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ABSTRACT 

It is maintained that quenching of 0(~) by collision with N2 

proceeds by formation of a collision complex on the lowest singlet 

potential surface. Once a collision complex is formed, even the 

weak spin-orbit interaction in 0 atom can'induce quenching with 

essentially unit probability (at thermal energies) because the inter­

section of the singlet [O(~) + N
2

] and triplet [0(3P) + N2] potential 

surfaces is crossed many times during the life of the complex. Rather 

crude, but qualitatively reasonable potential surfaces for 0(~) + N2 

are constructed .and classical trajectory calculations carried out to 

show that the cross section for CODI.plex formation is indeed appreciable, 
o2 

rv ~0 A at thermal energy; a statistical model is used to determine 

the quenching probability of the collision complex. Values obtained 

for the magnitude of the thermal rate constant for quenching, and 

the fraction of the exoergicity which appears as vibrational excitation 

of N2, are both in good agreement with experimental results. 
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I. INTRODUCTION 

·The quenching of O(lo) by N2 , 

, (1.1) 

. . 1 2 
has been somewhat of a puzzle for several years. ' Although 

it is clear that the relevant interaction causing the transition 

is spin-orbit coupling (because of the spin change), an atom-

atom curve crossing model-which treats N2 as an atom--predicts 

much too small a rate constant; this is because in this model the 

crossing of the singlet and .triplet potential curves is traversed 

1 . 
only twice during the 0( D) + N2 collision--once as they approach 

and once as they separate--and the spin-orbit interaction is simply 
. 3 

too weak to yield a large enough transition probability. In 

addition, this atom...;atom picture cannot explain the experimental 

4 observation that a sizeable fraction of the approximately 2 eV 

exoergicity appears as vibrational excitation of the product N2• 

The picture which seems to explain both of these results~-the · 

relatively large rate of reaction (1.1) and the amount of vibrational 

excitation of product N2--is to realize that N2 is not an atom, 

that it has internal degrees of freedom, rotation and vibration • 

Since the singlet potential is strongly attractive, furthermore, 

it is reasonable to expect that the collision of 0(~) + N2 will 

excite sufficient rotation and/or vibration of N2 to "trap" the 

oxygen atom, i.e., to form a collision complex; Figure 1 depicts 

this mechanism skematically. Considering rotational excitation 
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alone, for thermal energy collisions it requires only a 6j = 6 

rotational excitation of N2 from an initial rotational state 

j = 6 (the most probable one at 300° K) to result in trapping. 

If this complex formation does occur, then it is clear that even 

though.the spin-orbit interaction is weak a sizeable quenching 

cross section can result--because the crossing point will be 

traversed many times--and that vibrational excitation of N2 will 

be significant. 

[Recent experiments by Lin and Shortridge5 also show substantial 

vibrational excitation in the quenching of 0(1D) by CO: 

(1. 2) 

This r,eaction has also been found6 to have a large ("' 7 x 10-ll 

cm3/molec. sec.) thermal rate constant and is thus similar 

qualitatively to reaction (1.1); this is reasonable, of course, 

since 0 -·CO and 0- N2 are isoelectronic and their potential 

energy surfaces. therefore similar. Because of this similarity 

of potential surfaces, the qualitative results of our present 

1 . 
work apply equally well to quenching of 0( D) by CO as by N2.] 

This paper presents calculations which support this point 

of view, i.e., which show that the cross section for complex 

formation on the ground state singlet potential surface is size-

able. We also show how a statistical treatment of the collision 

complex can be introduced to simplify the calculation of the 

quenching cross section and the distribution of product states. 

Of earlier theoretical treatments of this problem1- 2 , 7 our 
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7 approach is most akin·to that of Tully; the primary difference 

between the present work and Tully's is that we use classical 

trajectory calculations to determine the cross section for 

complex formation--rather than estimating it from a spherically 

symmetric c6 coefficient-~and the form of the statistical model 

that we develop is somewhat different from the one used by 

Tully. 

Section II first discusses the formulation of the problem 

and develops the statistical approximation. Section III des-

cribes the potential surfaces used for the trajectory calculations, 

the results are presented in Section IV, and Section V concludes • 
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II. THEORY 

A. Description of ·the Model. 

Although more than one singlet potential surface arises when 

0(~) and N
2 

approach one another--and more than one triplet surface 

3 from 0( P) and N
2
--we have considered a simplified model consisting 

of only one singlet and one triplet potential energy surface, designat-

ed v1 and v2,· respectively. Section III describes the particular 

potential functions that we have used. 

The process in Eq. (1.1) can be adequately described by a 

Tully...;Preston "surface-hopping" model; 8 in this approach the nuclei 

move classically on potential energy surfaces, having the possibility 

of changing from one surface to another only when a trajectory crosses 

an intersection of the two potential surfaces; the probability of 

changing surfaces at an intersection is given by the Landau-Zener 

formula. The present application of this model is actually more . 

8 
straight forward than was Tully and Preston's original work on 

+. 
the H + H2 reaction, for the spin-orbit interaction which couples 

the two electronic,states is much weaker than the electrostatic 

+ coupling between the two states of the H3 system. For the present 

application, therefore, the nuclei can be assumed to move on the 

"diabatic" potential surfaces which actually intersect, and there 

. 8 
is no need for a velocity correction to the trajectory when 

changing surfaces. 

Within this model the quenching cross section, crQ, is given by 

= lT b 
2 

max 

N 
N-1 ~ p 

LJ Q 
n=l 

(p (n) (n)) 
-1 '~h ' (2.1) 

;· 
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where (~l'~h) denote the initial values for the cartesian coordinates 

and momenta of t~e A + BC collision system. These initial conditions 

9 are selected by Monte Carlo sampling methods in the usual way, 

the index n denoting the specific set of initial conditions for 

the n!h trajectory; b .· is the maximum impact parameter that arises 
m,ax 

in the sampling of that variable (i.e. , b = b . · /f, ~ a random · · max "VS · 

number between 0 and 1). PQ (fl•~h) is the quenching probability 

for the trajectory that begins in the initial asymptotic region 

with initial conditions (fl'~l) • 

The Landau-Zener approximation gives the probability of not 

changing surfaces at a given crossing encounter as 

t 

where 

and evaluated at t = t , t being the root of the equation 
0 0 

(2.2) 

LlV(9,(t)} = 0 (2.3) 

i.e., the time when the trajectory is at the surface intersection; 

v12 <s> is the spin-orbit interaction which couples the two potential 

surfaces v1 <s> and v2 (~). The probabili~y of changing potential 

surfaces is·l- p. 8 Within the surface-hopping model the net 

probability of quenching, PQ of Eq. (2.1), is in general the 

product of a sequence of probability factors, p's and (1-p)'s, 
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one factor for each crossing encounter. Because the spin-orbit 

interaction is so small, however1 (l~p) is much smaller than unity 

and it is essentially no approximation in such circumstances to 

neglect recrossing, i.e., to assume that once the trajectory has 
. ' 

crossed from tlte singlet to the triplet surface that it does not 

return to the singlet surface on a.ny subsequent crossing encounters. 

(According to Figure 1 it would have at most only one-chance to do 

so.) With this assumption the net probability of not quenching, 

1 - PQ' is the product of the probabilities of not quenching at 

each individual crossing encounter; i.e. , the only way of not 

quenching is not to quench every time the surface intersection is 

crossed: 

(2. 4) 

where the index k in {pk} refers to the different crossing 

encounters. The net probability of not quenching is thus given 

by 

th where tk is the time of the ~ crossing encounter; since 

:Lv12 

2 
d 

(~(tk)) I dt b.V <q Ct> > I t = t ) k 
k 

00 

= ! dt v12 
(q(t))2 Q{b.V (q (t))] (2. 6) 

-oo 
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Eq. (2.5) for the non-quenching or survival 2robability has the 

form of exponential decay: 

, 1 ...; PQ = exp [- ~:dt f(t)/h] (2. 7) 

where f(t) is given by a "golden rule"-like expression: 

. r(t) _ r<~(t)), 

o[t.v(q)J (2.8) 
. -

The quenching probability in Eq. (2.1) is then finally given by 

00 
. ·. 2TI · · 2 = i- exp {-I dt T v12 (~(t)) o[t.V(~(t))]}, (2.9) 
..co . 

where the trajectory ~(t) in the integrand of the exponent is the 

one which moves on the singlet potential surface with initial 

conditions (fl'~1). As discussed in the Introduction, therefore, 

even though the quenching probability associated with a-single 

crossing encounter is quite small, PQ can be sizeable if many 

crossings occur; it is easy to see, in fact, that PQ approaches 

unity in the limit of an infinite number of crossing encounters, 

i.e., a very long-lived collision complex. 

As an aside, it is interesting to note that the above formula, 

Eqs. (2.1), (2.7)-(2.9), also pertain to the decay of an initial 

electronic state into a continuum of final electronic states, as 

is the case for describing Pe~ning Ionization 
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(2 .10) 

Here, of course, the crossing is rigorously irreversable because 

the electron leaves the scene, whereas ~n the discrete-discrete 

process being considered above the irreversable nature of the 

transition arises because the probability associated l<!ith re-crossing 

is small. For the discrete-continuum process in Eq. ·(2.10) the 

width function f(~) is not restricted to a surface in coordinate 

space as in Eq. (2.8); the o function factor is replaced by a 

density of states factor: 

(2.11) 

(If the final state is discrete, then the "density of final states" 

should of course be a o function.) With this modification, [Eq. 

(2.11)], therefore, the analysis developed in this section is 

directly applicable to collisional ionization problems such as 

Eq. (2.10). 

B. Statistical Approximation. 

With the above formulae one can proceed to carry out a Tully-

8 Preston surface-hopping calculation. This would be difficult for 

the present situation, for--as mentioned in the Introduction--many 

of the trajectories result in complex fo'J:"mation, and it is extremely 

difficult10 numerically to follow such long-lived trajectories. 

Fortunately, however, the occurrence of complex formation allows one 

to invoke a statistical model to alleviate the need of following the 

dynamics precisely. 
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Specifically, one invokes the ergodic hypothesis to replace 

the time integrals in Eqs. (2. 7) and. (2. 9) by phase space averages. 

Thus consider the quantity A(£1 ,~1), the exponent in Eq. (2.9): 

(2.12) 

where ~(t;£1'~l) is the particular classical trajectory that is 

determined by the initial condition (~1 ,~1). If thiS trajectory 

forms a collision complex which lives sufficiently long to behave 

ergodically, then A (~1 , ~l) will depend on ~l and .~h only through 

the constants of the motion--total energy E and total angular 

momentum J--and the time average of r can be replaced by an ap-

propriate phase space average. More specifically, this means 

that 

~ T < f/h>E,J _ A(E,J) 

where the phase space average implied by <X> is defined for 
E,J 

any function X(E•2) by 

<X> 
E,J 

(2.13a) 

(2.13b) 

p(E,J) = /dpfdq o[E-H(p,q)] o(J-J(p,q)J h[f'(q)J - - - - - - - . (2 .14b) 

where o ( } is the usual delta function and h( ) the step function 

( 
h(x) = 1, x > 0 

0, X < 0 
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J(~,~) and H(~,~) are the values of total angular momentum and 

total energy determined by the phase point (E,~), and f(~) is 

the function which defines the collision complex, i.e., the 

collision complex is the inside of the closed surface in 

11 configuration space defined by the equation 

f(~) > 0 (<0) being the inside (outside) of this "critical 

surface" definedby Eq. (2.15). The values E and J in Eqs. 

(2.13) and (2.14) are determined by the initial conditions 

The phase space average defined by Eq. (2.14) is thus over 

all phase space corresponding to total energy E and total 

angular momentum J and which is inside the critical surface 

that defines the collision complex. 

The timeT ::: T(E,J) in Eq. (2.13), the average lifetime 

of the collision complex for a given total energy and total 

angular momentum, is also given by statistical theory: It 

is the reciprocal of the average rate of flux out through the 

critical surface: 

ddt h (f) I >E,J 

(2.15) 

(2.16) 
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or (since h'(~) = o(~)) 

-1 1 1"1 T(E,J) · = <I o(f) f >E J 
. ' 

11 where 

~/m 

(2 .17) 

(2.18) 

1 the factor 2 appears in the definition of T [Eq. (2.16)] because 

the absolute value of the flux across the critical surface has 

equal contributions from flux in and from flux out. 

The statistical approximation for the quenching probability . 

is thus given by 

t (2.19) 

. where 

(2.20a) 

(2.20b) 

and where 

(2.2la) 

(2.2lb) 
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For the applications made in this paper, however, an additional 

approximation was made, namely conservation of total angular 

momentum was not explicitly taken into account; i.e., the delta 

functions involving total angular momentum in the phase space 

average [Eq. (2.14)] were omitted. As a function only of total 

energy, therefore, the average quenching probability is given 

by 

PQ(E) = 1 - exp [- x(E) < fj!l>E] (2.22a) 

= 1- exp [- <
2
Ji7r vl/ o(l~V)>E I <i o(~) lti>E J' (2.22b) 

where for any function X(f,qL the average <X>E is a microcanonical 

phase space average over the region of the collision complex: 

(2.23a) 

p(E) = [dp/dq o[E-H(p,q)] h[f(q)] (2.23b) - - -- -
There are·known examples of "angular momentum-limited" reactions 

for which this added approximation would be poor, but the present 

system should not be such a case. The Appendix gives more details 

of the evaluation of the phase space averages which appear in (2.22) 

and elsewhere in this section. 

With this simplification, that the quenching probability 

depends only on the total energy, Eq. (2.1) for the quenching 

cross section takes an extrem~ly simple form because the initial 
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conditions for the trajectories correspond to a fixed initial 

energy. The probability factor in Eq. (2.1) iS_ thus the same 

for all trajectories whiCh form complexes, so that Eq. (2.1) factors 

into two independent parts: 

.aQ(E) = ac(E) J>q (E) 

where a (E) is the cross section for complex fornation, ' .c ' -. . 

a (E) = 1T b 
2 

(N /N) 
c - max c 

N .. being the number of Monte Carlo-begun trajectories which c 

form complexes~ and with PQ(E) given_,by Eq. (2.22)-above. 

(There are actually. a small number of trajectories which 

quench without forming complexes, and the contribution from 

them should be added to the expression in Eq. (2.24). This 

cross section for "direct" quenching, however, was negligible 

in comparison of that from the complex mechanism for all cases 

(2.24) 

(2. 25) 

studied.) The quenching cross section is thus the cross section 

for complex formation multiplied by the average probability that 

the collision complex quenches. 

c. Distribution~ Product States. 

The fraction of the total energy which appears as vibrational 

excitation of product N2 can only be obtained rigorously by 

following the complete trajectories through the long-lived collision 

complex to the final asymptotic region, i.e., by applying the 

surface-hopping model8 in~· As mentioned above, this would 
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be extremely difficult to do and is probably unwarranted. Within 

.the spirit of the statistical approximation introduced above, 

however, one can obtain this quantity quite simply. 

Consistent with the assumption of ergodicity of the collision 

complex, one may assume that all degrees of freedom of the collision 

complex are in microcanonical equilibrium. If one adds the 

additional assumption, connnon to statististical descriptions of 

final state distributions, that there 'is no energy transfer 

between translational and internal degrees of freedom as the 

fragments separate from the region of the transition, then 

the probability P Q (E,E) that a collision complex with total 

energy E quenches and has·an energy E in vibrational excitation 

of N2 is proportional to 

where hvib is the vibrational Hamiltonian fo~ an isolated N2 

molecule (see the Appendix). Conservation of probability--

--can then be used to determine PQ(E,E) absolutely: 

with PQ(E) given above by Eq. (2.22). The cross section for 

quenching and having an internal energy E is then given by 

(2.26) 

(2.27) 

(2.28) 
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(2.29) 

and one sees that the integral of this over all e: isthe total 

quenchirig prob~bility of Eq. (2.24): 

D. Unimcilecular Decomposition of N20. 

For completeness we give the expressions for the rate of 

unimolecular decay of N
2

0 which result from the above model. 

If k(E) _is the microcanonical unimolecular decay rate, then 

12 standard unimolecular theory gives the effective (pressure 

dependent) unimolecular rate constant as 

k . (w) un1 = /dE p(E) -BE e 
Wk(E) 

w + k(E) 

where w is the collision frequency with bath molecules, and Q 
0 

is the partition function for the complex: 
' .\ 

= /dE p(E) e-SE 

where p(E) is defined by Eq. (2.23b). The statistical model 

(2.30) 

(2.31) 

described in Section II B gives the microcanonical unimolecular 
/ 

decay rate as 

-1 
k(E) = T(E) ·. PQ{E) (2.32) 
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where 'T(E)-l and PQ(E) are the same quantities as in Eq. (2.22); 

the function f(q) which defines the critical surface should in 

this case, however, be chosen as f(~) = b.V(~), i.e., the critical 

surface. is the surface of intersection of the singlet and triplet. 

In the strong coupling limit, v12 -+ oo, PQ(E) -+ 1 so that 

R.im 
v12-+oo 

k(E) = (2.33) 

the standard RRKH result for a dngle potential surface; i.e.~ in 

this limit the "rate determining step" is the rate of getting to 

the critical surface and crossing it, for once there the spin-

orbit transition occurs instantaneously (since v12 -+ oo). In the 

weak coupling limi.t, v12 -+ O, one has 

PQ(E) 1 - exp [- 'T (E) < f/h > E] 

~ 'T (E) < r /h > 
E 

(2.34) 

so that k(E) of Eq. (2.32) becomes simply a phase space version 

of Fermi's "golden rule": 

R.im k(E) 
vl2-+o 

= T(E)-l 'T(E) < f/h > 
E 

- < 2'1T V 2 o (b.V) > E. 
h 12 

= < f/h > 
E 

(2. 35) 

here the "rate determining step" is the rate of singlet-triplet 

transitions induced by the spin-orbit interaction at the surface 

intersection. 
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III. POTENTIAL ENERGY SURFACES· 

Within the model described in the previous section it is necessary 

to determine the cross section for complex forination on the initial 

singlet potential surface and then an average quenching probability. 

The cross section for complex formation, which involves molecular 

dynamics only on the singlet potential energy surface, was determined 

by classical trajectory calculations'with two different model potential 

surfaces. (see below), and the quenching probability--lllni(h involves 

both the singlet and tripie~ potential su-rfaces--was obtained from 

Eq. (2.22). Numerical values of all potential parameters which 

appear in the expressions below are given in Table I. 
' ' . . 

The first potential surface', designated I, involves only trans-

lational-rotational coupling; vibration was uncoupled from these 

modes, so that loss of energy from translation can occur only ~ 

rotational excitation. Specifically,·singlet potential surface I 

/is 

- vN· (r) 
2 

t (3.1) 

where vN (r) is the vibrational potential of an isolated N2 molecule 
2 

(taken to be a Morse oscillator) 
I 

(3. 2) 
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and the interaction term is a Morse function whose well depth is 
. -+ 

modulated by the angle y between the diatom vector r and the center 

-+ 
of mass translational coordinate vector R: 

The anisotropy parameter ~ was chosen to reproduce approximately 

the well depths of the collinear and perpendicular arrangements 

of N
2 

and 0(1D). 13 

Potential surface II for the singlet state included, in 

addition, vibrational coupling so that complex formation would 

occur via vibrational and rotational eXcitation. The same 

angular coupling as in surface I was retained, and the vibrational 

coupling was introduced by (1) allowing some of the Morse parameters 

of the N2 vibrational potential to depend parametrically on the 

position of the 0 atom, and (2) having the distance in F.q. (3.3) 

refer, when y = 0, to theN- 0 separation rather than to the distance between 

0 and .the center of mass of N2• Thus potential surface II is 

II v
1 

(r,R,y) = 

-2a(R 

[e (3. 4) 

where S1 and·r1 are functions of R: 
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Bl - B
1

(R) = BN 0 + (BN 
2 2 

rl - r
1 

(R) = rN 0 + (rN 
2 2 

S(R) is the "switching function" 

S(R) 1 1 
= 2 + 2 tanh [A (R-R

0
)] 

and is defined so that 

S(R) = 1, 

o, 

R»R 
0 

R«R 
0 

BN 0) S(R) 
2 

- rN 0) S(R) 
2 

For largeR, therefore, S1 (R) and r 1 (R) take onthe values 

corresponding to the isolated N2 molecule, and for small R 

their values were chosen so that potential II has the correct 

bond force constants for the N20 molecule. Surface II de-

generates into surface I with the replacements B
1 

-+ BN ' 
2 

rN· in the second term of Eq. (3.4) (i.e., 
2 

The triplet potential surface, which is needed only to 

construct the difference potential 11V(q) for use in computing 

the quenching probability from Eq. (2.22), was taken to have 

3 an exponential repulsion between 0( P) and the center of mass 

(3. Sa) 

(3.5b) 

(3.6) 
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2 -a.'R + A[l- r;;'(l-cos y)] e 

and the spin-orbit ipteraction, v1 , 2 (g), was assumed to be 

independent of coordinates and have the value 

= v12 = 

The function f(~), which defines the region of the collision 

complex via Eq. (2.15), was taken as 

f(r,R,y) = R - R c 

(3. 7) 

(3.8) 

(3.9) 

Although none of these potential energy surfaces are expected 

to be a particularly accurate representation of the 0 - N2 system, 

they are qualitatively reasonable in their gross features and should 

make it possible to answer the basic questions, namely, is there an 

appreciable cross section for 0(~) + N2 to form a collision complex. 

By comparing the results obtained from surfaces I and II it should 

also be possible to tell whether complex formation occurs primarily 

through rotational or vibrational excitation. 
•. 
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IV •. RESULTS 

Figure 2 shows the quenching probability, PQ(E) of Eq. (2.22), 

as a function of initial collision energy for potential surfaces I 

and II. (Since the initial state of N2 is always taken as v = 0, 

j = 6, the total energy and the initial translation energy are 

related simply by an additive constant.) At thermal energies the 

quenching probability is close to unity, so-that 

.. the cross section for quenching is essentially that for complex 

formation. At higher collision energies the probability falls 

because the lifetime of the complex is shorter and there is thus 

less chance of quenching. 

Trajectory calculations to det'ermine the cross section for 
,o 

complex formation on the singlet surface were carried out at 

collision energies 0.03, 0.6, and 1.2 eV for potential surfaces 

I and II. Table II gives the cross sections for complex formation 

which--multiplied by the appropriate quenching probability--give 

the cross sections for quenching, also listed in Table II. 

The inclusion of vibrational coupling in surface II is seen 

to increase the cross section for complex formation, more so the 

higher the collision energy; thus a is 25%, 100%, and 600% greater c 

for surface II than for surface I at collision energies of 0.03, 

0.06, and 1.2'ev, respectively. At thermal energy, therefore, 

rotational excitation accounts for t of the complex formation, 

while at higher energies vibrational excitation is the dominant 

mechanism leading to complex formation. 
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An estimate of the thermally averaged rate constant can be 

obtained from the expression 

(;) v aQ(E) (4.1) 

for E = kT and where 

v = (8 kT/'JTl.l)l/ 2 

1 the factor 5 in Eq. (4.1) is a statistical factor which accounts 

for the fact that only one of the five electronic states arising 

from 0(1D) + N2 corresponds to the strongly attractive ground 

state. Eq. (4.1) gives a room temperature (i.e., kT = 0.03 eV) 

. . -11 . -11 3 
rate constag.t of 3. 9 x 10 and 5.4 x 10 em /mol. sec., 

respectively, for potential surfaces I and II, in excellent agree­

ment with experimental values. 6 At kT = 0.6 eV the quenching 

rate has decreased only to 1.1 x 10-ll and 1.3 x 10-ll cm3 /mol. sec. 

for surfaces I and II, respectively, and thus appears not to be 

a sensitive function of temperature. 

Figure 3 shows the vibrational energy distribution of product 

N2, obtained using potential surface II, for the three different 

collision energies. 

The average energy in,.,, yibrati~J:la.l excitation, 

(4. 2) 

increases with increasing collision energy E, and the distribution 

broadens. At room temperature, E ~ 0.03 eV, the average energy 
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in vibrational excitation of N2 is approximately 20%·of the 

exoergicity of reaction (1.1), also in good qualitative 

agreement with the latest experimental results. 4 
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V. CONCLUDING REMARKS 

Our basic picture of the quenching mechanism is the same as 

Tully's, 7 namely that 0(~) + N2 forms a collision complex on the 

singlet potential surface and thus passes through the intersection 

with the triplet state many times. The results presented in Section 

IV are also in qualitative, and even semiquantitative agreement 

with Tully's, specifically the magnitude of the thermal rate 

constant and the amount'of energy which appears as vibrational 

excitation of product N2• 

The way in which complex formation is treated in the present 

work, however, and the nature of the potentials involved, are quite 

7 
different from Tully's. Tully uses only a dispersion term, 

·_ c6/R6 , for the singlet potential in order to determine a cross 

section for complex formation, while our potential surfaces I 

and II do not even have such a dispersion term; the cross section 

for complex formation was determined in our case by actually 

computing classical trajectories for the assumed rather crude, 

but qualitatively reasonable potential surfaces •. The way in which 

the statistical approximation is used to determine the average 

quenching probability of the collision complex is also somewhat 

different in the two approaches. 

In view of these differences in approach between ours and 

·7 
Tully's, it is reassuring that the results of the two treatments 

are in such good agreement. This is consistent with Tully's 

observation that his results at thermal energy are rather insensitive 
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to the c
6 

coefficient he estimates and with the similarity of our thermal 

energy results .for p~tential surfaces I and II. At higher 

collision energy Tully's model for determining the cross section 

for complex.formation becomes.invalid, while the classical 

trajectory approach is of course still applicable. Our results 

using potential surfaces I and II (cf. Table II) are quite 

different at these higher collision energies, however, indicating 

that a more accurate characterization of the potential surfaces 

is required to obtain reliable results at these energies. 

In conclusion, this process is a dramatic demonstration 

of how different an atom-diatom colli-sion can be from an atom-atom 

collision,and how radically the picture changes when additional 

deg~ees of freedom are available to participate in the collision 

dynamics. If this were an atom-atom collision system, the quench-

ing cross section at thermal energy would be extremely small, 

proportional to the square of the spin-orbit coupling; for the 

present atom-diatom case the cross section is sizeable and 

essentially independent of the magnitude of spin-orbit coupling. 

It is interesting to contemplate what other surprises may lie in 

store as one learns more fully how to incorporate these additional 

degrees of freedom which are present in molecular systems. 
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Appendix: Phase Space Integrals 

The phase space integrals required- in Section II are all of 

the form 

where 

p(E) = /dp/dq o[E-H(p,q.)] h[f(q)] - - - - -
(The normalization factor p(E) is not required in order to 

compute PQ(E) and PQ(E,E) of Sections liB and IIC because 

they involve a ratio of phase space averages, but it would 

be required to determine the unimolecular rate constant of 

Section liD.) Choosing cartesian coordinates and momenta 

for the A + BC system 

-+ -+ 
q - r, R 

-+ -+ 

f - p, p 

-+-+ -+-+ 
(r,p) being the cartesian variables for BC, and (R,P) the 

cartesian variables for A relative to BC, the Hamiltonian 

is 

p2 2 
H = 2ll + Tro + V(r,R,y) 

where ll and m are the appropriate reduced masses, y the angle 

-+ -+ 
between r and R, and V is the singlet potential surface. If 

(A.l) 

(A. 2) 

(A.3) 
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the function f, which defines the collision complex as discussed • 

regarding Eq. (2.15), does not involve momenta--as we have 

assumed11 for the applications in this paper-then it will also 

depend only on the three coordinates r,R, and y which determine 

the size and shape of the A - B - C triangle~ 

The normalizatiot:l factor p{E) is thus given by 

2 . 2 
- P /2ll - p /2m] (A.4) 

The momentum integrals can all be carried out, giving 

3 . 3/2 -+ -+ 2 
p{E) "" 41T (llm) ld3rld

3
R h{f(r,R,y)] IE - V(r,R,y)] , {A.5) 

with the domain of integration restrict~d to the region for which 

E - V(r,R,y) ~ 0 (A.6) 

The integral over the three Euler angles which orient theA- B ~· C 

triangle can also be performed--i.e.; 

200 2 00 2 1 . 
= 81T I dr r I dR R I d(cosy) F(r,R,y); (A.7) 

0 0 -1 

for an arbitrary function F--so that p{E) is given finally by 

5 . 3/2 2 2 2 
p(E) = 321T {lJ.m) ldr r ldR R /d(cosy) h!f(r,R,y)] [E-V(r,R,y)] • {A.8) 

, ....... 
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For the case 

X(p,q) = f(q)/h 
27T 2 = h v12 (r,R,y) o[~V(r,R,y)] (A. 9) 

the momentum integrals and the integral over the three Euler 

angles can all be evaluated in the same manner as in the 

preceeding paragraph, so. that 

<f/h>E = p(E)-l 327T5 (lJm) 3/ 2 !dr r 2 /dR R2 !d(cosy) h[f(r,R,y)] 

27T 2 ' ' 2 
X T vl2 (r,R,y) o[~V(r,R,y)] [E- V(r,R,y)] • (A.lO) 

Because of the delta function in the integrand of Eq. (A.lO), 
) 

one of the integrals can be evaluated directly, /dR say, and 

the remaining integrals over r and cos y carried out 

numerically. 

', -1 
T(E) , the reciprocal lifetime of•the collision complex~ 

corresponds to Eq. (A.l) with 

1 I at <o> I x(~,~) = 2 o[f(~)] aq~ • p/m 

and this involves the momenta in a way other than just in the 

Hamiltonian. The momentum integrations can still be carried 

out, however, giving 

(A.ll) 

(A.l2) 
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where 

2 af af 
ll!.l at =aR· af 

2 df af 1#1 =at· w 

Eq. (A.6) also applies here, so that one obtains 

T(E)-1 -- p(E)-1 256 n
4 

3/2 2 2 • 15 (}..lm) Jdr r fdR R Jd(cosy) o[f(r,R}')] 

5/2 2 laflz + l afl2 1/2 
[E - V(r,R,y)] I l-l ai m laf ] (A.l3) 

With f(i,R,y) given by Eq. (3.9) for the present applications, 

Eq. (A.l3) simplifies to 

. -1 
T(E) 

4 
= p(E)-l 25~51T (}..lm) 3/ 2 (2/}..l)l/ZRc2 !dr r 2!d(cosy) [E-V(r,Rc,y)] 512 , 

(A.14) 

and the two remaining integrations were carried out numerically. 

Finally, the vibrational energy distribution of N2 corresponds 

to Eq. (A.l) with 

o [,W (q)] o (c-h .b) 
v~ 

(A.l5) 

where the vibrational Hamiltonian is 

2 
hvib = p r /2m + v(r) (A.l6) 
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-+ -+ 
p = p • r/r being the radial (i.e., vibrational) component of 

r . . . 

the B ~ C momentum and v(r) the N2 vibration~! potential. Thus 

-+ -+ 2 . 2 
X o[~V(r,R,y)] Jd3pJd3P o[E-V(r,R,y) - P /2~ - p /2m] 

-+ -+2 2 
X o[£- v(r) - (p • r) /2mr ] (A.17) 

Carrying out the momentum integrals and the integral over the 

three Euler angles in this case gives 

3/2 2 2 . 
(~m) !dr r /dR R !d(cosy) 

h(f(r,R,y)) Zh1T v
12

(r,R,y)
2 o(~V(r,R,y)) [E-£-Vint(r,R,y)] 3/ 2 [£-v(r)]-l/~ 

where 

V. (r,R,y) = V(r,R,y) ... v(r) 
1.nt 

The integral over R can be carried out by virtue of the delta 

(A.l8) 

function, and the remaining two integrals were evaluated numerically. 

[Note that sinca 

.· fd£ [E-£-V. ] 3/Z [£-v(r)ll/Z = 3
8
1T [E-V(r,R,y)] 2 

1.nt 

the integral of Eq. (A.l8) over £ gives, as it should, the result 

in Eq, (A.lO).] 
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In concluding, it is interesting to consider a very primitive 

model which illustrates the qualitative nature of the vibrational 

energy distribution that is predicted by statistical theory. 

Suppose the total Hamiltonian H is the sum of that for two non-
) 

interacting systems 1 and 2, 

and that h1 and h2 are a set of s1 and s 2 ~scillators~ 

respectively. If P(£,E) is the probability that h1 has an 

energy in the range (£,£+d£), given that the total energy is 

E, then one has· 

and for a system of oscillators this is easily found to be 

P(£,E) 
s -1 

c £ 1 

where C is a numerical factor. 

Often the distribution in £ is observed experimentally5 

to be linear on a semi-log plot for a an appreciable range 

of £. This implies that 

, (A.l9) 

(A. 20) 

d 
- dt:: ~n P(£,E) ~ function of £ (A. 21) 

from Eq. (A. 20) one finds 

d 
- d£ ~n P(£,E) 

s
2

.-1 . s
1
-1 

= ---- - ----
E-£ £ 
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For s1 = 1 and E<< E, this does satisfy the condition in 

Eq. (A•2.0, i.e., the £-distribution is Boltzmann, characterized 
"' 

by the temperature 

The fact that a sub-systernof a much larger md.croeanonical 

system behaves canonic:ally is,-of course, a well-known 

phenomenon in-statistical mechanics. 
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TABLE I •. 

Dl = 0.364 

Dz 0.138 

rN = 2.07 
2 

rN20 = 2.13 

r = 2.25 
0 

R 
1 

= r + 2 rN e 0 

R 4.9 
0 

R = 8.0 
c 
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a 
Potential Parameters 

a 

SN 
2 

SN 0 
2 

I'; 

r;' 

= 3.28 A 
2 

a' 

>. 

= 1. 785 

1.423 

= 1.135 

= 0.8285 

= 0.01 

-. 0.75 

0.7 

= 1.7 

aAll in atomic units. These numerical values refer 

to the potential functions described in Section III. 

..... ,.. 
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TABLE II. Results for Quenching of 0(1D) by N2• 

··- Surface I a Surface II a 

A 
'\ 

A t t '\ 

. b c d e c d k e -f 
E ac 5L_ kg ac . ~ Q £ 

0.03 38 26 3.9 X 10-11 48 36 5.;4 X 10-11 0.34 

0.6 13 0.7 1.1 X 10-ll 26 2 
-11. 

1.3 X 10 ·· 0.54 

1.2 3 0.1 0.4 X 10~11 19 1 0o7 X lo-11 · 0.75 

a The results using singlet potential surface I, or II, which are 

described in Section III. 

b The initial translational energy in eV. 

c 0 2 The cross section (A ) for complex formation, as defined by Eq. 

(2.25). 

d The quenching cross section (A2), as defined in Eq. (2.24). 

e 3 The rate constant (em /mol. sec.) for quenching at a temperature kT = 

E, as defined by Eq. (4.1). 

f The aveage energy (eV) in vibrational excitation of product N2, 

as defined by Eq. (4.2)~ 
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Figure Captions 

Figure L A sketch of the lowest singlet, V 1 (r), and a typical 

triplet, v2(r), potential curve for the 0- N2 system. 

The arrow depicts a thermal energy collision of 0(1D) 

and N2 which results in sufficient rotational/vibrationai 

excitation of N2 (occuring predominantly at the inner 

classical turning point) to form a collision complex. 

Figure 2. The quenching probability as a function of initial 

collision energy E, as defined by Eq. (2.22); the lower 

(upper) curve is the result of using singlet potential 

surface I (II). The insert shows the low energy region 

with an expanded energy scale. 

Figure 3. The distributionof vibrational energy E: in the product 

N2 molecule at three different initial collision energies 

E, as defined by Eq. (2.28); the quantity shown is also 

identical to the cross section ratio oQ(E:,E)/oQ(E). 

Because the ratio of the probability distribution to 

the total quenching probability is plotted, the area 

under each curve is unity. 
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