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Abstract

We re-derive the renormalization group equation for the effective coupling of the dimension five operator which corresponds
to a Majorana mass matrix for the Standard Model neutrinos. We find a result which differs somewhat from earlier calculations,
leading to modifications in the evolution of leptonic mixing angles and CP phases. We also present a general method for
calculatingβ-functions from counterterms in MS-like renormalization schemes, which works for tensorial quantities.

PACS: 11.10.Gh; 11.10.Hi; 14.60.Pq
Keywords: Renormalization group equation; Beta-function; Neutrino mass

1. Introduction

The Standard Model (SM) is most likely an effec-
tive theory up to some scaleΛ, above which new
physics has to be taken into account. The discovery
of neutrino masses requires an extension of the SM,
which may involve right-handed neutrinos or other
new fields. Introducing right-handed neutrinos allows
Dirac massesmD via Yukawa couplings analogous to
the quark sector. In general, lepton number need not
be conserved, so that Majorana masses are possible.
For left-handed neutrinos this can, for example, be
achieved with Higgs triplets. Right-handed neutrinos
can have explicit Majorana massesMR of orderΛ,
since they are gauge singlets and since there are no
protective symmetries. This leads to a picture with
zero or tiny left-handed Majorana massesML, with
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mD similar to the charged lepton masses, and with a
hugeMR. Diagonalization of the neutrino mass matrix
results in Majorana fermions and eigenvalues�MR
andML −m2

D/MR. ForML = 0 the neutrino masses
are thus given by the see-saw relationm2

D/MR [1],
which provides a convincing explanation for the small-
ness of neutrino masses.

Another, less model dependent approach is to study
the effective field theory with higher-dimensional
operators of SM fields. If lepton number is not
conserved, some of these generate Majorana neutrino
masses. The lowest-dimensional operator of this kind
has dimension 5 and couples two lepton and two Higgs
doublets. It appears, e.g., in the see-saw mechanism by
integrating out the heavy right-handed neutrinos.

As quarks have only small mixings, it is somewhat
surprising that neutrinos most likely have two large
mixing angles [2–4]. It is interesting to investigate
mechanisms which can produce such large or max-
imal mixings. These mechanisms operate, however,
typically at the embedding scaleΛ. For a compari-
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son of experimental results with high energy predic-
tions from unified theories, it is thus essential to evolve
the predictions to low energies with the relevant renor-
malization group equations (RGEs). This evolution is
related to the running of the leading dimension 5 op-
erator. Therefore, we calculate in this Letter the RGE
that governs this running above the electroweak scale
at one-loop order in the SM.

2. Lagrangian and counterterms

Let �fL , f ∈ {1,2,3}, be the SU(2)L-doublets of SM

leptons,efR the SU(2)L-singlet (right-handed) charged
leptons, andφ the Higgs doublet. The dimension 5 op-
erator that gives Majorana masses to the SM neutrinos
is given by

(1)Lκ = 1

4
κgf �

C
L
g
c ε
cdφd�

f

Lbε
baφa + h.c.,

whereκ is symmetric under interchange of the gener-
ation indicesf andg, ε is the totally antisymmetric
tensor in 2 dimensions, and�CL := (�L)C is the charge
conjugate of the lepton doublet.a, b, c, d ∈ {1,2} are
SU(2) indices. They will only be written explicitly in
terms with a non-trivial SU(2) structure. Summation
over repeated indices is implied throughout this Letter.

Lκ gives rise to the vertex shown in Fig. 1, and an
analogous one for the Hermitian conjugate term.

The complete Lagrangian consists ofLκ , the SM
LagrangianLSM and proper countertermsC,

(2)L = Lκ + LSM + C.

In the following, we omit most of those parts that yield
only flavour diagonal contributions to theβ funct-
ion and therefore do not contribute to the running of
mixing angles, in particular terms involving quarks

: iκgf
1

2

(
εcdεba + εcaεbd)

Fig. 1. Vertex from the effective dimension 5 operator and the
corresponding Feynman rule. The gray arrow indicates the fermion
flow as defined in [5].

and gauge bosons. The remaining ones are

(3a)Lkin(�L) = �Lf
(
iγ µ∂µ

)
�
f
L ,

(3b)LHiggs= (∂µφ)†
(
∂µφ

) −m2φ†φ − 1

4
λ
(
φ†φ

)2
,

(3c)LYukawa= −(Ye)gf eRgφ†�
f
L + h.c.;

(4a)Ckin(�L) = �Lg
(
iγ µ∂µ

)
(δZ�L )gf �

f
L ,

(4b)

CHiggs= δZφ(∂µφ)†
(
∂µφ

) − δm2φ†φ − 1

4
δλ

(
φ†φ

)2
,

(4c)CYukawa= −(δYe)gf eRgφ†�
f
L + h.c.;

(5)Cκ = 1

4
δκgf �

C
L
g
c ε
cdφd�

f
Lbε

baφa + h.c.

δZi (i ∈ {�L, φ}) determine the wavefunction renor-
malization constantsZi = 1 + δZi , defined in the
usual way. Note thatZ�L is a matrix in flavour space.
δκ satisfies the relation

(6)κB =Z−1/2
φ

(
ZT
�L

)−1/2[κ + δκ]µεZ−1/2
�L

Z
−1/2
φ ,

where the factorµε is due to dimensional regulariza-
tion, with µ denoting the renormalization scale and
ε := 4 − d . The subscript B denotes a bare quantity.
Note that the usual ansatzκB ∼ Zκκ is not possible
in this case, as it would obviously spoil the symmetry
of κB or κ with respect to interchange of the flavour
indices.

3. Calculation of the counterterms

In the MS scheme, the quantityδκ can be computed
at one-loop order from the requirement that the sum of
diagrams in Fig. 2 be ultraviolet finite.

Using FeynCalc [6] we obtain

(7)

δκ = − 1

16π2

[
2
(
Y †
e Ye

)T
κ + 2κ

(
Y †
e Ye

) − λκ +Cκ
]1

ε
,

whereCκ denotes the contribution from gauge interac-
tions. The usual calculation of the wavefunction renor-
malization constants yields

(8)δZφ = − 1

8π2

[
Tr

(
Y †
e Ye

) +Cφ
]1

ε
,

(9)δZ�L = − 1

16π2

[
Y †
e Ye +C�L 1

]1

ε
.
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Fig. 2. Diagrams relevant for the renormalization of the vertex from the effective dimension 5 neutrino mass operator. The last diagram
represents the counterterm.

Again, Cφ and C�L represent terms from quarks
and gauge interactions, which are diagonal in flavour
space.

4. Calculating RGEs from counterterms with
tensorial structure

The calculation of theβ-function involves some
subtle points, which are related to the matrix structure
of the counterterm Lagrangian. Before presenting our
result in Section 5, we provide now some details of
the calculation, which should be of general interest
and which are essential for verifying our result. In
particular, we generalize the usual formalism for
calculatingβ-functions to include tensorial quantities
as well as non-multiplicative renormalization.

We are interested in theβ-function for a quantityQ,
βQ := µdQ

dµ . In general, the bare and the renormalized
quantity are related by

QB =Zn1
φ1

· · ·ZnMφM [Q+ δQ]µDQεZnM+1
φM+1

· · ·ZnNφN

(10)=
(∏
i∈I
Z
ni
φi

)
[Q+ δQ]µDQε

( ∏
j∈J
Z
nj
φj

)
,

whereI = {1, . . . ,M}, J = {M + 1, . . . ,N} andDQ
is related to the mass dimension ofQ. δQ and the
wavefunction renormalization constants depend onQ

and some additional variables{VA},
(11a)δQ= δQ(

Q, {VA}),
(11b)Zφi = Zφi

(
Q, {VA}) (1 � i �N).

Note thatQ = Q(µ) andVA = VA(µ) are functions
of the renormalization scaleµ, butδQ andZφi do not
depend explicitly onµ in an MS-like renormalization
scheme. Taking the derivative of Eq. (10) yields

0
!=µ−DQεµ d

dµ
QB

=
(∏
i∈I
Z
ni
φi

)[
βQ +

〈
dδQ

dQ

∣∣∣∣βQ
〉
+

∑
A

〈
dδQ

dVA

∣∣∣∣βVA
〉

+ εDQ(Q+ δQ)
]( ∏

j∈J
Z
nj
φj

)
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+
(∏
i∈I
Z
ni
φi

)
[Q+ δQ]

×
{ ∑
j∈J

( ∏
j ′<j

Z
nj ′
φj ′

)[〈dZ
nj
φj

dQ

∣∣∣∣βQ
〉

+
∑
A

〈dZ
nj
φj

dVA

∣∣∣∣βVA
〉]( ∏

j ′′>j
Z
nj ′′
φj ′′

)}

(12)

+
{ ∑
i∈I

( ∏
i′<i
Z
ni′
φi′

)[〈dZniφi
dQ

∣∣∣∣βQ
〉

+
∑
A

〈dZniφi
dVA

∣∣∣∣βVA
〉]( ∏

i′′>i
Z
ni′′
φi′′

)}

× [Q+ δQ]
( ∏
j∈J
Z
nj
φj

)
.

Here we have introduced the notation

(13)

〈
dF

dx

∣∣∣∣y
〉
:=




dF
dx y

for scalarsx, y,∑
n

dF
dxn
yn

for vectorsx = (xm), y = (ym),∑
m,n

dF
dxmn

ymn

for matricesx = (xmn), y = (ymn),
. . . etc.

We will solve Eq. (12) and the corresponding expres-
sion forVA by expanding all quantities in powers ofε.
In the MS-scheme the quantitiesδQ andZφi can be
expanded as

(14a)δQ=
∑
k�1

δQ,k

εk
,

(14b)Zφi = 1 +
∑
k�1

δZφi ,k

εk
=: 1 + δZφi ,

with higher powers of 1/εcorresponding to higher
powers in perturbation theory. On the other hand,β-
functions are finite asε → 0. We can therefore make
the ansatz

(15a)βQ = β(0)Q + εβ(1)Q + · · · + εnβ(n)Q ,
(15b)βVA = β(0)VA + εβ(1)VA + · · · + εnβ(n)VA ,

where n is an arbitrary integer. Note that in this
case the power ofε is not related to the order of

perturbation theory. From (14) and (15) we find that

dZniφi
dQ

= niZni−1
φi

dZφi
dQ

(16)= ni dδZφi
dQ

+ O

(
1

ε2

)
= O

(
1

ε

)
,

where the lowest possible power of 1/ε appearing on
the right side of Eq. (16) is 1. An analogous relation
holds forQ↔ VA. Our analysis of Eq. (12), starting
with the inspection of theεn term, then shows that
β
(n)
Q vanishes. The analog of Eq. (12) forβVA implies

thatβ(n)VA vanishes as well. Repeating this argument for
successively smaller positive powers ofε implies that

(17a)β
(k)
Q = β(k)VA = 0 ∀k ∈ {2, . . . , n},

(17b)β
(1)
Q = −εDQQ,

(17c)β
(1)
VA

= −εDVAVA.

Note that these terms do not contribute to theβ func-
tion in 4 dimensions, i.e., forε → 0, but they are
necessary to read offβ(0)Q from Eq. (12), leading to
the result

β
(0)
Q =

[
DQ

〈
dδQ,1

dQ

∣∣∣∣Q
〉

+
∑
A

DVA

〈
dδQ,1
dVA

∣∣∣∣VA
〉
−DQδQ,1

]

+Q ·
∑
j∈J
nj

[
DQ

〈
dZφj ,1

dQ

∣∣∣∣Q
〉

+
∑
A

DVA

〈
dZφj ,1
dVA

∣∣∣∣VA
〉]

(18)

+
∑
i∈I
ni

[
DQ

〈
dZφi,1

dQ

∣∣∣∣Q
〉

+
∑
A

DVA

〈
dZφi,1
dVA

∣∣∣∣VA
〉]

·Q.

Note that for complex quantitiesQ andVA we have to
treat the complex conjugatesQ∗ andV ∗

A as additional
independent variables.
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5. Renormalization group equation

The RGE for the effective couplingκ is

(19)µ
dκ

dµ
= βκ.

Using Eqs. (18) and (7)–(9), we obtain for the contri-
butions from vertex and wavefunction renormalization
(omitting terms fromCκ,Cφ andC�L ):

(20a)16π2β(v)κ = −2
[
κ
(
Y †
e Ye

) + (
Y †
e Ye

)T
κ
] + λκ,

(20b)

16π2β(wf)
κ = 1

2

[
κ
(
Y †
e Ye

) + (
Y †
e Ye

)T
κ
] + 2 Tr

(
Y †
e Ye

)
κ.

Adding the terms involving quarks and gauge bosons
[7,8], we obtain the final result

16π2βκ = −3

2

[
κ
(
Y †
e Ye

) + (
Y †
e Ye

)T
κ
] + λκ − 3g2

2κ

(21)+ 2 Tr
(
3Y †
uYu + 3Y †

d Yd + Y †
e Ye

)
κ,

whereg2 is the SU(2) gauge coupling constant and
whereYu, Yd are the Yukawa matrices for the up and
the down quarks. Thus, compared to earlier results [7],
we find a coefficient−3/2 instead of−1/2 in front
of the non-diagonal termκ(Y †

e Ye) + (Y †
e Ye)

Tκ . Note
that the difference in theλκ-term is due to a different
convention for the Higgs self-interaction used in this
work.

We have checked our results by calculating the
essential parts of the sameβ-functions from the finite
parts of the relevant diagrams in the framework of an
underlying renormalizable theory. This calculation as
well as the application to the MSSM and the two Higgs
SM will be presented in a future paper [9].

6. Discussion and conclusions

We have calculated in the SM theβ-function for the
effective couplingκ of the dimension 5 operator which
corresponds to a Majorana mass matrix for neutrinos.
We have explicitly presented our calculations for the
non-diagonal part of theβ-function, where our result
disagrees with the previous one in [7] by a factor of 3.

This part is responsible for the evolution of neutrino
mixing angles and CP phases. Therefore, our result
modifies the renormalization group running of these
quantities between predictions of models at high en-
ergies and experimental data at low energies. Conse-
quently, our work affects the SM results of previous
studies based on the existing RGEs, e.g., [10–15].
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