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S U M M A R Y
We establish analogies between equivalent source theory in seismology (moment-tensor and
single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of
volcanic eruption signals. Although infrasound (acoustic waves < 20 Hz) from volcanic
eruptions may be more complex than a simple monopole, dipole or quadrupole assumption,
these elementary acoustic sources are a logical place to begin exploring relations with seismic
sources. By considering the radiated power of a harmonic force source at the surface of
an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force
has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as
an acoustic dipole. We support this by demonstrating, from first principles, a fundamental
relationship that ties together explosion, torque and force sources in seismology and highlights
the underlying dipole nature of seismic forces. This forges a connection between the multipole
expansion of equivalent sources in acoustics and the use of forces and moments as equivalent
sources in seismology. We further show that volcanic infrasound monopole and quadrupole
sources exhibit scalings similar to seismicity radiated by volume injection and moment sources,
respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that
agrees with observations showing a linear relation between radiated power of tremor and
eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano,
Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption
did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit
other scalings even during the same eruption.

Key words: Acoustic properties; Volcano seismology; Explosive volcanism; Volcano moni-
toring.

1 I N T RO D U C T I O N

Relating seismic and infrasonic signals generated during volcanic
activity to eruption parameters is a fundamental challenge for vol-
cano monitoring. Co-eruptive signals arise from the ejection of
magmatic products from the vent and as a result should contain
information on the eruption rate. Complicating matters is that many
other types of seismic and infrasound signals can be generated dur-
ing an eruption, including lahars (Zobin et al. 2009), pyroclastic
flows (Yamasato 1997) and coupled waves from the air into the
ground (Matoza & Fee 2014). In spite of these difficulties, a seis-
mic signal known as volcanic eruption tremor is often identified in
the band from 1–5 Hz during sustained eruptions and is interpreted
in terms of the strength of the eruption (McNutt & Nishimura 2008).

Ichihara (2016) has given an extensive review of the state of
scientific progress in relating seismic and infrasonic amplitudes
to eruption rate. As summarized by Ichihara (2016), various au-

thors have developed power-law models with seismic or acoustic
squared-amplitude proportional to eruption rate raised to a partic-
ular exponent. The power-law exponents found by previous seis-
mic and infrasonic studies have ranged from between 0.9 and 10
(Ichihara 2016). The wide range of variability throws into question
which of these models is most accurate and under which conditions
they apply. Early studies comparing tremor and eruption rate did so
by extracting the maximum tremor amplitude and the highest plume
measurement for a given eruption (McNutt 1994; Roach et al. 2001;
Prejean & Brodsky 2011; Senyukov 2013). However, this approach
undersamples the dynamics of a sustained eruption lasting hours or
longer. Modern methods measure plume height with high tempo-
ral density (Arason et al. 2011; Petersen et al. 2012; Hreinsdóttir
et al. 2014; Ichihara 2016; Fee et al. 2017a), and as a result obtain
inferred estimates of eruption rate highly sampled in time, offer-
ing a means of improved comparisons with seismic and infrasonic
data.

Published by Oxford University Press on behalf of The Royal Astronomical Society 2017. This work is written by (a) US Government
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Eruption rates can be estimated from measurements of plume
height using an empirical relation developed by Sparks et al. (1997)
and improved by Mastin et al. (2009), which states that the rate
of mass erupted per unit time, termed the mass eruption rate
ṁ, is approximately proportional to the fourth power of volcanic
plume height, ṁ ∝ H 4. The eruption rate can also be expressed
in terms of the dense rock equivalent (DRE) volume eruption rate
qDRE = ṁ/ρDRE, where ρDRE is taken to be a common density of
crustal rocks (e.g. 2500–2700 kg m−3). This quantity should not be
confused with the true volume eruption rate q in terms of the plume
density, q = ṁ/ρp , where ρp is the density of the plume [e.g. 1–5
kg m−3 (Kieffer 1977; Ogden et al. 2008; Caplan-Auerbach et al.
2010; Fee et al. 2017a,b)]. The true volume eruption rate is impor-
tant when considering that it can be expressed in terms of the area of
the vent Av and the exit velocity ve of the plume material through the
relation q = Avve. The DRE volume on the other hand, is important
when comparing the amount of volcanic material erupted as tephra
versus the volume extruded as lava flows.

In this paper, we seek to develop scaling laws for seismic tremor
amplitude and eruption rate based on existing scaling laws between
infrasonic tremor amplitude and eruption rate. Such theoretical scal-
ing laws in volcano infrasound have a much longer history than
in volcano seismology. This is due largely to the work of Woulff
& McGetchin (1976), who popularized key results from acoustic
analogy theory and dimensional analysis to link monopole, dipole,
and quadrupole acoustic sources to jet velocity. Although Woulff
& McGetchin (1976) considered audible acoustic signals from fu-
maroles at Acatenango Volcano, their results have subsequently
been widely used by infrasound researchers. From the extensive lit-
erature review presented in Ichihara (2016), we infer that theoretical
models relating short period (> 1 Hz) seismic tremor amplitude to
eruption rate did not appear for effusive eruptions for almost 30 yr
(Battaglia et al. 2005) and as many as 35 yr later for explosive
eruptions (Prejean & Brodsky 2011). The delay between Woulff
& McGetchin (1976) and these subsequent seismic studies follows
from table 1 of Ichihara (2016). Regarding non-eruptive tremor,
pioneering work by Aki et al. (1977) addressed flow properties and
seismic amplitude of shallow tremor in the lower East Rift Zone of
Kilauea volcano. Aki & Koyanagi (1981) related the amplitude of
deep volcanic tremor at Kilauea to magma transport and its flow
rate in the subsurface. For seismic long-period earthquakes (LPs)
preceding an eruption at Redoubt Volcano, Chouet et al. (1994)
showed how to estimate pressure within a fluid-driven crack from
the amplitude of the LPs. Although non-eruptive tremor and precur-
sory LPs are not strictly speaking co-eruptive phenomena, magma
and fluid transport in the subsurface should have similarities with
eruption processes at the vent. Empirical models relating seismic
amplitude to proxies of eruption rate, such as lava fountain height
and ash plume height, had already appeared by about 1990 (Eaton
et al. 1987; McNutt 1994). Given these studies relating seismic am-
plitude and volume eruption rate, it is worth noting that empirical
models have also been developed between the radiated seismic en-
ergy of earthquake activity prior to an eruption and intruded volume
(White & McCausland 2016).

Although a wide range of power laws have been proposed for
relationships between seismoacoustic amplitudes and eruption rate,
Ichihara (2016) found that the mean squared amplitude of seis-
mic and infrasonic tremor during the 2011 sub-Plinian eruption of
Shinmoe-dake displayed a nearly linear scaling with eruption rate,
especially during the growing or quasi-stable portion of the eruption.
The linear scaling is on the low end of the range of power exponents
suggested in previous studies (0.9–10). It is worth clarifying how
seismic and infrasonic tremor amplitude is quantified before pro-

ceeding further. In volcano acoustics, the amplitude level has been
traditionally measured as radiated power (Woulff & McGetchin,
1976), which is proportional to the mean square pressure within
a time window. To compute the radiated power accurately, other
variables must be known such as the mean square radiation pattern
and any significant propagation effects. In volcano seismology, the
most widely used measure of tremor amplitude is known as reduced
displacement, DR, which is proportional to the root-mean-square
displacement in a time window. It follows that reduced displace-
ment squared, D2

R , is proportional to the mean square displacement.
However, the rate of radiation of seismic energy, called the radiated
seismic power, is proportional to the mean square velocity in a time
window (Johnson & Aster 2005). This is an important distinction,
but in practice it does not make a major difference whether one
takes the mean square displacement or the mean square velocity of
tremor. This has been pointed out by Ichihara (2016), who stated
that ‘using ground velocity gives essentially the same results’ as
using displacement. Consider the reduced ground velocity squared,
V 2

R , which is calculated in the same way as reduced displacement
squared but using ground velocity instead of displacement. One
measure of the dominant frequency ωd of tremor is the ratio of re-
duced ground velocity squared over reduced displacement squared,
ω2

d = V 2
R/D2

R . If ωd does not vary significantly over the duration
of volcanic tremor, radiated seismic power is proportional to the
square of the dominant frequency times the reduced displacement
squared. Thus, in that case, reduced displacement squared and re-
duced ground velocity squared are both proportional to radiated
seismic power. In this paper, we focus on the measure of tremor
amplitude in terms of its radiated seismic and infrasonic power.

Ichihara (2016) points out that, in terms of seismic tremor, the
observed linear scaling between seismic radiated power and erup-
tion rate at Shinmoe-dake most closely agrees with the empirical
scaling between reduced displacement of tremor and ash plume
height by McNutt (1994). Since the relation by McNutt (1994) is
empirical, this motivates the question of what physical model gives
rise to such a linear relation. We begin to address this issue by first
seeking analogies between seismic and acoustic sources at volca-
noes. We make connections between seismic sources and equivalent
acoustic sources as described by acoustic analogy theory (Lighthill
1963, 1978) and discover a fundamental property that involves ex-
plosion, torque, and force seismic sources. We move on to a dis-
cussion of relationships between volcanic eruption parameters that
indicate volcanic eruptions display self-similarity, a concept that is
invoked in the study of earthquakes (Kanamori & Anderson 1975)
and has previously been recognized for volcanoes (Nishimura &
Hamaguchi 1993) and volcanic jet noise (Matoza et al. 2009). We
finally illustrate these concepts by analysing the scaling between
radiated power of seismic eruption tremor and plume height during
the 2016 eruption of Pavlof Volcano, Alaska.

2 S E I S M I C A NA L O G I E S T O V O L C A N I C
I N F R A S O U N D S C A L I N G L AW S

We explore connections between the seminal work of Woulff &
McGetchin (1976) on acoustic radiation from volcanoes and seis-
micity observed during eruptions. Woulff & McGetchin (1976) ap-
plied key results from acoustic analogy theory by Lighthill (1952,
1954, 1963, 1978) and Curle (1955) to monopole, dipole, and
quadrupole sources of volcano acoustics. Woulff & McGetchin
(1976) summarized these models with the following scaling laws:

WM = KM
ρp Av

c
v4

e (1)
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Figure 1. The geometry for the combination of two monopoles of opposite
sign, an explosion and an implosion, in order to produce an acoustic dipole
in 2-D (Lighthill 1978). Whereas an acoustic monopole produces energy
due to a time-varying mass flux, an acoustic dipole introduces no net mass
and is equivalent to a force acting on the fluid.

WD = K D
ρp Av

c3
v6

e (2)

WQ = KQ
ρp Av

c5
v8

e , (3)

where WM, WD and WQ are radiated acoustic power from monopole,
dipole, and quadrupole sources, respectively, ρp is the density of
the plume or jet, Av is the cross-sectional area of the vent, c is the
speed of sound, ve is the exit or flow velocity, and KM, KD and KQ

are dimensionless coefficients of proportionality called ‘acoustic
power coefficients’ by Lighthill (1952, 1954). It is important to
keep in mind that monopoles (time-varying mass fluxes) are the
fundamental building block of equivalent sources in acoustics, as
discussed by Kim et al. (2012) and Matoza et al. (2013). In Fig. 1, we
show how an acoustic dipole is formed from a pair of monopoles
of opposite sign. No net mass is introduced by the positive and
negative monopoles, but together they impart a net force on the
fluid. Similarly, an acoustic quadrupole is formed by two dipoles
or equivalently four monopoles, with two of the monopoles being
opposite in sign from the other two (Matoza et al. 2013).

In their application of acoustic analogy theory to volcano acous-
tics, Woulff & McGetchin (1976) also utilized the Strouhal number
St (Kundu & Cohen 2008; Matoza et al. 2009; Fee & Matoza 2013),
which relates frequency f to flow speed U and a characteristic length
scale of L:

St = f L

U
(4)

For a jet flow such as at the base of an eruption column, U is the
expanded jet velocity (the flow velocity once the jet has equilibrated
to atmospheric pressure) and L is the expanded jet diameter. Over
a wide range of flow conditions, the Strouhal number can be con-
sidered constant (Woulff & McGetchin 1976) and, as a result, f L ∝
U. In volcano seismology, the concept of the Strouhal number has
not been as widely used as in infrasonic volcano studies, although a

notable exception is the work by Hellweg (2000). Chouet (1992) has
also discussed the Strouhal number of magma flows that generate
volcanic tremor. Within the field of volcano infrasound, estimating
the Strouhal number of eruption plumes is an active area of research.
McKee et al. (2017) have given an overview of Strouhal values ob-
tained at several volcanoes. From field data shown in Matoza et al.
(2009), the Strouhal number was estimated to be 0.4 at Tungarahua
and 0.06 at Mount St. Helens. Cerminara et al. (2016) found the
Strouhal number from a full-physics numerical simulation of a vol-
canic plume to be 0.32. Tam et al. (1996) calculated in a pure-air jet
laboratory experiment that the Strouhal number approached 0.19 as
the jet velocity decreased toward the ambient sound speed. Matoza
et al. (2009) points out that these values for the Strouhal number
fall into the range observed for man-made jets. Although the values
of these Strouhal estimates vary, the theory we present in this paper
does not depend on the Strouhal number being constant for all vol-
canoes. We only assume that the Strouhal number is a constant at a
particular volcano. Thus, we are consistent with the assumption by
Woulff & McGetchin (1976), wherein it was stated that the Strouhal
number is often ‘essentially constant over wide variations of flow
conditions’. More details comparing the Strouhal number for man-
made and volcanic jets can be found in Matoza et al. (2009) and Fee
& Matoza (2013). In the following, we analyse seismic radiation
from a force source and utilize the Strouhal number in eq. (4). The
representation of the seismic source from a volcanic eruption as a
force has been previously discussed by several authors (Kanamori
et al. 1984; Nishimura & Hamaguchi 1993; Brodsky et al. 1999;
Prejean & Brodsky 2011).

We begin by analysing the amount of seismic power radiated
by a harmonic vertical force source applied at the surface of an
elastic half-space. After fully discussing the case of a seismic force
source, we later examine additional types of seismic sources, such
as a moment source, and we show the analysis of these sources in
Appendix A. Miller & Pursey (1955) analytically solved the problem
of seismic power radiation from a vertical force for a Poisson’s ratio
of 0.25 and the solution is given as:

W = 4.836
π 3 f 2a4 P2

ρα3
, (5)

where we have used their notation in which W is the radiated power
of the seismic waves, f is the linear frequency (i.e., 2π f = ω), a is
the radius of the circular area where the vertical force is applied, P
is the force per unit area, ρ is the density of the solid half-space,
and α is the P-wave velocity. Note that the total seismic power in
this case is the sum of the power radiated as P-waves, S-waves and
Rayleigh waves, although Rayleigh waves constitute approximately
two-thirds of the total radiated power for a Poisson’s ratio of 0.25
(Miller & Pursey 1955). The product π 2a4P2 is equal to the square of
the circular area over which the force is applied times the squared
force per unit area, so that it can be expressed concisely as the
applied force squared F2:

W = 4.836
ω2 F2

4πρα3
, (6)

where the result has been rewritten in terms of angular frequency ω.
From eq. (6), we can see that the seismic power radiated by a force
source is proportional to the following physical quantities:

W ∝ ω2 F2

ρα3
. (7)

In eq. (7), the numerical factor has been omitted for the purpose
of studying scaling. It is determined by the Poisson’s ratio of the
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elastic half-space. We assume very minor variation in Poisson’s
ratio during eruptions or between different volcanoes, so its effect
is not included in our analysis.

In their study of the relationship between eruption seismicity and
plume height, Prejean & Brodsky (2011) showed how to express
the applied force F in terms of the physical properties of a plume or
jet acting at the surface of an elastic half-space. Following work by
Brodsky et al. (1999) on very-long-period seismic waves generated
by the 1980 Mount St. Helens eruption, Prejean & Brodsky (2011)
put forward that the applied force is given by

F ∝ qρpve, (8)

where q is the volume eruption rate, ρp is the density of the material
in the plume or jet, and ve is the exit velocity of the material. Note
that we give the expression for the force source as a proportionality
instead of the equality used in Prejean & Brodsky (2011). We do so
because our emphasis, as shown in later sections, is on the expo-
nent of the power law scaling relationship between radiated seismic
power and eruption rate. The constant of proportionality is not the
focus of this study, and it would be much more difficult to obtain
from first principles. On the other hand, insight into the exponent
of the power law scaling can be gained from theory as we demon-
strate. The expression for the force source may approach equality
at very long periods; however, we consider a harmonic force with a
frequency in the range of 1 Hz, as commonly observed for volcanic
eruption tremor. As a result, the oscillating component of the force
in this higher frequency range is only proportional to the product of
mass eruption rate and exit velocity. An equality could be derived
over all frequencies by considering aspects such as the rolloff of
the force source spectrum and coupling between the plume and the
solid Earth, but these aspects are beyond the scope of this study.
We illustrate the issue of proportionality versus equality in the ex-
pression of the source later by applying a similar analysis to the
earthquake moment source.

Typically, the volume eruption rate can be further expressed as
the product of the vent area Av and the exit velocity, q = Avve, which
gives

F ∝ Avρpv
2
e . (9)

Substituting this into eq. (7) gives:

W ∝ ω2 A2
vρ

2
pv

4
e

ρα3
(10)

which shows the v4
e scaling of this model as previously pointed

out by Ichihara (2016) and referred to as the ‘fourth power law’.
Rearranging terms, eq. (10) can be rewritten as

W ∝ ρp Avv
4
e

α3

(
Avρpω

2

ρ

)
. (11)

As was done in the seminal paper by Woulff & McGetchin (1976),
we now appeal to the concept of the Strouhal number and take the
ratio ω

√
Av/ve as a constant over a wide range of flow conditions,

yielding:

W ∝ ρp Avv
6
e

α3

(
ρp

ρ

)
. (12)

In contrast to the fourth power law in velocity implied by eq. (10),
we see that the force model by Prejean & Brodsky (2011) actually
leads to a sixth power law in velocity when taking into account flows
characterized by a Strouhal number. The scaling based on the sixth
power is equivalent to the relation developed by Curle (1955) and
applied by Woulff & McGetchin (1976) for dipole acoustic sound

Figure 2. The geometry for the combination of explosion and torque dipoles
required to reproduce a seismic force source in 2-D.

radiation, as shown in eq. (2). Therefore, in the seismic case, a force
acting on the surface of a half-space produces the same scaling as
dipole sound radiation. Note the additional factor of ρp/ρ in eq. (12)
compared to the sixth-power-law for dipole radiation by Woulff &
McGetchin (1976). This factor expresses the coupling of the plume
or jet to the solid half-space in the seismic case.

The fact that the scaling law shows a seismic force source has
the same scaling as an acoustic dipole requires some clarification.
In seismology, forces are considered to be the fundamental building
blocks of sources. This is the basis of the equivalent force system in
the construction of moment tensors, where individual moments are
represented by force couples and dipoles. For example, Kanamori
& Given (1982) have referred to the horizontal force source during
the 1980 Mount St. Helens eruption as a terrestrial monopole, in the
sense that it was a force monopole instead of a force dipole. How-
ever, in Appendix B, we show that a seismic force can be represented
by dipoles of explosive sources that only radiate P-waves and torque
sources that only radiate S-waves. Thus, it makes sense that the pre-
ceding analysis showed a force source has the same scaling as an
acoustic dipole. The geometry of the dipoles needed to reproduce a
force source in 2-D is shown in Fig. 2: the dipole consisting of an
explosion/implosion pair is oriented along the direction of the force
and the torque dipole is oriented perpendicular to the force direction.
As shown in Fig. 1, this geometry is similar to how a dipole source is
formed in acoustics from two closely spaced acoustic monopoles of
opposite polarity (Pierce 1989; Russell 1999; Kim et al. 2012; Ma-
toza et al. 2013). However, in the seismic case, the presence of the
additional S-wave mode requires the presence of the torque sources
as well to reproduce a seismic force. The relation depicted in Fig. 2
is a fundamental property of seismic sources that brings together
explosion, torque, and force sources, the latter two being types of
sources normally ignored in seismic source inversions (Takei &
Kumazawa 1994). In the same way as the equivalent force system
is a decomposition of a moment tensor source into force couples
and dipoles, we have shown here that a seismic force source can
be further decomposed into explosion and torque dipoles. Although
Fig. 2 is for 2-D, the equivalence can also be extended to 3-D as
well, as described in Appendix B. The arrangement of the dipoles
needed to replicate a force source in 3-D is shown in Fig. 3. In this
case, the presence of an added dimension compared to the 2-D case
requires a second set of torque dipoles arranged along the other
axis perpendicular to the force direction. As shown in Appendix B,
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Figure 3. The geometry for the combination of explosion and torque dipoles
required to reproduce a seismic force source in 3-D.

Figure 4. Seismic analogies of monopole (left) and quadrupole (right)
sources. The monopole analogy is taken to be an expanding cavity of volume
injection into the elastic half-space. The quadrupole analogy is based on the
moment tensor model of McNutt & Nishimura (2008) in which turbulence
is excited over a volume within the conduit of length LC and radius R.

this geometry of dipoles reproduces the wave field of a seismic
force source in 3-D when the dipoles are brought infinitely close to-
gether. Notably, in this limit the wave field is azimuthally symmetric
with respect to the direction of the force source. Following up on
these developments for a seismic force source and dipole scaling,
we extend the dimensional analysis to cover the other two types
of fundamental acoustic sources: monopoles and quadrupoles. The
derivations for these cases are given in Appendix A and we sum-
marize the results here. We find the seismic analogy of an acoustic
monopole source, which displays fourth-power scaling with exit ve-
locity as in eq. (1), is given by a seismic source of volume injection
as described by Aldridge (2002). At a volcano, the volume injection
source is depicted as a hemispherical crater expanding into the sub-
surface, as shown in Fig. 4. The analogy of an acoustic quadrupole
source, which displays eighth-power scaling with exit velocity as in
eq. (3), is given by a moment tensor seismic source. For example,
McNutt & Nishimura (2008) propose a moment tensor source to
represent eruption tremor caused by turbulence within a conduit.
In Appendix A, we show how their source leads to quadrupole-like
scaling. The geometry of the seismic analogy of a quadrupole source
is shown in Fig. 4, and the turbulence is assumed to be excited along
a particular length of the shallow conduit LC.

3 S C A L I N G T H E O RY F O R V O L C A N I C
E RU P T I O N S

In the previous section we made connections between well-known
scaling laws in volcano infrasound and models of volcanic seis-
micity. Here we take the analysis a step further and examine the
applicability to volcanic eruptions. We consider additional relation-
ships among volcano parameters such as the area of the vent, exit
velocity, and pressure in the magma reservoir and derive a complete
scaling theory for volcanoes that is similar to existing earthquake
scaling laws. To make the analogy with earthquake scaling laws
clear, we simultaneously show normal earthquake scaling theory
using similar notation. The analysis builds on the volcano scaling
relations derived by Nishimura & Hamaguchi (1993). Our primary
motivation is to investigate physical models to explain the observed
linear scaling between radiated seismic power and eruption rate
(McNutt 1994; Ichihara 2016). The observations of linear scaling
are surprising given that the scaling of a seismic force described
in the previous section is to the sixth power in terms of eruption
rate (i.e. to the sixth power of exit velocity). In spite of such a large
apparent discrepancy between theory and observations, we show in
this section that a linear scaling is predicted by the theory when
other relationships between eruption parameters are invoked and
these relationships have been previously discussed by Nishimura &
Hamaguchi (1993).

One of the well-known outcomes of earthquake source scaling
is that radiated energy and moment are proportional to each other
(Stein & Wysession 2003). In the following, we show this for earth-
quakes and apply a similar analysis to volcanic eruption seismicity.
We assume the vertical force source model discussed previously for
a volcanic eruption and shown in eq. (9):

F ∝ ρp Avv
2
e ,

where ρp is the density of the plume or jet, Av is the area of the vent,
and ve is the exit velocity. For earthquakes, the moment rate source
is given by

Ṁ ∝ μA f vs, (13)

where μ is the shear modulus, Af is the fault area, and vs is the slip
velocity. Similar to the expression for the volcanic force source, the
earthquake moment source is given as a proportionality instead of
an equality. The seismic moment is the low-frequency asymptote of
the seismic spectrum in the standard earthquake model. For a higher
frequency, oscillating component of the moment source, as consid-
ered here, the moment release will be less than that asymptote.
The frequency-dependent, dimensionless factor that would render
eq. (13) an equality follows from the rolloff of the earthquake source
spectrum. Since here we are only interested in the exponent of
power-law relations between volcano and earthquake source pa-
rameters, and not the constant of proportionality, the fact that we
use proportionalities instead of equalities to describe the force and
moment sources does not affect the final results. From the expres-
sions showing the proportionality of volcanic force and earthquake
moment sources to their respective parameters, we can examine
their radiated seismic power. The radiated power for a force source
scales as already shown in eq. (7):

W ∝ ω2 F2

ρα3
,

where W is the radiated power, F is the magnitude of the force, ω is
angular frequency, ρ is the density of the solid half-space, and α is
the P-wave velocity. Note that, as in the previous section, we do not
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include Poisson’s ratio in the scaling relation. The radiated power
for a moment source scales as (Rose 1984)

W ∝ ω2 Ṁ2

ρβ5
, (14)

where Ṁ is the magnitude of the moment rate source and β is the
shear wave velocity.

Before we insert eq. (9) into eq. (7) and eq. (13) into eq. (14),
there are some additional relations for earthquakes and volcanic
eruptions that we need to consider. For volcanic eruptions, we as-
sume as discussed earlier that the flow of material out of the vent is
characterized by a constant Strouhal number (Woulff & McGetchin
1976) such that

ω ∝ ve√
Av

. (15)

For earthquakes, a similar relation holds between the corner fre-
quency ωc, the S-wave velocity, and the area of the fault (Kanamori
& Anderson 1975; DelPezzo et al. 2013):

ωc ∝ β√
A f

, (16)

where we assume the rupture velocity is proportional to the shear
wave velocity β. A majority of the energy radiated by an earthquake
is radiated near the corner frequency, so in the following relation-
ships for radiated energy we only consider that frequency. Another
relation exists for earthquakes between the moment, fault area and
stress drop �σ (Kanamori & Anderson 1975):

A3/2
f ∝ M

�σ
. (17)

The analogy of this equation for volcanic eruptions has been dis-
cussed before by Nishimura & Hamaguchi (1993) and is given by

Av ∝ F

�P
, (18)

where �P is the excess pressure in the magma reservoir prior to the
eruption. We emphasize that eq. (18) is a proportionality and not an
equality. The proportionality factor is related to the relative shape of
the magma reservoir and vent. For example, the simplified eruption
model of Kanamori et al. (1984) would have a proportionality factor
of 6 on the right-hand side of eq. (18) since the eruption takes place
through one side of cube. A third relation that exists for earthquakes
states that the strain release �σ/μ is constant. This means that
stress drop and shear modulus scale with each other (Kanamori &
Anderson 1975):

�σ ∝ μ. (19)

The analogy of this relation for volcanic eruptions is that the excess
pressure scales with the longitudinal modulus:

�P ∝ λ + 2μ, (20)

where λ is Láme’s first parameter. In eq. (20), we have assumed a
simple 1-D vertical stress field in which a sill-like magma reservoir
is in a state of uniaxial strain. This relation is supported by the
conclusions of Nishimura & Hamaguchi (1993), who found that the
excess pressure in a magma reservoir prior to an eruption was 1
MPa with a variation of only one order of magnitude. Since bulk
longitudinal modulus should not vary greatly in the shallow crust,
eq. (20) implies that �P should also not vary greatly.

We combine the above relations to produce forms that will be
useful in the analysis of radiated seismic energy. Beginning with

earthquakes, if we insert eq. (17) into eq. (16), we obtain the fol-
lowing scaling:

Mω3
c ∝ β3�σ. (21)

Near the corner frequency, where most earthquake energy is ra-
diated, this can be expressed in terms of moment rate instead of
moment:

Ṁω2
c ∝ β3�σ. (22)

Inserting the expression for moment rate given in eq. (13) yields

μA f vsω
2
c ∝ β3�σ. (23)

We now use the relation in eq. (16) to rewrite the above expression
as

μvs ∝ β�σ, (24)

which can be rearranged to isolate strain release on the right-hand
side:

vs

β
∝ �σ

μ
. (25)

This equation means the slip velocity is proportional to the S-wave
velocity, under the assumption of constant strain release.

Moving on to volcanic eruptions, if we insert eq. (18) into
eq. (15), we obtain the following scaling:

Fω2 ∝ v2
e �P. (26)

Inserting the expression for the vertical force source given in
eq. (9) yields

Avρpω
2 ∝ �P. (27)

We now use the relation in eq. (15) to rewrite the above expression
as

ρpv
2
e ∝ �P. (28)

This expression states that the dynamic pressure of the flow at the
vent scales with the excess pressure in the magma reservoir prior to
the eruption. It can be rewritten as

v2
e

α2

(
ρp

ρ

)
∝ �P

λ + 2μ
. (29)

The right-hand side of this equation is assumed to be constant ac-
cording to eq. (20) and therefore it implies a proportionality between
the exit velocity, the P-wave velocity of the solid half-space, and
the ratio of the plume density to the density of the solid half-space.

In light of these results, we now analyse scaling for volcanic
eruptions and earthquakes. We start with earthquakes since the
result is well known. Substituting eq. (13) into eq. (14), and also
using the relation in eq. (16) gives the following expression for
radiated power:

W ∝ μA f v
2
s

β
. (30)

Writing this eq. in terms of the moment rate using eq. (13) yields

W ∝ Ṁ
vs

β
. (31)

However, as shown in eq. (25), the ratio of slip velocity to the
S-wave velocity is considered constant, so that power scales with
moment rate: W ∝ Ṁ . Power is simply energy rate, so this means
that energy rate scales with moment rate or, as more commonly
stated, that energy and moment are proportional to each other in
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the standard model for earthquakes. For volcanoes, substituting
eq. (9) into eq. (7), and also using the relation in eq. (15), gives the
following expression for radiated power:

W ∝ ρp Avv
6
e

α3

(
ρp

ρ

)
. (32)

As pointed out previously, this has the same form as the dipole
acoustic model for volcanic plumes discussed by Woulff &
McGetchin (1976). Writing this equation in terms of the force source
using eq. (9) yields

W ∝ F
v4

e

α3

(
ρp

ρ

)
. (33)

However, as shown in eq. (29), the quantity v2
e ρp/α

2ρ is considered
constant, so that the radiated energy can be simplified as

W ∝ F
v2

e

α
. (34)

This is the analogy of W ∝ Ṁ for volcanic eruptions described by
the relations shown above.

In their eq. 13, Nishimura & Hamaguchi (1993) show that the
energy for an explosion earthquake at a volcano scales as

E ∝ R3 P0, (35)

where R is the radius of the vent and P0 is the pressure in the
reservoir prior to eruption. In terms of radiated power instead of
energy, this relation is given by

W ∝ ωR3 P0, (36)

where ω is the frequency. Nishimura & Hamaguchi (1993) point out
that, similar to eq. (20), the pressure in the reservoir prior to an erup-
tion does not vary greatly for different eruptions. This is analogous
to how stress drop does not vary greatly for earthquakes over many
orders of magnitude. As a result, Nishimura & Hamaguchi (1993)
conclude that the energy release of a volcanic explosion earthquake
is primarily determined by its crater radius R3. For earthquakes, this
same argument means earthquake size is determined by the area of
the fault.

We now put our result in eq. (34) in context with the scaling
found by Nishimura & Hamaguchi (1993). By using eqs (15) and
(18), we can rewrite eq. (34) as

W ∝ ωA3/2
v �P

ve

α
, (37)

which is observed to have a similar form as eq. (36) with A3/2
v ∝ R3

and P0 ∝ �P. There is one significant difference, however, which is
the additional non-dimensional parameter we have found: ve/α, the
ratio of the exit velocity to the P-wave velocity of the subsurface. We
note that this ratio can also be considered as a Mach number in the
solid. This factor does not appear in the original study by Nishimura
& Hamaguchi (1993). The proportionality with exit velocity shows
that the seismic power of tremor W scales linearly with eruption rate,
if the excess pressure in a reservoir prior to an eruption is assumed
to be nearly constant. Lack of variability in excess pressure prior
to an eruption is an integral part of the scaling theory discussed
by Nishimura & Hamaguchi (1993). The prediction of linear scal-
ing agrees with observations of volcanic tremor reported by Mc-
Nutt (1994) and the results from the 2011 Shinmoe-dake eruption
(Ichihara 2016), especially during the growing or quasi-stable por-
tion of the eruption. The fact that the earthquake-like scaling dis-
cussed by Nishimura & Hamaguchi (1993) for volcanic explosion
earthquakes leads to a linear relationship between seismic power

and eruption rate is consistent with the interpretation by Ichihara
(2016) that sustained sub-Plinian volcanic eruptions can be consid-
ered a series of successive explosions. It remains to be seen whether
other models, such as ones describing high-velocity conduit flow
and fragmentation, also lead to a similar linear scaling. The linear
scaling with eruption rate in eq. (37) is much different than the ap-
parent sixth power scaling in eq. (32). This is due to the additional
scaling relationships for volcanic eruptions that we have discussed
in this section. Thus, the apparent sixth power scaling in eq. (32) is
due to an incomplete scaling theory, one in which the dynamic sim-
ilarity of flows with a constant Strouhal number has been taken into
account, but not the additional similarity implied by excess pressure
�P prior to an eruption scaling with bulk longitudinal modulus of
the subsurface.

The idea that eruption tremor is made up of successive explo-
sions, however, disagrees with the observation of different scaling
for tremor and explosion earthquake energies versus vent radius
discussed by McNutt & Nishimura (2008). We do not have a full
explanation for this in terms of all the data shown in McNutt &
Nishimura (2008), but we can comment on one of the data points
shown from Pavlof Volcano, Alaska. An explosion earthquake oc-
curred at Pavlof in 1988 with an estimated magnitude of ML = 2.5
(Nishimura 1998). McNutt & Nishimura (2008) convert tremor re-
duced displacement at Pavlof to equivalent magnitude and find a
much lower magnitude value for the tremor, approximately ML = 0.
The same discrepancy is observed between tremor and explosion
earthquakes at many volcanoes and leads to the observed difference
in scaling reported by McNutt & Nishimura (2008). However, it
is not possible to relate maximum reduced displacement directly
to magnitude (or energy release) since reduced displacement does
not take into account the duration of tremor (Kumagai et al. 2015).
In fact, cumulative tremor energy from several recent eruptions
at Pavlof has been calculated over time windows that span the
entire eruption and the equivalent magnitude is roughly equal to
ML = 2.0 (Waythomas et al. 2014), close to the magnitude value
of the explosion earthquake in 1988. Thus, we suggest the different
scaling for tremor and explosion earthquake energies versus vent
radius discussed in McNutt & Nishimura (2008) may be an artefact
of converting reduced displacement to magnitude. The particular
case of Pavlof points to tremor and explosion earthquakes releasing
a similar amount of cumulative energy and, based on the obser-
vation of a linear relation between radiated power of tremor and
eruption rate (McNutt 1994; Ichihara 2016), we expect that tremor
composed of successive explosions obeys the scaling relation in
eq. (37). We further discuss Pavlof Volcano in the next section of this
paper.

4 C O - E RU P T I V E T R E M O R
AT PAV L O F V O L C A N O

We examine the scaling arguments we have described by analysing
eruption tremor and plume heights during the 2016 eruption of
Pavlof Volcano, located along the Alaska Peninsula and one of
the most active volcanoes in the Alaska-Aleutian arc. On 2016
March 27, Pavlof began a significant eruption with little precursory
activity. The strongest phase of the eruption occurred during the
first 17 hr and was characterized by intense continuous tremor, lava
fountaining, and an ash plume attached to the vent that extended
over 800 km to the northeast (Fee et al. 2017a). The eruption tremor
was measured on a local network of five short period seismometers,
each with a lower corner frequency of 1 Hz. Plume heights were
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Figure 5. Plume height versus reduced displacement during the 2016 eruption of Pavlof Volcano. The dashed line is the empirical relation of McNutt (1994).
The tremor reduced displacement closely agrees with the empirical relation over the first 17 hr of the eruption.

calculated by both satellite data and a web camera located 60 km
away in Cold Bay, Alaska.

In Fig. 5, we cross-plot reduced displacement (DR) of tremor
against plume heights measured with the web camera and satellite
data (Fee et al. 2017a). Approximately 17 hr into the eruption, Fee
et al. (2017a) found that the character of the tremor-plume rela-
tionship changed. This can be seen in Fig. 5 where the time history
trajectory in the DR/plume-height plane 17 hr into the eruption be-
gins to move below its initial trajectory. For example, in Fig. 5 the
green data points (20 hr into the eruption) plot beneath the blue data
points (8 hr into the eruption). This pattern means the ash plume
height at late stages of the eruption remained at high altitudes even
though the tremor level had fallen. Note that the ash plume remained
attached to the vent during this entire time period. Fee et al. (2017a)
interpreted this pattern in terms of hysteresis encountered in the
emerging field of fluvial seismology and implicated erosion of the
crater as the cause of the change in the trajectory.

We focus here on the first 17 hr of the eruption and compare the
observed plume heights to the empirical relation between tremor
reduced displacement DR and plume height H derived by McNutt
(1994):

log10 DR = 1.80 log10 H − 0.08, (38)

where DR is in cm2 and H is in km above the vent. Ichihara (2016) has
pointed out that the relation by McNutt (1994) implies a nearly linear
relationship between radiated seismic power and eruption rate, W ∝
q. Since DR is proportional to the square root of radiated power and
eruption rate is proportional to the fourth power of plume height
(Sparks et al. 1997; Mastin et al. 2009), a linear scaling between
radiated seismic power and eruption rate translates into a quadratic
relation between DR and plume height, DR ∝ H2. Such a quadratic
relation with a power-law exponent of 2 is close to the value of 1.8
obtained by McNutt (1994) in eq. (38), which in turn corresponds
to seismic power scaling with eruption rate with a nearly linear
exponent of 0.9. In Fig. 5, the tremor during the first 17 hr of the

eruption is observed to reasonably follow the empirical relation
by McNutt (1994), and this is additional evidence that radiated
seismic power from tremor during sustained explosive eruptions,
especially during the slowly growing stage (Ichihara 2016), scales
with eruption rate. Note that the plume heights in Fig. 5 are plotted as
height above sea level, whereas the relevant quantity is height above
the vent (McNutt 1994; Sparks et al. 1997; Mastin et al. 2009). It is
worth noting that Fee et al. (2017a) also analysed infrasonic tremor
from the Pavlof eruption and found a similar pattern as shown for the
seismic data in Fig. 5. This suggests that the seismic and infrasonic
tremor, when cross plotted, show a linear relation with each other.
Such a linear relation has also been observed between seismic and
infrasonic tremor during the 2011 Shinmoe-dake eruption and has
been interpreted as due to the tremor originating from a common,
seismoacoustic source near the fragmentation level (Ichihara 2016).

We plot the tremor-plume data again in Fig. 6, but using log-log
axes to highlight power-law relations. The red dashed line in Fig. 6
is a power-law fit to the data over the first 17 hr of the eruption and its
slope is almost identical to the empirical relation by McNutt (1994)
shown as a black dashed line. The only appreciable difference is
that the Pavlof data is shifted slightly lower in terms of reduced
displacement for a given plume height compared to the empirical
relation. This difference corresponds to the constant factor being
closer to −0.2 in eq. (38) for the Pavlof data rather than the value
of −0.08 in the empirical relation. However, this difference is likely
not significant given common uncertainties in the data. The more
dramatic difference is shown by the blue dashed line in Fig. 6, which
is the power-law fit to the data from 17–21 hr after the start of the
eruption. The power-law exponent in this case is larger than the
value of 1.8 in eq. (38) and the fit indicates it is close to a value
of 3.5. At this point, it is not clear whether this change in scaling
during the late portion of the eruption can be modelled in terms of
a different type of seismoacoustic source. Based on the preceding
theory, the larger power-law exponent may signify that the eruption
seismicity shifted to a source better described by a moment tensor,

Downloaded from https://academic.oup.com/gji/article-abstract/213/1/623/4772873
by guest
on 29 March 2018



Seismoacoustic scaling of eruptions 631

Figure 6. Same as Fig. 5 but plotted with log–log axes to highlight power laws. The dashed line is the relation of McNutt (1994), DR = 10−0.08H1.8. A
power-law fit to the first 17 hr of eruption tremor is shown as a dashed red line and is given by DR = 10−0.2H1.7. The blue dashed line is a power-law fit to the
eruption tremor between 17–21 hr after the eruption began and is given by DR = 10−1.7H3.5.

such as the model of turbulence within the conduit by McNutt
& Nishimura (2008) and discussed in Appendix A. However, this
interpretation is outside the scope of this paper and will be addressed
in the future by formulating a model for the changes at Pavlof due
to crater erosion discussed in Fee et al. (2017a). The main result
we find is that the linear scaling between seismic tremor power and
plume height is obeyed over the first 17 hr of the eruption, and may
represent a standard type of scaling observed generally for sustained
sub-Plinian eruptions (McNutt & Nishimura 2008; Ichihara 2016).

5 C O N C LU S I O N S

We have made connections between common source representa-
tions used in seismology and infrasound in the context of volcanic
eruption signals. We showed that monopole, dipole, and quadrupole
sources of volcanic infrasound are analogous to seismicity radiated
by volume injection, force, and moment sources, respectively, in
terms of their scaling properties with eruption rate. We also proved
a fundamental relationship that ties together explosion, torque, and
force sources in seismology and highlights the underlying dipole
nature of seismic forces. The representation of a force source in
terms of dipoles of explosion and torque sources is a decomposition
similar to the equivalent force system representation of a moment
tensor. It suggests that explosion and torque sources can each be
considered seismic monopoles of P- and S-wavefields, respectively.
We built on the fourth-, sixth-, and eighth-power scaling results
for seismic eruption tremor by describing additional relationships
between eruption parameters that constitutes a complete scaling
theory similar to the theory of earthquake scaling. Incorporation
of these additional relations within the force source model of a
volcanic eruption led to a linear scaling between radiated seismic
power of tremor and eruption rate. We observe such a linear depen-
dence during the first 17 hr of the 2016 Pavlof eruption. Subsequent
tremor at the late stages of the Pavlof eruption does not display

a linear scaling and requires additional modelling in the future to
understand its source process.
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A P P E N D I X A : M O N O P O L E
A N D Q UA D RU P O L E S O U RC E S

In the main text we gave details of the seismic force source
model and showed that it has similar scaling as the dipole acoustic
model. Woulff & McGetchin (1976) also developed monopole and
quadrupole models for sound radiation from a plume or jet and here
we show the seismic analogies of those models.

For the monopole case, we consider the seismic wave field gener-
ated by a point source of volume injection. Aldridge (2002) solved
the problem of elastic radiation from a spherical cavity for two
different boundary conditions: (1) By prescribing the radial stress
on the spherical surface of a cavity and (2) by prescribing the ra-
dial displacement on the surface. The two boundary conditions give
somewhat different solutions, as shown by eqs (8.9) and (12.11) in
Aldridge (2002). Although Aldridge (2002) states the ‘mathemati-
cal structure of the ... two expressions is identical’, the dimensional
pre-factors multiplying the common portions of the two solutions
are different. The applied pressure or radial stress case has a pre-
factor with an energy source term divided by the shear modulus,
whereas the applied radial displacement case has a pre-factor only
dependent on the injected volume. In addition, Aldridge (2002)
states, in reference to the boundary condition of applied radial dis-
placement, that ‘the total radiated energy scales linearly with the
cavity radius, in contrast to the analogous situation for an applied
pressure or radial stress’. Aldridge (2002) also states, in reference to
the boundary condition of applied pressure or radial stress, that ‘in
this case, the total radiated elastic energy scales as the cube of the
cavity radius’. Thus, the solutions for the two boundary conditions
scale in different ways in terms of radiated energy versus radius. We
expect the seismic version of a monopole to correspond to the case
of a prescribed radial displacement on the cavity surface. In the far
field, the source is described by the rate of volume injection q. The
scaling of the far-field particle velocity can be written in terms of
mass injection rate ṁ = 2ρpq as

vM ∝ ωṁ

ρpαr
, (A1)

where ρp is the density of the material inside the cavity, r is the dis-
tance from the observation point to the source, and particle velocity
is denoted as vM since it is for a seismic monopole. We note that,
for volcanic eruptions at the Earth’s surface, the source of volume
injection is actually a hemisphere instead of a sphere, as shown
in Fig. 4. We recognize this difference but assume that the far-field
scaling of a hemispherical volume source at the Earth’s surface does
not vary substantially from a sphere embedded in a whole space.
The mass injection rate for this source, ṁ = 2ρpq , has a factor of 2
in its definition since the volume injection is in terms of the surface
area of a hemisphere, whereas the volume eruption rate is in terms
of the area of the vent, q = Avve, which is the intersection of the
hemispherical crater with the surface.

We expect that the seismic analogy of the quadrupole case is
the result of a moment tensor source model. We adapt the erup-

tion tremor model suggested by McNutt & Nishimura (2008) in
which the tremor is generated by pressure disturbances within the
conduit. The seismic moment for such a source is given by McNutt
& Nishimura (2008) as

M = Lc AvδP, (A2)

where the geometry of the model is shown in Fig. 4, Lc is the
length of the conduit over which the pressure disturbances act, Av is
the area of the vent (or conduit since the geometry is cylindrical),
and δP is the fluctuating pressure. As in McNutt & Nishimura
(2008), the term moment here is taken to be a scalar moment that
multiplies a tensor which represents a cylindrical source volume. For
the purposes of exploring scaling, we do not include terms related
to the specific form of the tensor. An expression for moment rate
Ṁ = ωM , found by invoking flow described by a Strouhal number
in which ω

√
Av ∝ ve, is given by

Ṁ ∝ ve

R
Lc AvδP, (A3)

where ve is the exit velocity, R is the radius of the conduit, and we’ve
used the fact that

√
Av ∝ R. We further assume that the pressure

fluctuation δP is proportional to the dynamic pressure of the plume
or jet, δP ∝ ρpv

2
e , resulting in

Ṁ ∝ ρp Avv
3
e

Lc

R
. (A4)

Note that this has a similar form as the mass flux source,
ṁ = 2ρp Avve, and the force source, F ∝ ρp Avv

2
e . Each of the three

source types is expressed in terms of density of the plume or jet, the
vent area, and different powers of exit velocity. The moment source
has the additional dimensionless geometrical factor of Lc/R related
to the aspect ratio of the seismogenic portion of the upper conduit.
In the far field, the particle velocity scales in the following way for
a moment source:

vQ ∝ ωṀ

ρα3r
, (A5)

where we have denoted the particle velocity as vQ since it is for a
seismic quadrupole.

We now consider the scaling of radiated power for the seismic
monopole and quadrupole cases. First we analyse the dipole case
using a different and simpler technique than shown in the main text
to obtain the scaling. In the frequency domain, the far-field particle
velocity v from a force source scales as

vD ∝ ωF

ρα2r
, (A6)

where we have denoted the particle velocity as vD since it is for a
seismic dipole. To analyse the radiated power, we recognize that to
within a multiplicative constant, the power is given by

WD ∝ ραr 2v2
D . (A7)

Substituting v2
D into this equation gives

WD ∝ ω2 F2

ρα3
. (A8)

At this point, the specific form of the force source F ∝ ρp Avv
2
e can

be inserted yielding the dipole scaling we have seen previously:

WD ∝ ρp Avv
6
e

α3

(
ρp

ρ

)
. (A9)

The sixth power dependence on exit velocity agrees with the acous-
tic dipole scaling in Woulff & McGetchin (1976). By applying the
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same procedure to the monopole and quadrupole cases, using the
mass injection rate and moment rate sources given above, we obtain
the following expressions for radiated power:

WM ∝ ρ Avv
4
e

α
(A10)

WQ ∝ ρp Avv
8
e

α5

(
ρp

ρ

)(
Lc

R

)2

, (A11)

where the fourth and eighth power dependencies agree with acoustic
scaling in the monopole and quadrupole cases (Woulff & McGetchin
1976). Thus, the seismic analogies of acoustic monopole and
quadrupole radiation are given by a volume injection and moment
tensor source, respectively.

A P P E N D I X B : D E C O M P O S I T I O N
O F A S E I S M I C F O RC E S O U RC E

Here, we consider if a seismic force can be represented by dipoles of
explosive and torque sources. We show a detailed derivation for the
2-D case and then describe the general approach and result for 3-D.
The geometry of the dipoles in 2-D is shown in Fig. 2: the dipole
consisting of an explosion/implosion pair is oriented along the di-
rection of the force and the torque dipole is oriented perpendicular
to the force direction. Seismic radiation from an explosion or torque
dipole is proportional to the spatial derivative along the direction in
which the explosion/implosion or torque/anti-torque pair is offset.
For the situation and coordinate system in Fig. 2, this means we take
the vertical z-derivative of the explosion, or blast, source and the
horizontal x-derivative of the torque source. Expressions for blast
(explosion) and torque sources in 2-D are given by Kausel (2006).
We seek to find if the sum of these two dipoles is proportional to
the Green’s function for a seismic force oriented in the vertical
direction:

CB
∂ �B
∂z

+ CT
∂ �T
∂x

= (gxz, gzz), (B1)

where �B is the blast (explosion) source, �T is the torque source, gxz

and gzz are the xz- and zz-components of the force Green’s tensor,
which are used to describe the radiation from a vertically oriented
force, and CB and CT are proportionality constants to be determined.
Note that expressions for the components of the 2-D Green’s tensor
are also given in Kausel (2006). Although we take the orientation
of the force as vertical here, the orientation can be in any direction.

In component form, eq. (B1) can be written as

CB
∂ Bx

∂z
+ CT

∂Tx

∂x
= gxz (B2)

and

CB
∂ Bz

∂z
+ CT

∂Tz

∂x
= gzz . (B3)

The blast source is given by (Kausel 2006)

�B = (Bx , Bz) = −iω

4μα
H1

(ωr

α

)
(γx , γz) (B4)

where μ is the shear modulus, ω is the angular frequency, α is the
P-wave velocity, γ x and γ z are components of the unit vector in
the radial direction (i.e., direction cosines), and H1 is the Hankel
function of order one. Note that, for brevity, we do not indicate
whether the Hankel function is of the first or second kind, since this

distinction will be dependent on the Fourier transform convention.
The torque source is given by (Kausel 2006)

�T = (Tx , Tz) = iω

8μβ
H1

(
ωr

β

)
(γz,−γx ) (B5)

where β is the S-wave velocity.
We begin by evaluating eq. (B2). For the term ∂Bx/∂z, we use the

following identity for a general function f(r) of the radial coordinate

∂ f

∂z
= ∂ f

∂r
γz (B6)

and also the following identity for the directional cosine γ x

∂γx

∂z
= −γxγz

r
. (B7)

Using these identities, we find that

∂ Bx

∂z
= − iω

4μα

[
∂ H1(kpr )

∂r
γzγx − H1(kpr )

γxγz

r

]
, (B8)

where kp = ω/α. For the term ∂Tx/∂x, we use the following identity
for a general function f(r) of the radial coordinate:

∂ f

∂x
= ∂ f

∂r
γx (B9)

and also the following identity for the directional cosine γ z

∂γz

∂x
= −γxγz

r
. (B10)

Using these identities, we find that

∂Tx

∂x
= iω

8μβ

[
∂ H1(ksr )

∂r
γxγz − H1(ksr )

γxγz

r

]
(B11)

where ks = ω/β.
We now use the following recursion relations for Hankel func-

tions:

∂ H1(kr )

∂r
= k

2
[H0(kr ) − H2(kr )] (B12)

H1(kr ) = kr

2
[H0(kr ) + H2(kr )]. (B13)

Using these relations on eqs (B8) and (B11) requires combining and
organizing them into the following form:

∂ H1(kr )

∂r
− H1(kr )

r
= −k H2(kr ). (B14)

We use eq. (B14) and add eqs (B8) and (B11), together with the
assumption CT = 2CB to find

CB

(
∂ Bx

∂z
+2

∂Tx

∂x

)
=CB

ω2

β2
× iγxγz

4μ

[
β2

α2
H2

(ωr

α

)
−H2

(
ωr

β

)]
.

(B15)

Kausel (2006) gives the xz-component of the Green’s function as

gxz = 1

μ
χγxγz (B16)

where

χ = i

4

[
β2

α2
H2

(ωr

α

)
− H2

(
ωr

β

)]
. (B17)

Compared to Kausel (2006), the right-hand side of eq. (B15) differs
from the xz-component of the Green’s function gxz by the factor
CBω2/β2. Thus, to make the right-hand side of eq. (B15) equal to
gxz, the factor CB must be equal to β2/ω2. Based on our earlier
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assumption that CT = 2CB, CT must be equal to 2β2/ω2. Now we
will see if going through the same steps for eq. (B3) leads to the
same factors CB and CT. If it does, then the combination of blast
and torque dipoles with amplitudes determined by these values for
CB and CT is proportional to a force source.

For the term ∂Bz/∂z in eq. (B3), we use eq. (B6) and also the
following identity for the directional cosine γ z

∂γz

∂z
= 1 − γ 2

z

r
. (B18)

Using these identities, we find that

∂ Bz

∂z
= − iω

4μα

[
∂ H1(kpr )

∂r
γ 2

z + H1(kpr )

(
1 − γ 2

z

)
r

]
. (B19)

For eventual comparison with the expression for the zz-component
of the Green’s function gzz given in Kausel (2006), we rewrite eq.
(B19) in terms of Hankel functions of order 0 and 2

∂ Bz

∂z
= − iω2

4μα2

[
H0(kpr ) + H2(kpr )

2
− H2(kpr )γ 2

z

]
. (B20)

For the term ∂Tz/∂x in eq. (B3), we use eq. (B9) and also the
following identity for the directional cosine γ x

∂γx

∂x
= 1 − γ 2

x

r
. (B21)

Using these identities, we find that

∂Tz

∂x
= − iω

8μβ

[
∂ H1(ksr )

∂r
γ 2

x + H1(ksr )

(
1 − γ 2

x

)
r

]
. (B22)

We rewrite eq. (B22) in terms of Hankel functions of order 0 and
2 for eventual comparison with Kausel (2006) and also in terms of
γ z using γ 2

x = 1 − γ 2
z yielding

∂Tz

∂x
= − iω2

8μβ2

[
H0(ksr ) − H2(ksr )

2
+ H2(ksr )γ 2

z

]
. (B23)

Kausel (2006) gives the zz-component of the Green’s function as

gzz = 1

μ

(
ψ + χγ 2

z

)
, (B24)

where χ is given by eq. (B17) and ψ is given by

ψ = i

4

[
H1(ksr )

ksr
− β2

α2

H1(kpr )

kpr
− H0(ksr )

]
. (B25)

By using the recursion relations for Hankel functions, this equation
can be rewritten in terms of Hankel functions of order 0 and 2 as

ψ = − i

8

[
H0(ksr )−H2(ksr )+ β2

α2

(
H0(kpr )+H2(kpr )

)]
. (B26)

We need to add eq. (B20) scaled by CB and eq. (B23) scaled by
CT to verify that the explosion and torque dipoles are proportional
to gzz. As done previously, we assume CT = 2CB and confirm that
it works. We first add the terms in eqs (B20) and (B23) that contain
the factor γ 2

z and use eq. (B17) to obtain

CB
ω2

β2

γ 2
z

μ

i

4

[
β2

α2
H2(kpr ) − H2(ksr )

]
= CB

ω2

β2

γ 2
z

μ
χ (B27)

which we identify as CBω2/β2 times the second term on the right-
hand side of eq. (B24). We now add the other terms in eqs (B20)

and (B23) and use eq. (B26) to obtain

CB
ω2

β2

1

μ

−i

8

[
H0(ksr ) − H2(ksr ) + β2

α2

(
H0(kpr ) + H2(kpr )

)]

= CB
ω2

β2

1

μ
ψ (B28)

which we identify as CBω2/β2 times the first term on the right-hand
side of eq. (B24). Therefore, for the sum of the scaled versions of
eqs (B20) and (B23) to be equal to gzz, CB must be equal to β2/ω2.
Since we assumed CT = 2CB, CT must be equal to 2β2/ω2. These are
the same values for CB and CT we obtained when analysing the other
component of the Green’s tensor, gxz. This means that the seismic
wave field radiated by a combination of explosion and torque dipoles
scaled by CB and CT, respectively, is proportional to the wave field
from a force source. The idea that the seismic Green’s function
for a force source can be represented as the sum of a P-wave part
and an S-wave part has been discussed previously by Nakahara &
Haney (2015) and is consistent with the proof shown here involving
an explosion dipole (the P-wave part) and a torque dipole (S-wave
part). This completes the demonstration that a seismic force source
can be decomposed into dipoles of explosion and torque sources in
2-D.

Finally, we set up the derivation in 3-D but do not go through
all the steps shown for 2-D since the 3-D derivation is similar. The
geometry of the dipoles is shown in Fig. 3 and, similar to eq. (B1),
we seek to find if 3-D explosion (blast) and torque sources satisfy

CB
∂ �B
∂z

+ CT
∂ �T1

∂x
+ CT

∂ �T2

∂y
= (gxz, gyz, gzz) (B29)

where CB and CT are proportionality constants to be determined and
gxz, gyz and gzz are components of the 3-D force source. Expressions
for the 3-D blast and torque sources are given in Kausel (2006) as

�B = (Bx , By, Bz) = −3iω2

16πμα2
h1

(ωr

α

)
(γx , γy, γz) (B30)

�T1 = (T1x , T1y, T1z) = iω2

8πμβ2
h1

(
ωr

β

)
(γz, 0, −γx ) (B31)

�T2 = (T2x , T2y, T2z) = iω2

8πμβ2
h1

(
ωr

β

)
(0, γz, −γy), (B32)

where we have rewritten the expressions in Kausel (2006) in terms of
spherical Hankel functions of order 1, shown as h1. Note that there
are two torque sources polarized perpendicular to each other as
shown in Fig. 3. Note also that the expression for the blast source in
3-D given by Kausel (2006) agrees with the analogous expression
in Ben-Menahem & Singh (1981); the torque source in Kausel
(2006) is smaller by a factor of 1/2 compared to the same source
in Ben-Menahem & Singh (1981), reflecting a different convention
for defining the amplitude of torque.

The 3-D derivation requires the following recursion relations for
spherical Hankel functions:

∂h1(kr )

∂r
= k

3
[h0(kr ) − 2h2(kr )] (B33)

h1(kr ) = kr

3
[h0(kr ) + h2(kr )]. (B34)
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Combining and organizing these relations results in the following
useful expression:

∂h1(kr )

∂r
− h1(kr )

r
= −kh2(kr ), (B35)

which is the same in form as eq. (B35) except in terms of spherical
instead of normal Hankel functions. With these relations, the 3-D
derivation follows the 2-D case closely. Expressions for the 3-D

Green’s tensor components gxz, gyz and gzz are given in Kausel
(2006) and must be rewritten in terms of spherical Hankel functions
to facilitate the comparison of terms during the derivation. As a
result of this process, we find that CB = 4β2/3ω2 and CT = 2β2/ω2.
Although CB has a slightly different value than the 2-D case, the
consistency of these factors in determining the components gxz,
gyz and gzz in eq. (B29) shows that, just as in the 2-D case, a
force source can be decomposed into explosion and torque dipoles
in 3-D.
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