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IMPORTANCE: Case reports that externalize expert diag-
nostic reasoning are utilized for clinical reasoning in-
struction but are difficult to search based on symptoms,
final diagnosis, or differential diagnosis construction.
Computational approaches that uncover how experi-
enced diagnosticians analyze the medical information in
a case as they formulate a differential diagnosis can guide
educational uses of case reports.
OBJECTIVE: To develop a “reasoning-encoded” case
database for advanced clinical reasoning instruction
by applying natural language processing (NLP), a
sub-field of artificial intelligence, to a large case re-
port library.
DESIGN: We collected 2525 cases from the New England
Journal of Medicine (NEJM) Clinical Pathological Confer-
ence (CPC) from 1965 to 2020 and used NLP to analyze
the medical terminology in each case to derive unbiased
(not prespecified) categories of analysis used by the clini-
cal discussant. We then analyzed and mapped the degree
of category overlap between cases.
RESULTS: Our NLP algorithms identified clinically
relevant categories that reflected the relationships
between medical terms (which included symptoms,
signs, test results, pathophysiology, and diagnoses).
NLP extracted 43,291 symptoms across 2525 cases
and physician-annotated 6532 diagnoses (both pri-
mary and related diagnoses). Our unsupervised
learning computational approach identified 12 cate-
gories of medical terms that characterized the differ-
ential diagnosis discussions within individual cases.
We used these categories to derive a measure of
differential diagnosis similarity between cases and
developed a website (universeofcpc.com) to allow vi-
sualization and exploration of 55 years of NEJM CPC
case series.
CONCLUSIONS: Applying NLP to curated instances of
diagnostic reasoning can provide insight into how ex-
pert clinicians correlate and coordinate disease cate-
gories and processes when creating a differential diag-
nosis. Our reasoning-encoded CPC case database can
be used by clinician-educators to design a case-based
curriculum and by physicians to direct their lifelong
learning efforts.

KEY WORDS: case-based learning; artificial intelligence; natural language

processing; clinical reasoning; medical education.
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INTRODUCTION

Clinical reasoning is a core skill of a physician, and its mastery
is a central goal in medical training.1 One approach to teaching
the complex cognitive task of reasoning is through a cognitive
apprenticeship model where experienced professionals exter-
nalize their thought processes.2,3 This structured and intentional
thinking-out-loud conveys the facts and considerations that
drive decision-making. One method of augmenting this cogni-
tive training is using published cases which present clinical
challenges along with the reasoning of clinical experts.
The case-based learning (CBL)1,4,5 method can be particularly
effective in training clinicians when multiple, similar cases are
presented and learners are prompted to compare and contrast
presentations and management.6–8

Teachers who design such learning exercises or curric-
ula must either recall their own cases or find suitable
cases in the medical literature. Standard search engines
can be used to locate cases based on the final diagnosis,
but this process can often be inefficient and incomplete.
There are no databases which allow a teacher or learner to
search for cases based on the juxtaposition of competing
diagnoses or competing categories of illness (e.g., infec-
tion vs autoimmune disease). This limits the clinician
educator’s ability to search for cases with specific diag-
nostic dilemmas and use such cases for advanced clinical
reasoning instruction at the graduate medical education
level (residency and fellowship).
Natural language processing (NLP) is a field of computer

science that derives meaning and identifies patterns from
texts.9 NLP has the potential to analyze the reasoning process
in case reports and identify cases where specific advanced
dilemmas (e.g., “find all cases of Systemic Lupus
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Erythematosus where cryptococcus was a consideration but
not the final diagnosis”) are highlighted.10,11We hypothesized
that computational techniques such as unsupervised machine
learning and NLP would allow for meaningful categorization
of the NEJM CPC library in a manner that is useful to clini-
cians and medical educators.12

METHODS

The computational methods are described in general terms in
the main text of the manuscript. The supplementary appendix
contains a more detailed technical description.

Case Library Formation

We collected 2525 cases fromNEJMCPC from 1965 to 2020.
In this case series, a case is presented to a clinician, who is
typically invited because of their clinical expertise. This clini-
cian is asked to explain their problem representation and
differential diagnosis construction and to generate a final
diagnostic prediction. The final diagnosis derived through
additional testing is then revealed.
Text from each case was divided into three sections: Pre-

sentation of Case (PoC) which contained the description of the
patient’s medical data, Differential Diagnosis (DDx), which
encapsulated the diagnostic reasoning of the expert clinician,
and Final Diagnoses (FD) which contained both the expert’s
leading diagnostic hypothesis and the final diagnosis deter-
mined through additional testing (Fig. 1). Patient data was
derived from the PoC section, all medical terms were extracted
from the DDx section, and verified diagnoses were ascertained
through the FD section.

Category Discovery

Our goal was to identify the different categories of discussion
within each DDx section. We used a machine learning approach
called unsupervised learning, which uses data-driven (not
prespecified) approaches to analyze the natural structure of the
data and discover groups of terms that tend to occur together.
This differs from having human experts manual create categories
a priori, such as cardiac, pulmonary, or hepatic, and opens the
possibility of the algorithm perceiving groupings that occur in the
data but are unconventional to clinicians.
To focus the NLP algorithm on the medically relevant

terms within the NEJM CPC DDx section, we selected a set
of 270,666 medical terms from three published term libraries
to create one reference library. We identified all terms that
occurred within this library in each DDx section.
We used an unsupervised learning approach called Latent

Dirichlet Allocation which identifies “categories” which are
groups of terms that statistically co-occur across a collection of
documents. Each identified category was established by the
strength of associationwith eachword in ourmedical term library
(Appendix Figure 2B). For example, category 2 arose based on

strong associations with terms lung, heart, pleura, air, as well as
weaker associations with terms like tuberculosis and hypoxemia.
After these categories were established by the algorithm, a phy-
sician assigned a label based on commonmedical terminology to
facilitate recognition (e.g., category 2 ➔ pulmonary). After
identification of categories, the proportion of each case DDx
section attributable to each category was determined. Similarity
between cases was measured by overlap of these proportions
(Euclidean distance) across these 12 categories.

Final Diagnosis Search Development

Medical diagnoses can be described with differing levels of
specificity and can span multiple subjects. For example, “Lu-
pus Nephritis” is a subset of “Systemic Lupus Erythematosus”
but also part of the general concepts “Autoimmune Condi-
tions” and “Kidney Disease.” To create a search engine that
recognizes this nested character of medical diagnoses, we
utilized the MeSH Library13 which is a comprehensive list of
medical diagnoses with a hierarchical and redundant format.
Final diagnoses from the sections titled “Final Diagnosis”,

“Anatomic Diagnosis”, or “Pathologic Diagnosis” in each
NEJM CPC case were manually assigned (TZ) to the most
relevant MeSH Library term. If these sections describing a
confirmed pathological or anatomic diagnosis were not pres-
ent (7% of cases), we used the diagnoses within a section
labeled “Expert’s Diagnosis” or “Clinical Diagnosis”, with
verification through manual case review.
Mapping each Final Diagnosis within these sections to the

MeSH Library allowed us to understand relationships between
diagnoses even if they are not explicitly mentioned in the Final
Diagnosis section. For example, cases with a diagnosis of
“Granulomatosis with Polyangiitis” or “Polyarteritis Nodosa”
will be returned under a search for “Vasculitis,” even if the
term “Vasculitis” is not mentioned in the Final Diagnosis
sections, as these diagnoses appear under “Vasculitis” within
the MeSH Hierarchy.

Symptom Identification and Analyses

To generate a list of symptoms and exam findings occurring in
a case presentation, we utilized the Human Phenotype Ontolo-
gy,14 which is a medical term library that focuses on these
topics. We identified terms that were present within the PoC
section, using NLP to exclude symptoms that were negated (for
example, “the patient had fever but not chills” would identify
fever and would exclude chills, which is negated by “but not”).
Correlations between symptoms were measured using Pear-

son correlation, with significance determined by Fisher’s exact
test, corrected for false discovery rate.15 Only the 50 most
frequently observed symptoms were used in correlation anal-
yses between symptoms and between symptoms and catego-
ries to avoid testing pairs with insufficient statistical power.
Similarly, only symptoms present in at least 10 cases and Final
Diagnoses present within at least 10 cases were included for
the symptom to Final Diagnosis correlation analysis.
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RESULTS

Categories in the DDx Section

By analyzing which medical terms tended to co-occur
within case discussions, our approach uncovered data-
derived categories in the DDx section that corresponded
to recognizable organ systems or pathophysiological
processes (Fig. 1). Each of these categories is defined
by the medical terms most strongly associated with them
(Fig. 2 and Appendix Figure 2B). These “learned” cat-
egories were then labeled by the authors using a famil-
iar medical term based on the characteristic terms they
contained. Category names were Cardiac, Central ner-
vous system (CNS), Gastro-intestinal Lumen (GI-lumen),
Liver, Neoplasia, Renal, Autoimmune, Infectious (acute),
Infectious (Chronic/Opportunistic), Pulmonary, Hematol-
ogy, and Ear/Nose/Throat (EENT). The latter category

unexpectedly emerged featuring terms, such as swallow,
sinus, and larynx, suggesting these anatomic structures
often occur together in case discussions.
Each category was defined by the strength of its asso-

ciation with over 270,000 medical terms (e.g., how often
dyspnea appears in the cardiac category). Using these
relationships, we defined proximity between categories
through a quantitative measure of the similarity in words
that comprised each category and visualized this proximity
in a two-dimensional projection (Appendix Figure 2A).
For example, despite their anatomic relationship, GI-
lumen and Liver were quite distant (suggesting pathophys-
iology involving these organs lead to very different diag-
nostic discussions), whereas Cardiac and Lung were in
close proximity (suggesting that similar terms are used in
discussing those conditions). Renal and Autoimmune were
closely connected with many overlapping terms, likely

A

Lupus Nephritis
Final Dx SearchSymptom Search DDx Discussion Search

% Cryptococcus

B
Data-derived categorization

C

Reasoning-Encoded Case Map
NEJM CPCs

DDx

DDx

DDx

Chest pain and Dyspnea

C

D E F

Category 1

Category 2

Cardiac Lung Heme GI CNS

Fig. 1 Data processing concept diagram: We used a data-driven categorization process to identify “categories” within the differential diagnosis
section of 2525 CPC cases. The proportions of terms assigned to each category within the DDx section were identified and were used to develop
a reasoning-encoded database (top right). The database can be queried using symptoms or exam findings, by the final diagnosis, or by the

proportion of the differential diagnosis that is devoted to a concept.
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representing the frequent involvement of the renal system
in autoimmune diseases. Hematology, which encompassed
both benign and malignant concepts, was located between
the Neoplasia, Infectious, and Renal categories, highlight-
ing the pathophysiologic connection between hematology
and oncology, as well as the many hematological mani-
festations of infections and renal disease.

Category Distribution Based on Final Diagnosis
Section

Clinician review assigned all diagnoses contained within
the final diagnosis sections of each case within the NEJM
CPC library onto 1435 unique MeSH library terms from the
2525 cases. In some instances, more than one Final Diag-
nosis was registered for a given case because the proximate
cause of illness (e.g., acute myocardial infarction) could be
accompanied by a predisposing condition found on autopsy

(e.g., coronary atherosclerosis) or a downstream clinical
consequence (e.g., acute kidney injury). The most frequent
Final Diagnosis corresponding to a MeSH category without
further subdivisions was Mycobacterium tuberculosis (78
cases; 3% of total), followed by pulmonary embolism,
myocardial infarction, and diffuse large B-cell lymphoma
(Appendix Table 1). This finding mirrors a previous report
summarizing ten years of NEJM CPC diagnoses.16

Correlations of Symptoms Across Cases

We found a total of 43,291 instances of 1930 unique symp-
toms within the PoC section of the NEJM CPC corpus. “Pain”
was the most common symptom identified (58% of the cases),
followed by fatigue/weakness (39%), edema (35%), and fever
(30%) (Appendix Table 2). Correlation between each pair of
the top 50 most frequent symptoms showed 281 symptom
pairs that positively correlated with false discovery rate–

Category 4: "GI Lumen"

Category 9: "Autoimmune"

A

B

Fig. 2 Each discovered category is defined by a set of terms and the strength of association between those terms and the category. Physician
review assigned a category “Label” using a familiar medical term. These labels are meant to facilitate human interpretability but are not used

in any subsequent analyses. This figure illustrates two categories. Word clouds for all 12 categories available in Appendix Figure 2B.
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corrected p-value < 0.01 (Appendix Figure 3B, Appendix
Table 3). We looked for paired symptoms and final diagnoses
with high correlation, suggesting the presence of these symp-
toms may have high predictive value for these final diagnosis.
We found 1815 Symptom-Diagnosis pairs with FDR q-value
< 0.01 (Appendix Table 4). This includes familiar pairings
such as clubbing and respiratory diseases, but also rare, more
specific symptoms, such as perseveration and viral encepha-
litis. A few symptom pairs, such as fever and hypertension or
headache and respiratory symptoms, showed a significant
inverse correlation.

Relationships Between Presenting Symptoms
and DDx Categories Uncovered Through
Hierarchical Clustering

We were also interested in what terms in the PoC section
would be most characteristic of the categories identified in
the DDx section (Appendix Figure 3C). Because the catego-
ries were developed independent of the PoC section, we could
use similarities between terms present in each case as an
independent measure of category relationships. For example,
while Cardiac and Lung categories share many symptoms
(e.g., chest pain and exertional dyspnea), cases with reasoning
focused on the Cardiac category more frequently involved
findings of peripheral edema or hypotension. Similarly,
lymphadenopathy, sweats, and night sweats distinguished the
Chronic/Opportunistic Infection category from the Acute In-
fection category.

UniverseofCPC.com as a Free Resource for
Concept-Directed Case-Based Learning

We created a web site (universeofcpc.com) that allows
visualization of all CPC cases available in the case
library. The site creates a visual display where each dot
on a 3D graph represents an individual case and proxim-
ity between dots represents the reasoning-encoded simi-
larity between cases. The term “reasoning-encoded” refers
to the statistical similarity in medical terms discussed
within the DDx section of each case. It does not rely
on terms used in the case presentation (the PoC section)
or on the eventual final diagnoses (FD section). For
example, two cases may have similar presenting symp-
toms but lead to very different discussions about their
differential diagnosis based on specific features that are
selected for analysis by the discussant. Such cases will
be distant from one another in our 3D graph as the
reasoning within the DDx sections would be divergent.
Conversely, cases that have disparate presentations but
lead to similar discussions will be near each other within
this visualization.
Three search functions were developed: Symptom search

(where a user can search for cases that contain one or more
symptoms such as hemoptysis), Final Diagnosis search, and
DDx relevance search. To maintain diagnostic mystery, the

Final Diagnosis search function can also identify several cases
within the “reasoning-encoded” proximity of cases with this
final diagnosis and mask which of the cases contains the
specified diagnosis. The DDx relevance search allows users
to search for cases where specific diagnosis (e.g., histoplas-
mosis) was discussed within the DDx section, with the size of
each dot in the search results related to the proportion of the
differential discussion dedicated to that diagnosis.

DISCUSSION

Case records with expert clinician analysis are a valuable
repository of clinical reasoning. However, these case series
are underutilized for advanced reasoning instruction because
there is no method to quickly identify cases centered around
specific reasoning dilemmas or clinical presentations. We
demonstrated that natural language processing can uncover
characteristics of the reasoning process contained within these
cases and can be used to create a database that allows a
clinician to search through a 55-year case library and make
queries based on symptoms, diagnoses, or similarities in dif-
ferential diagnosis construction.
While reviewing weekly cases that cover a broad and rotat-

ing subject matter is important for foundational learning,
learners in residencies and fellowships are often faced with
specific recurrent problems (e.g., is this fever caused by an
infection or autoimmune disease?). Allowing easy curation of
case collections where experts faced these same dilemmas has
the potential to support and advance the reasoning of trainees.
In Table 1, we outline 3 scenarios where universeofcpc.com
could be used for case-based instruction in a rheumatology
fellowship program.
Natural language processing is a branch of machine learn-

ing that can be divided into two approaches, each with differ-
ent aims. In supervisedmachine learning, humans provide the
algorithm with examples that define each category (e.g., car-
diovascular or gastrointestinal) and the machine is asked to
identify features that predict belonging to each category. In
unsupervised machine learning, techniques are applied on
ungrouped data to establish categories without any
preconceived notions about what associations or signals may
define a given category (e.g., the algorithm is not “taught” in
advance what cardiovascular means or looks like, or even
that “cardiovascular” may be a category at all). While the
former approach is useful for predicting known features, in-
formation for the latter is derived from the inherent structure
present within the data. The data creates these categories
without us labeling them. For example, our unsupervised
approach thought terms like thrombosis, hemorrhage, and
ironwere important to consider in the category which we later
named Liver; these terms may not have been chosen in
predefined models to specify a Liver category. Similarly, this
approach created separate categories for acute infections and
chronic/opportunistic infections, which highlights differences

9Zack et al.: Clinical Reasoning–Encoded Case Library Through Machine LearningJGIM

http://universeofcpc.com
http://universeofcpc.com


in how these categories are analyzed by discussants. Many
other observations can be made through study of this inherent
structure, which may provide insight into how clinicians or-
ganize diagnostic discussions.
Case series designed for education purposes, such as

the NEJM CPC, can represent a rich source for under-
standing clinical problem-solving that can be used to not
only to train physicians, but also to train AI systems in
decision support and diagnostics. This unbiased machine
learning approach captured medical term relationships
that occur within the reasoning processes outlined by
invited experts during a diagnostic reasoning exercise. In
future work, we hope to build on these techniques to
analyze how specific information is utilized and proc-
essed by expert diagnosticians.
Limitations of this study include the NEJM CPC’s

emphasis on rare diagnoses and complex presentations of
common conditions. Therefore, universeofcpc.com is best
understood as a representation of diagnostic reasoning in
the setting of challenging cases rather than more routine
scenarios. Another limitation is the categories were de-
rived based on these rare diagnoses and therefore may not
generalize to diagnostic reasoning in everyday medical
practice. It will be important to apply these approaches
to other internal medicine case series or structured ver-
sions of real-world clinical documentation to determine
how stable the categories formed by these unbiased ap-
proaches are outside of the NEJM CPC corpus. We were
limited in our ability to extract accurate quantitative fea-
tures from case presentations, such as vital signs or labo-
ratory values. We are building models to incorporate such
information which is critical in diagnostic reasoning. Fi-
nally, time-intensive manual annotation determined the
final diagnoses for each case which could limit further
expansion of this resource.
This proof of concept study demonstrates the use of NLP and

unsupervised machine learning for categorization of a clinical

reasoning case library. Future work should examine how clini-
cian educators utilize reasoning-encoded case libraries to create
case-based exercises or curricula. Additionally, we envision
future NLP analyses on case report series that can help elucidate
the connections between diseases, presenting symptoms, and
pathophysiology.

Corresponding Author: Travis Zack, MD, PhD; Bakar Computation-
al Health Sciences Institute, University of California, San Francisco,
CA 94158, USA (e-mail: travis.zack@ucsf.edu).

Supplementary Information The online version contains supple-
mentary material available at https://doi.org/10.1007/s11606-022-
07758-0.
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