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ABSTRACT

Grid decarbonization efforts can benefit significantly from demand response (DR) resources. However,
system-level changes that affect the net-load such as increased variable renewable energy (VRE) generation
and widespread deployment of energy efficiency (EE) also affect the type, magnitude and timing of DR
required to support the grid. In this study, we use publicly available system-level data to define seven
metrics to assess how these changes affect system-level shed and shift DR needs. Specifically, there are four
metrics for grid conditions when DR has the highest system value and three metrics for DR program design
that were developed by considering the magnitude and temporal distribution of net-load. We also develop
three stylized load shape profiles illustrating EE measure impacts and one high VRE generation profile to
demonstrate the application of these metrics. The results confirm the robustness of the metrics to identify
complex interactions between demand-side and supply-side resources that can affect the DR need.
Widespread application of our metrics can help system planners and operators be cognizant of such in-
teractions and identify the DR need for the system in a way that can be most valuable.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Increasing deployment of variable renewable energy (VRE) and
broader decarbonization goals are transforming U.S. power system
planning and operations. Grid integration of VRE requires more
flexible resources that can respond to short-timescale variability in
renewable generation, as well as unforeseen supply and demand
imbalances [1]. Conversely, technologies that can provide flexible
demand (e.g., heat pumps, electric vehicles, storage) can support a
higher integration of VRE [2,3]. Load flexibility in the power sector is
an integral part of a smart energy system as it allows for an efficient
cross-sectoral integration [4]. For example, widespread heating and
transportation electrification may increase system load and change
the magnitude and timing of peak demand [5]. Demand response
(DR), which is the change in electricity consumption in response to
price or incentive signals [6] can be a significant resource to improve
power system operations through load shifting and shedding and
thereby contributing to grid and economy-wide decarbonization
goals [7].

Notwithstanding the potential benefits, how the system need
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for DR evolves over time is driven by several factors, including VRE
penetration levels and interactions with other demand-side re-
sources. For example, increased solar generation in California has
led to higher ramps in the system net-load (i.e., load net of VRE
generation) increasing the need for load flexibility [8,9]. Likewise,
certain energy efficiency (EE) measures can reduce the need for DR
resources via persistent peak load reductions or load shifting from
peak to off-peak periods, while other EE measures that preferen-
tially save energy during off-peak periods and steepen net-load
ramps can increase the need for DR resources [6]. Determining
how the system need for DR changes can inform the strategic
deployment and design of DR programs, as well as assist decision-
makers with developing load flexibility targets.

Prior work has largely focused on characterizing DR capabilities
and quantifying DR potential but without accounting for the system
need for DR. For example, one meta-analysis of building flexibility
potential [10] found prior studies focused on specific technological
characteristics or capabilities at the building-level but not system-
level. Furthermore, studies that quantify demand response poten-
tial typically consider the technical potential and whether or not
customers will adopt enabling technologies or respond to price and
incentive signals [11], but are often irrespective of the system need
for the load shedding or shifting (e.g., Ref. [12]).

A limited number of studies have either implicitly or narrowly

2666-9552/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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explored the system need for DR. For example, Shah et al. [13]
developed metrics for the building's demand flexibility capability
and compared to grid need implicitly through marginal energy cost
proxies meant to represent demand and supply. Existing utility
resource planning approaches implicitly quantify the system need
for load shedding DR by characterizing its impacts on coincident
peak demand as the primary metric [14] or seasonal peak re-
ductions [15] but fail to account for the value of DR to mitigate
other system conditions, like steep ramps. Finally, more explicit
discussion and consideration of the system need for DR has either
been conceptual without developing quantifiable metrics [6] or
required detailed modeling and sometimes speculation in the case
of more novel types of DR like load shifting [8].

In this study, we develop metrics to quantify the change in the
system need for DR. Specifically, we identify three sets of metrics -
one each for load shedding, load shifting, and program design -
using the net system-level load (i.e., net of wind and solar gener-
ation) that can help inform the change in magnitude and timing of
system need for DR. Furthermore, the metrics to quantify the
change in the system need for load shifting is based on ramp rates.
We modify the definition of ramp rate to reflect the need for
ramping from the demand side rather than the existing generators’
ramp rates that reflect ramping capabilities from the supply side
(e.g., Ref. [16]). We also demonstrate application of the metrics in
two sets of illustrative cases. First, we study how EE can change the
system need for DR using prototypical EE measure savings shapes
that are intended to illustrate the impacts of EE on the system need
for DR and are not meant to provide a realistic representation of
specific EE measures. Second, we study how increasing VRE
penetration can change the system need for DR. In addition to these
example cases, our metrics could also be applied to study the
impact of other factors (e.g., building weatherization, electrification
of transport and industrial processes, storage) on the system-level
net-load and hence, the system-need for DR.

Several key boundaries apply to our study. First, we consider
two types of DR that are typically called upon for events lasting
from one to a few hours, namely load shedding and load shifting.
Short-term load-modulation DR and long-term (e.g., diurnal) load-
shifting are not considered. Second, although we acknowledge that
the DR needs in a system can change when characteristics of the
generation portfolio changes, we develop the metrics to assess
changes based on changes to the net-load only. Third, the metrics
we developed should be used to assess changes in the need for DR
relative to a reference scenario, and not in absolute terms. The
absolute system-level need for DR is complex to assess, requires
detailed optimization modeling of the generation stack, and de-
pends on the time frame being considered (see, e.g., Refs. [17,18]).
We expect that assessing changes in the system load alone can
indicate whether the need for DR is growing or shrinking, and by
how large a factor; our goal in this study is to develop metrics that
allow a simple assessment of evolving DR needs. However, these
metrics can be calculated using the outputs of capacity expansion
and production cost dispatch models. Finally, because we are only
considering changes in system DR needs, we do not explicitly ac-
count for the incremental costs of EE or DR as is a typical practice in
utility integrated resource planning for selecting resources.

The remainder of the study is organized as follows. Section 2
describes the data sources and analytical approach to identify the
various indicators of system need for DR and briefly explains how
we modeled EE and VRE scenarios to demonstrate the application
of our metrics. Section 3 explains how DR can support a power
system using proxy indicators. Section 4 defines each metric and
shows how to interpret it broadly. Section 5 provides the results of
applying the metrics to the EE and VRE scenarios and illustrates
how the system need for DR changes under these scenarios. Finally,
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section 6 concludes with broader implications of this study and
how it can be useful to various stakeholders.

2. Approach

The study's analytical approach follows three sequential steps.
First, we use actual power system data' to indicate grid conditions
when DR has the highest system value. Specifically, we use hourly
system load [19], VRE generation [16], wholesale electricity prices
[20—22], and individual generator's hourly generation dispatch
values [23] from three U.S. state and regional power systems that
reflect diversity in generator resource portfolio, VRE deployment
level, seasonal peaks, and marginal costs. We use 2016 data from
California,> which is representative of a summer peaking system
with high levels of solar penetration, Texas (i.e., the ERCOT system),
which is representative of a summer peaking system with high
levels of wind generation, and New England (i.e., the ISO-NE> sys-
tem), which is representative of a system with a summer peak and a
secondary winter peak and low levels of VRE penetration. The
choice of the year 2016 was largely due to the comprehensive data
available on load, generation, and weather.

We use the indicators of system value for DR as proxies for the
system need for DR. Generally, DR is used by system operators to
avoid high electricity costs or to maintain power system reliability.
DR dispatch, therefore, tends to occur during high-price events
driven by the use of expensive, marginal peaking generation. In
addition to system net-load we use three indicators for DR dispatch
events. Specifically, probability of peak generator dispatch,
wholesale electricity prices that indicate periods of high marginal
costs, and heat rates of dispatched generators that indicate high
production costs. High heat rates also typically indicate high
emissions intensity that could be avoided by dispatching DR.

Second, by exploring how these system indicators correlate with
different features of the net-load, we assess how and when changes
in net-load will affect the need for DR. We use the correlation be-
tween these indicators and the net-load to identify appropriate and
reasonable cutoffs that form the basis of our metrics definitions.

In this study we focus on two types of DR, namely shed and shift
DR. Shed DR dispatches customers to reduce their electricity de-
mand to address extreme system demand. We determine the sys-
tem need for shed DR using the highest hourly system net-load
values. Shift DR, on the other hand, involves shifting of energy
consumption from periods of high system demand to adjacent
periods of low demand. We define the system need for shift DR
using three-hour net-load ramp rate values. These definitions of
shed and shift DR are consistent with other literature (e.g.,
Refs. [8,24—27]).

Third, we develop and apply the metrics to examine the change
in the system need for DR using the California system since it has
the highest VRE deployment level compared to the other two po-
wer systems we explore. Therefore, application of the metrics,
especially at higher assumed VRE deployment levels, are likely to
more clearly demonstrate the possible ways that system need for
DR can change.

To demonstrate the application of our metrics to the impacts of
EE, we develop three stylized hourly savings profiles that illustrate
different types of EE measure impacts: a profile with constant

1 Public data was extracted using ABB Ventyx (last accessed 18 February 2021).

2 Comprising of the following balancing authorities — California Independent
Service Operator (CAISO), Los Angeles Department of Water and Power (LADWP),
Balancing Authority of Northern California (BANC) and Imperial Irrigation District
(IID).

3 The ISO-NE system includes the states of Vermont, New Hampshire, Massa-
chusetts, Connecticut, Maine and Rhode Island.
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savings fraction across all hours (e.g., lighting upgrades), a profile
with preferential on-peak savings (e.g., building envelope
improvement), and a profile with preferential off-peak savings (e.g.,
commercial heating upgrades). To demonstrate the application of
our metrics to a system with higher VRE penetration, we also
consider a scenario that doubles the actual 2016 VRE generation. In
each case, we use the actual 2016 load data from California as the
baseline scenario. The modeled scenarios are intentionally
designed to have large impacts on system load, to more clearly
illustrate the use of our metrics; they are not intended to be real-
istic. Fig. 1 shows the comparison of average daily net-load profiles
for each EE and VRE scenario with the baseline (see the Supple-
mental Information for methodology used to characterize hourly EE
and VRE impacts). In particular, EE measures with flat savings and
on-peak savings can significantly reduce the evening net-load ramp
whereas high VRE generation and EE measures with off-peak sav-
ings can worsen the duck curve by reducing the midday net-load
and steepening the ramp.

3. Indicators of DR value and the system need for DR

Power system planning and operations are largely driven by
temporal needs, namely the balancing of supply and demand on an
annual, seasonal, hourly, and/or sub-hourly basis. As such, the
system need for DR should be defined on a temporal basis and focus
on the narrow time periods when DR has highest system value (e.g.,
to avoid peaking generation dispatch). Therefore, we use indicators
of DR value to the system as proxies for the system need for DR. As
discussed earlier, shed and shift DR have different uses; therefore,
we describe indicators and define metrics for shed and shift DR
separately.

3.1. Shed DR indicators

Shed DR is defined as the reduction in load that is typically
dispatched during events of extremely high system demand. These
events are typically infrequent and have durations of a few hours
(e.g., one to four hours). Consequently, the metrics representing the
system need for shed DR should reflect the characteristics of load
during such peak hours. Although there is no firm definition of
what load levels qualify as “peak hours”, previous studies have
defined the peak hours in a year ranging from the top-40 [28] to
top-250 [8] hours. In this study, we choose the top-100 hours
(which is within the aforementioned range) as an initial threshold
in the indicators to capture a qualitative change in the system
conditions across all three regions. The net-load in these hours (i.e.,
roughly top 1% of load hours) can be served by shed DR or by peak
generation resources such as combustion gas turbines that are
often characterized as low efficiency, high emissions, and high-cost
generators. Hence, the value of shed DR is derived from its ability to
reduce the need for such peak generation resources and their

Average Net Load-EE Average Net Load-High VRE

330 :
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£ 25 —— Baseline

- Y /20 \ 3 I R U A e Flat savings
So0l -—-- On-peak savings
] ---- Off-peak savings
Z1s High VRE

0 10 20 0 10 20
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Fig. 1. Average daily net-load profiles of illustrative EE and VRE scenarios using the
2016 data for California as the baseline (black line).
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associated high costs [25].

In order to determine the value for shed DR to replace genera-
tion capacity, we examine if certain generators are preferentially
dispatched during the peak load hours. Fig. 2 shows the probability
that peak generation was dispatched in each of the three systems in
2016. We selected five illustrative generators in each region that
were dispatched consistently in the top 5% of net-load hours and
plotted their dispatch over the entire year as a function of net-load
percentile. Across the three power systems, the average probability
of dispatching a peaker plant is significantly higher during the
highest net-load hours (i.e., from 90% to 100% of the net-load
percentile) implying that these generators are typically dis-
patched to serve high net-loads.

Correspondingly, the top-100 net-load hours typically require
the use of expensive generators. Fig. 3 shows the correlation be-
tween hourly values of wholesale electricity prices and net-load in
2016 across the three power systems. We observe a clear positive
correlation® between net-load and the price of electricity in all
three regions. Here, a steep trend in the top-100 net-load hours (see
blue lines in Fig. 3) is apparent, indicating that peak load is driving
the observed high electricity prices. However, in New England, the
high prices occurring during relatively low net-load hours is likely
driven by other exogenous factors such as high natural gas prices in
winter resulting from gas heating demand.

Finally, we examine the average hourly heat rate values of non-
nuclear, thermal generators as a proxy for relative production costs
and emissions intensity, whereby higher heat rates tend to corre-
spond to higher production costs and emissions rates [29] because
peaker plants with low utilization factor are more likely to be
dispatched during peak load hours. Nuclear generation is excluded
since it serves as a base load generating resource and has uniform
impact across all hours. Fig. 4 shows that, although there is varia-
tion in heat rate in all hours across the three regions and sometimes
we observe a higher heat rate even at low net-loads, the heat rate in
the top 100 hours are consistently elevated. This strongly suggests
that shed DR, by reducing load in the top net-load hours, could
provide significant system value in avoiding high cost and high
emissions generation.

3.2. Shift DR indicators

Significant and short-term fluctuations in wind and solar gen-
eration can result in an increased need for load flexibility to miti-
gate steep net-load ramps. Shift DR is defined as the reduction of
load during peak hours along with an offsetting increased con-
sumption during adjacent off-peak hours, a strategy to manage
these ramps which can otherwise be served by combustion tur-
bines or other flexible generation resources. Shift DR provides an
opportunity to avoid high prices and reduce the system stress un-
der capacity constraints, as well as for arbitrage to take advantage
of low marginal energy costs in off-peak hours especially in regions
with high VRE penetration.

The signature of a low net-load period adjacent to a high net-
load period implies that the need for shift DR can be identified by
a steep ramp (up or down). In this study, we considered three-hour
net-load ramp as an indicator of shift DR and defined as,
Ramp = Abs(NetLoad; — NetLoad;_3) Eq. (1)

where t is the current hour. This definition of ramp rate reflects the
ramping need of a system, which is indicated by changes in power

4 The values of Spearman correlation coefficients are 0.61, 0.52 and 0.41 for
California, Texas and New England, respectively.
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Fig. 2. Probability of dispatching five illustrative peaker generators as a function of net-load percentile in California, Texas, and New England for 2016.
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system demand, rather than its ramping capability that focuses on
the supply-side. The use of a three-hour ramping period definition
is consistent with CAISO's requirement [30] for qualifying resources
to receive flexible capacity credits and may differ from another ISO/
RTO.

Flexible generators are dispatched to serve ramping needs
because of their fast-start and fast-ramp capabilities [31]. The value
of shift DR would be to replace such flexible generation units. We
chose five generators in California and Texas and three in New
England® that were dispatched consistently to serve the top 5% of
ramps and observed their generation as a function of correspond-
ing system's ramp percentile. Fig. 5 shows that certain flexible
generators are preferentially dispatched during high ramping pe-
riods (i.e., from 90 to 100th percentile). This indicates that shift DR
dispatched over the three-hour ramp periods can offset flexible
capacity costs by reducing extreme ramps. In addition to the
extreme ramps that would necessitate more episodic and

5 In 2016 data for New England, most generators' dispatch as a function of ramp
percentile was erratic suggesting that New England may not have had significant
ramping concerns in 2016.

infrequent DR dispatch (e.g., via direct load control), we see that
there is a significant probability of dispatching these generators to
serve the moderate ramps (just below the top ten percentile). This
indicates that shift DR more frequently dispatched as a load
modifying or load shaping resource (e.g., via time-of-use rates) can
provide significant value in further mitigating the use of such high-
cost generators.

Three-hour net-load ramps are also correlated® with a corre-
sponding three-hour difference in wholesale price and dispatched
generator heat rate, though this correlation is not as strong as the
correlation observed between net peak loads and wholesale prices.
Fig. 6 shows the relationship between three-hour ramp and three-
hour difference in wholesale electricity prices (right) and dis-
patched generator average heat rates (left) in California in 2016.
Here, we can see that large three-hour net-load ramps are associ-
ated with concomitant swings in heat rate and wholesale price.
Additionally, most of the largest three-hour net-load ramps occur
outside of the top 100 net-load hours, suggesting that shift DR has

6 The values of Spearman correlation coefficients of ramps with three-hour price
difference and heat rate difference are 0.90 and 0.71, respectively.
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value that is distinct from the value provided by shed DR in peak
hours. In Texas and New England regions, these correlations are not
as pronounced, suggesting less present-day value for shift DR (see
Supplemental Information for figures).

We consider the absolute maximum three-hour net-load ramp
rate occurring on each day of the year, and construct a ramp fre-
quency curve by ordering them from largest to smallest. Since
California has a high solar penetration, the operational challenges
of ramping could arise at sunrise and sunset, meaning that the
system could require significant upward and downward ramping.
Hence, we consider absolute maximum values. We use the daily
maximum instead of each individual ramp value because it in-
dicates the maximum amount of flexible generation required for
that day so that the subsequent smaller steep ramps occurring on
the same day could be served by the same set of flexible resources.
Fig. 7 shows the ramp values as a fraction of each system's annual
peak net demand. Ramping issues are more severe in California and
are a larger fraction of the system generating capacity than in the
other two regions given the higher solar penetration. The most
significant ramps also tend to occur on the top-25 days, which also
corresponds to the number of days with the top-100 net-load hours
in California. Therefore, we use the 25-th highest ramp value as a
threshold for defining the metrics for shift DR.

4. Definition of metrics to quantify change in system need for
DR

Decision-makers and utilities in the U.S. have traditionally
established DR goals based on reduction of annual system peak
demand (e.g., peak demand savings from demand response pro-
grams are eligible to count towards compliance with the Arizona
Energy Efficiency Resource Standard [32]). Yet, use of a single
metric, focused on a single hour of the year, fails to capture the
value of DR to mitigate multiple system needs across different
system conditions, such as load shifting to mitigate steep ramps.
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Fig. 7. Ramp frequency curve for California, Texas and New England.

We define new metrics for the system need for shed and shift DR
drawing on the observed relationships between high system costs,
heat rates, and load described in Section 3. We also define metrics
that capture the frequency and temporal distribution of DR events
to inform DR program design and capture the value of DR identified
in Section 3. Table 1 summarizes the metrics used to determine the
system-level need for DR.

4.1. Shed DR metrics

Given the high system value in reducing the top load periods of
the year, we define shed DR metrics within the top-100 annual net-
load hours (i.e., top 1% of net-load). Fig. 8 shows two metrics to
quantify the system need for shed DR, for an illustrative scenario in
which EE upgrades (red) reduce system-level loads from a baseline
(blue). The inset panel represents the top 100 net-load values in
both scenarios. The first shed DR metric is peak load and defined as
the maximum value of net-load in a year (i.e., Apeq in Fig. 8).
Assuming a fixed generation stack, a reduction in peak load in-
dicates that, in the short-run, the need for shed DR has reduced due
to impacts from an illustrative EE measure. Similarly, an increase in
peak load would imply an increased need for shed DR. Hence, Ap
can indicate the change in the short-run need for shed DR.

In the long-run, we can expect a change in supply-side resources
through retirement of old generation units and construction of new
ones. Reducing load in the top-100 hours relative to a baseline can
result in lower utilization of generation resources that may no
longer be economical to operate, as well as reducing the need for
DR to serve the highest load hours. At the same time, if the net-load
in the top-100 hours increases relative to the baseline, the need for
DR or expensive peaking generation increases. The second shed DR
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Table 1
Summary of the metrics for system-level need for DR.

Smart Energy 6 (2022) 100074

Category Metric name Metric definition
Shed DR Peak Load Maximum hourly system net-load
Peakiness Height of system peak net-load above the 100th-highest hourly net-load
Shift DR Routine ramping Maximum daily three-hour absolute (upward or downward) net-load ramp in demand, on the day with the 25th-largest such
ramp
Extreme ramping  Size of the maximum annual three-hour absolute (upward or downward) net-load ramp compared to the 25th-highest ramping
day
DR program Shed event days Total number of unique days represented within the top 100 hours of annual net demand
design Shed season Duration of the shortest period containing 80 of the top 100 hours of annual net demand
duration
Shift season Duration of the shortest period containing 20 of the top 25 ramping days
duration
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Fig. 8. The change in system-level need for shed DR using load duration curves for an
illustrative EE scenario. The inset panel represents the top 100 net-load values of both
scenarios used to define the shed DR metrics.

metric is peakiness and defined as the additional net-load required
only in the top-100 hours. It is the difference between the peak and
100-th highest net-loads. Fig. 8 depicts the peakiness metric and its
change for a representative EE scenario denoted by
Apeakiness =Aee — Apgse Eq. (2)
where a smaller value of Ae. relative to Apg, indicates a reduced
need for shed DR in the long-run, and vice-versa. Hence, the change
in system peakiness, Apqkiness» €an be used as an indicator of how
the system's long-run need for shed DR changes.

4.2. Shift DR metrics

While shed DR provides value during top net-load hours by
simply reducing peak demand, one of the most significant oppor-
tunities for shift DR is in mitigating steep ramps particularly as the
grid continues its transition to increased variable renewable energy
deployment [8]. Fig. 9 illustrates two metrics to quantify the change
in the system need for shift DR based on a ramp frequency curve
constructed as described in section 3.2, for a baseline scenario and a
scenario with EE upgrades. The first metric for shift DR is extreme
ramping and defined as the incremental amount of ramping
required in the top 25 days (i.e., the difference between the highest
and 25-th highest maximum daily ramp). This metric represents
the need for a dispatchable shift DR resource that would be used
infrequently to meet the most extreme ramps in net demand. Fig. 9

0 50 100 150 200 250 300 350
Number of days with equal or higher ramp

Fig. 9. The change in system-level need for shift DR using ramp frequency curves for
an illustrative EE scenario. The inset plot represents the top 25 net-load ramps used to
define shift DR metrics.

depicts the extreme ramping metric, where ERy, is the extreme
ramping in the baseline scenario and ER,. is the extreme ramping
for a representative EE scenario. The change in extreme ramping is
denoted by

AER = ERee — ERbase Eq (3)
where an increase in the value of this metric would suggest an
increased need for flexible resources, and vice-versa.

The second shift DR metric is routine ramping and defined as the
size of the 25th highest maximum daily ramp. The metric indicates
the need for a more frequently utilized shift DR resource (e.g., load-
modifying or load shaping). Fig. 9 depicts the routine ramping
metric and a change in routine ramping is denoted by
ARR = RRee — RRbaSE Eq (4)
where RRy,. is the routine ramping in the baseline scenario and
RRee is the routine ramping in a representative EE scenario. An
increase in routine ramping relative to baseline would suggest an
increased need for load-modifying resources to deal with routine
ramps, and vice versa.

4.3. DR program design metrics definition

DR programs, typically administered by electric utilities or
third-parties (e.g., aggregators), are often defined in terms of
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Fig. 10. California's hourly net-load in GW for the year 2016 used to illustrate the temporal distribution of top 100 net-loads (indicated by red dots). Shed season duration is the
shortest interval that contains the 80% of the top 100 net-loads. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)

number of events and their frequency (e.g., maximum number of
events per month), as well as the season during which customers
can participate (e.g., summer air-conditioning cycling programs).
As the system need for DR changes with increasing penetration of
VRE and widespread electrification, DR programs will need to be
designed consistent with new seasonality and timing of DR events.
Fig. 10 illustrates two metrics for shed DR program design, based on
considering the distribution of the top 100 net-load hours
throughout the year. The first metric is the shed DR-event days,
defined as the number of days that contain at least one of the top
100 net-load hours. This metric quantifies the frequency and the
duration of shed DR events that a program might call. A lower
number of event days indicates that a program would need to call
longer shed DR events that occur less frequently, while a higher
number of events indicates shorter individual events that would
occur more frequently.

The second metric is the shed DR season duration and we define
this metric as the shortest interval, in days, that contains at least
80% of the top 100 net-load hours. This represents the period in a
year where shed DR is most valuable for the system. Computing the
duration based on 80% of the top 100 hours yields a more stable
metric: we observed that many of the top-100 net-load hours occur
over a span of a few weeks or months with the remaining hours
scattered throughout the rest of the year, such that one or a few of
these hours can be widely separated from the core period. There-
fore, limiting the shed DR season duration metric to 80% of the top
net-load hours can reduce annual volatility from a few and isolated
hours. This is important because customers typically participate in
DR programs for several years and make investments in control
technologies. Therefore, DR program design should be consistent
over several years.

Shift DR program designs will need to evolve with the changing
grid characteristics, such as increased VRE penetration or electri-
fication of present-day fossil-powered end uses. Analogous to the
shed DR season duration metric, we define a metric for the shift DR
season duration using the top-25 ramp values by calculating the
minimum period, in days, that contains 80% or 20 of the top 25
ramps (see Fig. 12 for graphical representation of shift DR season
duration).

5. Application of metrics on EE and high VRE scenarios

We apply the metrics defined above to four sample scenarios —
three EE and one high VRE, as described in Section 2— to demon-
strate how different drivers of change in the system-level net-load
can affect the system need for DR, using California power system
data. Table 2 summarizes the results of the impacts for each of the

shed DR, shift DR, and DR program design metrics defined in Sec-
tion 3.

From the system perspective, reductions in the peak load, either
via EE savings or increased VRE generation, are beneficial since they
reduce the need for shed DR (see inset plot of Fig. 11). The peak load
is reduced in all scenarios relative to baseline, however, the degree
to which it changes depends on the coincidence of the EE driven
load reductions with the system peak-load. This is evident when
comparing the on-peak EE savings scenario with greater peak de-
mand coincidence of impacts (24.6% reduction in peak demand)
versus the off-peak EE savings scenario (15.5% reduction in peak
demand). This implies that the on-peak EE scenario can provide a
larger reduction in the need for peaking capacities to meet the peak
load. The change in the system peakiness metric across the EE and
VRE scenarios further illustrates that more coincident peak re-
ductions (i.e., flat EE and on-peak EE savings scenarios) reduce the
incremental amount of load in the top-100 hours, which reduces
the need for peaking capacity and shed DR to meet that load. In
contrast, scenarios that reduce midday net-load and increase eve-
ning net-load (i.e., off-peak EE savings and high VRE) increase the
peakiness and need for shed DR.

The change in the system need for shift DR is dependent on both
demand-side and supply-side changes, especially in the California
system with a high solar penetration. In the baseline scenario, the
25-highest ramps occur primarily in the late summer and fall
seasons (see Fig. 12). California's daily summertime peak demand is
generally cooling-driven and also drives ramps in the baseline
scenario.” EE-driven load reductions that are coincident with the
peak (e.g., flat EE savings and on-peak EE savings) tend to reduce
the magnitude of ramps overall (see Fig. 12) by reducing the sum-
mer peak loads relative to baseline. This reduces the need for DR to
serve routine ramps by reducing the size of the 25th highest ramp.
The degree to which it declines depends on the coincidence of EE
driven load reductions with system peak load (i.e., on-peak EE
savings reduce the need for routine ramping by 22.3% whereas flat
EE savings reduce it by 13.3%). This implies that deploying strate-
gies to reduce peak demand can also help reduce ramping concerns
that may occur on a day-to-day basis. In this particular example
from California, such strategies help reduce the severity of ramps
occurring in summer season to the extent of eliminating them from
the top-25 extreme ramps. Hence, the extreme ramps are shifted
towards fall and winter days. Off-peak EE savings are unique in that

7 This observation is specific to 2016 load in California. The highest ramping
needs shifted out of summer months as solar generation increased in subsequent
years and mitigated the cooling driven peaks (as observed in the high VRE
scenario).
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extreme ramping decreases but the routine ramping increases. The
off-peak EE savings reduce the midday net-load and tend to in-
crease the magnitude of ramps overall relative to baseline, thus
increasing routine ramping (Fig. 12). However, these effects also
tend to increase the top-25 ramps by a similar size thus reducing
the difference between the highest ramp and 25th highest and
reducing extreme ramping.

In the high VRE scenario, the need for both extreme ramping as
well as routine ramping increases. Shift metrics are largely driven
by the type of VRE (e.g., wind versus solar) in a given system. In
California, significant need for ramping is driven by solar genera-
tion [9]. High VRE tends to increase the magnitude of ramps overall
since high midday solar generation reduces the net-load, thereby
exacerbating the evening ramps and increasing routine ramping
(see Fig. 12 bottom panel). High VRE generation also deepens the
duck curve in the winter and spring days, causing large evening
ramps and hence increasing extreme ramping.

Table 2 presents the change in shed and shift DR program design
metrics from the impact of different EE savings and VRE penetra-
tion. In every EE and VRE scenario, the frequency of shed DR events
(i.e., number of days that constitute the top 100 net-load hours)
increases compared to the baseline. Similarly, the shed DR season
duration (i.e., the shortest interval in days that contains 80% of the
top 100 net-load hours) also increases in the on-peak EE savings,
off-peak EE savings, and high VRE scenarios and does not change in
the off-peak EE savings scenario. The results suggest that a lower
net-load, either via EE savings or higher VRE penetration, empha-
sizes shoulder or winter peaks (compared to a summer-peaking
baseline) thus spreading out the number and timing of shed DR
events. More peak-coincident EE savings (i.e., on-peak EE savings
and flat EE savings) appear to mitigate this spread resulting in
smaller change in shed DR events and shed DR season duration.

There is a dramatic reduction in the shift DR season duration
across all the EE and VRE scenarios, with the highest reduction
occurring in the off-peak EE scenario (see Table 2). While the EE and
VRE impacts to net-load emphasize winter peaks relative to the
baseline, the most significant net-load ramps are more concen-
trated in the winter season. While a few top-25 ramps occur in the
summer and fall seasons, they do not affect this metric because of
the 80% threshold (see Fig. 12).

6. Discussion and conclusion

DR is a valuable resource for managing loads and reducing costs
as the power system transitions towards greater VRE and integrates
other decarbonized resources. This study developed new metrics to
quantify change in the power system need for shed and shift DR to
inform system operators, regulators, policymakers, and other
stakeholders about how to maximize the value of existing and
future DR programs and technologies. Using historical system load,
wholesale prices, and emissions we characterized the system value
of DR both in the traditional case of shed DR for peak reduction and
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Summary of results of applying system need and program design metrics to the scenarios described in section 2. Positive values indicate an increase in DR need as a percentage

change relative to baseline, and vice versa.

Shed DR Metrics Shift DR Metrics

DR Program Design Metrics

Scenario Peak Load (% Peakiness (%
change) change) change) change)
Flat EE Savings —20.1 -6.2 +3.9 -134
On-peak EE -24.6 -13.7 +11.6 -223
savings
Off-peak EE~ —15.5 +1.3 -255 +26.3
savings
High VRE —-0.86 +62.8 +43.6 +51.7

Extreme Ramping (% Routine Ramping (% Shed Event days (% Shed season duration (% Shift season duration (%

change) change) change)
+16.6 0 —64.8
+20.8 +1.7 —66
+37.5 +1.7 -71.5
+54.2 +34.5 -56.9

in the more novel case of shift DR to mitigate steep net-load ramps.
We then formulated seven metrics to quantify changes in the
system-level need for DR that may occur in response to changes in
net system load. The metrics considered changes in both the
magnitude and the timing of the need for shift and shed DR, to
inform both the scale and the design of DR programs. Importantly,
the need for DR and its value in reducing high system loads, costs,
and emissions was easily identifiable and constrained to limited
hours (i.e., top-100 net-load hours) and events (i.e., top-25 ramps).
Furthermore, the seven metrics defined in the study can be easily
calculated using publicly available hourly load and VRE generation
data, which will promote their adoption and utilization by grid
planners and DR program administrators.

The study also demonstrated that the metrics can be used to
quantify the impact on DR need arising from system-wide changes
on both the demand-side (i.e., via the EE scenarios) as well as the
supply-side (i.e., via the high-VRE scenario). Additionally, these
metrics could also be applied to study the impact of changes in
other sectors (e.g., building weatherization, electrification of
transport and industrial processes, storage) on a system's net-load
and hence, its need for DR. As expected, shed DR metrics that are
based on the top-100 load hours are highly influenced by changes
that are coincident with peak load. EE measures that produce
savings during system peaks (e.g., more efficient building enve-
lopes and air-conditioning for summer peaking systems and more
efficient lighting, water heating, and heating for winter peaking
systems) are highly effective at reducing the system need for shed
DR by decreasing both peak load and peakiness. This suggests a
reduction in both short-run and long-run need for shed DR. Off-
peak EE savings, however, reduced the peak load but increased
the peakiness, suggesting a short-run reduction but a long-run
increase in the need for shed DR. While the off-peak EE savings
resulted in the largest increase in shed DR events relative to the
other EE scenarios, none of the EE scenarios noticeably increased
shed DR season duration.

Shift DR metrics, however, are driven by ramping, which is
sensitive to changes in load and VRE generation and, therefore,
exhibit greater seasonal variation. While more peak-coincident
changes can reduce the magnitude of ramps (thus, reducing the
routine ramping metric), in some cases, they may also increase the
extreme ramping, as well as shift the highest ramps to different
seasons. For example, in the case of our on-peak EE savings sce-
nario, the size of the 25th-highest ramp was reduced but the dif-
ference between the highest and 25th-highest ramp increased, as
well as significantly concentrating the top-25 ramps to the winter
season. These results show a change in both the nature and the
timing of the system need for shift DR, which suggests a different
strategy for load-shifting program design. The shift DR metrics also
exhibited sensitivity to the ways in which VRE generation alters the
net-load throughout the year, including periods outside the con-
ventional peak season. For example, the high VRE scenario showed

an increase in both routine and extreme ramping, while also
reducing ramps during the peak season and concentrating the need
for shift DR into shoulder and off-peak seasons. The changes and
interrelationships between gross and net-load (as a result of
application of EE and high VRE) determine the variability in system
ramps and hence, the shift DR metrics. These results suggest system
planners and operators need to be thoughtful about interactions
between EE, DR, and VRE in order to avoid unintended conse-
quences on the magnitude and timing of system ramping.

In practice, the metrics that we have developed here for
assessing the changes in system-level DR need can be of value for
various electricity industry stakeholders. For example, the metrics
can help system planning identify the most valuable type of DR
resources and inform system operations and dispatch to ensure a
robust utilization of DR to meet high load and ramp conditions. The
metrics can also inform and improve DR program design by
quantifying the seasonality of shed and shift DR events, to facilitate
better targeting of customers and end-uses that are aligned with
the system need. Finally, these metrics can help inform decision-
makers in setting more comprehensive targets or mandates for
DR that go beyond simply reducing the annual system peak to also
address needs to mitigate seasonal peaks and major ramping
events.
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