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ABSTRACT OF THE DISSERTATION

Control and Motion Planning for a Low-Inertia Multi-DoF Robotic Manipulator with

Proprioceptive Actuators for Dynamic Manipulation

by

Donghun Noh

in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Dennis Hong, Chair

Robotic manipulators are increasingly required to operate in dynamic, human-centric envi-

ronments, undertaking tasks that range from delicate grasping to high-speed, high-impact

manipulation. While conventional high-gear-ratio manipulators and position control strate-

gies perform admirably in structured industrial contexts, they often prove inadequate for

these more complex, unstructured domains. This dissertation addresses these shortcomings

by integrating novel hardware, control, motion planning, and machine learning methodolo-

gies to realize more adaptable and robust robotic manipulation.

Central to this work is the deployment of a proprioceptive manipulator, whose inher-

ent backdrivability, high speed, and precise torque control distinguish them from conven-

tional manipulators. Their low-inertia, lightweight design facilitates safer and more respon-

sive robot-environment interactions. To fully exploit these advantages, we develop control

methodologies that emphasize torque control rather than position control. In parallel, we in-

troduce motion planning strategies that minimize jerk and incorporate dynamic constraints,

thereby producing trajectories that are both efficient and smooth.
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This dissertation further enhances adaptability through machine-learning approaches tai-

lored for friction-aware grasping and dynamic manipulation. By constructing a friction co-

efficient dataset and training regression models, the system can efficiently adjust grasping

forces in real-time. Additionally, ongoing research in imitation learning, drawing on human

demonstrations and incorporating both visual data and physical models, shows promise in

enabling the robot to eventually replicate human-level skill in complex, dynamically varying

tasks.

Comprehensive evaluations include successful demonstrations of autonomous cooking and

friction-aware grasping, as well as ongoing research into dynamic box-receiving tasks. While

further validation and optimization remain active areas of study, results so far suggest that,

when integrated with torque control, optimized motion planning, and model-based data-

driven learning, the proposed proprioceptive manipulator can significantly enhance manip-

ulation speed, stability, energy efficiency, and compliance. These findings provide a strong

foundation for more intuitive, versatile, and collaborative robotic systems, better suited to

the demands of real-world, human-centered environments.
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CHAPTER 1

Introduction

1.1 Motivations and Objectives

Robotic manipulators have long served as the backbone of industrial automation, excelling

in tasks requiring precision, repeatability, and strength. Historically, their use was confined

to structured and isolated environments, where their heavy and rigid design ensured high

performance in repetitive operations like welding, assembly, and material handling. How-

ever, as society demands more versatile automation, manipulators are being called upon to

move beyond industrial applications and into dynamic, unstructured environments, such as

homes, healthcare facilities, and restaurants. This shift is driven by the increasing need for

robots to perform tasks traditionally reserved for humans, including caregiving, cooking, and

collaborative work, especially in anticipation of a declining workforce.

Recent advancements in artificial intelligence and robotics have enabled manipulators to

perform more complex tasks with higher autonomy. One significant trend is the integra-

tion of manipulators with mobile platforms, resulting in mobile manipulators that combine

mobility with dexterity. These systems, which extend the capabilities of traditional manipu-

lators, demonstrate how robotics is addressing real-world challenges in previously inaccessible

settings. For example:

• Drone-mounted manipulators: Allowing for aerial tasks such as precision agricul-

ture, disaster response, and remote inspection [KCK13, KAS16, RLO18].

• Wheeled mobile manipulators: Essential for logistics, performing object-picking
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tasks, warehouse automation, and teleoperation in hazardous environments [TSA23,

HKS10, THK16].

• Humanoid robots: Featuring manipulator arms that mimic human-like tasks, mak-

ing them ideal for caregiving, domestic chores, and customer service [Ahn23, HO07,

GV18, OAS06].

These examples show the potential of mobile manipulators. However, traditional robotic

manipulators have inherent limitations due to their high-geared servo motors. While they

perform well in structured environments, their slow joint speed, heavy arm weight, and

rigidity render them unsuitable for dynamic, human-centric applications that require adapt-

ability and compliance. Moreover, conventional actuators, optimized for position control,

fail to provide the necessary compliance and backdrivability for safe physical interaction.

This limitation requires external force and torque sensors, which adds to the system’s com-

plexity. Additionally, many traditional systems operate at lower speeds and have limited

torque bandwidth, making them unsuitable for dynamic, dexterous tasks such as throwing,

catching, or manipulating fragile objects [HAH08], which leads to the development of parallel

manipulators [PG12].

To address these challenges, advancements in robotics have led to the adoption of pro-

prioceptive actuators, particularly in legged robots, where their inherent backdrivability

enables lightweight, compliant, and dynamic movements [SWO12, WWS17]. Inspired by

this progress, this study explores the adaptation of proprioceptive actuators for robotic

manipulators, focusing on leveraging their inherent advantages for impact mitigation and

high-bandwidth physical interaction. These actuators offer several key benefits:

• Backdrivability and Compliance: Allowing manipulators to yield safely to exter-

nal forces, enabling intuitive interaction with humans and adaptability to dynamic

environments.

• Lightweight Design: Reducing the manipulator’s weight decreases inertia, enhancing
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control stability and enabling safer environmental interactions while facilitating faster

motion capabilities.

• Force and Torque Control: Proprioceptive actuators enable precise force and torque

control without additional external sensors.

• High-Speed Operation: These actuators support faster and more responsive motion,

making them suitable for dynamic tasks requiring quick and precise movements.

• Simplified System Architecture: By eliminating the need for external sensors,

these actuators streamline the overall system, reducing cost and complexity.

Model Torque (Nm) RPM (Voltage) Gear Ratio/Type Mass (kg)

Dynamixel

PH54-200-S500-R
44.7 29 (24V) 501.9:1/Cycloid 0.855

Neuromeka

Core200
47.5 25 (48V) 121:1/Harmonic 1.84

Westwood Robotics

PB02P
33–67 340.8 (48V) 10:1/Planetary 0.925

Table 1.1: Specifications of Different Robotic Actuators

The distinct features of proprioceptive actuators arise from their low gear ratios, with one

of the most remarkable aspects being their high motor speed. As shown in Table 1.1, propri-

oceptive actuators such as Westwood Robotics PB02P demonstrate speeds up to 13.6 times

faster than comparable actuators commonly used in robotics research, such as Dynamixel

PH54-200-S500-R, and Neuromeka Core 200.

These advancements redefine the potential of robotic manipulators, transforming them

from rigid industrial systems into adaptable tools capable of operating safely and effectively

in unstructured, human-centric environments.
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This dissertation focuses on advancing a new generation of robotic manipulators op-

timized for human-centric applications through innovations in control strategies, motion

planning, and practical implementations. A crucial aspect involves designing and validat-

ing a manipulator that fully utilizes the benefits of proprioceptive actuators, particularly

highlighting their fast speed. These efforts aim to achieve dynamic and torque-efficient per-

formance. The effectiveness and adaptability of the proposed manipulator are demonstrated

through real-world applications, including autonomous cooking, friction-aware grasping, and

dynamic manipulation tasks.

The specific objectives of this research are as follows:

• Develop a High-Performance Manipulator: Design a lightweight, high-speed

robotic arm with proprioceptive actuators that prioritize safety, compliance, and adapt-

ability.

• Enhance Motion Planning Techniques: Develop torque-efficient motion planning

algorithms by addressing optimization-based and learning-based approaches, each tai-

lored to minimize peak torque while ensuring dynamic and precise performance.

• Demonstrate Real-World Applications: Showcase the manipulator’s capabilities

through practical tasks such as cooking, catching objects, and manipulating items

using surface friction.

• Ensure Safety and Robustness: Develop advanced control strategies that max-

imize compliance and safety during human-robot interaction, even in unstructured

environments.

By achieving these objectives, this work seeks to redefine the role of robotic manipulators,

enabling them to address the complex demands of modern human-robot collaboration. These

contributions aim to bridge the gap between industrial automation and human-centric appli-

cations, paving the way for robotic systems that are not only efficient but also safe, intuitive,
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and versatile in their use.

1.2 Background

1.2.1 Manipulator Design

The history of manipulator design can be traced back to the early 20th century, but it

was in the 1950s and 1960s that the first industrial robots resembling today’s manipulators

were developed. Introduced in 1961, the Unimate was the first industrial robot to replace

human labor in die casting. These early manipulators were single-arm systems, primarily

hydraulic, and programmed to perform repetitive tasks. Over the years, the technology

evolved to include electric actuators, increased degrees of freedom, and more sophisticated

control systems, allowing for greater precision and a wider range of applications.

With advancements in safety and sensing technologies, the late 1990s and early 2000s

saw the emergence of collaborative robots, or ’cobots’ [EML19]. Unlike traditional indus-

trial robots, cobots are designed to work alongside humans. They often feature force-torque

sensors and advanced algorithms that allow them to understand and adapt to their environ-

ment, making them suitable for tasks that require human-robot interaction such as assembly,

sorting, and inspection [SSS10].

Efforts to design better collaborative robots for practical use have been ongoing, but

developing a versatile robot remains a significant challenge. The most common approach is to

create anthropomorphic arms. However, traditional industrial robots have limitations when

it comes to versatility. For example, Professor Pieter Abbeel’s Lab at UC Berkeley introduced

a Quasi-Direct Drive Manipulator called BLUE in 2019 [GMY19], and Professor Yong-Jae

Kim at Koreatech has been continually upgrading his cable-driven dual-arm manipulator

since publishing the design paper in 2015 [Kim15]. These novel approaches aim to develop

versatile manipulators capable of human-level performance, but many tasks humans perform

are still beyond their reach.
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The limitations of single-arm manipulators in handling complex tasks have led to the

development of dual-arm manipulators. These systems aim to mimic the dexterity and

coordination of human arms and hands. Dual-arm manipulators are particularly useful in

tasks that require bimanual coordination, such as complex assembly or surgical operations.

Companies like ABB and Yaskawa have been pioneers in this space, offering dual-arm robots

capable of intricate tasks previously thought to be exclusive to human labor [ZHL20].

The most recent trend in manipulator design is the integration of robotic arms with

mobile platforms. These mobile manipulators combine the dexterity of robotic arms with

the mobility of platforms like wheeled or legged robots, allowing them to navigate through

unstructured environments and perform tasks in various locations. Mobile manipulators are

finding applications in warehouses for picking and placing items, in healthcare for patient

care, and even in domestic settings for tasks like cleaning and maintenance.

Advances in related technologies have significantly influenced the evolution of manipu-

lator design. Actuators have evolved from hydraulic systems to more efficient and precise

electric and pneumatic systems. Advances in materials science have contributed lightweight

yet durable materials, allowing for more agile and energy-efficient designs. Control systems

have also become increasingly sophisticated, incorporating machine learning algorithms and

real-time feedback loops that enable adaptive and intelligent behavior.

The field has come a long way from the rudimentary single-arm systems of the 1960s

to today’s intelligent, collaborative, and mobile manipulators. As technologies continue to

advance, we can expect manipulators to become even more versatile, intelligent, and integral

to various aspects of industry and daily life.

1.2.2 Manipulator Control

Control systems serve as the backbone of robotic manipulators, bridging the gap between me-

chanical design and functional capabilities. Their primary objective is to regulate a robot’s
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movements and actions precisely and reliably. Over the years, control theories and method-

ologies have evolved significantly, paralleling advancements in computational power, sensor

technology, and mathematical algorithms. This progress has led to various control schemes

tailored to specific applications with unique advantages and limitations.

Robotic manipulator control can be broadly categorized into several key areas: posi-

tion control, torque control, and optimal control methods such as Model Predictive Control

(MPC) and Whole-Body Control (WBC).

Position control relies solely on feedback from position error, resulting in a more straight-

forward control system that often employs precise motors with a high gear ratio [SHV06,

SSV09, Cra05]. This approach is straightforward to implement and excels at achieving high

accuracy in tasks demanding precise trajectory tracking. A commonly used controller in this

domain is the Proportional-Integral-Derivative (PID) controller:

u = kp(q
d − q) + kd(q̇

d − q̇) + ki

∫
(qd − q) dt, (1.1)

Where τ is the control torque, and kp, kd, ki are gains for position, velocity, and integral

terms, respectively. Although position control is ideal for tasks that require precise end-

effector placement, its simplicity and reliance on high gear ratios render it less suitable for

tasks demanding rapid movements or nuanced interaction with the environment.

Torque control strategies focus on explicitly regulating the interaction between the ma-

nipulator and its surroundings [Kha87, Mas81, DV88, Hog85]. These methods often utilize

six-axis force/torque sensors mounted at the end-effector to measure external forces and

moments or torque sensors measuring joint torque on each robot joint. By incorporating de-

tailed robot dynamics models, torque control predicts and manages force-related responses,

enabling delicate operations such as precision assembly, polishing, and human-robot collab-

oration.

The dynamics of a robotic manipulator, including external forces, can be expressed as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + J⊤(q)fext, (1.2)
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The inverse dynamics controller computes the required joint torques to achieve a desired

motion by explicitly canceling the system dynamics. Based on the robot’s dynamics equation:

u = M(q)ÿ + n(q, q̇) (1.3)

where y = Kpq̃ +Kd
˜̇q + q̈d, n(q, q̇) = C(q, q̇)q̇ + F q̇ + g(q). This controller shows high-

precision motion tracking.

The impedance controller regulates the interaction dynamics between the robot and its

environment by shaping the relationship between the end-effector position and the applied

forces. It could be expressed as:

u = M(q)q̈ + C(q, q̇)q̇ + JT
(
K(xd − x) +D(ẋd − ẋ)

)
+ JTFtip, (1.4)

where K and D represent stiffness and damping matrices, xd and ẋd are desired end-effector

states, and Ftip is the external force at the end-effector. By tuning these parameters, the

robot can achieve human-like compliance and safe interaction—crucial for tasks in uncertain

or dynamic environments.

The increasing complexity of robotic tasks and environments has motivated the develop-

ment of optimal control frameworks, particularly MPC and WBC. MPC optimizes control

inputs over a finite prediction horizon, anticipating future states to ensure smooth and sta-

ble performance [MRR00, MC12, Mac02]. The robot’s nonlinear dynamics are often locally

linearized and discretized:

xk+1 = Akxk +Bkuk + rk, (1.5)

where xk = [qk, q̇k]
T is the state vector and uk the control input. Balancing tracking accuracy,

velocity smoothing, and torque minimization, MPC solves an optimization problem:

J =

i+np∑
k=i

[
(q̂k − qk)

TQq(q̂k − qk) + q̇Tk Qv q̇k + uT
kQuuk

]
, (1.6)

subject to constraints on joint positions, velocities, and torques. By respecting these con-

straints and anticipating upcoming states, MPC is well-suited for tasks that require ad-
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herence to physical and safety limits, such as payload handling, singularity avoidance, and

dynamic manipulation.

WBC extends optimal control principles to orchestrate the entire robot, rather than fo-

cusing on individual joints or a single end-effector. WBC typically formulates a constrained

optimization problem that integrates full-body kinematics, dynamics, and multiple task ob-

jectives, often leveraging quadratic programming (QP) techniques. For instance, WBC can

be posed as:

min
q̇,τ,fci

∥Jtask(q)q̇ − ẋd
task∥22 + α∥τ∥22 (1.7)

subject to M(q)ν̇ + C(q, q̇)ν + τg(q) = ST τ +
∑
i

JT
ci
(q)f ci ,

τmin ≤ τ ≤ τmax, f ci ∈ C,

where q̇ are joint velocities, τ are joint torques, f ci are contact forces, and Jtask(q) is the

task-space Jacobian mapping joint velocities to the desired end-effector velocity ẋd
task. The

set C defines feasible contact wrenches, and S is a selection matrix for actuated degrees

of freedom. By formulating a constrained optimization problem that integrates full-body

kinematics, dynamics, and multiple task objectives, WBC enables coordinated full-body

behaviors [KSP04, RBM13, MBS20].

In summary, the evolution of control strategies for robotic manipulators—from straight-

forward position control to advanced force/torque and optimal control methods—reflects

the growing complexity of modern robotic applications. These advancements have enabled

manipulators to achieve unprecedented versatility, robustness, and efficiency, while ensuring

safe and effective interaction with dynamic, uncertain environments.

1.2.3 Manipulator Motion Planning

Trajectory generation for robotic manipulators typically involves two steps: finding a ge-

ometric path that connects the start and goal points in the configuration space and then
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generating a time-parameterized trajectory based on this path. This section explores three

widely used approaches: polynomial fitting, time-optimal methods, and minimum jerk tra-

jectories.

Path Generation Methods

To generate a path P (s), two primary techniques are commonly used:

• Sampling-Based Methods: Techniques like Rapidly-exploring Random Trees (RRT)

and Probabilistic Roadmaps (PRM) are widely used [LP17]. RRT incrementally grows

a tree from the start configuration and connects to the goal, while PRM creates a

roadmap of sampled points connected by feasible paths [SSV09].

• Graph-Search Methods: Algorithms like A* and Dijkstra’s search the configuration

space discretized as a grid or graph. These methods are complete and optimal under

specific heuristics, making them reliable for structured environments [SSV09].

Trajectory Generation Methods

• Polynomial Fitting for Trajectory Generation

Once a path P (s) is determined, a trajectory q(t) can be generated by fitting a polyno-

mial. Polynomials are chosen for their smoothness and simplicity. A general polynomial

of degree n is expressed as:

q(t) =
n∑

i=0

ait
i, (1.8)

where ai are coefficients determined by boundary conditions.

– Cubic Polynomial (n = 3): Used for cases requiring position and velocity

continuity:

q(t) = a0 + a1t+ a2t
2 + a3t

3. (1.9)
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– Quintic Polynomial (n = 5): Provides smoother trajectories by incorporating

acceleration continuity:

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5. (1.10)

– Higher-Degree Polynomials (n = 7, 9): Allow additional control over jerk

or snap, making them ideal for highly dynamic systems [SHV06].

Polynomial fitting can also be formulated as an optimization problem. The coefficients

ai can be computed by solving the following linear system: Polynomial fitting can

be formulated as a Quadratic Programming (QP) problem [MK11]. The optimization

problem can be expressed as:

minimize p⊤Qp,

subject to Ap = b.
(1.11)

where p is the vector of polynomial coefficients, Q is a known positive semi-definite

matrix, and Ap = b represents the trajectory constraints, including its derivatives.

• Time-Optimal Path Parameterization (TOPP)

Given a predefined geometric path P (s), where s is the arc-length parameter, TOPP

focuses on minimizing the traversal time by parameterizing the path with respect to

time [Pha14]. The optimization is defined as:

minT =

∫ sf

s0

1

ṡ
ds,

subject to the following constraints:

ṡ ≥ 0,

s̈ ≤ fmax(s, ṡ),

s̈ ≥ fmin(s, ṡ),

where fmax(s, ṡ) and fmin(s, ṡ) are functions derived from kinematic constraints, such

as velocity and acceleration limits. Traditional TOPP methods primarily handle these
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kinematic constraints, but advanced variations may incorporate torque limits to ensure

dynamic feasibility along the path [PP18].

• Time-Optimal Trajectory Planning (TOTP)

TOTP generalizes the principles of TOPP by incorporating both path parameterization

and full trajectory optimization under dynamic constraints. For a given path P (s),

the time-optimal trajectory planning problem can be expressed as:

minT =

∫ sf

s0

1

ṡ
ds,

subject to:

s̈ ≤ fmax(s, ṡ),

s̈ ≥ fmin(s, ṡ),

τ(s, ṡ, s̈) ≤ τmax,

τ(s, ṡ, s̈) ≥ τmin,

where τ(s, ṡ, s̈) represents the torque required to follow the trajectory at a given state,

and τmax and τmin denote the actuator torque limits. By explicitly considering actuator

dynamics and external forces, TOTP ensures that the trajectory is both kinematically

and dynamically feasible [BDG85, CC00].

• Minimum Jerk Trajectory

Minimum jerk trajectories are widely used in applications requiring smooth, human-

like motion, such as robotic assistance or rehabilitation. The method minimizes the

third derivative of position (jerk) to produce a trajectory that is naturally smooth:

min

∫ T

0

(
...
q (t))2 dt,

subject to boundary conditions for position, velocity, and acceleration. This leads to

a quintic polynomial trajectory of the form:

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5.
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Table 1.2: Summary of Trajectory Generation Methods

Method Key Features Applications

Polynomial Fitting Smooth, flexible Industrial robots

Time-Optimal Planning (TOPP, TOPPRA, TOTP) Minimizes time, handles constraints High-speed manipulation

Minimum Jerk Smooth, human-like motion Assistive robots

The coefficients are computed to satisfy initial and final conditions, ensuring smooth

transitions [FH85a].

Table 1.2 summarizes the discussed methods and their key features.

By tailoring the approach to the specific task and constraints, these trajectory generation

methods provide effective solutions for robotic manipulators.

1.2.4 Machine Learning for Manipulation

Dexterous and dynamic manipulation hinges on advanced perception and motion planning,

which enable robots to interact with their environments intelligently and efficiently. Machine

learning (ML) has become a cornerstone in this domain, offering powerful tools to extract

meaningful features from multimodal sensor data and bridge the gap between perception

and control. This section explores ML-based approaches for perception, focusing on the esti-

mation of physical properties essential for manipulation, and delves into end-to-end learning

methods for motion planning, with a particular focus on imitation learning.

Perception for Dexterous and Dynamic Manipulation

Perception is a foundational component of robotic manipulation, enabling machines to

understand their environment, recognize objects, and infer the physical properties necessary

for effective interaction [SK16]. Unlike traditional industrial settings characterized by highly

structured environments and repetitive tasks, modern robotic platforms increasingly operate

in dynamic, unstructured, and often unpredictable contexts. This shift demands perceptual
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systems capable of interpreting complex sensory inputs and extracting meaningful informa-

tion to guide control, planning, and decision-making processes [CJP11].

Early approaches to robotic perception focused primarily on vision, leveraging monocular

or stereo cameras and model-based techniques to detect and localize known objects [KC02].

Advances in computing power, sensor quality, and algorithmic sophistication have since

expanded the perception toolbox. Beyond RGB and RGB-D imagery, contemporary systems

incorporate data from a wide array of sensors:

• Depth and Range Sensing: Devices such as structured-light sensors, time-of-flight

cameras, and lidar provide three-dimensional spatial information which is crucial for

understanding object geometry, relative positioning, and environmental topology [CJP11,

SK16].

• Tactile and Force Sensing: High-resolution tactile sensors and force/torque trans-

ducers quantify contact forces, surface textures, and material stiffness [DMV09]. These

measurements are essential for delicate grasping, compliant manipulation, and subtle

grip adjustments [YZO17].

• Proprioception: Joint encoders, torque sensors, and inertial measurement units

(IMUs) allow a robot to estimate its internal state, enabling feedback control strategies

that improve accuracy, stability, and adaptability [SSV09].

• Acoustic and Ultrasonic Sensing: Sound and ultrasound-based measurements can

reveal hidden material properties, detect collisions, or identify environmental events

[LC23]. Although less common than vision or touch, these modalities offer complemen-

tary insights that can enhance perception under conditions where conventional sensors

are limited.

Integrating diverse modalities in robotic perception demands sophisticated sensor fusion

techniques to address challenges such as varying sensor resolutions, noise, and data rates
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[SK16]. Advanced methods, including probabilistic frameworks, machine learning, and op-

timization, enable the transformation of raw sensory data into actionable information, such

as object identities, estimated poses, material properties, and environmental affordances.

Machine learning, particularly deep learning, has driven recent breakthroughs in percep-

tion. Models like convolutional neural networks, transformers, and probabilistic generative

approaches extract hierarchical features from multimodal datasets [LPK18]. These methods

allow robots to infer critical attributes, including grasp points, surface textures, stiffness, and

frictional properties [BMA14]. By combining physics-based analytic models with data-driven

learning, perception systems achieve improved robustness, interpretability, and adaptability.

End-to-End Learning in Manipulation

End-to-end learning leverages deep neural networks to process raw sensory inputs, such

as images or proprioceptive signals, and output control commands. This approach has

been successfully applied in various manipulation tasks like pick-and-place, tool use, and

deformable object manipulation [LFD16]. Compared to traditional planning algorithms, end-

to-end learning, while less structured, demonstrates enhanced adaptability and performance.

Imitation Learning for Motion Planning

Imitation learning is a dominant paradigm in end-to-end motion planning. Imitation

Learning enables robots to learn directly from expert demonstrations, bypassing the need

for explicit reward design. The following are key Imitation Learning approaches used in

manipulation:

• Behavior Cloning (BC): BC treats Imitation Learning as a supervised learning prob-

lem. Neural network architectures enhance BC by adapting to various data modalities:

– RNN-Based BC: Recurrent models, such as LSTMs [HS97] and RNN Encoder-

Decode [CVG14], capture temporal dependencies, making them suitable for tasks

with sequential dynamics, like pouring or folding.
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– CNN-Based BC: CNNs process spatially structured data, such as images, to

perform visually guided manipulation tasks, such as stacking or sorting [HGE17].

– Diffusion Policies: Recent advancements have introduced diffusion models for

Imitation Learning [Ho22]. These probabilistic models refine action predictions

iteratively, handling stochasticity and multimodal behaviors effectively.

Advantages of End-to-End Learning for Motion Planning

End-to-end learning offers the following benefits for manipulation:

• Direct Optimization: The network directly maps sensory inputs to task-specific

actions, reducing intermediate errors.

• Adaptability: These models adapt to new tasks and environments with minimal

fine-tuning.

• Scalability: They integrate seamlessly with large-scale data collection pipelines for

continuous improvement.

Integrating perception models with end-to-end learning for motion planning establishes

a cohesive framework for dexterous and dynamic manipulation. By estimating critical phys-

ical attributes like friction and stiffness, perception models provide actionable insights that

motion planning systems use to execute robust, adaptive actions. This integration enables

robots to seamlessly operate in complex, unstructured environments, enhancing their capa-

bility to perform tasks with precision and versatility.
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1.3 Thesis Organization

This thesis is structured into four main chapters, each addressing a specific aspect of the

research, from the development of a novel manipulator to its application in complex tasks

and integration of learning-based methods.

Chapter 2 focuses on the development, control, and motion planning of a proprioceptive

manipulator. It begins with an overview of the hardware design, highlighting the unique

features and capabilities that distinguish it from traditional designs. The chapter then dis-

cusses the control strategies used to achieve precise, fast, and robust manipulation, followed

by an exploration of motion planning methods designed to fully leverage the manipulator’s

advantages. It concludes with a summary of key contributions and technical advancements.

In Chapter 3, the thesis introduces a real-world application called YORI, an autonomous

cooking system that combines a modular robotic kitchen with a dual-arm proprioceptive

manipulator. The chapter begins with an outline of the overall system design, emphasizing

the modularity and adaptability of the kitchen environment. It then examines the imple-

mentation of the manipulator’s control and motion planning, focusing on strategies used to

address specific challenges. The chapter concludes with demonstrations, showcasing YORI’s

ability to autonomously prepare meals in a structured yet dynamic setting.

Chapter 4 presents a novel approach to friction-aware grasping for robotic manipula-

tors. It starts by detailing the preparation and processing of a specialized dataset used to

train the proposed grasping framework. The chapter then describes the training model and

demonstrates how incorporating friction coefficients enhances grasping efficiency.

Finally, Chapter 6 provides a comprehensive conclusion, summarizing the thesis’s key

contributions and reflecting on how the proposed systems and methods address challenges in

robotic manipulation. It also outlines future research directions, including the exploration

of adaptive video imitation for dynamic manipulation tasks. While preliminary work has

investigated using human demonstrations captured in video form to train robots, further
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development is needed to realize its full potential. Future efforts will focus on optimizing

training processes, enhancing the framework’s adaptability, and conducting hardware testing

in real-world environments.

Overall, this thesis transitions from foundational system development to advanced ap-

plications, offering a cohesive narrative that underscores the integration of hardware design,

control strategies, motion planning, and learning-based methods in advancing robotic ma-

nipulation.
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CHAPTER 2

Development, Motion Planning, and Control of a

Proprioceptive Manipulator

2.1 Hardware Design

Despite robotic manipulators’ extensive history, we’ve only seen the incorporation of pro-

prioceptive actuators into these systems in the past decade. The use of such actuators is

significant for several reasons. I believe that robotic manipulators gain enhanced versatility

with proprioceptive actuators, making them well-suited for assisting humans in real-world,

everyday tasks. These actuators enable the robots to operate quickly and safely while offering

impact mitigation and precise torque control.

2.1.1 Existing Platforms

In robotic arms, various systems have been engineered to fulfill the requirements of accu-

racy, speed, and safety. Conventional industrial robots excel in precision and load-bearing

capacity but often lack built-in safety mechanisms crucial for human-robot collaboration.

Collaborative manipulators have been developed to bridge this safety gap. These robots

are equipped with features such as joint torque sensors or force-torque sensors to enhance

workplace safety.

While collaborative manipulators are safer to use compared to traditional industrial

robots, they still face challenges such as limited speed and payload capacity. The inno-
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Figure 2.1: (a) LIMS (b) Blue.

vative platform LIMS, shown in (a) of Figure 2.1, addresses this limitation with a 7-DOF

robotic arm specifically designed for safe human-robot interaction. [Kim17, SKY18]. LIMS

employs a specialized tension amplification mechanism, enabling high joint stiffness without

increasing mass or inertia. Compliance with cable-driven power transmission and lightweight

and low-inertia arm design ensure inherent safety even during high-speed operations.

UC Berkeley’s BLUE manipulator [GMY19] shown in (b) of Figure 2.1 is another platform

worth mentioning. It employs a quasi-direct drive system to achieve cost-effective, compliant

robotic manipulation. Like LIMS, BLUE is engineered for safe human interaction, offering

an optimal balance between safety and performance.

These next-generation systems distinguish themselves by their back drivability and torque

control capability without requiring force-torque sensors, redefining the performance and

safety standards for robotic arms.

Our dual-arm manipulator features a torso joint designed to maximize spatial efficiency.

Both arms are constructed with a four-bar linkage mechanism, ensuring a lightweight yet

rigid structure. This design not only delivers high torque output but also minimizes mainte-

nance requirements. Additionally, hardware specifications such as arm configuration, length,
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Figure 2.2: Configuration of the dual-arm.

and torque requirements (gear ratios) were finalized after prototype testing using Robotis

Dynamixel motors, as shown in Figure 2.4.

The following sections will delve deeper into our platform’s unique attributes compared

to others and provide detailed mathematical modeling of our dual-arm system, including

frame definitions, kinematics, and dynamics.

2.1.2 Design Overview

The dual-arm manipulation platform features two arms connected by a shoulder link. Each

arm of the dual-arm manipulator has five Degrees of Freedom (DoFs). The first two DoFs

are located at the shoulder and are orthogonal to each other. The third DoF, another pitch,

is located at the elbow, followed by two additional DoFs at the wrist. Actuators at each

joint are serially interconnected by arm linkages. This five-DoF design not only reduces the

arm’s weight and inertia but also prevents system instability caused by singularities.
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Figure 2.3: Pose with fully extended arm in horizontal direction.

The robot incorporates a rotational joint (Yaw) at the connection between the torso and

shoulder, enabling the entire shoulder assembly to rotate. To create a dual-arm manipulator

designed for human tasks, the upper arm and forearm links each measure 304.8 mm (1 foot)

in length, while the shoulder link is 450 mm long. The total height of the manipulator plat-

form is approximately 1450 mm. This configuration provides a substantial and overlapping

reachable workspace for both arms, enabling efficient dual-arm manipulation. Additionally,

an extra degree of freedom at the platform’s waist expands the reachable workspace, covering

most of the structured cooking environment. Carbon fiber was chosen as the material for

the arm and shoulder links due to its high stiffness-to-weight ratio.

2.1.3 Prototype: Dual-Arm Manipulator With High Gear Ratio Servo Motor

The torque requirements for each actuator are determined using the static moment equilib-

rium method, which calculates the maximum torque needed when the arm is fully extended.

This analysis considers a standard 2 kg payload for cooking tasks, positioned 100mm from

the wrist joint. The arm segment lengths are 398.8mm from shoulder to elbow and 374.8 mm

from elbow to wrist, as depicted in Figure 2.3. The actuators at the shoulder and elbow are
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Table 2.1: Torque Requirement for Each Pitch Actuator

Actuator Shoulder Pitch Elbow Pitch Wrist Pitch

Required Torque (N·m) 37.21 17.65 2.94

assumed to weigh 1kg each, while the wrist actuator is estimated at 0.5kg. After calculating

the minimum torque requirements, a safety factor of 1.5 is applied to account for inertial

effects, resulting in the final torque specifications for each pitch actuator, summarized in

Table 2.1.

A prototype was assembled to validate the design’s practicality and workspace. The

preceding torque analysis guided the selection of actuators. We chose Dynamixel Pro Plus

actuators from Robotis, which is known for their robust performance. The Dynamixel PH42-

020-S300-R, with a continuous torque of 5.1 N·m and a weight of 340 grams, was found to be

adequate for the pitch actuator in the wrist joint. For the pitch actuators in the shoulder and

elbow joints, the Dynamixel PH54-200-S500-R was chosen, providing a significant continuous

torque of 44.7 N·m and a weight of 855 grams. For ease of installation and control, this

actuator model was also used for the waist and the yaw actuator at the shoulder joint. The

Dynamixel PH42-020-S300-R was employed for the roll actuator at the wrist joint. With

these actuators, the weight of a single arm is 4.39 kg.

The successfully fabricated prototype of the dual-arm manipulation platform is illustrated

in Figure 2.4. All parts were manufactured in the lab besides Dynamixel-related parts.
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Figure 2.4: Prototype of the dual-arm manipulator.
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Figure 2.5: 4-Bar linkage.

Figure 2.6: Forearm.

2.1.4 Dual-Arm Manipulator Equipped Proprioceptive Actuators

After testing the prototype, we began the construction of a dual-arm manipulator equipped

with proprioceptive actuators. We utilized existing BEAR actuators from our lab’s spin-

off company, Westwood Robotics, and customized a specific type of BEAR actuator to

achieve higher torque. To minimize the inertia of the arm, we selected a 4-bar linkage power

transmission method to actuate the elbow joint, as depicted in Figure 2.5. Based on this

mechanism, we calculated the required torque as follows:

The torque requirements for the robot’s wrist, elbow, and shoulder pitch joints were

calculated using static equilibrium principles, considering the arm’s geometry and payload

distribution.
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Figure 2.7: Upperarm.

Figure 2.8: Entire arm.

Wrist Torque Calculation

The torque required at the wrist motor is calculated as:

Twrist motor = Fpayload ·HG = 0.15 · Fpayload (N ·m), (2.1)

where HG = 150mm, as shown in Figure 2.6. For a maximum payload of 3 kg, the required

torque at the wrist is:

Twrist motor = 0.15 · 30 = 4.5N ·m.

Elbow Torque Calculation

The torque required at the elbow joint was calculated using the following equations of static

equilibrium:

FA · AC = FB ·BC = 0.5 · Fpayload ·HC, (2.2)
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where:

FA = 5 · Fpayload, FB = 3.6 · Fpayload, F1 = 11.3 · Fpayload, F2 = 4.6 · Fpayload, (2.3)

and the geometric parameters are defined as:

∠ACG = ∠DFC = 26.32◦, ∠BCG = ∠EFC = 50.83◦,

AC = DF = 51.88mm, BC = EF = 73.61mm,

CG = 374.8mm, HG = 150mm,

as illustrated in Figure 2.7. The torque at the elbow joint is computed as:

Telbow = F1 ·DF + F2 · EF = 0.52 · Fpayload (N ·m). (2.4)

Assuming Fpayload = 30N (payload) and 5N (weight of the lower arm and wrist motors),

the total torque required is:

Telbow = 0.52 · 35 = 18.2N ·m.

Shoulder Torque Calculation

The torque required at the shoulder pitch joint is determined as:

Tshoulder = Fpayload ·HF + Fwrist ·GF + Flowerarm · IF + Fupperarm · JF, (2.5)

where:

Fpayload = 30N,

Fwrist = 2.5N · 2 = 5N,

Flowerarm = 3N,

Fupperarm = 3N.

The geometric parameters are defined as:

CF = 398.88mm, CG = 374.8mm, HG = 150mm,

as shown in Figure 2.8. Substituting these values, the torque required at the shoulder is:

Tshoulder = 33.9N ·m.
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Figure 2.9: BEAR series.

Based on these torque calculations, the types of actuators were selected, as illustrated

in Figure 2.9. We collaborated with Westwood Robotics to develop the Panda BEAR Plus,

which offers higher torque while maintaining a similar size. The completed dual-arm manip-

ulator is depicted in Figure 2.10.
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Figure 2.10: Dual-arm manipulation platform equipped proprioceptive actuators.
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2.2 Modeling

2.2.1 Definition

Before undertaking any kinematic or dynamic analyses, it’s essential to define the coordinate

axes for both the links and the joints. Our dual-arm manipulator is a multi-rigid body system

that can be represented using a rigid-body tree structure. Starting from its body frame, the

manipulator consists of two rigid-body chains. The names of the joints and their offsets from

their parent links are detailed in Table 2.2. The coordinate axes are illustrated in Figure 2.12

and Figure 2.11.

Joint ID Coordinate

Left

l1 2 [0, 0.210, 0]

l2 3 [0, 0.360, 0]

l3 4 [0, 0.360, -0.4]

l4 5 [0.375, 0.360, -0.4]

l5 6 [0.45975, 0.360, -0.4]

Right

r1 7 [0, -0.210, 0]

r2 8 [0, -0.360, 0]

r3 9 [0, -0.360, -0.4]

r4 10 [0.375, -0.360, -0.4]

r5 11 [0.45975, -0.360, -0.4]

Body body 1 [0, 0, 0]

Table 2.2: Definition of the Coordinate Axes
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Figure 2.11: Coordinate axis diagram: left view.

Figure 2.12: Coordinate axis diagram: front view.
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Figure 2.13: Left arm frame assignment for DH parameters.

2.2.2 Kinematics

2.2.2.1 Forward Kinematics

The forward kinematics of a robot calculates the position and orientation of its end-effector

frame relative to its base frame based on its joint angles. Here, the Denavit-Hartenberg

(D-H) representation is used to represent the forward kinematics. The forward kinematics

of the left arm is presented in this section. As the right arm has a mirrored configuration,

the forward kinematics of the right arm can be done similarly.

The assigned orientations of all joint frames are shown below in Figure 2.13. It should

be noted that the base frame is defined at the robot’s torso and that the last two joints are

combined at the intersection point of those two joint axes. The linkage frames are established

based on D-H rules, and the corresponding D-H parameters are shown in Table 2.4. Note

that θ̃1 = θ1 + θoffset and θ̃2 = θ2 − θoffset. Also consider that d5 in Table 2.3 is -0.0840m

because it is the distance from X4 to X5 measured along Z5.
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Symbol Values

a1 0.2886m

a3 0.3988m

a4 0.3748m

d3 0.1020m

d5 -0.0840m

θoffset 75.96◦

Table 2.3: Constant Parameters for Frames

The homogeneous transformation matrix between adjacent link frames is defined as:

i−1
iT =


ci −si 0 ai−1

sicαi−1 cicαi−1 −sαi−1 −sαi−1di

sisαi−1 cisαi−1 cαi−1 cαi−1di

0 0 0 1

 (2.6)

where ci and si represent cos θi and sin θi, respectively.

The Cartesian position and orientation of the end-effector relative to the base frame is

computed by 0
6T , which is a function of all joint variables. 0

6T is computed and presented

below:

0
6T = 0

1T
1
2T

2
3T

3
4T

4
5T

5
6T (2.7)

0
6T =


r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

 (2.8)

where r11 = s12s6+ c12s345c6, r12 = s12c6− c12s345s6, r13 = c12c345, r21 = s12s345c6− c12s6,

r22 = −s12s345s6 − c12c6, r23 = s12c345, r31 = c345c6, r32 = −c345s6, r33 = −s345, Px =
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Link ai−1 αi−1 di θi

1 0 0 0 θ̃1

2 a1 0 0 θ̃2

3 0 −π/2 d3 θ3

4 a3 0 0 θ4

5 a4 0 d5 θ5 − π/2

6 0 −π/2 0 −π/2

Table 2.4: DH Parameters of the Left Arm

a1c1 + a3c12c3 + a4c12c34 − d3s12 − d5s12, Py = a1s1 + a3s12c3 + a4s12c34 + d3c12 + d5c12,

Pz = −a3s3 − a4s34.

2.2.2.2 Inverse Kinematics

Inverse kinematics is used to control the movement of a robotic arm through the calculation

of the required joint angles needed for the end-effector frame to reach a chosen position and

orientation with respect to its base frame. For 6 Dof arm, which includes body joint, the

inverse kinematic solution can be obtained analytically. Below is how we get the analytical

solution of inverse kinematics. This solution provides all the possible solutions for inverse

kinematics. This enables us to choose the optimal path of the manipulator based on its

initial state and the surrounding environment.

To solve the inverse kinematics, we will consider a given orientation and position of the

end-effector B
EP and B

ER respectively. The goal position can be represented as:
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B
ET =


r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

 =

B
ER

B
EP

0 1

 (2.9)

To get the inverse kinematics, the following equation will be solved,

B
ET = 0

6T (2.10)

First, the dependence on θ̃1 will be placed on the left-hand side of the Equation 2.10 as

follows,

[
0
1T

]−1 B
ET = 1

6T (2.11)

Next, the following equations can be obtained by using Equation 2.11.

r31 = c6c345, r32 = −s6c345, r33 = −s345 (2.12)

Thus, θ6 and the combined angle θ345 = θ3+ θ4+ θ5 can be decided as Equation 2.13 and

Equation 2.14.

θ3 + θ4 + θ5 = Atan2

(
−r33,∓

√
r231 + r232

)
(2.13)

θ6 = Atan2 (−r32/ cos θ345, r31/ cos θ345) (2.14)

Similarly, by placing the dependence on both θ̃1 and θ̃2 on the left-hand side of Equa-

tion 2.10, we can solve for both θ̃1 and θ̃2

[
1
2T

]−1 [0
1T

]−1 B
ET = 2

6T (2.15)

Using Equation 2.15, the following can be obtained.

35



s̃12 =
c6s345r22 + s6s345r21

r11r22 − r21r21
= ac̃12 =

−c6c345r12 + s6s345r22
r11r22 − r12r22

= b (2.16)

θ̃1 + θ̃2 = θ1 + θ2 = Atan2(a, b) (2.17)

Since the expression θ1 + θ2 is now known, it can be used to obtain θ2 using,

s̃2 =
d5 + d3 + Pxs12 − Pyc12

a1
= c (2.18)

Thus,

θ̃2 = Atan2
(
c,±
√
1− c2

)
(2.19)

θ2 = Atan2
(
c,±
√
1− c2

)
+ θoffset (2.20)

and,

θ1 = Atan2(a, b)− Atan2
(
c,±
√
1− c2

)
− θoffset (2.21)

Again using Equation 2.15, we can write the following equations.

Pxc12 + Pys12 − a1c̃2 = a4c34 + a3c3 (2.22)

−Pxs12 + Pyc12 + a1s̃2 = a4c34 + a3c3 (2.23)

Pzs12 = −a4s34 − a3s3 (2.24)

By squaring the previous three equations and summing them, we can write isolate cos(θ4)

and write θ4

θ4 = Atan2

(
±
√

1− c24, c4

)
(2.25)

Finally, we place the dependence on θ̃1, θ̃2 and θ3 on the left side of Equation 2.10

[
2
3T

]−1 [1
2T

]−1 [0
1T

]−1 B
ET = 3

6T (2.26)
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Using Equation 2.26, we can come up with the following expressions.

d cos θ3 + e sin θ3 = f (2.27)

g cos θ3 + h sin θ3 = i (2.28)

Where,

d = Pxc12 + Pys12 − a1c̃2e = −Pzf = a3 + a4c4g = −Pzh = −Pxs12 + Pyc12 + a1s̃2i = a4s4

(2.29)

And then, solve for θ3

θ3 = Atan2 (di− df, fh− ei) (2.30)

Lastly, we can calculate θ5 using Equation 2.12, Equation 2.25, and Equation 2.30.

θ5 = Atan2

(
−r33,±

√
r231 + r232

)
− θ4 − θ3 (2.31)

Numerical approaches are widely employed for solving inverse kinematics, particularly for

robotic arms with limited degrees of freedom (e.g., 5-DOF arms, excluding the base joint).

Among these, the Weighted Damped Least Squares (WDLS) method is a robust and effective

technique for handling joint limits while ensuring numerical stability. Algorithm 1 presents

the pseudocode for the implementation of WDLS in our framework.

The weight matrix W in the WDLS method is critical for addressing joint limits. It is

defined as follows:

W = diag

(
1

(q − qmin)2 + ϵ
+

1

(qmax − q)2 + ϵ

)
, (2.32)

where qmin and qmax represent the lower and upper joint limits, respectively, and ϵ is a

small constant added to ensure numerical stability. By applying this weighting strategy,

joint movements are naturally constrained within their permissible ranges while maintaining

smooth and stable updates.
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Pseudocode 1 Weighted Damped Least Squares (WDLS) for Inverse Kinematics

Require: E, TdBE, qinitial,W (q), niter, dt, ϵ, λ

1: q ← qinitial {Initialize joint angles}

2: i← 0

3: while i < niter do

4: TBE ← FK(q, E) {Compute forward kinematics}

5: err← log6(TBE, TdBE) {Calculate pose error}

6: if ∥err∥ < ϵ then

7: success stat← success

8: break

9: end if

10: J ← get jacobian(q, E) {Compute Jacobian matrix}

11: W ← compute weight(q) {Compute weight matrix based on joint limits}

12: q̇ ← WJT (JWJT + λI)−1err {WDLS update}

13: q ← q + q̇ · dt {Update joint angles using Euler integration}

14: i← i+ 1

15: end while

16: if i ≥ niter then

17: success stat← fail

18: end if

19: return q, success stat
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2.2.3 Dynamics

Dynamics gives us insight into why things are moving as they are, under the influence of forces

and torques. Since we expect high-speed dynamic motion and accurate position tracking

for our manipulator platform, controlling the manipulator using only its kinematics is a

challenge. In addition, as it has a coupled body joint that is connected to two relatively heavy

arms that could have a large inertia when it is straightened, dynamics must be considered

when it is controlled. We can define the well-known equations of motion or the manipulator

equations as follows.

τ = M(θ)θ̈ + C(θ, θ̇) + g(θ) + JT (θ)Ftip (2.33)

where M(θ) is the n × n symmetric positive-definite mass matrix, c(θ, θ̇) is the n × n

Coriolis matrix, g(θ) are gravitational forces, Ftip is the wrench applied by the manipulator

to the environment.

2.3 Control Strategies

The following pseudo-code implements inverse dynamics and impedance control for a dual-

arm manipulator with a shared base joint. Each arm is independently controlled, and a

coordination mechanism handles the shared joint dynamics.
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2.3.1 Inverse Dynamics Controller Implementation

Pseudocode 2 Dual-Arm Inverse Dynamics

Require: H(q),C(q, q̇),g(q),J, J̇,qd, q̇d, q̈d,Fext

1: τtorso ← 0 {Initialize shared torso torque}

2: for each arm (left, right) do

3: q̈d ← J−1(ẍd − J̇q̇) {Compute desired joint acceleration}

4: τ ← H(q)q̈d +C(q, q̇)q̇+ g(q) + JTFext {Compute joint torques}

5: Accumulate τtorso using a weight factor α

6: τtorso ← τtorso + ατ

7: end for

8: Normalize τtorso {Distribute shared joint torque}

9: return τleft, τright, τtorso

A repeatability test based on ISO 9283 was conducted using the Inverse Dynamics con-

troller to evaluate the manipulator’s performance. The end-effector was moved repeatedly

along four designated points, and its position was tracked using a motion capture system

(Vicon Vero). The testing trajectory is shown in Figure 2.14, and the average deviation

was measured as 0.493 mm (see Table 2.5). This result is comparable to those of LIMS

and KUKA iiwa (see Table 2.6), demonstrating that the proprioceptive manipulator offers

sufficient position accuracy.
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Figure 2.14: Repeatability test results based on motion capture tracking.
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Point Deviation (mm)

P1 0.585

P2 0.264

P3 0.681

P4 0.443

Average 0.493

Table 2.5: Deviation Measurements Recorded at Designated Points

Manipulator Deviation (mm)

LIMS 0.425

KUKA iiwa 0.100

Table 2.6: Deviation Measurements for Different Manipulators

Next, to assess tracking performance, the manipulator was maneuvered through a series

of positions, labeled 1 through 9, as illustrated in Figure 2.15. Position controller and Inverse

Dynamics controller were used for this evaluation. The actual x, y, and z coordinates of the

end-effector were compared to the reference trajectory. Tests were conducted at two speeds

(1 rad/s, 3 rad/s) and with varying payloads (0 kg, 1 kg, and 2 kg).

The position controller showed increasing errors with higher speeds and payloads, even

after fine-tuning. In contrast, the Inverse Dynamics controller demonstrated stable and

accurate tracking under all conditions.
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Figure 2.15: Tracking performance experiment sequence.

Figure 2.16: Result: end-effector x-axis / 1 rad/s / 0kg.
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Figure 2.17: Result: end-effector y axis / 1 rad/s / 0kg.

Figure 2.18: Result: end-effector z-axis / 1 rad/s / 0kg.

Figure 2.19: Result: end-effector x-axis / 1 rad/s / 1kg.
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Figure 2.20: Result: end-effector y axis / 1 rad/s / 1kg.

Figure 2.21: Result: end-effector z-axis / 1 rad/s / 1kg.

Figure 2.22: Result: end-effector x-axis / 1 rad/s / 2kg.
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Figure 2.23: Result: end-effector y axis / 1 rad/s / 2kg.

Figure 2.24: Result: end-effector z-axis / 1 rad/s / 2kg.

Figure 2.25: Result: end-effector x-axis / 3 rad/s / 0kg.
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Figure 2.26: Result: end-effector y axis / 3 rad/s / 0kg.

Figure 2.27: Result: end-effector z-axis / 3 rad/s / 0kg.

Figure 2.28: Result: end-effector x-axis / 3 rad/s / 1kg.
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Figure 2.29: Result: end-effector y axis / 3 rad/s / 1kg.

Figure 2.30: Result: end-effector z-axis / 3 rad/s / 1kg.

Figure 2.31: Result: end-effector x-axis / 3 rad/s / 2kg.
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Figure 2.32: Result: end-effector y axis / 3 rad/s / 2kg.

Figure 2.33: Result: end-effector z-axis / 3 rad/s / 2kg.
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2.3.2 Impedance Controller Implementation

Pseudocode 3 Dual-Arm Impedance Control

Require: Md,Bd,Kd,Ksync,xd,x, ẋ,Fext

1: Fleft ← 0,Fright ← 0 {Initialize forces}

2: for each arm (left, right) do

3: Fd ←Mdẍd +Bd(ẋd − ẋ) +Kd(xd − x) {Compute desired interaction force}

4: end for

5: Fsync ← Ksync(xleft − xright) {Synchronization force}

6: Fleft ← Fd + Fsync

7: Fright ← Fd − Fsync

8: for each arm (left, right) do

9: τ ← JTF {Compute joint torques using Jacobian transpose}

10: end for

11: return τleft, τright

The dual-arm impedance controller is implemented as outlined in Algorithm 3. This

controller initializes the interaction forces for both the left and right arms and iteratively

computes the desired interaction forces based on the specified mass (Md), damping (Bd),

and stiffness (Kd) parameters. Additionally, a synchronization stiffness (Ksync) is employed

to ensure coordinated movements between the two arms. The desired interaction force

Fd is calculated to achieve the desired dynamic behavior, while the synchronization force

Fsync maintains balance and coordination between the arms by minimizing the positional

difference between them. Subsequently, the joint torques for each arm are determined using

the Jacobian transpose method, which translates the computed forces into the necessary

torques for precise actuator control. This systematic approach enables the robotic system

to perform smooth and efficient trajectory tracking while effectively responding to external

disturbances, thereby enhancing overall system stability and performance.
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2.3.3 Jerk-Optimized Dynamic Model Predictive Control

Unlike the typical formulation for manipulation, minimizing velocity and acceleration is in-

efficient for optimization when using proprioceptive actuators due to their fast joint speeds.

Instead, minimizing torque and jerk proves to be more effective for these types of actua-

tors. Additionally, by incorporating the current position and/or velocity as constraints, the

controller demonstrates excellent recovery performance when deviating from the nominal

trajectory.

In this study, we advance the dynamic MPC framework introduced in [LSB23] by in-

corporating jerk terms to facilitate smooth and efficient motion planning while explicitly

accounting for system dynamics. The proposed formulation incorporates jerk minimization

within the cost function and imposes jerk constraints to ensure precise trajectory tracking

and seamless transitions, particularly during high-speed motions. Moreover, the MPC frame-

work leverages the current position as an initial constraint, enabling rapid, safe, and smooth

operation, as well as robust trajectory recovery under dynamic conditions. This methodology

is specifically designed to meet the unique requirements of proprioceptive manipulators.

The objective of Jerk-Optimized Dynamic MPC is to minimize a cost function that

combines task tracking error, control effort, and jerk (rate of change of acceleration):

J =

i+Np∑
k=i

[
(θ̂k − g(qk))

TQe(θ̂k − g(qk)) + uT
kQuuk + jTk Qjjk

]
, (2.34)

where θ̂k: Desired task-space state at time step k, g(qk): Actual task-space state computed

from forward kinematics, uk: Torque input at time step k, jk = (q̈k − q̈k−1)/∆t: Jerk,

Qe, Qu, Qj: Weighting matrices for task error, torque, and jerk, respectively.

To address the nonlinearity of g(qk), we apply a first-order Taylor expansion to linearize

the function as follows:

θ̂k − g(qk) ≈ Ĵk(q̂k − qk), (2.35)

where Jk =
∂g
∂q

∣∣∣∣
q̂k

denotes the Jacobian matrix evaluated at the nominal configuration q̂k.
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Substituting equation 2.35 into equation 2.34, the tracking error term becomes:

(θ̂k − g(qk))
TQe(θ̂k − g(qk)) ≈ qTk Ĵ

T
k QeĴkqk − 2q̂Tk Ĵ

T
k QeĴkqk + constant. (2.36)

This reformulation allows the cost function to be expressed in a quadratic form, making

it suitable for QP solvers.

The resulting QP optimization problem is:

min
zk

zTk Wzk + 2wT zk,

subject to xk+1 = Akxk +Bkuk + rk,

umin ≤ uk ≤ umax,

qmin ≤ qk ≤ qmax,

q̇min ≤ q̇k ≤ q̇max,

q̈min ≤ q̈k ≤ q̈max,

q0 = qcurrent,

q̇0 = q̇current.

(2.37)

Here, zk = [xT
k , u

T
k ]

T is the decision variable, and W and w are the quadratic and linear

coefficients derived from the cost function and constraints.

This formulation effectively integrates jerk minimization, torque control, and initial state

constraints, thereby ensuring efficient recovery and smooth trajectory tracking for manip-

ulators equipped with proprioceptive actuators. As demonstrated in Figure 2.34, Model

Predictive Control (MPC) accurately tracks the quintic spline reference trajectory while

generating a smoother torque trajectory, as illustrated in Figure 2.35.
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Figure 2.34: Comparison of joint positions between the reference trajectory and the MPC-

generated trajectory.
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Figure 2.35: Comparison of joint torques between the reference trajectory and the MPC-

generated trajectory.
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2.4 Motion Planning: Time-Optimal and Jerk-Minimized Trajec-

tory Planning

When planning trajectories for a manipulator equipped with high-speed proprioceptive ac-

tuators, the primary focus often shifts from strict time optimality to generating smoother

trajectories. This emphasis on smoothness resonates with well-documented principles of hu-

man motor control: the human central nervous system naturally tends towards maximizing

smoothness in limb movements. In their seminal work, Flash and Hogan [FH85b] observed

human arm motions and demonstrated that humans generate smooth point-to-point move-

ments by minimizing jerk, defined as the rate of change of acceleration. Their model captured

this behavior by formulating an optimization problem that minimized the L2-norm of the

jerk along the trajectory.

Subsequent research by Yazdani [YGH12] suggested that minimizing the L∞-norm of the

jerk produces a bang-bang type control policy, more closely aligning with specific biological

control strategies employed by the central nervous system. Drawing inspiration from these

studies, we implemented a time-optimal and jerk-minimized trajectory planning framework.

This approach aims to produce trajectories that are both dynamically feasible and inherently

smooth, ensuring that each joint follows a path that balances speed with ease of execution.

2.4.1 Trajectory Optimization Formulation

We consider a robotic manipulator with nj joints. The motion is discretized into N time

steps, and let q[i] ∈ Rnj represent the joint configuration at the i-th time step, with i ∈

{0, . . . , N − 1}. The total execution time is T > 0, and the time increment is defined as

∆t = T/(N − 1).

• Decision variables:
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– All decision variables are collected into a single vector:

x =



T

q[0, 1]

q[0, 2]
...

q[0, nj]

q[1, 1]
...

q[N − 1, nj]



∈ R1+Nnj . (2.38)

By choosing T and q[i, j] for each time step i and joint j, the entire trajectory is

fully determined.

• Velocity and acceleration approximations:

– Velocities and accelerations are approximated via finite differences. For 1 ≤ i ≤

N − 2 and each joint j:

q̇[i, j] ≈ q[i+ 1, j]− q[i− 1, j]

2∆t
, q̈[i, j] ≈ q[i+ 1, j]− 2q[i, j] + q[i− 1, j]

(∆t)2
.

(2.39)

– At the boundaries (i = 0 and i = N − 1), one-sided differences are employed.

• Cost function:

– The cost consists of two terms: one to minimize jerk and thus ensure smoothness,

and another to minimize the total execution time T .

– Jerk is the time derivative of acceleration. Discretely, for 0 ≤ i ≤ N − 3:

Jerk[i, j] ≈ q̈[i+ 1, j]− q̈[i, j]

∆t
. (2.40)

– Define the jerk cost term Jjerk as:

Jjerk =
N−3∑
i=0

nj∑
j=1

(
q̈[i+ 1, j]− q̈[i, j]

∆t

)2

. (2.41)
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– The complete objective function is:

Cost = λjerkJjerk + λtimeT, (2.42)

where λjerk ≥ 0 and λtime ≥ 0 control the trade-off between smoothness and speed.

• Constraints:

– Boundary conditions :

q[0] = qstart, q[N − 1] = qend, (2.43)

and zero initial/final velocities and accelerations:

q̇[0] = 0, q̇[N − 1] = 0, q̈[0] = 0, q̈[N − 1] = 0. (2.44)

– Joint limits :

qmin,j ≤ qi,j ≤ qmax,j, ∀i, j. (2.45)

– Torque constraints : Let τ [i] ∈ Rnj be the torque at time step i. Using the

Recursive Newton-Euler Algorithm (RNEA):

τ [i] = M(q[i])q̈[i] + C(q[i], q̇[i])q̇[i] +G(q[i]), (2.46)

where M is the inertia matrix, C the Coriolis/centrifugal matrix, and G the

gravity vector. The torque limits are:

τmin,j ≤ τ [i, j] ≤ τmax,j, ∀i, j. (2.47)

Final Nonlinear Program:

Combining all conditions, we obtain a nonlinear program (NLP):

min
x

λjerkJjerk + λtimeT (2.48)
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subject to:

q[0] = qstart, q[N − 1] = qend, (2.49)

q̇[0] = 0, q̇[N − 1] = 0, q̈[0] = 0, q̈[N − 1] = 0, (2.50)

qmin,j ≤ qi,j ≤ qmax,j, ∀i, j, (2.51)

τmin,j ≤ τ [i, j] ≤ τmax,j, ∀i, j. (2.52)

This NLP can be solved using state-of-the-art nonlinear optimization solvers (e.g., IPOPT)

within a fraction of a second, especially when using a predefined reference path that simplifies

the search space. In our experiments, the presence of a known reference path and efficient

warm-start strategies enabled solution times to remain under one second. Moreover, tra-

ditional nonlinear optimization frameworks based on Sequential Quadratic Programming

(SQP) or Sequential Linear Programming (SLP) can also be employed to converge to a

feasible, near-optimal solution rapidly.

2.4.2 Experimental Results

To evaluate the performance and characteristics of the proposed trajectory optimization

method, we consider a scenario with three key points in Cartesian space: a starting point, a

via point, and an ending point. Each experimental configuration highlights different aspects

of trajectory generation under various constraints.

First, we generate a SE(3) quintic spline path in Cartesian space and derive the corre-

sponding joint-space path through inverse kinematics. This baseline representation, shown

in Figure 2.36, establishes a smooth geometric reference that will serve as a foundation for

subsequent trajectory parameterizations and optimizations.

Next, we employ TOPP-RA to parameterize the reference joint-space path, imposing

velocity and acceleration limits to ensure feasibility. Figure 2.37 illustrates how the given

path can be time-parameterized to respect kinematic constraints using TOPP-RA, producing
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Figure 2.36: SE(3) quintic spline path and corresponding joint path derived via inverse

kinematics.

a dynamically realizable trajectory.

Building on this, we apply our time-optimal and jerk-minimized trajectory optimization

formulation directly to the reference path. As depicted in Figure 2.38, the resulting trajectory

achieves a balance between rapid execution and minimized jerk, demonstrating smooth yet

efficient motion suitable for high-speed robotic tasks.
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Figure 2.37: Time-parameterization of the reference joint path using TOPP-RA, respecting

velocity and acceleration limits.
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Figure 2.38: Time-optimal and jerk-minimized trajectory derived from the reference path,

balancing execution time and smoothness.
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We further compare two approaches for minimum jerk trajectory generation. The first

approach, shown in Figure 2.39, applies a minimum jerk formulation twice and enforces

that the via point is reached with zero velocity. This produces a trajectory with a distinct

stopping behavior at the intermediate waypoint. In contrast, Figure 2.40 presents a minimum

jerk trajectory derived through an optimization process that does not enforce zero velocity

at the via point, resulting in a continuously smooth motion profile that passes through the

intermediate waypoint without halting.

Finally, to assess the dynamic feasibility and overall smoothness of these trajectories, we

examine and compare their resulting torques and jerks. Figure 2.41 and Figure 2.42 respec-

tively show the torque and jerk profiles obtained from the various trajectories, enabling a

direct comparison of their dynamic characteristics. To provide a more quantitative summary,

Figure 2.43 and Figure 2.44 present bar charts summarizing the final torque and jerk values

for each tested trajectory, clearly illustrating the benefits of our optimization strategy in

achieving low jerk and dynamically feasible torques.

By minimizing jerk and execution time while respecting kinematic and dynamic con-

straints, such a trajectory optimization framework is particularly valuable for dexterous,

high-speed tasks. It ensures that resulting motions are both dynamically realizable and in-

herently smooth. By integrating insights from human motor control research and applying

them to robotic manipulators, we achieve trajectories that not only move quickly but also

emulate the natural, smooth qualities of human limb movements.
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Figure 2.39: Minimum jerk trajectory obtained by applying the minimum jerk formulation

twice, enforcing zero velocity at the via point.
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Figure 2.40: Optimized minimum jerk trajectory that passes through the via point without

enforcing zero velocity, resulting in a continuously smooth profile.
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Figure 2.41: Final torque profiles obtained from the various tested trajectories, illustrating

their dynamic feasibility.
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Figure 2.42: Final jerk profiles for the tested trajectories, demonstrating differences in motion

smoothness.
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Figure 2.43: Bar chart summarizing the final torque values across all trajectories, enabling

quantitative comparison.
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Figure 2.44: Bar chart summarizing the final jerk values for all trajectories, highlighting the

benefits of our optimization strategy in minimizing jerk.

68



2.5 Summary

This chapter presented the design of a lightweight, low-inertia manipulator optimized to

maximize the performance of proprioceptive actuators. Alongside the hardware develop-

ment, appropriate control strategies and motion planning methodologies were proposed. For

control, combining inverse dynamics and impedance controllers was identified as a robust

solution for a wide range of applications, with a practical example introduced in the sub-

sequent chapter. Additionally, the Jerk-Optimized Dynamic MPC approach was proposed.

By minimizing tracking error alongside jerk and torque, the method enables the generation

of fast yet smooth and safe trajectories.

For motion planning, while time-optimal trajectory generation is a common trend in

domains utilizing conventional manipulators, this manipulator does not require explicit time-

optimal considerations to achieve sufficiently high speeds. Instead, by adopting a formulation

that minimizes jerk and incorporating dynamic constraints, the proposed approach efficiently

generates trajectories with improved smoothness and feasibility.

Comparative analyses demonstrated the effectiveness of the proposed methods in pro-

ducing trajectories that are not only smooth but also compliant with physical and dynamic

constraints. The resulting trajectories exhibited superior adaptability and feasibility com-

pared to the other methods. These results underscore the practical applicability of the

proposed motion planning and control strategies in tasks demanding precision and safety,

such as dexterous manipulation and human-robot collaboration.

The presented design, control methods, and motion planning techniques collectively es-

tablish a strong foundation for the development of advanced robotic manipulators capable

of generating smooth, efficient, and dynamically consistent motions. This work significantly

expands the capabilities of robotic manipulators in addressing complex and dynamic envi-

ronments.
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CHAPTER 3

YORI: Autonomous Cooking System Utilizing a

Modular Robotic Kitchen and a Dual-Arm

Proprioceptive Manipulator

3.1 System Design

In this chapter, we introduce our autonomous robotic cooking system, YORI (Yummy Op-

erations Robot Initiative), which is designed to address the myriad challenges inherent in

adapting traditional, human-centered cooking methods for autonomous robots. These chal-

lenges include developing kitchen tools and appliances suited for robotic manipulation, con-

figuring the environment to maximize the robot’s operational reach, supporting a diverse

and scalable menu, and ensuring stable, fully autonomous operation. An overview of the

system is provided in Figure 3.1.

We leverage the intrinsic capabilities of robotics rather than relying on human-centric

techniques, enabling more efficient culinary tasks. To achieve this, we developed special-

ized tools and appliances, configured a kitchen layout optimized for a dual-arm manipu-

lator, and adopted a modular design that supports both general-purpose and specialized

setups—enhancing menu variety and scalability. By integrating a dual-arm manipulator

with proprioceptive actuators, we deliver a system that is immediately stable and func-

tional, while also laying the foundation for future advancements in autonomy, stability, and

versatility.
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Figure 3.1: Overview of the YORI System: A centrally located dual-arm manipulator with

proprioceptive actuators is surrounded by four modular kitchen units equipped with either

customized or newly developed cooking tools and appliances. Shown below, from left to

right, are dishes prepared by the system, including Steak Frites, Tomato Penne Pasta, Spicy

Fried Chicken, and Brownie.
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Figure 3.2: Layout of the cooking cell. The annotated components include: (A) storage

shelf, (B) rotating pot, (C) dish trolley, (D) convection oven, (E) salamander broiler, (F)

deep fryer, (G) pasta cooker, (H) spice dispenser, and (I) induction cooktop.
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Figure 3.2 illustrates a structured cooking cell, comprised of multiple modular shelves

and appliances arranged to utilize the available workspace efficiently. Each shelf, including

the storage shelf (a), rotating pot (b), dish trolley (c), convection oven (d), salamander

broiler (e), deep fryer (f), pasta cooker (g), spice dispenser (h), and induction cooktop (i), is

designed as an independent module equipped with its own microcontroller for simplified oper-

ation and control. This modular structure allows for straightforward assembly and effortless

reconfiguration, enabling rapid adaptation to various cooking tasks or menu requirements.

By providing a well-defined and easily adjustable layout, the system reduces the complexity

of collision-free motion planning and enhances the overall efficiency and productivity of the

robotic cooking environment.

Figure 3.3 presents the suite of appliances and their associated tools that collectively form

the YORI automated kitchen cell. Rather than relying on anthropomorphic robot hands to

achieve dexterous manipulation, our system adopts a toolchanger-based approach, enabling

the robot to seamlessly exchange specialized end-effectors as needed. This strategy allevi-

ates the complexity of executing intricate manipulation motions and reduces the need for

sophisticated, human-like grippers. Instead, functionality is integrated into the appliances

themselves: the rotating pot and the dicing chamber, for instance, simplify cooking opera-

tions by handling tasks such as mixing and chopping directly within their own mechanisms.

This approach not only enhances stability and reliability, but also supports scalability, mak-

ing it easier to integrate additional appliances or tools as the system evolves. In doing so,

we achieve a more robust and adaptable robotic cooking environment.

Figure 3.4 provides an overview of the integrated control architecture orchestrating the

modular kitchen’s cooking processes. At the highest level, a centralized scheduler man-

ages the operational flow by issuing commands and receiving status updates through shared

memory. The appliance manager then sequentially relays these directives to individual mi-

crocontrollers, each identified by a unique ID, over a shared USB communication bus. By

segmenting responsibilities across distinct modules, the system ensures that each appliance
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Figure 3.3: Overview of the integrated appliances and their corresponding tools forming the

YORI automated kitchen cell. Depicted components include: (a) the spice dispenser with its

ingredient dispensing modules, (b) the food processor and dicing chamber, (c) the rotating

mixer with a detachable pot, (d) the salamander broiler, (e) the convection oven, (f) the

induction cooktop, (g) the deep fryer and water boiler with their associated cooking basket,

(h) the induction pan and its matching squeegee, and (i) a custom-designed induction pan

paired with its specialized squeegee sweeping tool.

functions as an independent unit under a unified control framework. This modular approach

simplifies coordination, streamlines communication, and ultimately enhances the overall re-

liability and scalability of the automated cooking environment.

Figure 3.5 illustrates the YORI System’s software architecture, emphasizing the impor-

tance of high-frequency communication for manipulator control. Critical operations—such

as safety checks, state monitoring, and motor torque control—run at 1000 Hz to ensure

rapid response times and system stability. Other components, including camera systems,

task scheduling, and appliance management, operate at lower frequencies (30 Hz or 60 Hz)
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Figure 3.4: Flow diagram illustrating the control structure and messages used to control the

integrated appliances in the kitchen cell. The High Level Scheduler communicates commands

and statuses with the appliance manager through the systems shared memory. The appliance

manager in turn communicates with each local microcontroller one at a time over the shared

usb bus by sending commands tied to one of the unique microcontroller IDs.

without compromising overall efficiency. By employing shared memory for data exchange,

the architecture minimizes latency and maximizes robustness, creating a solid foundation

for more advanced manipulation strategies, including future implementations of force con-

trol and other sophisticated robotic capabilities.
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Figure 3.5: Overview of the YORI System’s software architecture, highlighting interfaces

critical for high-frequency operations like safety checks, state checks, and motor control,

communicating at 1000Hz. Conversely, components not requiring high-frequency interac-

tions, such as camera systems, task scheduler, and appliance control, function at 30Hz or

60Hz. To guarantee swift communication and enhance system stability, data processing is

executed via shared memory. Remote commands for the system are accepted through WiFi,

leveraging the ROS2 middleware, solely upon specific order reception.

3.2 Implementation: Manipulator Control and Motion Planning

Manipulator Control

In the YORI system, cooking operations are categorized into two primary motion types:

transporting and grasping. Transporting motions focus on relocating ingredients and tools,

relying predominantly on the controller’s inverse dynamics capabilities. In contrast, grasp-

ing motions facilitate tool latching and interaction with the cooking cell environment and

are governed by the impedance controller’s adjustable stiffness settings. By employing

impedance control, each manipulator arm can smoothly transition between rigid and compli-

ant states—remaining stiff when moving ingredients through the air and becoming flexible

when manipulating tools or interacting closely with the environment as shown in Figure 3.6.

This functionality is achieved by dividing the dual-arm configuration into two kinematic

chains, originating from either the torso or the shoulder yaw joint, depending on the specific
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Figure 3.6: Example of impedance controller usage. (1) Current end-effector height and (2)

Desired goal position height.

task. Each arm is managed by an independent controller, allowing for distinct stiffness values

tailored to the requirements at hand. For instance, one arm may remain compliant while

gently tossing fries for seasoning, while the other arm remains stiff to securely transport

ingredients. Similarly, during two-arm tasks—such as sweeping a pan—the arm holding

and moving the pan can maintain stiffness, while the arm gripping the squeegee remains

compliant, consistently applying a downward force against the pan’s surface.

3.3 Summary

We successfully developed a dual-arm manipulator outfitted with proprioceptive actuators

and implemented a practical control framework for its operation. This manipulator was

seamlessly integrated into a cooking robot system, as illustrated in Figure 3.7, and demon-

strated exceptional performance in both transporting and grasping tasks. Notably, in trans-

porting motions, the system maintained incredibly reliable performance even when the pay-

load changed during cooking, a distinction easily discernible from position control methods.

This integration enabled us to streamline complex sensors and algorithms while still achieving

advanced and reliable performance. The success of this project provides a robust foundation

for future research into increasingly sophisticated and complex tasks.

In this chapter, we have introduced the hardware and software design processes of an au-

tonomous robotic cooking system utilizing cutting-edge technology. This system’s develop-
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Figure 3.7: Example of transporting and grasping motions during the preparation of Steak

Frites.

ment went beyond mere simulations and lab environments. The system was fully operational

and showcased at a convention in Korea, shown in Figure 3.8. To enhance its reliability, we

simplified the system, which allowed us to successfully demonstrate the continuous cooking

of Steak Frites numerous times throughout the convention. The system’s modularity and

strategic simplifications enabled this achievement despite having only one day for preparation

at the venue, underscoring the system’s exceptional reliability and efficiency.
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Figure 3.8: Demonstration of the autonomous robotic cooking system at a convention in

Seoul, Korea, showcasing its ability to continuously cook Steak Frites.
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CHAPTER 4

Friction-Aware Grasping

This chapter examines the integration of advanced control strategies using system property

estimation techniques to enhance robotic grasping performance. Central to this investiga-

tion is the estimation of the friction coefficient, understood here as a system-level parameter

arising from interactions between contacting surfaces rather than a property of a single ma-

terial. The study utilizes the Surface Material Dataset for Robotics Applications (SMDRA)

[NNA21], which provides RGB-D images and pixel-wise friction coefficient annotations, as

a basis for training two deep learning models: UNet and TransUNet. These architectures

were evaluated for their capability to estimate friction coefficients, thereby offering critical

input for adjusting grasping forces.

Building upon these friction estimates, a control framework was developed to compute

grasping forces that adapt dynamically in accordance with the end-effector’s orientation

and the estimated friction coefficient. By incorporating indicator variables that consider

the dominant face of an object, the framework ensures stable, slip-free manipulation while

minimizing unnecessary torque exertion. The effectiveness of this friction-informed approach

is validated through real-world scenarios, demonstrating its utility in addressing challenges

associated with dynamic robotic manipulation tasks.

This research bridges the gap between theoretical system-level property estimation and

practical robotics applications by integrating advanced computer vision methods with spe-

cialized control algorithms, thereby enabling safer, more efficient, and adaptable robotic

systems that leverage friction coefficient estimations for refined, reliable grasping control.
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(a) Data collection setup. (b) current [A] vs force [N].

(c) Before measurement. (d) After measurement.

4.1 Dataset Preparation and Processing

This section details the preparation and validation of the Surface Material Dataset for

Robotics Applications (SMDRA), encompassing the development of a novel friction measure-

ment device, the collection of RGB-D and friction coefficient data, and subsequent validation

using semantic segmentation models. The following sections describe the device preparation,

data acquisition processes, and dataset verification procedures.

4.1.1 Friction Measurement Device

To facilitate accurate friction coefficient measurements across a range of materials, we de-

veloped a portable friction measurement device featuring a custom-built Voice Coil Motor
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Figure 4.2: Measured friction coefficients for the materials in the SMDRA, including their

mean values and standard deviations.

(VCM), a slider with adjustable mass, and linear rail guides. This configuration ensures con-

sistent contact conditions, which are critical for obtaining reliable friction coefficient values

in realistic settings.

As illustrated in Figure 4.1b, the VCM acts as a linear actuator generating force propor-

tional to the applied current, calibrated with a load cell to ensure accuracy. By accommo-

dating interchangeable contact materials (e.g., rubber, plastic) and supporting adjustable

slider weights, the device enables a wide range of friction coefficient measurements up to

approximately 1.3.

4.1.2 Data Collection Process

The SMDRA comprises RGB images, depth maps, and pixel-wise friction coefficient annota-

tions for 10 materials commonly encountered in practical environments. The data collection
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Figure 4.3: Example materials included in the dataset. Top row (from left):carpet, grass,

wood, concrete; Bottom row (from left):sand, rubber, stainless steel, cardboard.

setup, shown in Figure 4.1a, integrates an Intel RealSense D415 stereo camera and the

friction measurement device. Each material was arranged in petri dishes under controlled

conditions to ensure consistent measurement environments.

For each material, friction coefficients were measured 100 times and the averaged values

were annotated onto the corresponding RGB-D data. As shown in Figure 4.3, these materials

span a broad spectrum of friction coefficients, supporting a range of applications in robotic

manipulation tasks as shown in Figure 4.2. Throughout the measurement procedure, the

device configurations before and after force application are illustrated in Figure 4.1c and

Figure 4.1d. As the device initiates motion, a Hall sensor records the timing, allowing the

instantaneous current to be measured. By leveraging the established linear relationship

between current and force, and combining this force information with the known weight at

the tip, the friction coefficient can be accurately determined.
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Figure 4.4: Examples of images captured by an active stereo camera and annotated using

the COCO Annotator tool. The top row shows an RGB image (left) and a depth image

(right) of a sample containing carpet, grass, concrete, rubber, plastic, and tile. The bottom

row presents another RGB (left) and annotated depth image (right) of a sample composed

of carpet, grass, stainless steel, wood, plastic, and tile.
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4.1.3 Validation of Dataset Utility

To validate the utility of the SMDRA, we trained two semantic segmentation models—U-

Net and Fully Convolutional Network (FCN)—on both RGB and RGB-D inputs. Table 4.1

summarizes the training parameters used to ensure a fair comparison between the two ar-

chitectures. The results, presented in Table 4.2, highlight the dataset’s overall quality and

demonstrate that incorporating depth information (RGB-D) consistently enhances segmen-

tation performance. Representative segmentation outputs are shown in Figure 4.5.

Although these segmentation results are encouraging, they primarily serve as a prelimi-

nary verification step, treating the problem as a segmentation (classification) task rather than

directly addressing the friction estimating problem. By confirming the dataset’s integrity

and the reliability of its annotations, we establish a solid foundation upon which more sophis-

ticated regression-based approaches—such as those involving friction coefficient estimation

and friction-informed grasp planning—can be developed. In this way, the SMDRA paves the

way for future advancements in friction-aware robotic manipulation strategies.
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Table 4.1: Training Parameters for Semantic Segmentation Models

Parameter U-Net FCN

Input Shape 512× 512× 4 512× 512× 4

Batch Size 4 4

Optimizer Adam Adam

Activation Function LReLU LReLU

Epochs 25 25

Table 4.2: Performance Metrics for Semantic Segmentation Models

Model Pixel Accuracy Mean Accuracy Mean IU

FCN (RGB) 95.3% 90.1% 79.8%

FCN (RGB-D) 97.3% 95.5% 89.7%

U-Net (RGB) 95.6% 86.2% 75.6%

U-Net (RGB-D) 96.3% 94.7% 91.3%
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FCN-8s U-Net

Raw Image Ground Truth RGB RGB-D RGB RGB-D

Figure 4.5: Segmentation results for four example test cases. The materials involved include

grass, concrete, rubber, plastic, tile, stainless steel, cardboard, carpet, and sand. Each

column compares the raw image, ground truth, and segmentation outputs from FCN and

U-Net using both RGB and RGB-D inputs.
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4.2 Model Architecture and Training

This section outlines the architectures and training procedures employed for estimating the

friction coefficient using regression models. Two distinct neural network architectures were

evaluated: UNet and TransUNet. Each model was designed and trained to predict the

friction coefficient from input images, leveraging their unique strengths in handling spatial

and contextual information.

UNet Architecture

The UNet architecture, widely recognized for its effectiveness in segmentation tasks, was

adapted for the regression problem of friction coefficient estimation. The network consists

of an encoder-decoder structure with skip connections that preserve spatial details across

scales. The encoder extracts hierarchical features, while the decoder reconstructs these into

friction coefficient estimates.

Key parameters for the UNet implementation:

• Input size: 512x512

• Loss function: 0.2 x MSE + 0.8 x MAE

• Optimizer: Adam with 0.0001 Learning Rate.

• Batch size: 8

• Number of epochs: 30

TransUNet Architecture

TransUNet combines a Transformer encoder with the UNet’s convolutional structure, al-

lowing it to capture global dependencies while preserving spatial precision. This hybrid
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Figure 4.6: UNet architecture [RFB15].

architecture is particularly well-suited for tasks requiring contextual understanding along-

side detailed reconstruction, making it an ideal choice for friction coefficient estimation.

Key parameters for the TransUNet implementation:

• Input size: 512x512

• Number of attention heads: 4

• Loss function: 0.2 x MSE + 0.8 x MAE

• Optimizer: Adam with 0.0001

• Batch size: 8

• Number of epochs: 100
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Figure 4.7: TransUNet architecture combining Transformer encoding and convolutional de-

coding [CLY21].

Training Procedure

Each model was trained on a dataset of images paired with ground truth friction coefficients.

The training dataset consisted of 200 samples, divided into training, validation, and test sets

in a ratio of 8:1:1. Data augmentation techniques, including Brightness adjustment,

Rotation, were applied to improve generalization.

The performance of each architecture will be compared to assess their strengths and

limitations in predicting friction coefficients, with detailed results presented in the following

sections.

4.3 Training Results

As shown in Table 4.3, the TransUNet significantly outperforms the U-Net, achieving a

Mean MAE of 0.13 compared to the U-Net’s 0.24. Although the U-Net’s performance is
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Table 4.3: Mean MAE Results for U-Net and TransUNet

Model Mean MAE

U-Net 0.24

TransUNet 0.13

comparatively weaker, it still achieves a Mean MAE below 0.25, suggesting the potential

for further improvement. The U-Net’s ability to capture rich local features is evident, as

it effectively delineates object boundaries. This observation is supported by the example

output in Figure 4.8, which demonstrates its strength in boundary recognition tasks.

In contrast, Figure 4.9 highlights TransUNet’s superior performance in estimating friction

coefficients despite slightly less pronounced boundaries. Given that friction coefficients are

system-level properties, TransUNet’s more vigorous global context modeling appears to play

a pivotal role in its accuracy. This result implies that while the U-Net excels at local detail,

the TransUNet’s emphasis on broader contextual information leads to more precise friction

estimation.

While TransUNet’s scalability and generalization capacity remain open questions—particularly

given the current dataset’s limited size—these results confirm that friction coefficients can be

effectively estimated. As the amount and variety of training data increase, performance will

likely improve further. Under such circumstances, TransUNet’s ability to integrate global

context may become even more advantageous, potentially extending its lead over U-Net and

significantly advancing friction-aware robotic manipulation.
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Figure 4.8: Representative U-Net output demonstrating strong boundary delineation and

effective local feature recognition.

Figure 4.9: Representative TransUNet output illustrating improved friction coefficient esti-

mation, likely due to enhanced global context modeling.
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4.4 Friction-Aware Grasping

After estimating friction coefficients with the trained model, we integrated these values into

a friction-aware grasping strategy. Instead of relying solely on position control, our approach

continuously adjusts the grasping force using real-time IMU measurements of the gripper’s

orientation and the initially estimated friction coefficient. For simplicity, the internal dy-

namics of the gripper were not considered, and the object’s weight was assumed to be known.

By incorporating gravitational effects via IMU data, the effective load on the object could

be computed accurately, allowing the grasping forces to adapt as the orientation changes

and thereby ensuring stable and efficient manipulation.

4.4.1 Friction-Aware Grasping Algorithm

The algorithm leverages the friction coefficient (µ) to determine the required grasping forces

on the gripper’s left and right fingers. Indicator variables (δleft and δright) identify the object’s

dominant face relative to the gripper, ensuring that the computed forces reflect both local

frictional properties and global orientation-dependent loading.

Variables

• µ: Coefficient of friction between the gripper and the object.

• Fz,i: Negative z-component force acting on face i, where i ∈ {left, right, top, bottom, front, back}.

• Fload: Load acting on the dominant gripper finger (either left or right).

• Fz,sum: Sum of all z-component forces acting on the object.

• δleft, δright: Indicator variables:

δleft =


1, if the dominant face is “left”,

0, otherwise,
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δright =


1, if the dominant face is “right”,

0, otherwise.

Algorithm Steps

1. Compute the total z-component force acting on the object:

Fz,sum =
N∑
i=1

Fz,i

where N represents the number of faces contributing to the force (e.g., top, bottom,

front, back).

2. Calculate the net force acting on the object:

Fz,net = Fz,sum + Fload

3. Determine the grasping forces:

fleft = δleft ·max

(∣∣∣∣Fz,net

2µ

∣∣∣∣ , Fload

)
+ (1− δleft) ·

∣∣∣∣Fz,net

2µ

∣∣∣∣
fright = δright ·max

(∣∣∣∣Fz,net

2µ

∣∣∣∣ , Fload

)
+ (1− δright) ·

∣∣∣∣Fz,net

2µ

∣∣∣∣
4. Multiply the resulting torque values by a safety factor of 3 to ensure reliable, robust

grasping.

5. Output the computed grasping forces (fleft, fright).

This formulation integrates dominant face selection via indicator variables, ensuring that

applied grasping forces continuously and intelligently adjust according to the object’s fric-

tional properties and orientation.
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Figure 4.10: Illustration of the friction-aware grasping experiment setup. In (a), the gripper

is shown before rotation, and (b) illustrates a rapid rotation scenario. This dynamic testing

environment evaluates the gripper’s ability to adapt its grasping forces in real-time to changes

in object orientation and the estimated friction coefficient.

4.4.2 Experimental Validation

To evaluate the proposed friction-aware grasping strategy, we established a dynamic exper-

imental setup, as illustrated in Figure 4.10. In this environment, the gripper can rapidly

rotate and change its orientation. This allows us to assess how well it adapts its grasping

forces to varying gravitational effects utilizing the estimated friction coefficient. By doing

so, the experiment tests the system’s ability to maintain stable, efficient manipulation even

when subjected to sudden orientation changes and load distributions.

Figure 4.11 compares torque profiles under traditional position-based control and the

proposed friction-aware force-based approach, tested with both 100g and 200g boxes. Even

after applying a safety factor of three to the computed torque values, the friction-aware

method significantly reduces both peak and overall torque compared to fixed-grasp, position-

controlled scenarios. This improvement in efficiency is evident in the substantially lower

torque profiles observed during the experiment.
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Figure 4.11: Comparison of torque profiles under traditional position-based control and

friction-aware force-based control for both 100g and 200g boxes. Even with a safety factor

of 3 applied, the friction-aware approach significantly reduces both peak and overall torque,

demonstrating reliable grasping performance across varying loads.

96



4.5 Summary

This chapter has demonstrated how accurately estimating system properties, specifically

friction coefficients, can significantly enhance robotic grasping and manipulation. The pro-

posed methodology integrates advanced deep learning architectures (UNet, TransUNet) with

a control framework validated using the SMDRA dataset. These integrated approaches en-

able precise force distribution and reduced torque requirements, all while maintaining grasp

stability.

By incorporating estimated friction coefficients into force computation, the system intel-

ligently modulates grasping forces in response to changing object orientations and weight

distributions. This friction-aware strategy not only ensures stable and efficient manipulation

but also decreases mechanical stress on the manipulator and provides a robust safety mar-

gin. The resulting improvements in operational efficiency and adaptability are particularly

valuable in unstructured, dynamic environments.

This work bridges the gap between data-driven system property estimation and practical

manipulation strategies, paving the way for safer, more reliable, and more scalable robotic

systems. As larger datasets and more accurate estimation models emerge, the presented

friction-aware approach is poised to further advance the capabilities of robots operating in

both human-centric and industrial settings.
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CHAPTER 5

Adaptive Video Imitation for Dynamic Manipulation

5.1 Overview

Dynamic manipulation remains one of the most challenging areas in robotics, requiring

the execution of tasks involving rapid and complex motion changes while interacting with

objects of varying properties. The inherent nonlinearities and uncertainties present in such

scenarios pose significant difficulties for state estimation and control. Inspired by the human

capability to perform dynamic tasks, such as throwing or catching, robotics research has

sought to narrow this gap through both optimization-based and learning-driven approaches

[HS05, HCW23, KK23, LWZ23, ZLT23, ZSL20].

This chapter introduces AVID (Adaptable Video Imitation for Dynamic Manipulation),

a framework currently under development that aims to advance existing methodologies for

dynamic manipulation. In contrast to approaches relying primarily on video motion re-

targeting, AVID leverages information extracted from human demonstrations to inform a

robot dynamics model. By integrating kinematic adaptation with explicit consideration of

the robot’s dynamic properties, AVID aspires to enable more energy-efficient and stable

manipulations—even as object conditions and orientations vary.

The anticipated contributions of this work include:

• Human-to-Robot Dynamic Adaptation: Rather than limiting itself to simple

motion retargeting, AVID analyzes human demonstration videos and incorporates the

resulting insights into a robot’s dynamic model. This approach aims to generate control
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policies that are dynamically feasible and robust to variations in object properties and

task conditions.

• Energy-Efficient Dynamic Manipulation: Drawing inspiration from human strate-

gies, AVID seeks to reduce overall energy consumption and lower peak torque require-

ments in dynamic tasks. By more fully exploiting the robot’s inherent dynamics, this

method could surpass conventional position- or trajectory-based control approaches.

• Latent Plan Transformer (LPT)-Driven Adaptability: By employing the La-

tent Plan Transformer (LPT) [KXZ24], AVID endeavors to achieve greater adaptability

and robustness. The LPT’s ability to abstract latent plans from demonstration data

may yield efficient trajectory generation, improved inference speed, and enhanced per-

formance across diverse scenarios.

5.1.1 Box Receiving as a Representative Dynamic Manipulation Task

Dynamic manipulation tasks often demand that robots handle rapidly moving objects in un-

predictable environments, requiring swift and robust responses under uncertainty. Among

various possibilities, we selected box receiving as a representative challenge. Successfully

receiving a thrown box necessitates rapid arm movements, precise timing, and careful interac-

tion control—characteristics that encapsulate many core elements of dynamic manipulation.

Moreover, such tasks highlight the advantages of our proprioceptive manipulator, whose in-

trinsic sensing and control capabilities offer a means to adapt in real-time. The robot must

continuously adjust its motion plan as the box’s trajectory evolves, making both sequence

execution and replanning critical.

While inherently complex, the box-receiving task can be simplified to three pitch joints

at the shoulder, elbow, and wrist, mirroring the human arm’s configuration for this specific

interaction. This simplification preserves essential dynamic features—such as high-speed

motion, effective momentum management, and intricate contact handling—while ensuring
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that the problem remains tractable. Consequently, the box-receiving task provides an acces-

sible yet sufficiently demanding testbed for exploring and validating strategies in dynamic

manipulation.

Building on this problem definition, the following sections introduce our approach to

translating human demonstration data into robot dynamics and selecting appropriate control

strategies. This groundwork aims to guide the robot toward stable, efficient, and adaptable

performance in dynamic manipulation tasks.

5.1.2 Our Approach: Translating Human Demonstrations into Robot Dynamics

Once human pose estimation is obtained, the human arm’s joint angles, specifically at the

shoulder, elbow, and wrist pitch joints, can be extracted, which is crucial for the box-

receiving scenario. By comparing the ratios of human and robot arm lengths, the box size

and position can be appropriately scaled and adjusted. This process allows the robot’s end-

effector to be positioned relative to the adjusted box coordinates, thereby maintaining the

spatial relationships observed in the original human demonstration.

Next, the robot’s wrist, elbow, and shoulder joint angles are determined to replicate the

human arm configuration as closely as possible. The differences in joint positions between

consecutive video frames, combined with the known frame rate, facilitate the calculation

of joint velocities and accelerations. By subsequently applying the inverse dynamics of the

robot model, the required joint torques can be derived. The robot’s dynamics are described

by:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + J⊤(q)fext, (5.1)

where M(q) is the inertia matrix, C(q, q̇) is the Coriolis and centrifugal matrix, G(q) is the

gravity vector, τ denotes the joint torques, and fext represents external forces.
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5.1.3 Control Strategies

The choice of control method depends on the policy’s performance and stability, leading to

three potential scenarios:

1. Tracking Trajectories: Inverse Dynamics Controller

If precise trajectory tracking is paramount, an inverse dynamics controller can compute

the required joint torques to follow the desired trajectory accurately.

2. Compliant Interaction: Impedance Controller

When compliant interaction between the robot and the box is essential, an impedance

controller can modulate the interaction dynamics to ensure safe, adaptable behavior.

3. Unstable Trajectories: Model Predictive Control (MPC)

If the policy yields unstable trajectories yet provides valuable directional information,

a Model Predictive Control (MPC) approach can refine the trajectory based on the

policy’s output, improving overall stability and performance.

Although the AVID framework remains a work in progress, these directions underscore

its potential to significantly enhance robotic systems’ capabilities in dynamic manipulation.

By integrating human-inspired insights, leveraging the robot’s inherent dynamic model, and

employing flexible control strategies, AVID aims to pave the way toward safer, more efficient,

and more adaptable robotic manipulation in complex environments.

5.2 Dataset Preparation

5.2.1 Data Collection

The dataset was collected to evaluate the performance of dynamic motion control using

robotic manipulators, informed by 2D whole-body pose estimation and subsequent inverse
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dynamics calculations. Data were gathered across multiple conditions and box configurations

to ensure robustness and generalizability.

Experimental Setup

• Camera: ZED2 RGB-D stereo camera.

• Resolution: 672 × 376 pixels.

• Frame Rate: 100 Hz.

• Environment: Controlled laboratory environment with consistent lighting and mini-

mal occlusions.

• Box Types: Five distinct box types, each with two weight conditions:

– Empty box: No internal load.

– Weighted box: Containing a 1 kg weight.

• Motion Types: For each box configuration, two motion types were demonstrated:

1. Non-impact mitigation motion: Unmodified dynamic manipulation without

strategies to mitigate external impacts.

2. Impact mitigation motion: Dynamic manipulation with explicit control strate-

gies to minimize impact forces.

• Demonstrations: Each combination of box type, weight, and motion type was per-

formed five times, resulting in

5 box types× 2weights× 2motion types× 5 trials = 100 demonstrations.

RGB data were collected throughout each trial, ensuring the availability of both color

and depth information for analysis.
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5.2.2 Data Processing

The collected data underwent several processing stages to extract meaningful features for

dynamic motion analysis. These steps are described below: [Con20]

Pose Estimation and Keypoint Filtering

1. 2D Pose Estimation: Using MMPose with the RTMPose model, we obtained 2D

keypoints for the entire human skeleton.

• Backbone: rtmw-x 8xb320-270e cocktail14-384x288

• Weights: rtmw-x simcc-cocktail14 pt-ucoco 270e-384x288-f840f204

20231122.pth

2. Keypoint Filtering: A low-pass filter was applied to each joint’s 2D trajectory,

smoothing out noise and ensuring stable keypoint sequences.

3. Skeleton Simplification: We selected a subset of keypoints (right hip, shoulder,

elbow, wrist, and finger) for subsequent analysis. This reduced skeleton was visualized

to confirm proper filtering and extraction.

Joint Dynamics and Inverse Dynamics

1. Calculation of Joint Angles: Stabilized keypoints provide the necessary information

to determine human arm lengths and proportions. By comparing these measurements

with the robot’s known dimensions, a scaling ratio is established and applied to both

the box’s position and its size. Once these scaled parameters are in place, the fin-

gertip’s relative position and the wrist joint position with respect to the adjusted box

configuration can be derived. Subsequently, the remaining joint positions are computed

to maintain a posture that closely aligns with the original human demonstration. This

approach ensures that the robot’s configuration accurately reflects the observed motion
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while effectively accommodating differences in limb length and overall geometry.

2. Joint Velocities and Accelerations: First-order and second-order numerical deriva-

tives of the joint angles were calculated to obtain joint velocities and accelerations.

3. Inverse Dynamics: The calculated joint angles, velocities, and accelerations were

used as inputs to an inverse dynamics model of the target robotic manipulator.

• Inverse Dynamics Model: The computation considered the kinematic and

dynamic properties of the robot, including mass distribution and joint constraints.

Visualization and Analysis

The processed data were visualized to validate the pipeline and analyze the results. The

following plots were generated:

1. Human and Box Pose Estimation: RGB image overlaid with detected skeletons

and the box, providing qualitative validation of the pose estimation and scaling process.

2. Keypoint Stability: Raw and filtered keypoint trajectories for right hip, right

shoulder, right elbow, right wrist, and right finger.

3. Simplified Skeleton: Visualizations of the simplified skeleton for dynamic analysis.

4. Joint Dynamics: Plots of joint angles, velocities, and accelerations for each joint in

the simplified skeleton.

5. Torque Profiles: Estimated torque requirements for the manipulator to replicate

observed motions under both motion types and box conditions.

This comprehensive processing pipeline ensured reliable data for analyzing dynamic ma-

nipulation, enabling insights into the control strategies required for efficient and adaptive

robotic manipulation.
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Figure 5.1: Pose estimation, and box segmentation results are overlaid on an RGB image.

The detected keypoints demonstrate accurate alignment with the subject’s body structure.
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(a) Raw trajectory: Right Hip (b) Filtered trajectory: Right Hip

(c) Raw trajectory: Right Shoulder (d) Filtered trajectory: Right Shoulder

(e) Raw trajectory: Right Elbow (f) Filtered trajectory: Right Elbow

(g) Raw trajectory: Right Wrist (h) Filtered trajectory: Right Wrist

(i) Raw trajectory: Right Finger (j) Filtered trajectory: Right Finger

Figure 5.2: Keypoint trajectories for the right-side joints (hip, shoulder, elbow, wrist, and

finger). Each joint includes raw and filtered trajectories for comparison.
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Figure 5.3: Simplified skeleton visualization focusing on key joints relevant to dynamic

motion analysis.
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Figure 5.4: Joint Information: plots of joint angles, velocities, accelerations, and torque for

the selected joints over time. These dynamics are derived from filtered keypoint trajectories.
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5.3 Visuomotor Policy Learning

5.3.1 Problem Setup for Visuomotor Policy Learning

Policy learning from demonstration can be formulated as supervised regression, mapping

observations to actions. Given an observation sequence o = o1, . . . , ot, . . . , oT and corre-

sponding action sequence a = a1, . . . , at, . . . , aT , where t denotes the time-step, we aim to

learn a robust policy p(a|o) from demonstrations.

5.3.2 Diffusion Policy

The diffusion policy learns this distribution using a conditional diffusion model for actions

conditioned on observations. The vanilla diffusion model’s learning objective is:

L(θ) = Ex0,ϵk ||ϵk − ϵθ(x
0 + ϵk, k)||2 (5.2)

where x0 is clean data, xK is noised data, and ϵθ(x
k = x0 + ϵk, k) ≈ xk − x0 is a neural

network predicting cumulative noise. Superscripts denote denoising steps while subscripts

indicate sequence time-steps.

For the action diffusion model, we denoise action sequences conditioned on observations.

For each time step t with (ot, at):

L(θ) = Ea0,ϵk ||ϵ
k − ϵθ(ot, a

0
t + ϵk, k)||2 (5.3)

where ϵθ(ot, a
0
t + ϵk, k) is a conditional noise prediction network.

Implementation considerations: 1. Video sequence observations require a visual encoder

for low-dimensional compression. 2. For temporal consistency, we execute Ta predicted

action steps before replanning, using the latest To observation steps as input.
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Figure 5.5: Overview of the Latent Plan Transformer (LPT) architecture. The latent plan z

is sampled from the prior pα(z) and conditions the Transformer-based policy generator pβ,

which outputs a sequence of actions based on past actions, observations, and the latent plan.

This figure illustrates how LPT integrates the latent plan sampling and policy generation

processes within a single framework.

5.3.3 Latent Plan Transformer

Latent Plan Transformer (LPT) learns p(τ ) (τ = (a,o)) through factorization:

p(τ ) =

∫
p(τ , z)dz =

∫
pα(z)pβ(τ |z)dz (5.4)

where z represents the plan, pα(z) is the learnable prior model, and pβ(τ |z) is the policy

generator factorized autoregressively:

pβ(τ |z) =
T∏
t=1

pβ(τt|τ<t|z).

The implementation uses a Transformer model for pβ, conditioning on observations to

predict actions:

pβ(τ |z) =
T∏
t=1

p(at|a<t,o<t, z).

For generation, we sample z ∼ pα(z) and generate actions via pβ(τ |z). For replanning

with observations o, we sample z ∼ p(z|τ ) ∝ p(z)p(τ |z) initialized from the previous z and

then regenerate actions.
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As illustrated in Figure 5.5, the LPT framework integrates the latent plan sampling pα(z)

with the Transformer-based policy generator pβ(τ |z) to produce action sequences. This

design enables the model to dynamically adapt its action predictions to different contexts

and observations, facilitating more robust and flexible behavior in complex tasks.

5.4 Experiments and Results

This section presents preliminary simulation-based evaluations of the proposed method.

While real-world hardware experiments have not yet been conducted, the simulation re-

sults provide initial insights into the approach’s effectiveness, including comparisons against

a baseline diffusion policy.

Simulation Setup

All experiments were conducted in MuJoCo to facilitate controlled testing. RGB-D data

was captured at 100 Hz and stored in shared memory for processing. Joint states (positions,

velocities, accelerations) were retrieved directly from the simulation. Both non-impact mit-

igation and impact mitigation motions were tested to examine differences in torque profiles

and overall manipulation performance.

Preliminary Timing Results

The following results summarize the current performance in terms of trajectory generation

and replanning times. While our model currently demonstrates a higher raw frequency than

the baseline diffusion model, these values represent only the direct generation times without

any interpolation or further optimization. Future refinements, such as interpolating between

actions, may effectively increase the control frequency well beyond the figures presented here.
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Figure 5.6: Simulation setup illustrating the environment in which the preliminary experi-

ments were conducted.

Key Points:

• Our model achieves a replanning frequency of approximately 18.7 Hz for single-action

generation.

• Generating a full 300 action trajectory with our model takes about 6.23 seconds, cor-

responding to 0.16 Hz.

• The baseline diffusion model produces a 300 action trajectory in about 7.88 seconds,

yielding 0.13 Hz.
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• These raw frequencies do not yet incorporate techniques like interpolation, which can

substantially increase the effective control rate.

Table 5.1: Preliminary Timing Results for Trajectory Generation and Replanning

Model Task Time / Frequency

Our Model Replan + 1 Action 0.0536 s (18.7 Hz)

Our Model (Initial Planning) 300 Actions 6.2274 s (0.16 Hz)

Diffusion Model 300 Actions 7.8756 s (0.13 Hz)

These preliminary findings serve as a baseline for future improvements. With appropriate

tuning and interpolation methods, the effective operational frequency is expected to increase,

enabling more responsive and efficient control strategies.

5.5 Summary

This chapter introduced the AVID framework, which aims to improve dynamic manipu-

lation through the integration of human-inspired strategies, video-derived demonstrations,

and explicit consideration of the robot’s dynamic properties. Unlike previous methods that

focus solely on motion retargeting, AVID leverages human demonstration data to inform

a robot dynamics model, thereby enabling more energy-efficient and robust manipulations.

The approach was exemplified through the box-receiving task, a representative dynamic ma-

nipulation scenario that balances complexity and tractability, allowing the evaluation of core

elements such as timing, contact handling, and continuous replanning.

We detailed a comprehensive data collection and processing pipeline. This included 2D

pose estimation, keypoint filtering, skeleton simplification, and inverse dynamics calcula-

tions, culminating in joint torque estimates for the target manipulator. The processed data

and simplified skeleton served as a foundation for testing different control strategies—ranging
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from inverse dynamics control for precise trajectory tracking to impedance and MPC con-

trollers for compliant or unstable trajectories.

Preliminary simulation-based evaluations provided initial insights into AVID’s potential.

Although hardware experiments remain a future goal, the simulation results indicated that

our model achieves higher raw frequencies for single-action generation and full-trajectory

planning compared to a baseline diffusion policy. Despite these early advantages, the current

frequencies represent unoptimized conditions without interpolation. The control frequency

can be significantly enhanced with appropriate tuning and incremental improvements.

In summary, this work lays the groundwork for more adaptive and capable robotic ma-

nipulation in dynamically changing, uncertain environments. By bridging the gap between

human demonstrations, robot-specific dynamics, and flexible control frameworks, AVID of-

fers a promising avenue for advancing the field of dynamic manipulation toward safer, more

efficient, and more versatile robotic systems.
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CHAPTER 6

Conclusion and Future Works

6.1 Conclusion

This dissertation has investigated the synergy among innovative hardware design, control

methodologies suited to emerging actuator technologies, advanced motion planning strate-

gies, and machine learning techniques, all aimed at enhancing the capabilities of robotic ma-

nipulators in dynamic, human-centric environments. Central to this work is the deployment

of proprioceptive actuators, whose inherent backdrivability and torque control capabilities in-

troduce a fundamentally new manipulation paradigm compared to traditional high-gear-ratio

actuators. By emphasizing torque control, compliance, and adaptability, these actuators en-

able more flexible and robust robot-environment interactions. These qualities are becoming

increasingly important as we integrate robots into everyday human life.

The low-inertia, proprioceptive dual-arm manipulator developed in this dissertation demon-

strates that such systems can excel not only in controlled laboratory settings but also in

realistic, application-driven scenarios. We have shown that adopting proprioceptive actu-

ators and focusing on torque optimization strategies (including jerk-minimized trajectories

and friction-aware force computations) leads to improved manipulation performance, re-

duced mechanical stress, and enhanced safety. The successful integration of these principles

in tasks as diverse as cooking, box receiving, and friction-informed grasping validates the

practical viability of our approaches.

A key insight of this work is the shift away from exclusively position-control-based
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methodologies. While position control remains indispensable for certain tasks, the experi-

mental evidence presented here strongly suggests that force and torque-based control schemes

provide more efficient, and robust solutions. This dissertation thus serves as a stepping stone

toward a new class of manipulators that can actively sense, predict, and adapt to complex

physical interactions, paving the way for future robots that operate safely and reliably in

uncertain, dynamically changing conditions.

6.2 Future Plans

Although the advancements reported here mark an important milestone, several avenues for

future research can further extend the capabilities and applicability of our approaches:

1. Enhanced Torque-Optimized Control Frameworks

While we have demonstrated successful applications of inverse dynamics and impedance con-

trollers, future efforts should focus on developing unified, torque-centric control frameworks

capable of seamlessly blending these strategies. Such controllers would better handle sudden

disturbances, high-impact interactions, and the delicate balance between compliance and

stability.

2. Advanced Trajectory Planning and Real-Time Adaptation

The incorporation of minimum-jerk trajectory optimization highlights the promise of smoother,

more natural manipulations. Future research should explore even more sophisticated plan-

ning algorithms that can incorporate real-time sensory feedback, collision avoidance, and

dynamic adjustments in response to changing goals or constraints, all while maintaining

computational efficiency suitable for real-world deployments.
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3. Broader Friction Data and Material Modeling

The friction-aware strategies introduced here rely on accurate friction estimates derived from

specialized datasets. Enlarging the scope of available friction data, covering a wider range of

materials, textures, and environmental conditions, will allow robotic systems to generalize

more effectively. Enhanced friction modeling, combined with predictive learning, can lead

to even more reliable and adaptive manipulation in unstructured environments.

4. Refinement and Expansion of Video Imitation Learning with Contact Dy-

namics

While initial results in translating human demonstrations into robot joint trajectories are en-

couraging, the immediate priority is to refine and optimize the current methodology through

meticulous parameter tuning. By first ensuring stable and high-performance imitation poli-

cies, we establish a robust foundation for future enhancements. Once these performance

benchmarks are met, the next step involves integrating comprehensive contact and dynam-

ics modeling into the learning framework. This expanded approach will allow the robot not

only to replicate human-like motions but also to internalize the underlying physical princi-

ples governing those motions. We can significantly enhance the robustness, transferability,

and overall realism of video-driven imitation learning through a two-stage process. First, we

will solidify the current approach, particularly focusing on hardware testing. Next, we will

enrich this framework by incorporating contact dynamics and more detailed datasets. This

will help bridge the gap between simulated training and real-world execution.

5. Extension to Mobile Manipulators and Complex Real-World Tasks

Building upon the insights gained thus far, an immediate goal is to extend these approaches

to mobile manipulator platforms. By integrating proprioceptive actuators, torque-based

control, and learning-driven adaptation with a mobile base, we can evaluate a broader range
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of manipulation tasks in dynamic and unstructured environments. This will enable us to

test how well the methods generalize to mobile robots performing diverse and challenging

operations, including those that require precise coordination and real-time adaptation.

Ultimately, the aim is to tackle complex real-world problems that demand both mobility

and dexterity. For instance, tasks like using a hammer to drive in nails (Figure 6.1) or

painting surfaces (Figure 6.2) exemplify the kind of intricate, force-sensitive operations robots

should master. By extending our current frameworks to mobile platforms and validating

them through tasks such as hammering and painting, we take a significant step toward

deploying robots that can seamlessly integrate into everyday human activities, contributing

to areas such as construction, maintenance, and creative craftsmanship.
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Figure 6.1: Impact and force-based tasks, such as hammering, represent challenging real-

world scenarios for mobile manipulators.
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Figure 6.2: Painting tasks, requiring careful force modulation and dexterity, illustrate the

potential for mobile manipulators in complex human-centric environments.
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