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ABSTRACT Equine arteritis virus (EAV) can establish long-term persistent infection
in the reproductive tract of stallions and is shed in the semen. Previous studies
showed that long-term persistence is associated with a specific allele of the CXCL16
gene (CXCL16S) and that persistent infection is maintained despite the presence of a
local inflammatory and humoral and mucosal antibody responses. In this study, we
demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of
microRNAs (miRNAs). Most importantly, we demonstrated that long-term EAV persis-
tence is associated with the downregulation of an SE-associated miRNA (eca-mir-
128) and with an enhanced expression of CXCL16 in the reproductive tract, a puta-
tive target of eca-mir-128. The findings presented here suggest that SE eca-mir-128
is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of
persistently infected stallions, a chemokine axis strongly implicated in EAV persis-
tence. This is a novel finding and warrants further investigation to identify its spe-
cific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of
the EAV long-term carrier stallion.

IMPORTANCE Equine arteritis virus (EAV) has the ability to establish long-term per-
sistent infection in the stallion reproductive tract and to be shed in semen, which
jeopardizes its worldwide control. Currently, the molecular mechanisms of viral per-
sistence are being unraveled, and these are essential for the development of effec-
tive therapeutics to eliminate persistent infection. Recently, it has been determined
that long-term persistence is associated with a specific allele of the CXCL16 gene
(CXCL16S) and is maintained despite induction of local inflammatory, humoral, and
mucosal antibody responses. This study demonstrated that long-term persistence is
associated with the downregulation of seminal exosome miRNA eca-mir-128 and en-
hanced expression of its putative target, CXCL16, in the reproductive tract. For the
first time, this study suggests complex interactions between eca-mir-128 and cellular
elements at the site of EAV persistence and implicates this miRNA in the regulation
of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence.
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Equine viral arteritis (EVA) is an economically important systemic, reproductive, and
respiratory disease of equids (1–7, 12). Its causative agent, equine arteritis virus

(EAV), is a positive-sense, single-stranded RNA virus that belongs to the family Arteri-
viridae, order Nidovirales (8). This virus can be readily transmitted via the respiratory or
venereal routes by the acutely infected horse or solely through the venereal route by
the carrier stallion (3, 7, 9–11). Viral infection can be either asymptomatic or associated
with a wide range of clinical signs (influenza-like syndrome), including dependent
edema, conjunctivitis, periorbital or supraorbital edema, respiratory distress, urticaria,
and leukopenia (1–3, 7, 12–19). Additionally, EAV infection of pregnant mares can result
in abortion or birth of congenitally infected foals that develop a rapidly progressive and
ultimately fatal bronchointerstitial pneumonia or pneumoenteric syndrome (20). Very
importantly, EAV can establish persistent infection in the reproductive tract of stallions
(carrier state), resulting in continuous shedding of infectious virus in their semen (1–3,
26), which guarantees perpetuation of the virus in equine populations (1–3, 6, 7, 9–12,
21–24). The carrier state is testosterone dependent (25) and can last from several weeks
or months (i.e., virus shedding in semen �1 year following infection [short-term
carrier]) to years or even lifelong (i.e., virus shedding in semen �1 year following
infection [long-term carrier]) in spite of the development of strong serum neutralizing
antibody, mucosal antibody, and local inflammatory responses in the reproductive tract
(3, 7, 9, 11, 21, 23, 26–28). Interestingly, EAV carrier stallions do not exhibit clinical signs
of disease and exhibit no impairment of fertility (7, 11, 19, 23). To date, the immuno-
pathogenesis of persistent EAV infection in the reproductive tract of the stallion is not
completely understood, and it is under investigation in our laboratory. Recently, it has
been shown that the outcome of EAV infection in the stallion is dependent on host
genetic factors (28–31), precisely associated with a specific allele of the CXCL16 gene
(CXCL16S), and that EAV has a specific tropism for a subset of T and B lymphocytes and
stromal cells primarily in the ampullae and, to a lesser extent, in the other accessory sex
glands (vesicular, prostate, and bulbourethral glands) of the persistently infected
stallion (26). Moreover, EAV can persist in the male genital tract despite the presence
of strong inflammatory (mediated mainly by CD8� T lymphocytes) and EAV-specific
mucosal antibody responses (26, 27). It is paramount to better understand the mech-
anisms of EAV persistent infection in the stallion reproductive tract in order to enable
development of novel therapies for elimination of the carrier state.

Semen is a complex body fluid composed of cells (mainly spermatozoa and a smaller
number of white blood cells) and seminal plasma (32–34). Seminal plasma components
in equine semen, as well as in that of other species, have been previously characterized
(35–40). Interestingly, in addition to the described soluble constituents, equine seminal
plasma contains a diversity of extracellular vesicles, including seminal exosomes (SEs)
(34, 41–46). Seminal exosomes encompass a broad group of exosomes, including
prostasomes secreted by the prostatic epithelium as well as exosomes derived from
other cell types within the reproductive tract (34, 41). Exosomes (including SEs) are
derived from multivesicular bodies (MVBs), as opposed to microvesicles, which origi-
nate from the process of exocytosis (47). Currently, the properties and function of
specific-cell derived exosomes are under extensive investigation. Previous studies have
demonstrated that extracellular vesicles are immunosuppressive components in semen
and are responsible for mediating the induction of tolerance to paternal antigens (34,
48, 49). Also, they have been implicated in the inhibition of lymphoproliferative
responses, phagocytic activity, and natural killer (NK) cell functionality (34, 42). In
addition, there is evidence that seminal plasma components may influence viral
transmission and replication by either facilitating or blocking it; this property may be
dependent on specific viral infections (34, 43, 50). Seminal exosomes participate in
cell-cell communication by specific cargo delivery, which may include proteins (e.g.,
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cytokines and growth factors), specific lipids, and coding and small noncoding RNAs
with potential regulatory functions, including microRNAs (miRNAs) (34, 51). MicroRNAs
are noncoding RNA molecules approximately 22 to 24 nucleotides (nt) in length that
participate in posttranscriptional regulation of gene expression through specific deg-
radation of mRNA targets or the blockade of their translation (52). Currently, extensive
studies have been undertaken to elucidate the role of specific miRNAs in diverse
disease processes and their potential use as biomarkers (53–58). Recently, equine
miRNAs in normal tissues have been investigated (59, 60), and exosomes and exosomal
miRNAs derived from serum and ovarian follicular fluid in mares have been character-
ized (61–63). Even though SEs have been described for the horse and their role during
sperm capacitation has been studied (46, 64), their RNA cargo and function remain to
be characterized. Thus, we hypothesized that in light of their potential regulatory
functions, SE-associated miRNA species could play a role in the molecular pathogenesis
of EAV persistence in the reproductive tract and contribute to viral immune evasion
mechanisms. The primary objective of this study was to characterize the equine
SE-associated miRNAs and define their potential role during EAV long-term persistent
infection in the reproductive tract. We demonstrated that equine SEs are enriched in
miRNAs, with potential implications in immune-mediated pathways as observed in
humans. Most importantly, we have identified specific downregulation in the relative
expression of SE eca-mir-128 during long-term EAV persistent infection and enhanced
expression of CXCL16, a chemokine strongly implicated in EAV long-term persistence
(21, 29–31), in the ampullae. Interestingly, we have determined that CXCL16 mRNA
constitutes a putative target of eca-mir-128 and that consequently, this miRNA may
play a critical role in the regulation of the CXCL16/CXCR6 chemokine axis in the
reproductive tract of the stallion. This finding is novel and warrants further investiga-
tion to identify the specific mechanism whereby it modulates the CXCL16/CXCR6 axis
in the reproductive tract of the EAV long-term carrier stallion.

RESULTS
Isolation and size characterization of equine seminal exosomes. The equine

exosomes present in two equine seminal plasma samples were precipitated overnight
and analyzed by transmission electron microscopy (TEM). TEM analysis demonstrated
the presence of membrane-bound particles that were either isolated or in clusters. Size
distribution analysis determined a mean vesicle size of 93.43 nm, with 80.8% of the
precipitated exosomes having a size ranging from 21 to 120 nm, while �20% com-
prised larger vesicles (�120 nm) (Fig. 1A and B). The vast majority of the vesicles (67%)
had a size ranging from 41 to 100 nm.

Characterization of equine seminal exosomes by Western immunoblotting and
immunogold labeling. Exosome-specific markers were evaluated in SEs derived from
naive (n � 10), short-term (n � 5), and long-term persistently infected (n � 5) stallions
by Western immunoblotting with a panel of specific antibodies (Table 1). Specifically,
SEs were characterized by the expression of the tetraspanin protein CD9 and heat shock
protein 70 (HSP70) (Fig. 1C) and lack of expression of calreticulin, a calcium-binding
protein resident of the endoplasmic reticulum (ER) (Fig. 1C). The expression of CD63
was variable (detected in only 2/20 SE fractions analyzed), while SEs did not express
CD81, vimentin, or major histocompatibility complex class II (MHC-II) (Table 2). Further-
more, immunogold staining demonstrated that expression of CD9 is associated with
the exosomal membrane (Fig. 1B [inset]). Taken together, these data unequivocally
demonstrated successful isolation of SEs from equine seminal plasma and no specific
differences in the SE marker expression profiles among naive, short-term, and long-
term persistently infected stallions.

Seminal exosomes contain extracellular RNA cargo with a higher abundance of
small RNA species. Total RNA was isolated from SEs (derived from semen samples
described in Materials and Methods and which were subsequently used for quantitative
real-time reverse transcription-PCR [RT-qPCR] analysis as described below [naive stal-
lions, n � 15; short-term carrier stallions, n � 7; and long-term carrier stallions, n � 18]),
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and the RNA content was estimated in each individual sample. The average RNA
content was 272.5 ng, with a range between 79.8 to 714 ng. Analysis of RNA size
distribution using an Agilent Bioanalyzer along with an Agilent RNA 6000 Pico kit
(Agilent Technologies, Santa Clara, CA) demonstrated that small RNAs were enriched in
this sample type (Fig. 2A). Subsequently, we performed a nuclease protection assay to
determine if SE-associated RNA is carried within intact exosomes. The nuclease pro-
tection assay demonstrated that 62% of the SE-associated RNA was protected from
combined treatment with protease (pronase) and RNase digestion. Exosome lysis by
detergent treatment, followed by protease and RNase digestions, resulted in an 80%
reduction of total RNA content (Fig. 2B and C).

FIG 1 Isolation and characterization of equine seminal exosomes. (A) SEs had a mean diameter of 93.43 nm, with the vast majority having a size range between
21 and 120 nm. (B) TEM imaging of precipitated SEs. Filamentous structures in SE preparations were also present, as previously observed in the case of equine
semen. Bar � 100 �m. (Inset) Note the localization of CD9 on the exosome membrane (arrows; immunogold labeling). (C) Characterization of isolated SEs by
Western immunoblotting analysis. High expression of CD9 and HSP70 was observed in SEs derived from naive and short-term and long-term EAV carrier stallions
(lanes 2, 3, and 4, respectively). In addition, SEs lacked the endoplasmic reticulum resident protein calreticulin. Lane 1 corresponds to a positive control
(recombinant CD9 protein and HeLa cell and equine endothelial cell lysates for CD9, HSP70, and calreticulin, respectively).
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In order to determine specific SE-associated RNA species and potential differences
in their expression levels during EAV persistence, we performed miRNA sequencing on
SEs derived from three stallions (L136, L139, and L140) at �30 (prechallenge) and 86
days postinfection (dpi) and from two EAV long-term persistently infected stallions
(L136 and L140) at 726 dpi. The average numbers of total reads, mapped reads, mapped
fractions, and reads per RNA biotype per sample type are shown in Tables 3 and 4. The
large fraction of reads that did not map are largely attributed to rRNA fragments
appearing as repeated sequences since the mapping algorithms (miRDeep2 [Max
Delbrück Center, Berlin-Buch, Germany]) were set not to retain reads that mapped �5
times to the reference genome for analysis (frequently encountered with rRNA frag-
ments). In the case of rRNAs and tRNAs, these represented a small fraction of the total
mapped reads and constituted �3.2% of the total mapped reads in all samples
analyzed. MicroRNAs were enriched in SE fractions, with an average number of reads of
2,360,732 � 1,076,039 (mean � standard deviation). A group of 23 miRNAs accounted
for approximately 90% of the miRNA reads, of which 15 were shared in common
between SE fractions collected at prechallenge, 86 dpi, and 726 dpi (Fig. 3; see also
Table S1 in the supplemental material). The top five highly enriched miRNAs in SE
fractions at those three time points included eca-let-7a-2, eca-let-7a, eca-mir-21, eca-
let-7c, and eca-mir-10b. The mean percentages of the total miRNA reads are shown in
Table 5. Together, these top five miRNAs accounted for a mean of 63.27% of the total
miRNA reads.

Downregulation of SE-derived eca-mir-128 is associated with EAV long-term
persistence in the stallion reproductive tract. MicroRNA sequencing data analysis
identified a subset of 11 miRNAs that were differentially expressed in SEs during the
course of EAV infection (Fig. 4A and Table 6). Six out of 11 miRNAs (eca-let-7e,
eca-mir-34b, eca-mir-128-1, eca-mir-128-2 [the last two are referred to as eca-mir-128
since they present 100% identity in their mature sequence], eca-mir-132, and eca-mir-
191a) showed an overall decrease in their expression levels during the course of EAV
infection, while five (eca-mir-10a, eca-mir-28, eca-mir-146a, eca-mir-197, and eca-mir-
885) conversely presented an increase in their expression levels (Fig. 4A and Table 6).
Relative expression analysis by RT-qPCR of a larger number of samples comprising
naive (n � 15), short-term carrier (n � 7), and long-term carrier (n � 18) stallions

TABLE 1 Monoclonal and polyclonal antibodies specific to seminal exosomes and other
exosomal markers used in this studya

Specificity Species Clone Source

CD9 Mouse MM2/57 AbD Serotec
CD63 Rabbit NA System Biosciences
CD81 Rabbit NA Santa Cruz Biotechnology
HSP70 Rabbit NA System Biosciences
Calreticulin Rabbit NA Stressgen Biotechnologies Corp.
MHC-II Mouse CR3/43 Dako
Vimentin Mouse V9 Vector Laboratories
aNA, not applicable (polyclonal antibody); HSP70, heat shock protein 70; MHC-II, major histocompatibility
complex class II.

TABLE 2 Expression of exosomal markers in SE fractions derived from naive (n � 10), EAV
short-term carrier (n � 5), and long-term carrier (n � 5) stallions

Exosomal marker

No. of positive SE samples/no. of SE samples tested

Naive Short term Long term

CD9 10/10 5/5 5/5
CD63 0/10 0/5 2/5
CD81 0/10 0/5 0/5
HSP70 10/10 5/5 5/5
Calreticulin 0/10 0/5 0/5
MHC-II 0/10 0/5 0/5
Vimentin 0/10 0/5 0/5
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confirmed a significant downregulation of eca-mir-128 (P value � 0.0011 and P value �

0.0106 for the pairwise comparisons between long-term carrier and naive or short-term
carrier stallions, respectively) in the last group (Fig. 4B), while no statistically significant
differences were observed between short-term carrier and naive stallions (P value �

0.9418). Subsequently, we analyzed the expression dynamics of eca-mir-128 in SEs
sequentially collected during the course of EAV infection in two experimentally infected
stallions (L136 and L140). While no significant differences were observed in the expres-

FIG 2 Equine SEs are enriched in small RNAs. (A) Bioanalyzer profile of seminal exosome fractions demonstrate enrichment of small RNAs (�200 bp; also see
arrow on virtual electrophoresis in panel A). (B) A nuclease protection assay demonstrated that 62% of the RNA was protected from the combined treatment
with protease, and RNase digestion and that exosome lysis by detergent treatment, followed by protease and RNase digestions, resulted in an 80% reduction
of total RNA content. (C) Depiction of the virtual electrophoresis following sequential treatment of seminal exosomes during the nuclease protection assay.

TABLE 3 Mean total reads, mapped reads, and mapped fractions in SEs

SE fraction Mean total reads Mean mapped reads Mean mapped fraction (%)

Prechallenge 13,207,169 � 1,780,999 5,993,444 � 1,140,261 45.15 � 3.05
86 dpi 13,431,616 � 9,565,250 4,948,273 � 3,345,532 38.46 � 4.5
726 dpi 14,791,891 � 3,331,733 5,924,778 � 1,664,545 39.80 � 2.29
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sion of eca-mir-128 between prechallenge and 380 dpi, a significant downregulation of
this miRNA was observed after 380 dpi (approximately 1 year postinfection; P values �

0.05). Furthermore, eca-mir-128 reached its lowest expression value by 726 dpi (Fig. 4C).
No statistically significant differences were found for the other differentially expressed

TABLE 4 Mean total reads per RNA biotype identified in SE fractions

SE fraction Mean miRNA reads Mean tRNA reads Mean rRNA reads Mean mRNA reads

Prechallenge 2,744,802 � 1,273,296 13,156 � 8,639 26,181 � 18,681 3,424,562 � 1,405,618
86 dpi 2,133,247 � 1,298,735 13,658 � 9,556 10,050 � 13,679 2,997,966 � 2,043,063
726 dpi 2,125,853 � 883,695 52,253 � 12,358 127,762 � 47,230 3,239,549 � 1,077,548

FIG 3 MicroRNAs that account for �90% of the total miRNA reads in SEs derived from naive (prechallenge) stallions and following equine arteritis virus
infection. (A) Prechallenge; (B) 86 days postinfection; (C) 726 days postinfection. Mean percentages of expression � standard errors of the means along
with the cumulative expression are represented. (D) A total of 15/23 miRNAs were commonly shared across time points.
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miRNAs identified by miRNA sequencing between naive, short-term carrier, and long-
term carrier stallions.

CXCL16 constitutes a putative target of eca-mir-128. Computational target pre-
diction yielded a total of 805 putative target genes for eca-mir-128 (Table S2 in the
supplemental material). Functional annotation analysis of target genes demonstrated
their involvement in several biological processes, with a predominance of genes
regulating metabolic and cellular processes but also involved in developmental,
immune system, and reproduction processes, locomotion, adhesion, localization,
and response to stimuli (Fig. 5A). Specifically, target genes were involved in regulation
of gene expression, cell differentiation, development, and morphogenesis, protein
phosphorylation and diverse signaling pathways, including the mitogen-activated
protein kinase (MAPK) cascade, the phosphoinositide-3 kinase/protein kinase B
(PI3K-Akt) signaling pathway, transforming growth factor (TGF) signaling, platelet-
derived growth factor (PDGF) and epidermal growth factor (EGF) signaling, Hippo
signaling, serine/threonine kinase signaling, ubiquitination, cell proliferation and apop-
tosis, DNA damage repair systems, and cell migration/chemotaxis (Table S3 in the
supplemental material). Based on their molecular function and protein class, target
genes were mainly involved in RNA/DNA/protein/metal binding, catalytic activity,
transporter activity, receptor activity, structural activity, and signal transduction (Fig. 5B
and C; see also Table S4 in the supplemental material). To analyze the functional
relationships between eca-mir-128 target genes, we used PANTHER and DAVID bioin-
formatics tools. Pathway analysis performed by PANTHER retrieved 20 top pathways (P
values � 0.05) potentially under the regulation of mir-128, and these are depicted in
Table 7 and Fig. 6A. Among these, six were associated with immune pathways (Table
7). Pathway analysis demonstrated that mir-128 target genes may also be involved in
inflammation mediated by chemokine/cytokine signaling, B and T cell activation,
interleukin (IL) and TGF-� signaling, and apoptosis.

Interestingly, prediction tools identified CXCL16 as a putative target of mir-128.
Consequently, we predictively evaluated the miRNA-mRNA interaction between the
mir-128 seed sequence and the 3= untranslated region (UTR) of its putative mRNA
target, CXCL16. For this purpose, we analyzed the interaction between both the human
and equine CXCL16 3= UTR and mir-128, respectively. Analysis of the human CXCL16 3=
UTR by TargetScan predicted that the pairing region is located within nucleotides (nt)
664 and 670 of the 3= UTR (ACUGUGA) and that the hsa-mir-128-3p seed sequence is
located between nt 1 and 7 (Fig. 6B). Prediction of the pairing region is consistent with
a 7-mer-A1 site type, as it is a perfect match for the seed sequence of the mature miRNA
and it is followed by an adenine. The miRNA-mRNA interaction between the human
CXCL16 3= UTR sequence and mir-128 was determined to have a low free energy
(ΔG � �19.2 kcal/mol). In the case of the equine CXCL16 3= UTR, miRNA-mRNA
interaction analysis demonstrated that the mir-128 (nt 1 to 7) predicted pairing region
comprises nt 37 to 43 of the 3= UTR (AUUGUGA) and that interaction occurs with a low
free energy as well, estimated at �19.3 kcal/mol. Additionally, a guanine-uracil wobble
occurs between nt 6 of mir-128 and nt 38 of the equine CXCL16 3= UTR (Fig. 6B).

CXCL16 is upregulated in the ampullae of long-term EAV persistently infected
stallions. In order to establish an association between eca-mir-128 and its putative
target, CXCL16, we evaluated the expression of the latter in the main site of EAV

TABLE 5 Expression of the top 5 highly enriched miRNAs in SEsa

miRNA
Mean
expression (%)

eca-let-7a-2 16.54 � 3.88
eca-let-7a 16.51 � 3.87
eca-mir-21 11.58 � 0.17
eca-let-7c 10.96 � 0.32
eca-mir-10b 7.67 � 3.25
aThe mean percentages of total miRNA reads � standard deviation are shown.

Carossino et al. Journal of Virology

May 2018 Volume 92 Issue 9 e00015-18 jvi.asm.org 8

http://jvi.asm.org


persistence (i.e., ampullae) in the reproductive tract of the stallion (Fig. 7). CXCL16-
specific TaqMan qPCR demonstrated a significant upregulation of CXCL16 in the
ampullae of both short-term (n � 6) and long-term persistently infected (n � 3)
stallions compared to the naive group (n � 4; P values of 0.0279 and 0.0020, respec-
tively; Fig. 7E). RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC)
were used to localize the expression of CXCL16 in the ampullae. CXCL16 expression was

FIG 4 Differential expression analysis of miRNAs in seminal exosomes collected during the course of EAV infection (prechallenge and 86 and 726 days
postinfection [dpi]). (A) Heat map depicting differentially expressed miRNAs identified in seminal exosomes by miRNA sequencing. The heat map was
constructed using normalized read counts. A highly significant downregulation of eca-mir-128 can be observed in seminal exosomes derived from long-term
persistently infected stallions (n � 2; 726 dpi; P value � 0.01) compared to values at prechallenge and 86 dpi. (B) Relative expression analysis of eca-mir-128 in
seminal exosomes from naive (n � 15), short-term carrier (n � 7), and long-term carrier (n � 18) stallions revealed a significant downregulation of this miRNA in the
last group (P value � 0.0011 and P value � 0.0106). Blue dots represent individual samples. (C) Kinetics of eca-mir-128 during EAV infection in long-term carrier stallions
(n � 2). A significant downregulation of this miRNA was observed after 380 days postinfection.
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significantly abundant in the mucosal epithelial cells of the ampullae, primarily the
luminal mucosal epithelium, as well as mucosal and submucosal lymphocyte and
plasma cell infiltrates in long-term persistently infected stallions compared to short-
term carrier and naive stallions (P values � 0.05 [Fig. 7A to C and 7E]), in which a lower
expression of CXCL16 was observed in scattered epithelial cells (Fig. 7B and C).
Furthermore, a significant negative correlation was observed between CXCL16 and SE
eca-mir-128 expression levels (� � �0.73; P value � 0.0065 [Fig. 7E]).

DISCUSSION

The pathogenesis of persistent EAV infection in the male reproductive tract has
been the subject of extensive investigation in recent years in our laboratory (26–28, 30,
31). We have demonstrated that long-term persistent infection in the stallion is
associated with host genetic factors, specifically with the presence of a specific allele
encoding the chemokine CXCL16 (CXCL16S) (30, 31). Furthermore, EAV has the ability to
persist despite the induction of a strong systemic immune response and local inflam-
matory and mucosal antibody responses at the site of persistence (26, 27). Clearly, EAV
employs complex strategies to evade host immunity, and the immunopathogenesis of
viral persistence remains to be further elucidated (Fig. 8).

Since seminal plasma components have proven to have immunomodulatory effects
that are necessary for fertility and may also influence the establishment of sexually
transmitted diseases (34, 42, 48, 65–68), their role in enabling EAV persistence in the
stallion warrants further investigation. In this study, we have specifically characterized
the role of SE-associated miRNAs during EAV persistent infection since specific small
RNA cargos within these extracellular vesicles can play a role in modulating local
immunity, as recently suggested (34). Thus, we hypothesized that specific equine
SE-associated miRNAs may modulate the local inflammatory response and, conse-
quently, contribute to the establishment and maintenance of persistent EAV infection
in the reproductive tract of the stallion. In this study, we sought to characterize the
mature miRNA profile associated with SEs and to identify the specific miRNAs involved
in the maintenance of EAV-persistent infection in the ampullae of persistently infected
stallions.

Purified SEs were within the expected size range and were characterized by high
expression of CD9, a ubiquitous exosome marker particularly enriched in prostasomes
(34, 41, 64). In contrast to human SEs, we observed inconsistent expression of CD63 in
equine SE fractions. Since SEs are derived from a number of tissues associated with the
male reproductive tract, determining their specific origin constitutes a significant
challenge. However, the lack of vimentin expression in SEs may suggest that these

TABLE 6 Differentially expressed miRNAs identified by miRNA sequencing analysis of SE
fractions collected at prechallenge, 86 dpi, and 726 dpia

miRNA P value

eca-let-7e 0.033075 (86 dpi vs 726 dpi)
eca-mir-10a 0.03195 (86 dpi vs 726 dpi)
eca-mir-28 0.0312 (86 dpi vs 726 dpi)
eca-mir-34b 0.0208 (prechallenge vs 86 dpi)

0.006 (prechallenge vs 726 dpi)
eca-mir-128-1 0.0045 (prechallenge vs 726 dpi)

0.0033 (86 dpi vs 726 dpi)
eca-mir-128-2 0.0051 (prechallenge vs 726 dpi)

0.00345 (86 dpi vs 726 dpi)
eca-mir-132 0.02865 (prechallenge vs 86 dpi)
eca-mir-146a 0.0267 (86 dpi vs 726 dpi)
eca-mir-191 0.01575 (86 dpi vs 726 dpi)
eca-mir-197 0.0402 (86 dpi vs 726 dpi)
eca-mir-885 0.02145 (86 dpi vs 726 dpi)
aP values are represented along with the time points that show significant differences, in parentheses.
miRNAs that showed a significant downregulation associated with long-term EAV persistence are shown in
bold. P values were subjected to a Benjamini-Hochberg correction and a false discovery rate (FDR) set at
0.05.
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FIG 5 Functional annotation analysis of mir-128 target genes using PANTHER. A total of 805 putative target genes were classified according
to their biological process (A), molecular function (B), and protein class (C).
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extracellular vesicles are specifically shed by the lining epithelium of the reproductive
tract rather than by cells of mesenchymal origin. Furthermore, Bioanalyzer profiling
along with resistance to nuclease activity demonstrated that SEs are enriched in small
RNAs and that their RNA repertoire mainly included mature miRNAs as well as other
noncoding RNAs. It is noteworthy that when mature miRNA species predominant in
equine SEs were analyzed by miRNA sequencing, we found that a small subset (n � 23)
accounted for the vast majority of the miRNAs that were expressed, of which 15 were
common to all the analyzed samples independently of infection status or interval after
EAV infection. The top five miRNAs expressed in SEs included members of the let-7
family, mir-21 and mir10b, which have been demonstrated to play an active role in the
modulation of several immune pathways, including modulation of T cell activation, NK
cell function, IL-10 production by CD4� T lymphocytes, CD8� effector T lymphocyte
differentiation, and NF-�B pathway, among others (69–74). From a confirmative view-
point, these findings are similar to those reported for human SEs (34), suggesting that
these miRNAs can be involved in similar modulatory processes in both species. Fur-
thermore, the let-7 family of miRNAs as well as mir-21 are highly abundant in equine
serum and plasma and also expressed in diverse tissue types (59, 75–80).

Validation of the miRNA sequencing data by RT-qPCR confirmed specific down-
regulation of eca-mir-128 in long-term persistently infected stallions, an intronic
miRNA encoded by two distinct genes, eca-mir-128-1 and eca-mir-128-2, located on
Equus caballus chromosome 16 (chr16:49087163– 49087246 [minus strand], corre-
sponding to intron 16 or 18 of the cyclic AMP-regulated phosphoprotein 21-kDa gene
[ARPP21], depending on the splice variant) and chromosome 18 (chr18:19492350 –
19492419 [plus strand], corresponding to intron 22 of the R3H domain containing 1
gene [R3HDM1]), respectively. Similar to their human counterpart (hsa-mir-128), the
mature sequences of both eca-mir-128-1 and eca-mir-128-2 are identical and conserved
among species (81). While hsa-mir-128 has been extensively implicated in tumorigen-
esis (81), its role during viral infections and inflammatory processes has been less
described (82–85). Recently, downregulation of eca-mir-128 has been implicated in

TABLE 7 Top 20 significant pathways associated with eca-mir-128 target genes retrieved
by PANTHER following the statistical overrepresentation test

PANTHER pathway
No. of
targets

Fold
enrichment P value

PDGF signaling pathway (P00047) 15 2.63 8.26E�04
Gonadotropin-releasing hormone receptor pathway

(P06664)
19 2.1 2.41E�03

CCKR signaling map (P06959) 15 2.26 3.40E�03
PI3 kinase pathway (P00048) 7 3.38 5.36E�03
Interferon gamma signaling pathway (P00035) 5 4.35 6.47E�03
Endothelin signaling pathway (P00019) 9 2.73 6.74E�03
Angiogenesis (P00005) 14 2.1 8.47E�03
Insulin/IGF pathway–mitogen-activated protein kinase

kinase/MAP kinase cascade (P00032)
5 3.95 9.50E�03

Huntington disease (P00029) 12 2.2 9.94E�03
Ubiquitin proteasome pathway (P00060) 7 2.95 1.09E�02
Parkinson disease (P00049) 9 2.35 1.65E�02
Histamine H2 receptor-mediated signaling pathway

(P04386)
4 4.01 1.87E�02

Insulin/IGF pathway-protein kinase B signaling
cascade (P00033)

5 3.26 2.01E�02

Heterotrimeric G-protein signaling pathway–Gq alpha-
and Go alpha-mediated pathway (P00027)

10 2.09 2.45E�02

p53 pathway (P00059) 8 2.29 2.60E�02
Histamine H1 receptor-mediated signaling pathway

(P04385)
5 2.84 3.36E�02

Integrin signaling pathway (P00034) 13 1.75 3.96E�02
FAS signaling pathway (P00020) 4 3.07 4.33E�02
Enkephalin release (P05913) 4 2.98 4.72E�02
p53 pathway feedback loops 2 (P04398) 5 2.56 4.85E�02
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equine asthma and hypothetically related to the stimulation of allergic immune re-
sponses (82). In this study, we specifically determined that downregulation of SE
eca-mir-128 is associated with long-term EAV persistence in the reproductive tract and
that this specific miRNA is a putative regulator of CXCL16 as determined by target
prediction analysis. CXCL16, which belongs to the CXC chemokine family, acts as one
of the cellular receptors of EAV and has been strongly implicated in EAV persistence in
the reproductive tract (21, 30, 31, 86). The 3= UTR and miRNA-mRNA interaction analysis
predicted that the binding between the mir-128 seed sequence and its pairing region
in the 3= UTR of CXCL16 mRNA occurs with low free energy, which indicates that the
interaction is highly feasible. While the 3= UTR binding site for human CXCL16 is a
perfect match with the mir-128 seed sequence, by comparison, the equine counterpart
contains a guanine-uracil wobble. Nonetheless, wobble base pairing between the 3=
UTR binding site and the miRNA seed sequence has been previously reported and does
not necessarily impact miRNA function (87–90). Moreover, eca-mir-128 expression
kinetics during the course of infection in EAV long-term persistently infected stallions
demonstrated that this miRNA is downregulated after approximately 1 year postinfec-
tion (380 dpi). To further understand the relationship between eca-mir-128 downregu-
lation and its influence on CXCL16 expression in the reproductive tract, we evaluated
the expression of CXCL16 in the primary EAV tissue reservoir (ampullae) of naive,
short-term carrier, and long-term carrier stallions by RT-qPCR, RNAscope ISH, and IHC.

FIG 6 Pathway analysis of mir-128 target genes (n � 805) and comparative analysis of CXCL16 3= UTR as a putative target of mir-128. (A) Pathway analysis by
PANTHER retrieved a total of 20 significant pathways, which included pathways in common with the CXCL16/CXCR6 axis, such as PI3K-Akt, G-protein coupled
receptor signaling, and some immune pathways. (B) Putative interaction between mir-128 and human and equine CXCL16 3= UTR. The seed region of mir-128
and binding sites at the 3= UTRs are in bold. The binding site is predicted as a 7-mer-A1 type, and in the horse sequence, a guanine-uracil wobble (marked
in red) is predicted at nt 38 of the 3= UTR. Both interactions occur with a low free energy (ΔG of �19.2 and �19.3 kcal/mol for the human and equine
counterparts, respectively).
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FIG 7 CXCL16 expression in the ampullae of EAV long-term carrier (n � 3), short-term carrier (n � 6), and naive (n � 4) stallions. (A to C) CXCL16 is significantly
upregulated in the ampullae of EAV long-term persistently infected stallions (A) compared to short-term carrier (B) and naive (C) stallions as determined by ISH
and IHC (insets). CXCL16 is predominantly expressed in the mucosal epithelium and lymphocytic infiltrates, especially in the luminal area. CXCL16-specific mRNA
RNAscope ISH was performed with fast red; images are at a magnification of �200. Bar � 250 �m. (Insets) An equine CXCL16-specific rabbit anti-peptide
antibody was used for IHC. 3,3=-Diaminobenzidine tetrahydrochloride (DAB) stain was used; the image is at a magnification of �400. (D) High expression of
CXCL16 in equine endothelial cell pellets as determined by CXCL16-specific RNAscope ISH and IHC (inset, DAB, �400). Fast red was used; the image is at a
magnification of �200. Bar � 250 �m. (E) Higher expression of CXCL16 in the ampullae of long-term carrier stallions (n � 3) was quantitatively determined
by (top to bottom) TaqMan RT-qPCR, RNAscope ISH, and IHC, and it was demonstrated to be negatively correlated with SE eca-mir-128 expression. Blue dots
represent values for individual stallions, while mean 2�ΔCT values � standard errors of the means and median scores are represented in red. Letters indicate
statistically significant differences between groups (P value � 0.05). For correlation analysis (E, bottom) between CXCL16 and eca-mir-128 expression, mean
2�ΔCT values � standard errors of the means are depicted.
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Differences in CXCL16 expression levels between the three groups along with their
negative correlation with eca-mir-128 expression levels demonstrated that long-term
viral persistence induces the upregulation of this chemokine in the ampullae, providing
further evidence of the key role that CXCL16 plays in the pathogenesis of EAV
long-term persistent infection and indirectly suggesting that eca-mir-128 may regulate
the expression of this gene in the reproductive tract and allow the establishment of
viral persistence (Fig. 8). In this respect, it is possible that the delivery of specific miRNA
cargos to epithelial and/or inflammatory cells in the reproductive tract mediated by SEs
modulates specific target genes in specific cell populations as shown for other exo-
somes and, consequently, influences the local immune response (34, 91). It is likely
therefore that eca-mir-128 dynamics in SEs influence the outcome of EAV infection in
the reproductive tract. However, further in vitro experiments are required to confirm
that equine CXCL16 is a specific target for eca-mir-128. Additionally, eca-mir-128 is
potentially involved in the regulation of several other pathways, some of which are
associated with immune mechanisms (82, 83); thus, its role in local immune evasion
mechanisms that allow EAV to persist deserves further investigation. The differential
expression of the remaining set of miRNAs (n � 9) could not be confirmed, and the
differences identified by miRNA sequencing could have been overestimated due to the
very limited number of samples evaluated (two to three per time point) as well as
the inclusion of diverse sequencing biases that can lead to enhancement or reduction
of miRNA expression levels as previously reported (92).

Another significant finding from this study is that CXCL16 expression was not limited
to inflammatory cells infiltrating the ampullae of long-term carrier stallions but was also
abundant in the mucosal epithelium. Even though the mucosal epithelium expresses
high levels of CXCL16, recent studies demonstrated that virus is not harbored in the

FIG 8 Schematic representation of the viral reservoir, inflammatory process, and role of the chemokine CXCL16 and eca-mir-128 during EAV
long-term persistent infection in the reproductive tract of the stallion. EAV persistence is associated with CD8� T lymphocytes and CD21� B
lymphocytes infiltrating the ampullae, fibrocytes, tissue macrophages, and dendritic cells. Long-term persistence is associated with a strong
inflammatory response primarily mediated by CD8� T lymphocytes and a smaller population of CD4� T regulatory lymphocytes. Downregulation
of SE eca-mir-128 is associated with enhanced expression of the chemokine CXCL16 in the mucosal epithelium and lymphocytes and thus
modulates the CXCL16/CXCR6 chemokine axis. Expression of the CXCL16 receptor, CXCR6, is also upregulated in lymphocytes (Carossino and
Balasuriya, unpublished), likely mediates specific homing of infected lymphocytes into the reproductive tract of the stallion and migration of these
cells across the epithelial lining, and drives an immunologically unique microenvironment that favors viral persistence. CD8� Tc, CD8� T
lymphocytes; CD4� Treg, CD4� T regulatory lymphocytes; CD21� Bc, CD21� B lymphocytes.
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epithelial cells of the ampullae or other accessory sex glands (26). This observation is
supportive of the fact that ongoing studies in our laboratory suggest that EAV requires
additional cellular entry factors, among which vimentin seems to play an important role
(S. Sarkar and U. B. R. Balasuriya, unpublished data). Thus, the lack of vimentin
expression in the mucosal epithelium may be a determinant for the lack of suscepti-
bility of CXCL16� epithelial cells in the ampullae to EAV infection (26).

In conclusion, the study presented here provides insight into the miRNA species
associated with SEs in the stallion and, most importantly, identified the specific
downregulation of SE eca-mir-128 during long-term EAV persistent infection in the
reproductive tract, a miRNA that predictively targets CXCL16. This study has also
unequivocally demonstrated that upregulation of CXCL16 in the reproductive tract is
associated with the establishment of long-term viral persistence, providing a strong link
between the genetic studies undertaken and the pathogenesis of persistent EAV
infection. While the evidence provided by this study indirectly suggests that SE
eca-mir-128 modulates the expression of CXCL16 in the reproductive tract, further
studies to confirm these observations are warranted (Fig. 8). In addition, other ongoing
studies in our laboratory strongly suggest that EAV exploits the CXCL16/CXCR6 chemo-
kine axis in order to modulate local inflammatory and immune responses at the site of
persistent infection and that this chemokine axis is probably involved in specific
homing of infected lymphocytes into the reproductive tract (M. Carossino and U. B. R.
Balasuriya, unpublished data). Interestingly, it is yet to be uncovered how other
eca-mir-128 regulated pathways contribute to modulating the CXCL16/CXCR6 axis
favoring long-term EAV persistent infection in the stallion reproductive tract. In sum-
mary, this study advances our current understanding of EAV persistent infection and
demonstrates that diverse and complex host factors are involved in the modulation of
viral persistence in the stallion reproductive tract.

MATERIALS AND METHODS
Semen samples. Collection of equine semen samples from stallions that were experimentally

infected with EAV (n � 7) has been described elsewhere (19, 26, 27). In addition, archived semen samples
from long-term EAV carrier stallions that were naturally infected with EAV were included in the study.
These semen samples had been submitted to the OIE Reference Laboratory at the Maxwell H. Gluck
Equine Research Center for monitoring EAV carrier state following natural EAV infection in the field. A
total of 53 semen samples derived from naive stallions (n � 16), short-term carrier stallions (n � 7), and
long-term carrier stallions (n � 30, which include sequential semen samples from two long-term
persistently infected stallions [726 dpi] to evaluate eca-mir-128 dynamics) were included in the study. For
short-term carrier stallions (duration of viral shedding � 1 year), semen samples collected 1 year
following viral clearance were used. In the case of long-term carrier stallions (duration of viral shedding �

1 year), semen samples collected 2 years postinfection were used. All the semen samples were stored in
1-ml aliquots at �80 °C.

Animal care and ethics. This study was performed in strict accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of the National Research Council (93). The
Institutional Animal Care and Use Committee (IACUC) at the University of Kentucky, Lexington, KY,
approved this protocol (number 2011-0888). Stallions were humanely euthanized by pentobarbital
overdose following the American Veterinary Medical Association (AVMA) guidelines for the euthanasia of
animals, and all efforts were made to minimize suffering.

Tissue samples. Tissue samples (ampullae) derived from a group of naive stallions (n � 4), EAV
experimentally infected stallions (n � 8), and an EAV naturally infected stallion (n � 1) were used in this
study (26). These were aseptically collected during postmortem examination and archived at �80 °C or
formalin fixed and paraffin embedded (FFPE) as previously described (26).

Isolation of seminal exosomes. Before SE isolation, semen samples were thawed on ice and
centrifuged at 3,000 � g for 15 min at 4°C to remove cellular debris. The seminal plasma was
subsequently filtered through a 0.8-�m filter (EMD Millipore, Billerica, MA). Seminal exosome isolation
was carried out using ExoQuick exosome precipitation solution (System Biosciences, Palo Alto, CA).
Briefly, 126 �l (63 �l per 250 �l of biofluid as recommended by the manufacturer) of the ExoQuick
exosome precipitation solution was added to 500 �l of filtered seminal plasma, mixed, and incubated
overnight (minimum of 12 h) at 4°C to allow SE precipitation. Finally, the mixture was centrifuged at
1,500 � g for 30 min at 4°C, the supernatant was removed, and the exosome pellet was either used for
downstream applications or stored at �80°C.

Antibodies. A panel of monoclonal and polyclonal antibodies specific for various exosome markers
was used for characterization of SEs by TEM/immunogold labeling and Western immunoblotting analysis
(Table 1). An equine CXCL16-specific rabbit anti-peptide antibody (86) was used for immunohistochem-
ical (IHC) staining. Secondary antibodies conjugated to horseradish peroxidase (HRP; goat anti-mouse
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IgG [H�L]-HRP and goat anti-rabbit IgG [H�L]-HRP [SouthernBiotech, Birmingham, AL]) were used for
Western immunoblotting. A secondary antibody conjugated to 12-nm colloidal gold (goat anti-mouse
IgG [H�L] [Jackson ImmunoResearch Laboratories, Inc., West Grove, PA]) was used for immunogold
labeling. The Bond Polymer Refine Detection kit (Leica Biosystems, Buffalo Grove, IL) was used for IHC.

Transmission electron microscopy and size determination of seminal exosomes. SEs isolated
from prechallenged semen samples collected from two naive stallions were used for TEM and immu-
nogold labeling (see below). Briefly, purified SE pellets obtained using the ExoQuick exosome precipi-
tation solution were resuspended in 1/10 of the original volume (50 �l) of phosphate-buffered saline
(PBS; pH 7.4; Gibco, Carlsbad, CA) and fixed at a 1:1 ratio in 4% paraformaldehyde for 30 min at room
temperature. Subsequently, a Formvar-carbon coated 400-mesh copper grid was floated on a 40-�l drop
of the SE fractions for 15 min at room temperature to allow SE adsorption. Excess sample was drained
off, and the grids were washed on a drop of Tris-buffered saline (TBS; pH 7.4) for 10 min at room
temperature, followed by rinsing once in deionized water. Grids were finally contrasted on a drop of 3%
aqueous phosphotungstic acid (pH 7.0) for 2 min, excess stain was removed using filter paper, and grids
were observed under a JEOL JEM-1011 transmission electron microscope (University of Georgia Electron
Microscopy Services, College of Veterinary Medicine, Athens, GA). Digital images were acquired with an
XR80M wide-angle multidiscipline mid-mount charge-coupled-device (CCD) camera (Advanced Micros-
copy Techniques Corp., Woburn, MA). SE size distribution was assessed by taking measurements using
the TEM imaging software.

Immunogold labeling. Purified SE pellets obtained using the ExoQuick exosome precipitation
solution were resuspended and fixed as described above. Subsequently, a Formvar-carbon coated
400-mesh nickel grid was floated on a 40-�l drop of the SE fractions for 15 min at room temperature to
allow SE adsorption. Excess sample was drained off, and the grids were washed on a drop of TBS (pH 7.4)
for 10 min at room temperature and subsequently blocked in TBS containing 2% bovine serum albumin
(BSA) for 30 min at room temperature. The grids were incubated with mouse anti-CD9 (1:50 dilution;
Table 1) for 1 h at room temperature using a spotting dish in a wet chamber. Excess primary antibody
was extensively washed using blocking buffer, followed by secondary antibody incubation (goat anti-
mouse IgG conjugated with 12-nm colloidal gold; 1:20 dilution) for 30 min at room temperature using
a spotting dish in a wet chamber. Grids were extensively washed in blocking buffer and finally rinsed in
deionized water. Grids were contrasted with 3% aqueous phosphotungstic acid (pH 7.0) and visualized
as indicated above.

Western immunoblotting. Seminal plasma samples from naive (n � 10), short-term carrier (n � 5),
and long-term carrier (n � 5) stallions were evaluated by Western immunoblotting. Purified SE pellets
obtained using the ExoQuick exosome precipitation solution were resuspended in 100 �l of 1�
radioimmunoprecipitation assay (RIPA) buffer (Santa Cruz Biotechnology, Dallas, TX) containing Halt
protease inhibitor cocktail (Thermo Fisher Scientific, Waltham, MA), vortexed for 15 s, and incubated for
5 min at room temperature for complete lysis. The protein concentration of the lysates was determined
using a spectrophotometer (optical density [OD] at 280 nm; NanoDrop 2000 spectrophotometer; Thermo
Fisher Scientific). A total of 30 �g of total protein was resuspended in 2� Laemmli sample buffer
(Bio-Rad, Hercules, CA) containing 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO; except for CD9
detection), boiled at 95°C for 5 min, and subjected to denaturing polyacrylamide gel electrophoresis
(SDS-PAGE) on a 12% resolving and 4% stacking gel. Subsequently, SE proteins were wet transferred onto
a polyvinylidene difluoride (PVDF) membrane (Bio-Rad) for 1 h at 4°C. Transferred PVDF membranes were
briefly washed in TBS (pH 7.6) containing 0.05% Tween 20 (TBS-T; Bio-Rad) and blocked with 5% skim
milk in TBS-T for 1 h at room temperature. Membranes were incubated with the primary antibody
(diluted at a concentration of 1 �g/ml in blocking buffer) overnight at 4°C with gentle rocking and
washed 3 times for 10 min each time with TBS-T. The membranes were incubated with the respective
secondary anitbody (goat anti-mouse or goat anti-rabbit conjugated to HRP diluted 1:5,000 in blocking
buffer) for 1 h at room temperature with gentle rocking. After subsequent washes, membranes were
developed using SuperSignal West Pico chemiluminescent substrate (Thermo Fisher Scientific) as indi-
cated by the manufacturer. Developed membranes were imaged using an Azure c300 digital imager
system (Azure Biosystems, Dublin, CA). Specific positive controls were run in parallel for each primary
antibody.

RNA isolation. Exosomal RNA was isolated from purified SE pellets using the SeraMir exosome RNA
isolation kit (System Biosciences) according to the manufacturer’s instructions. RNA yield was determined
by fluorometry (Qubit RNA HS assay kit; Thermo Fisher Scientific), and size distribution was assessed
using an Agilent RNA 6000 Pico kit (Agilent Technologies, Inc.) according to the manufacturer’s
instructions. Additionally, total RNA was isolated from the ampullae for RT-qPCR. Briefly, 50 mg of tissue
was dissected, placed in 1 ml of QIAzol lysis reagent (Qiagen, Valencia, CA), and homogenized using
MagNA Lyser green beads (Roche, Indianapolis, IN) in a Bead Ruptor 12 (Omni International, Inc.,
Kennesaw, GA). Lysates were incubated for 5 min at room temperature, followed by addition of 200 �l
of chloroform (Sigma-Aldrich). The upper aqueous phase was transferred into a new tube following
centrifugation (12,000 � g for 15 min at 4 °C), and 1 volume of 70% ethanol was added. RNA isolation
was finally performed using the RNeasy minikit (Qiagen) according to the manufacturer’s recommen-
dations.

Nuclease (RNase) protection assay. Purified SE pellets derived from 1 ml of seminal plasma were
resuspended in 200 �l of nuclease-free 1� PBS (pH 7.4; Ambion, Thermo Fisher Scientific) and divided
into four equal fractions, each receiving one of the following treatments: (i) no treatment, (ii) RNase
treatment only, (iii) protease followed by RNase treatment, and (iv) detergent followed by protease and
RNase treatment. Detergent treatment was performed with 1% NP-40 (Thermo Fisher Scientific) for 15
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min on ice. Fractions subjected to protease treatment were incubated with pronase (600 �g/ml; Roche)
for 20 min at 40°C, followed by enzyme inactivation at 80°C for 15 min. Finally, fractions subjected to
RNase treatment were incubated for 30 min at 37°C with Ambion RNase cocktail enzyme mix (final
concentrations of 12 U/ml of RNase A and 500 U/ml of RNase T1; Thermo Fisher Scientific). Following
treatment, exosomal RNA was isolated as indicated above, and its yield and size distribution were
assessed using an Agilent RNA 6000 Pico kit (Agilent Technologies, Inc.). The percentage of protected
RNA was estimated after three treatment replicates.

MicroRNA library preparation and NGS. To determine the miRNA profile in SEs from naive as well
as EAV persistently infected stallions, RNA was isolated from 8 SE samples (L136, prechallenge, 86 dpi,
and 726 dpi; L140, prechallenge, 86 dpi, and 726 dpi; and L139, prechallenge and 86 dpi). The exosomal
RNA was isolated as described above and submitted to System Biosciences for next-generation sequenc-
ing (NGS) (miRNA sequencing). Briefly, the NGS libraries were generated with TailorMix MicroRNA Sample
Preparation version 2 (SeqMatic LLC, Fremont, CA). The 3= adaptors were ligated to each RNA sample, and
excess 3= adaptors were subsequently removed. Subsequently, the 5= adaptors were then ligated to the
3= adaptor-ligated samples, followed by first-strand cDNA synthesis from the ligated products. The cDNA
library was amplified and barcoded via enrichment PCR. The final RNA library was size selected on an 8%
Tris-borate-EDTA (TBE) polyacrylamide gel. Sequencing was performed on the Illumina NextSeq 500
platform (1 � 75-bp single-end reads).

MicroRNA sequencing data analysis. The raw FASTQ files for each sample were trimmed three
times with Trim Galore (Babraham Institute, Cambridge, UK). The trimmed FASTQ files were converted to
FASTA format as required for using miRDeep2 (94). miRDeep2 produced an ARF file with the mapping
details of all the reads that could be mapped to the Equus caballus reference genome (EquCab2.0) (95).
If a read was mapped to �5 different locations in the reference sequence (-r setting in miRDeep2), it was
not included in the mapped data set for analysis. Known miRNAs for Equus caballus were downloaded
from miRBase (release 21) (96, 97). Many of the mapped reads could be assigned to either known equine
miRNAs or tRNAs as described in the Genomic tRNA database (GtRNAdb) (98). The remaining mapped
sequences were compared to the Ensembl annotation for the horse in order to identify mRNA and rRNA
fragments. MicroRNA read counts were normalized using the formula log {[(reads � 1,000,000)/total
reads] � 1} (79). For further analysis, miRNAs with at least three read counts in every sample were used.

Prediction of miRNA target genes. miRDB, TarBase v7.0 and the miRSearch target prediction tool
(Exiqon, Woburn, MA) were used for miRNA target predictions (99, 100). Those genes with a target score
of �80 (miRDB) or �0.4 (TarBase) were selected for further analysis. In addition, miRTarBase was used for
identification of validated target genes (101). Analysis and identification of mir-128 binding site at the
3= UTR of human and equine CXCL16 mRNA (GenBank accession numbers NM_022059.3 and
XM_001504756.5, respectively) was performed using TargetScanHuman release 7.1 (102) and IntaRNA 2.0
(Freiburg RNA Tools, Universität Freiburg, Germany) (103). The free energy (ΔG) of the predicted
miRNA-mRNA interaction was estimated using the RNAhybrid tool (Universität Bielefeld, Germany) (104).
A ΔG cutoff value of ��15 kcal/mol was used to assess the feasibility of the miRNA-mRNA interaction
as previously suggested (105).

Functional annotation and pathway analysis. To investigate the molecular and biological func-
tions of predicted miRNA target genes, DAVID Bioinformatics Resources (version 6.8 [https://david.ncifcrf
.gov/], National Institute of Allergy and Infectious Disease [NIAID], National Institutes of Health [NIH] [106,
107]) along with the PANTHER classification system (http://www.pantherdb.org) (108) was used to
functionally annotate genes based on gene ontology (biological process, molecular function, and protein
class) and perform pathway analysis.

MicroRNA quantitative real-time PCR. Expression levels of differentially expressed miRNAs iden-
tified by miRNA sequencing between any of the sequenced time points (prechallenge, 86 dpi, and 726
dpi) were determined by RT-qPCR. For this purpose, seminal plasma samples from naive (n � 15),
short-term carrier (n � 7), and long-term carrier (n � 18) stallions were used. Among the samples derived
from long-term carrier stallions (n � 18), two were derived from experimentally infected stallions
described elsewhere (L136 and L140), while the remaining samples corresponded to naturally infected
stallions which have been monitored for �5 years following infection by the OIE Reference Laboratory
(Maxwell H. Gluck Equine Research Center). Additionally, sequential semen samples from the two
experimentally infected stallions (n � 12) were used to evaluate eca-mir-128 expression dynamics.
Exosomal RNA was reverse transcribed using the miScript II RT kit (Qiagen) following the manufacturer’s
recommendations. For reverse transcription of mature miRNA, 10 ng of exosomal RNA was combined
with 5� miScript HiSpec buffer (4 �l), 10� miScript Nucleics mix (2 �l), and miScript reverse transcriptase
mix (2 �l). The final reaction volume was 20 �l. The reaction mixture was incubated at 37°C for 1 h,
followed by inactivation of the reverse transcriptase at 95°C for 5 min. cDNA was diluted 1:5 in
nuclease-free water, aliquoted, and stored at �20°C until used. For qPCR, the miScript SYBR green PCR
kit (Qiagen) was used. Briefly, 1 �l of cDNA was added to a reaction volume (9 �l) containing 2�
QuantiTect SYBR green PCR master mix (5 �l), 10� miScript universal primer (1 �l), assay-specific primers
(1 �l of a 5 �M stock; final concentration, 0.5 �M), and RNase-free water (2 �l). The cycling conditions
included an initial PCR activation step (95°C for 15 min) followed by 40 cycles of denaturation at 94°C for
15 s, annealing at 55°C for 30 s, and extension at 70°C for 30 s. Melt curve analysis was performed to
check for nonspecific amplifications along with the inclusion of nontemplate controls. MicroRNA-specific
forward primers were designed using miRprimer v2.0 (see Table S5 in the supplemental material) (109,
110). qPCR efficiencies and threshold cycle (CT) values were determined using LinRegPCR v2017.0 (111),
with efficiencies in the range of 90.2 to 100.2%. CT values of �37 were not used for analysis. MicroRNA
expression levels were normalized to three housekeeping miRNAs (eca-mir-30d, eca-mir-93, and eca-
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mir-103/eca-mir-107a), which were selected using NormFinder v20 to identify those miRNAs with the
most consistent expression pattern across samples (79, 112). MicroRNA expression levels were finally
expressed as 2�ΔCT.

CXCL16 quantitative real-time PCR. CXCL16 expression in the ampullae was evaluated by TaqMan
quantitative real-time PCR. Reverse transcription was performed using a high-capacity cDNA reverse
transcription kit (Thermo Fisher Scientific) following the manufacturer’s recommendations. The reaction
(20 �l) included 10 �l of total RNA (2 �g), 2 �l of 10� RT buffer, 0.8 �l 25� deoxynucleotide triphosphate
(dNTP) mix (100 mM), 2 �l of 10� RT random primers, 1 �l of MultiScribe reverse transcriptase, 1 �l of
RNase inhibitor, and 3.2 �l of nuclease-free water. The reverse transcription reaction mixture was
incubated for 10 min at 25°C, followed by 120 min of incubation at 37°C and a final step at 85°C for 5
min. cDNA was diluted 1:1 in nuclease-free water and stored at �20°C until used. A custom TaqMan gene
expression assay was developed for equine CXCL16 by a commercial company (Thermo Fisher Scientific)
using the mRNA sequences derived from GenBank accession number XM_001504756.5. Each 10-�l qPCR
mixture consisted of 4.5 �l of cDNA and 5.5 �l of master mix, which included 5 �l of TaqMan gene
expression master mix (Thermo Fisher Scientific) and 0.5 �l of the custom TaqMan gene expression
primer-probe mix (5= fluorescein amidite [6-FAM] labeled). The cycling conditions included a holding step
at 50°C for 2 min and an activation step at 95°C for 10 min, followed by 40 cycles of denaturation (95°C
for 15 s) and annealing/extension (60°C for 1 min). RT-qPCR efficiencies and CT values were determined
as indicated above, and expression levels were normalized to those of three housekeeping genes
(GAPDH, ACTB, and GUSB) and analyzed as indicated above.

CXCL16-specific ISH (RNAscope) and immunohistochemistry (IHC) assays. A CXCL16 mRNA-
specific probe based on GenBank accession number XM_001504756.5 was developed by a commercial
company (Advanced Cell Diagnostics [ACD], Newark, CA) and contained a total of 16 double Z-branched
DNA probe pairs spanning a target region of 730 bp of the mRNA sequence (nt 598 to 1328). The probe
was supplied in a ready-to-use format, and its specificity was evaluated using lymphoid tissues (palatine
tonsils) and an equine endothelial cell line known to abundantly express CXCL16 (Fig. 7D). Probes specific
to dihydrodipicolinate reductase B mRNA of Bacillus subtilis and peptidylprolyl isomerase B (PPIB) were
used as negative and positive controls to assess assay specificity and RNA integrity in FFPE tissues,
respectively. The RNAscope in situ hybridization (ISH) assay was performed using the RNAscope 2.0 HD
red detection kit (ACD, Hayward, CA) as previously described, with some modifications (113), which
included a second pretreatment for 15 min (100 to 104°C) and a third pretreatment for 20 min (40°C). The
signal was finally detected using a fast red solution (red B and red A in a 1:60 ratio) for 10 min at room
temperature. Slides were counterstained with 50% Gill hematoxylin I (American MasterTech Scientific,
Lodi, CA) for 2 min, bluing was performed with 0.02% ammonium hydroxide in water, and sections were
finally dried and mounted using EcoMount (Biocare Medical, Pacheco, CA). The ISH signal in the region
of interest was quantified per the manufacturer’s recommendations as follows: 0, no staining or �1 dot
every 10 cells at a magnification of �40; 1, 1 to 3 dots every 10 cells at a magnification of �40; 2, 4 to
10 dots/cell (visible at a magnification of �20 to �40); 3, �10 dots/cell, with scattered cells presenting
dot clusters (visible at a magnification of �20); and 4, �10 dots/cell, with frequent cells presenting dot
clusters (visible at a magnification of �20).

For IHC, sections of FFPE tissues (5 �m) were mounted on positively charged Superfrost Plus slides
(Fisher Scientific, Pittsburgh, PA) and processed as previously described (26). Heat-induced epitope
retrieval was performed using a modified citrate-based ready-to-use solution (pH 6.1; Dako, Carpinteria,
CA) as described previously (26), and immunostaining was performed using the Bond Polymer Refine
Detection kit (Leica Biosystems, Buffalo Grove, IL). The slides were incubated with 3% hydrogen peroxide
(5 min), followed by incubation with CXCL16-specific rabbit antipeptide sera (diluted 1:1,000 in ISH/IHC
Super Blocking [Leica Biosystems]) for 1 h at room temperature. This was followed by incubation with a
polymer-labeled goat anti-rabbit IgG conjugated to HRP (8 min). 3,3=-Diaminobenzidine tetrahydrochlo-
ride (DAB) was used as the substrate, and the slides were incubated for 10 min. Finally, sections were
counterstained with hematoxylin and mounted as previously described (26, 27, 113). Immunostaining
was qualitatively scored based on the staining intensity within the region of interest (0, no staining; 1,
minimal staining; 2, mild staining; 3, moderate staining; 4, high staining).

Statistical analysis. Data distribution, descriptive statistics, plots, and statistical tests were generated
using JMP11 Pro statistical analysis software and SAS (SAS, Cary, NC). Heat maps were built using package
d3heatmap in R. A one-way analysis of variance (ANOVA) was used to identify differentially expressed
miRNAs (SAS), followed by a Benjamini-Hochberg correction. RT-qPCR data (2�ΔCT values) were analyzed
using ANOVA (JMP11 Pro), and post hoc comparisons were performed using the Student t test (114). ISH
and IHC scores were subjected to a nonparametric test (Kruskal-Wallis) using JMP11 Pro. Correlation
analysis between CXCL16 2�ΔCT and eca-mir-128 2�ΔCT values was performed by the Spearman rank
correlation method. Statistical significance was set at a P value of �0.05 in all cases.

Accession number(s). The RNA sequencing data from this study were deposited in the Gene Expression
Omnibus (GEO, NCBI, NIH) database under study GSE108180 (accession numbers GSM2891902 to
GSM2891909).
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