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ABSTRACT

A method of analysis for three dimensional reinforced and
prestressed concrete frames based upon the finite element dis-
placement formulation is presented. The frames may have arbi-
trary geometry and be subjected to applied loads and imposed
displacements in any direction. The method recognizes the ma-
terial nonlinearities due to cracking of the concrete and
yielding of the steel reinforcement. The effects of prestress-
ing are also taken into account for postensioned bonded fra-
mes including prestress losses due to anchorage slip, fric -
tion and time dependent behaviour. The procedure is capable
of predicting the response of these sttuciures throughout
their service load history as well as throughout their elastic,
cracking, inelastic and ultimate load ranges.

A straight beam element with an arbitrary cross-section
made up of longitudinal filaments to represent the concrete
and reinforcing steel is used. The element has six degrees.of
freedom at each end. Changing element properties at any time are
evaluated by a filament integration. The contribution of each
prestressing tendon is added directly.

An incremental and iterative solution scheme based either
upon constant imposed load or-displacement can be used as a
nonlinear strategy, so that structures with local instabili-
ties or strain softening can be analysed.

Several numerical examples analysed by the computer program
developed are presented to demonstrate the validity and appli-

cability of the method.
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1. INTRODUCTION

1.1 General

It is well known that the behaviour of reinforced and
prestressed concrete structures deviates, even for relative
low loading levels, from the linear elastic behaviour that
classically has been assumed as valid. For ultimate loading
levels the behaviour of concrete structures is highly non-
linear not only because of the material properties but also
because sometimes the magnitude of the displacements and
strains no longer can be considered '"small".

When designing a conc;ete structure both safety and
serviciability conditions must be satisfied. In order to
ensure the serviciability requirements, an accurate prediction
of displacements, internal forces and deformations of the '
structure subjected to service loads throughout its service
life is necessary. To assess the safety of the structure
against failure, an accurate estimation of the ultimate load
has to be made. Therefore the prediction of the behaviour of
the structure through the elastic, inelastic and ultimate
ranges is desirable.

There are two ways, essentially, of studying the structural
behaviour: the experimental and the analytical; both are
necessary and complementary of each other. Since the appearance
of digital computers, the development of numerical methods and
mathematical models trying to represent accurately the

structural behaviour has been favoured. It ispossible to use
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these models as a complement and even as a substitute for some
experiment;l studies that could be very expensive. The Finite
Element Method, (FEM) with its power and generality, has played an
important role in the ad#ancement of structural analysis and
specifically, in the analysis of reinforced and prestressed
concrete structures.

Since the first application of the Finite Element Method to
the analysis of reinforced concrete structures, made by Ngo
and Scordelis |1]| in 1967, numerous studies have been developed
covering all the aspects of structural behaviour of concrete
structures. These aspects can be classified into three major
groups:

- Modeling of material properties (constitutive equations,
multiaxial stress states, time dependent behaviour, etc.)

- Studies at a micro-structure level (bond slip, shear transfer,
tension stiffening, local effects, etc.)

- Studies at a macro-structure level, which try to model the
overall structural behaviour rather than local effects.

There ié an extensive literature about the application of
finite elements to the analysis of concrete structures.
Comprehensive reviews have been made by Scordelis [2| and |3],
Schnobrich |4|, Bazant Schnobrich and Scordelis |5|, ASCE Committee
on Finite Element Analysis of Reinforced Concrete Structures |6/,
Kang [10|, Chan |14] and othér researchers.

In the specific field of reinforced and prestressed concrete
frames most of the studies have dealt with planar frames.

Selna |7| analyzed this kind of structure, including creep and
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shrinkage, Aas-Jackobsen |8| studied slender reinforced
concrete frames including creep and geometric nonlinearity,
Aldstedt |9| included the effects of bond slip, creep and
geometric nonlinearity, and Kang |10| studied reinforced and
prestressed concrete planar frames including material and
geometric nonlinearities as well as time dependent effects of .
load and temperature histories including creep, shrinkage
andaéging of concrete and relaxation of prestressing steel.
Hellesland |11] used the model developed by Kang to analyze
bridge columns under imposed deformations and Ketchum |12]
studied also with this model the behaviour of prestressed
concrete bridge structures for time dependent effects.

In the case of three dimensional frames Buckle and
Jackson |13] developed a filamented beam element with a
rectangular cross section for the analysis of beam slab systems,
and Chan |1;| developed a similar element with a trilinear
torque-twist relationship to model concentric and eccentric
edge beams in shell structures, taking into account geometric

and material nonlinearities and time dependent behaviour.

1.2 OBJECTIVE AND SCOPE OF THE PRESENT STUDY

The oﬁjective of the present study is to develop a numerical
procedure for the nonlinear geometric, materialvand time
depen&th analysis of reinforced and prestressed concrete three
dimensional frames with member of arbitrary cross section taking into
account the time dependent effects of load history, temperature

history, creep, shrinkage and aging of concrete and relaxation
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of prestressing steel. An accurate prediction of the response
of these structures throughout their service load history as
well as through their elastic, inelastic and ultimate load
ranges is the desired goal.

The study has been based on previous work by Kang |10]
and Chan |14|, extending it to the case of three dimensional
reinforced and prestressed concrete frames with member of arbitrary
cross section. For this purrcse a ccmputer presgranm in
FORTRAN IV language has been developed trying to include the
advantages of the existing programs PCFRANE <10 | and NASHL
[1%]. '

A filamented reinforced coﬁcrete beam element is used.

The element has six degrees of freedom (DOF) at each end and
one internal DOF at mid length that is eliminated by static
eondensation. The element can have an arbitra}y cross section
defined by a special shape matrix. A trilinear torque-twist
relationship is used to model the torsional behaviour of the
element.

Postensioned bonded structures can be analyzed taking into
account prestressing losses due to friction, anchorage slip
and time dependent effects. The prestressing effect 1s introduced
by means of an equivalent load vector and the participation
of the prestressing steel to the élement stiffness is added
directly.

Each concrete and steel filament 1s considered to be
subjected to a uniaxial stress-state. Parabolic-linear,

bilinear and multilinear approximations of the stress-strain
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curves are utilized for concrete, reinforcing steel and
prestressing steel respectively. A simple model for inelastic
load reversal is incorporated. Perfect bond between concrete
and steel is assumed. Tension stiffening and the effect of
confinement in concrete are not taken into account in the rres-
ent study. A tangent stiffness formulation, coupled with atime
'integration solution is used. In order to solve the nonlinear -
equations either load control or displacement controi can be
used to allow the complete load-displacement curve to be
traced.

Several examples are presented to verify and compare the
results of the computer program with other analytical or ex-

perimental results.



2.

-6-

2. MODELLING OF MATERIAL PROPERTIES

1 General Remarks

The behaviour of concrete and steel, the components of

reinforced and prestressed concrete structures is very complex

due to several reasons, such as:

Heterogeneity of concrete material.

Nonlinearity in the stress-strain relationship for concrete
and steel, and difference between this curve in tension and
compression in concrete.

Time and environmental dependent properties of concrete.
Unloading and reloading characteristics of concrete and
steel. '

Imperfect bond between concrete and steel.

Discrete character of cracking. (tension stiffening effect).
Friction between internal faces of cracks, etc.

Reinforcing and prestressing steel are considered homogeneous

materials and their properties are generally well defined. In

this study concrete is considered homogeneous in a macroscopic

sense by defining its average properties by statistical

‘grounds. Thus, we can study the composite action of different

homogeneous materials, concrete and steel.

It is assumed that perfect bond exists between concrete

and steel (reinforcing and prestressing); thus the displacement

field within a reinforced or prestressed concrete element can

be considered continuous.
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The material properties of concrete and steel depend on
the stress state of the material due to the effect of the
nonlinear stress-strain relationships, cracking of concrete
and yielding of steel. In order to incorporate the varied
material properties within a frame in evaluating element
properties, the element is divided into a discrete number of _
concrete and reinforcing steel filaments, as will be shown
in chapter no.3. Each of these filaments is assumed to be in
a state of uniaxial stress and the deforhation due to shearing

strain is neglected.

2.2 Properties of Concrete

2.2.1 Deformation of Concrete

One of the most important assumptions in studying the
deformation of concrete is that the strain of concrete may
be considered as being composed of strains caused by different
phenomena. For the present study total uniaxial concrete strain
e(t) at any time is assumed to be composed of the following

contributions:

e(t) = e®(t) + e™®(t) 2.1

e®®(t) = €5(t) + e%(t) + €2(t) + ¥ (v) 2.2)

Where €¢®(t) is the mechanical strain or instantaneous strain
caused by a short-time loading and is the independent variable

in the stress-strain relationship:



o(t) = £(e®(t)) (2.3)

Where o(t) is the uniaxial concrete stress at time t.
Non-mechanical strain e"™(t) consistsof creep strain
e€(t), shrinkage strain e€®*(t), aging strain ¢®(t) and thermal

strain et (t).

In this study, for the time dependent analysis, the time
domain is divided into a discrete number of time intervals
each of which may not be of the same length of time. The
junctions of this intervals are called time steps. A step
forward integration is performed by adding the results
obtained for each time step successively, starting from the
first time step to arrive to the final solution. The
calculation of strains and stresses at a typical time step,

t . is performed as follows:

1. Total strain at time step t, is obtained by adding the
increment of total strain, obtained from the incremental
structural analysis, ae occuring during the time interval

t..,to t , to the total stra%n €,-p 3t time t

-l 1

n ™ Enoy ¢+ A€, (2.4)

2. The increment of non-mechanical strain 8e " occuring

between time steps t . to t, is obtained by adding

1
contributions due to creep, shrinkage, aging and temperature:



2e™® = A€ o Ac +8et (2.5)

3. Non-mechanical strain at time step t is then obtained by

adding the increment Ae:° to the previous total:
eP® o« P, Ae:" (2.6)

n n-1

4. Mechanical strain e: at time t, is obtained by substracting

non-mechanical strain e:° from total strain e_:
e =€ - e:'n (2.7

5. Stress at time tn is then obtained from the stress-strain

relationship valid at time step n:
-m
o, = fn(en)

2.2.2 Stress-Strain Relationship

The mathematical formula used in this study to represent
the stress-strain relationship is the one suggested by
Hognestad and used by Kang |10]| in his study.

The effects of dynamic cyclic loading, such as seismic
load qr wind load, are not considered in this study, but
loading and reloading due to live load history or temperature
history are accounted for by a simple load reversal model of

the stress-strain curve. The load reversal model utilized in
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this study is shown in figure no. 2.1.

The following assumptions are made for this model:

1. The slope in the load reversal path in the stress-strain

curve is the same as the initial tangent modulus Ej4.

2. Tensile failure or cracking of concrete occurs when

tensile stress exceeds its maximum tensile strength f;.

3. Compressive failure or crushing of concrete occurs when
the compressive mechanical strain exceeds its maximum

compressive strain €

4. Once the concrete has cracked it can not take any tensile
stress again. But it can take compressive stress upon closing
of the crack and reloading. Thus the crack is assumed to _
close in compression and reopen in tension without any

resistance.

The parameters necessary to define this concrete stress-
strain éurve are the initial tangent rmodulus Ei’ the maximum
compressive strength, maximum tensile strength and ultimate
strain. ACI Committee 209 |15| provides the following empirical

expressions to obtain the cornicrete properties at time t:

1] t 1]
(fc) = 23 B¢ (fc)a (2.8)



£ =1 £ (2.9)
1.5 == ,

CE, = 33w /f) (2.10)

£ = v, JWE (2.11)

Where: a,b, T, and r_ are constants whose values can be

t .
obtained from ACI Committee 209 |15].

w is unit weight of concrete p.c.f.

In the computer program developed, the concrete material
state is classified into 11 different states (figure 2.1),

described as following:

1. In primary tension (path OA or AO)

2. In compression not yielded (path OC)

3. In compression, yielded (path CE)

4. Cracked Ebeyénd points A, G, I)

S. Crushed (beyond point E)

6. In load reversal path from state 2 (path BG or GB)

7. In load reversal path from state 3 (path DI or ID)

8. In compression, not yielded and once cracked (path OC or B(C)

9. In compression, yielded and once cracked (path CE or DE)

~10. In load reversal path from state 2 and once cracked
(Rath BF or FB)

11. In load reversal path from state 3 and once cracked

(path DH or HD).
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In the above description of the eleven material states,
concrete is defined as yielded when its compressive mechanical
strain exceeds €, the strain corresponding to the maximum
compressive stress, f'é, .

The complete stress-strain relationship of concrete can

be summarised in the following equations:

State 1. o=E, c®
s 2 and 8 w €2 e”
tates 2 and 8. o= £ q'(z--e-:) (2.13)
eﬂ
Etasi(l--e-‘-) (2.13)
(1] Em-eo "
States 3 and 9. o= -0.15f7 e, + £ (2.15)
Btco (2.16)
States 6,7,10 and 11 © = Ei(c"-::) (2.17)
Et = Ei (2.18)

where €, is the residual strain due to unloading, as shown by

point F and H of figure no. 2.1.

2.2.3 Long Time Deformation: Creep, Shrinkage and Aging

Creep is defined as the increase in strain under sustained

stress, whether the stress is produced by external loading or
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any other cause such as temperature changes. There are many
factors influencing creep of concrete, such as age of loading,
intensity of the stress, aggregate content, compressive
strength, size of member, ambient humidity, temperature, etc.

Because of the number of factors influencing creep, it is
difficult to predict. Based on hundreds of experiments, ACI
Committee 209 |15]| suggests a relatively simpleequation for
the prediction of creep that tries to take into account the
above mentioned factors. The ACI equation, as well as any
other experimental results, can be used to obtain, by a
least square fit, the parameters of the analytical model
of creep used in the present study.

Shrinkage of concrete is defined as a non-stress and
non thermal produced time dependent volume change. Shrinkage
of concrete is a function of the time t after casfing of
concrete, age of concrete when the completion of curing,
ambient humidity, minimum thickness of element, slump,
cement content, percent of fines and air content. ACI Committee
209 IISI provides an equation to obtain approximately the
shrinkage strain.

Aging strain can be defined as the decrease in the
mechanical strain with time due to the aging of concrete. We
can consider the aging strain as a correction factor for the
calculation of the current stress as a function of the current
mechanical strain at any time, rather than an actual physical

straining.
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The increment of aging strain Ae:. occuring between time
step t _, and t, assuming that the stress remains constant at

c » can be calculated as follows:

n-1

dep =g (0 _)-g (c) (2.19)

where the subscripts n and n-1 represent time steps and the
function g is a time dependent function for computing
mechanical strain in terms of stress. This function can be

expressed as:

g(c) = e® =« & In tension.
E,
glg) = e® = cO(l-’l-a/fz) In compression. (2.20)

2.2.4 Deforhation due to temperature effects

Concrete structures are subjected to temperature changes
during their service lives. Stresses induced by this temperature
changes in statically indeterminate concrete structures are
often substantial and damaging to the structures.

The uniaxial thermal strain can be expressed as follows:

€® =2 a(T-T ) = a 8T (2.21)

Where a is the coefficient of thermal expaasion, which is
assumed temperature independent; T, is the temperature reference

and T is the current temperature.



Creep strain of concrete is influenced by temperature

and this effect is taken into account in this study as will

be discussed next.

2.2.5Age and temperature integral formulation of creep

Creep may be formulated in integral form as follows:

t
et) = [ Er,e - 1,m 2D g (2.22)
J

Where e(t) is the strain at time t, c(t,t-1,T) is the
specific compliance curve or, in other words, the total
stress produced strain at time t due to a unit sustained
stress applied at time t at a certain temperature T.
Equation 2.22 is a convolution integral where the
principle of superposition is assumed (figure 2.2).
Specific compliance can be divided into two parts: an

instantaneous part and a creep part.

T(1,t-1,T) = HiT)' . c(1,t-1,T) (2.23)

Where E(t) is the modulus of elasticity at age t and -
c(r,t-1,T) is the specific creep at time t-t after loading.

The creep strain €“(t) can then be calculated as:

t
e (t) = I c(r,t-1,m) 2L go | (2.24)
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Using this integral formulation (eq.2.22) it can be seen
that the strain at time t involves the integration of all the
previous.stress histories, so the computational effori and
computer storage requirements in the solution process can be
excessive. For this reason a proper choice of the analytical
functions for the specific creep, while representing
experimental or empirical creep curves accurately, must be
used to overcome the necessity of storing all the stress
increments of previous time steps.

A numerical formulation, developed by Kabir |18] for the
evaluation of creep strain, taking into account both the
effects of temperature and age of concrete is used in this
study.

The inherent assumptions in this procedure are the linear
superposition, additivity of the different strain components
and thermorheologically simple concrete material obeying a
time shift principle for a temperature variation.

The creep compliance function c(t,t-1,T) takes the form
of a Dirichlet series:

o
c(1,t-1,T) = ] ai(r){be“z“’“t'*] (2.25)

i=1 4

where_a‘(t) are the aging parameters depending of the age at
loading T, A‘ are the retardation times governing the shape
of the logarithmically decaying creep curve, ¢(T) is the
temperature shift function depending on the temperature.

Parameters m, a, (1), A, ¢(T) are determined by a least
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squares fit to experimental or empirical curves.

A step by step method together with the Dirichlet series
is used to solve for the creep strain.An efficient numerical
formulation can be developed using the following definitions

for incremental quantities of time steps, stresses and

strains:
Atn = tn'--tn_l (2.26)
Aon =0 -0 _, = °(tn)'°(tn-1) (2.27)

c c _¢C c c
be =€ -c = (t)-e"(t _,) (2.28)

Combining equations 2.24 to 2.28, and after some extensive
algebraic manipulations, the recursive relations necessary for
calculating the increment of creep strain Ae: at a time step

tn are as follows:

=A At
8¢S -iglAi'n(t-e ALY n] (2.29)
Ay o= A"a_z[e'xio(rn-g“tn-lloAcn_la‘(tn_i) (2.30)
Ay = 8018, (t) (2.31)

A very important advantage of the above formulation is
that the computation for each new creep strain increment

requires only the stress history of the last time step and
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not the total stress history.

The assumption of constant stress within increments is
necessary in order to arrive to eq.2.29. This means that
chgnges in'stress can only occur at the beginning of a time
step. For a proper choice of time intervals this assumption
is justifiable. ' e

The assumption of proportionality between creep strain
and stress intensity is valid only up to a stress level of
approximately 0.4 fé for concrete. Creep strains generally
increase at an increasing rate at higher.stress levels. To
account for this nonlinear.creep effect an effective stress
is obtained by multiplying the actual stress by an appropiate
magnifying factor such that the creep effect calculated by
the effective stress on the basis of linear creep 1law would
be the same as that produced by the actual stress.

The equations used for the calculation of the effective

stress o in this study are:

0, = O if o < t;.f: (2.32)
O. = C;O#sz'c' if l‘;f: <0 < f: (2.33)

Where r; is the stress-strength ratio up to which creep

strain is proportional to stress intensity and r; is the



magnifying factor when the stress equals the maximum
compressive stress fg. ‘
With given values of r; and r2, c; and c2 can be calculated

from the two equations given below

Ci = %2—.:1.—1;-1- 3 €2 = 1(1-C3)

Figure 2.3 shows the relationship between o, and o©

according with equations 2.32, 2.33 and 2.34.

2.3 Reinforcing steel

The properties of reinforcing steel, unlike concrete,
generally are not dependent on environmental conditions or
time. In this study a bilinear model which is symmetrical
about origin, as shown in figure 2.4, is used. The only
non-mechanical strain considered is thermal strain which is
computed by equation 2.21 as in concrete. The coefficient
éf thermal expansion a of steel is only slightly different
from that of concrete. The mechanical strain €™ is then
computed by substracting thermal strain e® from total
strain e¢.

The slope of the load reversal path is assumed to be
the same as the initial modulus, and the load reversal
path is assumed to stay within the envelope shown with dotted

lines in figure 2.4.
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Fig.23 Effective stress O¢ as @ function of actual
stress 0 for non linear creep.

Fig.24. Uniaxial Stress-Strain Curve of Reinforcing steel Assumed
in the Present Study.

a3

Fig.25. Uniaxial Stress-Strain Curve of Prestressing
Steel Assumed in the Present Study.



Four different material states can be identified in the
stress-strain curve. Their equations can be written as

follows:

1. In primary tension or compression

o=E.c” ; E =E o (2.35)

-

where E; is the initial modulus up to yelding.
2. Yielded

C = Ez.ent(cy-ﬁz.ey) (2.36)

where E; is the second ﬁodulus after yelding

ay and ey are yield stress and yield strain

respectively.
3. In load reversal path

g = s,(e°-:2) (2.37)

where €, is the residual strain due to load reversal

(figure 2.4).

4. Failed. Failure is assumed to occur when the mechanical

strain e€® exceeds the ultimate strain €,

2.4 Prestressing Steel

A multilinear stress-strain curve as shown in figure

2.5 is adopted for prestressing steel for this study.
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The slope of the unloading and reloading path is assumed
to be the same as the initial modulus. Since prestressing
steel is never subjected to compressive stresses the
compressive stress-strain curve is not considered. Also
temperature strain is not considered for prestressing steel.

An important property of the prestressing steel is the
relaxation of stress with time. Relaxation can be define& as
the decrease in stress with time under a constant strain.
The incorporation of relaxation in the analysis of

prestressed concrete frames is treated in chapter no. 6.
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3. MODELLING OF STRUCTURAL GEOMETRY

3.1 Geometric Definition of the Beam Element

Three dimensional reinforced and prestressed concrete
frames such as the one shown in figure 3.1 are analysed in
this study. The idealized structure consists of one-dimensiona;
beam elements interconnected by joints. Each element is
assumed to be prismatic with an arbitrary cross sectional shape
and length L. The geometry of the beam element is shown in
figure 3.2 where the global axes X,Y,Z and an element local
system x,y,z with unit vectors £,n,0 are also shown.

In order to define completely the position of the
element in space, in addition to the nodal coordinates, the
orientation of the cross sectional local axes must be known.
This is achieved by using an auxiliary node K (figure 3.2)
that togethér with the element joints I and J define a plane
ﬁ that will be the x-z plane. Once this plane is known, the
unit vector of the y axis is obtained by imposing the
condition of orthogonality to the plane x-z, and the unit
vector ¢ of the z axis will be obtained by the vector

product of the unit vectors % and 0 as follows:

.

g ¢ R QU .31 S S 8 (3.1)
1IJ' IIJ"ﬁI o = nxt

The location of node K must not lie along the x axis and
the axes y and z are the reference axes used for defining the

cross section as explained next.
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Fig 3.1. Three Dimensional Rigid Frame.

Reference Axis

Global System

X Y

Fig.3.2. Three Dimensional Beam-Element . Geometry and
Displacement Components.
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3.2 Definition of the Element Cross Section

The c?oss section of each element can be solid or hollow
of arbitrary shape. For the definition of the cross section
it is divided into a discrete number of concrete areas and
the actual section is assumed to be equivalent to an ideal
section having an integer number of elemental areas, as seen
in figure 3.3. To find the position of each elemental concrete
area, the y and z local axes must be placed. The simplest
way of doing this is to consider the cross section to be
inscribed in #n ideal rectangle of dimensions B and H,
(Figure 3.3). This rectangle is divided by a grid of m rows
and n columns so that each concrete area has dimensions of

b=B/n and h=¥/m. The reference axes of the cross section are

considered parallel to the sides of the rectanglé and their

z Y Y

distances to them are given by the values 2Z pin’ max’ min

max’®
(figure 3.4). The position of each elemental concrete area
(filament) is given by the coordinates of its geometric
center. |

If the filaments are all equal sized, the expression of
the Y1 and Zj coordinates of the concrete filament lying in
the j-th row and i1-th column are:

.H,. . B,.
= -3(3-0.5)02“3 ; Y, = -3(1-0.5)0Yi. (3.2)

z i x

3

Warner |[16| used a matrix A of n rows and m columns
associated to the circunscribed rectangle to define the

cross section. Elements Aij of A matrix assume either values
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Fig. 3.3 Actual and Idealized Cross Section.
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zero or unity depending on whether there is or not material
in the position (Yi,zj). Such an array is valid to define
any arbitrary cross section, but presents some inconveniences
as shown in the follouing..

When obtaining element stiffness, internal resisting
load vector, initial strain load vector, internallfgrces,
etc, numerical integration over the cross section area of
certain functions must be performed. A number of expressions

such as:

I = [I ¢(Y,2) £(Y,2)ds (3.3)
s .

must be evaluated, where ¢(Y,Z) can represent the tangent
modulus E(Y,Z), the stress at any point o(Y,Z), or the non-
mechanical strain ¢"®(Y,Z), for example; f(Y,i) is usually
a polynomic function of y and/or z. (i.e. £(Y,Z) = Y.2)

By using the A matrix, the numerical approach for
evaluating this integral is:

n o
I1=1 % $(Y,,2,) f(Yi,Zj) aY, az (3.4)

a
i=lj=1 i

3y 43

The summation is extended to all the filaments, ang when
aij = 0 the contribution of the non existing concretQ areas
is zero. .

This procedure requires that the A matrix be explicitly
defined,on the other hand, it is excessively time

consuming and requires more storage than that strictly
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necessary because the operations are performed even for the
phisically non existing rectangles where aij = 0. '

To avoid th:s problem, a more efficient alternative way
of defining geometrically the cross section shape is proposed.
For this purpose a C matrix whose terms Cij are associated
only to the existing concrete rectangles is defined as
follows:

- The first element in every row indicates the layer of the
rectangular grid to which the considered filament belongs.

- The second element Ci'2 in each row i indicates the column
in the grid where the cross section starts existing (or the
first non empty rectangle).

- The elements in the third column C1,3 indicate the column
in the gridafter which the material no longer existsor
there is discontinuity in the existence of material. In

other words, C indicates the last full rectangle before

i,3
a series cf new empty elements starts.

The elements in the fourth column indicate the material
code for the current layef, which permits composite sections
subjected to uniaxial bending to be analyzed.

It should be noted that the number of rows of C and the
number of physical layers of. the rectangular grid can be
different as in the case of the section shown in figure 3.4.
This occurs when, due to an existing whole or due to the
shape of the cross section, two or more rows of C matrix

are necessary to define one physical layer of the grid.

Once the C matrix is known, the summation over the cross



section can be expressed as:

ne c13 )
I = JI F(y,z)ds = § } F(y,,z,)ay, .82, (3.5)
s i=13=C,,

vwhere n, = number of rows of g matrix

k = C‘ = current layer of the filament

1
The summation is extended only over the actual existing
filaments. This permits the storage of only the strictly necessary
variables and avoids unnecessary execution time, which can
be important in a nonlinear iterative procedure.
Summarizing: In order to geometrically define a reinforced
concrete cross section by means of the proposed procedure it
is necessary to know the following data:
- Position of the reference axes y,z in the cross section, by
the values, 2n.x,2nin,Yn.x,Yn1n.
- Number of rows and columns of the grid intowhich the ideal

circumscribed rectangle is divided.

- Matrix C defining the cross sectional shape.

3.3 Geometric definition of reinforcement and prestressing

For each element the reinforcing steel is comsidered
constant along its length and parallel to the longitudinal
local x - axis. The position of the reinforcing steel bars
is defined by their eccentricities L. and e,. in the element
local coordinates and their area A“. (Figure 3.5).

. The following definitions are used for the geometric



Fig. 3.5 Steel Filamments in the cross section.
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Fig.3.6. Actual and Idealized 3-D prestressed Concrete Frame.
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definition of the presiressing in a 3-D prestressed concrete
frame (see figure 3.6):

There is.a discrete number of prestressing steel tendons
in the frame, each of which has a given profile and constant
sectional area along its length. A prestressing steel tendon
consists of a discrete number of prestressing steel segments
each of wpich is straight and spans a frame element. The
location of the two end points of a prestressing steel
segment in a frame element are defined by the eccentricities
e

and e,, at each end as shown in figure 3.7, where eyi

yi i
and e, are measured in local y and z coordinates of the
element.

3.4 Boundary Conditions

Boundary conditions at the supported nodes are specified
by means of support springs. Three translational springs and
Fhree rotational springs are provided for each support whose
directions in space are defined by using three additionél
nodes as shown in figure 3.8. Thé four nodes S, 51,52 and S3
define a local system of coordinates (x',y',z') for the
spring system. Nodes J and K are other nodes of the structure.

Spring stiffnesses (kx"ky"k:"kzx.'k:y"ktz') aséociated
with these six springs are specified to simulate the boundary
conditions at the support. For a zero displacement in the
specific direction a large value of the spring stiffness
corresponding to that direction is specified, and for a free

displacement zero value is specified for the spring stiffness.
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Support spring stiffness matrix k may be written in (x',

y',2') coordinates:

[k )

x

ky' zZeros
k

1]
kK = 2k ¢ (3.6)
rx

]

1] ' -

Symmetric r{ .
\ rz )

Spring stiffness matrix k’ in global coordinates may be

obtained by:

G T )
Kg = ATk, A (3.7)
where:
1]
313 i 0 )
= ----'---- = ..
A o s aij a\,.j cos(xi,xj) (3.8)
[ ]

and aij = transformation matrix (3 x3) between local

spring system and global coordinates.



4. SOLUTION STRATEGY FOR THE TIME DEPENDENT
NONLINEAR THREE DIMENSIONAL FRAME PROBLEM

4.1 Statement of the problem

Suppose we want to analyse a 3-D concrete frame idealized
by beam elements interconnected by joints, with given boundary
conditions. It is assumed that the loads are applied only at
joints. The prestressing, joint load history, temperature his-
tory of every part of the structure and the stress-strain curve
of materials at any instant of time are given. Also creep and
shrinkage characteristics of the concrete are given. Then we
want to find out joint displacements, internal forces for
each element, strains and stresses at any point of the structure
at any instant of time.

The load-displacement relationship for this structure
will be nonlinear due to the nonlinearity in the stress-strain
relationship, large displacement effects and time dependent
effects of load history, temperature history, creep, shrinkage
and aging of concrete, etc.

To incorporate these time dependent nonlinearities, the
time domain is divided into a discrete number of time
intervals and a step forward integration is performed in
which increments of displacements and strains are successively
added to the previous totals as we march forward in the time
domain. At each time step a direct stiffness finite element

method'based on the displacement formulation is used for the
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analysis in the space domain, in which the resulting
equilibrium equations will be nonlinear to be valid for the
current state of material properties and geometry.

To account for the geometric nonlinearity, an "Updated
Lagrangian" formulation |23| for the description of motion
is used in this study based on the work by Chan |[14].

For each element, a local rectangular cartesian coordinate
system x,y,z is defined. The direction of this local coordinate
system varies continuously as the structure deforms. Internal
forces and stiffness are calculated in the local coordinate
system for each element and then transformed to a fixed global
coordinate system X,Y,Z where the equilibrium equations for

the entire structure are set up and solved.

4.2 Solution methods for nonlinear equilibrium equations

The solution of the equation of the form

E.E = R (4.1)

-~

which is nonlinear, in general, has to resort either to a step
by step procedure, an iterative procedure, or a combination

of the two. The solution is relatively trivial if the load is
single valued in displacement. This is generally not the case
for a‘itructural system that exhibits strain softening or a °
snap through phenomenon where the load is multivalued in
displacement. Special treatment has to be given for this

cases as will be discussed later.

For concrete structures, the solution is generally path
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dependent mainly due to the progressive cracking in tensile.
regions, so that it is desirable to use an incremental
method.

For this study the combined method is used to enhance
the accuracy of the solution. An option is provided to use
either tangent stiffness or constant stiffness during
iterations.

When a structure exhibits strain softening or snap-
through, the stiffness at some point in the solution path
is non-positive definite (figure 4.1). The conventional
methods for solving the nonlinear set of equations are
not applicable without modifications.

Various schemes have been proposed in the past to
circumvent the difficulties which arise in treating the non-
positive definiteness of the stiffness matrix and passing
over the limit point when the determinant of the stiffness
matrix changes sign. (Points A,B and B' in figure 4.1).

For this study the double step method proposed by Simmons
|22| is used, as demonstrated in comparative study made by
Chan |14|. The procedure consists in obtaining the solution
at any instant in two steps by solving for the displacements

r’ and r® of two independent load conditions R" and R®.

RY = k.r¥ (4.2)

=
X ]

R® = (4.3)

-~

"=
.
LX)
[}
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(o) —airl

Fig 41 Typical load-displacement response for structure with
non - positive definite stiffness matrix.
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The final solution is then obtained so that a certain

constraint
c(r®,Ar®) = 0 (4.4)
between the displacements r" and r® is satisfied. If the

constraint consists of controlling the value of a certain

degree of freedom 6;, then the equation 4.3 will be:

- §* - ¢
%+ Ar® = & A e 3 (4.5)
3 3 3 rt
3

where A is the scale factor.

Then the total external load vector to apply will be:
R = R « AR® (4.6)
and the total displacements:

r=r1"+r® (4.7)

Usually{u is the displacement vector due to the unbalanced
load g“ and !e is the displacement due to some reference
external load R®.

In this method the iterative proceddre is performed with
variable external load Age. If for any reason there is an
external load whose value is fixed and can not be scaled,
this load should be treated as an unbalanced load. That is
the c3%e of the equivalent load vector due to prestressing
and the initial strain load vector due to creep, shrinkage
and aging of concrete and thermal effects that, in the

program presented, are treated as umbalanced loads.
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4.3 Nonlinear time dependent analysis procedure

At time step t all joint displacements r, total

-1
strains €, total nonmechanical strains ¢"®, and stresses in

every part of the structure are known. The increments of non-
mechanical strain Ac™ due to creep and shrinkage of concrete

and temperature changes occuring during time steps t o1 and
‘-~

t_ are evaluated by the method described in chapter 2.
Then, the initial strain load vector ARZ“ at time step

t which would produce the non-mechanical strain increments

nm

8c™ is evaluated as shown in chapter 5 by means of the

equation:

nm T nm
AR = I g ’Br Aen dv (4.8)
v

where B is the strain-displacement matrix

E, is the tangent modulus

Thus, at time step t the load :'uu:rementllg.n to be applied

to the structure is obtained by adding external load increment

u

ne to the

AB: and unbalanced load AR, _,left over from time t

-1
equivalent joint load increment AR:n due to non-mechanical

strain:

8R. = 8RY + AR7® & 8RD | (4.9)

If desired qp“ may be subdivided into several smaller
load increments for incremetal load analysis and unbalanced
load iteration which can be performed by using the following

steps:
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1. Form the tangent stiffness-in local coordinates for each
element based on current geometry and material properties.
Assemble the structure tangent stiffness in global coérdinates
using the current displacement transformation matrix for each

element.

2. Solve equations for displacement increments Ar and
transform to local coordinates. Obtain increment of strain by
using the nonlinear strain-displacement relationship or the

‘ equivalent procedure explained in chapter 5. Add Ae to
previous totals to obtain current total strains € in the

concrete, reinforcing steel and prestressing steel.

3. Add displacements Ar to previous totals to get current
local joint displacements. Update geometry, element local

axes and lengths and element transformation matrix.

4. Substract current non-mechanical strains e¢®® from current
total strains € to obtain current mechanical strains e” and
compute total stress ¢ in concrete, reinforcing steel and

prestressing steel from the nonlinear stress-strain curves.

S. Compute internal resisting element forces by integrating
total current stresses for each element in local coordinates
and transform into global coordinates using the updated

transformation matrices and assemble the internal resisting

joint load R’.,

6. Substract the internal resisting load vector R! from the
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current total external joint load R®, to obtain the unbalanced

load R® = R® - R,

7. Set AR = R® and go back to step 1. Steps 1 to 7 are
repeated until the unbalanced loads RY are within allowable
tolerances. At this point, the current unbalanced loads RUY are
added to the load increment AR for the next load step and the

iterative procedure 1 to 7 is performed again.:

At the end of the final load step for time t., proceed
to next time step t o and repeat until final time is reached

or ultimate failure occurs.

4.4 Convergence criteria and termination of the solution

In the present study two convergence criteria are used as
proposed by Kang |10|. The first one is a displacement criteria
consisting in comparing a certain displacement ratio » with a
displacement ratio tolerance provided by the analyst. This
displacement ratio is also compared with a tolerance for
changing stiffness t_. If o > t_,a new stiffness is formed for
the next iteration. An appropriate value of tc allows us to
use either the initial stiffness method, or the tangent stiff-

ness method for the iterative procedure.

The second criterion is an unbalanced load criterion, that
provides a ceiling for the maximum unbalanced load allowed for
each iteration in order to guard against the excesive violation

of equilibrium even though the displacement convergence
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criterion is satisfied.

In addition to thesetwo convergence criteria a ceiling
is provided to limit the number of iterations performed for
each load Step in case that convergence tolerances provided
are too stringent.

Depending on the objective of the analysis, different
criteria can be used for the termination of the solution.

The criteria may be chosen to satisfy either the serviciability
or safety requirements.

In the present study both criteria will be used. To find
the ultimate load capacity of the structure the solution is
stopped once a negative eigenvalue is detected in the
stiffness matrix. To satisfy the serviciability requirements,
the displacement is imposed progressively until the maximum
allowable value is exceeded. Typically, this is the case in

studying the postbuckling behaviour of a structure.



5. THREE DIMENSIONAL REINFORCEDVCONCRETE FRAMES

S.1 General Remarks

A general procedure for the geometric and material nonlinear
analysis of three dimensional reinforced concrete frames
including the time dependent effects of load history, temperature
history, creep, shrinkage and aging of concrete was discussed »
in chapteé 4, utilizing the mathematical model for material
properties developed in chapter 2.

A description of the derivation of the tangent stiffness
matrix, the internal forces and the initial strain load
vector as well as the torsional models and the large

displacement analysis procedure will be given in this chapter.

S.2 Definitions and assumptions regarding geometry and

deformation

As explained in chapter 3, the three dimensional frame
structure consists of elements interconnected by joints, in
which each element is prismatic sand has a cross section of
arbitrary shape (figure 5.1).

In the present study a filamented reinforced concrete
beam element is adopted. Each filament is assumed to be in
a uniaxial stress state and perfect bond between adjacent
filaments is assumed. At any cross section, the material
properties of each filament can vary to accommodate material
nonlinearities. The beam stiffness at some reference axes

can be obtained by summing the contributions of all the
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elements

Fig 51. Three Dimensional Frame.

Fig. 5.2. Local Degrees of Freedom of a 3-D Beam Element.
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filaments. Tﬁere are 13 degrees of freedom (DOF) for the beam
element (figure 5.2). Six DOF are associated with each of the
two end nodes, namely ui,vi,wi,exi,eyi,ez‘, and an internal
mid-side axial DOF U,» which is eliminated at the element
level leaving only 12 DOF for the beam element. As Chan |14]
demonstra;ed, this incompatible axial displacemeng degree of
freedom Un, is necessary for the correct modelling‘;f the
bending stiffness so as to take into account the shifting of
the neutral axis due to cracking and other material

nonlinearities in a reinforced concrete beam.

5.3 Displacement fields

The displacement fields of the beam element on its local

x axis are, according to the signs criteria“of figure 5.2:

u;
Uo = (AI)AZoAI) U2 (5.‘)
un

Va2

VO‘. (01.029030‘6) (5.2)

e
z)

e, |

( w1
w2
Wo = (¢01,02,-¢3,-04)" o (5.3)

S 2}
L ©

Y2 °
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where:

M= 1-f 5 =T ;5 A =4F 0D

o1 =1+ 2P 3P? 2 = 3(P- 2(D)° (5.4)
0 = LG - 255+ 60 = L7 - Ep
» = UL - 2L . T nd

The axial displacement u_ at any point within the beam element

can be obtained by assuming the Euler-Bernouilli's beam kinematics:

u = Uup -2 %ﬁ} -y %ﬁ} (5.5)

The axial strain is then obtained by differentiating u,

with respect to x

du,  duo d?w, d?v, .
T T T T EEHmT T TE (5.6

This expression has a physical interpretation that will
help us to obtain the strains from the nodal displacements:

dUQ
Term I is the axial strain of the reference axis.

dzwo
5T is the curvature of the cross section with respect to

the y axis.
szo
~gxT 1is the curvature of the cross section with respect to

the z axis.
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The rotation 9x° about the x axis is assumed to be linear
2]
X3
X X . :
3x° = (I-I’t)l ] (5.7)
exz

and the twist a along the reference axis x is:

de ®x1
o= —Xt. (1-%,%) . - Bg.9, (5.8)
X2

Note that unrestraiged warping torsion is assumed in
equation 5.7. This leads to the uncoupling of the torsional
degrees of freedom from the other degrees of freedom. Substituting
equations 5.1, 5.2 and 5.3 into equation §5.6, considering also
eq. 5.7 for the torsional behaviour and ordering the DOF
conveniently, the resulting strain - displacement relationship

is:

€= g.z (5.9)
where: § = lB;,Bz,... ,sza313| (5.10)
T
T e fui,va,w,e, L0 .8, ,uz,va,wa,8, 8,6, ,u |

(5.11)
By = -]’:-B. s =By = =B
B2 = =By = ]6:; (1--26)

By = -Bs = 1§ (1-35)
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Bu = 22 -1

By = 4(] - £D) (5.12)

It will be useful to define the matrix By as the one
whose components are the same as B but excluding the terms

in y or z wherever they appear. So for example:
Bo,z = = (1-3) Bo,u = £ (32-1)

and similary for the remainder terms.

5.4 Element elastic stiffness

The elastic stiffness of a reinforced concrete beam can

be obtained by the expression:

L

L .
Ke‘LE‘x“x’LcJacadx.] BT E Bd\uj B"cnodx (5.13)

o 0o©

where E and €, are functions of the local x,y and z axes,
and the torsional stiffness GJ is a function of x.

So any term of the (13 x 13) element stiffness matrix
Kij can be expressed either as:

o
Kij vais Bj dv for flexural terms, or
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Kij = LBoicJ Bonx for torsional terms. (5.1%)

The beam‘stiffness can be obtained explicitly if we
assume that the values of E and GJ at the mid-length of the
frame element represent the average value along its length.

Then the integration can be performed as follows:

L
K, = IvB‘EB3 dv = ”sE.f(y.z)ds.Lo(x)dx (5.15)

where the first integral depends only on the sectional
properties and the second is a function of x only.

This assumption is reasonable considering that the exact
evaluation of the tangent stiffness matrix is not a necessary
requirement for the solution of the nonlinear equilibrium

equation when equilibrium correction iterations are performed.

Let's call
EAs”Bds BIY-”Ez’ds
s s
EZ = -IIE y.ds EYZ = IIE.y z.ds

Then, the explicit expression of the element matrix

stiffness is:

(5.17)

=
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———
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eoveopoe
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where:

ii

33

\

5]~

-6EYZ
I

0 -6EIZ
I

0

Kis 3 Kyy
----*----
Kyg 1 Kyy
W
12E12 12EYZ , -6EYZ 6EIZ
-y "Ly T LT
12EIY  -6EIY 6EYZ
- T7T IT
63 o o
T
4EIY -4EYZ
symmetric - "L
4EIZ
[J
12E12 12EYZ  G6EYZ -6EIZ
-y I LT IT
12EIY  GEIY -6EYZ
T 0 T I
%% 0 0
E 4EIY -4EYZ
symmetric r L
4EIZ
[J
KX
0 -J2EIZ -12EYZ  -6EYZ 6EIZ
T o 0 T Ir
0 -2EYZ -12EIZ  -6EIY 6EY2
g = anliiee + anl s « Sl < 5
-GJ
0 o0 o % o 0
o OEYZ GEYI  2EIY -2EY2
T IT L "L

-2EYZ 2EIZ
5= 5=

(5.18)

(5.19)

(5.20) .

(5.21)
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4EY o -2 8EZ 8EY 4EY , 4EZ -
Koo = Kon = 10 2 " AF 0 PR o 4 SE 0 5 (5.22)

16
K.,=3C EA _ (5.23)

To evaluate EA,EY,EZ,BI?,EIZ and EYZ a filament integration
over the cross section at mid-length of the element is performed.

As indicated in chapter 3, each concrete filament i, is |
considered to.have the same concrete area Aci, and its position
in the cross section is defined by its coordinates Yci,zci, with
respect to the reference axes. The value of Phe tangent modulus
of a concrete filament is E,

Each steel filament has steel area A’j, and coordinates Ysj,

Zsj. The value of the tangent modulus of the j-th steel filament

is EsJ

Then the equations 5.16 become:

n
s

EA = I ss ds -glect;\“ ’jzlssiA'i

n n
3

SE Zds= ’2 Ecx ci cijz L

n n

EZ = J EYdss -2 EctA“Yc‘ 2 E

s isl s) 'j .j
n n

I
-f
|
Erv . [k zzas.z E_A_ 22 .z E_.A_,22 .z Eesrdoav a2}
|
|

ci el ci 83 83 sj
n u

2
EIZ a I E ¥ ds .z Eeihey u.z Eughyy '32).:;5“ ez, by}

EYst.)'sAYz.:sayz (5.24)

EYZ = I oy St et cictil Te17s1 53"y

where nc is the total number of concrete filaments and ns is

the total number of steel filaments.



The last terms in the expression of EIZ and EIY are to take
into account the moment of inertia of the concrete filaments
with respect to their own symmetry axes.

As explained in chapter 3 the summation for all the concrete
filaments is controlled by the cross section shape matrix C that
provides information for the geometric definition of the cross -
section shape.

The element stiffness matrix has been arranged so that the

last row contains the displacement degree of freedom Un.

' K T P

~ee | ~en ~e ~e
..... decee - (5.25)

Sne E Enn Yn t gn

where Kee,x K and Knn are the matrices expressed in equations

en’ " ne

5.18 to 5.23 , and

T
T, = lui’vi’wi’exi’eyi’ezi’uj’vj’wj’exj’eyj’ezjl (5.26)

Using static condensation with Pn = 0 the final beam elastic
stiffness Ke is:
1
K, = Kee'R;; Ken ¥ne (5.27)

Relating the element load P, and the displacement T,

=K T (5.28)
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5.5 Element geometric stiffness

If the nonlinear terms in the strain-displacement relation-
ship are taken into account when calculating the element stif-
fness, a second matrix, usually called geometric matrix, must
be included.

The nonlinear component in the strain displacement relation-

ship can be expressed as:

[duo 2 1{dvo 2 1[“"0 2
x *Z|TX) *Z|le) 7T (5.29)

where u,,v, and w, are the displacements of the reference
axis.

The beam geometric stiffness can be obtained by substituting
the assumed beam displacement fields (eq. S5.4) into equation

5.29, and evaluating the expression:
Kg = Ivo Nox anx dv (5.30)

This approach has been used by Kang |10| and Aldstedt |9].

The resulting beam geometric stiffness is:



(0o 0 0 0 0 0 0 0 ©0 0 0 O
g% o 0 0 ?% 0 '?% 0o 0 0 0
f% 0 1% o 0 0 'g% 0 0 o
0o 0 0 0 0 0 0 0 O
%% 0 0 0 :&; 0 '%3 o|
2L 1 -L
. oo o 0 0o
g
©o 0 0 0 0 0
6
g 0 0 0 0
6 -1
3t O 19 O
0 0 0
2L
& o
2L
| 15
(5.31)

where N is the constant axial load acting on the beam

element.
nC ns
\] = 2
N 1§;A°1°=1 +j§lA'jo’j (5.32)
and
g. = (EQ*EQJ.EQ (5033)

Thus the element tangent stiffness is then obtained by
adding 5‘ and 59. Chan |14| used a more simplified approach by

considering that when constant axial load force is assumed in
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the beam element, the beam behaves like a truss element in
carrying the axial load.
Both approachgs are practically equivalent and, when

equilibrium iterations are performed, lead to the same result.

§.6 Calculation of strains and stresses

For each iteration in the course of the solution procedure,
tangential equilibrium equations are solved for global
displacement increments. The procedure for the calculation of

strains and stresses at any point of the frame is the following:

1. Transform gobal displacement increments Q;G to local

displacement increments Ar for each element.

2. Evaluate the axial strain of the reference axis €yy? and

the curvatures of the cross section Cy and C, by evaluating the
strain-displacement matrix at the reference axis for the
specific value of x corresponding to the desired cross section

by substituting in the following equations:

a dus _ g, .8, *" (5.34)
€ = = 1 2 .3
X0 F ’ Auz
[ awy )
4 a2 AGY‘
ac, . ‘11%9- = |Bs,Bs,Bs,Bul | 4, - (5.35)
20, |




Av,
2 Ao
ac, = S8¥e . |B,,Bs,Bs,Bu]| 2 (5.36)
Av,
88,
\ )

3. Strain increment is then obtained by substituting be, .

ACy and ACz in equation

be = Aexo-ACy.Z-ACz.y (5.37)

Total strain € is then obtained by adding Ae to the

previous total.

4. Mechanical strain €® is calculated by substracting non-
mechanical strain €™ from total strain €. Non mechanical
strain €™ is due to the combined effects of creep, shrinkage,
aging and temperature changes for reinforcing steel.

5. Stress o is calculated by the nonlinear o-¢ curve given

in chapter 2.

5.6 Element internal resisting load vectors

The internal resisting load R! due to the stress °. in the
concrete filaments, oy in the steel filaments and torque 'I'x in

the beam can be obtained by evaluating:

R! . J BTodVo»I B,T, dx (5.38)
v L~ .

In this expression, the component By is not included in
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order to force the zero force constraint for the internal degree
of freedom u .

By assuming the stress ¢ inv a filament to be constant at a
section x, equation 5.38 can be integrated independently in

longitudinal and transverse directions as follows:

T Lt
I B 0 dv = J B (” o(y,z) ¢(y,z)ds dx (5.39)
v o~° s

Where Bo is the matrix defined in paragraph 5.3, which is a
function of x, ¢(y,z) is a function of y and/or z only.

Explicitly the terms of the internal resisting load vector

are:
N L
Ri = LBQ"Fidx . vi = 4,10
} (5.40)
L. i}
Re = -R”’IBGT:: dxsTx
o
The values of l’1 are the followingi
n_ n_
F;, = Fy = Ifsa ds '1§1A°‘ “;ZIA'j 3 (5.41)

3=

]
Pg = F. = F. = Fn = II oy dSlg Ac1°c1Yc1 z A.jY’jO'j (5.42)
I (5.43)

Fy = FssFysFus I oy d"g Actacizct’z Alj s3 33

In order to obtain R:_’. numerical integration is performed
by Gaussian Quadrature using two Gauss points. The functions

Bo' , must be evaluated only for the two Gauss point coordinates



X = % - 4;1. and x = % * 4?1. .

5.8 Element load due to initial strain

The equivalent load vector AR™® due to non-mechanical

strain increments are calculated by equation:

-

AR"™ » [ B'E ael%av (5.44)
v

in which E and Ae:" are functions of x, y and z.
Following the same procedure used for the computation of
g* and assuming E to be constant in a filament at a section x

the results are:

L
BRI% = [ B, 0,dx  except for 1= 4, 10 (5.45)
BRI = 0 i= 4,10 (5.46)
. nc
nm nm

¢ = ¢9 = IISE Ae Tds ‘izlACiECiAE (5.47)
n

b2=0cnbpg=byp= ” Ey 8e"ds = 2 A“BciyciAe“ (5.48)
n

305 =20yg=dy = j] nm nm (5.49)

E z Ac™"ds gizxA E_ 2z ,0¢;

5.9 Transformation and assembly of the beam element

Before the beam's stiffnesses and the load vectors can be

assembled, they must be transformed to a set of globals degrees
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of freedom.
Let be ue the global degrees of freedom
u, the local degrees of freedom

A the orthogonél matrix relating both systems

r s AT (5.50)
~Q ~ ~g
where:
Ig * 'ui'vx'"uexueyz'eu’uj'Vj'wj'exj'eyj'eijl (5.51)
r, = '“x'vi'"x'°xx'°yz'°z1'“j'Vj’"j’ex;'ayj'°z3| (5.52)
(17000
T
As 00 (5.53)
7 0
| IT )
[ ay- ap ay
I: an az ag (5.54)
{ 3 an axn

a, is the i-th component of the j-th vector of local
system in global coordinates (director cosines).

The transformation of the matrices 5. and 59 are:

T
Kg =~A.K -A (5.55)
T .
K = A7.K A (5.56)

And the transformation of the load vectors 5‘ and 5“‘ are:
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i T i

Bq = 5 5. (5.57)
nm T pnm

Bg = é Be (5.58)

5.10 Torque-Twist relationship

The material models for the concrete and steel described
in chapter two, valid for one dimensional stress state, are
used. However,the material law for the torsionstill remains to
be defined. In the present study, the approgch used by Chan
|14] has been adopted and will be briefly described herein.

Bending action and torsional action are assumed to be
completely uncoupled. Consequently, the interaction between
the stresses from the two different sources are ignored.

A trilinear model is used to represent the torsional
response of a reinforced concrete beam in terms of torque-
twist relationship. The actual curve (figure 5.3) can be
usually well fitted by three straight lines representing the
uncracked, cracked and yielded phase, respectively.

The representative parameters in the model are:

(Téx’°b:) The torque at first cracking Tcz, and the

corresponding twist.

(T§p’°yp) The torque at first full yielding of all the
reinforcement Typ, and its corresponding twist.
e, The twist at ultimate failure.

In order to obtain this curve, experimental results must

be available. Only in certain cases, such as beams with
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Fig.53. Assumed Torque-Twist Relationship.

Fig. 5.4. Overlay Model for Trilinear Torque-Twist Relationship.
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circular, rectangular or very simple box cross section, some
analytical expressioﬂs can be deduced for representing the
beam's behaviour in the cracked any yielded ranges.

In order to allow the modeiling of inelastic unloading,
an overlay model for torsion is used. The trilinear torque-
twist response is modelled by two components, each exhibiting
elasto-plastic behaviour such that the torsional stiffness GJ

and the torque T of the beam are the sum of both components:

T=T; +« T, H GJ = GJ: « GJ; (5.59)
Tcr.-OQ : , T --‘I“:r

6 » —=—=% Jr = JAE——CSE o 0 (5.60)
cr yp er

Ty; = GJ;.Gcr ; Tyz = GJz.ayp (5.61)

The use of the overlay model allows the modelling of inelas-
tic unloading easily. It is assumed that inelastic unloading of
each component is elastic with its initial stiffness (fig. 5.4).

The resulting inelastic unloading response is shown in fig.

5.5 for unloading after crack and unloading after yielded.

5.11 Large displacement analysis

. The approach used in this study for the largg displacement
analysis, based upon average rotations of the beam element's
axes is ;he one proposed by Chan |14|. This approach is
restricted to large displacements and small rotations.

In the analysis including nonlinear geometry, the geometry

of the beam and the beam's local axes x,y and z have to be
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updated. It is assumed that the equilibrium configuration at
step i-1 and the incremental nodal displacements at the current
step i are known. .

The relative displacements between the two ends of the

beam element can be found from the incremental nodal displacement

relative to the x'~!, y*~! and 2*~! axes. They are:
‘-~
u = 8u,-bu,
iy = av,-av,
Su = 8w, -8w, (5.62)
The new coordinate axes x“‘,yi,zi at step i, with unit

1 =1 28

vectors x,y",Z

motions. The angles a,8,y that describe the motions can be

are obtained as a result of a series of

found by simple geometry and are (figure 5.6):

1-1
cosas L~ »'u (5.63)
[(Li-l*xu)z’auzjllz
. Iy
sina = (5.64)

[(Liol’xu)z’auzlllz

|(L1'1¢‘u)’¢’u’|1/2
cos 8= . (5.65)
[(L“1,3u)3¢’u’+’u‘]1/2

sinB = Zu (5.66)

o [(Li'lo‘u)¢’u’¢’u’]1/2

1
Y=z (ext’exj) (5.67)
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Fig.55 Inelastic Unloading in Torsion for the Overlay Model.

o beam configuration x
z 8 at step i
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- x'e

i j X
s.

beam contiguration .
at step i-1 with length L™’

Fig. 56. Transformation ot the Beam Local Axes in a Large
Displacement Anglysis.
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The trasnformation between the unit vectors ii,?‘,i‘, at

step i and the unit vectors x'~!,yi-!, zi-!

, , at step i-1 is:

%) (

cosa cos8 sinB sina cosB 1 (%5)

9T = |~cosa sinB cosy -sina siny cosBcosyY -sina sinBcosy+cosa siny ;'T
Li'rJ 4 \ cosasinB siny -sina cosy -cosB siny sina sinB siny+cosa cosy) LiTJ -1

(5.68)

The nodal point coordinates of the beam are updated once

nodal displacement increments at each node j are known in the

global coordinate system:

b 4 Au
yi = yi'1 . Av
i i-1
z 2 3 Aw (5.69)

The axial increment in strain due to axial elongation is,

(if small strains areconsidered):

i ,i-1
Li.L
T (5.70)

Ac =

where L is the length of the element for the step i.

In local coordinates, the axial displacement increments
are:

u =0 ; u, = ae.Li"!

. 3 (s.71)
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6. THREE DIMENSIONAL PRESTRESSED CONCRETE FRAMES

6.1 General Remarks

Among the different types of prestressed structures, only
post-tensioned bonded structures are considered in the present

study. In this kind of structure the prestress is transferred

S~

gradually to the concrete while the prestressing steel is
tensioned against the hardened concrete and anchored against

it inmediately after the tensioning operation. The prestressing
steel is grouted after the tensioning operation so that steel
and concrete are bonded.

The behaviour of prestressed structures is largely dependent
of the effective amount of prestress acting on them, so the
determination of the variation of the stress in the prestressing
steel during various stages of loading is an important factor
in the analysis of prestressed concrete structures.

In post-tensioned structures, the prestress losses take
place, during the tensioning operation, due to the friction
between the prestressing tendon and the duct, and the anchorage
slip; and after the transfer of prestress due to creep and
shrinkage of concrete, the relaxation of prestressing steel
and the effects of load history and temperature history.

In the present study, aim is taken in finding 511 the
displacements, internal forces, stresses and strains for the
concrete, reinforcing steel and the prestressing steel in the
three dimensional post-tensioned concrete frames subjected to

load history and temperature history, at any time during
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their service lives by a complete analysis including material
and geometiic nonlinearities, and the time dependent effects
of creep, shrinkage, and aging of concrete and the relaxation
of prestressing sieel.

In addition to the assumptions and definitions regarding
geometry and deformation, given in chapters 3 and 5, some
additional assumptions must be made for prestressing concrete
frames:

- Each tendon is assumed to have an initial tensioning force.

- Jacking can be made from either of the two tendon ends.

- Each prestressing steel segment is assumed to have a constant
force. '

- Perfect bond between concrete and prestressing steel is
assumed. Thus the displacement field within an element of

these structures is assumed to be continuous.

6.2 Prestressing force at any point along a tendon

6.2.1 Friction losses

For post-tensioned structures the prestressing is
transferred gradually to the concrete during the tensioning
_operation. As the prestressing force is applied from the
tensioning' end with initial force P_, as shown in figure 6.1,
friction takes place between the prestressing steel and the
duct, resulting in the gradual decrease in the prestressing
steel force away from the tensioning end. The decrease in the

prestressing steel force due to the friction can be calculated
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by the formula:

P, = Py.e-(WE+KL) 6.1)

where P, = Prestressing force at point 1.

P, = prestressing force at point 2.
L = Length of the prestressing segment
@ = Change in the slope of the prestresétnk steel
segment, in radians, assumed to be uniformly
distributed over the length.
= Curvature friction coefficient

K = Wobble friction coefficient.

With equation 6.1 we can calculate the p;estressing force
at any point along the tendon by starting from the tensioning

end with given initial tensioning force P. -

Since each prestressing steel segment is assumed to be
straight and have a constant force, the force in a specific
steel segment is taken as an average of the forces at the two

end points of the segment.

6.2.2 Effect of anchorage slip

When there is an anchorage slip by an amount A% at the
tensioning end, there is a loss of prestressing in the tendon
of an amoﬁnt that is gradually decreasing due to the friction
force, that acts in opposite direction to the motion of the
cable, and nay dissapear at a certain distance, L. This is

shown in figure 6.2, where the value of the prestressing force
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along the tendon, with and without anchorage slip, is presented.
In order to take into account the effect of anchorage slip,
it is necessary to obtain the value of the prestressing loss at
the anchorage (APo) , and thelengthof the affected zone (za).
For that purpose the symmetry of the curves AB and CB with
respect to the s axis in figure 6.2 is assumed. The physical
interpretation of this asumption is that the friction acts
with the same intensity for tensioning and distensioning.
On the other hand, it is known that the amount of

stretching of the prestress tendon is equal to:

L
P(x)

AL = J — dx (6.2)
o o'p

where Ep and Ap are the elastic mogulus of prestressing steel and
area of prestressing tendon respectively.

This expression indicates that the value of A2 is
proportional to the area under the curve P(x), on the P(x)- X
diagram (figure 6.2).

If this concept is applied to the case of anchorage sleep,

it can be said that the area ABC is proportional to the amount

of slip:

AL = E;’x; Area (ABC) (6.3)

Based on these two assumptions, the problem can be solved

numerically as following:

For a prestressing steel tendon the profile AF, without
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considering anchorage slip losses, can be calculated by
equation 6.1, so the values of prestressing force at the ends
of each segment are known. Let's consider a prestressing
segment with end nodes I, ahd J. The values of the areas Al,
A2, and A3 of figure 6.3, can be obtained by the corresponding
expressions of figure 6.3 a), b) and c). Thearea A; = 2(A; - A2)
is the one that is proportional to the anchorage slip. For
the exact value of L. the following equation should be
satisfied:

A = (EA%' (6.4)

PPlg . g :
a
In order to known thelength of the anchorage slip effect,

comparisons between the calculated area A; at the end of each
segment, divided by Ep. Ap, and the value of the anchorage
slip are made, starting from the beginning of the tendon, as

follows:

- If a2 > A’/EPAP the length of the anchorage slip £ is bigger

than the length of the tendon up to the current segment, £..

- If AL = A,/EPAp the length of theanchorage slip &  is equal

to the length of the tendon up to the current segment.

- If AR < A,/EPAP the length of the anchorage slip 2  is less

than the length of the tendon up to the current segment.

The numerical solution of the length l.. will be found when,
for the first value of i (current segment) the area A3 divided

by EpAp,is bigger than the anchorage slip. That indicates that
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the unknownlength of the anchorage slip, has a value between
the lengths of the tendon L, and L _,. Then, linear interpolation
is performed to obtain an approximate value of L_. '

The point of the prestressing tendon L = L‘ corresponds,
hence, to the point from which the anchorage sleep does not
affect the prestressing force. But before this point, the
values of the prestressing forces have to be calculated,
(ascending branch in figure 6.4). This is achieved by obtaining
the prestressing force at L = L, and using the condition of
symmetry explained above. The expressions to use for this

purpose are:

-(ud +K2)
P; = P(L‘) = Po e a a . (6.5)
P; = P1-ZAPi = P1-2(PioP;) = ZP;-P£ (6.6)

If the anchorage slip is very big, it can affect the value
of the prestressing force at the opposite end of the tendon.
The above described procedure is modified, in this case. The
unknown here is not the deep L,» but the value of the decrease
of prestressing force at the opposite end, H (see figure 6.5).
The expression that gives us the value of the prestressing

force at any point, for this case is:
P'(x) = 2P3-P(x)-H (6.7)

The value of H is obtained by equating the total shaded area

in figure 6.5 to the value EpApAz.

A = . = .
rea Ep Ap 1.¥A As+H L (6.8)



Fig64. Value of the Anchorage Slip Length Effect ”a and
Ascending Branch of the Prestressing Force.

Fig 65. Prestressing Force When the Anchorage Slip at One
End Affects the Other Tendon End.



76~

H = Ez__ALLé!_-A_s (6.9)

When the anchorage slip does not affect the other end, the
expression of P(x) is the same, just substituting H for zero.

This method provides similar results to the ones obtained
by Van Greunen (19), but as it is a direct method, it has the

advantage that it 1s not necessary to iterate.

6.3 Calculation of load vector due to prestress at transfer

On;e the force at any point of a prestressing tendon is
known, and assuming that the force at any prestressing steel
segment is constant, the interaction between prestressing
steel and concrete takes place only at the ends of each
prestressing segment. The load vector that prestressing
introduces upon the structure is obtained as explained in the
following.

Each segment introduces over the end joints of the element
to which it belongs a set of forces and moments defined as
indicates in figure 6.6, in local coordinates of the element.

The set of forces introduced Sy each prestressing steel
segment are transformed to global coordinates and accumulated
over the nodes. For each tendon these forces constitute a set
of self equilibrated forces. The assembly of forces due to
all tendons give us the load vector due to prestress at
transfer.

The prestressing steel segment force is defined as the
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average of the values of the prestressing force of the tendon
at the ends of the prestressing segment. For this reason the
value of the force at the ends of any tendon, calculated in this
way will be slightly different from the actual ones that can be
measured when jacking. In general this difference will be
small, and can be neglected. This problem is inhez;ent to the

treating of a continuous phenomenon as a discrete phenomenon.

6.4 Introduction of grestressing in the element stiffness

After grouting, the prestressing steel is bonded to the

concrete so it must be taken into account when calculating the
stiffness of the element. As the stiffness matrix may be not
'completely exact to obtain correct results in a nonlinear
analysis (it will affect the number of necessary iterations

to converge), an approximate value of the contributionof pretres-
sing steel to the element stiffness is calculated. This appr.oach
consists in considering the prestressing steel segment parallel

to the element x axis, with eccentricities e e, equal to the

average value of the actual eccentricities atythe element ends.

This contribution to the element stiffness will be taken
into account only after the specified value of the age of the
concrete for which the prestressing is introduced. This
proceduse permits the analysis of a structure as an 1n1t'1a1
reinforced concrete structure, under a load history, and after
a certain interval of time, to introduce the prestressing to

carry overload.
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6.5 Variation of prestressing load vector with time

With the passage of time, losses in prestressing force are
produced due to creep and shrinkage of concrete and relaxation
of prestressing steel.

Creep and shrinkage effects in prestressing force are
evaluated when calculating the internal resistiqg load
vector due to prestress as will be shown in point 6.6. The
action of the initial strain load vector due to the time
dependent effects will change the length of the prestressing
segments, and consequently, their stress level and force.

Relaxation is defined as the loss in stress when the
strain is constant. For each prestressing steel segment, the
value of the loss due to relaxation will be introduced as
part of the initial strain load vector. In order to calculate
the relaxation loss at any segment, the same approach used by
Kang |10]| has been adopted. The equation that gives the
relaxation of the steel stresses, based on numerous

experimental data is:

£ £ f
s , 1.1egt [ “-o.ss] . =21 5 0,55 (6.10)
ol & T, 2

This equation is developed on the condition thét the
strain remains constant and the initial prestress is the only
stress being applied. In reality various changes in the
prestress take place due to other causes. The procedure used

to take into account this variation of prestress can be shown
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schematically in figure no. 6.7 and is explained next.

Let be the initial prestress applied at time t;. At

sis
time t,, in addition to the.stress relaxation rrl from the

initial prestress f » the prestress drops to fs; due to other

sioe
causes. Then equation 6.10 can be used to calculate a fic-
titous initial prestress rsi‘ such that applied at ty4 would
be relaxed to fs; at t‘. Then, on the basis of the initilal
prestress rsi‘, the stress relaxation frz occurring during

t‘ and tz can be calculated.

af ® er-r;z ® (rsix-f;z)-(rsix-r ) (6.11)

r2 S

f.g 18 calculated similarly after calculating a fictitious
initial prestress fsiz which would relax to fsz at t,. By
continuing this precess the total stress relaxation frn at

time tn can be calculated by

n
£ . sizlAfzi (6.12)

6.6 Calculation of prestressing steel strains and stresses
and internal element forces due to prestress

In order to calculate the prestressing steel strains and
stresses, the current length of each prestressing steel segment
at each stage of the iterative process is calculated by first
calculating the global coordinates of the two end points.

Figure 6.8 shows an element with a2 prestressing steel segment
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Fig. 6.7 Calculation of the Stress Relaxation.
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Fig. 68. Calculation of the Current Global Coordinates of an End Point
of the Prestressing Steel Segment.



-82-

on it, in two loading stages: A is the current stage, and R

is the stage after deformation. Let be PP, the position ef

the prestressing segment before deformation and P{ P} after
deformation. To obtain the global coordinates of points P{

and P} we need to take into account the translation of the
structure (nodal displacements) and the rotations of the end
sections of the element. The position vector 0,P; of one
segment end has global coordinates 0:P; = (xo0,Y0,20). If the
joint O; has three rotations (ex,ey,ez) and three displacements
u,v,w, the position vector of point P,, in global coordinates

is:

OP, = 00; + O1P; (6.13)
where O‘P; s (X1,Y1,521) : (6.13)
Otpxtxh)'o,u (6.15)

Due to the rotations of joint 0;, point P; has suffered
three translations Ax,Ay,Az, given by the expressions:
Ax - zosin 6y +xo(cos ey-n +xo (cos ez-n -yosinez
Ay = yo(cos ex-n -Zgsin ex +Xosin ez +yo(cos ez-l)

8z = zo(cos 8 -1) -xo8in @ +yesin® +ze(cos® -1) (6.16)

if §_ = (8x,8y,82) and §_ = (u,v,v) = 0:0{ is the vector
of nodal displacements (translations only), the final position

of point P; will be:
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OP] = db;+tp¢o?p,¢3: (6.17)

For the next iteration, the new nodal coordinates are:
00§ = 00,+030§ = dbl¢tp (6.18)

The position vector in the section, in global coordinates
is:
011 = 01P,+8_ (6.19)

I1f this procedure is followed for both ends of each
prestressing segment, their new global coordinates can be
obtained and, consequently, the new prestressing segment
length. .

The procedure to obtain the stress for each prestressing

segment is the following:

1. The increment of strain in the segment, measured with

respect to the current state will be:

Lok, (6.20)
i-1

2. Add Aep to the previous total to obtain the current strain €p"

3. Calculate the stress corresponding to € from the nonlinear

stress-strain relationship for prestressing steel.

4. Substract the stress relaxation calculated by the procedure
described in section 6.5 from the stress obtained in step 3

to calculate the current stress.
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The internal resisting load vector R; due to prestress

can be expressed as follows for each element:

i .

in which each term has been -defined in section 6.3

R; is transformed to global coordinates and added to the
internal resisting load vector due to internal forces for the
concrete and reinforcing steel, and then assembled for all
the elements to form the internal resisting load vector for

the structure.
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7. NUMERICAL EXAMPLES

7.1 General

A number of numerical examples have been solved using the
computer program PCF3D, developed in the present study, to
verify the validity of the theoretical procedure. The examples
also serve as a means to demonstrate the accurac& and the
capability of the computer program PCF3D to predict the
nonlinear material, geometric and time dependent behaviour of
three dimensional prestressed and reinforced concrete frames.

In sectign 7.2 emphasis is placed on the verification of
the present method of handling geometric nonlinearity.

In sections 7.3 and 7.4 reinforced and prestressed concrete
columns of rectangular and irregular cross section, respectively,
subjected to biaxial bending are presented. Both, geometric
and material nonlinearities are taken into account.

In section 7.5 a reinforced concrete three dimensional
frame is analysed showing the ability of the program to handle

structures subjected to biaxial bending and torsion

7.2 Symmetrical Buckling of Circular Arch due to uniform

pressure

An end clamped shallow circular arch subjected to a
uniform pressure has been analysed to verify the capability
of the program to solve a snap-through problem and the

accuracy of the large displacement analysis. The load is
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Fig.7.1. Symmetrical Buckling of Circular Arch Due to Uniform Pressure (ex.82)
Load Vg . Centratl Vertical Downwards Displacement.
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considered conservative and is abplied only at the structure
joints, by using a lumped formulation.

The geometry and the material properties of the structure
are shown in figure 7.1. Due to.the symmetry of the structure,
one-half of the arch is modelled by 10 equal sized straight
elements. The response of the structure is obtained by
imposing the control vertical displacement wo, in 15 equal
displacement steps of 0.35 in. each.

The load-displacement response is shown in figure 7.1,
together with the analytical solution obtained by Schreyer
|29]. It can be seen that good agreement exists and that the
present method of analysis predicts the correct response for

relatively large load steps.

7.3 Biaxlal bending of a square reinforced and prestressed

concrete column

The objective of this example is to demonstrate the
capability of the program to study concrete structures sub-
Jected to biaxial bending. Also the effect of prestressing in
a relatively long column is studied taking into account
geometric and material non-linearities.

A serlies of five hypothetlcal columns loaded eccentrically
in two‘girections is chosen for the present analysis. They all
have identical cross sectional dimensions and amounts of steel,
but the first one (figure 7.2) is a reinforced concrete column
with equally distributed steel along the four faces and the
other four (figure 7.2) are prestressed concrete columns with

only prestressing steel at the four corners of the cross sectlon,
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Fig. 72 Biaxial Bending of a Reinforced andlor Prestressed Concrete
Column (Ex.7.3).Geometry and Material Properties.
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and each of the four with a different amount of prestressing
force, without reinforcing steel. .

The geémetry, reinforcement and prestressing arrangement
and the maéerial properties are shown in figure 8.2. The
prestressing consists of four straight prestressing cables that
span the entire column length. No friction or anchorage slip-
losses are taken into account for the calculation of the pre-
stressing force at each point of each tendon. The total pre-
stressing forces are 0 kips, 120 kips, 200 kips, and 300 kips
for the four prestressed concrete columns.

The cantilever column is modelled by using 10 equal sized
elements. The cross section is divided into a grid of 10 x
10 filaments. Control of the Z displacement of the top of the
column is used to obtain the response of the structure. The
resulting load-displacement curves are presented in figure
no. 7.3.

Column 1 (only reinforced) was also analyzed by Warner
(16) who assumed a cosine function for the deformed shape.

It 1s observed in figure 7.3 that good agreement exists between
the results by Warner and the present study. The rest of the
curves (2, 3, 4 and 5) are for the columns with only prestres-
sing steel, but where different amounts of prestressing force
are introduced. It must be remarked that although column 2

is prestressed with zero prestressing forces, and the total
area of prestressing steel is equal to the total area of
reinforcing steel of column 1, they are not directly comparable,

because the steel properties (stress-strain relationships) and
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Fig. 7.3 Load-Deflection Curves for Column of Example 7.3
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distribution of steel on the section are different.

However, columns 2, 3, 4 and 5 only differ in the prestres-
sing force, so good comparisons can be made among their results
in order to estimate the effect of presiressing in that column.
As can be seen in figure 7.3 the increase of prestressing forcg\
does not change practically the ultimate load when a moderate

prestressing force is introduced, such as N_ < 200 kips

(Np/Nu = 0.5, since N = fg .b.h = 400 kipsg. The stiffness

of the member increases for a small amount of prestressing force
(curve 3 indicates a larger stiffness than curve 2) but after

a certain amount of prestressing (between 120 kips, and 700
kips for this particular case) the column becomes more flexible
than the nonprestressed one.

When a large prestressing force 1s introduced (Np 300 kips
for column 5, which represents Np/Nu = 0.75) both the ultimate
load and the stiffness of the column drop considerably.

All of these phenomena can be explained by taking into
account that prestressing has several effects on the column re-
sponse:

First: Prestressing introduces &sn initial compressive axial
load that delays cracking and therefore it increases the
stiffness of the structure (case of column 3 where it is com-
pared with column 2).

Second: Due to prestressing, the concrete fibers are precom-
pressed, and because of the nonlinear stress-strain curve of
the concrete, their modules of elasticity are reduced with re-
spect to the non-prestressed column. This effect reduces the

cclumn stiffness and can be even a stronger effect than the
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delaying the concrete cracking, such as occurs in column 4.
Third: Prestressing is, in these columns, a concentrated com-
pressive force on the cross section, producing a uniform
compressive stress over the entire cross section that consumes
part of the compression capacity of the concrete. 1If the pre-
stressing force is very high (case of column 5) crushing of the
concrete is produced and the load carrying capacity is drastic-
ally reduced. The progressive crack patterns at the bottom
section of the four prestressed columns are shown in figure 7.4.
Columns 2, 3 and 4 (moderately prestressed) show a stabllity
failure, having part bf the cross section cracked and part of
the concrete ylelded in compression. Column 5 fails by
yielding and crushing of the concrete in compression. 1In

none of the cases does the prestressing steel yield.

TABLE 7.1 Statical check for column of example 7.3

INTERNAL MOMENTS EXTERNAL MOMENTS
COLUMN in-kips AXIAL LOAD ( v )1 W ) MeP(e + &)
kips in. in.
l’ ) !z Hy "z

Reinforced | 494.0 798.0 221.0 { 0.957| 1.40 494.0 797.0
Prestressed

np-o 426.1 722.6 205.0 0.851]1.35 430.7 770.6
Prestressed

Np =120 431.9 i 709.8 204.4 0.837]1.30 426.6 708.3
Prestressed ’ ’

np-zoo 383.7 665.9 192.0 0.771] 1.30 388.0 665.2
Prestressed

np-soo 270.7 474.0 145.3 0.608 | 1.10 269.9 474.3
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The effect of prestressing on crack}ng is clearly shown
in figure 7.4 where it can be seen that the greater the pre-
stressing force introduced, the 1ater‘cracking appears.

The orientation of the plane of bending rotates because of
cracking and other material nonlinearities. The total rotation
of this plane for the reinforced concrete column is 4.4° at
failure (P . 221 kips). This rotation also induces a maximuﬁ
torsional moment of 140 in-1lb. due to nonlinear geometric
effects. A statistical check has been made at the base of the
column, comparing internal and external moments taking into
account the P-A effect. The results of this check are shown
in table 7.1. It can be seen that practically no unbalance exists
between external and internal forces.

7.4 Reinforced and prestressed concrete column of irregular

cross section

One feature of the present beam element 1is 1t$ ability to
model members with any arbitrary cross section. It 1is the
purpose of this example to demonstrate this capability taking
into account the effect of material and geometric nonlinearities
as well as the effect of prestressing applied at the tensile
zone.

A series of three hypothetical columns with the same cross
section 1s chosen for the present analysis. The first one is
reinforced while the other two are prestressed with two dif-

ferent amounts of prestressing force (column 2 has N_ = 60 kips,

P
and column 3 has Np = 120 kips). There are two straight pre-

stressing tensdons placed in the tensile zone of the column.
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The geometry, reinforcement and prestressing arrangement and

material properties are shown in figure 7.5.

The cross section is divided into a grid of 10 x 10 layers,
having a total number of 76 concrete filaments. Again dis-
placement control has been used to obtain the structural re-
sponse. An eccentric axial load is applied at the top of the
column up to failure. The load-displacement curve for the
three columns is shown in figure 7.5. From these curves several
remarks can be made:

1. The higher the prestressing force 1is, the higher load
capacity the column has for this particular case.

2. The prestressed columns are stiffer than the reinforced
one. Stiffness of the columns also increases with the
increasing of prestressing force.

3. Instability failure occurs.in the three cases. The total
lateral displacement at the top of the column at failure
decreases for the columns with higher prestressing forces.
This example differs essentially from the example presented

in section 7.3 in that the cross sectional shape is different,

and in the fact that prestressing tendons are placed in the
tensile zone. The effect of prestressing in this case 1is very
favorable because it increases substantially the stiffness of
the column by reducing cracking due to external loads. In
addition, prestressing does not consume in this case tﬁe com=-
pression capacity of any filament because it is placed at the
tensile zone. For the same reason the tangent modulus of the

compressed concrete filaments 1s not reduced by the prestressing
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stresses. Prestressed columns 2 and 3 have negative lateral
displacements § and w when only prestressing is applied. " This
explaines the fact that curves 2 and 3 do not péss through
the origin 0 in figure 7.6. The progressive crack patterns
are shown, for this example, in figure 7.7. It can be seen
that when only prestressing is applied, columns 2 and 3 cracked
in the upper side of the cross section. The reduction of
cracking by prestressing when external load 1s applied can
easily be seen in figure 7.7.

The maximum value of the torsional moment induced by the

axial rotation of the cross section and nonlinear geometry

effects is 544 in-1b.

7.5 Three-dimensional reinforced concrete frame

The objective of the present example is to show the
capability of the program to analyse three dimensional concrete
frames, including the torsional behaviour and to study the
influence of the amount of reinforcing steel on the nonlinear
behaviour of the structure. For this purpose a simple
hypothetic three dimensional reinforcing concrete frame .has bgén
analysed taking into account the material nonlinearity oﬁly; The
geometry of the frame, reinforcement arrangements for both cases,
loading of the'strucfure and material properties are shown in fi-
gure 7.8. Every member of the structure is divided into several

equal sized beam elements of 1 m. of length.

Due to the geometry'of the structure (three dimensional), the
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kind of loading and the kind of analysis performed (only material
nonlinearity), the beams are subjected to uniaxial bending and tor-
sion, while the column is subjected to iaxial bending and torsion.
For this reason the cross section of the girders are divided into
a number of horizontal layers and the column cross section‘is di-
vided into filaments. For the analysis of the structure, load con-
trol has been used up to the structure failure.

The load-displacement curve for the second structure is plot-
ted in figure 7.9, where the cracking point C and the postcracking
behavior (linear) of the structure can be clearly seen.

The progressive stress and strain distributions at section

D are shown in figure 7.10 for several values of the load
factor for the second structure analysed (higher amount of

steel).

The evolution of the bending moments in the two critical
sections of girder BD are shown in figure 7.11 and the final
moment distribution for all the structure is shown in figure
7.12, where the linear elastic solution is also shown.

Similar results to those of figure 7.1l are presented in fig.
7.13 for the structure with the lowest amount of steel.
Comparing both cases it can be seen that the moment resistribution
at section D is about 5% in structure 1 and 15.75% in structure
2, while at section F, the redistributionsare 15,1% for case 1
and 5% for case 2.

The torque-twist relationship of the elements are shown in
figure no 7.14 for structure n 2, and the evolution of
torsional moments in both girders, with the increment of load
is shown in figure no 7.15. The column is subjected to a

maximum torsional moment of 0.042 Txm.
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8 COMPUTER PROGRAM

8.1 General Remarks

The program PCF3D is a nonlinear finite element analysis
program for reinforced and prestressed three dimensional
concrete frames, taking into account geometric and material
nonlinearities, and the time dependent effects of load history,
temperature history, creep, shrinkage and aging of concrete |
and relaxation of prestressing steel.

The program has been written in FORTRAN IV language, and
has been developed at the IBM 4341 computer of the University

of California at Berkeley.

8.2 General structure of the program and features of each

subroutine

The prog;am is composed of a main subroutine that distributes
the flow to seven other subprograms, each of which can be
composed by several subroutines. The architecture of the program
is shown in figure 8.1, where the relationship among the
subroutines is indicated.

The features of each subroutine are as follows:

MAIN Pgogram Distributes the flow over different main
subroutines. Initializes vectors and
matrices. Performs the nonlinear strategies
and checksconvergence and serviceability

criteria.
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INPUT PRTLD
LoAD INSTR CREEP
UPDATE
STIFF
SYMSOL
CONCRT
STEEL
MAIN
PROGRAM
BMTORQ
STRESS
NLGEOM
SoPs
RESIST
OUTPUT

Fig.8.1 Architecture of Program PCF3D
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Subroutine INPUT Reads input data that do not depend on time
steps, load steps or iterative procedure,
such as initial geometry of the structure,
initial material properties, prestressing

information, etc.

Subroutine PRTLD Obtains the equivalent joint .load vector
due to prestressing at transfer, taking
into account prestressing losses due to

friction, anchorage slip, etc.

Subroutine LOAD Inputsdata corresponding to each time step,
such as joint loads, material properties,
load factors, nonlinear strategy to follow
at the current time step. Calculates the
fictitious forces due to imposed displacements

at supports.

Subroutine INSTR Obtainsnon-mechanical strains due to
temperature variation,shrinkage and aging
of concrete and relaxation of prestressing
steel. Calls subroutine CREEP to obtain
initial creep strain and then forms the

initial strain load vector.

Subroutine CREEP Obtainsthe non-mechanical strain due to

creep of concrete.

Subroutine UPDATE For each load step accumulates external joint
loads, initial strain load vector and load

factors.



Subroutine STIFF

Subroutine SYMSOL

Subroutine STRESS

Subroutine CONCRT

Subroutine STEEL

Subroutine SDPS
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Forms the element stiffness matrix, performs
the static condensation, transforms to global

coordinates, assembles global structural

. matrix and checks for structural failure:

In core banded equation solver. Obtains
increments of displacements in global
coordinates. Checks for singularity of

the stiffness matrix. SYMSOL (1) triangularizes
the newly formed stiffness matrix, while
SYMSOL (2) uses the already triangularized

and stored stiffness matrix.

Transforms global displacement increments to
local element axes, updates nodal coordinates,
obtains element strains, support reactions

and unbalanced load vector.

Obtains stresses in concrete filaments, from
the stress-strain relationship. Performs

state determination.

Obtains stresses in reinforcing steel from
the stress-strain relationship. Performs

state determination.

Obtains new length of prestressing segments,
stresses and prestressing segments forces.

Performs state determination.



Subroutine BMTORQ
Subroutine NLGEOM

Subroutine RESIST

Subroutine OUTPUT

8.3 Flow Chart
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Obtains torque in the beam element, from the

tri-linear torque-twist relationship.

Updates element orientation matrix for large

displacement analysis.

Obtains internal resisting load vector for
each element by adding the contribution of
concrete, reinforcing and prestressing steel.

Assembles for the whole structure.

Prints results. The following information

can be printed: joint displacements, support
reactions, unbalanced load vector, strains,
stresses and material state number for each
concrete and reinforcing steel filament,
element internal forces ai each Gauss point,
strains, stresses and forces at each prestres

sing steel segment.

The flow chart diagram of the computer program PCF3D is

the one shown in figure 8.2. The variables in the flow chart

are defined as follows:

ITIME Time step counter.

NTIME Number of time steps.

LST Load step counter.
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Fig.8.2 Flow Chart Dicgram of Computer Program PCF3D.
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NLST  Number of load steps for the current time step.
ITER Iteration counter.
NITER Maximum number of iterations allowed.

KCNT Code of nonlinear strategy adopted in the current

“~

time step. If KCNT = 1, displacement control. If
KCNT = 0, load control.

8.4 Additional comments about the features and organization

of the program

8.4.1 Types of analysis that can be performed

The structure can be analyzed with program PCF3D according

to four different approaches. These are:

1. Linear-elastic analysis.

2. Nonlinear-material, small displacements.
3. Elastic material, large displacements.
4. Nonlinear material and geometry.

5. Any of the above posibilities with time dependent analysis.

8.4.2 Structural loading conditions

The external loads are assumed to be applied only at the
joints;.Pistributed loads may be converted into equivalent
joint loads either by the consistent load method or a lumped
formulation. Imposed displacements and rotations can be

applied at the supported joints.
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Temperature and shrinkage distributibns considered are:
constant values for all the elements in the structure, different
value for each element (but constant over the cross section),
and planar variation for each element. This option is performed
by specifying the values of the temperature or shrinkage strain,
at three arbitrary points in the section boundary, together with
the coordinates, in local element system, of these three points.

When incremental analysis is performed (with or-without
equilibrium iterations) different load factors for each load
step are specified for external loads, initial strain load

vector and controlled displacement, respectively.

8.4.3 Nonlinear strategies

Two different nonlinear solution schemes can be selected:
- Load control (for each load step iterations are performed
with constant level of the external load). This procedure is
the most usual, and is utilized to obtain the maximum load
that the structure can carry.
- Displacement control (for each load step, the iterations
are performed by varying the external load level and keeping
the given value of the displacement controlled). This technique
is used when post-buckling behaviour of a structure is to be

studied.
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8.4.4 Uniaxial or biaxial bending

The program has the capability of analysing planar frames
with symmetric cross sections, subjected to uniaxial bending,
as a particular case of a 3-D frame. For these cases the amount
of storage and computer time necessary to solve.a problem is
much less than in a general 3-D case. Then, the cross section
can be divided into layers, parallel to the y local axes, in-

stead of filaments.

8.4.5 Data management. Intermediate variables

The number of variables to be stored in order to perfprm
a nonlinear time dependent analysis of a reinforced or prestressed
concrete frame is enormous. In the case of three dimensional
concrete frames, in addition to the variables associated with
joints (loads, displacements, etc.) a number of variables related
to the filaments must be stored. These variables can be mechanical,
nonmechanical and total strains, stresses, etc; For every
concrete and steel filament, calculated at every Gauss point in
every element. In order to reduce the amount of central memory
occupied by these variables, out of core storage is used for

the variables associated to the concrete and steel filaments.



8.5 PCF3D INPUT DATA FORMAT

1.

TITLE (20A4) - 1 line

Col.

CONTROL

1 - 80 TITLE

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

1 -
6
11 -
16 -

26 -

31 -

41 -

46 -

51 -

S

10

15

20

25

30

35

40

45

S0

60

NJ
NSJ-

NSEC

NSTOR
IPB

- NCNC

NSNS

KPRT

KCNC

AGE
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Title of the problem

INFORMATION (10I5,3F10.0) - One line

Number of joints

Number of supported joints

Number of elements

Number of different types of cross
sections.

Number of different torsional models.
Type of bending problem:

IPB = 0 Biaxial bending

IPB = 1 Uniaxial bending

Number of different concretes
Number of different reinforcing
steel materials.

Prestressing code:

KPRT = 0 There is no prestressing
KPRT = 1 There is prestressing
Input code for material properties:
KCNC = 1 Input ACI parameters

KCNC = 2 Input experimental results
Age of concrete in days at time of

initial loading



Col. 61 - 70 TZERO

Col. 71 - 80 ALPHA

NODAL COORDINATES

Col. 1
Col. 6
Col. 16
Col. 26

SUPPORT

- 5
- 15
- 25
- 35

1

X(I)
Y1)
2(1)
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Reference temperature (in centigrade

degrees)

Coefficient of thermal expansion,

(constant and equal for steel and

concrete)

(I5,3F10.0) - One line per each node

Joint number

X - Coordinate in globals

Y - Coordinate in globals

Z - Coordinate in globals

ORIENTATION MATRIX (I8,9F8.0) - One line per each

Col. 1
Col. 9

Col. 17

Col. 25

Col. 33

Col. 41

Col. 49

- 8
16

24

32

40

48

56

I
Xs(1)

YS(1)

s(1)

Xs(2)

YS(2)

25(2)

supported joint

Supported joint number

X - Coordinate for'auxiliary

in spring 1

Y - Coordinate for
in Spring 1

Z - Coordinate for
in spring 1

X - Coordinate for
in spring 2

Y - Coordinate for
in spring 2

Z - Coordinate for

in spring 2

auxiliary

auxiliary

auxiliary

auxiliary

auxiliary

node

node

node

node

node

node



6.1

Col. 57 - 64 XS(3)
Col. 65 - 72 YS(3)

Col. 73 - 80 ZS(3)

SPRING CONSTANTS

Col. 1 - § NS(I)
Col. 6 - 65 SP(I,J)

CROSS SECTION DATA -

General Data

Col. 1 - 5 1ISEC
Col. 6 - 10 NCLY(I)

Col. 11- 15 NCLZ(I)

Col. 16 - 20 NFS(I)
Col. 21 - 25 NFB(I)
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X - Coordinate for auxili;ry node
in spring 3

Y - Coordinate for auxiliary node
in spring 3

Z - Coordinate for auxiliary node

in spring 3

(I5,6E10.0) - One line per each

supported node

_ Supported joint number

Value of the spring constants at
node I, J = 1,6

One set of lines per each different

cross section
(SI5,5F10.0) - One line

Section type number

Number of concrete layers normal to
y - axis .

Number of concrete layers normal to

z - axis

Number of reinforcing steel filaments
Number of rows of C matrix used to
define the cross section shape (C

matrix is called IB in the program).



6.2

Col. 26 - 35

Col. 36 - 45

Col. 46 - 55

COI. 56 - 65

Col. 66 - 75

YMP (1)

ZMP(I)

YMN (1)

IMN(I)

RTJ(I)
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Maximum positive distance from
center of reference to the
circumscribéd rectangle, in Y
direction

Maximum positive distance from
center of reference to the
circunscribed rectangle, in 2
direction

Maximum negative distance from
center of reference to the
circumscribed rectangle, in Y
direction

Maximum negative distance from
center of reference to the
circumscribed rectangle, in Z
direction

Torsional stiffness constant

Matrix for the definition of the cross section shape (31S5)

One line for each row of the IB matrix.

COl. 1 - 5

Col. 6 - 10
-~,

Col. 11 - 15

Col. 16 - 20

1B(1,J,1)
1B(1,J,2)
1B(I1,J,3)
IB(I,J,4)

Number of current physical layer
Column in which concrete starts
Column in which concrete ends.

Material code for the current layer
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6.3 Definition of the steel filaments geometry (3F10.0)

7.

One line for each steel filament. Skip if NFS(I) = 0

Col. 1 - 10 AS(I,J) Steel area of filament J in section
type 1

Col. 11 - 20 ESY(I,J) Y - eccentricity of filament J

Col. 21 - 30 ESZ(I,J) Z - eccentricity of filament J

TORSIONAL PROPERTIES (SE10.0) - One line for each

torsional model

Col. 1 - 10 TCR(I) Torque at first cracking

Col. 11 - 20 TYP(I) Torque at first yielding

Col. 21 - 30 ACR(I) Twist at first cracking

Col. 31 - 40 AYP(I) Twist at first yielding

Col. 41 - S0 AUL(I) Ultimate twist

MEMBER DATA (615,3F10.0) - One line per element
Col. 1 - 5 L Element number

Col. 6 - 10 NODI(L) Node at I end
Col. 11 - 1S NODJ(L) Node at J end
Col. 16 - 20 MESC(L) Cross section type of the current

element

Col. 26 - 30 KTO(L) Torsional behaviour model of this
element

Col. 31 - 40 XA(L) Global X coordinate of orientation

auxiliary node
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Col. 41 - 50 YA(L) Global Y coordinate of orientation
. auxiliary node
Col. 51 - 60 ZA(L) Global Z coordinate of orientation

suxiliary node

PRESTRESSING DATA (skip if KPRT = 0)

Control information (415,4F10.0) - One. line

Col. 1 - S5 1ITRANS Time step when prestressing is
transferred

Col. 6 - 10 NTEND Number of tendons

Col. 11 - 16 NPS Number of prestressing segments

Col. 16 - 20 NPT Number of points used to define

stress-strain curve of prestressing

steel

Col. 21 - 30 FPSY 0.1% Offset yield stress of
prestressing steel

Col. 31 - 40 ROZR Wobble friction coefficient

Col. 41 - 50 ROZC Curvature friction coefficient

Col. 51 - 60 CRPS Coefficient for the relaxation loss.

Use CRPS = 10 for ordinary

prestressing steel.

Stress-strain curve for prestressing steel. (10E8.0)
One 1line

Col. 1 - 80 PSF(I) Stress of point I
PSE(I) Strain of point I (I= 1,NPT, NPT<=5)
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9.3 Tendon information (415,4F10.0) - One line for each
tendon
Col. 1 - 5 1 Tendon number
Col. 6 - 10 .NIN(I) Number of element in which tendon
starts
Col. 11 - 15 NFN(I) Number of element in which tendon
. ends

Col. 16 - 20 INDP(I) Jacking code:
INDP(I) = 1 Jacking from I end
INDP(I) = 2 Jacking from J end
INDP(I) = 3 Jacking from both ends
Col. 21 - 30 AREAT(I) Steel area of tendon I
Col. 31 - 40 PAI(I) End force when jacking from I end
Col. 41 - 50 PAJ(I) © End force when jacking from J end
Col. 51 - 60 DESL(I) Anchorage slip

9.4 Prestressing segment data (315,4F10.0) - One line for each

segment
Col. 1 - 5 1 Segment number
Col. 6 - 10 MPS(I) Element in which this segment is
embedded

Col. 11 - 15 NTPS(I) Prestressing tendon to which the

~. segment belongs
Col. 16 - 25 EY1(I) Y eccentricity of segment at I end
Col. 26 - 35 EZi1(I) Z eccentricity of segment at I end
Col. 36 - 45 EY2(I) Y eccentricity of segment at J end
Col. 46 - S1 EZ2(I) Z eccentricity of segment at J end

NOTE: These eccentricities are in element local coordinate
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10. MATERIAL PROPERTIES

10.1 Concrete propertiés

ACI Préperties (KCNC = 1) (9F10.0) - One line per each

different concrete

Col. 1 - 10 FPC28(K) 28 day strength in psi (enter
with negative sign)

Col. 11 - 20 WGT(K) Weight per unit volume in 1b/cu.ft.

Col. 21 - 30 ACNC(K) Coefficient "a" to compute f'é(t)

Col. 31 - 40 BCNC(K) Coefficient "b" to compute f' (t)

Col. 41 - 50 RCMP(K) Ratio r, in £/ = T .fl

Col. 51 - 60 RTNS(K) Ratio r, in £, = rt/?T?:'

Col. 61 - 70 RCRP1(K) Ratior; = f:/o up to which 0, =0
in creep calculation (usually = 0.35)

Col. 71 - 80 RCRP2(K) Ratio r2 = 0 /o when ¢ = £ in
creep calculation (usuallys= 1.865)

Col. 81 - 90 ECU(K) Ultimate compressive strain. Enter

with negative sign.

Test Results (KCNC=2) (2E10.0,5F10.0) - One line per each

different concrete

Col. 1 - 10 ECI(K) Initial modulus at the age of
initial loading
Col. 11 - 20 G(K) Shear modulus at the age of initial
, . loading
Col. 21 - 30 FCDP(X) Compressive strength f£. Enter with

negative sign.
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Col. 31 - 40 FTP(K) Tensile strength
Col. 41 - S0 ECU(K) Ultimate compressive strain (negative)

Col. 51 - 60 RCRP1(K) Ratio r; = fg/o up to which O, =0

in creep calculation (usually = 0.35)
Col. 61 - 70 RCRP2(K) Ratio r; = 0,/0 when ¢ = fg in

creep calculation (usually = 1.865)

10.2 .Steel Properties (2E10.0,2F10.0) - One card for each

different steel

Skip if NSNS = 0

Col. 1 - 10 ES1(K) First Modulus
Col. 11 - 20 ES2(K) Second Modulus
Col. 21 - 30 FSY(K) Yielding stress
Col. 31 - 40 ESU(K) Ultimate strain

11.  STRUCTURAL ANALYSIS CONTROL DATA. (9I5) - One line (¥)

Col. 1 - S5 NTIME Number of time steps '
Col. 6 - 10 NITI Number of iterations allcwed for

intermediate load steps

Col. 11 = 15 NITF Number of iterations allowed for final
load step
Col. 16 - 20 KOUT Output code:

if XKOUT = 1 Output results after
every iteration
If KOUT = 0 Output results only at
. load steps.
(®*) NOTE: If KPRT # O (there is prestressing) it is convenient
to use a specific time step for the introduction of

prestressing force.



Col. 21 - 25 ITAN

Col. 26 - 30 KSTR

Col. 31 - 35 JRESP

Col. 36 - 40 KTEMP

Col. 41 - 45 KSHRNK
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Type of analysis code:

1f ITAN= 0 Linear analysis

If ITAN=1 Nonlinear material, small
displacements

If ITAN= 2 Nonlinear geometry,

elastic material

If ITAN = 3 Nonlinear material and
geometry

Stress output code. Number of

elements in which the stresses are

to be output

Output code for intermediate values.

Use JRESP = 0

Code for temperature effects:

I1f KTEMP = 0 No temperature effects
are considered

1f XTEMP = 1 Constant variation of
temperature in all the
structure

1f KTEMP = 2 Planar variation of
temperature over the
cross section, different
for each element

Code for shrinkage effects:

1f KSHRNK= 0 No shrinkage effects
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If KSHRNK = 1 Constant shrinkage in
the structure
If KSHRNK = 2 Planar variation for

each element

12. ELEMENTS IN WHICH STRESSES ARE OUTPUT. (16IS5)
Skip if KSTR = 0 (None element) or KSTR = NM (All elements)

Col. 1 - 80 KELEM(I) Element numbers. I = 1,KSTR

13.  CONVERGENCE RATIO TOLERANCES. (7F10.0) - One line

Col. 1 - 10 TOLI Displacement ratio tolerance for
intermediate load steps

Col. 11 - 20 TOLF Displacement ratio tolerance for
final load step

Col. 21 - 30 TOLC Displacement ratio tolerance for

changing stiffness

Col. 31 - 40 TOLL Maximum unbalanced 1load allowed
Col. 41 - 50 TOLM Maximum unbalanced moment allowed
Col. §1 - 60 TOLD thimum allowable displacement
Col. 61 - 70 TOLR Maximum allowable rotation

14. LOAD INFORMATION - One set of lines for each time step.

14.1 Control load information (7IS5,F10.0) - One line

Col. 1 - S ITIME Time step number

Col. 6 - 10 NLS Number of load steps for the
current time step

Col. 11 = 1S NLJ Number of loaded joints



14.2

14.3
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Col. 16 - 20 NDJ Number of supported nodes with
imposed displacements
Col. 21 - 25 KCNT Nonlinear strategy code for the
current time step:
KCNT = 0 1oad control
KCNT = 1 displacement control
Col. 26 - 30 NDC Node with controlled displacement
Col. 31 - 35 LDEG(*®) g::tggg;gdigegggz'gf freedom in
node NDC. Use NDC=0 if KCNT=0
Col. 26 - 45 DDISP Maximum value of controlled dis-

placement. Use DDISP=0 if KCNT=0
Nodal loads in global coordinates. (I5,6F10.0) - One line

Skip if Number of loaded joints (NLJ) = 0

Col. 1 - 5 1 Loaded joint number
Col. 6 - 65 PLOAD(J) Loads in global coordinates

(J = 1,6) acting upon the joint J

Imposed displacements in global coordinates. (I5,6F10.0)
One line

Skip if there are no joints with imposed displacements
(NDJ = 0)

Col. 1 - S NDI Number of the node with imposed

displacement

(®*) NOTE: LDEG = 1, 6 depending of the dof controlled

for axial displacement (u) LDEG=1
for transverse displacement (v) LDEG=2
for transverse displacement (w) LDEG=3
for rotation about x axis LDEG=4
for rotation about x asis LDEG=5
for rotation about £ axis LDEG=6
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Col. 6 - 65 DES(NDI,J) Value of the imposed displaccmecntcs
for each of the six degrees of freedom
J=1,6) of node number NDI

14.4 Load factors for load or displacement steps. (15,3F10.0)

Provide one line for each load or displacement step in

the current time step (*®)

Col. 1 - §5 LS Load step number
Col. 6 - 1S FLOAD(LS) Factor for external loads
Col. 16 - 25 FINST(LS) Factor for initial strain load

Col. 26 - 35 FDISP(LS) Factor for controlled displacement
This factor will scale the value

of DDISP
14.5 Time increment (F10.0) - One line. Skip if ITIME =1
Col. 1 - 10 DTIME Time increment, in days, for the

current time interval.

14.6 Creep coefficients (3E10.0) - One line for each

different concrete
Skip if ITIME = 1

Col. 1 - 30 XAI(M)
XAZ (M) Creep coefficients a,,a;,a;, for

XA3 (M) the time step t__,.

(*) NOTES: When controlled displacement is used, it is necessary
to specify FLOAD=1. The program scales the external
load in order to obtain the specified value of the
controlled d.o.f. Prestressing can be introduced
gradually by load steps. Since prestressing is
treated as an initial strain load vector, its value
is controlled by factor FIN3T (LST).
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14.7 Current concrete properties. (3E10.0) - One line for each

concrete
Skip if ITIME = 1
Col. 1 - 10 ECI(M) Current initial modulus
Col. 11 - 20 FCDP(M) Concrete compressive strength
(enter negative)
Col. 21 - 30 FTP Concrete tensile strength

14.8 Shrinkage strain increment. Skip if KSHRNK = 0

14.8.1 Constant value for all the structure. (KSHRNK=1) (F10.0)

One line

Col. 1 - 10 DEPSS Shrinkage strain

14.8.2 Planar Variation (KSHRNK = 2) (I8,9E8.2)
Increments of shrinkage strain for the current time
step are specified at three arbitrary points of the
cross section for each element. The shrinkage straln
increment for each filament is automatically obtained
by the program by fitting a plane surface of shrinkage
strains on the section.
Col. 1 - 8 I Current element number
Col. 9 - 16 SY¥Y(1) Y coordinate, in locals, of
‘ first point
24 sz(1) Z coordinates, in locals, of

Col. 17 =~
first poin¢
Col. 25 - 32 8S(1) Shrinkage strain increment at

point 1



Col. 33

Col. 41
Col. 49
Col.
Col.

65

Col. 73

14.9 Temperature

14.9.1 Constant value

One line

Col.

57

- 40 sY(2)
- 48 sz(2)
- 56 8S(2)
- 64 SY(3)
- 72 SZ(3)
- 80 Ss(3)
value.

1 -10
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Y coordinate, in
second point

A dodrdinate, in
second point
Shrinkage strain
point 2

Y coordinate, in
point

Z coordinate, in
point

Shrinkage strain
point 3

(Skip if KTEMP = 0)

locais, o

locals, of

increment at

locals, of third

locals, of third

increment, at

in all the structure (KTEMP = 1) (F10.0)

TEMP

Temperature (In centigrade

degrees) (#)

14.9.2 Planar variation (KTEMP e 2) (I8,9F8.0) - One card for

COI. 1 -
Col.

8§ I
9 - 16 YT(1)

Col. 17 - 24 2ZIT(1)

each element

Element number

Y - Coordinate, in locals, of first

point

Z - Coordinate, in locals, of first

point



Col. 25

Col. 33

Col. 41

Col. 49

Col. 57

Col. 65

Col. 73

32

40

48

56

64

72

80

TT(1)

YT(2)

iT(2)

TT(2)

YT(3)

ZT(3)

TT(3)
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Temperature, in

of first point

Y - Coordinate,
point

Z - Coordinate,
point

Temperature, in

of second point

Y - Coordinate,
point

Z - Coordinate,
point

Temperature, in

of third point.

degrees centigrade,

in locals, of second

in locals, of second

degrees centigrade,

in locals, of third

in locals, of third

degrees centigrade,

(*) Temperature values for this option are specified at

three arbitrary points of the cross section for each

element.

The value of the temperature at each filament

is automatically obtained by the program, by fitting

a planar surface of temperatures into the section.
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9. SUMMARY AND CONCLUSIONS

9.1 Summary

A numerical procedure for the material and geometric non-
linear analysis of three dimensional reinforced and prestres-
sed concrete frames under short time and sustained loading
has been presented. The response of such structures can be
traced through their elastic, cracking, inelastic and ultimate
load ranges.

A finite element displacement formulation coupled with a
time step integration solution is used. An incremental load
method combined with the unbalanced load iterations for each
load increment is utilized for the solution of the nonlinear
equilibrium equations. In addition, an iterative scheme based
upon constant imposed displacement can be used so that struc-
tures with local instabilities or strain softenings can also
be analyzed.

A straight beam element with an arbitrary cross-section
is used. The element has six degrees of freedom at each end
Plus one internal axial degree of freedom at mid length
that is eliminated, at element level, by static condensation.

In order to account for varied material properties within
-a frame element, the element is divided into a discrete number
of concrete and reinforcing steel filaments which are assumed
to be perfectly bonded together.

Material non-linearities due to cracking of the concrete,

nonlinear stress-strain behaviour in the concrete and yielding
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of the steel reinforcément are considered. Both materi;ls,
concrete and steel, are considered to be subjected to a uni-
axial stress state. It is assumed that plane sections remain
plane and the deformations due to shearing strains are neglect-
ed.

The integrations required to evaluate the element proper-
ties such as the stiffness matrix or the internal resisting
load vector are then performed filament by filament through
the surface of the cross section. By the use of the filament
system, together with a special matrix, non uniform cross-
sections can be modeled. An effective torsional stiffness
approach has been used to represent the nonlinear torsional
behaviour of the beam element.

An updated Lagrangian formulation has been used to take
into account the nonlinear geometry effects due to the change
in geometry of the structure. The formulation is based upon
average rotations of the beam elements axes and is restricted
to small strains and small incremental rotations.

Post tensioned bonded concrete frames can be analyzed with
this numerical procedure.

Prestressing steel tendons are divided into a discrete
number of linear segments each of which is assumed to span an
element and have a constant stress along its length. The con-
tributions of the prestressing steel to the element properties
are added directly.

The effeét of prestressing is introduced in the structure

as an equivalent load vector obtained by equilibrating the
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forces of the prestressing tendons.

Short time prestressing losses due to friction, curvature
and anchorage slip are taken into account as well as long time
losses due to creep and shrinkage of concrete and relaxation
of prestressin; steel.

An efficient procedure for the evaluation of creep strain
based upon an age and temperature dependent integral formula-
tion is incorporated. The creep strain increment at the current
time step requires only the knowledge of the hidden state va-
riables of the last time step. This is due to the use of a
Dirichlet series for the specific creep function in which
the coefficients can be readily determined from the available
creep data.

Finally,-a series of numerical examples analyzed by the
computer program, based on the above principles, are presented
and compared ;ith the available theoretical and experimental

results to demonstrate the applicability and validity of the

present method of analysis.

9.2 Conclusions and Recommendations -

The-present method of analysis has been shown to be capable
of predicting the nonlinear response of reinforced and prestres-
sed concrete three dimensional frames under short time and long
time loading fairly accurately.

The present modelling of material properties is capable of

capturing the dominant flexural behaviour of reinforced and
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prestressed concrete three dimensional frames in the elastic,
inelastic and ultimate load ranges. It seems to be specially
adequate to analyse the nonlinear behaviour of members with
arbitrary cross section subjected to biaxial bending.

The nonlinear geometry analysis procedure 4s adequate
to analyze structures subjected to strain softenings. On the
other hand the constant imposed displacement procedure used
as non linear strategy seems to present better convergence
than the contant imposed load.

The amount and position of prestressing has been shown
to have an important influence , not always favourable, on

the behaviour of prestressed concrete columns.

The following recommendations can be made for future

studies:

- A curved beam element based on the degeneration concepts

' could be developed.

- Interaction between flexural and torsional behaviour should
be studied and incorporated in the model.

- Torsional response of arbitrary cross sections should be
investigated, including also the effect of prestressing in
the torque-twist relationship.

- The present study can be extended to include pretensioned

and post-tensioned unbonded structures.
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