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J. Pletcher2, Efstathios D. Gennatas2
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San Francisco, San Francisco, California, USA

2Department of Epidemiology and Biostatistics, University of California–San Francisco, San 
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3Division of Hospital Medicine, Department of Medicine, University of California–San Francisco, 
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Abstract

Liver transplantation (LT) is a treatment for acute-on-chronic liver failure (ACLF), but high 

post-LT mortality has been reported. Existing post-LT models in ACLF have been limited. We 

developed an Expert-Augmented Machine Learning (EAML) model to predict post-LT outcomes. 

We identified ACLF patients who underwent LT in the University of California Health Data 

Warehouse. We applied the RuleFit machine learning (ML) algorithm to extract rules from 
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decision trees and create intermediate models. We asked human experts to rate the rules generated 

by RuleFit and incorporated these ratings to generate final EAML models. We identified 1384 

ACLF patients. For death at 1 year, areas under the receiver-operating characteristic curve 

were 0.707 (confidence interval [CI] 0.625–0.793) for EAML and 0.719 (CI 0.640–0.800) for 

RuleFit. For death at 90 days, areas under the receiver-operating characteristic curve were 0.678 

(CI 0.581–0.776) for EAML and 0.707 (CI 0.615–0.800) for RuleFit. In pairwise comparisons, 

both EAML and RuleFit models outperformed cross-sectional models. Significant discrepancies 

between experts and ML occurred in rankings of biomarkers used in clinical practice. EAML may 

serve as a method for ML-guided hypothesis generation in further ACLF research.

Keywords

ACLF; big data; UCHDW; machine learning; posttransplant outcomes

Introduction

Acute-on-chronic liver failure (ACLF) is commonly defined as acute decompensation of 

end-stage liver disease (ESLD) with extrahepatic organ failure and is associated with 

high short-term mortality.1–6 Liver transplantation (LT) is a well-established treatment for 

patients with ACLF who are refractory to supportive care and treatment for the underlying 

precipitant. Due to critical illness, however, LT is estimated to be feasible in only 25% 

of ACLF patients.7 Moreover, there have been conflicting post-LT outcomes reported for 

ACLF patients, with some subpopulations having up to 40% 3-month mortality.8,9 Of 

note, analyses of the United Network for Organ Sharing (UNOS) database showed that 

among patients with severe ACLF, mechanical ventilation at transplant and receipt of an 

organ with an elevated donor risk index were associated with increased post-LT mortality. 

The derivation of this UNOS-based model, however, required the inclusion of post-LT 

variables.10 There is, therefore, still an unmet need for tools to predict post-LT outcomes 

for ACLF patients in the pre-LT setting (and without the benefit of donor, intraoperative, 

or post-LT data) to aid with clinical decision-making regarding utility of proceeding to 

transplantation.11,12

Multiple international research consortia, such as the North American Consortium for 

the Study of End-Stage Liver Disease (NACSELD),2 the European Association for the 

Study of the Liver-Chronic Liver Failure Consortium (EF-CLIF),3 and the Asian Pacific 

Association for the Study of the Liver ACLF Research Consortium (APASL ACLF)13; have 

developed scoring systems to predict pre-LT outcomes. None of these models, however, 

evaluates for post-LT outcomes. Currently, there are 2 models that utilize pre-LT data 

to predict post-LT outcomes. The first is the transplantation for ACLF-3 model (TAM) 

score, which was trained on 76 patients with severe ACLF at a single French center and 

validated in 76 patients at 4 other centers.14 Despite its potential utility, the TAM model 

has not been studied in non-European settings. More recently, the Sundaram ACLF-LT-

Mortality (SALT-M) score, derived from data from 15 liver transplant centers in the United 

States and validated in 2 French centers, was shown to have an area under the receiver-

operating characteristic curve (AUROC) of 0.72 and outperformed the Model for End-Stage 
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Liver Disease (MELDNa) and its derivatives in assessing post-LT outcomes.15 The dearth 

of models predicting post-LT outcomes, however, illustrates the inherent difficulties of 

modeling this heterogeneous and dynamic clinical syndrome with divergent definitions 

in different geographies.2,3,5,7,13 Many prediction models do not utilize vast numbers 

of data features available in electronic health records (EHR) to better define dynamic 

clinical trajectories seen in patients with ACLF. Our group had previously demonstrated 

an informatics approach to extract EHR data that yielded a median of 454 features per 

admission to more accurately represent ACLF patients’ clinical courses.16 Machine learning 

(ML) is well-suited for analyzing such data but can be misleading when taken out of context 

of biological or clinical mechanisms.17,18

Expert-Augmented Machine Learning (EAML) is an emerging technique that overcomes 

this limitation of ML by extracting rules from decision-tree ML models for human expert 

feedback. EAML has 2 potential benefits: (1) to create combined models that incorporate 

the best of human and ML knowledge, and (2) to evaluate for differences between humans 

and ML. These differences could represent human biases (eg, experts ignoring important 

variables identified by ML) or artifacts in the underlying data (eg, experts are identifying 

the important variables but there is overrepresentation of characteristics or variables in this 

population not seen by typically seen by human experts, such as differences in etiologies of 

ACLF or underlying liver disease).

In this study, we utilized a novel multicenter EHR database, the University of California 

Health Data Warehouse (UCHDW), to construct an EAML model to predict post-LT 

outcomes in patients with ACLF.

Methods

A flowchart showing the study design is featured in Figure 1.

The University of California Health Data Warehouse (UCHDW)

The UCHDW is a unique data asset created from the EHRs and claims data from the 5 

major University of California Health (UCH) Medical Centers (Davis, Irvine, Los Angeles, 

San Diego, and San Francisco) and managed by the Center for Data-Driven Insights 

and Innovation (CDI2).19 UCHDW holds data on 6.2+ million patients seen at UCH 

since 2012. All data in UCHDW are harmonized in the Observational Medical Outcomes 

Partnership (OMOP) common data model, version 5.3.1.20 All data elements in UCHDW 

are deidentified prior to the receipt by end-users with no clinical notes or imaging. UCHDW 

has previously been utilized to analyze treatment utilization patterns between UCH Medical 

Centers.21 For all analyses, we utilized UCHDW, versioned as of September 22, 2022, and 

accessed on October 20, 2022.

Study population

We isolated all adults (≥18 years) who underwent an orthotopic liver transplantation 

procedure, as defined by the OMOP concept identifiers 2109321 or 4067458, based on the 

ATHENA OMOP vocabulary dictionary,22 in UCHDW between January 1, 2013, through 

December 31, 2021. We included patients who had evidence of ACLF prior to the time 
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of LT through a previously published informatics-driven approach validated by manual 

chart review that showed 88% and 98% positive predictive value for identifying patients 

with ACLF based on NACSELD and EF-CLIF definitions, respectively. Consistent with 

this methodology, we excluded all patients who underwent transplant within 48 hours of 

admission as they were likely admitted electively.16 We included patients who underwent 

multiorgan (such as simultaneous liver-kidney transplant) and retransplant procedures. We 

did not use the APASL ACLF diagnostic criteria due to bacterial infection being the most 

common precipitant of ACLF in patients in the United States.23,24

Measurements

We extracted all structured clinical information associated with the admission of interest. 

Baseline characteristics included age, sex, race/ethnicity, height, weight, body mass index, 

and censored identity of the UCH facility (defined as “UC-1,” “UC-2,” and “UC-3”). 

Laboratory measurements, liver disease etiologies, complications of cirrhosis, comorbid 

medical conditions, dialysis state, ventilation parameters, and vasopressor administration 

were extracted based on previously defined OMOP concept identifiers.22,25

As patients may have had different lengths of stay before LT, we focused only on data values 

from the day of admission and the day before LT. We dropped measurements from other 

time points from consideration to normalize the data and minimize unintentional overfitting. 

Continuous data features were averaged by hospitalization day. We defined changes between 

admission and transplant based on the differences between data features between admission 

and the day before LT.26–28 All intraoperative data values and values after transplant were 

excluded from our analyses as our intent was to develop a predictive model utilizing only 

pretransplant data. Missing data features and variables underwent single imputation with 

chained RFs, which has been shown to produce low errors and good performances in 

previous studies utilizing EHR data.29–31

Outcomes

The primary outcome was all-cause mortality at 1 year after LT defined based on the date 

of transplant. The secondary outcomes included the following: (1) all-cause readmissions 

within 90 days defined as hospitalizations taking place within 90 days from the date of 

discharge of the index transplantation hospitalization, and (2) all-cause mortality within 

90 days after LT defined based on the date of transplant. Death was ascertained based on 

synchronized data with the California Death Registry and updated monthly.19

Model development and EAML

The sample of ACLF patients isolated from UCHDW was split by random sampling into 

training, validation, and test sets in a 60:20:20 ratio.32–34 The training set was used to fit the 

model, the validation set was utilized to tune hyperparameters through a grid-search strategy, 

and the test set was held-out for independent testing. Learning curves, which show changes 

in model performance with addition of incremental training data, and calibration curves 

(both raw and calibrated) were generated (and reported in the Supplementary Material 

in Supplemental Figures 4–9). We then utilized EAML, as implemented in the rtemis 

R package, version 0.91, to train 1 ML model for each of our primary and secondary 
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outcomes of interest (total of 3 models).35 rtemis is a platform for advanced ML research 

and applications, which incorporates several algorithms, including EAML.36

As described above, EAML is an ensemble ML algorithm that incorporates human 

knowledge by converting high-dimensional training data into Likert scale questions.35 

EAML first trains a predictive model using the RuleFit algorithm,37 which is a combination 

of a Gradient Boosting Machine (GBM) decision-tree model (trained on the data to generate 

rules), and a least absolute shrinkage and selection operator (LASSO) model (used to select 

rules generated by the GBM model).37 The RuleFit model training outputs include the 

detailed rules, model coefficients (represents the change in response associated with the 

rule), and empirical risk (rating of the rule importance by the machine).

Utilizing the rules selected by RuleFit, we then created an online survey on the Qualtrics 

platform (example question in Fig. 2) that was sent to 15 hepatologists throughout the world 

who conduct clinical care and research in ACLF recruited from a convenience sample. These 

experts were asked to rate rules on a 5-point Likert scale based on perceived associations 

with the outcomes of interest. We calculated expert rankings based on the averages of these 

ratings. We then took the differences in rankings between the experts and those generated 

by the RuleFit model to calculate penalties. These penalties were then incorporated into the 

RuleFit models by eliminating the top quartile of the most discrepant rules (highest fourths 

of absolute rank differences between RuleFit and expert rankings) to create the EAML 

models for each of the 3 outcomes.35

Statistical analyses and model performance evaluation

Clinical characteristics and laboratory data were summarized by medians and interquartile 

ranges (IQR) for continuous variables or numbers and percentages (%) for categorical 

variables. Comparisons between the training, validation, and test sets were performed using 

chi-square and Kruskal-Wallis tests where appropriate.

We evaluated the performances of EAML (with expert input) and RuleFit (without expert 

input) models through the AUROC, which has been used previously to evaluate ML models 

in transplant hepatology.38–41 In addition to AUROC, we also calculated (and reported in 

the Supplementary Material) the area under the precision-recall curve (AUPRC), which 

may be more informative in models for imbalanced data.42 To compare the performances 

of the EAML and RuleFit models versus cross-sectional models (MELDNa, NACELD-

ACLF, CLIF--C-ACLF, TAM) and other ML algorithms (Random Forest [RF], GBM, and 

Elastic-Net Regularized Generalized Linear Model [GLMNET]), we calculated AUROC 

and AUPRC differences between each pair of models (eg, AUROC differences between 

EAML and NACSELD) and their confidence intervals (CIs) using bootstrapping with 

2000 iterations per pairwise comparison.43,44 We calculated MELDNa, NACSELD-ACLF, 

CLIF-C-ACLF, and TAM scores per previously published literature.2,3,14,45 We used rtemis 

implementations of RF, GBM, and GLMNET to generate comparison ML models.

All data queries, extractions, and transformations of OMOP concept identifiers in UCHDW 

were conducted using the Microsoft Azure implementations of Spark, version 2.12. All 

statistical analyses were performed utilizing Spark-R, version 4.1.3 “One Push-Up” (R Core 
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Team), and R packages previously noted and documented in Supplementary Material.46 

Two-sided P values <.05 were considered statistically significant in all analyses. The 

use of UCHDW data for this study was authorized by the Institutional Review Board at 

the University of California, San Francisco under #20-32717 for model generation and 

#22-37555 for human expert input.

Results

A total of 1384 patients with ACLF were identified from UCHDW from January 1, 2013, 

through December 31, 2021. Of the 1384 patients, 611 (44.1%) were women, 576 (41.6%) 

Hispanic, 472 (34.1%) non-Hispanic White, 138 (10.0%) Asian, 60 (4.3%) Black, and 122 

(8.8%) of unknown/other race/ethnicity. Retransplant patients accounted for 1.8% (25) of 

the cohort. Distribution of patients by University of California sites was 410 (29.6%) at 

UC-1, 173 (12.5%) at UC-2, and 801 (57.9%) at UC-3. The patients were randomly divided 

based on a 60:20:20 ratio with 841 patients in the training set, 255 in the validation set, and 

288 in the test set. The 3 sets were broadly similar across multiple characteristics (eg, age, 

race/ethnicity, liver disease etiologies, comorbid conditions, and distribution between UCH 

facilities). Of note, the median MELDNa scores at admission were 34 (IQR 29–39), 34 (IQR 

30–38), and 34 (IQR 30–38) for the training, validation, and test sets, respectively. Detailed 

patient characteristics at time of admission are reported in Table 1.

Primary and secondary outcomes

In the total sample of 1384 patients, 149 (10.8%) met the primary outcome of death at 

1 year, 97 (7%) met the secondary outcome of death at 90 days, and 621 (44.9%) met 

the secondary outcome of readmission within 90 days. Distributions and prevalence of the 

primary and secondary outcomes were similar between the training, validation, and test sets 

and are reported in Table 2.

RuleFit and Expert Augmentation

After identification and division of the ACLF patient population as above, we then applied 

the RuleFit algorithm. RuleFit generated 20 rules for the primary outcome of death at 1 year 

(Table 3), 18 rules for the secondary outcome of death within 90 days (Table 4), and 6 rules 

for the secondary outcome of readmission within 90 days (Table 5). The rules generated 

by RuleFit for each of the outcomes were then distributed to 15 hepatologists throughout 

the world who conduct clinical care and research in ACLF and rated rule importance. The 

aggregated physician rankings along with rank differences between RuleFit and experts are 

also reported in Tables 3–5 for each of the 3 outcomes. Of note, the greatest discrepancies 

between RuleFit and human experts occurred in the rankings of biomarkers more commonly 

utilized in clinical practice, such as age and MELDNa score.

EAML model performance versus cross-sectional and other ML models

For the primary outcome of death at 1 year, AUROC were 0.707 (CI 0.625–0.793) for the 

EAML and 0.719 (CI 0.640–0.800) for the RuleFit models. For the secondary outcome 

of death at 90 days, AUROC were 0.678 (CI 0.581–0.776) for the EAML and 0.707 (CI 

0.615–0.800) for the RuleFit models (Table 6). Pairwise AUROC differences and CIs for 
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the primary outcome of death at 1 year and the secondary outcome of death at 90 days are 

reported in detail in Table 7 and graphically represented in the Supplementary Material. In 

general, for the outcomes of death at 1 year and at 90 days, AUROC differences between 

EAML and RuleFit models showed that RuleFit outperformed EAML but this was not 

significant: Δ(RuleFit–EAML) was 0.013 (CI −0.027 to 0.052) for death at 1 year and 

Δ(RuleFit–EAML) was 0.030 (CI −0.100 to 0.071) for death at 90 days. Moreover, AUROC 

differences between the EAML/RuleFit models and GBM, and those between the EAML/

RuleFit models and GLMNET were also not significant. In contrast, for the outcomes of 

death at 1 year and death at 90 days, the EAML/RuleFit models consistently outperformed 

cross-sectional models (MELDNa, NACSELD, CLIF-ACLF, and TAM).

For the secondary outcome of readmission at 90 days, AUROC were 0.557 (CI 0.493–

0.623) for the EAML and 0.564 (CI 0.498–0.629) for the RuleFit models (Table 6). 

Pairwise AUROC differences and CIs for the secondary outcome of readmission at 90 

days are reported in detail in Table 7 and graphically represented in the Supplementary 

Material. In general, the EAML and RuleFit models did not show significant differences in 

predictive abilities versus each other and versus other ML models. Moreover, while EAML/

RuleFit showed significant differences in AUROC versus some of the cross-sectional models 

(MELDNa, NACSELD, and CLIF-ACLF), the overall predictive abilities of all models 

evaluated were poor.

Discussion

This study is one of the first to explicitly combine human expert knowledge with ML 

to create an interpretable ML model for a clinical problem within transplantation. In this 

study, we generated 2 models (EAML, which incorporates human expert content, and 

RuleFit, which does not incorporate human input) for each of the 3 outcomes (posttransplant 

mortality at 1 year, posttransplant mortality at 90 days, and readmission at 90 days). Our 

ML models (EAML and RuleFit) significantly outperformed existing cross-sectional models 

with mean AUROC clustering around 0.700 for the outcomes of posttransplant mortality at 

1 year and mortality at 90 days. In contrast, our ML models did not show good predictive 

ability for readmission at 90 days—this finding is largely consistent with previous literature 

showing difficulties with predicting this outcome.18 This implies that operative, donor, and 

post-LT variables may be more important for modeling this outcome as opposed to pre-LT 

variables.

In our pairwise comparisons of models utilizing AUROC differences, we found that there 

were no significant differences between EAML and RuleFit, and between EAML/RuleFit 

and other popular ML algorithms, such as GBM and GLMNET. Moreover, while these 

were not statistically significant, the EAML models consistently had lower AUROC versus 

the RuleFit models. The most likely explanation in this situation is due to similarities in 

the training, validation, and test sets, eg, being all derived from the same database. In this 

circumstance, the process of incorporating expert input with EAML did not improve the 

performance of the model since the test sets have similar distributions of demographic and 

clinical characteristics as the training sets.
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The purpose of EAML, therefore, in this situation is to reveal key insights from the 

discrepancies between human experts and ML rankings of rules. These reveal residual 

biases, artifacts, and areas for future research. For instance, in the EAML model for 

posttransplant mortality at 1 year, rule #18 (MELDNa at the time of transplant being >32.47) 

was ranked as the most important by experts, but only tenth most important by RuleFit. 

This difference in rank by 9 positions indicated that experts may have biases favoring a 

well-known and established clinical scoring system. In general, across the 3 outcomes, 

ACLF experts were more likely to overrank the importance of commonly used physiologic 

and clinical makers, such as MELDNa, age, and white blood cell count. In contrast, RuleFit 

was more likely to elevate the importance of electrolytes and hematological parameters, 

such as ionized calcium, sodium, and lactate dehydrogenase as important data features, in 

comparison to experts.

While the differences in feature importance may be due to human biases, a second reason 

for this may be due to data artifacts. In our case, all 3 transplant centers are located in 

California, which is a high MELDNa area of the United States. We invited human experts 

from around the world, including Europe and Asia, with differing etiologies for ACLF. 

The human expert rankings may be “correct” for their respective patient populations but 

may be deemed “incorrect” or discordant compared with ML rankings for our population. 

This is likely one of the reasons why the TAM model based on French ACLF patients 

performed poorly in our populations. Unfortunately, due to survey restrictions, it was neither 

possible nor ethical to identify individual respondents. Finally, one last reason why there are 

disparities between human experts and the RuleFit model is that the model coefficients may 

not be a true reflection of feature importance.

These results imply additional avenues for further research in the clinical care of 

patientswith ACLF (Fig. 3). Moreover, this study demonstrates that EAML’s use may not 

be limited to predictive modeling, but also as an artificial intelligence-guided method for 

hypothesis generation. Interestingly, our data indicated a 1-year posttransplant mortality 

rate of 10.8%, which is higher than the more contemporary estimates (6.4%) of 1-year 

posttransplant mortality rates for the general posttransplant population but is still largely in 

line with population-level analyses of the UNOS database.10,47,48 This 1-year mortality rate 

is noted to be lower than certain single-center studies in other geographies.8,9

Finally, this was the third study to fully utilize UCHDW, a novel big data multicenter EHR 

database, and the first to derive insights on transplant patients. UCHDW is based on the 

OMOP common data model, which is also utilized in several other big data multicenter EHR 

databases, such as the National COVID Cohort Collaborative (N3C),49 All of Us,50 and the 

Veterans Health Administration Corporate Data Warehouse (VHACDW).51,52 While patients 

with ACLF and LT patients have been extensively studied in the VHACDW, the VHACDW 

is not broadly representative of the general population. While patients with cirrhosis have 

been studied in N3C, the current purviews of N3C limit research topics to those related to 

the coronavirus pandemic. It is our hope that our analytical approach of utilizing OMOP will 

become more common as increasing numbers of institutions have or are in the process of 

harmonizing their EHR data to the OMOP common data model.
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Our approach, which relied upon the wholesale automated extraction of EHR data and 

case-finding, is therefore fundamentally different than the one utilized in the recently 

published SALT-M score.15 In their derivation of the SALT-M score, the Multiorgan 

Dysfunction and Evaluation for Liver Transplant (MODEL) consortium utilized data from 

manual retrospective review and identified ACLF patients based only on the EF-CLIF 

diagnostic criteria. In their model development, the MODEL consortium selected features 

a priori whereas we began model development with all structured data features extractable 

in the UCHDW database. Despite these very different methodological approaches and final 

features selected, the SALT-M and EAML/RuleFit models approached AUROC of ≈0.7 

in the primary outcome of post-LT death at 1 year.15 This implies that there is likely a 

theoretical limit to which pre-LT variables could predict post-LT outcomes and that donor-

derived and intraoperative data features are necessary to improve model performance.

There are several limitations to this study due to its retrospective nature, its use of a novel 

database, and its analytical processes. First, there is selection bias—we had only included 

patients with ACLF who had undergone LT and not those who were listed but who then 

subsequently died or recovered and not those who were never listed. This means that the 

patients with ACLF suffered from a survivorship bias and are unlikely to be representative 

of the entire population. While it is feasible to pull data for all patients with ACLF who 

did not undergo LT, we have no visibility into whether these patients were listed for LT and 

we would not be able to evaluate for the post-LT outcomes. In addition, approximately 2% 

of the cohort were retransplant patients—these patients are likely distinct and may have a 

different biological pathway to ACLF versus other patients.

Second, we do not have intraoperative or donor-derived data for the patients in our cohort. 

While the inclusion of donor variables may have improved predictive ability, the inclusion 

of donor-derived variables was not consistent with our intention, which was to utilize only 

pre-LT candidate variables to predict post-LT outcomes. The ultimate clinical decision 

with which this model would help is whether to proceed to LT without the benefits of 

knowing donor characteristics. In addition, UCHDW, our data source, did not contain donor-

derived variables. Third, EAML and RuleFit ensemble algorithms are ultimately built upon 

decisiontree algorithms, which have several limitations. These include overfitting due to 

overly deep trees, instability due to sensitivity to changes in the training data, difficulty 

with handling continuous variables due to information loss from dichotomization, and the 

preference for local over global optimality.53,54

Fourth, there are also several limitations related to UCHDW. We only sourced data from 

3 transplant centers within UCH; this means that we did not have any visibility or access 

to the clinical data of these patients if they were admitted at other institutions prior to 

their admission at a UCH facility. UCHDW, being deidentified, does not have provisions 

for the reidentification of records at this time; we could not conduct a manual chart 

review to validate ACLF identification. In addition, all 3 UCH facilities included are in 

the state of California, which has some of the highest MELDNa scores at the time of 

transplant. External validation should be undertaken for these models prior to their potential 

deployment in clinical practice.
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Finally, the analysis codes utilized to derive the data from UCHDW were written for this 

specific (UCHDW) implementation of the OMOP common data model. While OMOP is 

a common data model that allows for generalization of analyses across different datasets, 

there may be minor variations and differences in data structures, semantics, and coding. 

The OMOP-based extraction methods and algorithms for these analyses have not been 

tested on other OMOP-based data sources—further research is required to evaluate for true 

“out-of-the-box” interoperability.

Despite these limitations, this study represents “proof of concept” for several key conceptual 

developments for health services research in transplantation: (1) use of human expert 

augmentation in ML modeling, (2) generation of multiple ML models that outperform 

traditional cross-sectional models for predicting posttransplant outcomes in ACLF, and (3) 

utilizing of a novel data source and common data model in transplant hepatology. With 

external validation and refinement, the EAML models generated in this study could be 

refined and evaluated in an iterative manner in clinical decision support systems to actively 

guide clinical decision-making. In such a clinical decision support-based implementation, 

prospective surveillance of outcomes would then allow for active feedback to further 

improve these models.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

ACLF acute-on-chronic liver failure

APASL ACLF Asian Pacific Association for the Study of the Liver ACLF 

Research Consortium

AUPRC area under the precision-recall curve

Ge et al. Page 10

Am J Transplant. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AUROC area under the receiver-operating characteristic curve

CDI2 Center for Data-Driven Insights and Innovation

CI confidence interval

CORDS UC COVID Research Data Set

EAML Expert-Augmented Machine Learning

EF-CLIF European Association for the Study of the Liver-Chronic 

Liver Failure Consortium

EHR electronic health record

ESLD end-stage liver disease

FiO2 fraction of inspired oxygen

GBM Gradient Boosting Machine

GLMNET Elastic-Net Regularized Generalized Linear Model

ICD-10-CM International Classification of Diseases, Tenth Revision, 

Clinical Modification

LASSO least absolute shrinkage and selection operator

LT liver transplantation

MELDNa Model for End-Stage Liver Disease

ML machine learning

MODEL Multiorgan Dysfunction and Evaluation for Liver 

transplantation

N3C National COVID Cohort Collaborative

NACSELD North American Consortium for the Study of End-Stage 

Liver Disease

OMOP Observational Medical Outcomes Partnership

PaO2 arterial partial pressure of oxygen

RF Random Forest

SALT-M Sundaram ACLF-LT-Mortality

SpO2 partial oxygen saturation

TAM transplantation for ACLF-3 model

UCH University of California Health
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UCHDW University of California Health Data Warehouse

UNOS United Network for Organ Sharing

VHACDW Veterans Health Administration Corporate Data Warehouse
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Figure 1. 
Study design flowchart.
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Figure 2. 
Example survey questions utilized to obtain expert input.

Ge et al. Page 16

Am J Transplant. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Disagreements between experts and RuleFit may reflect biases, artifacts, and areas for 

further research.
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Table 6

AUROC and 95% confidence intervals for EAML/RuleFit.

Outcome EAML RuleFit

Death at 1 year 0.707 0.719

(0.625 to 0.793) (0.640 to 0.800)

Death at 90 days 0.678 0.707

(0.581 to 0.776) (0.615 to 0.800)

Readmission at 90 days 0.557 0.564

(0.493 to 0.623) (0.498 to 0.629)

Abbreviations: AUROC, area under the receiver-operating characteristic curve; EAML, Expert-Augmented Machine Learning.
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