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The expansion of the Universe is understood to have accelerated during two epochs: in its very first
moments during a period of ‘Inflation’ and much more recently, at z < 1, when Dark Energy is
hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs
represent some of the most important open problems in fundamental physics.

Most of the processes involved during Inflation impact observations on the very largest spatial
scales [1, 2]. Traditionally, these have been accessed through observations of the Cosmic Mi-
crowave Background (CMB). While very powerful, the CMB originates from a 2D surface and
the finite number of modes that it contains will largely be measured by experiments over the next
decade.1 Observations of large 3D volumes with large-scale structure (LSS) access similar scales
and will dramatically increase the number of available modes. For example, LSS observations in
the range 2 . z . 5 can more than triple the volume surveyed at z . 2, and, together with the suf-
ficiently high galaxy number in this interval, strongly motivates a future spectroscopic survey that
exploits this opportunity. In addition, tomography allows mapping the growth of structure with
redshift, which provides robust constraints on Dark Energy and neutrino masses while relaxing
restrictive assumptions such as a power-law primordial power spectrum [7].

Finally, cross-correlation with external tracers, such as CMB lensing, Intensity Mapping or
the Lyman-α forest, immunises the constraints to the systematics that make measurement chal-
lenging and further improves the precision through ‘sample variance cancellation’ [8, 9, 10] and
degeneracy breaking.

1 Science Case
Inflation Simple theories of inflation, involving a single non-interacting field, predict that the pri-
mordial fluctuations are extremely close to Gaussian distributed [11, 12]. However, very large
classes of inflationary models produce levels of non-Gaussianity that are detectable by the next
generation of spectroscopic surveys [1]. Measurements of primordial non-Gaussianity probe the
dynamics and field content of the very early Universe, at energy scales far above particle colliders.
Deviations from Gaussianity leave a particular imprint on the galaxy three-point correlation func-
tion or bispectrum [13] (and of the CMB), and can also produce a characteristic scale-dependence
in the galaxy bias [14]. Depending on the physical process responsible for these deviations from
Gaussianity, different configurations in the three-point function are generated. These are typically
described by a number of dimensionless parameters, fNL [15], and common examples include
the local, equilateral and orthogonal types. The local type is generically produced in multi-field
inflation, while the equilateral type often indicates self-interaction of the inflaton.

Pushing the observational frontier to the threshold typically expected from ‘non-minimal’ infla-
tion (fNL & 1, see [2]) provides a compelling opportunity for future large-scale structure surveys.
In summary, capturing the full picture of inflation requires measuring primordial non-Gaussianity
to an unprecedented level, complementing the search for primordial gravitational waves and in-
forming us about the Universe’s first moments.

1Cosmologically relevant modes of CMB temperature anisotropies have been measured to the cosmic-variance
limit by Planck [3] and upcoming or proposed experiments will achieve the same for polarization [4, 5, 6].
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Dark Energy Many theories have been put forward to explain the late time cosmic acceleration.
They range from a cosmological constant to some dynamical forms of Dark Energy or modification
to General Relativity on large scales [16, 17]. By mapping expansion and growth at z > 1.5 – deep
into matter domination – we can ease parameter degeneracies, better constrain potential theories of
Dark Energy, and test posited modifications to General Relativity, e.g. by comparing measurements
of growth to the amplitude of gravitational lensing of the CMB.

Curvature A measurement of the global value of the Universe’s curvature can potentially have
important implications for Inflation. Slow-roll eternal inflation predicts |ΩK | < 10−4, while false-
vacuum models would be ruled out by a measurement of ΩK < −10−4 [18, 19]. Moreover,
the current bound ΩK < 2 × 10−3 [3] relies on the strong assumption that Dark Energy is a
cosmological constant. If this is relaxed, large degeneracies with the time evolution of Dark Energy
arise, significantly degrading the constraints on both. Measurements at high redshift can break this
degeneracy and, at the same time, approach the threshold σ(ΩK) ≈ 10−4 that is crucial for a better
understanding of Inflation [20].

Neutrino Masses Massive neutrinos suppress the growth of structure on small scales in a time-
dependent manner [21]. Measuring the amplitude of structure over a long lever-arm in redshift,
z ∼ 0 − 5, better constrains the neutrino masses and breaks important degeneracies with the time
evolution of Dark Energy and the primordial power spectrum [22, 23].

1.1 High-z Lyman-break galaxies and Lyman-α emitters
Lyman-break galaxies are young, star forming galaxies that comprise the majority population at
z > 1.5. Their characteristic spectral energy density exhibits a sharp drop in the optical flux
blue-wards of the redshifted Lyman limit, (1 + z)× 912Å, due to absorption by neutral hydrogen,
in an otherwise shallow Fν spectrum. As such, they are efficiently selected with a search for
galaxies bright in a detection band, mUV – chosen to correspond to the rest-frame UV for ease
– but otherwise undetected in all bluer filters (see Refs. [24, 25] for reviews). In this manner,
convenient target populations (BX, u-dropouts, g-dropouts and r-dropouts) spanning ∆z ' 1.0
at z ' 2, 3, 4 and 5 are obtained by enforcing these criteria for increasingly red detection bands.
Selection on photometric redshift largely yields the same ends [26, 27].

While of great interest for providing very large populations at high redshift, to achieve the nec-
essary spectroscopic success rate in a baseline exposure typically requires refinement to those with
significant Lyman-α emission (LAEs). This is traditionally achieved with narrow-band selection,
but large volumes and sufficient depth are not obtainable in this manner. Accepting some degree of
increased contamination or lower completeness, broad-band selection based on the bluer continua
of strong emitters has been shown to provide very encouraging results [28, 29, 30]. Alternatively,
one may limit oneself to only the brightest galaxies, for which secure absorption line redshifts are
also possible.

1.2 Survey strategy
We identify two galaxy surveys that we use as a baseline for forecasts of an airmass-limited 14,000
square degree survey. Following Ref. [10], we first consider the idealised mUV = 24.5 sample
in Table 1. This informs what conclusions may ultimately be drawn for this science case with
minimal assumptions on the required facilities and survey details.
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Conversely, assuming a next generation survey speed, we posit a fiducial survey to approximate
the properties shown in Table 2 – assuming completion of LSST Year 10 by first light.

z n(z) [10−4 h3 Mpc−3] b(z) z n(z) [10−4 h3 Mpc−3] b(z)

2.0 25 2.5 4.0 1.5 5.8
2.5 12 3.3 4.5 0.8 6.6
3.0 6.0 4.1 5.0 0.4 7.4
3.5 3.0 4.9

Table 1: Our ‘idealised’ sample: amUV = 24.5 magnitude-limited dropout sample as defined by Ref. [10].
Here n(z) and b(z) correspond to the expected number density and linear galaxy bias with redshift.

z n(z) [10−4 h3 Mpc−3] b(z) z n(z) [10−4 h3 Mpc−3] b(z)

2.0 9.8 2.5 4.0 1.0 3.5
3.0 1.2 4.0 5.0 0.4 5.5

Table 2: Our ‘fiducial’ sample achievable with next generation facilities. The number density and galaxy
bias estimates derive from Refs. [10, 30, 31, 32, 33] and [34]. We find the limiting factors are efficient
pre-selection of LAEs based on broad-band imaging, LSST u-band depth and our posited survey speed for
z = 2, 3 and 4 respectively.

2 Forecasts

2.1 Primordial non-Gaussianity
We follow Ref. [13] in order to forecast the constraints on primordial non-Gaussianity achievable
with these samples. The results are shown in Table 3 when including both the power spectrum
and bispectrum. We find that local fNL sees the largest improvement, achieving σ(f local

NL ) ≈ 0.1
for the fiducial sample. This represents a factor of ' 50 improvement over current surveys and
achieves the precision necessary for a paradigm shift in our understanding of the early Universe.
No planned survey can deliver this at such a redshift, which would be entirely complementary to
lower z studies [35]. When including the external CMB and LSS data expected to be available
by first light, the constraints on equilateral and orthogonal f local

NL see additional improvements of
∼ 2 and 3 over current estimates. Given this achievable precision, the measurement will likely be
systematics-dominated and the survey should be designed accordingly.

The importance of spectroscopy is clear from the sharp degradation in constraints – a factor of
3 for both local and orthogonal, and a factor of 4 for equilateral – if only photometric redshifts are
available.

2.2 Dark Energy
The galaxy power spectrum yields measurements of the expansion and growth rates. In turn, these
can be used to infer the energy content at a particular redshift. In Figure 1, we show that both
potential surveys constrain the fraction of Dark Energy to percent, or even sub-percent, precision
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σ(fNL)
Fiducial / Idealised P +B + External

Current
(Planck)

Photo-z
degradation

Local 0.75 / 0.63 0.11 / 0.073 0.11 / 0.073 5 ×3

Equilateral – 43 / 23 23 / 18 43 ×4

Orthogonal 50 / 33 8.8 / 5.0 7.5 / 4.7 21 ×3

Table 3: Constraints on fNL for the two samples considered. P denotes those derived from the power
spectrum, while +B includes additional constraints from the bispectrum. External datasets include con-
straints on fNL coming from Planck [36], DESI [37] and Simons Observatory [4], which are expected
to complete by our first light. In the last column, we illustrate a photo-z degradation corresponding to
σ(z)/(1 + z) = 2× 10−2.

to z ∼ 5. This would represent a tremendous increase in precision over DESI, especially for z > 3.
In the standard parametrization, these correspond to a Dark Energy Figure of Merit (FoM) of 398
and 441 for the fiducial and idealised samples respectively. This is an improvement of a factor of
2.7 over DESI [37] when combined with the current Planck constraints. Spectroscopy is essential
in this respect, with a degradation of over ∼ 60% for photometric redshifts (σ(z)/(1 + z) = 0.01).
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Figure 1: The absolute error on the fraction of Dark Energy ΩDE at a given redshift for the fiducial (left)
and idealised (right) samples. This is obtained from a combination of radial Baryon Acoustic Oscillation
(BAO) and Redshift-Space Distortions (RSD). If Dark Energy is a cosmological constant, its fraction is
forecasted to be 7%, 3%, 2% and 1% at z = 2, 3, 4, 5 to a very high degree of accuracy, which motivates
facilities capable of challenging this prediction.

Table 4 shows forecasts for the (beyond) Standard Model parameters. In addition to the Dark
Energy FoM, large improvements are found for the curvature ΩK (with errors decreasing by over
a factor of 2), together with the sum of neutrino masses.

While not explored in great detail here, it has been shown that cross-correlation with the CMB
and Intensity mapping experiments can greatly reduce systematics and break several astrophysical
and cosmological degeneracies. As an example, Figure 2 shows constraints on the amplitude of
fluctuations σ8(z) as a function of redshift by cross-correlating CMB lensing with galaxy surveys.
With this potential for synergy with future CMB surveys, we can extract sub-percent constraints
on the growth that are relatively insensitive to the z < 2 universe and hence a powerful probe of
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Parameter
σ(parameter)

Fid./Ideal. DESI
Curvature ΩK/10−4 6.6 / 5.2 12.0

Neutrinos
∑
mν 0.028 / 0.026 0.032

Spectral index ns 0.0026 / 0.0026 0.0029
Running αs 0.003 / 0.003 0.004

Rel. species Neff 0.069 / 0.069 0.078
Gravitational slip 0.008 / 0.008 0.01

D.E. FoM 398 / 441 162

Table 4: Forecasts on cosmological parameters from
our samples, combined with Planck priors. Gravita-
tional slip is defined as the ratio between the two po-
tentials describing the metric, in combination with a
CMB experiment with map noise of 1 µK-arcmin.
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Figure 2: Constraints on σ8(z) from cross-
correlation with CMB lensing. ‘S3’ and ‘Future exp.’
refer to CMB experiments with map noise of 7 and 1
µK-arcmin respectively.

non-standard physics.

3 Challenges
Further development of efficient pre-selection of LAEs from broad-band photometry is a require-
ment for this case as presented. The success of this pre-selection will largely determine the neces-
sary facilities and achievable samples. Some of the measurements outlined above – especially local
fNL – also require complete understanding of e.g. the parent photometry and the galaxy selection
function generally [2, 38, 39]. Percent-level sky subtraction with fibers and exposures approaching
an hour, together with mitigation of line confusion, are also technical challenges to be overcome.
Potential strategies have already been proposed and are under active study, but future surveys will
require careful consideration of these points during any design phase.

4 Conclusions
The colossal, relatively uncharted, volume at z > 2 and known means of efficiently selecting
high-z galaxies grants a tremendous opportunity to study the beginning and fate of our Universe,
namely Inflation and Dark Energy. We have shown potential surveys can test the early Universe
(Gaussianity) up to a factor of ∼ 50 better than our current bounds and cross the highly significant
threshold of fNL ' 1 that would separate single-field from multi-field models of Inflation. Such
measurements would be entirely complementary to low-z studies. This is enabled by spectroscopic
redshift precision, with the lesser precision of photometric redshifts degrading these constraints by
a factor of three or greater.

Such a dataset would leave an important legacy for the science cases we have presented, to-
gether with a wealth of opportunities for the fields of galaxy formation as well as many others.
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[35] Olivier Doré et al. Cosmology with the SPHEREX All-Sky Spectral Survey. 2014.

[36] P. A. R. Ade et al. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity.
Astron. Astrophys., 594:A17, 2016.

[37] Andreu Font-Ribera, Patrick McDonald, Nick Mostek, Beth A. Reid, Hee-Jong Seo, and
An Slosar. DESI and other dark energy experiments in the era of neutrino mass measure-
ments. JCAP, 1405:023, 2014.

[38] Anthony R. Pullen and Christopher M. Hirata. Systematic effects in large-scale angular power
spectra of photometric quasars and implications for constraining primordial nongaussianity.
Publ. Astron. Soc. Pac., 125:705–718, 2013.

12



[39] Dragan Huterer, Carlos E. Cunha, and Wenjuan Fang. Calibration errors unleashed: effects
on cosmological parameters and requirements for large-scale structure surveys. Mon. Not.
Roy. Astron. Soc., 432:2945, 2013.

13


	1 Science Case
	1.1 High-z Lyman-break galaxies and Lyman- emitters
	1.2 Survey strategy

	2 Forecasts
	2.1 Primordial non-Gaussianity
	2.2 Dark Energy

	3 Challenges
	4 Conclusions



