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Abstract—Large-scale disk-based storage systems need to pro-
tect the data stored in them against individual disk failures,
common component failures and latent disk errors. We present
RESAR, a layout scheme that provides two failure tolerance by
only using XOR operations to calculate parity data. Our layout
has the same write overhead as that of a disk array whose layout
is based on virtual RAID Level 6 disk arrays. If the size of a
reliability stripe is k, our write overhead is 2/k. We show that
RESAR is actually more resilient than the RAID Level 6 layout.

I. INTRODUCTION

In the age of big data, magnetic disk based storage is
expanding, but also slowly moving to a more archival role;
magnetic hard drives are replaced by solid state disks and
more data is stored but proportionally less of it is accessed.
These trends imply a continuous increase in the capacity and
economic life span of large disk based storage systems. In
order to save energy, most disks in such a large storage
system will be powered off. The large number of components
has made failures a daily occurrence. The value of data will
determine the level of failure protection, but most storage
systems will do fine with tolerance of two simultaneous
failures, if the failures can be repaired very quickly. The need
for two-failure tolerance arises from the presence of latent
sector errors that can only be detected by frequent scrubbing
or by reading an affected sector, which all too often happens
during a repair. A repair here is the reconstruction of data
stored originally in a lost disk and moved to different, live
disks and is separate from a replacement of the physical drive,
which takes place at a later time or is subsumed by adding
many more drives to the storage system.

Traffic in a large storage center is dominated by writes with
reads to random locations. It is best therefore to organize the
data in the form of one or several log and store the incoming
data on a few disks that are currently powered on. The use of
disks with shingled write recording is another reason to store
data in form of a log.

We can achieve two-failures tolerance using erasure cor-
recting codes such as Row-Diagonal Parity or Reed-Solomon
codes, but we present here an alternative that is using a flat

1 Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

XOR-code. As usual, we decluster, that is, we store data in
relatively small “disklets” (of between 10GB and 50GB with
today’s disk capacities) that can be read and written within
minutes. This means recovery times in the order of minutes
versus hours for a standard RAID Level 6. If disk failures are
detected fast, this narrows the “window of vulnerability” that
opens when a disk fails and subsequent failures can lead to
dataloss.

Our family of layouts called RESAR places each data
disklets (so called because it contains user data) into two reli-
ability stripes and adds to each reliability stripe an additional
parity disklet that contains the exclusive-or of the data in the
data disklets disklets in the stripe.

By introducing a disklet layer into the organization of a disk
array, we need a metadata server that manages the mapping
of disklets to disks, but obtain the following advantages
(1) We can deal with very large disk arrays consisting of
heterogeneous disks.

(2) Only the metadata server has to deal with relocating data
in order to balance the load between already present disks and
a batch of new disks.

(3) By making it simple to store data in a log, RESAR allows
to minimize the number of disks currently powered-on for
writing.

(4) RESAR allows to change effectively the size of reliability
stripes, allowing to make dynamic trade-offs between parity
overhead and the effort needed to recover from disk failures.
(5) RESAR recovery from disk failure is in the order of
minutes (compared to hours for a system composed of classical
RAID Level 6 layouts).

(6) RESAR allows to recover using two distinct set of disks
and is thus much less likely to interfere with an important read
operation.

In the remainder of the article, we explain the way to create
RESAR layouts and assess RESAR’s reliability by comparing
to a similar disk array that is also declustered and organizes
disklets in reliability stripes of k disklets and two additional
parity disklets. The presence of the second parity disklet in the
stripe then requires the use of a more sophisticated code (such
as generalized Reed-Solomon with Galois field calculation,
Even-Odd, or Row-Diagonal Parity). Because the stripes are
built as in a RAID Level 6 layout, we refer to this organization
in short-hand as a RAID Level 6, though it should be properly
called a declustered RAID Level 6.



Fig. 1. Left: The two-dimensional layout for a disk array. A, B, ... I
are data disks and P1, ..., P6 parity disks. Right: The corresponding graph
visualization.

II. TWO-FAILURE TOLERANT FLAT XOR CODES

Flat XOR codes are defined by Greenan et alii to be codes
where parity symbols are calculated from certain subsets of
data symbols [1]. We call these subsets reliability stripes. To
each flat XOR-code corresponds directly a disk array layout
where each data symbol corresponds to a data disk and each
parity symbol to a parity disk.

Layouts based on flat XOR-codes and that tolerate two
simultaneous failures need to place each data disk in at
least two different reliability stripes. The intersection of two
reliability stripes cannot contain more than a single disklet.
We can label each data disk by the numbers of the two
reliability stripes to which it belongs. Similarly, we can label
each parity disk with the number of the reliability stripe to
which it belongs. This defines a graph structure derived from
the disk layout where each parity disk corresponds to a vertex
and each data disk to an edge between vertices.

We use the graph to visualize the layout of disklets into
reliability stripes. Figure 1 gives an example. In the graph
layout, parity disklets corresponds to vertices and data disklets
to edges. To our knowledge, the graph visualization was first
exploited by Xu and colleagues in the definition of B-codes
[4]. An observation by Zhou and colleagues characterizes
minimal failure sets of disks as those containing either a cycle
of edges or a path where the end vertices have also failed [5].
The graph visualization is a good way to determine the failure
resilience of these type of layouts, as we did in previous work
for the “complete layout” so-called because it derives from a
complete graph. [3].

We investigate here a RESAR layout based on the bipartite
graph, but allowing us to assign a parity layout for an arbitrary
number of data disklets. The layout consists of two columns of
parity disklets (the P and the D-disklets). Each P-parity disklet
is “connected” (by a data disklet) to its opposite D-disklet and
the next k£ — 1 D-disklets. If we so desire, we can have the
layout loop around so that all reliability stripes encompass
exactly k data disklets.

We number all disklets in a RESAR layout by a pair of
numbers (é,7) where 0 < j < k + 1 and ¢ enumerates
consecutively the pairs of P- and D-parities. The P-parity gets
i = 0 and the D-parity gets « = 1. The data disklets are
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Fig. 2.
with k = 3. The disks are numbered for rack-aware layout (Section XXX)

A small bipartite RESAR layout (left) and its graph representation

Fig. 3. A small complete RESAR layout in graph form.

numbered in order. We then convert the pair of numbers to
a single one by the formula (i,5) — ¢ * (k + 2) + j that
gives an enumeration of all disklets in the design such that
neighboring disklets are assigned close indices. Since failure
patterns with data loss are composed of neighboring disklets,
we can use enumeration in order to insure that a single disk
or rack failure cannot generate data loss. In our scheme, if the
indices of two disklets is apart by more than k2 + k, then they
cannot be neighbors.

An alternative layout (the complete RESAR layout) is based
on “stretching out” a complete graph and is presented in
Figure 3. There, we have a single line of parity disklets (=
graph vertices) and connect each disklet to the next k parity
disklets down the line. Since each parity disklet also receives
data disklets (= edges) from its left neighbors, each vertex (
= parity disklet) in the graph is connected to 2k edges, which
means that each reliability stripe is made up of 2k data disklets
and the corresponding parity disklet. We show this layout only
to make the point that RESAR defines families of disk array
designs.

III. RECOVERY FROM DISK FAILURE IN RESAR

To recover the data from a failed drive we must recover
each of the disklets in the drive. Since each data disklet is
in two reliability stripes (see Figure 4 for a depiction in the
graph visualization), we can recover using either reliability
stripe if all the other data disklet and the parity disklet in the
corresponding stripe are still available. A parity disklet on a



Fig. 4. Left: Failed data disklets with its neighbors. Right: Failed parity
disklet with its neighbors.
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Cascading recovery of multiple failures in RESAR.

failed disk can be reconstructed in another disk if all its data
disklets can be recovered.

We can use the graph visualization to discuss recovery.
The graph represents disklets, not disks, and a single disk
failure results in multiple disklet failures. As we will discuss,
a good disklet to disks mapping ensures that these disklet
failures resulting from the failure of a single disk are widely
spread over the (rather large) graph. We can recovery the
data from a disklet (and then place the recovered disklet on
another disk drive) if it is represented by an vertex (and
is therefore a parity disklet) if all the edges (data disklets)
adjacent to it are available. We can recover the data from
a disklet represented by an edge (so this is a data disklet)
if one of the adjacent vertices and all the edges adjacent
to it are available. Cascading recovery in a RESAR layout
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Irreducible failure patterns.

happens if a disklet can only be recovered after some of its
neighbors have been recovered. Figure 5 gives in column (a) a
case with several failures in our graph layout. Failed elements
are marked in red. In the upper failure cluster, there is one
vertex on the left, which has lost three adjacent edges. For
this reason, this vertex (or to be more precise, the reliability
stripe represented by this vertex) cannot be used for recovery,
but each data element in this stripe is also located in another
reliability stripe. Two of the failed data elements can be
recovered directly in the following step (column (b)), and the
remaining failed element’s data can be recovered in the third
step (column (c)). The failed vertex in this cluster can only
be reconstructed if all its adjacent edges are available. The
lower failure cluster contains a failed vertex from which a path
of length two of failed edges emanates. This pattern resolves
itself only in the fourth step.

Arguments about failure tolerance are much easier in the
graph than in the original primary design, as was previously
observed [5]. Disk and sector failure induce a failure pattern
in the graph. We are especially interested in patterns that
represent data loss and that are minimal in the sense that
removing one element of the pattern yields a pattern of failure
from which we can recover. Any failure pattern that implies
dataloss is or contains at least one minimal failure pattern.
A key observation is that an edge, that is part of a minimal
failure pattern, either has end-vertices that also have failed or
an end-vertex where one other adjoining edge has also failed.
This allows us to classify all minimal failure patterns. There
are either a cycle consisting of failed edges or a path, which
starts and ends at a failed vertex and otherwise consists of
failed edges in between. The smallest minimal failure patterns
are the bar-bell and the triangle. Figure 6 illustrates these
concepts.

IV. RESAR RELIABILITY

We now compare the reliability of a RESAR layout with that
of a layout that organizes all disklets in the stripes of a RAID
Level 6 layout with two parity disklets per stripe and k data
disklets. The parity overhead in both organizations are equal
(namely 2/k). We also make some modeling assumptions
that contradict the RESAR design goals of flexibility, but are
necessary for calculations. In particular, we assume that each
disk contains the same number L of disklets and that the
disklets in the same position on the disk are organized in a
separate RESAR layout where we connect the two ends in a
single large circle. We make similar assumptions for the RAID
Level 6 layout, namely that each reliability stripe contains
disklets from the same relative location of the disk.

We first determine the number of failure patterns with n
failed disklets out of N that cause dataloss in a single RESAR
circle and in a RAID Level 6 layout, where in the latter all
disklets form parts of a reliability stripe with k data and two
parity disklets. We can use the notion of irreducible failure
patterns (Figure 6) to determine the probability of dataloss
for n failures, n < 6, before we run into an explosion of
complexity in the derivation of the formulae and the formulae
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Data survival probability in numbers of nine for the RAID Level 6 (top line) and the Resar layout and the increase in data survival probability by

switching from the RAID Level 6 layout to the RESAR layout. Notice the different dimensions on the y-axis between the top and the middle row.
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100,000 disks. On the left, we give the average and the upper and lower value for the 99% confidence interval calculated with Wilson’s formula.

itself. These numbers are actually quite useful for situations in
which we have many disklets of few sites, since (a) recovery
from dataloss is potentially so fast that the system is rarely
ever in a state with more than 6 failed disks even if we ignore
dataloss, and since (b) the probability of some dataloss with
7 failed disks is high (even though the amount of data lost is
small). We give the results in Figure 7. As we can see, the
RESAR layout is quite a bit more robust, for £ = 16, the
probability of dataloss is about 50 times higher and for k = 8§,
about 15 times higher.

Next, we simulated the resilience of a RESAR layout with
100,008 disklets (or disks and one disklet per disk). This
simulation is very difficult and work-intensive (two weeks on
68 nodes) because failures are so rare. Accordingly, the results
in Figure 8 (left) show great variation. We used a quadratic
function for curve smoothing, giving in red.

The results show that RESAR with & = 16 is about fifty

times less likely than an equivalent declustered RAID Level
6 layout to have suffered dataloss in the presence of the
same number of failed disks. Figure 9 compares the dataloss
probabilities for up to 500 failures and shows that RESAR
remains considerably more robust than the declustered RAID,
but at a slightly lower rate for larger numbers for failures.

Finally, Figure 10 shows the differences between the two
organizations if we have many disklets per disk. As we can
see, the effects are then much more pronounced. We used
very small disklet sizes because even after using 60 nodes for
several weeks, our simulation results have large confidence
intervals that will be magnified if we calculate the robustness
of layouts with many disklets per disk. 100,000 disklets on
a 10TB disk give a disklet size of 10MB, which is actually
close to the block size on the new kinect drives from Seagate
that use shingled write recording.
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V. PERFORMANCE

RESAR is optimized for writes to consecutive data disklets.
The need arises because we want to organize writes such that
we write all data disklets in a reliability stripe so that we can
update the parity disklet directly.

In the RAID Level 6 layout, there is only a single reliability
stripe and we need to store the contents of k data disklets “in
flux” before we can calculate the parities. Alternatively, we can
maintain a buffer each for the two parity disklets and maintain

. Stable Parity
Q Parity in Flux
Q No parity

= Written Data

Direction of
log writes

e Data in Flux

—— Free / unused

Fig. 11. Log write operation in a RESAR layout (with k = 4).

in it the parity of the data disklets in the stripe already written.

If we are writing a data disklet in a flat XOR-code, we can
then write another data disklet in the same reliability stripe, but
this leaves k£ — 1 data disklets in the other reliability stripe, in
which the original data disklets was, unwritten. As Figure 11
shows, the bipartite RESAR layout actually deals quite well
with this problem. We write data disklets in order of their
indices. A parity disklet is in flux, if some, but not all the
adjoining data disklets is in flux. In Figure 11, there are three
parity disklets in flux, one P-disklet and two D-disklets (the
gray vertices on the right). If we write the next data disklets,
one more D disklet would be in flux, but if we then move on
to the next data disklet, one D disklet can be closed and no
additional one enters a state of flux.

Since we are writing data disklets one at a time, only one
data disklet (per log) can ever be in flux. Unlike for the RAID
Level 6 layout, more than two parity disklets are in flux,
namely a maximum of k + 1.

Dealing with a large number of parity disklets in flux is
in fact not difficult. The simplest mode is to store copies of
data disklets contents in other disks until all data disklets in
a reliability stripe have been written. At this moment, we can
calculate the parity data, place it in a parity disklet and then
free the disklets with the content copies. We do not need to
keep the disks with the data disklets replica powered on, but
only need to power them on if they are needed, first to store
the replicated data, and then in order to be read for the parity
calculation.

The difference between the two data layouts (RESAR and
RAID Level 6) then only lies in the additional number of
disklets to be stored, which is very small compared to the total
capacity of disklets and costs less than the price of a single
hard drive. The RAID Level 6 layout uses up to 2k disklets
for temporary copies of data, while the RESAR layout would
use up to k(k + 1) temporary disklets.

Most of the time, we would write to several data disklets



in parallel in order to digest the amount of incoming data.
The small advantage of the RAID Level 6 layout due to its
compactness would then be even smaller.

VI. CONCLUSIONS

In this paper, we have evaluated a new layout for very large
disk arrays called RESAR. This layout places every disklet
into two reliability groups with one parity disklet each. It has
been designed to avoid small RAID writes (where we obtain
the new parity from the delta of the new and the old data and
the old parity). We compared it with a layout organized as a
collection of RAID Level 6 reliability stripes and shown the
RESAR layout to be much more resilient.

In the age of fast Galois field calculations [2], the fact that
RESAR only uses exclusive-or operations to calculate parity
might or might not be an advantage, but it frees us from the
need to use powerful microprocessors.

We are well aware that many instances of data loss in disk
arrays are due to faulty disk array controller software and
that the reliability of the best layout can be destroyed for
example by a faulty failure mechanism. The choice of the disk
layout should not affect the complexities of implementing disk
arrays.
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