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Abstract— Microscopic vehicle emissions models have been well
developed in the past decades. Those models require second-
by-second vehicle trajectory data as a key input to perform
vehicle energy/emissions estimation. Due to the omnipresence of
mobile sensors such as floating cars, real-world vehicle trajectory
data can be collected in a large scale. However, most large-
scaled mobile sensor data in practice are sparse in terms of
sampling rate due to the consideration in implementation cost.
In this paper, a new modal activity framework for vehicle
energy/emissions estimation using sparse mobile sensor data
is presented. The valid vehicle dynamic states are identified
including four driving modes, named acceleration, deceleration,
cruising, and idling. The best valid vehicle dynamic state with
the largest probabilities is selected to reconstruct the second-by-
second vehicle trajectory between consecutive sampling times.
Then vehicle energy/emissions factors are estimated based on
operating mode distributions. The proposed model is calibrated
and validated using the Next Generation Simulation’s dataset,
and shows better performance in vehicle energy/emissions esti-
mation compared with the linear interpolation model. Sensitivity
analysis is performed to show the model accuracy with different
time intervals. This paper provides a new methodology for vehicle
energy/emissions estimation and extends the application area of
sparse mobile sensor data.

Index Terms— Modal activity, vehicle trajectory reconstruc-
tion, vehicle energy/emissions estimation, maximum likelihood
estimation.

I. INTRODUCTION AND MOTIVATION

IN MANY urban areas, vehicle emissions have been recog-
nized as one of the major contributors to air pollutions that

can pollute the environment and cause public health issues.
Reducing vehicle emissions from motorized transportation
areas plays a significant role in improving urban air quality
and decreasing atmospheric greenhouse gases. Microscopic
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vehicle emissions models, such as Comprehensive Model
Emissions Model (CMEM) [1] and MOtor Vehicle Emission
Simulator (MOVES) [2], have been well developed to calculate
vehicle energy consumption and emissions precisely. However,
these models require second-by-second vehicle trajectory data
as a key input to perform vehicle energy/emissions estimation.

In recent years, due to the technical advances in mobile
devices, large scale vehicle trajectory data are available
through mobile sensors, such as probe vehicles equipped
with Global Positioning System (GPS). Data collected by
GPS include coordinated universal time, global positions (i.e.,
latitude, and longitude), and speeds of vehicles at a certain
frequency. For large-scale data collection efforts, the data
sampling rate may range from 10 s to 60 s in order to manage
the costs of data transmission and storage. For example, almost
50,000 taxi cabs and 16,000 buses in Shanghai, China, are
equipped with GPS technology and transmit their position and
speed information to the city’s traffic management center at a
certain time interval from 10 s to 30 s. Thus, before sparse
mobile sensor data can be used in vehicle energy/emissions
estimation, it is necessary to first reconstruct the vehicle
trajectories to a time resolution (e.g., second-by-second) as
a key input to the micro vehicle emissions models or other
aspects of traffic modeling.

Many researchers have been aware of the above challenge
and have actively investigated the tradeoffs between sampling
rate of mobile sensor data and reliability of traffic modeling.
Quiroga and Bullock suggested that vehicle trajectory data
sampling period should be around 1 s to minimize errors
in computation of average speeds and travel times along
highway segments [3]. Liu et al. [4] developed two delay mea-
surement algorithms at intersections corresponding to high-
frequency probe data (at 5 s time interval) and lower-frequency
data (from 10 s to 60 s). Herring et al. [5] proposed a prob-
abilistic modeling framework for estimating and predicting
arterial travel time distributions using sparsely observed probe
vehicle with 60 s time interval. Wang et al. [6] proposed
a hidden Markov model for urban scale traffic estimation
using floating car data in order to overcome the problem
of data sparseness. Liu et al. [7] reconstructed the vehicle
trajectories to estimate vehicle emission factors based on taxi
GPS data and MOVES revised emission inventory in Shanghai,
China. Zhou et al. [8] constructed detailed vehicle trajectories
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Fig. 1. Vehicle driving trajectory on different road types.

and time-depend speed profiles for vehicle energy/emission
estimation based on mesoscopic traffic simulation output
data. Zegeye et al. [9] proposed a general framework to
integrate macroscopic traffic flow models and microscopic
emission and fuel consumption models through constructing
vehicle trajectories. Recently, due to the limitation of linear
interpolation model, Hao et al. [10] proposed a stochastic
model to estimate the second-by-second vehicle trajectories
and evaluate the link travel time distribution using sparse
mobile sensor data on arterial road. Further, vehicle energy
and emissions characteristics on arterials were estimated using
MOVES based on the reconstructed vehicle trajectories [11].

In Hao’s model, a strong assumption is that the driving
modes of a vehicle must evolve with a certain pattern, i.e.
idle → acceleration → cruise → deceleration → idle →
. . . periodically [10], [11]. It is reasonable when a vehicle
is traveling on an arterial road with frequent stop-and-go
maneuver at traffic signals and during congestions. However,
when a vehicle is traveling on a freeway, the vehicle may
decelerate only to some low speeds other than zero and
accelerate back to free-flow speed. Even driving on an arterial
road, a vehicle can also accelerate or decelerate to a certain
speed, rather than free-flow speed or zero, see Fig. 1. Such
non-stop speed oscillations inspire a new modal activity-based
model in this study to reconstruct vehicle trajectories for
vehicle energy/emissions estimation.

Therefore, the primary objective of this study is to pro-
pose a new framework of modal activity-based vehicle
energy/emissions estimation using sparse mobile sensor data
based on reconstructed trajectories. The rest of this paper is
organized as follows: The proposed methodology is intro-
duced for vehicle trajectory reconstruction in the following
section. This method is further applied for purpose of vehicle
energy/emissions estimation. Model calibration is conducted
using freeway and arterial road datasets from the Next Gen-
eration Simulation (NGSIM) program [12], [13]. Results of
numerical experiments are presented and discussed using the
other period datasets from NGSIM in section of numerical
experiments. The paper ends with brief concluding remarks
along with future works.

II. METHODOLOGY

Methods for reconstructing vehicle trajectories using sparse
mobile sensor data are developed in this section. We firstly
describe the model assumptions of modal activity-based

Fig. 2. Vehicle driving modes assumption on different road types.

Fig. 3. Problem formulation of vehicle trajectory reconstruction.

vehicle trajectory reconstruction, and identify valid vehicle
dynamic states. Vehicle trajectory reconstruction for accel-
eration/deceleration mode is then introduced. Besides, speed
oscillation effect of cruising modal is integrated in our model
framework.

A. Model Assumption

Modal activities of vehicles can be categorized into four
classes: idling, acceleration, cruising and deceleration. For the
vehicles on urban arterial roads [10], [11], cruising mode is
considered as a high-speed state between acceleration and
deceleration mode, see Fig. 2(a). In this paper, we assume that
the vehicle may keep its speed for a while within the acceler-
ation or deceleration process (i.e., acceleration → cruising →
acceleration). Under heavy traffic congestion, the driver may
control its speed to avoid stop-and-go maneuver. The vehicle
may decelerate early, cruise at low speed and then accelerate
to catch up leading vehicles. In general, the vehicle may cruise
at any speed below speed limit, including zero if we regard
idling mode as a special cruising condition, see Fig. 2(b).

Based on the relaxed assumption above, we identify the
type, time and distance of each modal activity based on the
location and speed information of a sparse mobile data pair
with certain sampling rate. Two major issues are discussed in
this section: 1) identification of inflection speed point which
is defined as the inflection point in the trajectory between
an acceleration and a deceleration process or vice versa; and
2) determination of modal travel time and distance.

As shown in Fig. 3 and Fig. 4, for a certain sparse
mobile sensor data pair, the starting speed (u1), ending speed
(u2), time interval (�t) and total traveling distance (�d)
are given. The key objective in trajectory estimation is to
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Fig. 4. Modal transition assumption.

identify modal activity sequence and assign appropriate travel
time and distance to each mode. We assume that there is
at most one inflection speed point (v̂) between a data pair
based on observations. The value of the inflection speed point
should be identified before estimating times and distances that
the vehicle takes under acceleration and deceleration modes,
as shown in the part I of Fig. 3. We assume that vehicles
can cruise at any speed between the maximum speed and
the minimum speed, resulting in one or multiple cruising
mode segment, as shown in the part II of Fig. 3. The crucial
challenge is to estimate the time and distance for each cruising
segment and assign them to the adequate position of the
vehicle trajectory.

Furthermore, some sequences, such as deceleration →
cruising → acceleration, are allowed in our model. However,
we ignore some sequences that are statistically trivial in real
world to simplify the model because of the extremely low
probability of occurrence during a certain time interval based
on filed observations, such as acceleration → cruising →
acceleration or deceleration → cruising → deceleration. For
example, statistics on NGSM U.S. 101 dataset shows that if
the sampling time interval is 10 s, almost all cruising processes
occur at the start/end of a time interval, or between acceler-
ation and deceleration modes with the inflection speed point.
The percentage of an intermediate cruising process within
the process of acceleration (i.e. acceleration → cruising →
acceleration) is 2.7%. With in the process of deceleration,
the percentage is only 0.6%. We assume that modal transition
only happens at the starting speed, ending speed and inflection
speed, which means cruising modal only happens at these three
speed points, see Fig. 4.

B. Vehicle Dynamic State Identification

For a modal activity-based trajectory estimation problem,
the vehicle dynamic state is an essential bridge between
GPS data and estimated second-by-second trajectories, as it
includes all key information for trajectory reconstruction. For
the arterial problem, the vehicle dynamic state is determined
by the modal activity sequence (i.e., M), free flow speed
(i.e., U), along with the travel time (denoted as Ti) and
distance (denoted as Xi) of each mode. The free flow speed
is important for the arterial case as it is always considered
as the average speed of cruising mode, the starting speed of

TABLE I

PROBABILITY OF DIFFERENT MODAL ACTIVITY SEQUENCE

deceleration mode, ending speed of the acceleration mode. For
the freeway scenario, as the mode transition may happen at
any speed below the speed limit, we relax that assumption.
A modal transition speed vector V is introduced to substi-
tute U . The first element of V is the starting speed (u1) of
the sparse data pair, and the last one is the ending speed (u2).
The elements in between are the speeds at all modal transition
sequentially. It is apparent that V has one more element
than M.

For a given vehicle trajectory, there exists a certain vehicle
dynamic state {m, v, t, x}. We denote idling mode as S1,
acceleration mode as S2, cruising mode as S3 and deceleration
mode as S4 to show M. For the example case in Fig. 4, M
= [S3,S4,S3,S2,S3]T and V = [u1, u1, v̂, v̂, u2, u2]T. T and
X are the time and distance for the five modal activities in M
respectively. Similar as the arterial model in [10], we assume a
truncated normal distribution for the acceleration/deceleration
pace (i.e., the reciprocal of the average acceleration rate).
We also assume the distance under acceleration/deceleration
mode follows another truncated normal distribution factored
by the modal travel time and speed. For the cruising or idle
mode, the modal travel time and distance are assumed to be
uniformly distributed. Note that in this study idle is regarded
as a special cruising driving mode. Furthermore, a certain
driving mode of the sequence may not exist, the travel time
and distance of such mode is equal to zero.

The vehicle dynamic state (M) is dependent on the rela-
tionship among u1, u2 and v̄ (average speed v̄ = �d/�t).
Note that if the vehicle only experiences a single accel-
eration or deceleration process in a certain time interval,
the average speed must fall between the starting and ending
speed. Therefore, if the value of v̄ is not between u1 and u2,
i.e. v̄ > umax = max(u1, u2) or v̄ < umin = min(u1, u2),
there must be an inflection speed point. On the contrary, if the
value of v̄ is between u1 and u2, the existence of the inflection
speed point is undefined. In this paper we simply assume that
the probability of M is equally distributed when there is no
extreme speed point. Obviously, if there is an extreme speed,
the length of M is 5; and the length of M is 3 when there is
no extreme speed. Probabilities of M are shown in Table I.

After determining vehicle dynamic states (m), the lengths
of v, t and x could be also determined. Then probability of
V could be calculated using equation (1). The prior probability
of the extreme speed v̂ will be explored in the next subsection.
Noted that we discretize the continuous quantity v̂ with the
interval of 0.28 m/s to calculate the probability of the inflection
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speed.

P (V = v|M = m) =
{

P(v̂), v̂ ≥ 0, K = 5;
1, K = 3.

(1)

Furthermore, to a certain vehicle state, the travel time and
distance are independent of the time and distance of other
modes. So the general form of the conditional probability
density functions for Ti and X i are:

P(Ti = ti |V = v, M = m) = fT (ti ; vi , vi+1, mi );
P(Xi = xi |Ti = ti , V = v, M = m)

= fX (xi ; ti , vi , vi+1, mi ). (2)

Finally, the probability of a vehicle dynamic state can be refor-
mulated as the product of probabilities of multiple independent
events:

P (M = m, V = v, T = t, X = x)

=
∏

i

P (Xi = xi |Ti = ti , V = v, M = m)

·
∏

i

P (Ti = ti |V = v, M = m)

·P (V = v|M = m) · P (M = m) . (3)

However, to a valid vehicle dynamic state {m, v, t, x},
the time constraint and distance constraint must be satisfied.
Besides, the elements of v, t and x are not less than zero
because of nonnegative matrixes. They are

�V = {v|v1 = v2 = u1, vK = vK+1 = u2, vi ≥ 0,

K = 3 or 5};
�T = {t|t1 ≥ 0, . . . tK ≥ 0, K = 3 or 5}; (4)

�X = {x|x1 ≥ 0, . . . xK ≥ 0, K = 3 or 5};∑
ti = �t;

∑
xi = �d. (5)

Based on the constraints above, Equation (6) is used
to calculate the probability of a valid vehicle dynamic
state.

P

(
M=m, V=v, T= t, X=x

∣∣∣∣∣
Kmax∑
i=1

Ti =�t,
Kmax∑
i=1

Xi =�d

)
.

(6)

C. Vehicle Trajectory Reconstruction for Acceleration and
Deceleration Modes

To a certain modal activity, if the mode is an acceleration
mode or a deceleration mode, the starting speed (vi ), ending
speed (vi+1), time consumption (ti ) and traveling distance (xi)
are given. In Hao et al. [10], we assume that the acceleration
rate of those modes follows a linear acceleration model with
ai,1 as the intercept and ri as the slope, i.e.

ai (t) = ai,1 + ri t . (7)

Based on the constrains of speed, time and distance, we have
equation (8) and (9) to solve the values of ai,1 and ri .⎧⎪⎨

⎪⎩
vi+1 = vi + ai,1 × ti + 1

2
ri × t2

i ;
xi = vi × ti + 1

2
ai,1 × t2

i + 1

6
ri × t3

i .
(8)

⎧⎪⎪⎨
⎪⎪⎩

ri = 6(vi + vi+1) × ti − 12xi

t3
i

;

ai,1 = vi+1 − vi

ti
− 1

2
ri × ti .

(9)

Therefore, the second-by-second speed/acceleration data
can be estimated by substituting the calculated ai,1 and ri into
equation (7) and (8).

D. Speed Oscillation Effect of Cruising Mode

Normally, a driver cannot keep a constant speed with-
out speed fluctuation. Therefore, speed oscillation effect of
cruising modal should be integrated to capture the real-world
driving characteristics. Hao et al. proposed a new method to
incorporate the speed oscillation effect, which is integrated
in our model framework [11]. Assume the cruising modal
traveling time is τ in second, where τ is an integer, τ ≥ 2.
For each second, the acceleration rate αi (i = 1, 2, . . . , τ )
is a normal random number, following Gaussian distribution
N(0, σc).

Firstly, we can generate (τ −1) independent normal random
numbers following N(0, σc), say βi . And we can set that
B = [β1, β2, . . . , βτ−1]T. Then we can use equation (10)
to generate a vector A = [α1, α2, . . . , ατ ]T, which follows
the Gaussian distribution N(0, σc) and satisfy the constraint

(
τ∑

i=1
αi = 0).

A = σ

√
τ

τ − 1
QB;

eTQ = 0; QTQ = I. (10)

where e is a 1 × τ all-one matrix; Q is a τ × (τ − 1) all
orthonormal basis matrix. The certification procedure can be
seen in [11].

III. VEHICLE ENERGY/EMISSIONS ESTIMATION METHOD

Micro vehicle energy/emissions modelling is first introduced
using MOVES model. Then vehicle energy/emissions char-
acteristics are estimated based on the reconstructed vehicle
trajectory using sparse mobile sensor data.

A. Micro Vehicle Energy/Emissions Modeling

Vehicle energy/emissions features are estimated using
MOVES 2014a. In MOVES model, a binning approach
is applied to present different vehicle conditions including
acceleration, deceleration, cruising and idling based on the
distribution of calculated Vehicle Specific Power (VSP) for
each second. The formula is as follows:

VSP = A × v

Mass
+ B × v2

Mass
+ C × v3

Mass
+ (a + g × sin θ) × v,

(11)
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where VSP is in KW/ton; v is in m/s, a is in m/s2; A, B, C, are
the road load coefficients in units of kW/(m/s), kW/(m/s)2, and
kW/(m/s)3, respectively. Mass means the fixed mass factor, g
is the acceleration due to gravity (9.8 m/s2), and sin θ set to
0 assuming flat road.

Based on the results of VSP, vehicle operation mode distrib-
ution could be calculated for a specific vehicle at specific time.
Then we can calculate vehicle emissions and fuel consumption
based on the emission factors from MOVES database. Noted
that we input the revised relevant factors in MOVES model
to estimate vehicle energy/emissions, such as meteorological
parameters and vehicle age distribution.

B. Vehicle Energy/Emissions Estimation

As stated in the above section, to a certain vehicle dynamic
state {m, v, t, x}, the distance error ε can be calculated using
equation (12). For a valid vehicle dynamic state, ε should be
less than 1.5 meters when

∑
ti = �t .

ε =
∣∣∣∑ xi − �d

∣∣∣ . (12)

Obviously, there may be some optional traffic states with the
same values of probabilities. The reason is that for the cruising
mode, the modal travel time and distance are assumed to be
uniformly distributed. Therefore, we select the valid vehicle
dynamic state with the least distance error. Even if the values
of the distance errors are the same, we select a valid traffic
state randomly. Thus, based on equation (6), we select the best
scenario with the largest probability in a valid vehicle dynamic
state in equation (13).

max P

(
M = m∗, V = v∗, T = t∗, X = x∗.

∣∣∣∣
Kmax∑
i=1

Ti = �t,
Kmax∑
i=1

Xi = �d

)
. (13)

Based on vehicle trajectory reconstruction, we can calculate
the VSP characteristics of vehicles, and then estimate vehicle
energy/emissions using MOVES model.

IV. MODEL CALIBRATION

We first illustrate how we can divide the actual vehicle
trajectory into four driving modes. Then, we use the historical
data to generate different time interval data pair to calibrate
the distribution of the inflection speed. After determining
the acceleration or deceleration driving mode, we can also
estimate the distribution parameters of time consumption
and traveling distance during an acceleration or deceleration
process. Finally, speed oscillation effect of cruising modal is
calibrated using the cruising modal data.

A. Robust Driving Mode Segmentation for Ground Truth

In this paper, we use NGSIM U.S. 101 and Lankershim Blvd
datasets with the second-by-second trajectories as the training
dataset to learn the time and distance distribution parameters.
As for the U.S. 101, the period from 08:05-8:20 is used
as the model calibration dataset, and the dataset during the

TABLE II

CALIBRATION RESULTS FOR MODE SEGMENTATION

period from 08:20-08:35 is used for numerical experiments.
The field observation site of U.S. 101 is approximately 640 m
in length, with five mainline lanes throughout the section [12].
For the Lankershim Blvd, the model calibration dataset is from
08:30-08:45, and the dataset during the period from 08:45-
09:00 is used for numerical experiments. There are 5 links
and 4 intersections in the study corridor [13].

For the training dataset, we partitioned the second-by-
second trajectory data into four driving modes. Intuitively,
when the value of the vehicle’s acceleration or deceleration
rate is greater than zero, we may consider the vehicle is
on acceleration or deceleration driving mode. Otherwise, the
vehicle is on idling if the speed is zero or cruising mode
if the speed is above zero. A driver cannot keep a constant
speed without speed fluctuation, so a robust method should be
adopted to partition the real-world vehicle trajectory data.

In our study, we assume that an acceleration driving mode
is defined as a series of observations with instantaneous
accelerations greater than a1m/s2, lasting for 3s or longer,
and accumulating a speed increment greater than a2 m/s.
Similarly, a deceleration driving mode is defined as continuous
observations with instantaneous decelerations (the absolute
value) greater than a3 m/s2, lasting for 3s or longer, and
accumulating a speed decrease greater than a4 m/s. The
remaining speed points are classified as cruising (speed larger
than a5 m/s) or idling driving mode (speed less than a5
m/s). In order to achieve a robust segmentation, the genetic
algorithm is used to calibrate the combination of these five
parameters, (a1, a2, a3, a4, a5). The number of population
sizes is 20, the maximum number of iterations is 100, and the
values of probability of crossover and mutation operations are
0.8 and 0.005. The function of fitness used to calculate the
error is given by equation (14).

Fitness = w ×
∑

θ1 + (1 − w) ×
∑

θ2. (14)

where θ1 is the standard deviation of acceleration of any
cruising event, which should be close to zero; θ2 is the average
acceleration of any cruise event, which should be small; and w
is the weight for the objective of θ1. In this study, w is set as
0.5. The calibrating ranges of these five parameters are [0.25
0.5] m/s2, [0.75 1.5] m/s, [0.25 0.5] m/s2, [0.75 1.5] m/s and
[0.25 0.5] m/s. The calibration results are shown in Table II.
Due to the signal intersections, vehicles driving on arterial
roads have more acceleration and deceleration modes than
vehicles driving on freeways resulting in the smaller threshold
values of a1 and a3. For cruising mode, the value of a5 on
freeways is a little smaller than the value on arterial roads.
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Fig. 5. Typical partitioning result of a vehicle on freeway.

Fig. 6. Observed frequency of the values of φ = v̂ − v̄ .

The combination parameters allow for representation of
the natural variability in driving patterns happening in real
world. The minor acceleration and deceleration modes can be
identified during cruise operation modes; a typical partitioning
result on freeway is illustrated in Fig. 5.

B. Probability Estimation of Inflection Speed Point

Based on NGSIM U.S. 101 dataset, we can generate numer-
ous different time interval data pairs and find that the gap
between the inflection speed v̂ and average speed v̄ implies a
bimodal distribution. For example, for 10 s time interval on
freeway data, Fig. 6 shows the observed frequency distribution
of speed gap v̂ − v̄ (denoted as φ). Two peaks are found in the
plot, with the values of −1.54 m/s and 1.11 m/s respectively.
The minimum and maximum values of φ are −4.82 m/s and
5.01 m/s respectively.

A Gaussian Mixture Model (GMM) is then adopted to learn
the probability of φ. The probability density functions of φ and
v̂ are formulated as follows:

P(φ) =
G∑

g=1

πg P(φ|g), (15)

P(v̂) = P(v̄ − φ) = P(φ) =
G∑

g=1

πg P(φ|g), (16)

where g is the index of Gaussian distributions; πg is the
weighting factor associated with the g-th Gaussian distribution

N(qg , σg) and
G∑

g=1
πg = 1.

Fig. 7. Cumulative probability of GMM for 10 s time interval.

TABLE III

PARAMETERS FOR GMM WITH THE DIFFERENT TIME
INTERVALS ON FREEWAYS

TABLE IV

PARAMETERS FOR OR GMM WITH THE DIFFERENT TIME

INTERVALS ON ARTERIAL ROADS

Based on the observation from Fig. 6, we set G = 2.
Then maximum likelihood method was applied to calibrate
the values of πg , qg , σg .

max
∑

i

log(

G∑
g=1

πg N(φi |qg, σg)). (17)

Expectation maximization algorithm is used to solve equa-
tion (17). Cumulative distribution functions of GMM and
ground truth for 10 s time interval are plotted in Fig. 7 to
illustrate the accuracy of the GMM model results. The para-
meters of GMM for different time interval on different road
types are listed in Table III and Table IV.

As can be seen in Table III and Table IV, for different road
types, we find that the values of q1 and q2 reflecting the
gaps with largest probabilities between the inflection speed
and average speed on a freeway are less than the values of
arterial roads at the same time interval. The reason may be
that traffic flow on freeways like a continuous fluid which is
not interrupted by intersections or crossings.
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TABLE V

CALIBRATION RESULTS FOR ACCELERATION AND DECELERATION MODES

C. Distribution Parameters of Different Driving Modals

We assume the acceleration pace (i.e., 1/ acceleration)
follows Gaussian distribution, so the travel time t that a vehicle
has spent under the acceleration mode is the product of speed
variation �v multiplied by a Gaussian multiplier [10].

ξ = t

�v
∼ N(μt , σt ). (18)

After partitioning of the speed-time profile, we can record
the mode travel time and �v during acceleration/deceleration
driving mode using historical data. So parameters of ut and
σt of the Gaussian distribution N(ut , σt ) could be estimated
via maximum likelihood estimation. We then assume that
the distance d that a vehicle travels under the accelera-
tion/deceleration mode follows:⎧⎨

⎩
d = t × (vs + ve)
,


 = d

t × (vs + ve)
∼ N(μd , σd ),

(19)

where vs and ve are the instant speed at the start and end of the
mode respectively. If the acceleration process follows constant
acceleration motion, d = t × (vs + ve)/2. Another Gaussian
distribution 
 ∼ N(ud , σd ) is set to measure how far the
acceleration process deviated from the constant acceleration
motion [10]. The parameters ud and σd of the Gaussian
distribution N(ud , σd ) could also be estimated using maximum
likelihood estimation. Table V shows the calibrated parameters
of acceleration and deceleration process in this model.

From Table V, we can find that the average accelerating and
decelerating rates of a vehicle driving on a freeway are less
than the values of a vehicle driving on an arterial road. The
values of 
 are around 0.45 rather than 0.5, which means
the process of acceleration mode or deceleration mode do
not follow the constant acceleration or constant deceleration
process.

For speed oscillation effect of cruising mode, we assume
the accelerating rate of cruising modal follows a Gaussian
distribution N(0, σc). Based on the partitioning results of
real-world vehicle trajectories, the calibrated value of σc is
0.4 m/s2 on freeways, which doubles on arterial roads with
the value of 0.2 m/s2. That means the speed of cruising mode
on freeways fluctuates more significantly than speed on arterial
roads.

V. NUMERICAL EXPERIMENTS

Numerical experiments are conducted using the other period
NGSIM dataset. Vehicle trajectories are first reconstructed.
Vehicle energy/emissions factors are then estimated using

Fig. 8. A case study of a sparse mobile sensor data pair.

MOVES model. Sensitivity analysis is performed to show the
model accuracy with different time intervals.

A. Vehicle Trajectory Reconstruction

Based on the proposed modal activity-based vehicle tra-
jectory estimation model, a case study of vehicle trajectory
reconstruction to a example data pair is shown in Fig. 8.

Fig. 8 illustrates the process to estimate the probability of
a certain sparse mobile sensor data pair. The sample time
interval is 10 s and the distance between two samples is
38.23 m, with the starting and ending speed of 6.09 m/s and
7.23 m/s. For the scenario with the largest probability, there
is an inflection speed point with the value of 1.86 m/s. The
estimated time periods of deceleration and acceleration mode
are 3 s and 3 s. The estimated distances of deceleration and
acceleration mode are 11.94 m and 10.88 m. To the cruising
assignment, 3 s are allocated to the location of v̂ , and 1 s
is allocated to the location of u2. The value of ε reflecting
the distance error between estimated value and real-world
distance is 0.17 m less than 1.5 m, see equation (12). Thus,
we can compute the conditional probability of the extreme
speed, acceleration/deceleration mode time and distance. The
probability of this valid scenario is the product of all the
conditional probabilities, as follows:

P = 1 × 0.0863 × 0.75 × 0.5 × 0.65 × 0.5 = 0.0105. (20)

To the same data pair, we also apply the linear interpolation
method as a baseline model to reconstruct the vehicle trajec-
tory. The baseline model simply assumes that the acceleration
time is equal to the deceleration time. No cruising or idling
mode is considered during vehicle trajectory reconstruction.
The Mean Absolute Error (MAE) of our proposed model on
second-by-second location estimation is 0.51 m, while the
MAE of the baseline model is 2.89 m. Besides, the MAE of the
proposed model on second-by second speed is 0.40 m/s, which
is almost half of the linear interpolation model (0.71 m/s).
Results show that the proposed model outperforms the linear
interpolation model due to the consideration of traffic domain
knowledge, named the driving mode sequence and inflection
speed point distribution.
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Fig. 9. Results of a certain vehicle trajectory reconstruction.

Fig. 10. Estimated emission factors of NOx with 10 s time interval.

Fig. 11. Typical vehicle trajectories at the speed of 35 km/h.

Fig. 9 shows the result of the example vehicle speed-time
trajectory estimation in the study area assuming 10 s time
interval. Overall, the estimated trajectories considering speed
oscillation effect matches the observations very well. The
accumulative total absolute speed error of all the time for this
vehicle trajectory estimation using our model is 54.58 m/s,
while the value of linear interpolation model is 101.43 m/s.
The proposed model shows good performance compared with
the ground truth due to the consideration of traffic domain
knowledge, named the driving mode sequence and inflection
speed point distribution.

B. Vehicle Energy/Emissions Estimation

After vehicle trajectory reconstruction, we can further esti-
mate vehicle energy/emissions using MOVES model. For
example, we estimate the NOx emission (including nitric oxide
and nitrogen dioxide) with 10 s time interval on freeways,

Fig. 12. Estimated emission factors at the same average speed.

Fig. 13. Vehicle energy/emissions estimation on freeways. (a) Vehicle
emission factors estimation. (b) Vehicle energy factor estimation.

as shown in Fig. 10. In general, The NOx emission first shows
a decreasing trend with decreasing speed and later increases
with increasing speed. Meanwhile, vehicle emission factors
are different even the vehicle average speed are the same due
to the diversity of vehicle trajectories and modal activities.
In Fig. 11, two vehicles’ average speeds are around 35 km/h
with different driving modes. The main driving modes of
typical vehicle 1 are cruising and accelerating, while the other
vehicle’s driving modes are cruising and decelerating, resulting
in the different emission factors at the same average traveling
speed.

To illustrate the accuracy of the proposed model, we com-
pare the estimated NOx emission factor and the ground truth
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Fig. 14. Vehicle energy/emissions estimation on arterial roads. (a) Vehicle
emission factors estimation. (b) Vehicle energy factor estimation.

emission factor of all vehicles with the same average speed
of 35 km/h, see Fig. 12. Noted that the ground truth emission
factors are computed using the observed trajectories based
on MOVES model. Results show that our model can well
distinguish vehicle emission factors of different vehicles even
vehicles at the same average speed.

To measure the accuracy of our model at the different travel-
ing speed, we calculate the average estimated energy/emission
factors at the same speed compare with the ground truth on
different types of roads, see Fig. 13 and Fig. 14. Overall, our
model can estimate vehicle energy/emissions characteristics
precisely through vehicle trajectory reconstruction.

We define the Mean Absolute Percentage Error (MAPE)
to represent the errors between model estimation results and
ground truth with the consideration of different vehicle emis-
sions factors, as follows:

MAPE =
∑ |(et − êt )/et |

n
, (21)

where êt is the estimated vehicle fuel/emissions factors, such
as HC, CO, NOx, CO2 and fuel consumption; et is the ground
truth factors; n is the total samples.

To arterial roads, the MAPE of energy factor is only 3.6%,
the MAPE values of HC and NOx are 3.9% and 4.2%. The
MAPEs for freeways are 2.4%, 2.8% and 2.7%, respectively.

Fig. 15. Vehicle energy/emission estimation with different time intervals
on freeways. (a) Vehicle NOx emission factor estimation. (b) Vehicle energy
factor estimation.

TABLE VI

MAPES OF VEHICLE ENERGY/EMISSIONS FACTORS
WITH THE DIFFERENT TIME INTERVALS

Moreover, there is lack of extreme congestion on freeways
when traveling speed is less than 15 km/h, see Fig. 13. Vehicle
energy/emissions factors on arterial roads show a little larger
than these factors on freeways at a certain speed due to the
influence of intersections.

C. Sensitivity Analysis With Different Time Intervals

Effects of different time intervals of our model are also
analyzed. We set that time interval varies from 10 s to 30 s,
see Fig. 15 and Fig. 16. We also calculate the MAPEs of
vehicle energy/emissions factors at the different time intervals,
as shown in Table VI. Overall, with the increasing of time
interval of sparse mobile sensor data, the MAPEs of vehicle
energy/emissions factors show an increasing trend for freeways
and arterials.
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Fig. 16. Vehicle energy/emission estimation with different time intervals on
arterial roads. (a) vehicle NOx emission factor estimation. (b) vehicle energy
factor estimation.

TABLE VII

MAPES OF VEHICLE ENERGY/EMISSIONS FACTORS FOR
THE DIFFERENT MODELS WITH 20 s TIME INTERVAL

As can be seen from Table VI, our mode performs good
estimation on vehicle energy/emissions factors when the time
interval is less than 20 s. In these cases, the MAPEs of
all vehicle energy/emissions factors are less than 8%. When
the time interval is 30 s, estimated vehicle energy/emissions
factors shows greater variation around ground truth data,
especially when the traveling speed is around 40-50 km/h
on freeways and the speed less than 15 km/h on arterials.
It means that model assumption may be not consistent with
the actual driving characteristics with 30 s time interval. For
example, there may be two or more inflection speed points
with large time intervals rather than only one inflection speed
point assumption between a certain sparse data pair.

D. Performance Comparison Between Our Proposed Model
and Linear Interpolation Model

To illustrate the advantages of the trajectory reconstruction
strategy, the estimation results of our proposed model are
compared with the estimate results of linear interpolation
model with 20 s time interval, as shown in Table VII. Linear
interpolation model can reflect the characteristics of velocity
fluctuation at a certain level [7], resulting in the MAPEs of
vehicle energy/emissions factors less than 10%. Our proposed
model shows better estimation performance, with the values
of MAPEs less then 8%.

VI. CONCLUSIONS

This study proposed a new framework of vehicle
energy/emissions estimation based on vehicle trajectory recon-
struction using sparse mobile sensor data. Methodology
of modal activity-based vehicle trajectory reconstruction is
proposed with consideration of traffic domain knowledge.
Then vehicle energy/emissions are estimated based on oper-
ating mode distribution using MOVES model. Model cal-
ibrations are conducted using NGSIM dataset. Numerical
experiments including vehicle trajectory reconstruction, vehi-
cle energy/emissions estimation are analyzed and compared
with ground truth. The numerical results show good perfor-
mance on vehicle operating mode distribution and vehicle
energy/emissions estimation. Besides, sensitivity analysis with
different time interval are also explored to illustrate the accu-
racy of our proposed model.

The results reveal that modal activity-based model can
capture the actual features of different driving mode. Speed
oscillation effect has a significant influence on vehicle
energy/emissions estimation. With the increase of time inter-
val, the MAPEs of vehicle energy/emissions factors show an
increasing trend. When the time interval is 30 s, the estimation
fluctuates significantly around the ground truth due to the
limitation of model assumption.

In the proposed research, due to the computational com-
plexity, we assume that there is only one inflection speed point
during the time interval period. It is reasonable when the time
interval is less than 30 s. New modal activity-based method on
vehicle trajectory reconstruction which considering more than
one inflection speed point should be proposed for the cases
with larger time interval.

In this paper, we validate our model using the other period
NGSIM dataset. More vehicle trajectory data should be col-
lected on other roads to validate the accuracy of our model.
Besides, due to the different vehicle types with different
driving features, such as buses, Our model can be applied
to sparse bus data to estimate bus energy/emissions character-
istics. Furthermore, the impact of the quality of observation
data on the performance of our model should be investigated,
such as the GPS positioning errors. The authors recommend
that future research could focus on those issues.
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