where all functions are parameters defined in Chapter 2.

6.1.2 Input delay as transport PDE

The dynamics of the delayed controller can be rigorously modeled using a transport

PDE. This approach captures the time delay in the control system as a spatial-temporal process,

providing a more accurate and comprehensive representation of how the delay impacts the

system’s performance. Thus, the delayed controller can be represented as

𝑣𝑡 (𝑥, 𝑡) =𝑣𝑥 (𝑥, 𝑡), 𝐷𝑒 ≥ 𝑥 ≥ 0 (6.15)

𝑣(𝐷𝑒, 𝑡) =𝑈 (𝑡). (6.16)

The solution to this equation is 𝑣(𝑥, 𝑡) =𝑈 (𝑡 + 𝑥 −𝐷𝑒) and thus the output 𝑣(0, 𝑡) =𝑈 (𝑡 −𝐷𝑒)

gives the delayed input. Then, let 𝑋 ∈ R2 be an ODE state vector for the reference error states

𝑧1(𝑡) and 𝑧2(𝑡), defined by

𝑋 (𝑡) = [𝑧1(𝑡) 𝑧2(𝑡)]⊤. (6.17)
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By using (6.17), the systematic representation of (6.10)-(6.14) and (6.15)-(6.16) can be written

as

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (6.18)

𝑢𝑥 (0, 𝑡) =𝑣(0, 𝑡), (6.19)

𝑢(𝑙 (𝑡), 𝑡) =ℎ(𝑋 (𝑡)), (6.20)

¤𝑋 (𝑡) =𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡)) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡), (6.21)

𝑣𝑡 (𝑥, 𝑡) =𝑣𝑥 (𝑥, 𝑡), 𝐷𝑒 ≥ 𝑥 ≥ 0 (6.22)

𝑣(𝐷𝑒, 𝑡) =𝑈 (𝑡). (6.23)

6.1.3 Linearized reference error system

In order to obtain the control law, we first apply linearization around zero states to

(6.18)-(6.23) which leads us to the following linearized system:

¤𝑋 (𝑡) =𝐴𝑋 (𝑡) +𝐵𝑢𝑥 (𝑙 (𝑡), 𝑡), (6.24)

𝑢𝑡 (𝑥, 𝑡) =𝐷𝑢𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑢𝑥 (𝑥, 𝑡) −𝑔𝑢(𝑥, 𝑡), (6.25)

𝑢(𝑙 (𝑡), 𝑡) =𝐻⊤𝑋 (𝑡), (6.26)

𝑢𝑥 (0, 𝑡) =𝑣(0, 𝑡), (6.27)

𝑣𝑡 (𝑥, 𝑡) =𝑣𝑥 (𝑥, 𝑡), 𝐷𝑒 ≥ 𝑥 ≥ 0 (6.28)

𝑣(𝐷𝑒, 𝑡) =𝑈 (𝑡). (6.29)

where 𝐻 is defined in (2.36).

6.2 Backstepping Design of Delay Compensated Control

This section presents the theorem of the stability of the neuron growth problem with

delay-compensated control law. We extended the delay-compensated backstepping method from
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its application in the classical Stefan problem to a nonlinear moving boundary model that is

coupled with a PDE-ODE system. We first state the theorem.

Theorem 6.1. Let the system properties (3.33) and (3.34) hold. Consider the closed-loop system

consisting of the plant (6.18)–(6.23) with the control law

𝑈 (𝑡) =−
∫ 𝑡

𝑡−𝐷𝑒

𝑝(𝐷𝑒, 𝜗+𝐷𝑒 − 𝑡)𝑈 (𝜗)𝑑𝜗−
∫ 𝑙 (𝑡)

0
𝑞(𝐷𝑒, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦−𝜓(𝐷𝑒 − 𝑙 (𝑡))𝑋 (𝑡).

(6.30)

where 𝑝(𝑥, 𝑡), 𝑞(𝑥, 𝑡) and 𝜓(𝑥 − 𝑙 (𝑡)) are gain kernel functions. Then, there exist positive

parameters 𝐾̄ > 0, 𝑐 > 0, and 𝜅 > 0, such that if 𝑍 (0) < 𝐾̄ then the following norm estimate holds

𝑍 (𝑡) ≤ 𝑐𝑍 (0) exp(−𝜅𝑡), (6.31)

for all 𝑡 ≥ 0, which guarantees the local exponential stability of the closed-loop system.

The proof of this theorem is presented in the remainder of this section.

6.2.1 Transformation into target system

We consider two backstepping transformations of the following form:

𝑤(𝑥, 𝑡) =𝑢(𝑥, 𝑡) −
∫ 𝑙 (𝑡)

𝑥

𝑘 (𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦−𝜙(𝑥− 𝑙 (𝑡))𝑋 (𝑡), (6.32)

𝑧(𝑥, 𝑡) =𝑣(𝑥, 𝑡) +
∫ 𝑥

0
𝑝(𝑥, 𝑦)𝑣(𝑦, 𝑡)𝑑𝑦 +

∫ 𝑙 (𝑡)

0
𝑞(𝑥, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 +𝜓(𝑥− 𝑙 (𝑡))𝑋 (𝑡), (6.33)

where the kernels 𝑘 (𝑥, 𝑦), 𝜙(𝑥 − 𝑙 (𝑡)), 𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦) and 𝜓(𝑥 − 𝑙 ()𝑡) are to be determined to

transform the original system to a target system. Thus, the nonlinear desired target system is
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proposed as

¤𝑋 (𝑡) =(𝐴+𝐵𝐾)𝑋 (𝑡) +𝐵𝑤𝑥 (𝑙 (𝑡), 𝑡) + 𝑓 (𝑋 (𝑡)), (6.34)

𝑤𝑡 (𝑥, 𝑡) =𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑥 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)) −𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))

−
(
𝜙′(𝑥− 𝑙 (𝑡))⊤ + 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤

)
𝐵ℎ∗(𝑋 (𝑡)), (6.35)

𝑤(𝑙 (𝑡), 𝑡) =ℎ∗(𝑋 (𝑡)), (6.36)

𝑤𝑥 (0, 𝑡) =𝑧(0, 𝑡), (6.37)

𝑧𝑡 (𝑥, 𝑡) =𝑧𝑥 (𝑥, 𝑡) − ¤𝑙 (𝑡)
(
𝑞(𝑥, 𝑙 (𝑡))𝐻⊤−𝜓′(𝑥− 𝑙 (𝑡))

)
𝑋 (𝑡), (6.38)

𝑧(𝐷𝑒, 𝑡) =0, (6.39)

where the nonlinear terms are defined in (2.29) and (2.30). In this setting, 𝐾 ∈ R2 is a selected

feedback control gain vector, designed to ensure that the matrix 𝐴+𝐵𝐾 Hurwitz, meaning all its

eigenvalues have negative real parts. Therefore, 𝐾 is chosen as specified in (3.10). By applying

linearization around zero states, one can obtain

¤𝑋 (𝑡) =(𝐴+𝐵𝐾)𝑋 (𝑡) +𝐵𝑤𝑥 (𝑙 (𝑡), 𝑡), (6.40)

𝑤𝑡 (𝑥, 𝑡) =𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑡 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡)

− ¤𝑙 (𝑡)
(
𝑘 (𝑥, 𝑙 (𝑡))𝑢(𝑙 (𝑡), 𝑡) −𝜙′(𝑥− 𝑙 (𝑡))𝑇𝑋 (𝑡)

)
, 0 < 𝑥 < 𝑙 (𝑡) (6.41)

𝑤(𝑙 (𝑡), 𝑡) =0, (6.42)

𝑤𝑥 (0, 𝑡) =𝑧(0, 𝑡), (6.43)

𝑧𝑡 (𝑥, 𝑡) =𝑧𝑥 (𝑥, 𝑡) − ¤𝑙 (𝑡)
(
𝑞(𝑥, 𝑙 (𝑡))𝐻⊤−𝜓′(𝑥− 𝑙 (𝑡))

)
𝑋 (𝑡), 𝐷𝑒 ≥ 𝑥 ≥ 0 (6.44)

𝑧(𝐷𝑒, 𝑡) =0 (6.45)
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6.2.2 Gain kernel solutions

The conditions of the kernel functions are obtained to satisfy both the governing equations.

To achieve this, we take the time and spatial derivatives of (6.32) corresponding to the solutions

of (6.24)-(6.27). As a result, the gain kernel solutions for 𝑘 (𝑥, 𝑦) and 𝜙(𝑥), as detailed in Chapter

3.1.2, are obtained. Next, we derive the kernel functions for a different transformation, given

by (6.33). Taking time and spatial derivatives of (6.33) along with (6.28)-(6.29), we have the

following coupled PDE-ODE for gain kernels

𝑞𝑥 (𝑥, 𝑦) =𝐷𝑞𝑦𝑦 (𝑥, 𝑦) + 𝑎𝑞𝑦 (𝑥, 𝑦) −𝑔𝑞(𝑥, 𝑦), (6.46)

𝑞(0, 𝑦) =− 𝑘𝑥 (0, 𝑦), (6.47)

𝑞(𝑥, 𝑙 (𝑡)) =− 1
𝐷
𝜓(𝑥− 𝑙 (𝑡))𝐵, (6.48)

𝑞𝑦 (𝑥,0) =−
𝑎

𝐷
𝑞(𝑥,0), (6.49)

𝜓′(𝑥− 𝑙 (𝑡)) =𝜓(𝑥− 𝑙 (𝑡))𝐴1 −𝐷𝑞𝑦 (𝑥, 𝑙 (𝑡))𝐻⊤− 𝑎𝑞(𝑥, 𝑙 (𝑡))𝐻⊤, (6.50)

𝜓(−𝑙 (𝑡)) =−𝜙′(−𝑙 (𝑡)). (6.51)

Through a variable change and the method of successive approximation, we can demonstrate that

a unique classical solution exists for these equations. Subsequently, the final kernel function,

𝑝(𝑥, 𝑦), is the solution to the following transport PDE

𝑝𝑥 (𝑥, 𝑦) =− 𝑝𝑦 (𝑥, 𝑦), (6.52)

𝑝(𝑥,0) =−𝐷𝑞(𝑥,0). (6.53)

6.2.3 Delay compensated backstepping control law

In this section, we design the control law that compensates for the input time delay. By

using the boundary condition (6.39), substituting 𝑥 = 𝐷𝑒 in (6.33) and defining 𝜗 = 𝑡 + 𝑦−𝐷𝑒
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where 𝜗 ∈ (𝑡 −𝐷𝑒, 𝑡) and 𝑣(𝑦, 𝑡) =𝑈 (𝑡 + 𝑦−𝐷𝑒), the control law becomes

𝑈 (𝑡) =−
∫ 𝑡

𝑡−𝐷𝑒

𝑝(𝐷𝑒, 𝜗+𝐷𝑒 − 𝑡)𝑈 (𝜗)𝑑𝜗−
∫ 𝑙 (𝑡)

0
𝑞(𝐷𝑒, 𝑦)𝑢(𝑦, 𝑡)𝑑𝑦−𝜓(𝐷𝑒 − 𝑙 (𝑡))𝑋 (𝑡).

(6.54)

where the gain kernels are discussed in the previous sections.

6.3 Stability proof under delay compensated control

In this section, we outline the proof of Theorem 6.1. We begin by formulating the

nonlinear target system, which serves as the foundation for the subsequent analysis.

6.3.1 Transformed nonlinear target system

As the initial step in proving Theorem 6.1, we apply the following transformation to the

system of equations (6.32)–(6.33). This transformation is crucial as it simplifies the equations,

making it easier to analyze the system and proceed with the proof.

𝜛(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) − 𝑥𝑧(0, 𝑡) + 𝑙 (𝑡)𝑧(0, 𝑡) − ℎ∗(𝑋 (𝑡)), (6.55)
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so we have

¤𝑋 (𝑡) =(𝐴+𝐵𝐾)𝑋 (𝑡) +𝐵𝜛𝑥 (𝑙 (𝑡), 𝑡) +𝐵𝑧(0, 𝑡) + 𝑓 (𝑋 (𝑡)), (6.56)

𝜛𝑡 (𝑥, 𝑡) =𝐷𝜛𝑥𝑥 (𝑥, 𝑡) − 𝑎𝜛𝑥 (𝑥, 𝑡) −𝑔𝜛(𝑥, 𝑡) − ¤ℎ∗(𝑋 (𝑡)) −𝑔ℎ∗(𝑋 (𝑡)) − 𝑎𝑧(0, 𝑡) −𝑔𝑥𝑧(0, 𝑡)

+𝑔𝑙 (𝑡)𝑧(0, 𝑡) − 𝑥𝑧𝑡 (0, 𝑡) + ¤𝑙 (𝑡)𝑧(0, 𝑡) + 𝑙 (𝑡)𝑧𝑡 (0, 𝑡) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡))

−𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡)) −
(
𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵+ 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤𝐵

)
ℎ∗(𝑋 (𝑡)), (6.57)

𝜛(𝑙 (𝑡), 𝑡) =0, (6.58)

𝜛𝑥 (0, 𝑡) =0, (6.59)

𝑧𝑡 (𝑥, 𝑡) =𝑧𝑥 (𝑥, 𝑡) − ¤𝑙 (𝑡)
(
𝜓′(𝑥− 𝑙 (𝑡)) − 𝑞(𝑥, 𝑙 (𝑡))𝐻⊤)

𝑋 (𝑡), (6.60)

𝑧(𝐷𝑒, 𝑡) =0, (6.61)

where 𝑥 ∈ (0, 𝑙 (𝑡)) for (6.57)-(6.59), and 𝑥 ∈ [0, 𝐷𝑒) for (6.60)-(6.61).

6.3.2 Inverse transformation

By performing a similar procedure to the derivation of the direct transformation, The

inverse transformation of (6.32)-(6.33) is formulated as

𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) +
∫ 𝑙 (𝑡)

𝑥

𝜄(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦 + 𝜃 (𝑥− 𝑙 (𝑡))𝑋 (𝑡), (6.62)

𝑣(𝑥, 𝑡) = 𝑧(𝑥, 𝑡) −
∫ 𝑥

0
𝜚(𝑥, 𝑦)𝑧(𝑦, 𝑡)𝑑𝑦−

∫ 𝑙 (𝑡)

0
𝜒(𝑥, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦−𝜑(𝑥− 𝑙 (𝑡))𝑋 (𝑡) (6.63)

85



where the gain kernel functions 𝜄(𝑥, 𝑦), 𝜃 (𝑥), 𝜚(𝑥, 𝑦), 𝜒(𝑥, 𝑦) and 𝜑(𝑥) are satisfy the following

set of PDE-ODE equations:

𝜄𝑥𝑥 (𝑥, 𝑦) − 𝜄𝑦𝑦 (𝑥, 𝑦) =
𝑎

𝐷

(
𝜄𝑥 (𝑥, 𝑦) + 𝜄𝑦 (𝑥, 𝑦)

)
, (6.64)

𝜄𝑥 (𝑥, 𝑥) + 𝜄𝑦 (𝑦, 𝑦) =0, (6.65)

𝜄(𝑥, 𝑙 (𝑡)) =− 1
𝐷
𝜃 (𝑥− 𝑙 (𝑡))⊤𝐵, (6.66)

𝐷𝜃
′′ (𝑥− 𝑙 (𝑡))⊤+𝑎𝜃 ′ (𝑥− 𝑙 (𝑡))⊤ +

(
𝑔𝐼 + 𝐴1 +𝐵𝐾⊤)

𝜃 (𝑥− 𝑙 (𝑡))⊤ = 0, (6.67)

𝜃 (0) =𝐻, (6.68)

𝜃′(0) =𝐾, (6.69)

and

𝜒𝑥 (𝑥, 𝑦) = −𝐷𝜒𝑦𝑦 (𝑥, 𝑦) − 𝑎𝜒𝑦 (𝑥, 𝑦) −𝑔𝜒(𝑥, 𝑦), (6.70)

𝜒𝑦 (𝑥, 𝑜) = − 𝑎
𝐷
𝜒(𝑥,0), (6.71)

𝜒(𝑥, 𝑙 (𝑡)) = 1
𝐷
𝜑(𝑥− 𝑙 (𝑡))⊤𝐵, (6.72)

𝜒(0, 𝑦) = −𝜄𝑥 (0, 𝑦), (6.73)

𝜑′(𝑥− 𝑙 (𝑡))⊤ = 𝜑(𝑥− 𝑙 (𝑡))⊤
(
𝐴1 +𝐵𝐾⊤)

, (6.74)

𝜑(−𝑙 (𝑡))⊤ = 𝜃′(−𝑙 (𝑡))⊤, (6.75)

𝜚𝑥 (𝑥, 𝑦) = 𝜚𝑦 (𝑥, 𝑦), (6.76)

𝜚(0, 𝑡) = −𝜒(𝑥,0). (6.77)

Note that the equations (6.64)–(6.69) are analytically solvable, and the solutions to these PDEs

and ODEs are detailed in Chapter 3.1.2. Similarly, (6.70)-(6.77) are also analytically solvable,

and the solutions are bounded.
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6.3.3 System property to ensure local stability on a non-constant interval

To study the local stability of the target system we impose the following property for the

system

𝐷

4𝑙
≥ 𝑎. (6.78)

This property is physically valid and particularly relevant when the axon length is short. This

condition applies to the majority of neurons, as the typical axon length falls within the range of 20

𝜇𝑚 to 40 𝜇𝑚 [11]. Given that most neurons have relatively short axons, the property described

by (6.78) accurately reflects the physical characteristics observed in these biological systems.

6.3.4 Lyapunov analysis

We consider the following Lyapunov function for the target system

𝑉 = 𝑑1𝑉1 +𝑉2 + 𝑑2𝑉3 + 𝑑3𝑉4 + 𝑑4𝑉5, (6.79)

where 𝑑1 > 0, 𝑑2 > 0, 𝑑3 > 0 and 𝑑4 > 0, and each Lyapunov function is

𝑉1 :=
1
2
| |𝜛 | |2𝐿2

, (6.80)

𝑉2 :=
1
2
| |𝜛𝑥 | |2𝐿2

, (6.81)

𝑉3 :=
1
2

∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2(𝑥, 𝑡)𝑑𝑥, (6.82)

𝑉4 :=
1
2

∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2

𝑥 (𝑥, 𝑡)𝑑𝑥, (6.83)

𝑉5 :=𝑋⊤𝑃𝑋, (6.84)
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where 𝑐 > 0, and 𝑃 > 0 is a positive definite matrix satisfying the Lyapunov equation:

(𝐴+𝐵𝐾)⊤𝑃+𝑃(𝐴+𝐵𝐾) = −𝑄, (6.85)

for some positive definite matrix𝑄 > 0. Since 𝐴+𝐵𝐾⊤ is Hurwitz, due to the positive definiteness

of 𝑃 and 𝑄,

𝜆min(𝑃)𝑋⊤𝑋 ≤ 𝑋⊤𝑃𝑋 ≤ 𝜆max(𝑃)𝑋⊤𝑋, (6.86)

holds, where 𝜆max(𝑃) > 𝜆min(𝑃) > 0 are the largest and smallest eigenvalues in the positive

definite matrix 𝑃. Then, we state the following lemma.

Lemma 6.1. Let the system properties (3.33)-(3.34) and (6.78) are satisfied with

𝑣̄ =
𝐷

16𝑙
, (6.87)

Then, for sufficiently large 𝑑1 > 0, 𝑑2 > 0, 𝑑3 > 0 and small 𝑑4 > 0, there exist positive constants

𝛽1 > 0, and 𝛽2 > 0 such the following norm estimate holds for all 𝑡 ≥ 0:

¤𝑉 ≤ −𝛼𝑉 + 𝛽1𝑉
3/2 + 𝛽2𝑉

2 + 𝛽3𝑉
3, (6.88)
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where

𝛼 =min
{
𝑑1
𝐷

8
,
𝑔

16
,
𝜆min(𝑄)
2𝜆min(𝑃)

, 𝑐

}
, (6.89)

𝛽1 =
1

𝜆min(𝑃)3/2

(
𝑑1
𝑟g

(
𝑙 +1

)
2

+ 𝑒𝑐𝐷𝑒𝑟g (𝑑2 + 𝑑3) +
𝑑1𝑟g𝐿3

2
+
𝑟g𝐿2

2
+
𝑑1𝑙𝑟g𝐿

2
5

2

+2𝑑4 |𝑃 | + 𝑑2𝑟g𝐿𝑛3 + 𝑑3𝑟g𝐿𝑛3

)
, (6.90)

𝛽2 =
1

𝜆min(𝑃)2

(
𝑑1
𝑟2

g

2
+

1024𝐷2
𝑒

𝐷2 𝑟4
g +8𝑐𝐷4

𝑒 +
𝐿6
𝜀
𝜅2 + 𝑑1

𝐿𝑛1 + 𝐿𝑛3

𝜀
𝑘𝑛 +

64
𝐷
𝑟2

g

(
𝑙2 + 𝑙

3

3

)
𝐿2

5

+
2𝑟2

g𝐿4

𝑑1𝐷
+ 𝐿6
𝜖
𝜅2 +

𝐿𝑛1

2𝜖
𝑘𝑛 +2ℎ𝑛 +8𝑘2

𝑛𝑔
2
)
, (6.91)

𝛽3 =
1

𝜆min(𝑃)3

(
2𝐿6𝑘

2
𝑚

𝜀
+

2𝐿6𝑘
2
𝑚

𝜖

)
(6.92)

Proof. Taking the time derivative of the Lyapunov function in (6.80), using Agmon’s inequality,

Poincare’s inequality, Young’s inequality, and satisfying (3.33), (3.34), (6.78), we obtain

¤𝑉1 =−𝐷 | |𝜛𝑥 | |2 −𝑔 | |𝜛 | |2 + 𝑎
2
𝜛(0, 𝑡)2 −𝑔𝑧(0, 𝑡)𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝑥𝜛(𝑥, 𝑡)𝑑𝑥

− [𝑎 +𝑔𝑙 (𝑡) + ¤𝑙 (𝑡)]𝑧(0, 𝑡)
∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝑑𝑥− 𝑧𝑥 (0, 𝑡)

∫ 𝑙 (𝑡)

0
(𝑙 (𝑡) + 𝑥)𝜛(𝑥, 𝑡)𝑑𝑥

+
(
¤𝑙 (𝑡)

(
𝜓′(−𝑙 (𝑡)) − 𝑞(0, 𝑙 (𝑡))𝐶⊤)

𝑋 (𝑡)
∫ 𝑙 (𝑡)

0
(𝑙 (𝑡) + 𝑥)𝜛(𝑥, 𝑡)𝑑𝑥

)
+ ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥 +

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))𝑑𝑥

+
∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)

(
−𝜙′(𝑥− 𝑙 (𝑡))⊤− 1

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤

)
𝐵ℎ∗(𝑋 (𝑡))𝑑𝑥

−
∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)

( ¤ℎ∗(𝑋 (𝑡)) +𝑔ℎ∗(𝑋 (𝑡))) 𝑑𝑥. (6.93)
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Similarly, (6.81) can be written as

¤𝑉2 =−𝐷 | |𝜛𝑥𝑥 | |2 + 𝑎
∫ 𝑙 (𝑡)

0
𝜛𝑥𝑥 (𝑥, 𝑡)𝜛𝑥 (𝑥, 𝑡)𝑑𝑥−𝑔 | |𝜛𝑥 | |2 −

1
2
¤𝑙 (𝑡)𝜛𝑥 (𝑙 (𝑡), 𝑡)2

+ [𝑎 +𝑔𝑙 (𝑡) + ¤𝑙 (𝑡)]𝑧(0, 𝑡)
∫ 𝑙 (𝑡)

0
𝜛𝑥𝑥 (𝑥, 𝑡)𝑑𝑥 + 𝑧(0, 𝑡)

∫ 𝑙 (𝑡)

0
𝑥𝜛𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

+ 𝑧𝑥 (0, 𝑡)
∫ 𝑙 (𝑡)

0
(𝑙 (𝑡) + 𝑥)𝜛𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

+ ¤𝑙 (𝑡)
(
𝜓′(−𝑙 (𝑡)) − 𝑞(0, 𝑙 (𝑡))𝐶⊤)

𝑋 (𝑡)
∫ 𝑙 (𝑡)

0
(𝑙 (𝑡) + 𝑥)𝜛𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

− ¤𝑙 (𝑡)
(
𝐹 (𝑙 (𝑡), 𝑋 (𝑡))𝜛𝑥 (𝑙 (𝑡), 𝑡) −

∫ 𝑙 (𝑡)

0
𝐹𝑥 (𝑥, 𝑋 (𝑡))𝜛𝑥 (𝑥, 𝑡)𝑑𝑥

)
+
∫ 𝑙 (𝑡)

0
𝜛𝑥𝑥 (𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))𝑑𝑥

+
∫ 𝑙 (𝑡)

0
𝜛𝑥𝑥 (𝑥, 𝑡)

(
−𝜙′(𝑥− 𝑙 (𝑡))⊤− 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤

)
𝐵ℎ∗(𝑋 (𝑡))𝑑𝑥

−
∫ 𝑙 (𝑡)

0
𝜛𝑥𝑥 (𝑥, 𝑡)

( ¤ℎ∗(𝑋 (𝑡)) +𝑔ℎ∗(𝑋 (𝑡))) 𝑑𝑥 (6.94)

(6.82) can be written as

¤𝑉3 =− 𝑧(0, 𝑡)2 − 𝑐
∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2(𝑥, 𝑡)𝑑𝑥

− ¤𝑙 (𝑡)
∫ 𝐷𝑒

0
𝑒𝑐𝑥2𝑧(𝑥, 𝑡)

(
𝜓′(𝑥− 𝑙 (𝑡)) − 𝑞(𝑥, 𝑙 (𝑡))𝐶⊤)

𝑋 (𝑡)𝑑𝑥, (6.95)

(6.83) can be written as

¤𝑉4 =− 𝑧𝑥 (0, 𝑡)2 − 𝑐
∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2

𝑥 (𝑥, 𝑡)𝑑𝑥

− ¤𝑙 (𝑡)
∫ 𝐷𝑒

0
𝑒𝑐𝑥2𝑧𝑥 (𝑥, 𝑡)

(
𝜓′′(𝑥− 𝑙 (𝑡)) − 𝑞𝑥 (𝑥, 𝑙 (𝑡))𝐶⊤)

𝑋 (𝑡)𝑑𝑥 (6.96)
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and (6.84) can be written as

¤𝑉5 =− 𝑋 (𝑡)⊤𝑄𝑋 (𝑡) +𝜛𝑥 (𝑙 (𝑡), 𝑡)2𝐵⊤𝑃𝑋 (𝑡) + 𝑧(0, 𝑡)2𝐵⊤𝑃𝑋 (𝑡)

+ 𝜅𝑋 (𝑡)⊤
(
𝑃𝑒1𝑒

⊤
1 𝑋 (𝑡)𝑒

⊤
1 + 𝑒1𝑋 (𝑡)⊤𝑒1𝑒

⊤
1 𝑃

)
𝑋 (𝑡). (6.97)

Now, we consider

𝑉 = 𝑑1𝑉1 +𝑉2 + 𝑑2𝑉3 + 𝑑3𝑉4 + 𝑑4𝑉5 (6.98)

by taking a time derivative of 𝑉 , substituting (6.93)-(6.97) into it, applying Wirtinger inequality,

Young’s inequality, and Agmon’s inequality, one can obtain

¤𝑉 ≤− 𝐷

64
| |𝜛𝑥𝑥 | |2 − 𝑑1

𝐷

4
| |𝜛𝑥 | |2 − 𝑑1

𝑔

16
| |𝜛 | |2 − 𝑑2

2
|𝑧(0, 𝑡) |2 − 𝑑3

2
|𝑧𝑥 (0, 𝑡) |2 + 𝑑1

| ¤𝑙 (𝑡) |2
2

| |𝜛(𝑡) | |2

+ 8
𝐷
| ¤𝑙 (𝑡) |2 |𝑧(0, 𝑡) |2 + 𝑑1𝑙 (𝑡)

(
¤𝑙 (𝑡)𝐺1(𝑙 (𝑡))𝑋 (𝑡)

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝑑𝑥

)
+ 𝑑1 ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥 + 1

2𝜀

∫ 𝑙 (𝑡)

0

(
𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))

)2
𝑑𝑥

+ 𝑑1
1

2𝜀

∫ 𝑙 (𝑡)

0

(
𝐺2(𝑥− 𝑙 (𝑡))𝐵ℎ̄(𝑋)

)2
𝑑𝑥 + ¤𝑙 (𝑡)𝐺1(𝑙 (𝑡)))𝑋 (𝑡)

∫ 𝑙 (𝑡)

0
(𝑙 (𝑡) + 𝑥)𝜛𝑥𝑥 (𝑥, 𝑡)𝑑𝑥

+
��¤𝑙 (𝑡)��

2
𝐹 (𝑙 (𝑡), 𝑋 (𝑡))2 + ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝐹𝑥 (𝑥, 𝑋 (𝑡))𝜛𝑥 (𝑥, 𝑡)𝑑𝑥

+ 1
2𝜖

∫ 𝑙 (𝑡)

0

(
𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))

)2
𝑑𝑥 + 1

2𝜖

∫ 𝑙 (𝑡)

0

(
𝐺3(𝑥− 𝑙 (𝑡))𝐵ℎ̄(𝑋)

)2
𝑑𝑥

− 𝑑2𝑐

∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2(𝑥, 𝑡)𝑑𝑥− 𝑑3𝑐

∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧2

𝑥 (𝑥, 𝑡)𝑑𝑥

−2𝑑2 ¤𝑙 (𝑡)
∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧(𝑥, 𝑡)𝐺4(𝑥− 𝑙 (𝑡))𝑋 (𝑡)𝑑𝑥−2𝑑3 ¤𝑙 (𝑡)

∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧𝑥 (𝑥, 𝑡)𝐺5(𝑥− 𝑙 (𝑡))𝑋 (𝑡)𝑑𝑥

− 𝑑4
𝜆min(𝑄)

2
𝑋⊤𝑋 +2𝑑4

��𝑃�� (𝑋⊤𝑋
)3/2 +2ℎ̄′(𝑋)2 +2𝑔2 ℎ̄(𝑋)2 (6.99)
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where

𝐺1(𝑙 (𝑡)) :=𝜓′(−𝑙 (𝑡)) − 𝑞(0, 𝑙 (𝑡))𝐶⊤, (6.100)

𝐺2(𝑥− 𝑙 (𝑡)) :=−𝜙′(𝑥− 𝑙 (𝑡))⊤− 1
𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤, (6.101)

𝐺3(𝑥− 𝑙 (𝑡)) :=−𝜙′(𝑥− 𝑙 (𝑡))⊤− 𝑎

𝐷
𝜙(𝑥− 𝑙 (𝑡))⊤, (6.102)

𝐺4(𝑥− 𝑙 (𝑡)) :=𝜓′(𝑥− 𝑙 (𝑡)) − 𝑞(𝑥, 𝑙 (𝑡))𝐶⊤, (6.103)

𝐺5(𝑥− 𝑙 (𝑡)) :=𝜓′′(𝑥− 𝑙 (𝑡)) − 𝑞𝑥 (𝑥, 𝑙 (𝑡))𝐶⊤, (6.104)

when we pick

𝑑1 ≥
4𝑎2

𝐷2 , (6.105)

𝑑2 ≥𝑑1

(
𝑔2 𝑙

5

6𝐷
+ 4(𝑎2 +𝑔2𝑙2) +𝑔

𝑔

)
+ 32(𝑎2 +𝑔2𝑙2)

𝐷
+ 32𝑙3

3𝐷
+ 𝑑4

4
��𝐵𝑇𝑃��2
𝜆min(𝑄)

, (6.106)

𝑑3 ≥𝑑1
4𝑙2

𝑔
+ 𝑑1

4𝑙3

3𝑔
+ 32𝑙5

3𝐷
+ 32𝑙3

3𝐷
, (6.107)

𝑑4 ≤
𝐷𝜆min(𝑄)

512𝑙
��𝐵𝑇𝑃��2 . (6.108)

By using the system property (3.33), we can show that there exist positive constants 𝐿𝑖 > 0 for

𝑖 = 1,2, ...,8 such that the inequalities (3.57)-(3.60), (3.62)-(3.64) and the following inequalities

hold:

��𝜓′(−𝑙 (𝑡)) − 𝑞(0, 𝑙 (𝑡))𝐶⊤�� ≤𝐿5, (6.109)∫ 𝑙 (𝑡)

0
𝜙(𝑥− 𝑙 (𝑡))2𝑑𝑥 ≤𝐿6, (6.110)

In addition, ¤𝑙 (𝑡) can be rewritten as in (3.61). For the nonlinear terms, the upper bound for 𝑓 (𝑋)

is derived as in (3.79) and ℎ∗(𝑋 (𝑡)) is bounded as in (3.78) and similarly, the upper bound for
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ℎ̄′(𝑋) term is obtained for 𝑥 < 1.79 as

¤ℎ∗(𝑋 (𝑡))2 ≤ ℎ𝑛 (𝑋⊤𝑋)2 (6.111)

where ℎ𝑛 = max
{
2𝑐∞𝑟2

g𝐾
2
+𝜆

4
+,2𝑐∞𝑟2

g𝐾
2
−𝜆

4
−
}
. Now, by using Cauchy-Schwarz, Agmon’s, Young’s

inequalities, and the following inequality

| |𝑧𝑥 (𝑥, 𝑡) | |2 ≤
∫ 𝐷𝑒

0
𝑒𝑐𝑥𝑧𝑥 (𝑥, 𝑡)2𝑑𝑥 ≤ 𝑒𝑐𝐷𝑒 | |𝑧𝑥 (𝑥, 𝑡)2 | |, (6.112)

we obtain

¤𝑉 ≤− 𝑑1
𝐷

8
𝑉2 − 𝑑1

𝑔

16
𝑉1 − 𝑑4

𝜆min(𝑄)
2𝜆min(𝑃)

𝑉5 − 𝑑2𝑐𝑉3 − 𝑑3𝑐𝑉4

+ 1
𝜆min(𝑃)3/2

(
𝑑1
𝑟g

(
𝑙 +1

)
2

+ 𝑒𝑐𝐷𝑒𝑟g (𝑑2 + 𝑑3) +
𝑑1𝑟g𝐿3

2
+
𝑟g𝐿2

2
+
𝑑1𝑙𝑟g𝐿

2
5

2

)
𝑉3/2

+ 1
𝜆min(𝑃)3/2

(
2𝑑4 |𝑃 | + 𝑑2𝑟g𝐿𝑛3 + 𝑑3𝑟g𝐿𝑛3

)
𝑉3/2

+ 1
𝜆min(𝑃)2

(
𝑑1
𝑟2

g

2
+

1024𝐷2
𝑒

𝐷2 𝑟4
g +8𝑐𝐷4

𝑒 +
𝐿6
𝜀
𝜅2

)
𝑉2

+ 1
𝜆min(𝑃)2

(
𝑑1
𝐿𝑛1 + 𝐿𝑛3

𝜀
𝑘𝑛 +

64
𝐷
𝑟2

g

(
𝑙2 + 𝑙

3

3

)
𝐿2

5

)
𝑉2

+ 1
𝜆𝑚𝑖𝑛 (𝑃)2

(
2𝑟2

g𝐿4

𝑑1𝐷
+ 𝐿6
𝜖
𝜅2 +

𝐿𝑛1

2𝜖
𝑘𝑛 +2ℎ𝑛 +8𝑘2

𝑛𝑔
2

)
𝑉2

+ 1
𝜆min(𝑃)3

(
2𝐿6𝑘

2
𝑚

𝜀
+

2𝐿6𝑘
2
𝑚

𝜖

)
𝑉3. (6.113)

The inequality above can be written as

¤𝑉 ≤ −𝛼𝑉 + 𝛽1𝑉
3/2 + 𝛽2𝑉

2 + 𝛽3𝑉
3, (6.114)

where 𝛼, 𝛽1, 𝛽2 and 𝛽3 are defined in (6.89)-(6.92), which completes the proof of Lemma

6.1.
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6.3.5 Guaranteeing the conditions for all time

Next, we prove the following lemmas to conclude Theorem 6.1 by ensuring the local

stability of the closed-loop system.

Lemma 6.2. With the system property (6.78), there exists a positive constant 𝐾1 > 0 such that

in Ω1 := {(𝜛, 𝑧, 𝑋) ∈ 𝐻1 ×𝐻1 ×R2 |𝑉 (𝑡) < 𝐾1}, and the system properties (3.33) and 3.34 are

satisfied.

Proof. Following the proof of Lemma 3.2, the proof of Lemma 6.2 is trivial. Thus, it is not

explicitly given here.

Lemma 6.3. With the system property (6.78), there exists a positive constant 𝐾2 > 0 such that

if 𝑉 (0) < 𝐾2 then the system properties (3.33) and 3.34 are satisfied and the following norm

estimate holds:

𝑉 (𝑡) ≤ 𝑉 (0)𝑒− 𝛼
2 𝑡 . (6.115)

Proof. For a positive constant 𝐾2 > 0, let Ω := {(𝜛, 𝑧, 𝑋) ∈ 𝐻1×𝐻1×R2 |𝑉 (𝑡) < 𝐾2}. If 𝐾2 ≤ 𝐾1

then Ω ⊂ Ω1, and thus the assumptions are satisfied in Ω. Moreover, due to Lemma 6.1, the norm

estimate (6.88) holds. Hence, by setting

𝐾2 ≤
−𝛽2

2

√︂
𝛽2

1 (2𝛼𝛽2+𝛽2
1)

𝛽4
2

+𝛼𝛽2 + 𝛽2
1

2𝛽2
2

, (6.116)

we can see that applying 𝑉 (𝑡) < 𝐾2 to (6.88) leads to

¤𝑉 ≤ −𝛼
2
𝑉, (6.117)

by which the norm estimate (6.115) is deduced. Since (6.115) is a monotonically decreasing

function in time, by setting 𝐾3 = min{𝐾1,𝐾2}, the region Ω is shown to be an invariant set. Thus,
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if 𝑉 (0) < 𝐾3, then 𝑉 (𝑡) < 𝐾3 for all 𝑡 ≥ 0, and one can conclude with Lemma 6.3.

Finally, we show that (𝑤, 𝑧, 𝑋) system is locally exponentially stable. Taking the square

of (6.55) and applying Young’s and Cauchy-Schwarz inequalities, we obtain

| |𝜛(·, 𝑡) | |2𝐻1
≤ 3| |𝑤(·, 𝑡) | |2𝐻1

+𝑀1 | |𝑧(·, 𝑡) | |2𝐻1
+𝑀2 |𝑋 |2, (6.118)

| |𝑤(·, 𝑡) | |2𝐻1
≤ 3| |𝜛(·, 𝑡) | |2𝐻1

+𝑀1 | |𝑧(·, 𝑡) | |2𝐻1
+𝑀2 |𝑋 |2, (6.119)

where 𝑀1 = 4𝐷3
𝑒𝑙 +4𝐷𝑒𝑙

3 and 𝑀2 = 12𝑘2
𝑛. Consider the norm

Π(𝑥, 𝑡) = | |𝑤(𝑥, 𝑡) | |2𝐻1
+ ||𝑧(𝑥, 𝑡) | |2𝐻1

+ |𝑋 (𝑡) |2. (6.120)

By using (6.112), we can show that

| |𝑧(., 𝑡) | |2𝐻1
≤ 𝑉3 +𝑉4 ≤ 𝑒𝑐𝐷𝑒 | |𝑧(., 𝑡) | |2𝐻1

, (6.121)

and

𝑀3 | |𝑤(., 𝑡) | |2𝐻1
≤ 2𝑉1 +2𝑉2 ≤ 𝑀4 | |𝑤(., 𝑡) | |2𝐻1

, (6.122)

where 𝑀3 = max{𝑙2,1} and 𝑀4 = max{ 1
𝑙2
,1}. Then, we have

Π(𝑡) ≤ (1+𝑀1) | |𝑧𝑥 (𝑥, 𝑡) | | |2𝐻1
+3| |𝜛(𝑥, 𝑡) | |2𝐻1

+ (1+𝑀2) |𝑋 (𝑡) |2

≤(2+2𝑀1) (𝑉3 +𝑉4) +12(𝑉1 +𝑉2) +
1+𝑀2
𝜆min(𝑃)

𝑉5 (6.123)
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By using (6.79), we have

𝑉 ≤
(
max{𝑑2, 𝑑3}𝑒𝑐𝐷𝑒 + 𝑀1𝑀3

2
max{𝑑1,1}

)
| |𝑧(., 𝑡) | |2𝐻1

+ 3𝑀3
2

max{𝑑1,1}| |𝑤(., 𝑡) | |2𝐻1

+
(

𝑑4
𝜆min(𝑃)

+ 𝑀2𝑀3
2

max{𝑑1,1}
)
|𝑋 (𝑡) |2

≤Σ1 | |𝑧(., 𝑡) | |2𝐻1
+Σ2 | |𝑤(., 𝑡) | |2𝐻1

+Σ3 |𝑋 (𝑡) |2 (6.124)

where

Σ1 =max{𝑑2, 𝑑3}𝑒𝑐𝐷𝑒 + 𝑀1𝑀3
2

max{𝑑1,1}, (6.125)

Σ2 =
3𝑀3

2
max{𝑑1,1}, (6.126)

Σ3 =
𝑑4

𝜆min(𝑃)
+ 𝑀2𝑀3

2
max{𝑑1,1}. (6.127)

Therefore, (6.123) and (6.124) leads us the following norm equivalence

𝛿𝑉 (𝑡) ≤ Π(𝑡) ≤ 𝛿𝑉 (𝑡) (6.128)

where

𝛿 =
1

max {Σ1,Σ2,Σ3}
, (6.129)

𝛿 = max
{
(2+2𝑀1),12,

1+𝑀2
𝜆min(𝑃)

}
. (6.130)

With the inequalities (6.115) and (6.128), we show that

Π(𝑡) ≤ 𝛿

𝛿
Π(0)𝑒− 𝛼

2 , (6.131)

which ensures the exponential stability of (𝑤, 𝑧, 𝑋)-system. Finally, owing to Lemma 6.3 and
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(6.131), and using the similar norm equivalent estimate in the H1-norm between the target system

(𝑤, 𝑧, 𝑋) and the closed-loop system (𝑢, 𝑣, 𝑋), the local stability of the closed-loop system is

proved, which completes the proof of Theorem 6.1.
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Chapter 7

Event-triggered Control

In this chapter, we propose an event-triggered control mechanism for the feedback control

law of neuron growth control. For parabolic moving boundary problems, specifically for Stefan

problem, both static and dynamic event-triggering mechanisms are developed in [76, 77]. These

enhancements encouraged us to use this technique for the neuron growth problem. Event-triggered

control is particularly beneficial in the context of neuron growth regulation as it allows for more

efficient and responsive management of neuronal development. By activating the control law

only in response to specific events or conditions, this approach optimizes resource utilization and

conserves energy, making the control process more effective and sustainable. This mechanism

enhances the practical applicability of the feedback control system, ensuring that interventions

occur precisely when necessary, thus improving the overall regulation of neuron growth. In

order to design this control law, we adjust the neuron growth model in a manner that facilitates

convergence analysis.

7.1 Axon Growth Model with Actuation at Robin Boundary
Condition

In this section, the neuron growth model is modified for actuation at the Robin boundary

condition. Thus, the model is
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𝑐𝑡 (𝑥, 𝑡) =𝐷𝑐𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑐𝑥 (𝑥, 𝑡) −𝑔𝑐(𝑥, 𝑡), (7.1)

𝑐𝑥 (0, 𝑡) + 𝑐(0, 𝑡) =− 𝑞s(𝑡), (7.2)

𝑐(𝑙 (𝑡), 𝑡) =𝑐c(𝑡), (7.3)

𝑙c ¤𝑐c(𝑡) =(𝑎−𝑔𝑙c)𝑐c(𝑡) −𝐷𝑐𝑥 (𝑙 (𝑡), 𝑡) − (𝑟g𝑐c(𝑡) + 𝑟g𝑙c) (𝑐c(𝑡) − 𝑐∞), (7.4)

¤𝑙 (𝑡) =𝑟g(𝑐𝑐 (𝑡) − 𝑐∞), (7.5)

For this boundary condition, the steady-state solution needs to be redefined, so in the next section,

we provide the steady-state solution for the Robin boundary condition.

Steady-state analysis of the model

To achieve a desired axon length 𝑙s, we examine the steady-state solution (𝑐eq(𝑥), 𝑐∞, 𝑙s).

By setting the time derivatives in (7.1), (7.4), and (7.5) to zero, one can derive the steady state

solution of (7.1)-(7.5) as

𝑐eq(𝑥) = 𝑐∞
(
𝐾+𝑒

𝜆+ (𝑥−𝑙s) +𝐾−𝑒
𝜆− (𝑥−𝑙s)

)
, (7.6)

where 𝜆± and 𝐾± are defined in (2.7) and (2.8). The steady-state input for the concentration flux

in the soma is then obtained as

𝑞∗s = −𝑐∞
(
𝐾+(1+𝜆+)𝑒−𝜆+𝑙s +𝐾−(1+𝜆−)𝑒−𝜆− 𝑙s

)
. (7.7)

Reference error system

The reference error system defined in Chapter 2.2.1 is similar to the system under

consideration, with the only difference being the location where actuation occurs. Consequently,
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the condition (2.15) is modified and substituted with the following Robin boundary:

𝑢𝑥 (0, 𝑡) +𝑢(0, 𝑡) =𝑈 (𝑡) (7.8)

Note that this boundary condition remains unaffected by the process of linearization.

Therefore, we derive the control law by utilizing the linearized reference error system in (2.14),

(2.16), (2.17), (2.18) and (7.8).

7.2 Sample-based Control of Neuron Growth Problem

This section presents the sample-based control law for a nonlinear moving boundary

model that is coupled with a PDE-ODE system. We first design the control law by deriving the

target system using a backstepping transformation.

7.2.1 Transformation into target system

The backstepping transformation and associated kernel functions are given in this section.

By applying the backstepping transformation that is defined in (3.5), one can transfer (2.14),

(2.16), (2.17), (2.18) and (7.8) to the following desired target system:

𝑤𝑡 (𝑥,𝑡) = 𝐷𝑤𝑥𝑥 (𝑥, 𝑡) − 𝑎𝑤𝑥 (𝑥, 𝑡) −𝑔𝑤(𝑥, 𝑡) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡)), (7.9)

𝑤𝑥 (0, 𝑡)+𝑤(0, 𝑡) = − 1
𝐷

(𝐻 − 𝜖)⊤ 𝐵𝑢(0, 𝑡), (7.10)

𝑤(𝑙 (𝑡), 𝑡) = 𝜖⊤𝑋 (𝑡), (7.11)

¤𝑋 (𝑡) = (𝐴1 +𝐵𝐾⊤)𝑋 (𝑡) +𝐵𝑤𝑥 (𝑙 (𝑡), 𝑡), (7.12)

where 𝐾 ∈ R2 is chosen as in (3.10) to make 𝐴1 +𝐵𝐾 Hurwitz and 𝜖 = [𝜖1, 𝜖2] will be designed

later to prove convergence.
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7.2.2 Gain kernel solutions

The approach for obtaining gain kernels in (3.5), namely 𝑘 (𝑥, 𝑦) and 𝜙(𝑥), is detailed

in Section 3.1.2. However, due to the use of a different boundary condition, these solutions

will exhibit slight modifications. As a result, the gain kernels 𝑘 (𝑥, 𝑦) and 𝜙(𝑥) are obtained as

follows:

𝑘 (𝑥, 𝑦) = − 1
𝐷
𝜙(𝑥− 𝑦)⊤𝐵, (7.13)

𝜙(𝑥)⊤ =

[
(𝐻 − 𝜖)⊤ 𝐾⊤− 1

𝐷
𝐻⊤𝐵𝐻⊤

]
𝑒𝑁1𝑥


𝐼

0

 , (7.14)

where the matrix 𝑁1 ∈ 𝑅4×4 is defined as

𝑁1 =


0 1
𝐷

(
𝑔𝐼 + 𝐴+ 𝑎

𝐷
𝐵𝐻⊤)

𝐼 1
𝐷
(𝐵𝐻⊤ + 𝑎𝐼)

 . (7.15)

We also need to introduce the inverse transformation in this section, which is essential for

both designing the event-triggering mechanism and the convergence analysis. The inverse

backstepping transformation (3.35) is used, with solutions in Section 3.1.2.

7.2.3 Continuous-time and sampled-data control law

By taking the spatial derivative of the transformation and substituting 𝑥 = 0 into both the

backstepping transformation and its spatial derivative, and setting boundary condition (3.7), the

control law is derived as

𝑈 (𝑡) = − 1
𝐷

∫ 𝑙 (𝑡)

0
𝑝(𝑥)𝐵𝑢(𝑥, 𝑡)𝑑𝑥 + 𝑝(𝑙 (𝑡))𝑋 (𝑡), (7.16)

where

𝑝(𝑥) = 𝜙′(−𝑥)⊤ +𝜙(−𝑥)⊤. (7.17)

101



The system outlined in (7.1)-(7.5), with the continuous-time controller input (7.16), is locally

exponentially stable in the 𝐿2-norm sense, as demonstrated in Chapter 3. To develop the

event-triggered control mechanism, the CTC input is sampled at discrete intervals, which holds it

constant between events. This approach yields the following sampled-data control.

𝑈𝑐
𝑘 (𝑡) :=𝑈 (𝑡𝑐𝑘 ), (7.18)

where is employed at

𝑢𝑥 (0, 𝑡) +𝑢(0, 𝑡) =𝑈𝑐
𝑘 (𝑡) (7.19)

for ∀𝑡 ∈ [𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑘 ∈ N with the increasing time sequence, 𝐼𝑐 = {𝑡𝑐

𝑘
}𝑘∈N, where 𝑡𝑐0 = 0. The

notations “𝑐” represent CETC. It’s important to note that at each sampling time, the control

input is sampled from (3.1), in other words, the sampled-data control law is the emulation of the

continuous-time controller that is to be implemented in a Zero-Order Hold fashion.

7.3 Event-Triggered based Control

In this section, we introduce the event-triggered state-feedback control approach, deriving

sampling times for our control law to trigger events. We begin by defining the event-triggering

mechanism.

Definition 7.1. The design parameters are 𝛾 > 0, 𝜂 > 0, 𝜌 > 0 and 𝛽𝑖 > 0 where 𝑖 ∈ {1, ...5}. The

event-based controller consists of two trigger mechanisms:

1. The event-trigger: The set of all event times are in increasing sequence and they are

denoted as 𝐼𝑐 = {𝑡𝑐0, 𝑡
𝑐
1, ...} where 𝑡𝑐0 = 0 with the following rule

• If 𝑆(𝑡, 𝑡𝑐
𝑘
) = ∅, then the set of the times of the events is {𝑡𝑐0, ..., 𝑡

𝑐
𝑘
}.
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• If 𝑆(𝑡, 𝑡𝑐
𝑘
) ≠ ∅, the next event time is 𝑡𝑐

𝑘+1 = inf
(
𝑆(𝑡, 𝑡𝑐

𝑘
)
)

where

𝑆(𝑡, 𝑡𝑐𝑘 ) = {𝑡 ∈ R+ |𝑡 > 𝑡𝑐𝑘 ∧Γ𝑐 (𝑡) > 0} (7.20)

where

Γ𝑐 (𝑡) = 𝑑2(𝑡) +𝛾𝑚(𝑡) (7.21)

for all 𝑡 ∈ [𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑑 (𝑡) is given as

𝑑 (𝑡) =𝑈 (𝑡) −𝑈 (𝑡𝑐𝑘 ) (7.22)

and 𝑚(𝑡) satisfies the ODE

¤𝑚(𝑡) =−𝜂𝑚(𝑡) + 𝜌𝑑 (𝑡)2 − 𝛽1𝑋 (𝑡)2 − 𝛽2𝑋 (𝑡)4 − 𝛽3𝑋 (𝑡)6 − 𝛽4 |𝑤(0, 𝑡) |2

− 𝛽5 | |𝑤(𝑥, 𝑡)) | |2 (7.23)

2. The control action: The feedback control law that is derived in (7.16) for all 𝑡 ∈ [𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1)

where 𝑘 ∈ N.

Lemma 7.1. Under the definition of the state feedback event-triggered boundary control, it holds

that 𝑑2(𝑡) ≤ −𝛾𝑚(𝑡) and 𝑚(𝑡) > 0 for 𝑡 ∈ [0, 𝐹), where 𝐹 = sup(𝐼𝑐).

Proof. From the definition of the event-trigger approach, it is guaranteed that 𝑑2(𝑡) ≤ −𝛾𝑚(𝑡),

𝑡 ∈ [0, 𝐹). It yields

¤𝑚(𝑡) ≤ −(𝜂+𝛾𝜌)𝑚(𝑡) − 𝛽1𝑋 (𝑡)2 − 𝛽2𝑋 (𝑡)4 − 𝛽3𝑋 (𝑡)6 − 𝛽4 |𝑤(0, 𝑡) |2 − 𝛽5 | |𝑤(𝑥, 𝑡)) | |2 (7.24)
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for 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑘 ∈ N. Considering time continuity of 𝑚(𝑡), we can obtain

𝑚(𝑡) ≤𝑚(𝑡𝑐𝑘 )𝑒
−(𝜂+𝜌𝜎) (𝑡−𝑡𝑐

𝑘
) −

∫ 𝑡

𝑡𝑐
𝑘

𝑒−(𝜂+𝜌𝜎) (𝑡−𝜏)
(
𝛽1𝑋 (𝜏)2 + 𝛽2𝑋 (𝜏)4 + 𝛽3𝑋 (𝜏)6

)
𝑑𝜏

−
∫ 𝑡

𝑡𝑘

𝑒−(𝜂+𝜌𝜎) (𝑡−𝜏) (𝛽4 |𝑤(0, 𝜏) |2 + 𝛽5 | |𝑤(𝑙 (𝑥, 𝜏) | |2)𝑑𝜏 (7.25)

From the event-trigger mechanism definition, we have that 𝑚(𝑡𝑐0) = 𝑚(0) < 0. Therefore, the

estimate of 𝑚(𝑡) in (7.25) ensures that 𝑚(𝑡) < 0 for all 𝑡 ∈ [0, 𝑡𝑐1]. This can be generalized for all

𝑡. which means it can be shown that 𝑚(𝑡) < 0 for 𝑡 ∈ [0, 𝐹).

Lemma 7.2. For all 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1) where 𝑘 ∈ N, it holds that

( ¤𝑑 (𝑡))2 ≤𝜌1𝑑
2(𝑡) +𝛼1𝑋 (𝑡)2 +𝛼2𝑋 (𝑡)4 +𝛼3𝑋 (𝑡)6 +𝛼4𝑤(0, 𝑡)2 +𝛼5 | |𝑤(𝑥, 𝑡) | |2, (7.26)

for the following positive constants and defined functions:
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𝜌1 = 7|𝑝(0)𝐵 |2, (7.27)

𝛼1 =
21
2

����� 1
𝐷
𝜁 (𝑦)𝐵

∫ 𝑙 (𝑡)

0
𝜑(𝑥− 𝑙 (𝑡))⊤𝑑𝑥

�����2 +28(𝑝(0)𝐵𝑝(𝑙 (𝑡)))2

+21
((
𝑝(0)

(
1− 𝑎

𝐷

)
+ ¤𝑝(0)

)
𝐵

)2
(𝜑(0)⊤)2 +28(𝑝(𝑙 (𝑡))𝐴)2

+14
(��� ¤𝑝(𝑙 (𝑡)) + 𝑎

𝐷
𝑝(𝑙 (𝑡)) +

𝑟g

𝐷
𝑒1𝑝(𝑙 (𝑡))

���𝐵𝐻⊤
)2
, (7.28)

𝛼2 = 7
(
𝑟g𝑒1 ¤𝑝(𝑙 (𝑡)) +2𝑘𝑛

��� ¤𝑝(𝑙 (𝑡)) + 𝑎
𝐷
𝑝(𝑙 (𝑡))

���𝐵+ 𝑝(𝑙 (𝑡))𝜅)2
(7.29)

𝛼3 = 7
(
2𝑘𝑛
𝐷
𝑟g𝑒1𝑝(𝑙 (𝑡))𝐵

)2
+28 (𝑘𝑚𝑝(𝑙 (𝑡)))2 , (7.30)

𝛼4 = 21
((
𝑝(0)

(
1− 𝑎

𝐷

)
+ ¤𝑝(0)

)
𝐵

)2
, (7.31)

𝛼5 = 7
���� 1
𝐷
𝜁 (𝑦)𝐵

����2 (
9
2
+ 9

2

(∫ 𝑙 (𝑡)

0

∫ 𝑙 (𝑡)

𝑥

𝑞(𝑥, 𝑦)2𝑑𝑦𝑑𝑥

))
+21

((
𝑝(0)

(
1− 𝑎

𝐷

)
+ ¤𝑝(0)

)
𝐵

)2
𝐺̄ (𝑙 (𝑡))2, (7.32)

𝜁 (𝑦) :=
∫ 𝑙 (𝑡)

0
𝐷 ¥𝑝(𝑦) − 𝑎 ¤𝑝(𝑦) +𝑔𝑝(𝑦) − 𝑝(0)𝐵𝑝(𝑦)𝑑𝑦, (7.33)

𝐺̄ (𝑙 (𝑡)) :=
∫ 𝑙 (𝑡)

0
𝑞(0, 𝑥)𝑑𝑥 (7.34)

Proof. By taking the time derivative of (7.22), along with the nonlinear reference error system

(2.24), (2.26), (2.27) and (7.19), we get

¤𝑑 (𝑡) =− 1
𝐷
¤𝑙 (𝑡)𝑝(𝑙 (𝑡))𝐵ℎ(𝑋 (𝑡)) + ¤𝑙 (𝑡) ¤𝑝(𝑙 (𝑡))𝑋 (𝑡)

+
∫ 𝑙 (𝑡)

0

(
¥𝑝(𝑦) − 𝑎

𝐷
¤𝑝(𝑦) + 𝑔

𝐷
𝑝(𝑦)

)
𝐵𝑢(𝑦, 𝑡)𝑑𝑦−

∫ 𝑙 (𝑡)

0

1
𝐷
𝑝(0)𝐵𝑝(𝑦)𝐵𝑢(𝑦, 𝑡)𝑑𝑦

− 𝑝(0)𝐵𝑑 (𝑡) −
(
𝑝(0)

(
1− 𝑎

𝐷

)
+ ¤𝑝(0)

)
𝐵𝑢(0, 𝑡) + (𝑝(0)𝐵𝑝(𝑙 (𝑡)) + 𝑝(𝑙 (𝑡))𝐴) 𝑋 (𝑡)

+ 𝑝(𝑙 (𝑡)) 𝑓 (𝑋 (𝑡)) +
(
¤𝑝(𝑙 (𝑡))𝐵+ 𝑎

𝐷
𝑝(𝑙 (𝑡))𝐵

)
ℎ(𝑋 (𝑡)) (7.35)

By using inverse transformation of backstepping in (3.35), Young’s and Cauchy Schwarz’s
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inequalities, one can show

| |𝑢 | |2 ≤
(

3
2
+ 3

2

(∫ 𝑙 (𝑡)

0

∫ 𝑙 (𝑡)

𝑥

𝑞(𝑥, 𝑦)2𝑑𝑦𝑑𝑥

)1/2)2

| |𝑤 | |2

+ 3
2

(∫ 𝑙 (𝑡)

0
𝜑(𝑥− 𝑙 (𝑡))⊤𝑑𝑥

)2

𝑋 (𝑡)2 (7.36)

Applying the same procedure, we can also demonstrate that

𝑢(0, 𝑡)2 ≤3𝑤(0, 𝑡)2 +3(𝜑(0)⊤)2𝑋 (𝑡)2 +3
(∫ 𝑙 (𝑡)

0
𝑞(0, 𝑦)𝑤(𝑦, 𝑡)𝑑𝑦

)2

, (7.37)

The nonlinear terms can be shown to satisfy the inequalities defined in (3.78) and (3.79). Then,

using Young’s and Cauchy-Schwarz’s inequalities, one can obtain

¤𝑑 (𝑡)2 ≤𝜌1𝑑 (𝑡)2 +𝛼1𝑋 (𝑡)2 +𝛼2𝑋 (𝑡)4 +𝛼3𝑋 (𝑡)6 +𝛼4𝑤(0, 𝑡)2 +𝛼5 | |𝑤(𝑥, 𝑡) | |2 (7.38)

where 𝜌1 and 𝛼𝑖 are defined in(7.27)-(7.32).

7.4 Avoidance of zeno phenomena and stability proof under
event-triggering Control

7.4.1 Avoidance of Zeno phenomena

The event-triggering mechanism dictates when to sample the continuous-time control

signal, reducing computational and communication complexity. However, defining these sampling

times is challenging due to the potential for Zeno behavior, where specific instances may result in

infinite triggering within finite time intervals, limiting the mechanism’s applicability. To address

this, we prove the existence of a minimum dwell-time in the following theorem.

Theorem 7.1. Consider the closed-loop system of (2.1)-(2.5) incorporating the control law given

106



by

𝑈 (𝑡𝑐𝑘 ) =−
1
𝐷

∫ 𝑙 (𝑡𝑐
𝑘
)

0
𝑝(𝑥)𝐵𝑢(𝑥, 𝑡𝑐𝑘 )𝑑𝑥 + 𝑝(𝑙 (𝑡

𝑐
𝑘 ))𝑋 (𝑡

𝑐
𝑘 ), (7.39)

and the triggering mechanism in Definition 1. There exists a minimum dwell-time denoted as 𝜏

between two consecutive triggering times 𝑡𝑐
𝑘

and 𝑡𝑐
𝑘+1, satisfying 𝑡𝑐

𝑘+1 − 𝑡
𝑐
𝑘
≥ 𝜏 for all 𝑘 ∈ N when

𝛽𝑖 is selected as follows:

𝛽𝑖 =
𝛼𝑖

𝛾(1−𝜎) (7.40)

where 𝜎 ∈ (0,1), 𝑖 = {1, ...,5} and the values of 𝛼𝑖 are provided in equations (7.28)-(7.32).

Proof. By using Lemma 7.1, we define the continuous function 𝜓(𝑡) in [𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1) to derive the

lower bound between interexecution times as follows:

𝜓(𝑡) :=
𝑑2(𝑡) +𝛾(1−𝜎)𝑚(𝑡)

−𝛾𝜎𝑚(𝑡) (7.41)

As described in [30], one can show that

¤𝑚(𝑡) =−𝜂𝑚(𝑡) + 𝜌𝑑 (𝑡)2 − 𝛽1𝑋 (𝑡)2 − 𝛽2𝑋 (𝑡)4 − 𝛽3𝑋 (𝑡)6 − 𝛽4 |𝑤(0, 𝑡) |2 − 𝛽5 | |𝑤 | |2 (7.42)

Taking the time derivative of (7.41) and using Lemma 7.1, we can choose 𝛽𝑖 as described in

(7.40). Thus, we get

¤𝜓(𝑡) ≤ 𝑎1𝜓(𝑡)2 + 𝑎2𝜓(𝑡) + 𝑎3, (7.43)
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where

𝑎1 =𝜌𝜎𝛾 > 0, (7.44)

𝑎2 =1+2𝜌1 + (1−𝜎)𝜌 +𝜂 > 0, (7.45)

𝑎3 =(1+ 𝜌1 +𝛾(1−𝜎)𝜌 +𝜂)
1−𝜎
𝜎

> 0. (7.46)

Using the comparison principle and the argument in [30], one can prove that there exists a time

minimum dwell-time 𝜏 as follows:

𝜏 =

∫ 1

0

1
𝑎1𝑠2 + 𝑎2𝑠+ 𝑎3

𝑑𝑠 (7.47)

which completes the proof.

7.4.2 Stability proof under event-triggering control law

In this section, we initially introduce the theorem, which establishes the local exponential

convergence.

Theorem 7.2. Consider the closed-loop system comprising the plant described by (7.1)-(7.5)

along with the control law specified by (7.16) and employing an event-triggering mechanism that

is defined in Definition 7.1. Let

𝜌 ≥
𝑑2

1𝐷

𝛿1
(7.48)

and 𝜂 > 0 be design parameters, 𝜎 ∈ (0,1) while 𝛽𝑖 for 𝑖 = {1,2,3,4,5} are chosen as in (7.28)-

(7.32). Then, there exist constants 𝑀 > 0, 𝑐 > 0 and Γ, such that, if initial conditions is such that

𝑍 (0) < 𝑀 then the following norm estimate is satisfied:

𝑍 (𝑡) ≤ 𝑐𝑍 (0)𝑒𝑥𝑝(−Γ𝑡), (7.49)

for all 𝑡 ≥ 0, in 𝐿2-norm 𝑍 (𝑡) = | |𝑢(., 𝑡) | |2
𝐿2
+ 𝑋⊤𝑋 which establishes the local exponential
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convergence of the origin of the closed-loop system.

In the remainder of this section, we provide the proof of Theorem 7.2.

7.4.3 Nonlinear target system

We first apply the following transformation to the system of equations (7.9)-(7.12) to

simplify the analysis of system convergence.

𝜛(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) − ℎ∗(𝑋 (𝑡)) (7.50)

so this transformation gives us the following nonlinear target system

𝜛𝑡 (𝑥, 𝑡) =𝐷𝜛𝑥𝑥 (𝑥, 𝑡) − 𝑎𝜛𝑥 (𝑥, 𝑡) −𝑔𝜛(𝑥, 𝑡) +𝑔ℎ∗(𝑋 (𝑡)) − ¤𝑙 (𝑡)𝐹 (𝑥, 𝑋 (𝑡))

− ¤ℎ∗(𝑋 (𝑡))𝐵𝜛𝑥 (𝑙 (𝑡), 𝑡) −𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡)) −𝐺 (𝑥, 𝑙 (𝑡))ℎ∗(𝑋)

− ¤ℎ∗(𝑋 (𝑡)) ((𝐴+𝐵𝐾)𝑋 (𝑡) + 𝑓 (𝑋 (𝑡))) , (7.51)

𝜛𝑥 (0, 𝑡) +𝜛(0, 𝑡) =𝑑 (𝑡) − 1
𝐷

(𝐻 − 𝜖)⊤ 𝐵𝑢(0, 𝑡) + ℎ∗(𝑋 (𝑡)), (7.52)

𝜛(𝑙 (𝑡), 𝑡) =𝜖⊤𝑋 (𝑡), (7.53)

¤𝑋 (𝑡) =(𝐴+𝐵𝐾)𝑋 (𝑡) + 𝑓 (𝑋 (𝑡)) +𝐵𝜛𝑥 (𝑙 (𝑡), 𝑡) (7.54)

7.4.4 Lyapunov analysis

We consider the following Lyapunov functionals

𝑉1 =
1
2
| |𝜛 | |2 :=

1
2

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)2𝑑𝑥, (7.55)

𝑉2 =𝑋 (𝑡)⊤𝑃1𝑋 (𝑡), 𝑉3 =
1
2
𝑋 (𝑡)⊤𝑃2𝑋 (𝑡) (7.56)
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where 𝑃1 ≻ 0 and 𝑃2 ⪰ 0 are positive definite and positive semidefinite matrices satisfying the

Lyapunov equations:

(𝐴+𝐵𝐾⊤)⊤𝑃1 +𝑃1(𝐴+𝐵𝐾⊤) = −𝑄1, (7.57)

(𝐴+𝐵𝐾⊤)⊤(𝑃1 +𝑃2) + (𝑃1 +𝑃2) (𝐴+𝐵𝐾⊤) = −𝑄2 (7.58)

where

𝑃1 =


𝑝1,1 𝑝1,2

𝑝1,2 𝑝2,2

 , 𝑃2 =


𝐷𝜖1
𝛽

−2𝑝1,1 0

0 0

 (7.59)

where we pick 𝜖 ∈ R2 as 𝜖1 ≥ 2𝑙c𝑝1,1 and 𝜖2 =
𝑝1,2
𝑙c𝑑1

for some positive definite matrices 𝑄1 ≻ 0 and

𝑄2 ≻ 0. We define the total Lyapunov function as

𝑉 (𝑡) = 𝑑1𝑉1(𝑡) + 𝑑2𝑉2(𝑡) +𝑉3(𝑡) −𝑚(𝑡), (7.60)

where 𝑑1 > 0 and 𝑑2 > 0 are parameters to be determined.

Lemma 7.3. Assume that the conditions in (3.33) and (3.34) are satisfied with 𝑣̄ = 𝐷
16(𝐷+1) , for

all 𝑡 ≥ 0. Then, for sufficiently large 𝑑1 > 0 and sufficiently small 𝑑2 < 0, there exist positive

constants 𝜉𝑖 for 𝑖 = {1,2,3,4,5} such that the following norm estimate holds for 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1),

𝑘 ∈ N:

¤𝑉 ≤ −𝛼∗𝑉 +
4∑︁
𝑖=1
𝜉𝑖𝑉

(1+ 𝑖
2 ) (7.61)

where 𝛼∗ = min
{
𝑔

2 ,
1

2𝜆min (𝑃1+𝑃2) , 𝜂
}
.

Proof. When we take the time derivative of the Lyapunov functional (7.55)-(7.56) along the
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target system, we get

¤𝑉 =𝐷𝑑1𝜛(𝑥, 𝑡)𝜛𝑥 (𝑥, 𝑡) |𝑥=𝑙 (𝑡)𝑥=0 − 𝑑1𝐷 | |𝜛𝑥 (𝑥, 𝑡) | |2𝑑1𝑎
1
2
𝜛(𝑥, 𝑡)2 |𝑥=𝑙 (𝑡)

𝑥=0 − 𝑑1𝑔 | |𝜛(𝑥, 𝑡) | |2

+ 𝑑1
2
¤𝑙 (𝑡)𝜛(𝑙 (𝑡), 𝑡)2 + 𝑑1 ¤𝑙 (𝑡)

∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥

+ 𝑑1

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))𝑑𝑥 + 𝑑1

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝐺 (𝑥, 𝑙 (𝑡))ℎ∗(𝑋)𝑑𝑥

− 𝑑1

∫ 𝑙 (𝑡)

0

𝑑

𝑑𝑡
ℎ∗(𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥

+ 𝑑2𝑋 (𝑡)⊤(𝐴⊤ + (𝐵𝐾)⊤)𝑃1𝑋 (𝑡) + 𝑑2𝑋 (𝑡)⊤𝑃1(𝐴+𝐵𝐾)𝑋 (𝑡)

+ 𝑑2𝐵
⊤𝜛𝑥 (𝑙 (𝑡), 𝑡)𝑃1𝑋 (𝑡) + 𝑑2𝑋 (𝑡)⊤𝑃1𝐵𝜛𝑥 (𝑙 (𝑡), 𝑡) + 𝑑2 𝑓 (𝑋 (𝑡))⊤𝑃1𝑋 (𝑡)

+ 𝑑2𝑋 (𝑡)⊤𝑃1 𝑓 (𝑋 (𝑡)) + 𝑋 (𝑡)⊤𝑃2 ¤𝑋 (𝑡) +𝜂𝑚(𝑡) − 𝜌𝑑 (𝑡)2 + 𝛽1𝑋 (𝑡)2 + 𝛽2𝑋 (𝑡)4 + 𝛽3𝑋 (𝑡)6

+2𝛽4 |𝜛(0, 𝑡) |2 +2𝛽5 | |𝜛(𝑥, 𝑡)) | |2 +16𝑘2
𝑛 (𝛽4 + 𝛽5) (𝑋⊤𝑋)2, (7.62)

where we used

| |𝜛(𝑥, 𝑡) | |2 + ℎ∗(𝑋 (𝑡))2 ≥ 1
2
| |𝑤(𝑥, 𝑡) | |2. (7.63)

Now, substituting boundary conditions for 𝑡 ∈ (𝑡𝑐
𝑘
+ 𝑡𝑐

𝑘+1), 𝑘 ∈ N with

𝜛𝑥 (𝑙 (𝑡), 𝑡) = 𝐵̄
( ¤𝑋 − (𝐴+𝐵𝐾)𝑋 (𝑡) − 𝑓 (𝑋 (𝑡))

)
(7.64)
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where 𝐵̄ = [−𝛽−1 0], we obtain

¤𝑉 ≤− 𝑑1𝐷 | |𝜛𝑥 (𝑥, 𝑡) | |2 − (𝑑1𝑔−2𝛽5) | |𝜛(𝑥, 𝑡) | |2

+
(
𝛿1

(
3𝐷
2

+2
)
+𝐷𝑑1 +

𝑑1𝑎

2
+2𝛽4 + 𝑑1 (𝐻 − 𝜖)⊤ 𝐵

)
𝜛(0, 𝑡)2

−
(
𝜌−

𝑑2
1𝐷

2𝛿1

)
𝑑 (𝑡)2 +

(
𝑑2

1
2𝛿1

(
𝛽2(1− 𝜖1)2 (1+𝐺2(𝑙 (𝑡))) +𝐷

)
+2𝛽4

)
ℎ∗(𝑋 (𝑡))2

+ 𝑑1
2
¤𝑙 (𝑡)

(
𝜖⊤𝑋 (𝑡)

)2 + 𝑑1 ¤𝑙 (𝑡)
∫ 𝑙 (𝑡)

0
𝐹 (𝑥, 𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥

+ 𝑑1

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝜙(𝑥− 𝑙 (𝑡))⊤ 𝑓 (𝑋 (𝑡))𝑑𝑥 + 𝑑1

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)𝐺 (𝑥, 𝑙 (𝑡))ℎ∗(𝑋)𝑑𝑥

− 𝑑1

∫ 𝑙 (𝑡)

0

𝑑

𝑑𝑡
ℎ∗(𝑋 (𝑡))𝜛(𝑥, 𝑡)𝑑𝑥− (𝐷𝑑1𝜖

⊤ +2𝐵⊤𝑃)𝑋 (𝑡)
(
𝐵̄(𝐴+𝐵𝐾)𝑋 (𝑡) + 𝐵̄ 𝑓 (𝑋 (𝑡))

)
− 𝑑2𝑋 (𝑡)⊤𝑄𝑋 (𝑡) + 𝑑2 𝑓 (𝑋 (𝑡))⊤𝑃𝑋 (𝑡) + 𝑑2𝑋 (𝑡)⊤𝑃 𝑓 (𝑋 (𝑡)) +𝜂𝑚(𝑡) + 𝛽1𝑋 (𝑡)2 + 𝛽2𝑋 (𝑡)4

+ 𝛽3𝑋 (𝑡)6 +16𝑘2
𝑛 (𝛽4 + 𝛽5) (𝑋⊤𝑋)2. (7.65)

Then, applying Poincaré’s, Agmon’s, and Young’s inequalities, (7.48), along with (7.23), and

using the inequalities (3.78) and (3.79), the expression for (7.65) can be transformed into:

¤𝑉 ≤−𝛼∗𝑉 + 𝜉1𝑉
3/2 + 𝜉2𝑉

2 + 𝜉3𝑉
5/2 + 𝜉4𝑉

3 (7.66)

where

𝜉1 =

(
𝐷𝑑1 |𝜖 𝐵̄ | +2𝑑2

��𝑃⊤
1 𝐵𝐵̄

��) 𝜅2 + 𝑑1𝑟g
2 (1+ 𝐿1) + 𝑟g

𝑑
3/2
2 𝜆min(𝑃1 +𝑃2)3/2

(7.67)

𝜉2 =
Ξ1

𝑑2
2𝜆min(𝑃1 +𝑃2)2

, (7.68)

𝜉3 =
4𝑑2𝑘𝑚 |𝑃1 |

𝑑
5/2
2 𝜆min(𝑃1 +𝑃2)5/2

, (7.69)

𝜉4 =
Ξ2

𝑑3
2𝜆min(𝑃1 +𝑃2)3

, (7.70)
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taking into account (3.61) and choosing the constants 𝑑1 and 𝑑2 to satisfy

𝑑1 ≥ max
{

8𝑙 (𝐷 +2) +16𝑙𝛽4
𝐷

,
4𝛽5 +7
𝑔

}
, (7.71)

𝑑2 ≥
4

𝜆min(𝑄2)
(
𝐷𝑑1

��𝜖 𝐵̄ | (𝐴+𝐵𝐾)��+ 𝛽1
)
+ 4
𝜆min(𝑄2)

((
𝐷 +2+𝐷𝑑1 +

𝑑1𝑎

2
+2𝛽4

)
2
𝛽2

)
. (7.72)

Note that the positive constants in (7.67)-(7.70) are given as

Ξ1 =4𝐷𝑑1 |𝜖 𝐵̄ |𝑘2
𝑚 |𝑃1 |2 +8𝑑2

��𝑃⊤
1 𝐵𝐵̄

�� 𝑘2
𝑚 |𝑃1 |2 + 𝛽2 +2𝑑2

1𝐿𝑛3𝑘
2
𝑛 +

𝑑2
1

2
𝐿𝑛2𝜅

2

+ 𝑑2
1𝑐

2
∞𝑟

2
g𝑘 𝑙 +8𝑑2𝜅 |𝑃 |𝛽5𝑘 𝑙 +2𝑑2𝜅 |𝑃 |

(
𝑑2

1

(
𝛽2(1− 𝜖1)2

(
1+ 𝐺̄ (𝑙 (𝑡))2

)
+𝐷

))
𝑘 𝑙 , (7.73)

Ξ2 =𝑑
2
1𝑐

2
∞𝑟

2
g𝑘 𝑙 +

𝑑2
1

2
𝐿𝑛24𝑘2

𝑚 |𝑃1 |2 + 𝛽3 +
(
𝑑2

1

(
𝛽2(1− 𝜖1)2

(
1+ 𝐺̄ (𝑙 (𝑡))2

)
+𝐷

)
+4𝛽5

)
𝑘 𝑙 , (7.74)

𝑘 𝑙 =max {|𝐾+𝜆+ | , |𝐾−𝜆− |}2 (7.75)

and the inequalities are

𝐹 (0, 𝑋 (𝑡))2 ≤𝐿1𝑋
⊤𝑋, (7.76)∫ 𝑙 (𝑡)

0

(
𝜙(𝑥− 𝑙 (𝑡))⊤

)2
𝑑𝑥 ≤𝐿𝑛2 , (7.77)∫ 𝑙 (𝑡)

0

(
𝜙′(𝑥− 𝑙 (𝑡))⊤𝐵− 𝑎𝑘 (𝑥, 𝑙 (𝑡))

)2
𝑑𝑥 ≤𝐿𝑛3 (7.78)

which completes the proof of Lemma 7.3.

In this next section, we ensure the local stability of the closed-loop system with the

event-triggering mechanism.

Lemma 7.4. In the region Ω1 := {(𝜛, 𝑋) ∈ 𝐿2 ×R2 |𝑉 (𝑡) < 𝑀0} where 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1) 𝑘 ∈ N, there

exists a positive constant 𝑀0 > 0 such that the conditions in (3.34) hold.

Proof. The proof of Lemma 7.4 is a straightforward case of the proof of Lemma 3.2.

113



From the proof of Lemma 7.4, we have 𝑀0 =
𝜆min (𝑃)
𝑑2

𝑟2 for 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑘 ∈ N. Next, we

analyze stability within the time interval 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1) for 𝑘 ∈ N, and subsequently for 𝑡 ∈ (0, 𝑡).

Within this interval, we establish the following lemma:

Lemma 7.5. There exists a positive constant 𝑀𝑘 such that if 𝑉 (𝑡𝑐
𝑘
) < 𝑀𝑐

𝑘
then the following norm

estimate holds for 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), where 𝑘 ∈ N:

𝑉 (𝑡𝑐𝑘+1) ≤ 𝑉 (𝑡
𝑐
𝑘 )𝑒

− 𝛼∗
2 (𝑡𝑐

𝑘+1−𝑡
𝑐
𝑘
) (7.79)

Proof. For 𝑀𝑘 > 0, we easily demonstrate that 𝑀𝑘 < 𝑀0 using Lemma 7.4, ensuring the norm

estimate from Lemma 7.3 holds. Thus, we set 𝑀𝑘 ≤ 𝑝∗, where 𝑝∗ is a non-zero root of the

polynomial for 𝑉 > 0.

−𝛼∗𝑉 + 𝜉1𝑉
3/2 + 𝜉2𝑉

2 + 𝜉3𝑉
5/2 + 𝜉4𝑉

3 = 0 (7.80)

Since 𝛼∗, and 𝜉𝑖 are all positive, at least one positive root exists for the polynomial in (7.80).

Therefore, (7.66) implies

¤𝑉 (𝑡) ≤ −𝛼
∗

2
𝑉 (𝑡) (7.81)

for 𝑡 ∈ (𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑘 ∈ N where 𝑀𝑘 = min {𝑀0, 𝑝

∗}. The continuity of 𝑉 (𝑡) in this interval implies

𝑉 (𝑡𝑐−
𝑘+1) =𝑉 (𝑡) and𝑉 (𝑡𝑐+

𝑘
) =𝑉 (𝑡𝑐

𝑘
) where 𝑡𝑐+

𝑘
and 𝑡𝑐−

𝑘
are right and left limits of 𝑡 = 𝑡𝑐

𝑘
, respectively.

Thus, we have

𝑉 (𝑡𝑐𝑘+1) ≤ exp(−𝛼∗(𝑡𝑐𝑘+1 − 𝑡
𝑐
𝑘 ))𝑉 (𝑡

𝑐
𝑘 ) (7.82)

which completes the proof of Lemma 7.5.
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For any 𝑡 ≥ 0 in 𝑡 ∈ [𝑡𝑐
𝑘
, 𝑡𝑐
𝑘+1), 𝑘 ∈ N, we obtain

𝑉 (𝑡) ≤ 𝑒−𝛼∗ (𝑡−𝑡𝑘)𝑉 (𝑡𝑘 ) ≤ 𝑒−𝛼
∗𝑡𝑉 (0) (7.83)

Recalling 𝑚(𝑡) < 0 and (3.44), we have

𝑑1𝑉1(𝑡) +𝑉2(𝑡) + 𝑑2𝑉3(𝑡) ≤ 𝑒−𝛼
∗𝑡𝑉 (0). (7.84)

which means that

𝑑1
1
2
| |𝜛(𝑥) | |2 + 𝑑2𝑋 (𝑡)⊤

(
𝑃1 +

1
𝑑2
𝑃2

)
𝑋 (𝑡) ≤

𝑒−𝛼𝑡
(
𝑑1
2
| |𝜛(0) | |2 + 𝑑2𝑋 (0)⊤

(
𝑃1 +

1
𝑑2
𝑃2

)
𝑋 (0) −𝑚(0)

)
. (7.85)

Utilizing the norm equivalence principle between the (𝜛, 𝑋) system and the (𝑤, 𝑋)

system, and leveraging the invertibility of the backstepping transformation, we establish the local

exponential convergence of (𝑢, 𝑋) in the 𝐿2-norm.

7.5 Simulations

In this section, we numerically analyze the plant dynamics (7.1)-(7.5) using the control

law (7.16) and the event triggering mechanism as defined in Definition 7.1. The model

employs biological constants and control parameters from Table 3.1, with initial conditions

set to 𝑐0(𝑥) = 1.5𝑐∞ for the tubulin concentration along the axon and 𝑙0 = 1𝜇𝑚 for the initial

axon length. The control gain parameters are chosen as 𝑘1 = −0.001 and 𝑘2 = 3× 1013. The

event-triggering mechanism parameters are set as follows: 𝑚(0) = −0.5, 𝛽1 = 4.0849× 108,

𝛽2 = 1.307×1010, 𝛽3 = 1.642×1011, 𝛽4 = 6.536×1011, 𝛽5 = 7.35×1011, 𝜌 = 4×1022, 𝜂 = 800

and 𝜎 = 0.5. In Figure 7.2a and 7.2b, we present the evolution of tubulin concentration along
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(a) The axon length, 𝑙 (𝑡) successfully converges to the desired length by 𝑡 = 4.5
mins for both event-triggered and continuous-time control law.

Figure 7.1. The closed-loop response of the continuous-time and event-triggered control law for
𝑙𝑠 = 12𝜇𝑚

the axon for both continuous-time control law and event-triggered control. Figure 7.1 shows

axon growth convergence under continuous-time and event-triggered control laws. Both methods

achieve the desired 12𝜇𝑚 length from an initial 1𝜇𝑚 in about 4.5 minutes.
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(a) Event-triggered control

(b) Continuous-time control

Figure 7.2. The closed-loop response of the designed full-state feedback control system for
continuous-time and event-triggered control law.
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Chapter 8

Periodic Event-triggered Control

Motivated by the feasibility challenges encountered in real-time implementation when

applying feedback control to biological systems for medical treatments, we convert the continuous

time event-triggered control (CETC) design by supplementing a periodic sampling rule. This

introduces a dynamic periodic event-triggering control (PETC) approach, where the triggering

function is only checked periodically while the control input is updated aperiodically. The

concepts in this chapter build upon the pioneering work of [78], who first extended event-

triggering mechanisms to moving boundary PDEs. The authors’ innovative contributions in [78]

provided the foundation for the methods developed here, and this chapter continues to evolve the

ideas presented in this work. The PETC improves the practical implementation of the control

law because it can be applied to standard time-sliced actuators (like ChABC) for axon growth.

The strategy involves deriving a novel triggering condition and establishing an upper bound on

the continuous-time event trigger between two periodic examinations, explicitly derived as a

sampling period in our study.

8.1 Periodic event-triggered based control

In this section, we propose a periodic event-triggering mechanism for axonal growth by

deriving periodic sampling times for our control law. First, we give the definition of periodic

event-triggering mechanism.
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Definition 8.1. Consider the event-triggering function Γ𝑝 (𝑡), which undergoes periodic evaluation

with a period of ℎ > 0. The PETC that generates the events are characterized by two parts:

1. The event-trigger mechanism: A periodic event-trigger that determines the event times

𝑡
𝑝

𝑘+1 = inf{𝑡 ∈ R+ |𝑡 > 𝑡 𝑝𝑘 , Γ
𝑝 (𝑡) > 0, 𝑡 = 𝑛ℎ, ℎ > 0, 𝑛 ∈ N}, (8.1)

with 𝑡 𝑝0 = 0 where ℎ is sampling period and

Γ𝑝 (𝑡) = 𝜐1𝑑
2(𝑡) −𝜐2𝑚(𝑡) (8.2)

where 𝜐1 > 0 and 𝜐2 > 0.

2. The feedback control law that is derived as

𝑈
𝑝

𝑘
(𝑡) =− 1

𝐷

∫ 𝑙 (𝑡 𝑝
𝑘
)

0
𝑝(𝑥)𝐵𝑢(𝑥, 𝑡 𝑝

𝑘
)𝑑𝑥 + 𝑝(𝑙 (𝑡 𝑝

𝑘
))𝑋 (𝑡 𝑝

𝑘
) (8.3)

for all 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) for 𝑘 ∈ N.

Note that periodicity in the triggering conditions (8.1), allows us to monitor the triggering

function periodically and update the control laws aperiodically, removing the continuous

monitoring of the PDE-ODE state variables. Then, the boundary condition (7.8) becomes

𝑢𝑥 (0, 𝑡) +𝑢(0, 𝑡) =𝑈 (𝑡 𝑝
𝑘
). (8.4)

8.1.1 Selection of the sampling period

The sampling period, denoted as ℎ, represents the unit of time during which the control

input is updated. Let the periodic event-triggered function given by (8.1), along with the boundary

condition in (8.4) and the plant dynamics from (7.1)-(7.5), satisfy the condition Γ𝑝 (𝑡) ≤ 0 for all

𝑡 within the interval 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) for 𝑘 ∈ N. Hence, it follows that 𝑚(𝑡) < 0 for all 𝑡 > 0. The
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parameter ℎ is selected to satisfy

0 < ℎ ≤ 𝜏, (8.5)

where the upper bound, 𝜏, is the minimum inter-event time of the CETC design defined in

(7.44)-(7.47).

8.1.2 Design of the periodic event triggering function Γ𝑝 (𝑡)

Proposition 8.1. Under the definition of the periodic event-triggered boundary control (8.4),

with the sampling period ℎ < 𝜏, it holds that

Γ𝑐 (𝑡) ≤ 1
𝑞

(
(𝑎 +𝛾𝜌)𝑑2(𝑛ℎ)𝑒𝑞(𝑡−𝑛ℎ) −𝛾𝜌𝑑2(𝑛ℎ) + 𝑞𝛾𝑚(𝑛ℎ)𝑒−𝜂(𝑡−𝑛ℎ)

)
, (8.6)

for all 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ) and any 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N, where 𝑞 = 1 + 𝜂 + 𝜌1 and Γ𝑐 (𝑡) =

𝑑2(𝑡) −𝛾𝑚(𝑡) for 𝛾 > 0.

Proof. Taking the time derivative of Γ𝑐 (𝑡) in 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ) and 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N, one

can show that

¤Γ𝑐 (𝑡) = 2𝑑 (𝑡) ¤𝑑 (𝑡) −𝛾 ¤𝑚(𝑡) (8.7)

≤ 𝑑2(𝑡) + ¤𝑑2(𝑡) −𝛾 ¤𝑚(𝑡). (8.8)

By using Lemma 7.1 and 7.2, we get

¤Γ𝑐 (𝑡) ≤(1+ 𝜌1 +𝛾𝜌)𝑑2(𝑡) − (𝛾𝛽1 −𝛼1) 𝑋 (𝑡)2 − (𝛾𝛽2 −𝛼2) 𝑋 (𝑡)4 − (𝛾𝛽3 −𝛼3) 𝑋 (𝑡)6

− (𝛾𝛽4 −𝛼4) 𝑢(0, 𝑡)2 − (𝛾𝛽5 −𝛼5) | |𝑢(𝑥, 𝑡) | |2 +𝜂𝛾𝑚(𝑡). (8.9)
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By using the definition of Γ𝑐 (𝑡), we get

¤Γ𝑐 (𝑡) ≤(1+ 𝜌1 +𝛾𝜌)Γ𝑐 (𝑡) − (𝛾𝛽1 −𝛼1) 𝑋 (𝑡)2 − (𝛾𝛽2 −𝛼2) 𝑋 (𝑡)4 − (𝛾𝛽3 −𝛼3) 𝑋 (𝑡)6

− (𝛾𝛽4 −𝛼4) 𝑢(0, 𝑡)2 − (𝛾𝛽5 −𝛼5) | |𝑢(𝑥, 𝑡) | |2 + ((1+ 𝜌1 +𝛾𝜌) 𝛾 +𝜂𝛾)𝑚(𝑡). (8.10)

Since 𝑚(𝑡) satisfies Lemma 7.1 and (7.1)-(7.5) with the event-triggered control law (7.18) is

locally exponentially convergen, (8.10) exhibit smooth behavior in the interval 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ)

and for any 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N. This establishes the existence of a non-negative function

𝜄(𝑡) ∈ 𝐶0((𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1);R+) such that:

¤Γ𝑐 (𝑡) =(1+ 𝜌1 +𝛾𝜌)Γ(𝑡) − (𝛾𝛽1 −𝛼1) 𝑋 (𝑡)2 − (𝛾𝛽2 −𝛼2) 𝑋 (𝑡)4 − (𝛾𝛽3 −𝛼3) 𝑋 (𝑡)6

− (𝛾𝛽4 −𝛼4) 𝑢(0, 𝑡)2 − (𝛾𝛽5 −𝛼5) | |𝑢(𝑥, 𝑡) | |2 + ((1+ 𝜌1 +𝛾𝜌) 𝛾 +𝜂𝛾)𝑚(𝑡) − 𝜄(𝑡),

(8.11)

for all 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ) and for any 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N. Moreover, through the substitution

of 𝑑2(𝑡) = Γ𝑐 (𝑡) +𝛾𝑚(𝑡), we can rephrase the dynamics of 𝑚(𝑡) as follows:

¤𝑚(𝑡) =− 𝜌Γ𝑐 (𝑡) − (𝜂+ 𝜌𝛾)𝑚(𝑡) + 𝛽1𝑋 (𝑡)2 + 𝛽2𝑋 (𝑡)4 + 𝛽3𝑋 (𝑡)6 + 𝛽4 |𝑢(0, 𝑡) |2

+ 𝛽5 | |𝑢(𝑥, 𝑡)) | |2, (8.12)

for all 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ) and for any 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N. Subsequently, by combining (8.11)

with (8.12), we can derive the subsequent system of ODEs:

¤𝑟 (𝑡) = 𝐴1𝑟 (𝑡) + 𝑣(𝑡),
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where

𝑟 (𝑡) =

Γ𝑐 (𝑡)

𝑚(𝑡)

 , 𝐴1 =


𝑞−𝜂+𝛾𝜌 𝛾 (𝑞 +𝛾𝜌)

−𝜌 −𝜂− 𝜌𝛾

 ,
𝑣(𝑡) =


𝑓1(𝑡)

𝑓2(𝑡)

 , (8.13)

where

𝑓1(𝑡) =− (𝛾𝛽1 −𝛼1) 𝑋 (𝑡)2 − (𝛾𝛽2 −𝛼2) 𝑋 (𝑡)4 − (𝛾𝛽3 −𝛼3) 𝑋 (𝑡)6 − (𝛾𝛽4 −𝛼4) 𝑢(0, 𝑡)2

− (𝛾𝛽5 −𝛼5) | |𝑢(𝑥, 𝑡) | |2 − 𝜄(𝑡), (8.14)

𝑓2(𝑡) =𝛽1𝑋 (𝑡)2 + 𝛽2𝑋 (𝑡)4 + 𝛽3𝑋 (𝑡)6 + 𝛽4 |𝑢(0, 𝑡) |2 + 𝛽5 | |𝑢(𝑥, 𝑡)) | |2, (8.15)

and

𝑞 = 1+𝜂+ 𝜌1. (8.16)

The solution to (8.13) for all 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ) and for any 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N can be expressed

as:

𝑟 (𝑡) = 𝑒𝐴1 (𝑡−𝑛ℎ)𝑟 (𝑛ℎ) +
∫ 𝑡

𝑛ℎ

𝑒𝐴1 (𝑡−𝜉)𝑣(𝜉)𝑑𝜉, (8.17)

which gives us

Γ𝑐 (𝑡) = 𝐶1𝑒
𝐴1 (𝑡−𝑛ℎ)𝑟 (𝑛ℎ) +𝐶1

∫ 𝑡

𝑛ℎ

𝑒𝐴1 (𝑡−𝜉)𝑣(𝜉)𝑑𝜉, (8.18)

where 𝐶1 = [1 0]. Since matrix 𝐴1 has two distinct eigenvalues, we can diagonalize the matrix
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exponential 𝑒𝐴1𝑡 as it is defined in [79]. Thus, we can derive the second part of (8.18) as

𝐶1𝑒
𝐴1 (𝑡−𝜉)𝑣(𝜉) =

[
𝑔1(𝑡) 𝑔2(𝑡)

] 
𝑓1(𝑡)

𝑓2(𝑡)

 , (8.19)

where

𝑔1(𝑡) =
𝑞 +𝛾𝜌
𝑞

𝑒(1+𝜌1)𝑡 − 𝜌𝛾
𝑞
𝑒−𝜂𝑡 , (8.20)

𝑔2(𝑡) =
𝛾 (𝑞 +𝛾𝜌)

𝑞

(
𝑒(1+𝜌1)𝑡 − 𝑒−𝜂𝑡

)
. (8.21)

Since we have the following relationship

1+𝜂+7|𝑝(0)𝐵 |2 > 0, (8.22)

we can get

𝑔1(𝑡) =
1
𝑞

(
−𝛾𝜌 + (𝑞 + 𝜌𝛾)𝑒𝑞𝑡

)
𝑒−𝜂𝑡 , (8.23)

𝑔2(𝑡) =
𝛾(𝑞 +𝛾𝜌)

𝑞

(
−1+ 𝑒𝑞𝑡

)
𝑒−𝜂𝑡 . (8.24)

It’s apparent that 𝑔1(𝑡) remains positive for 𝑡 > 0. Furthermore, considering the relation (7.40),

and using ascending order of triggering times that is the solution of (7.47) is represented by

𝜏 =
1
𝑞

ln
(
1+ 𝜎𝑞

(1−𝜎) (𝑞 +𝛾𝜌)

)
, (8.25)

123



one can show that

𝐶1𝑒
𝐴1 (𝑡−𝜉)𝑣(𝜉) =𝛼1(𝑞 +𝛾𝜌)

𝑞

(
𝑒𝑞𝜏 − 𝑒𝑞(𝑡−𝜉)

)
𝑒−𝜂(𝑡−𝜉)𝑋 (𝑡)2

+ 𝛼2(𝑞 +𝛾𝜌)
𝑞

(
𝑒𝑞𝜏 − 𝑒𝑞(𝑡−𝜉)

)
𝑒−𝜂(𝑡−𝜉)𝑋 (𝑡)4

+ 𝛼3(𝑞 +𝛾𝜌)
𝑞

(
𝑒𝑞𝜏 − 𝑒𝑞(𝑡−𝜉)

)
𝑒−𝜂(𝑡−𝜉)𝑋 (𝑡)6

+ 𝛼4(𝑞 +𝛾𝜌)
𝑞

(
𝑒𝑞𝜏 − 𝑒𝑞(𝑡−𝜉)

)
𝑒−𝜂(𝑡−𝜉)𝑢(0, 𝑡)2

+ 𝛼5(𝑞 +𝛾𝜌)
𝑞

(
𝑒𝑞𝜏 − 𝑒𝑞(𝑡−𝜉)

)
𝑒−𝜂(𝑡−𝜉) | |𝑢(𝑥, 𝑡) | |2. (8.26)

Given the stipulated intervals 𝑛ℎ ≤ 𝜉 ≤ 𝑡 ≤ (𝑛 + 1)ℎ, and ℎ ≤ 𝜏, upon thorough examination

of (8.26), it emerges that the inequality (𝛾𝛽𝑖 −𝛼𝑖)𝑔1(𝑡 − 𝜉) − 𝛽𝑖𝑔2(𝑡 − 𝜉) > 0 satisfied for all

𝑖 = 1,2,3,4,5. This observation prompts us to establish𝐶1𝑒
𝐴1 (𝑡−𝜉)𝑣(𝜉) which holds for all 𝑡 and 𝜉

within the range of 𝑛ℎ ≤ 𝜉 ≤ 𝑡 ≤ (𝑛+1)ℎ, and for 𝑛 ∈ [𝑡 𝑝
𝑘
/ℎ, 𝑡 𝑝

𝑘+1/ℎ) ⊂ N. Taking this observation

into account alongside (8.18), we can derive the following expression for 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ):

Γ𝑐 (𝑡) ≤ 1
𝑞

(
−𝛾(𝑞 +𝛾𝜌)𝑚(𝑛ℎ) −𝛾𝜌Γ𝑐 (𝑛ℎ) + (𝑞 +𝛾𝜌) (Γ𝑐 (𝑛ℎ) +𝛾𝑚(𝑛ℎ)) 𝑒𝑞(𝑡−𝑛ℎ)

)
. (8.27)

Upon performing the substitution Γ𝑐 (𝑛ℎ) into (8.27), we are able to derive the inequality (8.6)

which is valid for all 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ). This concludes the proof.

Building upon Proposition 8.1, the update time for the control input can be determined by

identifying when the subsequent condition is met for any 𝑡 ∈ [𝑛ℎ, (𝑛+1)ℎ), thereby challenging

the positive definiteness of Γ𝑐 (𝑡).

(𝑞 +𝛾𝜌)𝑑2(𝑛ℎ)𝑒𝑞(𝑡−𝑛ℎ) −𝛾𝜌𝑑2(𝑛ℎ) + 𝑞𝛾𝑚(𝑛ℎ) > 0, (8.28)
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Thus, one can choose this condition as Γ𝑝 (𝑡) such that

Γ𝑝 (𝑡) = (𝑞 +𝛾𝜌)𝑒𝑞ℎ𝑑2(𝑡) −𝛾𝜌𝑑2(𝑡) + 𝑞𝛾𝑚(𝑡), (8.29)

which completes the design process. Next, we state the following theorem that guarantees

Γ𝑐 (𝑡) ≤ 0 for all 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1), 𝑘 ∈ N.

Theorem 8.1. Let the design parameters, 𝜌1 and 𝛽𝑖 as defined in (7.27)-(7.40), set the sampling

rate in accordance with (8.5), let 𝜌, 𝛾,𝜂 > 0 and 𝜎 ∈ (0,1). Let us consider the periodic

event-triggering mechanism (8.1)-(8.3) with the Γ𝑝 (𝑡) as defined in (8.29) which generates the

increasing sequence of times {𝑡 𝑝
𝑘
}𝑘∈N with 𝑡 𝑝0 = 0. Then, for Γ𝑐 (𝑡) and 𝑚(𝑡) with 𝑚(𝑡) < 0, it

holds that Γ𝑐 (𝑡) ≤ 0 and 𝑚(𝑡) < 0 for all 𝑡 > 0.

Proof. We omit this proof, which is trivial when one follows the steps of the proof of Theorem 2

in [79].

8.2 Convergence proof under periodic event-triggering
control law

In this section, we begin by introducing the theorem that establishes the local exponential

convergence of the closed-loop system under the periodic event-triggering mechanism.

Theorem 8.2. Let the design parameters, 𝜌, 𝜌1 and 𝛽𝑖 given as defined in Theorem 8.1. Consider

the periodic event-triggering rule (8.1)-(8.3) with the periodic event-triggering function (8.29) and

sampling rate ℎ defined in (8.5), which generates an increasing event-times {𝑡 𝑝
𝑘
}𝑘∈N. Assuming

the well-posedness, the closed-loop system of (7.1)-(7.5) with the boundary control law (8.3)

and (8.29) is locally exponentially convergent in 𝐿2-norm sense.

In the remainder of this section, we provide the proof of Theorem (8.2).
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8.2.1 Nonlinear target system

In order to prove that the closed-loop system (7.1)-(7.5) with the control law (7.16) and

the periodic event-triggering mechanism (8.1) and (8.29), is locally exponentially convergent,

we first obtain the following target system by applying transformation (3.5) and (7.50), one can

obtain the same nonlinear target system, (7.51)-(7.54).

8.2.2 Lyapunov analysis

To demonstrate the local convergence of the system, we initially establish the system

properties in a non-constant spatial interval as derived in (3.33) and (3.34). As demonstrated

in Chapter 7, 𝑚(𝑡) < 0 for all 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) where 𝑘 ∈ N, implying Γ𝑐 (𝑡) ≤ 0 for 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1).

Assuming the well-posedness of the closed-loop system and following the methodology outlined

in Chapter 7, the subsequent Lyapunov functional is considered

𝑉 (𝑡) =𝑉1(𝑡) −𝑚(𝑡), (8.30)

where

𝑉1(𝑡) =𝑑1
1
2

∫ 𝑙 (𝑡)

0
𝜛(𝑥, 𝑡)2𝑑𝑥 + 𝑋 (𝑡)⊤

(
𝑑2𝑃1 +

1
2
𝑃2

)
𝑋 (𝑡) (8.31)

and 𝑑1 > 0, 𝑑2 > 0, 𝑃1 ≻ 0 and 𝑃2 ⪰ 0 are positive definite and positive semidefinite matrices

satisfying the Lyapunov equations:

(𝐴+𝐵𝐾⊤)⊤𝑃1 +𝑃1(𝐴+𝐵𝐾⊤) = −𝑄1, (8.32)

(𝐴+𝐵𝐾⊤)⊤(𝑃1 +𝑃2) + (𝑃1 +𝑃2) (𝐴+𝐵𝐾⊤) = −𝑄2 (8.33)

where 𝑃1 and 𝑃2 are chosen as in (7.59) and we pick 𝜖 ∈ R2 as 𝜖1 ≥ 2𝑙c𝑝1,1 and 𝜖2 =
𝑝1,2
𝑙c𝑑1

for some

positive definite matrices 𝑄1 ≻ 0 and 𝑄2 ≻ 0.
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Proof. Similar to the strategy used in Chapter 7, by taking the time derivative of (8.31), applying

Poincaré’s, Agmon’s, and Young’s inequalities, we first derive the following expression:

¤𝑉 ≤−𝛼∗𝑉 + 𝜉1𝑉
3/2 + 𝜉2𝑉

2 + 𝜉3𝑉
5/2 + 𝜉4𝑉

3 (8.34)

where𝛼∗ and 𝜉𝑖 are defined in (7.67)-(7.70) and where 𝑑1 and 𝑑2 are chosen to satisfy (7.71)-(7.72).

Note that the positive constant parameters and the inequalities are also defined in (7.73)-(7.78).

Given (8.34), we can demonstrate that within the region Ω1 := {(𝜛, 𝑋) ∈ 𝐿2 ×R2 |𝑉 (𝑡) < 𝑀0}

where 𝑡 ∈ (𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) for 𝑘 ∈ N, there exists a positive constant 𝑀0 > 0 ensuring the satisfaction of

the system properties (3.33) and (3.34). The existence of such 𝑀0 > 0 is established in Lemma

7.4. From this result, we have 𝑀0 =
𝜆min (𝑃1)

𝑑2
𝑟2 where 𝑟 = min

{
𝑣̄
𝑟g
, 𝑙s, 𝑙 − 𝑙s

}
for 𝑡 ∈ (𝑡 𝑝

𝑘
, 𝑡
𝑝

𝑘+1),

𝑘 ∈ N. Next, we analyze the convergence within the time interval 𝑡 ∈ (𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) for 𝑘 ∈ N, and

subsequently for 𝑡 ∈ (0, 𝑡). Then, a positive constant 𝑀 exists such that when 𝑉 (𝑡 𝑗 ) < 𝑀, the

following norm estimate is valid for 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1), where 𝑘 ∈ N:

𝑉 (𝑡 𝑝
𝑘+1) ≤ 𝑉 (𝑡

𝑝

𝑘
)𝑒− 𝛼∗

2 (𝑡 𝑝
𝑘+1−𝑡

𝑝

𝑘
) . (8.35)

For 𝑀 > 0, we define the set Ω := {(𝜛, 𝑋) ∈ 𝐿2 ×R2 |𝑉 (𝑡) < 𝑀}. From Lemma 7.4, it is clear

that if 𝑀 ≤ 𝑀0, then Ω ⊂ Ω1 which satisfy the system properties (3.33) and (3.34) and the norm

estimate defined in (8.35) for 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1), where 𝑘 ∈ N. Hence, we set 𝑀 ≤ 𝑝∗, where 𝑝∗ is a

non-zero root of the following polynomial

−𝛼∗𝑉 + 𝜉1𝑉
3/2 + 𝜉2𝑉

2 + 𝜉3𝑉
5/2 + 𝜉4𝑉

3 = 0 (8.36)

for 𝑉 > 0. Given that all coefficients of this polynomial are positive, at least one positive root 𝑝∗
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exists. Thus, (8.34) implies

¤𝑉 ≤ −𝛼
∗

2
𝑉 (𝑡) (8.37)

for 𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1), where 𝑘 ∈ N and 𝑀 = min{𝑀0, 𝑝
∗}. The smoothness of𝑉 (𝑡) within this interval

ensures that 𝑉 (𝑡 𝑝
−

𝑘+1) =𝑉 (𝑡) and 𝑉 (𝑡 𝑝
+

𝑘
) =𝑉 (𝑡 𝑝

𝑘
), where 𝑡 𝑝

+

𝑘
and 𝑡 𝑝

−

𝑘
denote the right and left limits

of 𝑡 = 𝑡 𝑝
𝑘
, respectively. Thus, we can have the norm estimate in (8.35). Then, for any 𝑡 ≥ 0 in

𝑡 ∈ [𝑡 𝑝
𝑘
, 𝑡
𝑝

𝑘+1) where 𝑘 ∈ N, we have

𝑉 (𝑡) ≤ 𝑒−𝛼∗ (𝑡−𝑡
𝑝

𝑘
)𝑉 (𝑡 𝑝

𝑘
) ≤ 𝑒−𝛼∗𝑡𝑉 (0). (8.38)

Recalling 𝑚(𝑡) < 0 and (8.30), we can write

𝑉1(𝑡) −𝑚(𝑡) ≤ 𝑒−𝛼∗𝑡𝑉 (0) (8.39)

by applying the comparison principle one can obtain the following norm estimate for the target

system (𝜛, 𝑋):

𝑑1
1
2
| |𝜛(𝑥) | |2+𝑑2𝑋 (𝑡)⊤

(
𝑃1 +

1
𝑑2
𝑃2

)
𝑋 (𝑡)

≤𝑒−𝛼∗𝑡
(
𝑑1
2
| |𝜛(0) | |2 + 𝑑2𝑋 (0)⊤

(
𝑃1 +

1
𝑑2
𝑃2

)
𝑋 (0) −𝑚(0)

)
(8.40)

Utilizing the invertibility of the transformation (7.50), we subsequently prove that the target

system (𝑤, 𝑋) is also locally exponentially convergent. For the original system (𝑢, 𝑋), we

leverage the invertibility of the backstepping transformation given in (3.5). Consequently, we

conclude that the closed-loop system is also locally exponentially convergent. This completes the

proof.
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8.3 Simulations

In this section, we conduct numerical simulations for the system represented by equations

(7.1)-(7.5), employing the control law (7.16) along with the designed periodic event-triggering

mechanism (8.1) utilizing the triggering function (8.29). The model parameters are detailed in

Table 3.1. Initial conditions are specified as 𝑐0(𝑥) = 1.5𝑐∞ for the tubulin concentration along the

axon and 𝑙0 = 1𝜇𝑚 for the initial axon length. Control gain parameters are set as 𝑘1 = −0.001 and

𝑘2 = 3×1013. The event-triggering parameters are set as follows 𝑚(0) = −0.5, 𝛽1 = 2.5×108,

𝛽2 = 8× 109, 𝛽3 = 1× 1011, 𝛽4 = 4× 1011, 𝛽5 = 4.5× 1011, 𝜌 = 1.5× 10−15, 𝛾 = 1, 𝜂 = 2 and

𝜎 = 0.8. Moreover, the sampling period for the periodic event-triggering mechanism is selected

as ℎ = 0.5 𝑚𝑠 which is smaller than the minimal dwell time 𝜏 ≈ 0.54 𝑚𝑠.

Figure 8.1 illustrates the evolution of the continuous-time control input,𝑈 (𝑡), the event-

triggering control input, 𝑈𝑐
𝑘
(𝑡), as defined in (7.18) with the triggering mechanism given by

Definition 7.1, and the periodic event-triggering control input,𝑈 𝑝

𝑘
(𝑡), as defined in (8.3) with the

triggering condition in (8.1) and triggering function in (8.29). While PETC closely emulates

the CETC control input behavior, both PETC and CETC minimized the necessity of control law

updates by maintaining comparable performance. In Figure 8.2, tubulin concentration, 𝑐(𝑥, 𝑡),

and axon length, 𝑙 (𝑡), converge to the steady-state solution of the tubulin concentration and the

desired axon length. Note that tubulin concentration exhibits smoother changes with the PETC

mechanism compared to the CETC mechanism which enhances the practical applicability.
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(a) Continous time control input. (b) Event-triggered control input.

(c) Periodic event-triggered control input.

Figure 8.2. The tubulin concentration governed by (2.1)-(2.5), 𝑐(𝑥, 𝑡), converges to the steady-
state tubulin concentration, 𝑐eq(𝑡) by about 𝑡 = 4.5min for both continuous control input, CETC
and PETC. The axon length, 𝑙 (𝑡), also converges to the desired axon length, 𝑙𝑠, by about 𝑡 = 4min.
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Chapter 9

Conclusion and Future Work

9.1 Summary

This dissertation bridges the fields of neurobiology and control systems by introducing

new mechanisms for control laws. In Chapter 1, we began by explaining how neurons function

and why the growth of neurons is crucial for maintaining their functionality. Neuron growth

is essential for the proper functioning of vertebrate animals, so we explored the biological

processes that support this growth. We also examined the potential therapeutic approaches

that could address problems arising from disruptions in neuron growth. Understanding the

mechanics of neuron growth is key to developing these therapies. Therefore, we discussed

various mathematical models that help explain how neurons grow. Among these models, one

stands out: the moving boundary model. This model is particularly effective in capturing the

behavior of axon elongation, which is a process driven by the dynamics of a protein called

tubulin. In the field of control systems, there is a similar concept known as the Stefan problem.

This problem has been the focus of recent research in several areas, including feedback control,

state estimation, compensation for delays, and event-triggering mechanisms. In this chapter,

we provided an overview of these studies, highlighting how the Stefan problem relates to the

moving boundary model in neurobiology and the broader implications for both fields. In the next

chapter, we delve into the moving boundary neuron growth problem. We begin by explaining the

steady-state solution, which describes the long-term behavior of the system, and then we define
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the reference error system, which is used to measure deviations from the desired growth pattern.

After establishing these foundational concepts, we introduce the main objective of the control

law, which is to guide the system towards a desired state. We also discuss how this objective is

achieved in the context of the Stefan problem, drawing parallels between the control strategies

used in neurobiology and those in control systems engineering.

In Chapter 3, we focused on developing a state feedback control law, assuming the

availability of full state measurements. Our approach began with a backstepping transformation,

which allowed us to map the nonlinear neuron growth model onto a more manageable stable target

system. Due to the complexity of the nonlinear model and the absence of existing backstepping

methods for such systems, we opted to linearize the target system. This linearization enabled us

to derive the control law and calculate the gain kernels needed for effective control. Importantly,

this linearization did not affect the stability of the overall system, as our stability analysis was

conducted using the original nonlinear model. As a result, we achieved local stability, which is

adequate because minor variations in tubulin concentration do not pose a significant risk to axon

viability. To validate our control law, we conducted simulations for both long and short-length

axon elongation scenarios. The results confirmed that our control law performs effectively,

demonstrating its potential to manage neuron growth under various conditions.

As previously mentioned, the availability of full state measurements is a critical aspect

of the state feedback design in Chapter 3. However, in most biological systems, such complete

measurements are rarely available. To address this challenge, we designed a state estimator in

Chapter 4, considering the availability of only two key measurements: axon length and the flux

of tubulin concentration from the axon to the growth cone. This estimator allows us to estimate

the tubulin concentration along the entire axon. We began by defining the observer, which

includes observer gains. These gains determine the balance between relying on the observer’s

predictions and the actual measurements. Next, we formulated the observer error dynamics,

which are critical for ensuring that the observer’s estimates converge to the actual system states.

The goal is to demonstrate that the error in these estimates eventually becomes zero, meaning the
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observer accurately converges the true state of the system. To design the observer, we applied a

backstepping transformation, similar to the approach used in the state feedback control design.

This transformation helped us map the observer error dynamics onto a target system, from which

we derived the observer gains. These gains are functions of the backstepping transformation’s

gain kernels. We then proved that the target observer error system is locally exponentially

stable, ensuring that the estimation process is reliable. We conducted simulations to evaluate the

effectiveness of our method in accurately estimating the actual states of the neuron growth system.

As an extension of this work, Chapter 4 introduces the output-feedback control law. This control

law leverages the state estimates from Chapter 4 within the control law framework developed

in Chapter 3. We also provided a stability analysis for the closed-loop system, which includes

the plant dynamics, the observer, and the control law. Finally, simulations were performed

to demonstrate that this control law successfully guides neuron growth to both short and long

desired axon lengths.

In Chapter 6, we developed a control law that compensates for input delays caused by

biological processes. These delays were modeled using a transport partial differential equation

(PDE), which resulted in the neuron growth dynamics being coupled with a transport PDE. To

address this coupled PDE-ODE-PDE system, we defined a backstepping transformation and

formulated the corresponding target system. We then demonstrated the existence of gain kernel

solutions of this transformation. Utilizing the backstepping transformation and the transport PDE,

we derived a control law that effectively compensates for the input delay, guiding the neuron to

converge to the steady-state solution. Following this, we first analyzed the stability of the target

system and then verified the stability of the original plant.

To enhance the practicality of the proposed control laws, we introduced dynamic event-

triggering mechanisms in Chapters 7 and 8. These mechanisms allow the control signal to be

sampled only when a specific event occurs, which increases the efficiency of the control law

by reducing the frequency of communication needed for neuron growth regulation. We first

defined an event-triggering mechanism that monitors the system for events—such as when the
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system approaches instability—and triggers control law updates in an aperiodic manner. Between

events, a zero-order hold is used to maintain the control signal at a constant value. However,

since this aperiodic checking can be challenging to implement in practice, we also designed a

periodic event-triggering mechanism. This mechanism checks for events at regular intervals but

samples the control law periodically. For both mechanisms, we analyzed the avoidance of Zeno

behavior (an undesirable situation where events are triggered infinitely often in a finite period)

and ensured the convergence of the system under these mechanisms. Finally, we demonstrated

the performance of these control mechanisms through simulations and provided a comparison of

their effectiveness in the later sections.

9.2 Future Work

The problem and solution presented in this dissertation represent a pioneering effort in

applying control systems theory to the neuron growth problem. This work opens up numerous

potential research opportunities, not only from a control systems perspective but also in the fields

of neurobiology, neuroscience, and medicine. From a control system design perspective, one

promising area for future research is to consider the neuron growth model parameters as unknown.

This is a realistic scenario, given the vast number of neurons, each with different physical

properties that may vary over time or be difficult to determine for specific neurons. To address

this challenge, adaptive control strategies could be employed. These strategies are designed

to estimate unknown parameters in real-time and update the control mechanism accordingly,

allowing the system to adapt to these varying parameters effectively. This approach could lead to

more robust and flexible control methods for managing neuron growth with unknown parameters.

Developing an adaptive control law is our ongoing project. These unknown parameters could

also vary over time and across different spatial domains due to the inherent complexity and

dynamic nature of biological processes, which would provide a more accurate representation

of the neuron growth process. To address these variations, adaptive mechanisms could be
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developed that adjust the control strategy in response to these changing parameters. Moreover,

this adaptive mechanism could be integrated with event-triggering mechanisms or, more advanced,

self-triggering mechanisms. These approaches would further enhance the applicability of the

control law by making it more efficient and responsive to the real-time needs of the system,

thereby reducing unnecessary computations and communications. This integration would allow

the control system to dynamically adjust not only to parameter variations but also to changes

in the environment or the state of the neuron, leading to more robust and effective control in

complex biological systems. Another major direction would be designing a control law for

a bundle of neurons instead of a single neuron which captures the collective behavior and

emergent properties of neural networks, which are essential for brain functions like perception,

learning, and decision-making. However, there is not any model that captures the behavior of a

bundle of neurons. From the perspective of designing medical therapy for neurodegenerative

diseases, it is essential to develop a mathematical model that accurately represents the dynamic

behavior of the therapy, which would serve as the actuator of the control law. This model is

crucial for predicting how the therapy will interact with the patient’s neural system over time,

allowing for the fine-tuning of treatment strategies. By capturing the complexities of the disease’s

progression and the therapy’s effects, the model enables the control law to adjust the therapeutic

interventions dynamically, ensuring optimal dosing and timing to maximize efficacy and minimize

side effects. Such a model would be instrumental in creating personalized treatment plans that

adapt to the individual needs of patients, potentially slowing or even halting the progression of

neurodegenerative conditions. These are just a couple of possible future research directions, and

the potential is by no means limited to these areas. The intersection of control systems theory

with neurobiology opens up a vast landscape of opportunities for exploration and innovation.
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[1] K.-E. Åarzén, “A simple event-based pid controller,” IFAC Proceedings Volumes, vol. 32,
no. 2, pp. 8687–8692, 1999.

[2] W. W. Ahmed and T. A. Saif, “Active transport of vesicles in neurons is modulated by
mechanical tension,” Scientific reports, vol. 4, no. 1, p. 4481, 2014.

[3] J. R. Anderson, Cognitive psychology and its implications. Macmillan, 2005.

[4] J. B. Angevine and C. W. Cotman, Principles of neuroanatomy. Oxford University Press,
USA, 1981.

[5] M. Anthonisen and P. Grutter, “Growth and elasticity of mechanically-created neurites,”
arXiv preprint arXiv:1912.05735, 2019.

[6] E. J. Bradbury and L. M. Carter, “Manipulating the glial scar: chondroitinase ABC as a
therapy for spinal cord injury,” Brain research bulletin, vol. 84, no. 4-5, pp. 306–316, 2011.

[7] E. J. Bradbury and S. B. McMahon, “Spinal cord repair strategies: why do they work?”
Nature Reviews Neuroscience, vol. 7, no. 8, pp. 644–653, 2006.

[8] M. Buisson-Fenet, S. Koga, and M. Krstic, “Control of piston position in inviscid gas by
bilateral boundary actuation,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 5622–5627.

[9] Z. Chen, J. Bentsman, and B. G. Thomas, “Enthalpy-based output feedback control of the
Stefan problem with hysteresis,” in 2020 American Control Conference (ACC), 2020, pp.
2661–2666.

[10] A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms, functions, and mechanisms,”
Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008.

[11] B. D. Clark, E. M. Goldberg, and B. Rudy, “Electrogenic tuning of the axon initial segment,”
The Neuroscientist, vol. 15, no. 6, pp. 651–668, 2009.

[12] J.-M. Coron, R. Vazquez, M. Krstic, and G. Bastin, “Local exponential Hˆ2 stabilization of
a 2\times2 quasilinear hyperbolic system using backstepping,” SIAM Journal on Control
and Optimization, vol. 51, no. 3, pp. 2005–2035, 2013.

137



[13] C. M. Cowan and L. A. Raymond, “Selective neuronal degeneration in huntington’s disease,”
Current topics in developmental biology, vol. 75, pp. 25–71, 2006.

[14] W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms and models,” Neuron,
vol. 39, no. 6, pp. 889–909, 2003.

[15] P. Day, N. Alves, E. Daniell, D. Dasgupta, R. Ogborne, A. Steeper, M. Raza, C. Ellis,
J. Fawcett, R. Keynes et al., “Targeting chondroitinase ABC to axons enhances the ability of
chondroitinase to promote neurite outgrowth and sprouting,” PloS one, vol. 15, no. 1, 2020.

[16] P. Dayan and L. F. Abbott, Theoretical neuroscience: computational and mathematical
modeling of neural systems. MIT press, 2005.

[17] D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz, “Axon physiology,”
Physiological reviews, vol. 91, no. 2, pp. 555–602, 2011.

[18] C. Demir, M. Diagne, and M. Krstic, “Periodic event-triggered boundary control of neuron
growth with actuation at soma,” arXiv preprint arXiv:2404.19206, 2024.

[19] C. Demir, S. Koga, and M. Krstic, “Neuron growth control by PDE backstepping: Axon
length regulation by tubulin flux actuation in soma,” in 2021 60th IEEE Conference on
Decision and Control (CDC), 2021, pp. 649–654.

[20] ——, “Input delay compensation for neuron growth by pde backstepping,” IFAC-
PapersOnLine, vol. 55, no. 36, pp. 49–54, 2022.

[21] ——, “Neuron growth output-feedback control by PDE backstepping,” in 2022 American
Control Conference (ACC), 2022, pp. 4159–4164.

[22] ——, “Event-triggered control of neuron growth with dirichlet actuation at soma,” arXiv
preprint arXiv:2310.00131, 2023.

[23] ——, “Neuron growth control and estimation by pde backstepping,” Automatica, vol. 165,
p. 111669, 2024.

[24] T. J. Dennerll, P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann, “The cytomechanics
of axonal elongation and retraction.” The Journal of cell biology, vol. 109, no. 6, pp.
3073–3083, 1989.

[25] S. Diehl, E. Henningsson, and A. Heyden, “Efficient simulations of tubulin-driven axonal
growth,” Journal of computational neuroscience, vol. 41, no. 1, pp. 45–63, 2016.

[26] S. Diehl, E. Henningsson, A. Heyden, and S. Perna, “A one-dimensional moving-boundary
model for tubulin-driven axonal growth,” Journal of theoretical biology, vol. 358, pp.
194–207, 2014.

[27] W. B. Dunbar, N. Petit, P. Rouchon, and P. A. Martin, “Motion planning for a nonlinear Stefan
problem,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 9, pp. 275–296,
2003. [Online]. Available: http://www.numdam.org/articles/10.1051/cocv:2003013/

138

http://www.numdam.org/articles/10.1051/cocv:2003013/


[28] S. Ecklebe, F. Woittennek, C. Frank-Rotsch, N. Dropka, and J. Winkler, “Toward model-
based control of the vertical gradient freeze crystal growth process,” IEEE Transactions on
Control Systems Technology, 2021.

[29] N. Espitia, I. Karafyllis, and M. Krstic, “Event-triggered boundary control of constant-
parameter reaction–diffusion pdes: A small-gain approach,” Automatica, vol. 128, p.
109562, 2021.

[30] N. Espitia, A. Girard, N. Marchand, and C. Prieur, “Event-based boundary control of a
linear 2×2 hyperbolic system via backstepping approach,” IEEE Transactions on Automatic
Control, vol. 63, no. 8, pp. 2686–2693, 2018.
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obtained by straining flow spinning for guiding axonal elongation in primary cortical
neurons,” ACS Biomaterials Science & Engineering, vol. 6, no. 12, pp. 6842–6852, 2020.

141



[69] K. E. Miller and D. C. Samuels, “The axon as a metabolic compartment: protein degradation,
transport, and maximum length of an axon,” Journal of theoretical biology, vol. 186, no. 3,
pp. 373–379, 1997.

[70] D. M. O’Connor and N. M. Boulis, “Gene therapy for neurodegenerative diseases,” Trends
in molecular medicine, vol. 21, no. 8, pp. 504–512, 2015.

[71] M. O’Toole, P. Lamoureux, and K. E. Miller, “A physical model of axonal elongation: force,
viscosity, and adhesions govern the mode of outgrowth,” Biophysical journal, vol. 94, no. 7,
pp. 2610–2620, 2008.

[72] M. O’Toole, R. Latham, R. M. Baqri, and K. E. Miller, “Modeling mitochondrial dynamics
during in vivo axonal elongation,” Journal of theoretical biology, vol. 255, no. 4, pp.
369–377, 2008.

[73] N. Petit, “Control problems for one-dimensional fluids and reactive fluids with moving
interfaces,” in Advances in the theory of control, signals and systems with physical modeling.
Springer, 2010.

[74] B. Petrus, J. Bentsman, and B. G. Thomas, “Enthalpy-based feedback control algorithms
for the Stefan problem,” in 2012 IEEE 51st IEEE Conference on Decision and Control
(CDC), 2012, pp. 7037–7042.

[75] M. Pool, J. Thiemann, A. Bar-Or, and A. E. Fournier, “Neuritetracer: a novel imagej plugin
for automated quantification of neurite outgrowth,” Journal of neuroscience methods, vol.
168, no. 1, pp. 134–139, 2008.

[76] B. Rathnayake and M. Diagne, “Event-based boundary control of one-phase Stefan problem:
A static triggering approach,” in 2022 American Control Conference (ACC). IEEE, 2022,
pp. 2403–2408.

[77] ——, “Event-based boundary control of the stefan problem: A dynamic triggering approach,”
in 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022, pp. 415–420.

[78] ——, “Observer-based periodic event-triggered boundary control of the one-phase stefan
problem,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 11 415–11 422, 2023.

[79] ——, “Periodic event-triggered boundary control of a class of reaction-diffusion pdes,” in
2023 American Control Conference (ACC). IEEE, 2023, pp. 1800–1806.

[80] P. Recho, A. Jerusalem, and A. Goriely, “Growth, collapse, and stalling in a mechanical
model for neurite motility,” Physical Review E, vol. 93, no. 3, p. 032410, 2016.

[81] L. Ribar and R. Sepulchre, “Neuromorphic control: Designing multiscale mixed-feedback
systems,” IEEE Control Systems Magazine, vol. 41, no. 6, pp. 34–63, 2021.

[82] D. C. Samuels, H. Hentschel, and A. Fine, “The origin of neuronal polarization: a model
of axon formation,” Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, vol. 351, no. 1344, pp. 1147–1156, 1996.

142



[83] A. Selivanov and E. Fridman, “Distributed event-triggered control of diffusion semilinear
pdes,” Automatica, vol. 68, pp. 344–351, 2016.

[84] C. J. Shatz, “The developing brain,” Scientific American, vol. 267, no. 3, pp. 60–67, 1992.

[85] N. A. Silva, N. Sousa, R. L. Reis, and A. J. Salgado, “From basics to clinical: a comprehensive
review on spinal cord injury,” Progress in neurobiology, vol. 114, pp. 25–57, 2014.

[86] A. Smyshlyaev and M. Krstic, “Closed-form boundary state feedbacks for a class of 1-D
partial integro-differential equations,” IEEE Transactions on Automatic Control, vol. 49,
no. 12, pp. 2185–2202, 2004.

[87] L. Squire, D. Berg, F. E. Bloom, S. Du Lac, A. Ghosh, and N. C. Spitzer, Fundamental
neuroscience. Academic press, 2012.

[88] G. B. Stokin and L. S. Goldstein, “Axonal transport and alzheimer’s disease,” Annu. Rev.
Biochem., vol. 75, no. 1, pp. 607–627, 2006.

[89] G. A. Susto and M. Krstic, “Control of PDE–ODE cascades with Neumann interconnections,”
Journal of the Franklin Institute, vol. 347, no. 1, pp. 284–314, 2010.

[90] D. M. Suter and K. E. Miller, “The emerging role of forces in axonal elongation,” Progress
in neurobiology, vol. 94, no. 2, pp. 91–101, 2011.

[91] S. Tang and C. Xie, “State and output feedback boundary control for a coupled PDE–ODE
system,” Syst. Contr. Lett., vol. 60, no. 8, pp. 540–545, 2011.

[92] S. Thuret, L. D. Moon, and F. H. Gage, “Therapeutic interventions after spinal cord injury,”
Nature Reviews Neuroscience, vol. 7, no. 8, pp. 628–643, 2006.

[93] T. Trappenberg, Fundamentals of computational neuroscience. OUP Oxford, 2009.

[94] D. Tsubakino, M. Krstic, and S. Hara, “Backstepping control for parabolic pdes with
in-domain actuation,” in 2012 American Control Conference (ACC). IEEE, 2012, pp.
2226–2231.

[95] A. Van Ooyen, B. P. Graham, and G. J. Ramakers, “Competition for tubulin between
growing neurites during development,” Neurocomputing, vol. 38, pp. 73–78, 2001.

[96] M. P. Van Veen and J. Van Pelt, “Neuritic growth rate described by modeling microtubule
dynamics,” Bulletin of mathematical biology, vol. 56, no. 2, pp. 249–273, 1994.

[97] S. Wang and F. Woittennek, “Backstepping-method for parabolic systems with in-domain
actuation,” IFAC Proceedings Volumes, vol. 46, no. 26, pp. 43–48, 2013.

[98] H. Yu, M. Diagne, L. Zhang, and M. Krstic, “Bilateral boundary control of moving
shockwave in LWR model of congested traffic,” IEEE Transactions on Automatic Control,
2020.

143



[99] F. Zubler and R. Douglas, “A framework for modeling the growth and development of
neurons and networks,” Frontiers in computational neuroscience, vol. 3, p. 757, 2009.

144


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	The Foundation of Neuronal Growth and Control
	Understanding Neuronal Functionality
	Why Neuron Growth Matters: From Development to Disease
	Modeling the Mysteries: Mathematical Approaches to Neuron Growth
	Transport-limited models
	Mechanically mediated growth models

	Literature Review for Neuron Growth Control
	Literature Review for PDE Control
	Research Objectives and Contributions
	Innovations in neuron growth control
	Theoretical advances in boundary control of PDEs

	Organization of the Dissertation

	Moving Boundary Neuron Growth Model
	Introduction to the Moving Boundary PDE-ODE Coupled Model
	Reference Error System and Control Objective
	Reference error system
	Linearized error system

	Towards Closed-loop Feedback Control
	Control objective
	Basic idea of Stefan type of PDE control


	State Feedback Control Design
	Backstepping Control of Neuron Growth Problem
	Transformation into target system
	Gain kernel solutions
	Backstepping control law

	Stability proof under state-feedback control
	Nonlinear target system.
	How to ensure local stability on a non-constant spatial interval.
	Inverse Transformation.
	Lyapunov analysis
	Ensuring bounds on axon length and growth rate.

	Simulations
	Parameter Values
	Axon elongation by up to three orders of magnitude


	Neuron Growth State Estimation
	Observer Design
	Observer Error System
	Backstepping Transformation
	Well-posedness of backstepping transformations

	Stability proof of designed observer
	Inverse Transformation
	Lyapunov analysis

	Simulations: Estimation of unmeasured tubulin concentration profile in a 4× growth

	Observer-based Neuron Growth Control
	Output-feedback design
	Reference error states
	Target reference error states

	Stability under output-feedback control
	Lyapunov Analysis

	Simulations: Axon elongation by up to three orders of magnitude
	Robustness to Large Uncertainty in Diffusion, Advection, and Reaction

	Input Delay Compensation
	Axon Growth Model with Input Delay
	The reference error system with input delay
	Input delay as transport PDE
	Linearized reference error system

	Backstepping Design of Delay Compensated Control
	Transformation into target system
	Gain kernel solutions
	Delay compensated backstepping control law

	Stability proof under delay compensated control
	Transformed nonlinear target system
	Inverse transformation
	System property to ensure local stability on a non-constant interval
	Lyapunov analysis
	Guaranteeing the conditions for all time


	Event-triggered Control
	Axon Growth Model with Actuation at Robin Boundary Condition
	Sample-based Control of Neuron Growth Problem
	Transformation into target system
	Gain kernel solutions
	Continuous-time and sampled-data control law

	Event-Triggered based Control
	Avoidance of zeno phenomena and stability proof under event-triggering Control
	Avoidance of Zeno phenomena
	Stability proof under event-triggering control law
	Nonlinear target system
	Lyapunov analysis

	Simulations

	Periodic Event-triggered Control
	Periodic event-triggered based control
	Selection of the sampling period
	Design of the periodic event triggering function p(t)

	Convergence proof under periodic event-triggering control law
	Nonlinear target system
	Lyapunov analysis

	Simulations

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

