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Mass extinction events are recognized by increases in extinction rate and

magnitude and, often, by changes in the selectivity of extinction. When con-

sidering the selective fingerprint of a particular event, not all taxon

extinctions are equally informative: some would be expected even under a

‘background’ selectivity regime, whereas others would not and thus require

special explanation. When evaluating possible drivers for the extinction

event, the latter group is of particular interest. Here, we introduce a

simple method for identifying these most surprising victims of extinction

events by training models on background extinction intervals and using

these models to make per-taxon assessments of ‘expected’ risk during

the extinction interval. As an example, we examine brachiopod genus extinc-

tions during the Late Ordovician Mass Extinction and show that extinction

of genera in the deep-water ‘Foliomena fauna’ was particularly unexpected

given preceding Late Ordovician extinction patterns.
1. Introduction
Mass extinction events in the fossil record offer the opportunity to study extinc-

tion processes during a wide range of biological and environmental

perturbations. One of the most striking and informative features of such

events is their selectivity. Extinction patterns are rarely consistent with a

random ‘field of bullets’ model, but are often strongly selective with respect

to ecological, environmental and biogeographic factors [1–4].

Selectivity patterns can be powerful sources of information about the

drivers of extinction events, but it is important to consider selectivity patterns

during mass extinctions in the context of the intervals of ‘background extinc-

tion’ that precede them [5,6]. Extinctions during background intervals are

also often highly non-random with respect to a variety of factors [2,5–7]. Con-

sequently, when evaluating a mass extinction event, the critical question is how

and to what degree selectivity patterns during the event differ from those

observed during previous intervals. Some taxon extinctions are more unex-

pected—that is, they represent a more surprising departure from background

extinction patterns—than others.

Here, we outline a simple method for determining which specific extinc-

tions represent the greatest departures from background patterns. Our

approach is to create models of extinction selectivity based on observed extinc-

tion/survival patterns during the background extinction intervals leading up to

the mass extinction event. We then use these models to predict the expected
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Figure 1. Summary of multiple logistic regression models for different Late Ordovician intervals. Each column represents an interval and each row a predictor.
Colours indicate sign of log-odds associated with the predictor in a given interval and text gives the log-odds. Positive log-odds (magenta) indicate that as
the predictor value increases marginal extinction risk increases; negative log-odds (green) indicate that as the predictor value increases marginal extinction risk
decreases. Only predictors that are significant at the 95% confidence level are plotted. S1: Sandbian 1, S2: Sandbian 2, K1: Katian 1, K2: Katian 2, K3: Katian
3, K4: Katian 4, H: Hirnantian. (Online version in colour.)
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extinction risk of each taxon during the mass extinction inter-

val based on the risks observed for taxa with similar traits

during background intervals.

As an example, we use this approach to examine extinc-

tions of rhynchonelliform (articulate) brachiopods during

the Late Ordovician Mass Extinction (LOME), one of the

‘Big 5’ largest extinctions of the past 500 Myr [8,9]. This

extinction event occurred in two distinct pulses: a latest

Katian (approx. 444.7 Ma) pulse broadly associated with cool-

ing, glaciation and sea-level fall and a mid-Late Hirnantian

pulse (at the base of the persculptus graptolite biozone) associ-

ated with warming, melting of ice sheets and continental

flooding [10,11]. The LOME has long been notable for exhibit-

ing relatively little taxonomic selectivity compared with other

mass extinction events, but recent analyses of benthic macro-

invertebrates have detected significant selectivity related to

habitat preference, depth range, abundance and inferred

thermal tolerance range [12–17].
2. Material and methods
(a) Database
We base our analyses on a large and taxonomically standardized

database of the local stratigraphic ranges of rhynchonelliform

brachiopods compiled from the literature and from ongoing

research programmes in Durham and Copenhagen [15–17].

Ranges are expressed in terms of the British chronostratigraphic

system, which we adapt accordingly: Early Caradoc (Sandbian

1), Mid Caradoc (Sandbian 2), Late Caradoc (Katian 1), Pusgillian

(Katian 2), Cautleyan (Katian 3), Rawtheyan (Katian 4) and

Hirnantian. These stage subdivisions overlap with, but are not

identical to, those of Bergstrom et al. [18]. Palaeogeographic

coordinates for each local region are based on reconstructions

by Cocks & Torsvik [19,20].
Taxonomic revisions were assessed and recommendations

implemented to avoid synonyms. Brachiopod genera exhibit

strong depth preferences, and benthic assemblage zones (BAs)

have long been used as depth indicators in the Early Palaeozoic.

Each genus in our dataset was assigned a BA range based on

information in the literature, often with reference to associated

fauna or lithology. Further details regarding the database are

available in previous publications [13,15–17].

(b) Extinction and risk predictors
Data manipulations and analyses were carried out in the R pro-

gramming environment [21]. Although it would be desirable to

analyse species extinction risk, there is still considerable uncer-

tainty about Ordovician brachiopod taxonomy at the species

level. Consequently, we follow many previous analyses of the

marine invertebrate fossil record in conducting analyses at the

genus level [4,6,22] with the recognition that genera are to

some degree artificial constructs. Within each of the seven Late

Ordovician intervals analysed, we tabulated several aspects

of geographical, bathymetric, environmental and macrostrati-

graphic distribution for each genus. See ‘Description of

predictors’, in the electronic supplementary material, for

descriptions of how predictors were calculated and standardized.

(c) Modelling relationships between predictors and
background extinction risk

We examined relationships between the predictors described

above and ‘background’ extinction patterns in five pre-extinction

intervals (Sandbian 1 and 2, Katian 1–3) and the two pulses of

the LOME (Katian 4, Hirnantian). We used stepwise regression

(direction¼ ‘both’) to choose from among the predictors

described above and build additive logistic regression models

for each interval, in each case selecting the model with the

lowest Akaike information criterion. We chose logistic regression

as an analytical framework, because it is an established method

with well-understood properties that has previously been applied
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to many analyses of extinction/survival in the fossil record

[4,6,7,22].
3. Results and discussion
Logistic regression coefficients (log-odds ratios) of risk pre-

dictors show considerable variability across intervals,

demonstrating that the determinants of apparent extinction

risk vary both between the mass extinction intervals and

the background intervals and among background intervals

(figure 1). Consistent with earlier analyses using a different
statistical methodology [13], number of localities, pro-

portional stratigraphic truncation, absolute latitudinal range

and minimum depth are significantly associated with appar-

ent extinction risk in the latest Katian interval (Katian 4), but

of these only number of localities and, to a lesser degree, pro-

portional stratigraphic truncation are consistent predictors of

apparent extinction risk during background intervals. We

focus the remainder of our discussion on the latest Katian

extinction pulse both because it is larger and because it

has a more distinct selective signature than the second,

Hirnantian pulse [12,13] (figure 1).
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Ranking genera present during the Katian 4 and Hirnan-

tian intervals from lowest to highest based on the median risk

prediction from the full suite of background models provides

an overall measure of expected risk conditioned on prior

extinction selectivity patterns (electronic supplementary

material, table S1; figure 2). As would be expected consider-

ing the consistent importance of predictors such as number of

localities and proportional truncation, there is some corre-

spondence between expected risk and observed extinctions:

during both intervals most of the genera that go extinct

come from the high end of the predicted risk spectrum and

most of the genera that survive have low predicted risk.

Given that 112 of 219 genera appear to go extinct during

Katian 4, the degree of correspondence can be evaluated by

comparing observed extinction versus survival with pro-

jected extinction versus survival if the 112 genera with the

highest expected risk (lower half of figure 2a) had gone

extinct and the 107 genera with the lowest expected risk

(upper half of figure 2a) had survived. In total, 79 of 112

observed extinctions fall within this set (true positive

percentage ¼ 71%) and 74 of 107 observed survivors are

among the projected survivors (true negative percentage ¼

69%). Of more interest when considering changes in selective

regime between the LOME and preceding intervals are the 33

genera with relatively high expected risk that did not go

extinct and, especially, the 33 genera that went extinct despite

having relatively low expected risk.

No obvious commonalities unite the members of the

former group, but conspicuous within the latter group are

the members of the ‘Foliomena fauna’, a distinctive assem-

blage of small, thin-shelled genera that were widely

distributed in tropical and subtropical seas and inhabited

deeper-water (BA 4–6) environments during the Late Ordo-

vician [23,24] (highlighted genera in figure 2a). Of seven

genera identified as core members of this fauna by Cocks &

Rong [25], all but Cyclospira disappear in the latest Katian.

Simultaneous extinction of graptolite clades associated with

oxygen minimum zones [26,27] and proxy evidence for

enhanced ventilation of the shelves at this time [28,29]

suggest that extinction of the Foliomena fauna may represent

loss of a distinctive deep-water biotope adapted to low-

oxygen conditions widespread during the Katian greenhouse

climate state [13] (but see Hammarlund et al. [28] for an

alternative interpretation). We assessed the probability of

observed Foliomena fauna extinctions happening by chance

given background selectivity patterns and latest Katian

extinction rates by randomly drawing 112 genera 10 000

times for each of the five background interval models, in

each case using per-genus expected risk estimates from that

model as sampling probabilities. The expected probability

of extinction of six or more of the core Foliomena fauna mem-

bers is low for all background models, ranging from 0.0133

(Sandbian 1) to ,0.0001 (Katian 1 and Katian 3) (electronic

supplementary material, figure S1), with an overall

probability across all models of 0.0039.

The consistency of number of localities and, to a lesser

degree, proportional stratigraphic truncation as predictors

of apparent extinction risk (figure 1) may be a genuine

signal, as narrowly distributed taxa are at greater risk of

extinction under most extinction scenarios, including
regression and draining of regional seaways [12,30]. How-

ever, this association could also be an artefact of sampling

bias. Genera that are only sampled in a single locality are

likely to have prematurely truncated stratigraphic ranges,

especially if that locality exhibits a hiatus [31,32]. The local

range-based nature of our dataset precludes use of occur-

rence-based approaches to assessing time of extinction

[33,34], but to reduce the potential influence of sampling

biases we re-ran our analysis after excluding both genera

sampled in only a single region and genera sampled in

only a single interval. Owing to edge effects Sandbian 1

cannot be included in this analysis, but observed selectivity

patterns in the remaining intervals are broadly comparable

to those in the full dataset (electronic supplementary

material, figure S2). There is a moderately strong positive cor-

relation between median expected risk estimates based on the

full dataset and those based on the culled dataset (electronic

supplementary material, figure S3), and extinctions of core

members of the Foliomena fauna remain among the least

expected given background extinction patterns (electronic

supplementary material, figures S4, and S5). Consequently,

we tentatively conclude that, although sampling biases

doubtless have an influence on apparent extinction risk pat-

terns, these biases are unlikely to account for the very low

expected risk of the Foliomena fauna. The extinction of these

genera appears to be a genuinely unexpected and potentially

informative selective pattern that merits further investigation.

The approach outlined here provides a simple framework

for determining which taxa are most likely to have been vic-

tims of unusual stresses and which are most likely to have

been the expected casualties of ‘normal’ extinction processes.

In this example, we have used logistic regression because of

its familiarity and simplicity, but a wide variety of statistical

methods could be employed. Ecological, physiological and

phylogenetic factors could also be considered in assessing

expected risk and, when available, taxon occurrence data

and data on the spatio-temporal distribution of the strati-

graphic record could be incorporated to estimate and

reduce the influence of sampling biases. Our approach can

be applied to examine other mass extinction events in the

fossil record, but could also be used to scan for particularly

surprising extinctions that may shed light on extinction

processes during background intervals.
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