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~ABSTRACT

It is mainfaiﬁéd:that_qgenchiﬁé of 0(1D) byvcollision with'N2
proceeds byvformationtofia'célliSion'complex on the IoweSt singlet
po;ential'éurfacé. Oﬁce'a collision complex is'formed, even the
weak S§inforBit intéraction'in 0 atom .can“induce QUénching with

essentially unit probability (at thermal energies) because the inter-

section of the singlet IO(lD)'+‘N2] and triplet [O(BP) + NZ] ﬁotential

_ surfaces is crossed many times during the life of the complex. Rather

crude, buﬁ qualitatively reasonable potenfial surfaces for 0(1D) + N2
are constfucted,and classical trajectory caiculations carried out to
show that the cross section for complex fbrmatioq is indéed appreciable,
N 40 g atvthgrmal eﬁergy;'a statistical model is used to determine.

the quenching probability of: the collisioh_complex. Values obtained

" for the magnitude of the thermal rate constant for quenching, and

the fraction of the exoergiéity_which'appears as vibrational excitation

of NZ’ are both in good agreement with experimental results.



I.  INTRODUCTION

- The quenching 9f10(lD) by_Ni,'

2

oy + n, » of®) + N, (1.1)

hés.been‘somewhat ofba pﬁzzle for-séVeral-yééré.l’z Altﬁough.

it is cleai‘that'the releQant interaction cauéing the'transition
is spin-ofbif'coupling (becaﬁse'of ghe spin change), an atom-

"~ atom curvé'crossiﬂg mbdelé;which,treats Nziés an atbm--predicts
much.foo small a rate COnéfant;'this is because in this ﬁodel;the .
crossing of the singlét and triplet potential curves is traversed
collision--once as they approach

2

and once as they separafeFFand the spin-orbit interaction is simply

only twice during the O(lD) + N

too_weak:to.yield a largeveﬂough'transifion probability.3 In

'additioﬁ, this atom-atom picture cannot explain the ekpérimental
obserVationavthat a- sizeable fractidn of fhe approximately 2 eV
eXOergiéityrappeérs as vibra;ional excitation of the pféduct Nz.

The picture which.seems to exﬁléin_both of thése results—-the
relatively.large rate of reaction (1.1) and the amount of vibrational
exéitatidnvof product Né—-is'to fealize that N2 is_not an atom,

'thaf iﬁ hag internai degrees df fréedom, rotation and_vibration.
Since fhe singlefipétential is:strongly'attractive,‘furthermofe,
-iﬁ is reasonatle fo“expect that ﬁhe'collision‘of.O(lD) + N2 will

excite sufficient rotation and/or vibration_ova to "trap" the

2

oxygen atom, i.e.,, to form a collision complex; Figure 1 depicts

this mechanism skematically. Considering rotational excitation
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alone, for thermallehergy collisions it requires only'a Aj = 6
rotational excitation of Nz from ap initial rotational stéte
j=6 (the'most proBable'one ét 300° K) to result in trapping.:
If this coﬁplex formation does océgr, then it is clear that even
though the gpin-orbit iﬁtéraction is weak a sizeable quenchihg :
. cross section cén result--because the cfbssing:point will be
traversed many timésééand tha.t:vibrational'excitatidn,of,N2 will
bé,signifiéant. |

[Recent‘experimehts_by Lin and Shortridges.alsovshow substantial

vibratiqnal excitation in the quenching of 0(1D) By Co: -

olp) + co » 0(32) +_ co e , (1.2)

This réactibﬁ has ‘also been found6 to have a large (v 7 x 10“_-ll

cm3/moiec. séc.)'fhérmal.rate constant andris thus similér
qualitatively to réact1on7(1.l);”this is'réasonabig; of'course;
o since’O’—:CO:and O’—'Nz are iédelecfrbnic and théir‘popenti#l»
‘energy surfaCes,theréfofé'éimilar. Because of this similarity
of potenéial surfaées,_the qualitative results'of‘our present
work apply equally well fo quenching of 0(1D) byvCOIasfby NZ']

" This paper pfesents.calculations which support.this point
'.of view, i.e;, which.show tha; the cross section for complex
formation on the gréund statevsinglet potential surface is size-
able. We also show how a statistical treatment of the collision
complex can be introduced to simplify the.calculation of the
quenching cross section and the distribution of prbduct'states.

1-2,7

~ Of earlier theoretical treatments of this problem our

L)
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approach.is'most akiﬁ to that of'Tully;77thé.primafy_difference
bétweeh_the presént work‘and:Tully's_is that we QSe classical
trajectory calculations to determine thekérossléection for
complex formétion—-rathef than estimating it from a sphérically'
symmetric C6 coeffiéient-éand the form of the statistiéal modgl
- that we develop is somewhat differentvfrom the one used by
Tully.

v Section.II fifst discusses the formulation of the problem
and_develobs the sﬁatistic#lxapproximation. SéCtion III'des;
cribeévtﬁe‘pbten;ial surfaces used for the trajectory calculations,

the resulté are presented in_éectipn IV,'and Section V concludes.



I1. THEORY

A;,'Descfiption of ‘the Model.
'Althbﬁgh more than one singlet potential surface arises when
O(lD) and N, approach one another--and more than one triplet surface

from 0(3P) and N, ~--we have considered a simplified model'consisting

2
of only one singlet and_oﬁe triplet pdtential eherg§'surface, designat-
ed V1 and V2,‘reSpeétive1y. " Section III describes the §§rti¢u1ar
potehfial fungtioﬁs;that'we have used. |

The pfocéss in Eq. (1.1) éan be adequately‘described by:a
'TullyéPrestOn'"sﬁrfacé—hopping"'mode1;8 in this approach the puclei
move'élassicélly’dﬁ potentialiénergy surfaces, héving the'pcssibility
of'changiﬁg froﬁvone surface to another only when a grajeétory crosses
an intersection‘of'the‘;wo poféntiél surfaces; fhe pfobabi1ity of
éhanging surfaces at anrintersection is given by.fhe'Landau—Zeﬁer
_ formula. The present application of'this1mode1 is éctually more .
b,straightbforward than wasJTully and_Prestqn's8 qriginal work on
the H+f+'H2vreéétion, for thé spiﬁ—orbit interaction.which couples
theAth eleéttonic,étates is much'weaker than tﬁé electrostatic
éoupling between the two.states of the H3+,system. For the prééent
appliéation,>thereforé, the nuclei can'be.assuﬁed to move.on the
"diabétic" potential 3urfaces’which'actually interééct, and there
is no needvfor a velocity correction8 to the trajectory when
changing surfaces. |

Within this model the quenching cross section,-c

Q’ is given by

o 2 -1l _ ) () : .
OQ = TT'bmax N Z | P.Q (El ’gl ) oy (2-1)



where (pl;ql) denote the initial values for the cartesian coordinates
and_momenta of the A + BC collision system.. These initial conditions
are selected by Monte Carlo sampling methods in.the usual way, |
the index n‘denoting'the specific set of initial'conditions for
the nEh trajectory, bmév is the maximum impact parameter that arises
in the sampling of that variable (. e., b = max“f_. E a random
number between 0 and 1). PQ (gl,gl) is the quenching prbbability
for thevtrajectory that begins in the initial asymptotic region
with initial conditions (pl,ql) | ‘

The Landau—Zener approximation gives the probability of not

changing surfaces at a given crossing_encounter as

P = exp [— Iy, @en?id AV(g(t))l]'_ . @

K3

: mheref
AV(q) =, (q) v (q) o
and eyalnatea at t = to, to'being the root of the eQuation
WgEn=0 . o | o (2.3)

i.e., the ‘time when the trajectory is at the surface intersection,
(q) is the spin-orbit interaction which couples the two potential
surfaces Vl(g) and V (q) The probability of changing potential
surfaces is 1 - p. Within the surface-hopping model8 the net :
probabilitybof quenching, PQ

ofvK.’(Z.l), is in general the
product of a seqnence of probability factors, p's and (1-p)'s,



one factor for each crossing encounter. .Because'the Spin—orbit
interaction is so small, however, (1~p) is much smaller than unity‘

end it is essentialiy no epproximetion in such circumstances to

negiecc recrossing, i.e., to assume that once the:trajectory has
crossed from the singlet to the tfipietVSurface thatvit‘doee not
.returnvco the singlet surfece on any subsequent'crossing'encounters.
'(Accordingito_Figufe 1 it would have at most only oneechence to do
sof) With this assumption.the net probability of not quenching,

1 - is the product of the probabilities of not quenching at

PQ’
each individual crossing encounter, i. e., the only way of not‘
quenching is not to quench every time-the surface intersection is
crossed:

1= Bq = PyPpPyes s S ew
where the index k in {nk} refere to the different crossing
encounters. The netbprobability of not quenching is thus given
by

Ly = e [ }[:321 L e, )) 2| EE-Av(q<t))| k];(z.s)

where tk'is the time of the kEE crossing encounter; since

| - -
2oV @) /5 & @] =y ,
- | | L

=}

= ae vy, @eN? SIV@EE)N] . (@.6)



(2 5) for the non—quenching or survival Erobabili;z»has the

form of exponential decay

,1=P, = exp '[- S/ dt I‘(t)/h]. . S 2.7)
where T'(t) is given‘by a "golden rule"-like expression:

T(e) = T(g(t)),

N 2
I'(q) = 2m VlZ( q)

siav(Q)l . S (2.8)
The quenching probability in Eq. (2.1) is then finally given by

Pyogy) - 1- exp {- f at ﬁf vy, (ae)? S1av(geN1}, (2.9)

where the trajeétory g(t) iﬁ the integfand of the exponent is fhe
one whiéh movés‘on tﬁe singlet potential surface with initial
éénditions'(gl,gl). As discussed in»fhé Introduction, therefore,
even though the quenching probability associated with a“éingle
crqssing.encouhter is»qﬁite sma;l, PQ can be sizeablé if ﬁany
crossings éccur; it is easy to'gee; in fact, that PQ

unity in the limit of an infinite number of crossing encounters,

approaches

i.e., a vefy long-lived collision co@pléx.

As an aside, it_is'intérésting to note that the above forﬁula,
Eqs. (2.1), (2,7)-(2;9), also perfain to the decaybof an initial
-‘eleétronic state into a cphtinuum of fiﬁal electronic étates,.as

is the caéevfor describing Penning Ionization



* ' - - . o '
A"+BC » A+3BCT+e . | - (2.10)

Here, of course, the crossing ie.rigorously irreversable because

the electron leaves the écene, whereas ihbthe'discreteFdiscrete
proceesvbeing.considered aoove the irreversable netore ofbthe.'
transition arises becaﬁse the probability associated with re—crossing
is smalll“For ﬁﬁe discretefCOntinuum proeess in Eq.'(2.10)‘rhe
width fonction F(g) is not restrieted to a surface in coordinate
space as in Eq. (2.8); the § foncrion factor.is replaced»by a

density of states factor:
SIV(Q] ~ o . D - (2.11)

C(1f rhe finalisrate is discrete,vthen'the "density of final etateg"
shOuld'of'course be ag function;)' With this modificatioo, [Eq.
(2.11)],_therefore, the‘anelysie developed in this section 15
_directly appliceble to collisional ionization probleme-sqchvas_

Eq.'(2,10).

B;  Statistical Aoproximation..

.With the above formulae_one eeh.proceed to carry out a Tully-
Preetoﬁ8 surface-hopping calculation. 'This would be difficult for
the'oresenr éituation, for--as mentioned in the Iﬁtroduction——many
of the trajecrories result.io coﬁpiex.formation,reno.it'is‘extremeiy
di}ffi.cult.‘:l-0 humericailyvto foliow such long;lived trajectories.
Fortunately, however, the occurrence of complex formation allows one
to inﬁoke a statistical model to alleviate the need of following the

dynamics precisely.
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Specifically,ione invokes thé ergodic hypothesis to replaée

the time integrals in Eqs. (2.7) and,(2.9).by phase space averages.

Thus consider the quéntity A(pl,qi), the ékponentﬂin Eq. (2.9):

where_g(f;gl;gl) is the particular classical trajeCtory that is

determined by the initial condition (pl,ql). If this trajectory

forms a collision complex which lives sufficiently long to'behave

ergodically, thenvA(pl,ql) will deﬁend on p, and ql»onlyiﬁhrough

the constants of the motion--total energy E and total angular

momentum J--and the time average of I' can be replaced by an ap-

propriate phase space average. More specifically, this means

that

A(gl,gl)

where thé phase space average implied by <X>

"7 [%‘fdt F(g(tsgl,il))/ﬁ] | - (2.13a)

R

T < 1f/h>E 3 = A(E,J) . . '» (2.13b)

E’J._is.def:i.r_xed for

any function X(p,q) by

<X>
Xp.J

L]

_p(E,JS

where 6( ) is

p

p(E, )" fapsdg X(p,g) SIE-E(p,q)] 8[3-T(p,q)] BIE(Q)] (2.14a)

fdpfag SIE-H(p,)] 6[1-J(p,)] KIF(O) ',-(z.lab)

the usual delta function and h( ) the step.function

h(x) =1, x>0

0, x<0 ' .

s
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‘J(p,q) and H(p,q) are the values of total angular momentum and
total energy determined by the phase point (p,q), and f(q) is
the function which defines the collision complex, i.e.,.the-
,collision‘complex is the inside of the closed_surface in

configuratizpn‘.s_pace11 defined by the equation
- £(q) =0 > —_— v L - _ (2.15)

£(q) > 0 (<0) being the inside (outside) of this “critical
surface" defined by Eq. (2.15). The values E and J in Egs.
(2.13) and (2.14) are determined by the initial conditions

(21,21); ie.,
E = Hppgy)
P1o4y) -

The phase space average defined by Eq. (2.14) is thus over _
all phase space correspondlng to total energy E and total |
angular momentum J and which is inside the critical surface
that defines the cqllisiqn compiex. |
The timevr = 1(E,J) in Eq. (2.13), the_average lifetime
of>the cellision complex for a given total energy and total
angular momentum,vis also.given by statistical theory: it
is the:reciprocal of rhe average rate of £lux out_through the:

critical surface:

-1..1,4d ’ o
(E,J) 7 laer OPg; (2.16)
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" or (sin;e h’(x)_E.d(x)) o
‘-1 . i T _ : e L
T(E,J) ~ =< 5—6(f)|f|>E,J o . _(2.17)
wherell

vf(g)vi é%-f(g) = 3flg) . p/m (2.18)"

2

the factbr-izappears in the,definition of T [Eq.-(2.16)].because
th¢ abso1ute value of the flux acréss tﬂg critical surfaéé'has
eqﬁalﬂcohtfibutions from flux in and from fluX"out; |

Tﬁe statistical approximation f§r the queﬁching prbbaﬁilityl

is thus giveﬁ by

| PQ(El’Slj ) PQ(E'J) o | . L e
' where
E=HpLey) - | - o (é.20a)
J=JGkpe) | I | . (2.20b)
_ and vhere
PQ<E,J) =v;A;-éxp:[; T(E,J) <F/h>E;J] _ “ _ ', o :_(2.2;a)'

1 exp |- 2Ty 2 S d ol ’
=1 exp»[ F Vi 6(AV)>E’J ! <3 5(f)|g|>EvJ . (2521b)
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"For thé'applicatiqns_made iﬁ.this paper, howevef, én addifional
approximatién was made,vnémeiy'COnservatioh of total angular -
momentum wéé not explicitly taken into‘account;_i;e;,_the de1ta
funétions involving total éngular momentﬁm in the'phase’spacé
average [Eq. (2.14)] were oﬁitted. As a function dn1y of total.

energy; therefore, the average qUenching,probabilityxis given .

- by
P () = 1 - exp [- T(E) < r/n>E] - I (2.22a)
=1 - exp [-_<2h—" | vlzz 8 (AV)>, /'<'21— .5(f)|%|>'E] . (2.22b)

~ where for any function X(p,q) the average <X>.

‘is a microcanonical

Aphaserspace avérage’over'ﬁhe_region;of the collision complex:

. <X>E frp(E)flfdgfdg x(B;S)'6fE-H(E,g)] h[f(g)] - (2.23a)

p(E) = fdpfdq S[E-H(p,@)] hIE(D] .- o (2.23b)

There are known examples éf ﬁangular moméntﬁm-limitéa" reactions
- for whicﬁ this added appfﬁgimation would_bg pépf,-but'the pfesent-
.éystembshould not be such a case. The Apéendix gi&es more details
*‘Qf the eValuatiqn of the phase_spaée averages which aﬁpear-in (2.22)
-and elsewhere in this section. | |
With this‘éimplifiéation, that the quénching,probability‘
depen&s bnly onvthévtofallenefgy, Eq;'(2.1)’for-thé_quenching

cross section takes an extremely simple form because the initial
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con&ifions for ﬁhé‘tréjéégdriéé'correépond toia‘fi#ed inifial
o enefgy.v Tﬁe.pfoﬁéﬁiliﬁy-faéﬁbr iﬂ Eq. (2;1) iskfhus the same
.for-all.ﬁrajectories whiéhvform;éomplekes, So‘that Eq; thl).factors
intd.two,indépendénf'parﬁé} v | o N
| Q-(‘E_)" - dc(E)HPQL(-E) . S e

wbefelcé(E) islthe cross sectibn fot'compléx formation’-,

0

‘OC(E) =T bﬁax (NQ/N) 5 | , - (2.25)

N;;béing the nﬁmber of Mqhte‘Cafid-begunvtfaje¢£ofies which

form complgxés, and with'PQ(E)'givegiBy Eq. (2;22) above.

(There a;é actuaily,é sméll.ﬁuﬁbér‘oi f;ajectories‘which.
queﬁéh:with;ut forming'comélexeé;'ana.ﬁhe conﬁribufioh from 4
theﬁ_should_be édded'fo_;he exp:eésion in Eq. (2;24). " This
cfoss sectibnvfot "direc;ﬂ_qqenéhing,‘however, was ﬁegligible

in cémparison bfvthat_from';he complex meéhgnism.for allvcéses
sfudied.) The quenching cross section is thus the cross seétioﬂ
for complex forﬁ;tiQﬁVmultiﬁliéd.by the average probability that

-the collision'complek quenches.

C. Distribution of Product States.

Tﬁe fraction ofvthe téta1 énefgy whi§ﬂ appears as vibrational
excitation of prodqct NZ can only Be obtained rigqrbuélyvby -
following thé complete trajgctories ;hrough the long-lived collision
complek‘td the final asymptotic-region, i.e., by applying the

surface-hopping mode18 1g‘t6to. As mentioned above, this would
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be extremely.difficult.to do and.is probably nnwarranteo, Within
the spiritiof the statistical approximatibn introduced :above,
- however, one can obtain this quantity qu1te simply.

Consistent with the assumption of ergodicity ‘0of the coll1s1on
complex, one may assume»that,all degrees of fteedom of the collision
complex are in microcanonicalveqnilibrium.- 1f one adds the
additional assumption, common to statististical dééctiotions of
final state disttibutions, that there is no energy.ttansfet
between translational and internal degrees of freedom as the
fragments separate from the region of the transition, then
the probability P (E E) that a collision complex with total
energy E quenches and has’ an energy € in vibrational excitation

of Nziis proportionai tov:

'-_Pd(e,E) <(T/h) 8(e-h

b) o, - (2.26)
where hvib is the vibrational Haniltonian for an isolated N, .
molecule (see the Appendix). Conservation of probability--
fde P _(e,E) = P, (E) - _ - (2.27)
-fean then be used to determine‘PQ(e,E) absolutely:
PQ(&sE) = Po(B) <(T/h) S(e-h 0>, /<T/h>p (2.28)

with'PQ(E) given above by Eq. (2.22). The cross section for .

_ quenChing and having an internal energy £ is then given—hy '
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AOQ(é’E) = GC(E) PQ(e,E)‘ C . o .: : .‘. 4‘_(2.29)

and one‘sees.that the>integfal of this over all € is the total

quenching_probability'of Eq; 62.24)§
Jde 0y (e,E) = op(B) - e @30

"D.i'Unimdlecular-Decomppsition:of NZO’

For completeness we give the expressions for the rate of
unimolecular decay of NZO which result from the'abo&e model.
If k(E)‘is the micrqcanonical unimoleculer decay rate, then
standatd unimolecular theorylz_gives the effective (pressure .
' dependent) unimolecular rate constanf as
i o -1, -BE  wk(E) :
L (@) = Q, B JdE p(E) e S T6) , (2.31)
'where_m is the collision frequency with bath molecules, and Qb
is the par;ition function for the complex:

Q, (B) = JdE o(E) e FE
where p(E) is defined by Eq.‘(2.23b). The statiéticalvquél
described in Section II B gives the microcanonical unimolecular

/
decay rate as

k(Ej'=vT(E)-} PQ(E)_ sy | o (2.32)
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where ‘r(E)"1 and P'(E)‘are the same quantities as“in Eq.'(2;22);
‘the function f(q) which defines the critical surface should in
this case, however, be chosen as f(g) AV(q), i.e., the critical
surface is the surface of intersecticn of the singlet and triplet.

In the strong coupling limit, V12 > o, PQ(E) + 1 so that

< E-é(f)]fl > (2.33)

i

pim k@) = T@ET
Vi
the“Standard RRKM resulc for a single”notentiel surface;ii.e.; in
this limit the 'rate determining step'" is the rate of gefting to
the critical surface and crossing it, for once there the spin—
crbit transition occurs instantaneously (since V12 w).. In the

weak coupling limit, V »> 0, one has

12

PQ(E) ‘1 - exp [—AT(E)-<.F/h >E]

13

@ <TAS o, o @ae

so that k(E) of Eq. (2.32) becomes simply a phase space version

of Fermi's "golden rule":

2im k(E) = r(E)fl'r(E) < T/h >E"='v< /A >
V.. >0 - . B E
Y12
. - R
- < '—h—Vlz' | G(AV.).‘> E ;. N - . (2..35)

here the "rate determining step" is the rate of singlet-triplet
transitions induced by the spin-orbit interaction at the surface

intersection.
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III. POTENTIAL ENERGY SURFACES~

Within the model described in the previous section it is necessary
to determine the cross section for complex formation on the initial
singlet potential surface and then an average quenching probability.
“The cross.section for complex formation, which inuolves molecular
dynamics only on the singlet potential energy surface, was determined
by classical trajectory calculations ‘with two different model potential
surfaces (see below), and the quenching probability--wni(h involves
both the singlet and triplet potential surfaces--was obtained from

. (2. 22) Numerical values of all potential parameters which
appear in the expressions below are given in Table I.. |

The ‘irst potential surface, designated I, iavolves only trans-
lational-rotational coupling; vibration was uncoupled‘from these
modes; so.thatfloss.of_energj.from translation can occur only‘zig'
rotational excitation. Specifically,'singlet‘potential:surface I
1o . , . _ . ,

Vll(r§R.Y) = vy &) + vintI(r.R;Y) | » | - @G

2

P

where N (r) is the vibrational potential of an isolated N2 molecule
(taken to be a Morse oscillator)

» 3 —28&-(r--rN ) | -BN_(r—rﬁ ) '
"u(‘)‘le[e. 2 Y, | ’

- (3.2)
2 .
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and the'interéction term is a Morse function whoSé'well depth is

. . L
modulated by the angle Yy between the diatom vector r and the center
of mass .translational coordinate vector R:

g~20(R-Re) _, e‘o‘(P"Re)]; (3.3)

The'énisdtrépy parameter C wés chosén td'repfbduce aﬁproximétély
the well depths. of thezéollinear and perpéndicular a:rangements
.Of N2 and 0(1D).13; | |

Potential sﬁrface_II‘for the singlet state iﬁcluded; in
addition, vibrational cbupling so that compiex'forﬁation would
occuf'gig vibrational and rététional exéitation,, The same
angula; cbuﬁling as in surface I_ﬁas retained, and the vibratiénai
coupiing'was.introduced'by (1) allowing épmé of the Morse parametefs
of the Nz vibratiopal poteﬁtial‘tq'depend parémetrically dn the
poéition of the 0 étom, and (2) haQing the distance in Eq. (3.3)
vréfer, when Y = 0, to the N = 0 séparation rather than to the distance between

0 and the center of mass of N,. Thus potential surface II is

| o e2Raer _, BT
.VlII(r’R’Y) = Dl [e. B]. 1" - 2 e |

~20(R _I_ r). ~o®R - £ -

| - 2 2 7o 2 ro)
+'D2 [1v—-; (1-cos Y)] [e _ -2e y (3.4)

_where Bl and r

1 are functions of R:
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R

1t}
[}

w0

wo * By = B S®  (.sa)

B, (R)
e 2 2 2

k4 (o -1 ) SR s © (3.5b)
N0 TN, T N,0 : o

s
"

| rl(R)
vS(R)“is“thé “SWitéhing function"

s®@ = &+ Leamper) ., 6.6

and is defined so that
S(®) = 1, R>»R,

0, R<<R .

>. For lafgekR, fherefére, Bl(ﬁ) andbrl(R) take on the values
corréSponding,fé the isolated N2 moiecule, and for small_R‘
‘vthéif vaiues'were chosen so that potential II has the corfect *
bond forée éoﬁstants for the N,0 moleéﬁlg. -Surfaée II de- |

generates into surface I with the replacements Bl > BN .
. : : 2

=

T, > Ty s and r -~ ry in the second term of Eq. (3.4) (i.e.,
= r +.l-r ).
e o] 2 N2 ‘ .

The tgiplet potential surféce,”which 18 needed bnly.to
construét»the differénce pofential AV(S) fof use in coﬁputing:
‘the quenching probability frbm Eq. (2.22), was fakén'to héve
an exponential repulsion beﬁwéen O(BP) and- the centér of ﬁass

of N,
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Vz(r,R,y) = vy (1) + All- c'(l-coszy)]_,e.‘“'R . (3.1)
SR : | 5 |

b

and the spin-orbit interaction, Vl 2(3),.was assumed to be

indepéndent of coordinétes and have the vélue

’Vlz(r,R,Y) = V12' = 80 cm'-1 . - _ (3.8)

The function f(q), which defines the region of the collision

. complex via Eq. (2.15), was taken as

EGRY) = R_-R . BRNEX)

Aithdﬁgh none of these.ﬁOtential gnérgy surfaces éfe expected‘
fo be a particularlyvaccurate representation of‘the 0 - Nz‘systeﬁ,
they are qualitatively reasoﬁable in fheir'gross features énd should
maké it possible to answéf the basic duestions, némely, is theré an
appreciabié cross‘section for O(IDj + N2 to form a collision qomplex.
By comparing the rééuits obtained from surfaces 1 and IT it should

‘also be possible to tell Whether complex ‘formation occurs primarily

through rotational or vibrational excitation.
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IV. RESULTS.

Figﬁre 2_éh9w§ the'quénching‘ptbbaBiliﬁy, PQ(E) §f Eﬁ. (2.22),
“as a function of initial cbiliSiOn energy for potential surfaces I
and II. (Since thelinitiai state OvaZ is always taken‘as_vw= 0,
'j = 6, the total energy and the initial'transiation eﬁérgy are
reléted'simply by an‘additive-éonsfaﬁt.)' At thérmal énergies'the |
quenching probability is close tofunity, so that | o
- the créss section for quenchipgvis esséhtiéily thaﬁ for compléx
formation. At higher collision'energies the probability falls‘
because the lifetime of the compiek is shortef?and_;bere is thus
,1es§‘chan§elof quenching. 3
Trajectbry calculations tovdetérmine the crosg séctiop for

coﬁplex fofmation on the singlet surface were carried out at
cbllision_enérgies 0.03,‘0.6,'and 1;2 eV for potential surfaces
I and II. 'Table II gives the cross sections for complex’formé;ion
which4-multiplied by the appropfiate quenching probability—-gi&e
the cross sections for quenching,.also listed in Tablé I1.- |

_ _Thé inclusion of vibrational coupling in surface iI‘is seen
to inc:ease the cross section for complex_formation, more so fhe
higher thé collisioq energy;.thus 6c is'25%, 100%,.and 6dOZAgfeater
for surfacébII fhan for surface I ét collisionaenergiés of 0.93,
0.06, and 1.2’eV, réspectively. At thermal eﬁergy, therefore,
rotational excitation accounts fdf %-of.the éomplex formation;
while at higher enefgies vibrational excitation is the dominant

S

mechanism leading to complex formation.
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An estimate of the thermally averaged rate constant can be

obtained from thé expression

kg = ) ¥ o® | (4.1)

for E = kT and where
o
§ o= emt?
5

v the'facﬁdr l-in'Eq. (4.1) is a statistical factor which accounts
for the fact that only one of the five electronic states arising

from 0(1D) + N2 cdffespdnds to the strohgly attractive ground

state. Eq. (4.1) gives a room temperature (i.e., kT»=‘0,03'eV)
' 1 11

rate constapt of 3.9'x.10_1 and 5.4 x 10~ cm3/mol. sec.,
'réspectively, for potential surfaces I and II, in ekceilent agree-
ment with experimental values.6 At kT = 0.6 eV the quenching

1 cm3/mol. sec.

rate has decreased only to 1.1 x 10_11 and 1.3 x 10°
for surfaces I and 11, respective1y5 and thuszaﬁpears not to Bé
a sepsitiQe function of_température;

| Figure 3 shows.the vibrational energy:distribution of product
NZ’ obtained using potential surfacg I1, for thé.three different

collision energies.

The average energy. in. yibratienal excitationm,

€ = Jde © PQ(esE)/Bo(E) . | o (4.2)

increases with increasing collision energy E, and the distribution

broadens. At room temperature, E = 0.03 eV, the average energy
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in vibrational excitation of N2 is approximately 20% of the
exoergicity of reactionv(l.l); also in good qualitative

agreement with the latest experimental results.4
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V. CONCLUDING REMARKS

Our Basic pidfure of ﬁhe quenching mechéniém is the same as
Tuliy's,? naﬁely that O(lD) +'N2 forms a collision_complexzon the
singlet potentiéljsurface and thus passes through éhe-infersection.
with thevﬁripletIState ﬁény times.‘ The results présénﬁed iﬁ Séction
IV are also in qualitative, and éven semiéuanfitétive (aéreemént
with Tully's,vSpécificailyithe magniﬁude of'the thermal rate
constant and the amount of enefgy which appears as vibrational
excitatioh of product NZ'

‘The way innwhich compiex'formation.is treated in tﬁe present
work, however, and the nature of the potentials involved, are quite
differentvfromFTu_lly's.7 Tully uses.only'a dispérsion term,
l—'C6/R6, for the singlet”pgtential in order to determine a cross
section for complex’formation, while our potential surfaces I
and II do not even have suqh.a dispérsion term; thg cross section
for complex formation waé determinea'in our cése‘by actually
computing classical trajectories forvthe assumed rather érude,
but qualitatively réasonable potential sﬁrfaces., The way in which
the statistical approximation is used to determine the average
quenching probability of thé collision complex is also“somewhat
different in the two approaches.

In view of these diffefences in épproach betﬁeen ours and
_'I‘ully'é,7 it is reassuring that the results of the two treatﬁents
are in such good agreement. - This is cbnsistent with Tully‘s

observation that his results at thermal energy are rather insensitive
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to the‘Cé coefficient he.estimates and with the similaritjsof our thermal
energy results for pqtential surfaces I and Il. Atvhigher p .
collision energy Tﬁllj's model for determining.thercross section
for complex'rormation becomes invalid, while thefclassical
trajectory approach is'of-course still applicanle. Our results
using potential surfaces I and II (cf. Table II) are. qu1te
different at these higher collision energies, however, indicating.-
that a more accurate characterization of the potential surfaces
is'reqnired to obtain reliable results at these"energies.‘ |

In conclusion, this'process is a dramatic demonstration
of how different an atom-diatom collision can be,from an atomeatom
collision,and how radically.the picture chenges ﬁhenladditional :
degrees of freedom are available to participate in the collision
dynamics. If this.were'an atom—-atom collision system, the quench-
ing cross section at thermal energy would be extremely small,
,proportional to the square of the spin-orbit coupling; for the
present'atom-diatom case the cross section is sizeable and
essentially independent of the magnitude of spin-orbit coupling.
It is interesting to contemplate what other surprises may 1ie in
store as one learns more fully how to incorporate ‘these additional

degrees_of_freedom which are present in molecular systems.
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‘" Appendix: Phaseisgace Integrals

The phase space integrals'required!in Section II are éll»of

the form

®, = p®)" aprag x'(g,;p SIE-HG,@)] hIE@] (A1)
where

0 (E) ='fdg[-dg S[E-H(g,)] BIEQ@] - f._(A,z)

(The normalization factor b(E) is not required in order to

(E) and P_(g,E) of'Séctions IIB and IIC. because.

compute P
PERE %o Q

they involve a ratio of phase space averages, but it would

be required to determine the unimolecular rate constant of

Section IID.) Choosing cartesian coordinates and momenta

- for the A + BC system

> o>
q = r, R
_ >
E:P,P ’

- > - ’ - SN
(r,p) being the cartesian variables for BC, and (R,P) the

cartesian variables for A relative to BC, the-Hamiitoniaﬁ

is
p2 2 _ o
H=*>— + % + VERY) o, | . (a.3)

2

where U and m are the appropriate réduced masses; Y the éngle

- :
between ; and R, and V- 18 the singlet potential surface. If
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the function_f; which defines the collision comple#ﬁés_discussed .
regarding Eq. (2.15), does not involve momenta¥—as we have . o S s
assumedll for the applications in this'paper——then it will also
depend énly on the three coordinates r,R, and Y which'&etgrmine:
the size and shape of the A - B - C triangle.

The normalization factor p(E) is thus given by

p(E) = fd3;fd3§ h[£(r,R,Y)] fd3;fd3§ SIE - V(r,R;Y)

2, 2 - e -
-P /2p -p/m] . . . Co (A.4)

The momentum integrals can ali'be carried out, giving
. , T

p(E) = s> (umy3/2 fd,zfa R n[£(z,R,Y)] [E - v(t,R;Y)]z. (A.5)
with the domain of iﬁtegration restricted tq the tegion:for which
E-V(@E,RY) 20 . S  (a.8)

The integral over the three Euler angles which orient the A - B -~ C

triangle can also be performed--i.e.,

LY

- > : 2 ® 2 = 2 1
fd3rfd3R.F(g,R,y) = 81" fdrr° [ dRR" [
o . o -

+

d(cosy) F(r,R,Y); (A.7)
Nl .

for an arbitrary function F—ésobthat p(E) is giveﬁ'fiﬁally by

o(E) = 327 (um) 32

far 2% fam R? fd(cosy) KI£(r,R,Y)] [E-V(r,R,y)1%. (A.8)
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For the casé
T - | | g L o2m 02 srn N
- X(p,) = T(@Q/h = 5= V ,(r,R,¥)" §[AV(r,R,Y)] (4.9)

the momentum integrals and. the integral over the threevEuler
angles can all be evaluated in the game manner as in the

preceeding parégraph,'so,that :
o o -1 5 /
<F/h>E = p(E) ~ 321" (um) fdr 2 de R fd(cosy) h[f(r R,Y)]

oom 2 - TN
X GV, @R SAVE,R]E - V(R (4.10)
~ Because of the delta function in the integrand of Eq. (A.10),
, | ‘ _ : . ‘
one of the integrals can be evaluated directly, SdR say, and
the remaining integréls over r and cos Y carried out
nuﬁerically.
- | E S )
T(E) 7, the reciprocal lifetime of ‘the collision complex,
corresponds to Eq. (A.l) with
1 3£ (a) o o o
X(p,q) = i-d[f(q)].|‘5§gl *p/m| -, (A1)
_and this involVes the momenta in a ﬁay other than.just in the - ..

Hamiltonian. The momentum integrations can still be carried

out, however, giving

e = < T amlEy

a2
_ -1 327 3/2
= p(E) T (u_)

Ja rfd R 6[f(r R,Y)]



' _30_' s

where

‘if_'z T
F): )4

. of
T

(o4

Eq. (A.6) also applies here, so that one obtains

: - 4 e _ - S :
T(E)—l = p(E)_1 ZSisﬂ- (um)3/2_fdr rzde szd(cosy) S[f(r,Ry)]
_ 2 1/2 : o
. ) 2
IE - v, R0 —2- | ] + %_[%{q 1. (4.13)

With £(r,R,Y) given by Eq. (3,9) for the present applications,

Eq. (A.13) simplifies to

4

-1 256 1/2 2 5/2

(um > 3/2 (2/u) far tfd(cosy) [E-V(r,R,y)]

w(@® = @
(A.14)
and the two remaining integrations were carried out numerically.

Finally,Athe'vibrational enérgy distribution of N2 corresponds

to Eq. (A.1) with

X(p,qg) = 8(e=h ) T(@)/h
=g, @ S Sleh ) (4.15)

where the vibrational Hamiltonian is

hvib =P, [2m + v(r) . . (A.16)
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P, = ; . ;/r being the_fadial (i\é.,vibrational) component of

the B = C momentum and v(r) the_N2 vibrationél.potential. Thus
_ N . ] o L, IR ,‘gﬂ _ )
<8(e-h ;) T/h>, = p(E) ° fd3r[d33 h[£(r,R,Y)] 5 Vlz(?’R’Y)_
X 81AV(r,R,y)] Jdp/d P S[EV(r,R,Y) = P*/2u = p*/om]
X 8le- v(r) = ( » D/me?) . o (A.17)

' Cérrying out the momentum integrals and theﬁintegral over the

three Euler angles in this case gives

4

<8(emhyy) Th > = o7 B8 (m)32 far ¥rar R%fa(cosy)

LEE, R BV, R SIVGELR T ey, i P P evien T2

(A.18)
where

Viﬁt(r’R’Y) = V(r,R,y) = v(r) .

The integral over R can be carried out by Virtue of the delta

function, and the remaining two integrals were evaluated numerically.

[Note that since

Jae [E-efvint]3/2 [e-v(r) T/ =:%§‘[E—Y(r,R,Y)]2_ ,

the integral of Eq. (A.18) over € gives, as it should, the result

in Eq. (A.10).]
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In qoncluding,_it is interesting to consider a very primitive
model which illustfates-the qualitative nature of the vibratiénal
energy. distributién thaﬁ'is predicted by statistical theory.
Suppose the totai Hamiitohiaan is the sum of‘tﬁat‘for,two non~

.
interacting systems 1 and 2,

H=nh 2 s

l‘+h ' v - » o

and that hj and h are a set of s

1 2 1 2
respectively. _If_P(e,E) is the probability that hy has an

and s, oscillators,

energy in the range (E,é+de), given that the total energy is

E, then ohe has’
P(e,E) = fdgfdg’é(s—hl) G(E-hl—hZ)/fdgfdgé(E;hiehz) o, (AL19)

and for a system of oscillétors this is easily found to be

s.-1 . s,-1 s +s-1 ,
P(e,E) =Ce T (Ee) 2 fEL 2 , . (A.20)

where C is a numerical factor.
Often the distribution in € is observed eXperimentally5
to be linear on a semi-log plot for a an appreciable range

of €. This implies that
-4 P(¢,E) % f tion of € ; A. 21
i . unction o s . ( - )‘

from Eq.v(A.QTD ohe finds

s.~1  s.-1

4 - 2 _ 1
Ic .Qp P(e,E) T = .
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1

For s, = 1 and €<< E, this does satisfy the condition in
Eq. (A.21), i.e., the g-distribution is Boltzmann, characterized

by the temperature

kTe é'E/(sz -1) .'_,

" The fact that a sub-system of a much larger microecanonical
system behaves canonically is,-of course, a well-known

phenomenon .in -statistical mechanics.

e
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It may sometimes be desirable to define the collision

complex by a surface involving coordinate and momehtum
space, i.e., by an equation of the form

this is actually the caée for the orbiting model used

by Tully (ref. 7). Eq. (2.18) would then be modified

according to

e - 4 C9f e f e
f(E,S) = 'a"E' f (B’S) = "a"—" e S + ‘a“‘ M E
- of _3f 9y
5q " B/M % "3 .

e

‘P; J. Robinson and K. A. Holbrook;‘Unimolécular‘Reactions,

Wiley-~Interscience, New York, 1972,

A. Chutjian and G. A. Ségal;‘g,'Chem;‘Phx_; 57, 3069 (1972).
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. TABLE I. Potential Parametersa

D, = 0.364
D2- o= 0.138'
r = 2,07
N,
r = 2,13
N,0
r = 2,25
(o]
R = r +1, =3.28
e o 2 NZ' *
R = 4.9
o .
R = 8.0
(o)

1.785

1.423

1.135

0.8285

0.01

0.75

0.7

1.7

a , . . - ”
All in atomic units. These numerical values refer

to the potential functions described in Section III.

‘\



 TABLE II.

Results for Quenching of o(lp) by‘Nz.

Surface I®

e ‘4L1 -~
"Eb€ 'OCG"véqd -.kqe
0.03| 38 26 3.9 x 1071
0.6 [ 13 0.7 #.1 x 10711
1.2 ] 3 0. 0.4 x 20712

- a

13

described in Section III.

(2.25).

The initial translatiohal energy in eV.

. . E, as defined by Eq. (4.1).

as defined by Eq. (4.2).

v'»fvSurface_II?

The quenching cross section (AZ), as defined in Eq. (2.24),

The aveage enetgy'(ev)'iﬁ vibrational excitation of product Nz,v

The results usingaéinglet.potential surface I, or II,-which ate

. o N . : i
The cross section'(Az) for complex formation, as defined by Eq.

A N\
O ’qu v er f
48 36 53k 10;11f:»o;34
26  2 13 x ;o‘lef 0.54
9 1 0.7 x:IO;lliT

0.75

The rate constant (cm3/mol.vsec.) for quenching at a tgmpefature kT =



Figure 1.

~and N

Figure 2.

Figure 3;

triplet,vVZ(r), potential curve for the 0 - Nz_system.
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'Figure Captions

A sketch of the ldwest_singlet, Vl(f), and a typical

The arrow'dépicts a thermal enérgy collision of O(lD)

2

excitation of Nz'(ocquring predominantly at the inner

which results in sufficient rotational/vibrational

dléssical turning point) to form a collision complex.
The quenching'probability as a function of initial
collision energy E, as defined by Eq. (2.22); the lower

(upper) curve is the result of using singlet potential

surface I (II). The insert shows the low energy region

with an expanded energy scale.

The distribution’ of vibrational energy € in the product

N molecule at three different initial collision energies

2

E, as defined by Eq. (2.28); the quantity shown 1is also

.identical to the cross section ratio OQ(E,E)/G (E).

Q

'~ Because the ratio of the probability distribution to

the total quenching probability is plotted, the area

under each curve is unity.
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responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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