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BRIEF COMMUNICATION OPEN

The need for a clinical case definition in test-negative design
studies estimating vaccine effectiveness
Sheena G. Sullivan 1,2✉, Arseniy Khvorov1, Xiaotong Huang3, Can Wang3, Kylie E. C. Ainslie 3,4, Joshua Nealon 3, Bingyi Yang3,
Benjamin J. Cowling 3,5,6 and Tim K. Tsang3,6

Test negative studies have been used extensively for the estimation of COVID-19 vaccine effectiveness (VE). Such studies are able to
estimate VE against medically-attended illness under certain assumptions. Selection bias may be present if the probability of
participation is associated with vaccination or COVID-19, but this can be mitigated through use of a clinical case definition to screen
patients for eligibility, which increases the likelihood that cases and non-cases come from the same source population. We
examined the extent to which this type of bias could harm COVID-19 VE through systematic review and simulation. A systematic
review of test-negative studies was re-analysed to identify studies ignoring the need for clinical criteria. Studies using a clinical case
definition had a lower pooled VE estimate compared with studies that did not. Simulations varied the probability of selection by
case and vaccination status. Positive bias away from the null (i.e., inflated VE consistent with the systematic review) was observed
when there was a higher proportion of healthy, vaccinated non-cases, which may occur if a dataset contains many results from
asymptomatic screening in settings where vaccination coverage is high. We provide an html tool for researchers to explore site-
specific sources of selection bias in their own studies. We recommend all groups consider the potential for selection bias in their
vaccine effectiveness studies, particularly when using administrative data.

npj Vaccines           (2023) 8:118 ; https://doi.org/10.1038/s41541-023-00716-9

INTRODUCTION
Since the initial roll-out of COVID-19 vaccines, the test-negative
design has been frequently applied to enable timely monitoring of
COVID-19 vaccine effectiveness (VE)1. This design has been
extensively used for estimation of influenza VE2, for which studies
have often leveraged sentinel surveillance systems where patients
presenting with a particular clinical case definition are enroled
from ambulatory or inpatient medical facilities, regardless of their
vaccination status, and tested for the pathogen of interest. Those
patients testing positive are identified as cases, while those testing
negative are identified as non-cases. VE is estimated from the
odds ratio comparing the odds of vaccination among the cases
versus non-cases, adjusting for important confouders3,4. Here, the
term “non-cases” is deliberately used because case status is not
known at the time of enrolment, and no sampling frame is used to
guide recruitment of cases and non-cases, which differentiates the
test-negative design from the traditional case-control study.
The test-negative design has been extensively validated for

influenza4–9, usually under the scenario described above. We have
previously reviewed its application to other pathogens and have
cautioned that its suitability needs to be re-examined for each
new use2. The applicability of the test-negative design for
monitoring COVID-19 VE was not examined until after widespread
use and several possible weaknesses were highlighted10.
Here, we focus on one key design feature of the test-negative

design that has been variously implemented: the restriction of
participants to those meeting a clinical case definition. Prior to
COVID-19, laboratory tests for confirmation of infection were

typically only conducted on people with clinical symptoms.
However, given the pre-symptomatic transmission potential of
COVID-19 cases, laboratory tests were conducted on many people
without symptoms, so some studies using the test-negative
design may include participants that would not meet a clinical
case definition. Notwithstanding other sources of bias, the use of a
clinical case definition is an attempt to ensure that cases and non-
cases are derived from the same source population; i.e., patients
who would have presented for care with the disease of interest
and been enroled as cases had they tested positive for the
pathogen of interest. The causal model is depicted in Fig. 1.
Clinical restriction underscores two key features of test-negative

studies. First, in this design, VE is not estimated against infection
per se, but estimates the vaccine’s effectiveness at preventing
medically-attended illness (or hospitalised illness, if enrolment is in
hospitals). Second, failure to restrict the population in this way
breaks the assumption that cases and non-cases are derived from
the same source population10. This problem relates to the
selection bias that might be induced by differential health seeking
between cases and non-cases6,8,10. Lewnard et al. explored this
problem and noted that in scenarios where healthcare seeking is
correlated with vaccination, ignoring it inflates VE estimates10.
Studies using health services databases may be at greatest risk

of this selection bias. These studies typically use data collected for
administrative purposes rather than for the study in question.
They may assimilate results on a broad range of individuals tested
for a variety of reasons. For example, administrative datasets may
include a high proportion of people tested asymptomatically as
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part of screening programmes, close contacts tested to clear
isolation, or the worried well. The pool of negative test results may
be over-represented by people whose degree of risk was
associated with their vaccination status (e.g., because their
workplace requires both asymptomatic screening and vaccina-
tion), which can result in a higher proportion of unvaccinated
cases leading to higher VE estimates.

EVIDENCE FROM A SYSTEMATIC REVIEW
To demonstrate the problem, we explored VE estimates extracted
as part of a systematic review1 of test-negative design studies that

estimated VE against medically attended COVID-19 illness and
severe disease (hospitalisation, admission to intensive care unit
and/or death) for a primary course of vaccination. Full details are
provided elsewhere1, but briefly, papers were included if the
authors described the study as a test-negative design or all
participants included in the analysis had been tested for SARS-
CoV-2, irrespective of clinical criteria. Data were extracted using a
standard data collection form, which included whether or not the
study used clinical criteria for enrolment.
The search was last updated 11 July 2022 and identified

66 studies that met our inclusion criteria (Supplementary Table 1).
Forty-one studies used clinical criteria for enrolment, while 25 did
not (Supplementary Tables 1 and 2). Pooled VE was estimated
using random effects meta-analysis. VE against medically-
attended illness from studies that did not use clinical criteria
was higher (VE: 87%; 95% CI: 83%, 90%) than studies that used
clinical criteria (VE: 81%; 95% CI: 78%, 83%; Fig. 2), representing a
ratio of odds ratios (ROR), 1.44 (95% CI: 1.08, 1.91). VE against
severe disease was also higher in studies that did not use clinical
criteria (VE: 93%; 95% CI: 91%, 95% versus VE: 87%; 95% CI: 84%,
90%; Fig. 2), corresponding to an ROR of 1.92 (95% CI: 1.30, 2.85).
In meta-regression these ratios were recalculated adjusting for
whether the study included participants with prior infection, the
predominant SARS-CoV-2 circulating variant and the type of
vaccine used. These adjustments reduced the RORs to 1.17 (95%
CI: 0.95, 1.46) for medically-attended illness and 1.48 (95% CI: 1.08,
2.04) for severe illness, suggesting that clinical criteria may be
more important for studies of severe disease.
We note that some studies using administrative data have

restricted the study sample to individuals with certain discharge
codes to approximate a clinical case definition11. However, discharge
diagnoses are assigned after testing, so this approach may still fail to
achieve exchangeability between cases and non-cases in terms of
their clinical indications for testing. Moreover, such an approach is
contingent on assuming that testing was not influenced by the
patient’s vaccination status. When test-negative studies are run
prospectively, participating providers can be reminded to remain
impartial about vaccination status when sampling patients.

EVIDENCE FROM SIMULATIONS
We also sought to demonstrate the impact of this form of
selection bias using a simple simulation. The associated R
script is provided in the Supplementary Information and at
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Fig. 1 Directed acyclic graph illustrating selection bias in test-
negative studies by health-care-seeking behaviour. In (a), health-
care-seeking behaviour HS confounds the relationship between
vaccination V, SARS-CoV-2 infection status SI (e.g., by influencing
engagement in risk behaviours), and COVID-19 status C19 (e.g.,
because of other healthy behaviours that modify disease severity).
Only patients who are tested for SARS-CoV-2 are selected into the
study S= 1. An individual’s health-care-seeking behaviour HS and
COVID-19 status C19 influence whether they present for care, are
tested and selected into the study S= 1, resulting in collider bias. In
(b), the test-negative design by restricting participants to those who
present to sentinel sites and meet particular clinical criteria HS= 1,
the collider bias introduced by S= 1 is blocked enabling unbiased
estimation of the V-C19 effect.
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Fig. 2 Summary of VE estimates for 66 studies included in systematic review and published between January 2021 and July 2022.
a shows VE against medically-attended illness, while (b) shows VE against severe disease. Points indicate the VE point estimate from each
study without confidence intervals. Black points with lines show the pooled estimate from the random-effect meta-analysis with 95%
confidence intervals. Shaded area is the violin plot, which is the smoothed density of the VE point estimates.
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https://github.com/khvorov45/casedef. We assumed cases are all
people with a positive test result, which includes people infected
with SARS-CoV-2 who have symptoms (e.g., identified through
symptomatic testing) and people infected with SARS-CoV-2 who
do not have symptoms (e.g., identified through asymptomatic
screening). Non-cases are all people with a negative test result,
some of whom have symptoms and are infected with anything
other than SARS-CoV-2, and some of whom have no symptoms
and are not infected with SARS-CoV-2 (we will call them “healthy”
to differentiate them from people who have an infection). Table 1
shows the default simulation parameters under which the VE
estimate from a test-negative study is unbiased.
We first explored the scenario where the asymptomatic

proportion was allowed to vary by case status but did not vary
by vaccination status. The bias in this situation is negligible
(diagonals in Fig. 3a, b).
Next, we examined the situation where some proportion of

non-cases are healthy and would not be included if using a clinical
case definition. This scenario might occur if the dataset includes
people from workplaces that conduct asymptomatic screening.
Figure 3a shows the effect of this bias. If those same workplaces
also require vaccination, then the proportion of healthy vacci-
nated non-cases may be greater than the proportion of healthy
unvaccinated non-cases. In this scenario, the expected VE estimate
is biased positively away from the null (i.e., bottom right half of
Fig. 3a; VE is overestimated). When the proportion of healthy
individuals is lower among the vaccinated compared with
unvaccinated non-cases, which might occur if eligibility for travel
or entertainment entrance is contingent on testing for the
unvaccinated, VE is biased towards the null and can even be
negative (i.e., top left half of Fig. 3a; VE is underestimated). This

bias is negligible at low disease prevalence even in the extreme
case of both proportions being 100% (this would be equivalent to
a standard case-control study).
The converse scenario showing bias that occurs when the

asymptomatic proportion among the cases is varied is shown in
Fig. 3b. When vaccination reduces symptoms severity11, and the
proportion of asymptomatic cases is higher among the vacci-
nated, the estimate is biased towards the null (i.e., bottom right
half of Fig. 3b; VE is underestimated). This might occur if the
dataset includes people working or resident in settings where
vaccination is high (e.g., aged care) and testing identifies a high
proportion of asymptomatic cases through screening during an
outbreak. Note, however, that the scenarios in Fig. 3b result in less
bias than those depicted in Fig. 3a.
If the asymptomatic proportions among cases and non-cases

are not the same for the vaccinated and the unvaccinated, a
compounding effect is observed (Fig. 3c). For example, if the
proportion asymptomatic in cases is greater in the vaccinated, we
know from Fig. 3b the bias will be negative. If the proportion
healthy in non-cases is greater in the unvaccinated, we know from
Fig. 3a the bias will be negative. When both are true, the bias
becomes more negative and pulls estimates further from their
true value. In some scenarios, the bias may cancel out, such as
when the proportion asymptomatic in cases is greater in the
vaccinated, and proportion healthy in non-cases is greater in the
vaccinated. To realise the inflated VE seen in the systematic
review, the most likely scenario is one where the healthy
proportion among vaccinated non-cases is higher than among
unvaccinated non-cases (i.e., columns marked 50%V 0%UV or 50%
V 10%UV), irrespective of the asymptomatic proportion among
the cases. However, there are numerous possible scenarios and
the degree of bias will change under different default parameter
values. Further combinations of parameter values can be explored
using an html tool available at https://github.com/khvorov45/
casedef.

CONCLUSIONS
Rapid VE estimation, especially estimation that leverages admin-
istrative data and can therefore be done less expensively than
studies which follow a sampling framework, is an attractive option.
However, research groups and policy makers need to understand
the pitfalls of this approach.
The application of a clinical case definition in test-negative

studies provides some reassurance that the non-case group
reflects the source population of the cases12. While this
requirement increases the likelihood that the non-cases have a
similar risk of exposure to the SARS-CoV-2 virus, it does not
guarantee it. Some non-cases may still fail to meet the exposure
necessity assumption12; i.e., some non-cases may not, in fact, have
been exposed to the virus and were therefore never at risk of
COVID-19 illness. Moreover, the use of clinical criteria seeks to
address internal validity; generalisability is limited to the
healthcare seeking population13. In some special cases, it may
be possible to estimate VE in the whole population; for example,
when participants are recruited through point-prevalence sur-
veys14 or in studies that limit participants to close contacts of a
case such as household transmission studies15. However, those
approaches may still suffer from participation bias13.
Salvaging internal validity, at a minimum, is important for

public health decision making. In VE studies, generalising to the
healthcare-seeking population may be satisfactory since it is the
burden on our health systems we wish to mitigate with
vaccination. Where selection processes fail to ensure the study
sample represents the source population, various methods exist
to correct the resultant selection bias, but may require additional
information unavailable to the researcher16–19. We recommend
that all research groups perform an assessment of the degree to

Table 1. Default simulation parameters when VE is unbiased.

Parameter Values

Vaccine effectivenessa 60%

Proportion of healthy included as non-casesb

Vaccinated 0%

Unvaccinated 0%

Proportion of asymptomatic included as cases

Vaccinated 0%

Unvaccinated 0%

Proportion of SARS-CoV 2 infections that are symptomatic

Vaccinated 50%

Unvaccinated 50%

Risk of SARS-CoV-2c in unvaccinated 1%

Risk SARS-CoV-23 in vaccinated (discounting the effect of
vaccination).

1%

Probability of a symptomatic infection with anything other
than SARS-CoV-2

20%

Vaccine coverage 70%

aVaccine effectiveness is against any SARS-CoV-2 infection, regardless of
symptoms.
bThe “proportion of healthy included as non-cases” for the vaccinated
means the proportion of the population (who are vaccinated and healthy)
that are included into the study as non-cases. When this parameter is 0, no
vaccinated healthy person is included into the study (as is the case in true
test-negative studies). When this parameter is at 100%, the entire
vaccinated, non-case population is comprised of ‘healthy’ people who
are uninfected with the target pathogen (as is the case in case-control
studies). Similar logic applies to this parameter for the unvaccinated.
cThe risk of SARS-CoV-2 means probability of true SARS-CoV-2 infection
(either symptomatic or asymptomatic) given enrolment into the study.
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which VE is biased under selection scenarios relevant to their
setting. The tool we have provided can help with this
assessment.
When conducted with a clinical case definition in mind, test-

negative studies may be able to provide valid estimates of VE
against a specific syndrome of medically-attended disease. When
the indications for testing are ignored, the resulting VE is unbiased
only when the asymptomatic proportions included into cases and
non-cases are the same for the vaccinated and the unvaccinated,
which is rare. It is otherwise unclear what the VE estimate

represents, but it is unlikely to be a measure of VE against
infection, nor medically-attended illness, and is instead some
hybrid, the public health implications of which are unclear (and
possibly unhelpful). If the goal is to estimate VE against infection,
not disease, the test-negative design is not the best design choice,
and those choosing it need to acknowledge fully its limitations.
The tool we have provided in the supplementary information can
help researchers assess the potential for bias under scenarios most
plausible for their population.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Proportion healthy in noncases in vaccinated

P
ro

po
rt

io
n 

he
al

th
y 

in
 n

on
ca

se
s 

in
 u

nv
ac

ci
na

te
d

a

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%
Proportion asymptomatic in cases in vaccinated

P
ro

po
rt

io
n 

as
ym

pt
om

at
ic

 in
 c

as
es

 in
 u

nv
ac

ci
na

te
d b

0%

−4%

−20%

4%

0%

−15%

13%

11%

0%

11%

9%

−3%

14%

11%

1%

21%

19%

11%

27%

25%

20%

28%

27%

22%

31%

30%

27%

−16%

−21%

−44%

−11%

−16%

−36%

3%

−1%

−16%

0%

−4%

−20%

4%

0%

−14%

13%

11%

0%

21%

19%

12%

23%

21%

15%

28%

26%

21%

−79%

−91%

−138%

−68%

−79%

−122%

−39%

−47%

−79%

−45%

−54%

−88%

−37%

−45%

−76%

−17%

−22%

−45%

0%

−4%

−20%

4%

0%

−14%

13%

11%

0%

0%V 0%UV

0%V 10%UV

0%V 50%UV

10%V 0%UV

10%V 10%UV

10%V 50%UV

50%V 0%UV

50%V 10%UV

50%V 50%UV

0%V 0%UV

0%V 10%UV

0%V 50%UV

10%V 0%UV

10%V 10%UV

10%V 50%UV

50%V 0%UV

50%V 10%UV

50%V 50%UV

Proportion healthy in noncases

P
ro

po
rt

io
n 

as
ym

pt
om

at
ic

 in
 c

as
es

−150%

−100%

−50%

0%

50%

100%

c

Fig. 3 Expected bias in VE estimates under various assumptions about the clinical case definition. Expected bias (estimated VE minus true
VE) is shown at different values of proportion of asymptomatic (healthy) people who are part of the study as non-cases and proportion of
asymptomatically people who are included as cases (proportion is the same for the vaccinated and the unvaccinated). It show the bias when
the proportion asymptomatic is differential by vaccination status in non-cases (a) and cases (b). The non-differential case is also shown along
the diagonal in (a) and (b) and while non-zero is negligible and not visible on the plot. Note that for (b) this is because the proportion of
asymptomatic infections among all infections is the same for the vaccinated and the unvaccinated in the simulation under the default
parameter set. c It shows selected values exploring the bias at different asymptomatic proportions by both vaccination and case status. Axis
labels are understood as follows: “25%V 75%UV” indicates that for the vaccinated the proportion asymptomatic is set to 25%, for the
unvaccinated it is set to 75%. For all plots, the percent bias indicates the difference in VE estimate compared with the default value of 60%;
e.g., a value of −17% means the estimated value is VE= 47%. All parameters other than the ones in the X and Y axes are set to their default
values as per Table 1.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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R and html scripts used in simulations are available https://github.com/khvorov45/
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