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Abstract
In the last four decades, the assisted reproductive technology (ART) field has witnessed advances, resulting in improving 
pregnancy rates and diminishing complications, in particular reduced incidence of multiple births. These improvements 
are secondary to advanced knowledge on embryonic physiology and metabolism, resulting in the ability to design new and 
improved culture conditions. Indeed, the incubator represents only a surrogate of the oviduct and uterus, and the culture 
conditions are only imitating the physiological environment of the female reproductive tract. In vivo, the embryo travels 
through a dynamic and changing environment from the oviduct to the uterus, while in vitro, the embryo is cultured in a static 
fashion. Importantly, while culture media play a critical role in optimising embryo development, a large host of additional 
factors are equally important. Additional potential variables, including but not limited to pH, temperature, osmolality, gas 
concentrations and light exposure need to be carefully controlled to prevent stress and permit optimal implantation potential. 
This manuscript will provide an overview of how different current culture conditions may affect oocyte and embryo viability 
with particular focus on human literature.

Keywords Culture media · Single-step media · Sequential media · pH · Osmolality · Temperature · Oxygen tension · Oil 
overlay · Culture condition · Assisted reproductive technology (ART)

Introduction

The essential role of embryo culture is to create a permissive 
environment to maximize the health and growth potential of 
embryos while minimizing any probable iatrogenic stress. 
Since the early days of IVF in the 1970s, several modifica-
tions to the culture system have been introduced to enhance 
the number of good-quality embryos available for trans-
fer [1, 2]. As a result, currently, IVF laboratories culture 
embryos to the blastocyst stage with high efficiency, ena-
bling elective single-embryo transfer (eSET), with the net 
result that multiple pregnancies have decreased while main-
taining high pregnancy rates [3, 4]. However, despite these 
improvements, culture conditions are unlikely to mirror the 

physiologic condition encountered in vivo by an embryo. 
There are concerns that suboptimal culture conditions might 
impair embryo development and compromise its viability 
and implantation potential. In fact, in vitro culture requires 
several steps that could increase embryonic stress, includ-
ing not only the use of different culture media, but also the 
use of plastic dishes and consumables that are in contact 
with gametes and embryos, different oxygen concentrations, 
temperature, pH and osmolality. All these factors may play 
a critical role in embryo development. Therefore, constant 
improvement of culture techniques to minimize embryonic 
stress is a necessary on-going venture. The embryology 
laboratory needs to assure and provide optimal culture con-
ditions to support the growth of healthy embryos with a high 
potential to implant.

Search methods

In this manuscript, we aim to provide a commentary and 
comprehensive review of the current literature relating to the 
application of human culture system in ART, and whether 
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un-physiologic conditions and culture stress could have an 
impact on embryo development and viability and affect the 
chance to obtain a healthy pregnancy to term. Relevant stud-
ies were identified in the English-language literature using 
PubMed search terms related to the focus of the review, 
including features that are known to affect embryo evolution, 
including pH, osmolality, temperature, oxygen tension, and 
oil overlay. In addition, it also briefly analysed the culture 
media composition, single-step and sequential media; the 
use of amino acids and macromolecules and finally, some 
novel microscopy applications that might become critical 
and can be used in the future to select or deselect human 
gametes and embryos in ART program. All relevant pub-
lications until January 2023 were critically evaluated and 
discussed.

A primer of early preimplantation embryo 
development

In vivo, between days 1 and 3 of the embryo development, 
the embryo travels into the oviduct, while at days 4 and 5 
(compaction and blastocyst formation), the embryo reaches 
the uterine cavity. In the early days of ART, it was common to 
use simple culture media and subsequent transfer of cleavage 
stage embryos on days 2 or 3, when embryos are only four 
to eight cells [1]. The mammalian embryo prior to embry-
onic genome activation (EGA) is transcriptionally silent and 
uses mainly maternal mRNA for its needs [5]. EGA in human 
embryos occurs after 3 cleavage divisions, between the 4- and 

8-cell stages (Fig. 1). Braude and his colleagues in 1988 estab-
lished the time of EGA in human embryos and observed that 
distinct aspects of protein synthesis correlated to transcrip-
tional activation [6]. At these early stages, embryos display 
a predilection for pyruvate/lactate as energy sources, while 
after EGA, they switch to glucose-based metabolism [2, 7, 
8]. Following EGA, the embryo undergoes compaction, the 
blastomeres adhere with neighbouring cells to form a cluster 
called the ‘morula’. This is the first change in radial symmetry. 
Next, the morula will create a cavity (the blastocoel) second-
ary to the secretion of fluid that raises the salt concentration 
within the embryo, attracting water by osmosis [9]. The con-
tinuous expansion of the blastocyst will enlarge the cavity. 
This process, together with the secretion of lysine by trophec-
todermal (TE) cells, will result in the zona pellucida (ZP) 
thinning followed by the hatching process [1]. The blastocyst 
is at this stage composed of the inner cell mass (ICM) and 
surrounding TE cells. The ICM further develops into early 
epiblast, containing pluripotent cells that are able to give rise 
to all the tissues of the foetus, while the TE is responsible to 
form the placenta. In humans, implantation occurs at approxi-
mately day 7 of development. Failure of implantation, which 
might be secondary to poor embryo development and/or poor 
uterine receptivity [10] is a main roadblock to hamper ART 
success. Potential factors that might be involved in embryo 
development and viability are linked to media composition. 
The introduction of new generation media has represented a 
major breakthrough in ART and has allowed scientists to grow 
human embryos easily beyond the cleavage stage [1, 11]. In 

Fig. 1  Early stages of human embryo development. Images of human 
embryo development from day 1 to day 5. Following fertilization, 
embryos undergo a series of mitotic cell divisions. Arrowheads in 
day 1 indicate pronuclei formation. On day 4, the embryo compacts, 

resulting in the formation of the ‘morula’ a groups of blastomeres. 
On day 5, the embryo become a ‘blastocyst’, a fluid-filled structure 
formed of the inner cell mass (white arrowhead) and trophectoderm 
(grey arrowhead)
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the late 1990s with the consistency achieved from these com-
mercially produced media, it became more common to culture 
embryos to the blastocyst stage, resulting in an improvement 
in pregnancy rate and reduction of multiple pregnancies with 
the transfer of single blastocyst [1, 2, 12–17].

The historical landscape of embryo culture media: 
sequential and single‑step media

The early attempt of IVF and culture of human eggs were 
performed in 1940s by Rock and Menkin [18]. They col-
lected eggs at the approximate time of ovulation in patients 
undergoing laparotomy for different medical conditions. 
They adapted animal protocols to fertilize human oocytes, 
but their attempts were not successful. Next, Landrum 
Shuttle at Columbia University claimed to have fertilized 
human eggs from one patient in 1973, but the resulting 
embryos were discarded in an infamous case that had large 
media attention [19]. The first real breakthrough of in vitro 
fertilization was reported by Edwards and Steptoe [20] 
with the birth of Louise Brown. In the early days of IVF, 
embryologists prepared culture media ‘in-house’, occasion-
ally introducing variables that could increase or decrease 
effectiveness, such as adding patients’ serum to the media. 
These media were based on simple culture media supple-
mented with bovine serum albumin (BSA), penicillin and 
the addition of sodium pyruvate, phenol red and bicarbonate 
[21, 22]. Earle’s simple salt solution medium with pyru-
vate supplementation and patient’s serum was used for the 
IVF that resulted in the birth of Lousie Brown [20]. Only 
in the early 1980s, commercial media became available. 
Their formulation was mainly based on the modification of 
Earle’s balanced salt solution with the addition of maternal 

serum [23, 24]. Progress occurred when Menezo and col-
leagues proposed the supplementation of amino acids to 
the balanced salt solution media [25]. A different media 
specifically formulated to culture human embryos was the 
human tubal fluid (HTF) designed by Patrick Quinn [11]. 
Improved knowledge of embryo metabolism with the tran-
sition from pyruvate/lactate during the cleavage stage, to 
glucose-based metabolism following EGA [2–4] and a bet-
ter understanding of the physiological changes occurring in 
the oviduct and uterus [8], resulted in the development of a 
novel culture media called “sequential” media [12]. These 
media are based on the “back-to-nature” concept, which 
aims to imitate the concentration of relevant molecules and 
energy substrates found in the female reproductive system 
[2]. Several sequential systems were proposed, such as 
Quinn’s series in the USA, the MediCult/Origio in Europe, 
and Cook in Australia. This type of media requires a culture 
media change on day 3 of development, when the embryo 
changes its metabolism (Fig. 2). On the contrary, Lawitts 
and Biggers in the early 1990s designed a new media, based 
on the principle of ‘simplex optimization’. The approach, 
defined as ‘let-the-embryo-choose’, was based on test-
ing different possible concentrations of a set of chemical 
compounds, and then culture mouse embryos in each pos-
sible combination and choose the particular ‘mixture’ that 
resulted in the highest blastocyst rate [26]. The result was 
the formulation of a simplex optimization medium (SOM), 
which for the first time allowed one single medium to be 
used to culture human embryos from fertilization to the 
blastocyst stage [8, 27]. The reputed advantage of this type 
of media is that there is no need to replace culture media on 
day 3, therefore limiting an extra step that could be stressful 
to embryos [26–28].

Fig. 2  Depicts the comparison 
between the use of sequential 
media and single step approach 
typically used to culture human 
embryos
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Culture environment and potential effect 
on embryo development

Multiple factors may play a role in embryo development. 
Here, we will analyse how each particular condition may 
affect human embryo development.

Different culture media

Different culture media are currently available. In addition, 
embryos can be cultured under different culture conditions, 
with different protein sources and macromolecules. All 
these parameters can affect embryo development. A large 
set of culture media are commercially available for pur-
chase. The exact concentration of the media components 
for either single-step or sequential media is not disclosed by 
the manufacturers [29], since media cannot be patented, and 
the company maintains the composition as a trade secret. 
However, all culture media contain pyruvate, lactate and 
glucose as carbohydrate sources, at different concentrations 
(Table 1). Glucose is an essential molecule needed not only 
for glycolysis but also as a precursor for the synthesis of 
numerous biomolecules such as lipids, phospholipids, com-
plex carbohydrates, glycoproteins, and nucleic acids [30]. 
One critical question is to understand if any of these culture 
media is superior to the others, in terms of embryo devel-
opment, implantation or live birth rate. The answer is not 
straightforward [31–34] since many comparative studies 
were underpowered, designed with an inappropriate experi-
mental design or failed to control for all possible variables. 
For example, some studies included blastocyst rate inde-
pendently if it occurred on days 5, 6 or 7 [35]. A review of 
randomized control trials conducted between January 1985 
and July 2012 was published by Mantikou. The primary 

outcome studied included live birth rate, new-born health, 
clinical pregnancy rate, miscarriages, multiple pregnancies, 
implantation rate, cryopreservation rate, embryo quality and 
fertilization rate [32]. The authors concluded that a conven-
tional meta-analysis comparing culture media was not feasi-
ble because of suboptimal study designs. The live birth rate 
was only disclosed in four studies, with one study reporting 
a significant difference between different culture media [36]. 
Nine trials reported the on-going and/or clinical pregnancy 
rates, and four studies found a significant difference [37]. 
Collectively, this analysis did not show the superiority of any 
culture media. A follow-up Cochrane review analysis [38] 
found similar results. In conclusion, while it appears that 
there is not a clearly superior culture media, additional and 
better designed studies are needed to answer this question.

Addition of amino acids (AAs)

Culture media have other important functions beyond pro-
viding developing embryos with energy. One aspect that 
warrants special attention is the composition of AAs. It has 
been proposed that the existing twenty AAs are regulators 
of several processes that occur during mammalian embryo 
development [39]. Specific AAs are known to support many 
cellular processes by acting as metabolites, antioxidants, 
osmolality regulators, internal pH buffers and chelators for 
heavy metals. For example, glutamine and non-essential 
AAs trigger the growth of the early cleavage embryo. Both 
essential and non-essential AAs favour the growth of the 
inner cell mass, while non-essential AAs promote stimula-
tion of the trophectoderm and hatching from the zona pel-
lucida [40]. Mouse studies have demonstrated that limiting 
AAs even briefly can impair embryo development [39, 41]. 
Therefore, culture media should comprise always AAs, and 
different combinations have been investigated by several 
authors [39–42]. There is also evidence indicating that a 
shortage of certain AAs, such as methionine, is associated 
with monozygotic twinning in humans [42]. Menezo sum-
marized how methionine is involved in the glutathione, 
hypotaurine and taurine pathways and might play an 
important role in imprinting and DNA methylation; these 
processes are of paramount importance for chromosomal 
stability [43]. A recent study by Clare and collaborators 
investigated the effect of reduced methionine (from 50 to 10 
μM) in bovine embryos and demonstrate that low levels of 
methionine might lead to alterations in DNA methylation in 
> 1600 genes, including a group of imprinted genes associ-
ated with an abnormal foetal-overgrowth phenotype [44]. An 
important concern during the in vitro culture is that the AA 
supplementation might raise the production of ammonium. 
When culture media is incubated at 37°C, AAs spontane-
ously undergo breakdown and produce ammonium. Unfortu-
nately, ammonium is toxic to embryos, reduces implantation 

Table 1  The main components of human culture media

Components of embryo culture media

Salts Sodium chloride
Potassium chloride
Calcium chloride
Potassium phosphate
Magnesium sulphate

Buffer Sodium bicarbonate
Energy substrates Glucose

Sodium lactate
Sodium pyruvate

Amino acids Non-essential amino acids
Essential amino acids

Chelator EDTA
Antibiotic Gentamicin
pH indicator Phenol Red
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and might negatively affect foetal development. The impact 
of ammonium is intensified when culture is performed at 
20% oxygen tension [41]. This potential concern may be 
resolved by performing a media change in a sequential sys-
tem. The amino acid glutamine is considered the greatest 
contributor to the ammonium production in vitro, as one of 
the most unstable amino acids. However, a newer strategy is 
to include a more stable dipeptide form alanyl-glutamine or 
glycyl-l-glutamine to significantly reduce the accumulation 
of ammonium in modern embryo culture media and avoid 
building a toxic embryo environment [28, 39, 41, 45, 46].

Addition of protein source and macromolecules

Common sources for macromolecules in culture media are 
the addition of human serum albumin (HSA), as well as 
complex protein supplements containing HSA and a com-
bination of alpha and beta globulins (at a concentration 
between 5% and 20%) [47, 48]. It has been shown that mac-
romolecule supplementation is beneficial, improves embryo 
development and positively affects the live birth rate [49]. 
Albumin is largely present in the oviduct [50]. The addi-
tion of albumin results in several advantages: it minimizes 
gametes and embryos sticking to consumables and stabilizes 
membranes. It provides a nitrogen source, pH buffer and 
chelator to bind trace elements and toxins [51, 52]. It also 
helps to stabilize the cytoskeleton of cells after cryopreser-
vation during warming. Unfortunately, protein supplements 
might contain unwanted preservatives, stabilizers, growth 
factors and hormones; an example is octanoic acid, which 
contains high levels of pro-oxidant metals, which may be 
toxic to embryos [53]. A molecule highly investigated is 
hyaluronic acid, which is an adherence compound, and it is 
often added to the culture media. Hyaluronic acid is found 
in the female reproductive system, specifically in the endo-
metrium at concentrations that vary during the menstrual 
cycle [54]. Furthermore, hyaluronan receptors have been 
identified on the embryo surface [55, 56]. A prospective 
randomized controlled study by Urman and colleagues [57] 
investigated the effect of the use of a hyaluronan-based 
transfer medium on implantation rate (IR) and clinical preg-
nancy rate (CPR) in a cohort of 1282 fresh embryo trans-
fer cycles. The authors found an increase in both IR and 
CPR with the use of hyaluronan; in particular, hyaluronan 
was beneficial, especially for women who were > 35 years 
of age and those who had poor-quality embryos. A recent 
Cochrane review that includes seventeen studies and a total 
of 3898 participants concluded that the addition of hyalu-
ronic acid to embryo transfer medium resulted in an increase 
in LBR. However, only six trials reported LBR, and the 
quality of the evidence was only moderate. Thus, large and 
randomized studies are needed [58]. Additional molecules, 
such as growth factors, have been suggested to be beneficial 

to embryo development. Some studies on the use of media 
containing granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), in human and animal models, have found 
contradictory results [59–65]. Adanacıoglu and colleagues 
[60] in a retrospective trial including 131 unexplained infer-
tility patients undergoing fresh embryo transfer compared 
the use of media containing or not GM-CSF in terms of 
embryo development, pregnancy outcomes and live birth 
rate. Results showed no statistical differences between the 
groups although a higher pregnancy of 39.13% and on-going 
pregnancy rates of 36.23% were seen in patients whose 
embryos were cultured in GM-CSF (compared to the con-
trol 30.65% and 29.03%, respectively). A Cochrane review 
published in 2020 reported that due to the very low qual-
ity of the evidence, the authors cannot be certain whether 
GM-CSF is any more or less effective than culture media 
not supplemented with GM-CSF for clinical outcomes in 
ART treatments. The claims from marketing information 
that GM-CSF has a positive effect on pregnancy rates are 
not supported by the scientific available evidence [61]. In 
contrast, in a trial performed on 430 women undergoing to 
frozen-warmed blastocyst transfer, Okabe-Kinoshita and 
co-authors [62] reported a beneficial effect when embryos 
were cultured in a GM-CSF containing medium. The authors 
found the percentage of clinical pregnancies, on-going preg-
nancies and live birth rates was significantly higher in the 
GM-CSF group (52.6%, 42.9% and 40.9%, respectively), as 
compared with the control group 41.8%, 31.1%, and 30.5%, 
respectively. The incidence of pregnancy loss (22.3% vs. 
27.0%) did not significantly differ between the groups. The 
authors concluded that the addition of GM-CSF in culture 
media following blastocyst warming could increase the preg-
nancy rate. Collectively, additional well-designed, properly 
powered randomized controlled trials are urgently needed to 
provide certainty to the evidence.

Oxygen concentrations and ROS

The role of oxygen in embryonic metabolism and develop-
ment is critical, as a delicate balance exists between thera-
peutic benefit and iatrogenic harm. Oxygen is consumed dur-
ing mitochondrial oxidative phosphorylation, while reactive 
oxygen species (ROS) may be generated by the leakage of 
high-energy electrons as they pass down the electron trans-
port chain. ROS may impair cell metabolism, genomic integ-
rity and embryo viability. Culturing embryos in atmospheric 
oxygen (20%) might result in an increase in ROS produc-
tion. Extensive research in mammals has determined that the 
oxygen concentration in the female reproductive tract varies 
between 2 and 8% [66–68]. Thus in vivo, embryos are never 
exposed to atmospheric oxygen concentration (i.e. 20% oxy-
gen), and current best practices for culture systems recom-
mend incubating embryos at 5% oxygen. Published evidence 
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from animal models, including mice, rats, cats, sheep and 
even pigs has observed the benefit of using reduced oxy-
gen concentrations for embryo culture. Human studies have 
demonstrated that culturing embryos at low oxygen tension 
might be associated with improved embryo development, 
pregnancy and live birth rates [68–71]. Further reports have 
illustrated the overall adverse effect of atmospheric oxygen 
on the embryo, with alteration to the transcriptome, pro-
teome, gene expression and changes in both carbohydrate 
and amino acid metabolism [72, 73]. A prospective ran-
domized controlled trial by Meintjes and co-authors [71] 
demonstrated that culture human embryos at low oxygen 
concentration significantly improved pregnancy, implan-
tation and live birth rate. These findings have been con-
firmed by other investigators (Table 2) [68–71]. Although 
the exact mechanism of the benefits of low oxygen has not 
been fully elucidated, it has hypothesized to be related to a 
reduction of ROS, improved air quality by reduced volatile 
organic compounds with the net results of an improvement 
of embryo gene expression, epigenetic profile or other cel-
lular processes [73, 76]. ROS can induce serious damage to 
cell organelles, including DNA fragmentation and impair-
ment of proteins functions and signalling [77, 78]. Damage 
to lipids secondary to high oxygen concentration has been 
reported in several species [79, 80]. Mitochondria are also 
affected by oxidative stress [81]. A recent study using mouse 
embryos found that IVF-generated embryos, more signifi-
cantly if cultured under 20%  O2, had a reduced number of 
total mitochondria and an increase in abnormal mitochon-
dria (containing vacuoles) compared to embryos generated 
after spontaneous mating [73, 82]. Studies have suggested 
that oxidative stress can also modify embryonic epigenomes. 
Li and collaborators examined the effects of high oxygen 
tension (20%) on global DNA methylation using immuno-
fluorescence in bovine and found that high oxygen tension 
significantly increased global DNA methylation in 4-cell 
embryos and blastocysts [78]. Gaspar and collaborators 
found that high oxygen tension had an important effect on 
the histone marks on H3K9me2 and H3K4me2 in bovine 
blastocysts [83]. Culture of mouse embryos at high oxygen 

can change the embryo proteome. For example, the culture 
of embryo in 20%  O2 was associated with the downregula-
tion of 10 proteins/biomarkers compared to in vivo devel-
oped mouse embryos [84]. Several authors have studied the 
effect of oxygen concentration on embryo gene expression 
[73, 85], and overall culturing of embryos with high oxygen 
was associated with a 10-fold increase of abnormal genes 
expression [86].

In summary, culturing embryos at low oxygen concentra-
tion is correlated with faster embryo development and lower 
perturbation in the global pattern of gene expression, and it 
is currently the favoured method adopted in clinical practice 
[84–86]. It is believed that the majority of IVF laboratories 
culture embryos under 5% oxygen, although as late as 2014, 
Christianson noted that only 25% of IVF laboratories world-
wide used exclusively 5% oxygen tension [87].

The benefit of antioxidant supplementation

The female reproductive tract not only is exposed to a 
low oxygen tension [88] but is equipped with antioxidant 
systems to reduce the oxidative harm and assure protec-
tion to the embryo [89]. Accordingly, recent studies have 
explored the benefit of antioxidant supplementation in the 
culture media. Some of the antioxidants investigated include 
N-acetyl-l-cysteine (NAC), Acetyl-L-Carnitine (ALC), and 
α-Lipoic Acid (ALA) [90, 91]. These antioxidants appear to 
benefit both mouse and cow embryo development by protect-
ing against oxidative stress through scavenging free radicals 
[92]. For example, Abdelrazik found that in the presence 
of oxidative stress, the supplementation of ALC to mouse 
embryo culture diminishes DNA damage and improves 
blastocyst development [93]. ALA is a robust free radical 
scavenger and metal chelator involved in recycling other 
cellular antioxidants including glutathione (GSH). Its addi-
tion to mouse embryos cultured in 20% oxygen resulted in 
improved embryo development [90, 91]. Since GSH pro-
duction is dependent on the availability of cysteine, the 
addition of cysteine supported bovine embryo development 
and correlated with an increase in GSH levels in cleavage 

Table 2  Some human reports showing the effect of oxygen tension on pregnancy rate, implantation and live birth rates

Pregnancy rate (%) (%) Implantation (IR) or live birth rate (LBR)

Study [references] Cycles (n) 20%  O2 5%  O2 p value 20%  O2 5%  O2 p value

Catt and Henman [69] 261 19 32 P < 0.02 IR: 10 IR: 14 P < 0.02
Kovacic and Vlaisavljević [74] 100 40 60 P = 0.082 IR: 38.3 IR: 50.5 P = 0.217
Waldenström et al. [70] 600 35.2 45.7 P = 0.03 LBR: 32.2 LBR: 42.1 P < 0 .05
Meintjes et al. [71] 230 48.7 64.3 P < 0 .05 IR: 35.6 IR: 49.4 P < 0 .05
Kasterstein et al. [75] 258 18.4 38.2 P = 0.025 IR:10.3

LBR: 15.8
IR: 22.1 %
LBR: 34.2

P = 0.04
P = 0.047
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and blastocyst stages embryo [94, 95]. Several studies by 
Gardner and his group [90, 91] showed that supplementation 
of antioxidants in human embryo culture might induce an 
increase in implantation and pregnancy rate. Most impor-
tantly, a prospective randomized trial (including 1,563 
metaphase II oocytes from 133 patients) found an increased 
on-going pregnancy rate (from 37.8% to 47.1%) when using 
media supplemented with antioxidants. Antioxidant use ben-
efited particularly female patients aged 35–40 years, and in 
this age group, the on-going pregnancy was significantly 
higher in the antioxidant group (50%) compared to their 
absence (25.8%) (P < 0.05) [90].

Variables influencing culture environment

As important as the formulation of commercially produced 
culture media, it is equally important that different vari-
ables within the culture system are strictly controlled by the 
embryology laboratory. Here, some of the key environmental 
variables that might impact embryo development and out-
comes will be investigated [96].

Temperature

It is well established that temperature can influence several 
features correlated with gamete and embryo physiology, 
including metabolism and the meiotic spindle (MS) stability 
[97, 98]. The MS is a cytoskeletal structure that is actively 
involved in the segregation of homologous chromosomes 
during meiosis I and sister chromatids during meiosis II to 
produce haploid gametes and has been considered an indica-
tor of oocyte health [99]. Its stability is linked with fertiliza-
tion and embryo division, as well as with errors in chromatin 
division, accountable for aneuploidies, implantation failure 
and miscarriage rate [97, 98]. Oocyte MS becomes unstable 
outside of the physiologic pH and temperature; it has been 
shown that MS begins to depolymerize at a temperature of 
33°C [98], and depolarization continues as temperatures 
drop. Only 10 min of exposure to non-physiologic pH or 
temperature is sufficient to induce the spindle to disas-
semble [100]. Both animal and human studies have dem-
onstrated a negative association between the variation of 
in vitro environmental pH, temperature, and osmolality on 
normal microtubule disassembly and spindle alterations [98, 
100–102]. It has been observed that keeping the media tem-
perature between 35 and 37°C compared with 25 to 30°C 
during oocyte recovery is beneficial for bovine and mouse 
embryo development. Similarly, a stable temperature of 
37°C during oocyte manipulation has been associated with 
improved fertilization rate [103]. Overall, a temperature 
of 37°C is widely used to culture embryos, since this tem-
perature approximates the natural body temperature in vivo. 
However, human body temperature is not a constant 37°C, as 

this value might change due to individual conditions such as 
metabolism, diet, sex, time of the day and area of the body 
where the measurement is obtained [104]. Indeed, the female 
body temperature rises in the luteal phase, and variations 
of 1°C or 2°C have been reported along the reproductive 
tract. The oviduct temperature may be 1.5°C cooler, and 
the follicle may be 2.3°C cooler than the body [67]. Few 
studies have investigated if different temperatures in vitro 
could alter and improve embryo development. De Munck 
and colleagues compared a stable temperature of 37.0 ± 
0.3°C to a gradual variation from 36.6 to 37.5°C through-
out the day. The authors found no difference in fertilization 
rate, embryo quality and live birth rate [105]. A prospective, 
double-blind, randomized controlled trial by Fawzy divided 
412 women into two groups: the control group with embryo 
culture at 37°C and the intervention group with culture at 
36.5°C [106]. The authors found no significant difference in 
terms of pregnancy or implantation rates. However, embryo 
culture at 36.5°C was associated with a significantly higher 
cleavage rate, but reduced fertilization rate, fewer high-qual-
ity embryos on day 3 and a significant reduction in blasto-
cyst formation rate on day-5 when compared with culture at 
37°C. An additional study by Hong and collaborators [88] 
analysed whether the culture at a cooler temperature of 36°C 
would increase the blastocyst formation and pregnancy rates. 
Controlling for temperature variations, incubator type and 
pH, the trial demonstrated that human embryos cultured at 
37°C obtained a higher rate of blastocyst formation, while 
fertilization, aneuploidy and implantation rates were similar. 
Thus, although embryos have remarkable plasticity and are 
able to develop and tolerate modest variations of tempera-
ture, it is recommended to perform in vitro culture in the 
ART programmes at the temperature of 37°C (Table 3).

pH in embryo culture

Culture media pH is of paramount importance for embryo 
culture. Media pH is directly correlated with the bicarbo-
nate concentration of the media and the  CO2 concentration 
of the incubator. Several other factors may also influence 
media pH such as laboratory location (elevation compared 
to sea level), protein supplementation, macromolecules 
and media formulation. Therefore, the pH value reported 
in every laboratory is unique, and it must be carefully cali-
brated by each laboratory. Although embryos seem to toler-
ate a wide range of pH, variations outside of physiological 
ranges negatively affect embryo metabolism and develop-
ment and viability. Studies conducted in the mouse model 
have shown that abhorrent culture pH might be correlated 
with impaired foetal growth and development [79]. Interest-
ingly, it appears that embryos might change their internal pH 
and secreted pH according to the metabolic stress they are 
exposed to [107]. Compared to embryos, oocytes are more 
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fragile as they lack robust internal pH regulation and thus 
are more vulnerable to pH fluctuation. Indeed, at the time of 
oocyte retrieval, and during the entire period of embryo cul-
ture, it is mandatory to keep pH in the physiological range 
with minimal fluctuations, to ensure optimal embryo devel-
opment [108]. For this reason, additives such as synthetic 
zwitterionic buffers MOPS and HEPES are recommended, 
since these compounds stabilize pH anytime gametes are 
outside the incubators. These buffers appear to be safe [96, 
109–111]. A particular note regards the use of phenol red, 
a compound that changes colour based on the pH of the 
solution. It was commonly added to the media in the 1980s, 
to provide a visual representation of pH changes. However, 
phenol red has been linked with ROS generation following 
light exposure; also, possible estrogenic effects have been 
linked to its use [112]. As a result, new generation media 
have removed phenol red entirely. In summary, optimal pH 
management is extremely important to ensure consistency. 
On this regard, the newer and smaller bench-top incubators 
are considered better than large incubators commonly uti-
lized in the past [16, 17].

Culture media osmolality

Media osmolality can impact embryo development. Differ-
ent studies have reported that high osmolality negatively 
influences cell volume, surface and membrane stability. 
Mouse studies indicate that variation in osmolality might 
induce cell stress and inhibits embryo development [113]. 
The osmolality of the culture media depends on the chemical 
composition of the media itself and the presence of proteins 
or AAs. Early stages of embryo development are very sensi-
tive to changes in osmolality, and cell volume homeostasis 

is essential for embryo development and further develop-
ment. It has been demonstrated that mammal embryos 
develop optimally at an osmolality of 255–295 mOsm/kg, 
whereas osmolality greater than 300 mOsm/kg can induce 
stress and negatively influence embryo development [114]. 
Today, osmolality is set by the commercial media manu-
facturers; however, laboratory conditions such as evapora-
tion during dish preparation, length of preparation, droplet 
volume, incubator humidity levels, airflow and temperature 
can lead to its variation (Table 4) [109–111]. Thus, consist-
ent enforcement of laboratory protocols is needed to ensure 
that media osmolality is constant to ensure optimal embryo 
development.

Oil overlay

The oil overlay was first proposed by Brinster in the early 
1960s [115]. Oil serves as a direct buffer between the media 
and the surrounding air, which normally is between 22 and 
24°C, and reduces media evaporation, which can alter the 
media osmolality. Additionally, the oil overlay maintains a 
stable pH, controls the temperature and separates the culture 
media from potentially toxic or detrimental compounds and 
microorganisms present in the air. With the current wide-
spread utilization of bench-top incubators with no humidifi-
cation, the oil overlay is an important component of success-
ful embryo culture. Two types of oil are utilized: paraffin oil 
and light mineral oil. The two oils offer similar advantages, 
although the polycarbonic lipid tail in mineral oil contains 
more unsaturated bonds than paraffin oil, making it more 
sensitive to photooxidation and peroxidation [116] Studies 
have investigated the possible negative effect overlaying oil 
on embryo development and pregnancy. Toxicants present in 

Table 3  Effect of different 
culture temperatures on human 
embryo development. Embryo 
cultured at 37°C results in an 
improved embryo development 
compared with 36°C. Adapted 
from Hong et al. (2012)

Number of mature oocyte (MII) Temperature 36 °C Temperature 37°C p-value
399 406

Fertilization rate 86.2% 83.0% P = 0.23
Number of cells on day 3 (mean) 7 ± 0.1 7.7 ± 0.1 P = 0.001
Blastocyst formation rate/2PN 51.6% 60.1% P = 0.03
Usable blastocysts rate/2PN 41.2% 48.4% P = 0.03
Aneuploidy rate 42.5% 46.1% P = 0.31
Implantation rate 67.4% 73.3% P = 0.28

Table 4  Variables influencing media evaporation and osmolality, which might affect spindle stability and impair further embryo development

Laboratory Procedure Variables affecting media evaporation and increasing pH/osmolality References

Dish preparation Preparation time, surface temperature, humidity, air flow and temperature, size 
of culture media drop, microdrop preparation method, oil overlay

Swain [96]
Swain et al. [111]

In vitro culture duration Humidity of incubator, air humidity, media drop size, amount of oil overlay, type 
of oil utilized, length of the culture period (days 5, 6 and 7), media changes

Swain and Pool [109]
Swain et al. [110]
Swain et al. [111]
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crude oil such as unsaturated/aromatics hydrocarbons, vola-
tile organ compounds, peroxides, zinc and other compounds 
may contaminate oil [117, 118]. Of note, oil products can 
differ significantly in contaminant composition and are a 
large source of variation within the culture system. Morbeck 
and collaborators proposed a potential solution of washing 
oil with either water or culture media to remove some of 
these toxins [119]. A recent study published by Mestres and 
colleagues compared the performance of thirteen different 
commercial oils and found differences in osmolality, equi-
libration and stability of pH between different oils [120]. 
Oils with greater viscosity (heavy oil) provided additional 
protection against fluctuations in the culture conditions; 
however, the differences in temperature recorded were min-
imal (Fig. 3). Differences were also observed in the total 
number of cells in the inner cell mass in embryos cultured 
with different oils [120]. In addition, improper oil storage, 
particularly UV light exposure, could lead to oil peroxida-
tion with increased toxicity to embryos. Currently, there is 
no consensus on which oil is superior, and choices of a spe-
cific laboratory might be based on oil viscosity, the impact 
of dish preparation techniques, or embryologist preference 
[119–121]. Of note, the potential synergistic interactions 
between oil and the type of culture media used have not 
been fully explored [122].

Plastic consumables used in the embryology laboratory

IVF laboratories must have excellent quality control systems 
to test not only reagents and culture media but also con-
sumables like Petri dishes. This is done to prevent a possible 
negative influence of these factors on gamete and embryo 
viability and function [123]. These products, especially 

plastic materials, could release specific molecules or chemi-
cal compounds that could be toxic to the embryo. If not cor-
rectly and promptly identified, these toxic compounds can 
induce a detrimental impact on fertilization and ultimately 
on embryo development, resulting in reduced implantation 
and pregnancy rates [124]. Many plastic consumables used 
in IVF laboratory contain bisphenols. These chemicals are 
added to plastic products to make them more resistant to 
breakage and elevated temperature (used during the sterili-
zation process). However, bisphenols are known endocrine 
disruptors that can have harmful estrogenic effects. It has 
been proposed that reprotoxic effects could arise from any 
of the following features: the composition of materials, the 
production process, the packaging, the storage, the trans-
port and the sterilization of laboratory equipment. Several 
studies have reported how bisphenols and other chemicals 
might impair embryo development: by inducing apoptosis 
of gametes and embryos, interfering with steroid secretion 
in human granulosa cells and subsequent oocyte maturation, 
as well as reducing the live birth rates of women undergoing 
ART [123, 124]. Nijs and colleagues, investigating com-
mercially available consumables used in ART, found that 13 
out of 36 products were found to be toxic to embryos [125]. 
These toxic products included surgical gloves, hysterom-
eters, ovum pickup procedure needles, oocyte retrieval tub-
ing, sterile Pasteur pipettes, Petri dishes and even a type of 
embryo transfer catheter (Table 5). Many producers of IVF 
consumables report that their products are embryo tested, 
having passed the mouse embryo assay (MEA) or human 
sperm survival assay (HSSA). However, these tests are het-
erogeneous and not uniformly defined [126]. Therefore, it is 
essential that each laboratory performs a quality assurance 
and monitoring program for the products used in their clinic. 

Fig. 3  Oil overlay and osmolal-
ity in human embryo culture. 
Strategies to decrease the risk 
of media evaporation, with 
the formation of endogenous 
contaminants that may impair 
further embryo development 
and implantation potential
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The same precaution should be extended to consumables 
used by physicians and nurses.

Stiffness of environment

The current standard environment for culture mamma-
lian preimplantation embryos is the polystyrene Petri dish 
(PD). Particularly striking is the fact that a PD has an elas-
tic modulus, E (expressed in Pascals: Pa) close to  109 Pa 
(1GPa), roughly six orders of magnitude stiffer than epi-
thelia [127, 128]. Although no studies have formally meas-
ured the stiffness of the genital tract, a number of reports 
provide indirect evidence that the fallopian tube and uter-
ine epithelium are all soft, on the order of 100–1000 Pa 
[128–130]. Culturing embryos on the proper substrate are 
important since every living structure (from cells to tissues 
and up to the level of the entire organism) has the capabil-
ity to sense and respond to physical forces; this property is 
defined as mechanotransduction [131–133] mark principle 
is conveyed by mesenchymal stem cells (MSC), which sense 
the stiffness of their environment and initiate alternative 
differentiation patterns based on the overall biophysical 
cues. If cultured on soft matrices that mimic brain micro-
environments, MSCs will differentiate into neurons; when 
cultured on stiffer matrices akin to muscle, MSCs generate 
myocytes; rigid matrices that imitate collagenous bone are 
instead osteogenic [134–136]. While multiple groups are 

studying the molecular mechanisms mediating the mecha-
notransduction effects, relatively few studies have evalu-
ated the role of mechanotransduction during early embryo 
development, which is surprising given that the first forms 
of cell fate specification occur during these stages [137]. 
Few studies on mouse and bovine zygotes cultured on a 
substrate with a stiffness approximating that of the fallopian 
tube and uterus found a more rapid preimplantation devel-
opment [138, 139]. More specifically in mice, the frequency 
of development from zygote to the 2-cell stage, 2-cell to 
blastocyst and the percentage of embryos hatching after 4 
days of culture was significantly higher for embryos grown 
on soft collagen gels with a stiffness of 1k Pascal (Col-1k) 
versus stiffer substrates (collagen-coated Petri dish with a 
stiffness of 1 Giga Pascal = Col-1G or PD) [138, 139]. In 
addition, embryos grown on Col-1k had a higher number 
of TE cells, but a similar number of inner cell mass (ICM) 
cells.

New technologies in IVF laboratory

The rapid pace of improvement is continuing in the IVF 
laboratory. The utilization of new technologies, including 
microfluidic, time-lapse and artificial intelligence (AI), has 
an increasing role to play in modern ART, not only to sup-
port and increase pregnancy but also to assist embryolo-
gists to standardize routine procedures. The introduction of 

Table 5  Human sperm survival assay (HSSA) of products and disposables generally used in daily procedures in the assisted reproductive tech-
nology (ART) laboratory. Adapted from Nijs et al. (2009)

Product Related ART procedure Exposure method Exposure time

Condom
Surgical glove

IUI, Oocyte collection
Embryo transfer
Surgical sperm retrieval
Semen sperm preparation
Echo-guided

0.5 cm × 0.5 cm sample in sperm suspension 30 min

Needles, needle guide
Oocyte collection needles
Latex tubing

Oocyte collection Contact with semen sperm suspension 30 min

Pipette Oocytes collection
Semen sperm preparation

10 × flushing with semen sperm suspension 30 min

Freezing straws/devices
Filling tips

Semen sperm cryopreservation
Oocytes and embryos freezing

Filled with semen sperm suspension 24 h

ICSI injection pipette
Holding pipette
Denudation pipette
Pipette to move embryos

Embryo washing/moving, denudation procedure 
before and After ICSI

Filled with semen sperm suspension 24 h

Tubes Oocyte collection, IUI, embryo transfer, surgical 
sperm retrieval, semen sperm preparation

Fill with 0.5 mL of semen sperm suspension 24–96 h

Petri dishes Gamete and embryo culture, Surgical sperm 
retrieval, ICSI procedure, gamete/embryo biopsy 
for genetic testing

Surface contact with semen
Sperm suspension

1 h

Flasks
Specimen container and lid

Oil and media storage
Semen storage/production

Contact with semen sperm suspension 1 h
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time-lapse technologies, which allows continuous embryo 
assessment in a non-invasive fashion (since there is no need 
to remove embryos from the culture), allowed observa-
tion of embryonic developmental events that could not be 
detailed with such precision before [13]. Since microflu-
idic and artificial intelligence (AI) play a direct role in 
embryo development, we will delve into this technology. 
Microfluidic indicates a system that manipulates a liquid 
flowing in a microchannel of micrometre sizes. It is a mul-
tidisciplinary field that involves molecular and biological 
analysis and microelectronics. Its application started in the 
1980s and is used in the development of inkjet printers, 
DNA chips, and recent advances in these technologies have 
found an obvious application in the ART laboratory [140, 
141]. Processes that would benefit from microengineer-
ing include oocyte collection, micromanipulation, identi-
fication of follicular aspirates and isolation of individual 
oocyte cumulus masses and removal of the cumulus mass 
fertilization (conventional or by ICSI). Novel investiga-
tions have been performed to realize an IVF laboratory 
on a chip, incorporating all the current laboratory proce-
dures operated during an IVF cycle, including non-invasive 
technology of embryo selection [141–146]. The endorse-
ment of automated IVF systems offers potential benefits: 
standardization of workflows, error elimination, reduction 
in contamination and the potential combination with AI 
technologies. Furthermore, space reduction, miniature and 
automation IVF laboratories can easily increase accessi-
bility to IVF cycles, especially for economically disad-
vantaged countries. Particularly useful would appear the 
use of ‘perfusion culture’, which involves a gradient of 
nutrients and the removal of waste products in real time 
[142]. Microfluidic devices have been used in the porcine 
and mouse models. Clark et al. showed that culture with 
a microfluidic device resulted in significantly more mono-
spermic fertilization compared with standard insemination 
and culture [143], while Mancini and collaborators in the 
mouse model showed that zygotes had similar, although 
slightly slower development to the blastocyst stage [144]. 
Another relevant aspect of microfluid is that it could pro-
vide a dynamic environment to the embryo culture. In vivo, 
the human embryo develops in a moving environment and 
travels from the oviduct to the uterus, in a dynamic and 
constantly changing setting. This contrasts with what 
is generally performed in vitro worldwide in ART pro-
grammes, where embryos are cultured in a static manner. 
Indeed, there is evidence that continuous ‘tilting’ dur-
ing culture provides a uniform shear stress and improves 
the development of mouse and human pre-implantation 
embryos [145]. However, a more recent study found no 
benefit. Microfluidic would be particularly advantageous to 
create dynamic culture conditions with the removal of toxic 
products released by the embryo [140–147]. Another area 

with rapid, ‘logarithmic’ development is the utilization of 
AI. Currently, AI is utilized for sperm selection or embryo 
selection prior to transfer, but also as a tool to analyse the 
performance of IVF personnel, and by physicians to opti-
mize and personalize the stimulation protocols [148–151]. 
AI usage will expand in IVF laboratories, hopefully leading 
to increasing implantation potential [148]. It is likely that 
in the future, there will be automated systems for embryo 
culture and embryo selection, based on non-invasive 
measures of embryo competency (such as morphological, 
morphokinetic, morphometrics or molecular analysis of 
culture media-metabolomics or nucleic acid sequencing 
for example). These advantages, together with the possi-
bility to standardize embryology procedures and remove 
human errors, will offer great benefits. Additionally, the 
integration of new generations of microscopies and evolu-
tion in the field of genetics will be valuable to assess not 
only the metabolic state of the embryo but also indirectly 
to describe the embryo epigenetic status [152]. Examples 
include polarized microscopy and Raman microspectros-
copy (RM). Montag and collaborators have largely revis-
ited the use of polarized optics to assess human oocytes 
[153]. Polarized light is a contrast-enhancing method that 
yields quality images obtained by birefringent materials. 
The main advantage is that it is non-invasive imaging, and 
it can be performed in real time and on living cells. It can 
detect the intracellular organelles of gametes and embryos, 
which might be important for selecting embryo viability. 
In oocytes, polarized optics can be applied to visualize the 
spindle [154] or the organization of ZP around the oocyte 
[155, 156]. RM is a combination of Raman spectroscopy 
and confocal microscopy and can be used to identify inter-
actions between light and live matter. The photon scatter-
ing generates unique spectra that can be used to detect mol-
ecules and their molecular bonds in living cells [157–160]. 
RM is also used in association with other technologies such 
as hyperspectral and fluorescence lifetime imaging, or mul-
tiphoton excitation fluorescence microscopy [157, 158]. 
These methods are in continuous evolution and have distin-
guished themselves for having very low phototoxicity and 
high spatial and temporal resolution, making them ideally 
suited for studies of development and cellular dynamics 
[159]. RM has been used to evaluate mouse and Xenopus 
oocytes [160–162]. Studies, using RM, were able to iden-
tify patterns of intracellular lipids and areas of high pro-
tein content, including mitochondria [160, 161], as well as 
describe significant differences in lipid and protein compo-
nents [162]. Such reports, however, require further investi-
gations. Future experiments will examine the application of 
those novel microscopy technologies of viewing the intra-
structure, function and organization of human embryos, to 
obtain biomarker data on oocyte competencies and advice 
on the selection of embryos to transfer in ART.
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Why culture environment matters: possible effect 
on offspring health

The first 1000 days of development are believed to be highly 
sensitive to suboptimal nutrient or toxicant exposure. Expo-
sure to abnormal stimuli during this time window can affect 
the future health of the individual [163, 164]. For example, a 
maternal isocaloric but low-protein diet limited to the preim-
plantation period in rats results in offspring being hypertensive 
[165]. It is well described that foetuses exposed in utero to fam-
ine during the Dutch winter in 1944 resulted in offspring with 
significant metabolic alterations [166]. It is believed that epige-
netic changes are at the basis of these alterations. Importantly 
for the IVF practitioner, the preimplantation embryos undergo 
important epigenetic changes [167], which can be modified by 
culture in vitro [168, 169]. Currently, it is still unclear whether 
in vitro culture disturbance, as well as ovarian stimulation 
protocols, might perturb the homeostasis and influence long-
term growth and metabolism. Overall current evidence does 
not show significant adverse effects on offspring health, but 
possible consequences in later life are still unknown. Several 
studies are encouraging and show no differences between ART-
conceived children and the general population regarding mental 
health, growth and neurological outcome [170–172]. However, 
few studies with a limited number of patients show an increase 
in glucose intolerance and hypertension in ART-generated off-
spring [173–176]. These data together with the slight increase 
in obstetrical and perinatal complications, as well as congenital 
defects observed in ART-generated offspring [176–180], war-
rant caution. It is of paramount importance to continue follow-
up of the health of IVF-conceived offspring to clarify possible 
adverse outcomes not only at the delivery but also later in life, 
during childhood or adulthood.

Concluding remarks

There have been remarkable progresses in the IVF labora-
tories that have resulted in improving pregnancy rates while 
reducing multiple pregnancies. It is believed that these pro-
gresses will continue in the future thanks to the use of novel 
engineering (microfluidic, AI) and molecular (non-invasive 
metabolic or transcriptomic testing of embryos) solutions. 
However, it is also clear that each factor (type of media, oxy-
gen concentration, plastic dish, oil, etc.) involved in a gamete 
or embryo manipulation has a profound impact on embryo 
development. Cell stressors like pH, ROS, osmolality and 
temperature may play a pivotal role in permitting optimal 
embryo development and, if not well-controlled, may have a 
negative impact, ultimately lowering the implantation poten-
tial. Meticulous quality control in the laboratory and novel 
research to improve embryo development will be always an 
indispensable aspect of the IVF laboratory.
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