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Molecular pathogenesis of refractory 
corticotroph adenomas

Germline and somatic mutations

Although the majority of corticotroph tumors are sporadic 
monoclonal adenomas [3], mutations in the ubiquitin-
specific protease 8 (USP8) gene have been identified in 
~ 30–50% of corticotroph tumors with a female preponder-
ance [4–6, Table  1]. Thus far, heterozygous single-point 
USP8 mutations have exclusively occurred at hotspot 
sites in exon 14 in a region flanking S718 (RSYSSP) [4–
6]. These USP8 mutations interrupt its interaction with a 
chaperone protein 14-3-3 to increase deubiquitination of 
the epidermal growth factor receptor (EGFR) and enhance 
EGFR-induced ACTH [3–6]. Interestingly, USP8-mutated 
corticotroph tumors exhibit comparatively benign behav-
ior, and invasive and treatment-refractory corticotroph 
tumors more frequently exhibit a USP8-WT genotype [7]. 
One study showed that USP8-WT refractory corticotroph 
tumors harbor TP53 mutations, contributing to a high level 
of chromosome instability which may underlie, at least in 
part, their aggressive behavior [7].

Interestingly, a further missense mutation in the cata-
lytic domain of another deubiquitinase, USP48 [at Met 415 
(M415I/V)], has been found by whole exome sequencing 
in 6 out of 22 corticotroph tumors further confirmed by tar-
geted sequencing in 16 out of 147 corticotroph tumors [8]. 

Introduction

Corticotroph adenomas account for 4-8% of all pituitary 
tumors with the majority (85%) being benign adenomas that 
can be successfully offered remission with transnasal trans-
sphenoidal resection by an experienced pituitary surgeon 
[1]. However, up to 20% of these tumors exhibit high recur-
rence rates and/or are refractory to conventional and often 
repeated surgical, medical, and radiotherapeutic approaches 
[2]. This group of refractory corticotroph tumors includes 
Crooke’s cell adenomas, silent corticotroph adenomas, 
and corticotroph carcinomas [2]. Molecular studies have 
advanced our understanding of the pathogenesis and behav-
ior of this subset of refractory corticotroph tumors and some 
of these may help identify tumors requiring increased sur-
veillance. Presently, however, they do not guide successful 
treatment choices, which remain limited.
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Abstract
The majority of corticotroph adenomas are benign but some are locally invasive, demonstrate high rates of recurrence, 
and exhibit a relatively poor response to often repeated surgical, medical, and radiation treatment. Herein, we summarize 
the currently known somatic and genetic mutations and other molecular factors that influence the pathogenesis of these 
tumors and discuss currently available therapies. Although recent molecular studies have advanced our understanding of 
the pathogenesis and behavior of these refractory corticotroph adenomas, these insights do not reliably guide treatment 
choices at present. Development of additional diagnostic tools and novel tumor-directed therapies that offer efficacious 
treatment choices for patients with refractory corticotroph adenomas are needed.
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The mutation results in increased USP48 activity thereby 
affecting NFκB activation and regulation of POMC tran-
scription [8]. Additionally, a gain-of-function mutation in 
exon 9 of PIK3CA (G1009E) was identified in one of six 
invasive corticotroph tumors, and a concurrent HRAS G12R 
mutation was noted in the same tumor [9]. In other stud-
ies, lack of ATRX immunolabelling due to a loss-of-function 
ATRX mutation was reported in 3 refractory corticotroph 
pituitary tumors and 4 corticotroph-carcinomas [10]. These 
ATRX single nucleotide variants and small indels are located 
across the coding region of ATRX, and concomitant with 
mutations in TP53, PTEN, RB1, NF2, and/or CDKN2A/B 
and may contribute to corticotroph tumor progression in 
some cases [10].

In contrast, germline mutations predisposing to cortico-
troph tumors are relatively rare and mutations of DICER1, 
CDK5, and Abl Enzyme Substrate 1 (CABLES1) have thus 
far only been reported in refractory pediatric corticotroph 
tumors [11–12, Table 1].

Role of epithelial to mesenchymal transition

Epithelial to mesenchymal transition (EMT) is a dynamic 
functional biological process that can occur in terminally 
differentiated mature adult epithelial cells in response to 
inflammatory, hypoxic, or other pathological stressors [13]. 
Furthermore, EMT can work cooperatively with epigenetic 
and genetic changes to drive clonal tumor outgrowth, inva-
sion, and metastatic spread [14]. EMT has previously been 
reported in somatostatin receptor ligand-resistant somato-
troph and in USP8-WT corticotroph tumors [15, 16].

We recently confirmed EMT in a series of invasive 
silent corticotroph tumors. Single-cell RNA sequencing 
demonstrated increased expression of several cytoskel-
etal components (ACTB, PFN1, GSN, and MYL12A) which 
regulate granule exocytosis and cell polarization in silent 
– compared to functional – corticotroph tumors. In parallel 
with this increase in EMT transcripts in silent corticotroph 
tumors, we observed loss of transcripts related to hormonal 

biogenesis and secretion such as granin proteins (SCG5 and 
VGF), small GTPases, and their partners (RAB3B, RHOB, 
RHEB, ARL5B, and PLD3). These changes suggest that a 
common transcriptional re-programming mechanism that 
simultaneously impairs ACTH production and activates 
tumor invasion may be present in silent corticotroph tumors 
and potentially provides additional insight into their inva-
sive behavior [17].

Treatment of refractory corticotroph 
adenomas

The designation as a refractory corticotroph tumor is largely 
a retrospective diagnosis, as it is often only after such tumors 
have failed “standard of care” medical, surgical (often mul-
tiple), and radiation therapy that they declare themselves. A 
systematic review of 2,653 patients demonstrates that revi-
sion surgery can offer remission in 58% of patients [18]. 
Radiation therapy can also offer excellent remission rates 
of between 55 and 100% with conventional radiotherapy 
and 42-81% with stereotactic approaches [19]. In a 2020 
study of 45 corticotroph adenomas, which included 10 
“aggressive” corticotroph tumors, gamma knife radiosur-
gery achieved hormonal remission in 54% and 40% and 
radiologic remission in 26% and 10% of patients, respec-
tively, at 5–10 years. Hypopituitarism was observed in 15% 
of both patient groups [20]. It is also notable that whereas 
bilateral adrenalectomy is highly effective in treating hyper-
cortisolism, it may result in corticotroph progression with 
a mean prevalence of 43% at a mean interval of 5.3 years 
[21].

Currently, no approved medical therapies exist for refrac-
tory corticotroph tumors, although treatment with the alkyl-
ating agent temozolomide has become first-line therapy for 
this subset. In a European Society of Endocrinology survey 
of 73 aggressive corticotroph tumors and carcinomas treated 
with temozolomide, 6 demonstrated a complete response, 
22 a partial response, 20 exhibited stable disease, and 25 
manifested disease progression [22].

More recently, the immune checkpoint inhibitors, ipili-
mumab, nivolumab, and pembrolizumab, have been used to 
treat seven patients with refractory corticotroph adenomas 
following which four patients exhibited a partial response, 
one stable disease (SD), one radiologically stable disease 
but clinically relevant tumor growth, and one progressive 
disease (PD). Notably, the one patient who exhibited PD 
and an additional patient that exhibited SD both had bio-
chemical evidence of hypercortisolism, raising the possibil-
ity that immune checkpoint inhibitors may be less effective 
when hypercortisolism is present though numbers of treated 
patients are small [1].

Table 1  List of Somatic and Germline Mutations in Refractory Corti-
cotroph Tumors
Gene Site Frequency Ref
Somatic mutations
USP8 Region (RSYSSP) 

flanking S718
30–50% [4–

7]
USP48 M415I/V 6 out 22 cases [8]
PIK3CA G1009E 1 out of 6 cases [9]
HRAS G12R 1 out of 6 cases [9]
ATRX Multiple 7 out of 25 cases [10]
Germline mutations
DICER Multiple 7 out of 192 cases [11]
CABLES Multiple 2.20% [12]
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Two refractory corticotroph adenomas have been treated 
with peptide receptor radionuclide therapy (PRRT), using 
a radionuclide linked to a somatostatin receptor ligand. 
One patient died shortly after treatment, whereas the other 
patient developed facial pain which prevented further ther-
apy and this subject died thirteen months later [23].

A monoclonal antibody against vascular endothelial 
growth factor (VEGF), bevacizumab, has also been used 
to treat eight refractory corticotroph adenomas follow-
ing which five exhibited radiologically stable disease 
(one patient was concurrently treated with pasireotide and 
another with temozolomide), and an additional patient 
treated with bevacizumab in combination with temozolo-
mide and radiotherapy showed a complete response [23, 
24]. The remaining two bevacizumab-treated patients died 
within four months of initiating therapy [24].

All three refractory corticotroph adenomas treated with 
the mTOR inhibitor, everolimus ultimately developed dis-
ease progression, although one patient exhibited transient 
stable disease for five months prior to disease progression 
[24, 25]. Lastly, one refractory corticotroph adenoma that 
had failed to respond to temozolomide, everolimus, and 
bevacizumab also failed to respond to the multi-targeted 
tyrosine kinase inhibitor, sunitinib [25].

Future directions

In summary, current standard of care therapy offers disease 
remission or at least control in the majority of patients with 
corticotroph tumors. However, a small subset of cortico-
troph tumors exhibit a poor response to combinations of 
currently available medical, surgical, and radiotherapeutic 
approaches, exhibit high rates of recurrence, and cause sig-
nificant morbidity and occasional mortality in our patients. 
These refractory corticotroph adenomas represent an ongo-
ing treatment challenge and further tools are needed to iden-
tify this tumor subset earlier in the disease course and guide 
more efficacious treatment choices. Clearly, additional 
novel tumor-directed therapies are needed to change disease 
outcomes for this patient subgroup.
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