
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Validated coastal flood modeling at Imperial Beach,

California: Comparing total water level, empirical and

numerical overtopping methodologies.

T.W. Gallien1

Abstract

Flood extent field observations are used to evaluate the accuracy of static

(‘bathtub’) and hydrodynamic coastal flood modeling methodologies. Static

models rely on empirically calculated wave setup or runup and simply com-

pare total water levels (TWL) to land elevation. The dynamic model re-

solves temporally variable overtopping rates, overland flow, urban features

and storm system drainage. SWAN, a numerical wave model, transformed

deep water buoy spectra to the nearshore. Static TWLs were calculated

using SWAN output and an empirical runup model. Numerical (XBeach)

and Empirical (EurOtop) overtopping models parameterized with survey

data and SWAN bulk wave statistics estimated temporally variable overflow

rates along representative transects for overland flow model input. XBeach

model mode (hydrostatic, nonhydrostatic), boundary depth and random re-

alizations significantly affected overtopping rates. Nonhydrostatic mode esti-

mated order of magnitude larger overflow volumes suggesting the importance

of incident waves, particularly in near threshold conditions. Boundary depth
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and random realizations varied overflow rates approximately fourfold. Field

observations showed static TWL models performed poorly, maximum runup

substantially overestimated flood extent and setup predicted no flooding. All

dynamic models reasonably predicted flood extent despite significant over-

flow volume differences. Backshore topography and flow dynamics are impor-

tant flood extent controls. Accurate near threshold coastal flood predictions

require dynamic overland flow modeling parameterized with temporally vari-

able overtopping estimates and site specific beach and backshore topography.

Keywords: wave overtopping, XBeach, coastal flooding, bathtub model,

overwash, validation; nonlinear shallow water model, flood prediction,

beach, field observation
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1. Introduction

1.1. Background

Globally, coastal flooding represents a significant humanitarian and so-

cioeconomic hazard, 20 million people live under current high tide levels and

200 million under storm tide levels (Nicholls, 2010). The recent IPCC re-

port suggests global mean sea levels will rise 36-71 cm by 2100 under the

RCP4.5 moderate emissions scenario (Church et al., 2013). Concerningly,

mean higher high water (MHHW) and mean high water (MHW), peak levels

that drive coastal flooding, show significant upward trends in many locations

(Flick, 2002; Mawdsley et al., 2015). Relatively modest sea level rise (i.e.,

0.50 m) will significantly increase flood frequencies (Hunter, 2012). For ex-

ample, Sweet and Park (2014) show that ‘tipping points’, i.e., flooding over

0.5 m above MHHW levels will be reached by 2050, while Tebaldi et al.

(2012) suggest that the 100 year coastal flood will become annual to decadal

events for much of the United States.

Coastal flood vulnerability is evaluated using two modeling methodolo-

gies; static (also known as bathtub, equilibrium or planar surface projection

models), and hydrodynamic models (e.g., BreZo, DIVAST, TELEMAC-2D,

TUFLOW) that solve the equations of mass and momentum. Static methods

simply compare water and land elevations and assume that flooding occurs

instantaneously when water levels exceed backshore elevations. Static models

(e.g., Heberger et al., 2009; Climate Central, 2015; NOAA, 2015) are widely

used to assess regional sea level rise vulnerability and have been shown to sub-

stantially overpredict coastal flooding in low elevation backshores(Bernatchez

et al., 2011; Gallien et al., 2011; Gallien, 2014). Two-dimensional (2D) hydro-

3
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dynamic models accurately simulate long wave dynamics and overland flow

(e.g., Bates et al., 2005; Brown et al., 2007; Purvis et al., 2008; Dawson et al.,

2009; Knowles, 2009; Martinelli et al., 2010; Smith et al., 2012; Wadey et al.,

2012). However, temporally and spatially variable overtopping, fundamen-

tal to accurate coastal flood prediction, are rarely included in hydrodynamic

flooding models. Overtopping flows are a significant deficiency in coastal

flood modeling efforts (Hubbard and Dodd, 2002; Hunt, 2005; Brown et al.,

2007), and prioritized as a critical future research area (Wadey et al., 2012).

A simplistic method for representing overtopping flows uses a calculated

total water level (TWL) based on Stockdon et al. (2006) R2% (e.g., FEMA,

2004; Heberger et al., 2009) or maximum water level output from numeri-

cal models such as XBeach (e.g., Barnard, 2014). TWL models are applied

using a static (bathtub) method, projecting the maximum water level over

the backshore and suffers identical deficiencies as typical static modeling,

significantly overpredicting backshore flooding (Bates et al., 2005; Gallien,

2014). Few studies have attempted to resolve temporally and spatially vari-

able overtopping flows and fewer still incorporate validation data. Laudier et

al. (2011) investigated beach overtopping and lagoon filling in Central Cali-

fornia and suggested that empirical overtopping models overestimated total

overtopped volume. Gallien (2014) used empirical overtopping estimates as

source point input into an overland flow solver and showed good agreement

with validation data, though some overprediction was observed. Cheung et

al. (2003) and Lynett et al. (2010) presented numerical overtopping models

along with qualitative validation data (e.g., high water marks or levee dam-

age), however in the case of Lynett et al. (2010), empirical and numerical

4
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estimates differed by an order of magnitude. Le Roy et al. (2014) coupled

nearshore wave and phase resolving nonlinear shallow water (NLSW) models

to hindcast overtopping flooding, however variable quality high water marks

supported only qualitative validation. Numerous studies show the critical

need for field validation data (e.g., Battjes and Gerritsen, 2002; Poulter and

Halpin, 2008; Reeve et al., 2008; Anselme et al., 2011; Gallien et al., 2012).

XBeach (Roelvink, 2009) is a process based flow and sediment transport

model that considers infragravity and incident wave forcing. XBeach solves

a time dependent wave action balance that forces a Generalized Lagrangian

Mean (GLM) formulation of the nonlinear shallow water equations (Roelvink,

2009). A one-layer, nonhydrostatic pressure correction (Zijlema and Stelling,

2008) enables short wave surface elevation variation. For a complete model

description see Roelvink (2009) and Smit et al. (2010). XBeach has been used

primarily to model erosion and overwash during storm events (e.g., Roelvink,

2009; McCall et al., 2010; Splinter and Palmsten, 2012; McCall, 2013). Here,

uncalibrated XBeach is used to numerically estimate temporally variable

overtopping volumes on a sandy beach during a winter storm event. Wave,

water level and flooding observations and modeling are described in Section

2. Results are presented in Section 3. Modeling methodology, boundary

conditions and site specific data discussions (Section 4) are followed by a

summary (Section 5).
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2. Methods

2.1. Site Description

Imperial Beach, California is a low-lying southern California coastal com-

munity located between San Diego and the US-Mexico border. The south-

ernmost portion of the city, Figure 1C, is a sand spit backed by the Tijuana

Estuary that frequently floods. In September and October, 2012 344,000

m3 of sand were placed on the beach from Cortez Avenue south adding ap-

proximately 60 m of subaerial beach. The nourishment profile steepened,

retreated and developed wave cut crowns (Ludka and Guza, 2015).

2.2. Flood Event Description

On January 30, 2014 winter storm waves (Hs ∼1.8 m, Tp ∼14 s, Dp

∼ 280◦) coinciding with a spring high tide, 2.1 m North American Verti-

cal Datum of 1988 (NAVD88), overtopped Imperial Beach’s southern reach,

flooding Cortez, Descanso and Seacoast Drive. The field team arrived at

14:30 coordinated universal time (UTC) and observed overtopping and mi-

nor flooding. Overtopping peaked around 16:00 UTC and occurred intermit-

tently until approximately 18:15 UTC. A hand dolly fitted with a Real Time

Kinematic (RTK) receiver mapped the maximum flood extent.

2.3. Digital Elevation Model Topographic and Bathymetric Datasets

A digital terrain model (DTM) from approximately 33 km offshore and

500 m landward of the beach was constructed in World Geodetic System 1984

(WGS84) and NAVD88 m (Figure 1) using offshore bathymetry from NOAA

Geophysical Data Center (Carignan, 2012) and bare earth California Coastal

Conservancy topography from NOAA digital Coast (http://coast.noaa.gov/dataviewer).

6
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Priority Location Description Source Date Resolution (m) VRMSE (cm)

1 Beach crest Dolly survey Scripps 01-30-14 0.81 2

2 Upper beach ATV survey Scripps 01-30-14 0.62 3

3 Beach to -8 m ATV, dolly, jet ski Scripps 01-14-14 0.83 3

4 Backbeach LiDAR DSM Scripps 04-08 2 10

5 Land/Estuary Bare earth DEM CA Coastal Cons. 10-09 to 08-11 1 10

6 Offshore 1/3 Arc Second DEM NOAA NDGC various 1-10 10-100

Table 1: Geospatial data. Resolution given is point spacing along crest line1, 5 m transects2

and 100 m transects3

The bare earth digital elevation model (DEM) exhibits a highly smoothed

landward sloping surface inconsistent with the site (Figure 2). An alter-

nate LiDAR digital surface model (DSM) that did not remove structures

was consistent with the observed back beach region. DSM elevation data

between houses were used to supplant incorrect bare earth DEM elevations.

Beach crest elevations were surveyed immediately before high tide, compre-

hensive beach topography was surveyed at the following low tide. Nearshore

bathymetry from 0 to -8 m NAVD88 m was surveyed two weeks prior to the

overtopping event. Beach topography was blended with nearshore bathymetry,

bare earth topographic data (NOAA, 2014a) and offshore bathymetry. Table

1 shows the data sources, in order of priority, used to construct the DTM.

2.4. Wave Modeling

Six minute water levels were obtained from the nearest open coast tide

gauge, La Jolla 9410230, approximately 40 km north and applied as offshore

boundary conditions for all models. Deep water boundary condition half-

hourly frequency directional spectra (CDIP buoy 191, http://cdip.ucsd.edu)

were calculated using the maximum entropy method (64 frequency, 360 di-

rectional bins) and propagated shoreward using SWAN (Booij et al., 1999).
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The 33 x 20 km (660 x 400) simulation domain, gridded at ∼50 m spacing,

was carefully chosen to preserve wave properties in the region of interest, i.e.

boundary shadowing and grid resolution effects were negligible. An eight

hour non-stationary simulation (1100-1900 UTC) output significant wave

height (Hs), peak period (Tp), peak direction (Dp) and directional spread

(σe) at 6 minute intervals at 40 m, 10 m the slope toe (∼-1 m NAVD88)

along three representative cross-shore transects (Figure 3). The first hour of

output was discarded.

2.5. TWL Estimates

Total water levels were estimated using Stockdon et al. (2006) setup 〈η〉
and runup, R2%,

〈η〉 = 0.35β(H0L0)
0.5 (1)

R2% = 1.1

(

0.35β(H0L0)
0.5 +

[H0L0(0.563β
2 + 0.004)]0.5

2

)

(2)

where β is the slope, H0 is the deep water significant wave height, L0 is the

deep water wave length. SWAN significant wave height estimates in 40 m

depth were linearly reverse shoaled for calculating Stockdon TWLs.

2.6. Dynamic water level and overtopping estimates

Maximum wave runup elevation and overtopping volumes were estimated

over a seven hour period (1200-1900 UTC) using EurOtop (Pullen, 2007)

and XBeach (Roelvink, 2009). EurOtop was developed for dike structures

and relies on bulk wave parameters and beach geometry to estimate average

8
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overtopping rates. Although EurOtop is intended for runup and overtopping

of structures it has been used to estimate beach and dune overtopping vol-

umes (e.g., Martinelli et al., 2010; Laudier et al., 2011; Gallien, 2014). The

probabilistic EurOtop formulation for ξm−1,0 < 5 is,

q
√

gH3
m0

= min(a, b)

a =
0.067√
tanα

γb ξm−1,0 exp

(

−4.75
Rc

ξm−1,0Hmoγbγfγβγv

)

b = 0.2 exp

(

−2.6
Rc

Hm0γfγβ

)

(3)

where q is the mean overtopping rate per unit length, g represents gravity,

α is slope angle, Rc is the freeboard, Hm0 is the significant wave height

at the structure toe, γb is the berm influence factor, γf is the roughness

influence factor, γβ is the oblique wave attack factor, γv is the vertical wall

influence factor (Pullen, 2007). All reduction parameters were assumed to

be unity. The TAW (2002) formulation relies on a breaker parameter ξm−1,0

that characterizes the wave breaking condition (i.e., breaking, non-breaking)

and is given as,

ξm−1,0 =
tanα

√

Hm0

Lm−1,0

(4)

where Lm−1,0 = gT 2
m−1,0/2π and Tm−1,0 ≈ Tp/1.1 (Pullen, 2007). Wave

overtopping volumes were estimated using Tm−1,0 calculated from 30 minute

buoy data, six minute SWAN significant wave height output at the slope toe

and beach topography from the DTM.

Although Stockdon calculates runup and EurOtop estimates overtopping,

overtopping is a function of runup and would presumably include identical

9
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physical dependencies. The dependency in Stockdon is the product of H0L0

while EurOtop (Eqt. 4) depends on the dividend Hm0/Lm−1,0.

XBeach was run in one-dimensional (1D) profiles in hydrostatic and non-

hydrostatic mode along three transects. Spatially variable 1D grids were

optimized using the XBeach Matlab toolbox ‘xb grid xgrid’. Hydrostatic

gridding resulted in approximately 120 and 270 cells for offshore XBeach

boundary conditions in 10 m and 40 m depths, respectively. Nonhydrostatic

gridding resulted in approximately 600 and 2900 cells for the 10 and 40 m

boundaries, respectively. SWAN bulk wave parameters and La Jolla water

levels were used as offshore boundary conditions. Sediment transport and

morphology were set to 0 (off). Recent studies impose XBeach boundaries

in relatively shallow, 8-15m, depths (e.g., Barnard, 2014; Stockdon et al.,

2014). In the present case, ∼40 m satisfies the ratio of group celerity to wave

celerity (n∼0.8, kd∼1) recommended on the XBeach forum (McCall, 2013).

Ten XBeach realizations using 10 and 40 m SWAN outputs (Hs, Tp, σe) were

run in both hydro- and non-hydrostatic modes along three transects (120

total simulations). Wave overtopping volumes were estimated at 1 Hz from

water height and velocities immediately shoreward of the maximum beach

elevation (arrow, Figure 4C) for each transect. Hydrostatic run times were

approximately 90 and 140 seconds for 10 and 40 m. Nonhydrostatic run times

were approximately 600 and 3600 seconds for 10 and 40 m, respectively.

2.7. Flood Modeling

Overland flow and drainage from the storm water system was modeled us-

ing BreZo, a two-dimensional Godunov type finite volume model that solves

the nonlinear shallow water equations. A constrained Delaunay triangulation

10
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was generated using Triangle (Shewchuk, 1996) consisting of 8234 triangles

represented the 1200 m x 380 m domain along Seacoast Drive. A spatially

variable mesh, gradating from ∼25 m offshore to ∼3 m along beaches and

roads where flooding occurred. A minimum of three cells across were used

to resolve street flows. Wave overtopping volumes were introduced to the

overland flow model at multiple locations to consider source point number,

distribution and position effects.

Surface streets are gravity drained into the estuary via the storm water

system and are represented by point sinks in the overland flow model using

a weir equation;

Qss =
2

3
Cd

(

2

3
g

)1/2

LH3/2 (5)

where Qss represents flow into the storm sewer, Cd is the coefficient of dis-

charge, L is the drain opening width and H is the water depth.

Flood modeling was performed in serial on a Dell T3600 workstation

with an Intel quad core 3.6GHz processor. A 7 hour simulation, resolving

the rising, peak and ebbing tide required approximately 5 minutes of CPU

time. A 0.2 s time step satisfied the Courant-Friedrichs-Levy (CFL) criterion.

The model was first applied using a tidal boundary condition to consider the

possibility of ocean or bay-side tidal flooding. Consistent with observations,

no tidal flooding occurred. All flooding was caused exclusively by ocean-side

overtopping.

2.8. Fit Measures

Three fit metrics describe the goodness-of-fit between predicted and ob-

served flood extents. The coefficient of areal correspondence, FA (Taylor,

11
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1977), shows the agreement between prediction and observation and is de-

fined as the intersection of predicted and observed flood extents divided by

the union of the predicted and observed flood extent,

FA =
EP ∩ EO

EP ∪ EO

(6)

where EO and EP represent the observed and predicted flood extent, respec-

tively. Perfect agreement would result in FA = 1. Underprediction, FUP , is

characterized by the fraction of flooded area observed, but not predicted.

FUP =
EO − EP ∩ EO

EP ∪ EO
(7)

FUP = 0 corresponds to no underprediction. Lastly, overprediction, FOP ,

characterizes the fraction of flooded area predicted but not observed.

FOP =
EP − EP ∩ EO

EP ∪ EO

(8)

and FOP = 0 corresponds to no overprediction. Superior models will maxi-

mize FA and minimize both FUP and FOP .

3. Results

3.1. Runup and overtopping

Table 2 shows Stockdon R2% runup and average maximum onshore water

levels, the maximum free surface elevation measured at the beach crest, for

all XBeach realizations. Slope dependency is observed in both empirical and

numerical results, maximum runup increases with beach foreshore steepness

but is considerably stronger in Stockdon. Stockdon R2% varies by 60 cm

12
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Transect β zmax R2% 10 m hydro 10 m nonhydro 40 m hydro 40 m nonhydro

3 0.117 4.34 4.54 4.49(0.06) 4.79(0.10) 4.12(0.18) 4.65(0.04)

6 0.096 4.24 4.19 4.45(0.07) 4.71(0.18) 4.09(0.19) 4.51(0.07)

9 0.132 4.52 4.79 4.60(0.05) 4.81(0.11) 4.15(0.26) 4.67(0.06)

Table 2: Transect data, Stockdon runup and XBeach average maximum onshore water

level results. All dimension in meters, except slope, β (non-dimensional). zmax is the

maximum beach elevation. Standard deviations are shown in parentheses.

across the three transects while XBeach average maximum onshore water

level elevations vary less than 16 cm. Each XBeach model considers 10 re-

alizations, maximum water level estimates for all realizations and transects

(120 total) varied from∼3.8 to 5 m. Model mode (i.e., hydrostatic, nonhydro-

static) and boundary depth significantly effect XBeach water level estimates

(Table 2). Across all transects, hydrostatic models estimated substantially

lower (21-53 cm) runup than corresponding nonhydrostatic results. Lower

average maximum water levels (14-45 cm) were observed using the deeper 40

m boundary.

XBeach boundary depth (10 or 40 m) and modeling mode (hydrostatic

or nonhydrostatic) significantly affect overtopping estimates. Nonhydrostatic

modeling increased transect overtopping rates and volumes (Table 3, Figure

5) and predicted overtopping for all realizations (60 total). Hydrostatic mod-

eling predicted overtopping for nearly all 10 m realizations (Figure 5, white

bands, dashed blue lines) but only 16% (5/30) of the 40 m realizations (Fig-

ure 5, grey bands, blue asterisks).

XBeach predicts impulsive overtopping rates while EurOtop predicts av-

erage overtopping rates (Figure 6), accordingly XBeach predicts substantially
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Model Mode Depth (m) Transect qmax l/s/m Qtot (l/m) Vtotal (m
3) Tot (s) Qavg (l/m/s)

0 3 25.45 162,180 12,164 19,080 8.5

EurOtop 0 6 11.52 64,900 3,894 14,760 4.4

0 9 32.46 193,860 18,147 19,440 10.0

10 3 433 4,531(2,380) 387 57.4(14.4) 76.4(32.2)

XBeach Hydrostatic 10 6 600 12,827(2,908) 673 282(49) 46.3(10.6)

10 9 158 1,263(1,311) 97 20(12) 50.6(31.0)

10 3 2,393 35,171(7,626) 2,901 337(28) 102(16)

XBeach Nonhydrostatic 10 6 1,866 34,124(5,470) 2,028 361(41) 95(15)

10 9 1,043 6,042(3,126) 573 63(24) 97(38)

40 3 ∗ ∗ ∗ ∗ ∗
XBeach Hydrostatic 40 6 ∗ ∗ ∗ ∗ ∗

40 9 ∗ ∗ ∗ ∗ ∗
40 3 831 8,595(6,222) 645 113(19) 78(35.5)

XBeach Nonhydrostatic 40 6 685 7,471(3,802) 439 192(66) 37.5(11.1)

40 9 290 2,142(1,459) 204 54.4(21.5) 364(13.6)

Table 3: Overtopping model results. EurOtop results are deterministic. Each XBeach

model was run 10 times for each transect, the mean and standard deviations (in paren-

thesis) are shown. Overtopping time (Tot) is considered for flows over 1 l/s/m. qmax and

Vtotal are runs nearest to the mean. Vtotal is scaled by the representative reach length of

each transect. ∗indicates zero or insignificant overtopping.
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higher maximum overtopping rates (qmax) while EurOtop predicts orders of

magnitude higher overtopped (Qtot) and total (Vtotal) volumes. For example,

on transect 3 EurOtop predicts a maximum rate of 25.5 l/s/m and a total

overtopped volume of 1.6 x 105 l/m, nonhydrostatic 40 m XBeach predicts

maximum rates and volumes of 831 l/s/m and 8,595 l/m.

EurOtop’s exponential formulation always predicts overtopping, if flows

over 1 l/s/m are considered, EurOtop predicts overtopping flows for over four

hours while XBeach only predicts 1-5 minutes total overtopping time (Figure

6). If average overtopping rates are considered i.e., total overtopped volume

(Qtot) divided by the overtopping time (Tot) order of magnitude differences

are observed. EurOtop and nonhydrostatic XBeach realizations at 10 and 40

m depths nearest to the mean overtopping rate were chosen as input to the

hydrodynamic flood model.

3.2. Static and Hydrodynamic Flood Modeling

Five total flood models are considered (Table 4); two static water levels,

Stockdon setup and R2% (Figure 7A), and three hydrodynamic models using

EurOtop, XBeach 10 m nonhydrostatic, and XBeach 40 m nonhydrostatic

overtopping estimates (Figures 7B-D, respectively). Static TWL flood pre-

diction is poor; Stockdon setup (not shown) predicts no flooding (FA = 0,

FUP = 1) while R2% extensively overpredicts (FA = 0.13, FOP = 0.87). Flood

models parameterized with nonhydrostatic 40 m XBeach (Figure 7D) were

most consistent with areal extent (FA = 0.71), flood arrival time and qualita-

tive depth observations. From an areal extent perspective, all hydrodynamic

models perform similarly (FA ∼0.7) despite order of magnitude differences

in overtopped volume inputs. However, flow characteristics differ substan-
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Model FA FOP FUP havg hmax hCortez

Stockdon R2% 0.13 0.87 0 - - -

Stockdon SU 0 0 1 - - -

EurOtop 0.64 0.34 0.02 9.5 27.3 2.4

10 m XBeach 0.67 0.29 0.04 10.9 25.1 9.9

40 m XBeach 0.71 0.15 0.14 6.9 18.9 5.3

Table 4: Flood models and statistics. All heights are in centimeters.

tially. EurOtop overtopping is a long, slow filling event, maximum water

levels near the beach are 2.4 cm (Table 4, hCortez) compared to higher levels,

5-10 cm, for impulsive (XBeach) overtopping. Flow vector analysis suggests

constant low level EurOtop flows are constrained by the curb, spread along

gutters and discharge through the storm drains (Figure 7B). Conversely, in

impulsive flooding events water flows down Descanso and Cortez streets and

surges across the curb into the estuary.

3.3. Overtopping Input Locations and Spacing

Wave overtopping volume time series are input to the overland flow model

as source points at various long and cross-shore locations. In hard structure

flood modeling, grid cells or mesh edges are aligned with infrastructure (i.e.,

sea walls) and overtopping volumes are introduced along these features (e.g.,

Prime, 2015). Beaches, however, include fine scale, sub-meter topography

(e.g., cusps, scarp), representing meshing challenges similar to those reported

by Tsubaki and Fujita (2010) and Gallien et al. (2011). A computationally

efficient mesh prohibits exact representation of the beach crest, some mesh

cells will interpolate across the high elevation crest. Flow vector analysis

shows grid cells that interpolate across the high elevation feature may in-
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Trial ∆longshore cross-shore location points FA FOP FUP A (m2) havg hmax

1 5 landward crest 46 0.60 0.09 0.31 2,007 5.56(4.02) 17.9

2 5 2 grid cells landward 46 0.71 0.15 0.14 2,674 6.90(3.74) 18.9

3 5 between crest/trough 46 0.71 0.15 0.14 2,677 6.90(3.76) 19.0

4 5 trough 46 0.71 0.15 0.14 2,723 7.38(3.83) 19.1

5 10 between crest/trough 23 0.71 0.15 0.14 2,675 6.78(3.85) 19.3

6 15 between crest/trough 15 0.71 0.15 0.14 2,689 6.97(3.88) 19.2

7 20 between crest/trough 11 0.71 0.15 0.14 2,672 6.78(3.82) 19.2

8 30 between crest/trough 8 0.71 0.15 0.14 2,693 6.89(4.03) 19.9

9 40 between crest/trough 5 0.71 0.15 0.14 2,717 7.54(3.84) 18.7

10 ∼ 80 between crest/trough 3 0.69 0.23 0.08 3,201 10.1(5.29) 22.3

11 ∼ 80 trough 3 0.65 0.31 0.04 3,672 14.4(9.30) 63.0

Table 5: Overtopping Input Points Summary

correctly slope and route overtopped water seaward. Input point cross-shore

placement relative to beach crest, mesh edges and cell slope become im-

portant. Various cross-shore input locations are considered (Table 5, Trials

1-4); aligned immediately landward the DTM maximum beach elevation con-

tour, two grid cells landward of the maximum beach elevation, along a line

approximately halfway between the maximum beach elevation and low ele-

vation contour landward of the crest but seaward of the urbanization and

finally, the low elevation beach contour. All trials produced nearly identi-

cal results except when input points were aligned with the DTM maximum

beach elevation contour (Trial 1).

4. Discussion

Backshore flooding results from dynamic wave runup and overtopping

processes. Temporally variable overtopping volume models were superior to
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TWL methods. All static models are incapable of resolving dynamic overtop-

ping flows. Simple Stockdon R2% TWL models substantially overpredicted

flood extent. Conversely, setup TWL predicted no backshore flooding. Con-

tinued reliance on static methods and corresponding poor prediction under-

mines coastal flood risk management efforts.

Interestingly, flood extents were similar for all dynamic overtopping mod-

els despite orders of magnitude difference in overtopped volume, suggesting

that backshore topography and flow dynamics are primary flood extent con-

trols.

Typically, XBeach is applied in a single deterministic run and offshore

boundaries are imposed at instrumentation locations (e.g., Stockdon et al.,

2014) or set depths (e.g., Barnard, 2014). Random realizations of otherwise

identical XBeach runs yielded significant variation in overtopping estimates,

particularly when runup elevations are similar to maximum beach elevations.

Although relative standard deviations decreased with increasing freeboard

exceedance and subsequent overtopping events, overflow discrepancies may

result in fundamentally different flooding predictions, particularly in areas

with estuary side sea walls that retain overtopped volumes (e.g., Gallien,

2014). Alternative offshore boundaries (10 and 40 m) varied average maxi-

mum water levels by 14-45 cm and overtopping estimates approximately four-

fold, suggesting that infragravity energy generated at the XBeach boundary

varies significantly with boundary depth.

Long and cross-shore input spacings must be considered for accurate flood

predictions. Input spacings should be distributed along the beach, sufficiently

seaward of urban features and landward of beach crest such that overtopped
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water correctly routes across the beach surface (Table 5, Trials 2-9). In this

case, longshore spacings of 30 m or less appropriately routed water across

local topographic depressions and into the backshore. Cross-shore inputs co-

inciding with seaward sloping grid cells incorrectly routed overtopped volume

and should be avoided (Table 5, Trial 1). Sparse longshore (in this case, 80

m) or excessively landward input points (Table 5, Trial 11) caused significant

overprediction.

Generally, bare earth LiDAR based DTMs are recommended for routing

overland flows (Sanders, 2007). However, in steep and rapidly variable terrain

common to urbanized sand spits, structure removal may oversmooth high

backbeach elevations. Figure 2 shows the difference between the bare earth

DTM and a LIDAR DSM, differences of ∼2 m are observed between the

two datasets between buildings. This highlights the critical site knowledge

required to accurately model rapidly variable, urbanized backshore terrain.

5. Conclusions

A nested modeling methodology is used to predict wave overtopping flood-

ing. SWAN transformed offshore buoy data to the nearshore where XBeach

estimated wave overtopping volumes as input to a a nonlinear shallow water

solver for backshore flood prediction. Model results are compared to tradi-

tional static TWL flood modeling. Field observations show TWL methods

perform poorly, resulting in extensive over or under-prediction. All tempo-

rally variable overtopping models results were superior to static methods.

XBeach is often applied in a single deterministic run (e.g., Barnard, 2014;

Stockdon et al., 2014), however random realizations showed significant runup
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and overtopping variability within each group of 10 runs. Boundary depth

also significantly affected runup and overtopping rates. Both random realiza-

tions and appropriate offshore boundary depths for expected wave numbers

must be considered.

Accurate beach and back-beach topographic characterization are crucial

in rapidly variable, densely built coastal areas. Local beach depressions re-

tained and infiltrated overtopped flows. The bare earth DEM oversmoothed

high elevations where structures were removed. In this case, terrain changes

could be observed in Google Earth and alternative LiDAR data was available

to supplant the problematic region. Accurate urban coastal flood modeling

often requires site specific knowledge and topographic data.

Wave overtopping field observations are exceedingly rare and validation

data paucity inhibits accurate urban coastal flood modeling and prediction.

This study benefits from flood extent observations; however, depth, velocity

field and overflow measurements are needed to rigorously validate impulsively

driven overtopping flows and advance coastal flood modeling.

6. Acknowledgments

This work was supported by the University of California, San Diego Chan-

cellor’s Fellowship, California Department of Parks and Recreation, Division

of Boating and Waterways (program manager R. Flick) and the United States

Army Corps of Engineers. Brian Woodward, Kent Smith, Dennis Darnell,

Bill Boyd and Rob Grenzeback collected beach and bathymetry data used in

this work.

20



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

References

Anselme, B., Durand, P., Thomas, Y.F., Nicolae-Lerma, A., 2011. Storm

extreme levels and coastal flood hazards: A parametric approach on the

French coast of Langunedoc (district of Leucate). Comptes Rendus Geo-

science 343, 677-690.

Battjes, J.A. and Gerritsen, H., 2002. Coastal modelling for flood defence.

Philosophical Transactions of the Royal Society A 360, 1461-1475.

Barnard, P.L., van Ormondt, M., Erickson, L.H., Eshleman, J., Hapke, C.,

Ruggiero, P., Adams, P.N., Foxgrover, A.C., 2014. Development of the

Coastal Storm Modeling System (CoSMoS) for predicting the impact of

storms on high-energy active-margin coasts. Natural Hazards, 74(2), 1095-

1125.

Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J.,Wicks, J.,

Hassan, M.A.A.M., 2005. Simplified two-dimensional numerical modelling

of coastal flooding and example applications. Coastal Engineering 52(9),

793-810.

Bernatchez, P., Fraser, C., Lefaivre, D., Dugas, S., 2011. Integrating an-

thropogenic factors, geomorphological indicators and local knowledge in

the analysis of coastal flooding and erosion hazards. Ocean and Coastal

Management, 53, 621-632.

Booij, N., Ris, R. C., Holthuijsen, L. H., 1999. A thirdgeneration wave model

for coastal regions: 1. Model description and validation. Journal of Geo-

physical Research: Oceans (19782012), 104(C4), 7649-7666.

21



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Brown, J.D., Spencer, T., Moeller, I., 2007. Modeling storm surge flooding of

an urban area with particular reference to modeling uncertainties: A case

study of Canvey Island, United Kingdom. Water Resour Res. 43(W06402),

doi:10.1029/2005WR004597.

Carignan, K.S., L.A. Taylor, B.W. Eakins, D.Z. Friday, P.R. Grothe, and

M. Love, 2012. Digital Elevation Models of San Diego, California: Pro-

cedures, Data Sources and Analysis, NOAA National Geophysical Data

Center technical report, Boulder, CO, 32 pp.

Cheung, K.F., Phadke, A.C., Wei, Y., Rojas, R., Douyere, Y.J.M., Mar-

tino, C.D., Houston, S.H., Liu, P.L.F., Lynett, P.J., Dodd, N., Liao, S.,

Nakazaki, E., 2003. Modeling of storm induced coastal flooding for emer-

gency management. Ocean Engineering 30, 1353-1386.

Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Lev-

ermann, A., Merrifield, M.A., Milne, G.A., Nerem, R.S., Nunn, P.D.,

Payne, A.J., Pfeffer, W.T., Stammer, D., and Unnikrishnan, A.S.: Sea

level change. In: Climate Change 2013: The Physical Science Basis, Con-

tribution of Working Group I to the Fifth Assessment Report of the In-

tergovernmental Panel on Climate Change, edited by: Stocker, T.F., Qin,

D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A.,

Xia, Y., Bex, V., and Midgley, P.M. (eds), Cambridge University Press,

Cambridge, UK, New York, NY, USA, 11371216, 2013.

Climate Central. Surging Seas, Sea level rise analysis by Climate Central.

Accessed May 5, 2015 at http://sealevel.climatecentral.org/

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Dawson R.J., Dickson M.E., Nicholls R.J., Hall J.W., Walkden M.J.A.,

Stansby P., Mokrech M., Richards J., Zhou J., Milligan J., Jordan A.,

Pearson S., Rees J., Bates P., Koukoulas S., Watkinson A., 2009. Inte-

grated analysis of risks of coastal flooding and cliff erosion under scenarios

of long term change. Climatic Change 95(1-2), 249-288.

Federal Emergency Management Agency (FEMA), 2004. Guidelines and

Specifications for Flood Hazard Mapping Partners Appendix D. Final

Draft Guidelines for Coastal Flood Hazard Analysis and Mapping for the

Pacific Coast of the United States. Available online at http://www.fema.

gov/library/viewRecord.do?id=2188.

Flick, R., Murray, J., Ewing, L. 2003. Trends in United States Tidal Datum

Statistics and Tide Range. J. Waterway, Port, Coastal, Ocean Eng., 129(4),

155164.

Gallien, T.W., Schubert, J.E, and Sanders, B.F., 2011. Predicting tidal flood-

ing of urbanized embayments: A modeling framework and data require-

ments. Coastal Engineering, 58(6), 567-577.

Gallien, T.W., Barnard, P., van Ormondt, M., Foxgrover, A., Sanders, B.F.,

2012. A Parcel-scale coastal flood forecasting prototype for a Southern

California urbanized embayment. Journal of Coastal Research, 31, 47-60.

Gallien, T.W., Sanders, B.F., Flick, R.E., 2014. Urban coastal flood predic-

tion: Integrating wave overtopping, flood defenses and drainage. Coastal

Engineering 91, 18-28.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Guza, R.T. and Feddersen, F., 2012. Effect of wave frequency and directional

spread on shoreline runup. Geophysical Research Letters, 39, L11607, 5 pp.

Heberger, M., Cooley, H., Herrera, P., Gleick, P.H., Moore, E., 2009. The

impacts of sea-level rise on the California coast. Sacramento, California

Climate Change Center.

Holthuijsen, L.H., Booij, N., Herbers, T.H.C., 1989. A prediction model for

stationary, short-crested waves in shallow water with ambient currents.

Coastal Engineering 13, 2354.

Hubbard, M.E., Dodd, N., 2002. A 2D numerical model of wave run-up and

overtopping. Coastal Engineering 47, 1-26.

Hunt, J.C.R., 2005. Inland and coastal flooding: developments in prediction

and prevention. Philosophical Transactions of the Royal Society A 363,

1475-1491.

Hunter, J., 2012. A simple technique for estimating an allowance for uncertain

sea-level rise. Climatic Change 113, 239-252.

Knowles, N., 2009. Potential inundation due to rising sea levels in the San

Francisco Bay Region. Sacramento, California Climate Change Center.

Laudier, N.A., Thornton, E.B., MacMahan, J., 2011. Measured and modeled

wave overtopping on a natural beach. Coastal Engineering 58, 815-825.

Le Roy, S., Pedreros, R., Andr, C., Paris, F., Lecacheux, S., Marche, F., Vin-

chon, C., 2014. Coastal flooding of urban areas by overtopping: dynamic

24



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

modelling application to the Johanna storm (2008) in Gâvres (France).
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Figure 1: Imperial Beach Site and Data Sources. (A) Bathymetry with

XBeach transects envelope (striped area) and 10-40m isobaths. (B) nearshore

data with 10 m isobath. Xbeach transects 3, 6 and 9 are shown as solid blue,

red and green lines, respectively. Inset C: Flood modeling domain, transects

and observed flood extent (blue). (D) Foreshore transects, black arrows de-

note slope toes. Numerals correspond to geospatial data priorities in Table

1. All data in NAVD88 m unless otherwise shown.

Figure 2: Site Specific Topography. (A) Google Earth back beach topog-

raphy showing terrain features between houses. (B) LiDAR DSM and bare

earth DEM comparison along a transect between structures where bare earth

DEM is oversmoothed.

Figure 3: Wave and water level data. (A) offshore peak period, (B) peak

direction, (C) significant wave height, (D) water level (black line) and TWL

estimates for R2% runup (∗) and setup (+). Transect colors as described in

Figure 1. Grey band shows minimum and maximum beach crest.

Figure 4: (A) SWAN significant wave height output at 1600 UTC with

XBeach transect envelope (striped area) and 10-40 m isobaths (B) XBeach

40 m boundary, nonhydrostatic water level (blue) at 1600 UTC along tran-

sect 6. Inset (C) Beach detail, arrow shows nearshore overtopping estimate

location.

Figure 5: Summary of all XBeach overtopping realizations for each tran-

sect. 10 m boundary (white background, dashed lines), 40 m boundary (grey

background, solid lines), hydrostatic (blue bars), nonhydrostatic (red bars).

Realization mean is shown by circle and cross, vertical bars represent min-

imum and maximum of 10 runs. Asterisk are used when 80% or more of
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realizations predicted zero overtopping).

Figure 6: Dynamic overtopping rates for (A) EurOtop, (B) 10 m XBeach,

(C) 40 m XBeach and (D) cumulative total overtopped volume.

Figure 7: Static (A) Stockdon R2% TWL and dynamic (B) EurOtop, (C)

10 m XBeach, (D) 40 m XBeach flood predictions and field validation data

(black line). Stockdon setup predicted no flooding and is not shown. Static

models do not predict flooding depth, extent is shown in red.
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