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Abstract

Convolutional neural networks (CNNSs) are a promising technique for automated glaucoma
diagnosis from images of the fundus, and these images are routinely acquired as part of an
ophthalmic exam. Nevertheless, CNNs typically require a large amount of well-labeled data
for training, which may not be available in many biomedical image classification applications,
especially when diseases are rare and where labeling by experts is costly. This article makes
two contributions to address this issue: (1) It extends the conventional Siamese network and
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introduces a training method for low-shot learning when labeled data are limited and imbalanced,
and (2) it introduces a novel semi-supervised learning strategy that uses additional unlabeled
training data to achieve greater accuracy. Our proposed multi-task Siamese network (MTSN) can
employ any back-bone CNN, and we demonstrate with four backbone CNNs that its accuracy
with limited training data approaches the accuracy of backbone CNNs trained with a dataset

that is 50 times larger. We also introduce One-Vote Veto (OVV) self-training, a semi-supervised
learning strategy that is designed specifically for MTSNs. By taking both self-predictions and
contrastive predictions of the unlabeled training data into account, OVV self-training provides
additional pseudo labels for fine-tuning a pre-trained MTSN. Using a large (imbalanced)

dataset with 66,715 fundus photographs acquired over 15 years, extensive experimental results
demonstrate the effectiveness of low-shot learning with MTSN and semi-supervised learning with
OVV self-training. Three additional, smaller clinical datasets of fundus images acquired under
different conditions (cameras, instruments, locations, populations) are used to demonstrate the
generalizability of the proposed methods.

Keywords

Convolutional neural networks; glaucoma diagnosis; low-shot learning; semi-supervised learning

INTRODUCTION

GLaucoma is a prevalent and debilitating disease that can lead to progressive and
irreversible vision loss through optic nerve damage [1]. The global incidence of glaucoma
was estimated at 64.3 million in 2013, and due to aging populations, this number is expected
to rise to 111.8 million by 2040 [2]. Improvement in the management of glaucoma would
have a major human and socio-economic impact [3]. Early identification and intervention
would significantly reduce the economic burden of late-stage disease [4]. In addition, visual
impairment in glaucoma patients has been associated with decreased physical activity and
mental health [5], [6] and increased risk of motor vehicle accidents [7], [8].

With the recent advances in machine learning, convolutional neural networks (CNNs),
trained via supervised learning, have shown promise in diagnosing glaucoma from fundus
images (photographs of the back of eyes) [9]. However, this requires large amounts of
empirical data for supervised training [10]. In this study, we use 66,715 fundus photographs
from the Ocular Hypertension Treatment Study (OHTS) [11]-[13], which is a 22-site
multi-center, longitudinal (phase 1 and 2, 1994-2008) randomized clinical trial of 1,636
subjects (3,272 eyes). The primary goal of the OHTS was to determine if topical ocular
hypotensive medications could delay or prevent the onset of glaucoma in eyes with high
intraocular pressure [11]. Conversion to glaucoma was decided by a masked endpoint
committee of three glaucoma specialists using fundus photographs and visual fields. Owing
to its well-characterized ground-truth labels, the OHTS dataset provides us a basis to explore
an effective way of training CNNs to diagnose glaucoma with low-shot learning when only
a small quantity of labeled data is available, and/or semi-supervised learning when raw data
is abundant, but labeling resources are scarce, costly, require strong expertise, or are just
unavailable. However, as shown in Fig. 1, conventional semi-supervised learning approaches
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typically require a reliable pre-trained CNN (using a small sample) as prior knowledge,
which is often challenging due to the over-fitting problem. Moreover, there is also a strong
motivation to design a feasible semi-supervised learning strategy capable of determining
confident predictions and generating pseudo labels for unlabeled data. We focus specifically
on fundus images and glaucoma diagnosis in this article because we have sufficient data to
accurately characterize the effectiveness of our methods. The same techniques could also be
applied to tasks where there is limited data, such as rare diseases or where limited labels are
available (e.g., asthma and diabetes prediction from fundus images). Therefore, this article
aims to answer the following questions:

1. Can a CNN be developed to accurately diagnose glaucoma, compared to the
expert graders of the OHTS? Will the model be generalizable to other datasets?

2. Is it necessary to train CNNs with thousands of labeled fundus images to
diagnose glaucoma, or can diagnosis be achieved using only one image per
patient (approximately 1.1K fundus images in the OHTS training set)?

3. Can the performance of a CNN trained using a small sample be improved further
by fine-tuning it with additional unlabeled training data?

To answer these questions, we first evaluate the performance of state-of-the-art (SoTA)
glaucoma diagnosis algorithms, including six supervised learning algorithms [3], [14]-[18],
one low-shot learning algorithm [19], and two semi-supervised learning algorithms [20],
[21], on the OHTS dataset. Their generalizabilities are further validated on three additional
clinical datasets of fundus images: (a) ACRIMA (Spain) [22], (b) Large-Scale Attention-
Based Glaucoma (LAG, China) [9], and (c) the UCSD-based Diagnostic Innovations in
Glaucoma Study and African Descent and Glaucoma Evaluation Study (DIGS/ADAGES,
us) [23].

Furthermore, we propose a novel extension to the conventional Siamese network, referred to
as the Multi-Task Siamese Network (MTSN), as depicted in Fig. 2. By minimizing a novel
Combined Weighted Cross-Entropy (CWCE) Loss, the MTSN can simultaneously perform
two tasks: measuring the similarity of a given pair of images (primary task) and classifying
them as healthy or glaucoma (secondary task). With a small training set of approximately
1.1K fundus images, we explore the feasibility of training an MTSN for glaucoma diagnosis.
Although the MTSN may not provide complementary information, it effectively performs

a type of “data augmentation” by generating C(N,2) pairs of fundus images for training
instead of using N independent fundus images. The visual features learned from these

two tasks prove to be more informative for glaucoma diagnosis when the training set is
small. Our experimental results demonstrate that the MTSN greatly reduces over-fitting

and achieves an accuracy on a small training set comparable to a large training set, which
contains approximately 53K fundus images.

Moreover, we propose a novel semi-supervised learning strategy, referred to as One-Vote
Veto (OVV) Self-Training, which generates reliable pseudo labels for the unlabeled
training data and incorporates them into the labeled training data to fine-tune the

MTSN for improved performance and generalizability. Our extensive experiments show
that the MTSN fine-tuned with OVV self-training achieves similar performance to the
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corresponding backbone CNN trained via supervised learning on the OHTS dataset, and
achieves higher area under the receiver operating characteristic curve (AUROC) scores on
the additional fundus image datasets. The fine-tuned MTSN also outperforms SoTA semi-
supervised glaucoma diagnosis approaches [20], [21], and in some cases, even outperforms
SoTA supervised approaches. Additionally, we compare our proposed OVV self-training
approach with four SOTA general-purpose semi-supervised learning methods, including
FreeMatch [24], SoftMatch [25], FixMatch [26], and FlexMatch [27], all of which utilize
vision Transformer [28] as their backbone network. The results demonstrate that our
proposed OVV self-training approach outperforms these methods on the OHTS dataset and
demonstrates better generalizability on three additional fundus image test sets.

We also conduct two additional few-shot biomedical image classification experiments (chest
X-ray image classification [29], [30] and lung histopathological image classification [31])
to further validate the effectiveness of the MTSN on other types of image data. The
promising results indicate that our proposed algorithms have the potential to solve a variety
of biomedical image classification problems.

ReLatep Works

Most SoTA glaucoma diagnosis algorithms are developed based on supervised fundus image
classification. For example, Judy ef a/. [16] trained an AlexNet [32] to diagnose glaucoma.
As VGG architectures [33] can learn more complicated image features than AlexNet,
Gomez-Valverde et al. [15] employed a VGG-19 [33] model to diagnose glaucoma.
Nevertheless, VGG architectures [33] consist of hundreds of millions of parameters, making
them very memory-consuming. In contrast, GoogLeNet [34] and Inception-v3 [35] have
lower computational complexities. Hence, Ahn et al. [36] and Li et al. [14] utilized transfer
learning to re-train an Inception-v3 [35] model (pre-trained on the ImageNet [37] database)
for glaucoma diagnosis, while Serener and Serte [17] re-trained a pre-trained GoogLeNet
[34] model to diagnose glaucoma. However, with the increase of network depth, accuracy
gets saturated and then degrades rapidly due to vanishing gradients [38]. To tackle this
problem, the residual neural network (ResNet) [38] was developed. Due to its robustness,
ResNet-50 [38] has been extensively used for biomedical image analysis, and it is a popular
choice [3], [39]-[43] for fundus image classification. Additionally, developing low-cost and
real-time embedded glaucoma diagnosis systems [18], [44], [45], e.g., based on MobileNet-
v2 [46], for mobile devices is also an emerging area.

Machine/deep learning has achieved compelling performance in data-intensive applications,
but it is often challenging for these algorithms to yield comparable performance when only
a limited amount of labeled training data is available [47]. Low-shot and semi-supervised
learning can address these issues. Unfortunately, they are rarely discussed in the field of
glaucoma diagnosis. To the best of our knowledge, [19] is the only published low/few-shot
glaucoma diagnosis algorithm. This algorithm employs a conventional Siamese network

to compare two groups of (negative and positive) fundus images. The Siamese network
utilizes two identical CNNs to learn visual embeddings. A bi-directional long short-term
memory [48] component is then trained over the CNN outputs for glaucoma diagnosis.
However, the training process is complicated since different types of losses are minimized,
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and the achieved glaucoma diagnosis results are unsatisfactory since each sub-network is
only fed with one type of fundus images (either negative or positive). The lack of same-class
comparisons leads to a performance bottleneck when compared to the MTSN proposed in
this article.

A thorough search of the relevant literature yielded only two published studies on semi-
supervised learning specifically for glaucoma diagnosis [20], [21]. Diaz-Pinto et al. [21]
utilized a deep convolutional generative adversarial network (DCGAN) [49] for semi-
supervised learning of glaucoma diagnosis, where the discriminator is trained to classify
healthy and glaucomatous optic neuropathy (GON) fundus images, while also distinguishing
between real and fake fundus images. The classifier for the former task is then employed

for glaucoma diagnosis. On the other hand, Al Ghamdi et a/. [20] developed a glaucoma
diagnosis approach based on self-training [50], which is a typical semi-supervised learning
approach that uses a pre-trained model (typically yielded via supervised learning) to
produce pseudo labels of the unlabeled data. However, producing reliable pseudo labels is a
significant challenge in self-training, and the pseudo labels generated by a single pre-trained
CNN are usually not trustworthy enough for CNN fine-tuning [51]. Additionally, training a
reliable pre-trained classifier with only a small amount of labeled data is notably demanding.
In this article, we combine semi-supervised learning with low-shot learning to address these
issues using glaucoma diagnosis as an example case. Specifically, our proposed OVV self-
training strategy, as discussed in Sect. 111-B, is inspired by the mechanism of /learning with
external memory (LWEM), used in low-shot learning [52], where the labels of unlabeled
training data are predicted by a classifier trained via low-shot learning on a small collection
of fundus images with ground-truth labels.

MEeTHopoLoGY

A. Multi-Task Siamese Network

As illustrated in Fig. 1, conventional semi-supervised learning methods initialize a network
by pre-training it with a small number of fundus images for glaucoma diagnosis. However,
we observed that such approaches are highly sensitive to noise. As a result, we design

a novel MTSN specifically for our semi-supervised learning approach, which requires

not only predicting the label of a given fundus image but also determining the similarity
between a pair of given fundus images to generate pseudo labels through a voting process.

Conventional Siamese networks have become a common choice for metric learning and few/
low-shot image recognition tasks [53]. These networks comprise two identical sub-networks,
as depicted in Fig. 2. Each pair of fundus images x, and x; are separately fed into these
sub-networks, producing two 1D embeddings (features) h, and h;, respectively. Another 1D
embedding h, ; is generated by @( - ). h, ; is then passed through a fully connected (FC) layer
to produce a scalar ¢(x;,x;) € [0,1] indicating the similarity between x; and x;. If x, and x;

are dissimilar, ¢(x;, x;) approaches 1, and vice versa. The ground-truth labels of x; and x; are
represented by y, € {0,1} and y, € {0,1}, respectively, where 0 denotes a healthy image, and 1
denotes a GON image.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Fan et al.

Page 6

However, a conventional Siamese network can only determine whether x, and x; belong to
the same category, rather than predicting their independent categories. A straightforward
solution is to connect h, and h, to separate FC layers, producing two scalars p(x;) and p(x;)
indicating the probabilities that x, and x, are GON images, respectively. Refer to Fig. 2 and
note that the two FC layers connected to h, and h, use the same weights. In this article, we
refer to the network architecture in Fig. 2 as an MTSN, which can simultaneously measure
the similarity of a given pair of fundus images and classify them as either healthy or GON.
These two tasks are dependent yet not directly deducible from one another. A well-trained
glaucoma diagnosis network can be employed to compare differences between given pairs
of fundus images, but a well-trained fundus image similarity measurement network cannot
directly output the category of a given fundus image.

In addition, the visual features learned from the primary and secondary tasks are distinct
from one another. For the primary task, the network learns the visual features to classify
same-class and different-class fundus image pairs. On the other hand, for the secondary task,
the network learns the visual features to classify GON and healthy fundus images. Although
this network architecture may not provide complementary information, it effectively
performs a type of “data augmentation” by producing C(N, 2) pairs of fundus images for
training, rather than using N independent fundus images. The visual features learned from
these two tasks prove to be more informative for glaucoma diagnosis when the training

set is small. Furthermore, multi-task learning is effective because requiring an algorithm

to perform well on a related task induces regularization, which can be superior to uniform
complexity penalization for preventing over-fitting. This idea has been explored in many
Siamese neural network works, such as [54]-[56].

In this article, we use r, and n, to respectively denote the numbers of healthy and GON
fundus images used to train the MTSN, with n = n, + n,. n, is usually much greater than n,,
because there are fewer patients with glaucomatous disease than healthy patients, resulting
in a severely imbalanced dataset. Therefore, the MTSN is trained by minimizing a CWCE
loss as follows:

Z = gsim + Agcla»
(@)

where

no(ng— 1) + ny(ny — 1
P =~ =DMy, og(at. )

2non,
n(n —

1y (1 = b= ylog(l - 4(x. X)),

@

L=~ (mly Tog(p(x) +3, log(p(x,))
(1= 3) Tog(1 = p(x) + (1 - y,) log(1 = p(x,))
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©)

The hyper-parameter 4 balances the primary task loss .., and the secondary task loss Z.,..
The choice of 4 and ®( - ) is discussed in Sect. IV-B. The motivations for using such a
CWCE loss function instead of the commonly used triplet loss [57] or contrastive loss [58]
to train the MTSN are:

1. Most datasets for rare disease diagnosis are imbalanced. As detailed in Sect.
IV-A, the OHTS training set is severely imbalanced, with 50,208 healthy
images and only 2,416 GON images for supervised learning, and 995 healthy
images and 152 GON images for low-shot learning. Learning from such an
imbalanced dataset without weights on different classes can result in many
incorrect predictions, with most GON images likely to be predicted as healthy
images. To address this issue, a higher weight should be used for the minority
class to prevent the CNN from predicting all fundus images as the majority class.

2. In multi-task learning, weighing different types of losses, such as regression and
classification, is typically challenging [59]. Assigning an incorrect weight may
cause one task to perform poorly, even when other tasks converge to satisfactory
results. Therefore, formulating &, as a weighted cross-entropy loss function is a
simple but effective solution. However, due to the dataset imbalance problem, the
cross-entropy losses have to be weighted.

3. As shown in Fig. 3, OVV self-training requires both labels and probabilities (of
being GON images), predicted by a pre-trained model, to produce pseudo labels
for unlabeled data. Such network architecture and training loss can efficiently
and effectively provide both “self-predicted” and “contrastively-predicted” labels
and probabilities, as described in Sect. I11-B.

It should be noted here that using the fundus images from the same patient as an image pair
for MTSN training is not necessary.

B. One-Vote Veto Self-Training

As discussed in Sect. |, self-training aims to improve the performance of a pre-trained
model by incorporating reliable predictions of the unlabeled data to obtain useful additional
information that can be used for model fine-tuning. A feasible strategy to determine such
reliable predictions is, therefore, key to the success of self-training [60].

In conventional semi-supervised learning algorithms, a pre-trained image classification
model (obtained through supervised learning) can be fine-tuned by assessing the reliability
of unlabeled images. To determine the reliability of an unlabeled image, its probability
distribution for the most likely class is compared to a pre-determined threshold. If

the probability surpasses this threshold, the prediction is considered a pseudo label.
Subsequently, the image and its corresponding pseudo label are utilized to fine-tune the
pre-trained model.

However, relying solely on probability distributions to generate pseudo labels is often
insufficient [50]. Drawing inspiration from LWEM [61], we introduce One-\Vote Veto

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.
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self-training in this paper, as illustrated in Fig. 31. Similar to LWEM [61], we use a
collection of m reference (labeled) fundus images {x;, ...,x;} € & to provide “contrastive
predictions” to the target (unlabeled) fundus images {x, ...,x,} € &". The contrastive
predictions subsequently vote to veto the unreliable “se/f-predictions” {7, ..., ,} produced

by the MTSN. Our OVV self-training is detailed in Algorithm 1, where the target model
updates its parameters during self-training but the reference model does not.

When fine-tuning an MTSN pre-trained through low-shot learning, each mini-batch contains
a discrete set of m reference

IThe superscripts r and ¢ denote “reference” and “target”, respectively.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.
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Algorithm 1:

One-Vote Veto Self-Training Strategy.

Data: Reference fundus images 2™ and their labels %",

and target fundus images .2t

1 while Training do

2

g o e

oL

10
11
12
13
14
15
16
17
18

end

-A- - . .
Given a mini-batch consisting of

{xg, e Xm b €27 {yl, ... ym} € Z7 and
i, . ... X0 ) € 2

Initialize an empty set 2 to store reliable target fundus
images and their pseudo labels ;

for Each target fundus image x¢ do

if The self-prediction of x%, is reliable then
for Any qualified reference image x; do
Compute the self-prediction and contrastive
prediction;
end
if
The criteria to generate pseudo labels are satisf
then
| Update the set ;
end

end

end
Fine-tune the target model using unique(.%?);

if The target model outperforms the reference model then

end

Update the reference model parameters;

fundus images (xi,...,x;,} € &", their ground-truth labels {y/, ..., y.} € %", and an equal

number of m target fundus images {x’, ...,x.,} € &' without labels. h; and h, represent the 1D

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.
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embeddings learned from x; and xi(k € [1, m] n Z), respectively. Given a pair of reference and
target fundus images, x; and x;, the pre-trained MTSN can “self-predict”:

. the scalars p(x;) and p(x;) which indicate the probabilities that x; and x, are GON
images, respectively;

. their labels 37 = 5(p(x;)) and %, = 5(p(x)) using its fundus image classification
functionality (s(p) = 1 when p> 0.5, and §(p) = 0 otherwise).

p(x) is then used to determine whether the reference fundus image x; is qualified to veto
unreliable predictions. If |p(x]) — yj| > x, its vote will be omitted, where «; is a threshold used
to select qualified reference fundus images (step 6 in Algorithm 1). In the meantime, the
pre-trained MTSN can also “contrastively-predict” the scalar

phic (%7, x1) = |p(x)) — g(x7, x)|

O

indicating the GON probability as well as the label

Vi (50 xi) = [8(p(xD) — 6(q(x7. xi)|

®)

of x; from x; using its input similarity measurement functionalityz. To determine the
reliability of ¥, and whether it can be used as the pseudo label of x;, all the reference fundus

images {x;, ...,x,} € &" in the mini-batch are used to provide additional judgements. Each
pair of contrastively-predicted scalar (indicating GON probability) and label form a vote
(Pl (x5, x1), Vi % (7, xi)). With all votes collected from the qualified reference fundus images,
the OVV self-training algorithm determines whether 3, should be used as the pseudo label
for x; based on the following criteria (step 9 in Algorithm 1):

. Identical to the process of determining qualified reference fundus images, if any
pix (x5, x)(! € [1,m] n Z)) or p(xy) is not close to either O (healthy) or 1 (GON), as
evaluated by the threshold «,, 3, will not be assigned to x;.

. If a minority of more than «, qualified reference fundus images disagree with the
majority of the qualified reference fundus images, ¥, will not be assigned to x;.

As discussed in Sect. IV, x, = 0 (all qualified reference images vote for the same category)
achieves the best overall performance. Therefore, the aforementioned strategy is named
“One-Wote Vetd” in this paper. Since each target fundus image is required to be compared
with all the reference fundus images in the same mini-batch, the proposed self-training
strategy has a computational complexity of 6(»?), which is relatively memory-consuming.
The reliable target fundus images and their pseudo labels are then included into the low-shot
training data to fine-tune the pre-trained MTSN with supervised learning by minimizing a

2 rare cases,

~r—t

71 ¥ "(x7, xi) might not be equivalent to 5(p; ;(X/, X))-

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.
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CWCE loss. The OVV self-training performance with respect to different «,, x,, and m values
is discussed in Sect. IV.

IV. ExrerivENTS

A. Datasets and Experimental Setups

The datasets utilized in our experiments were collected by various clinicians in different
countries using distinct fundus cameras. The ACRIMA [22] and LAG [9] datasets are
publicly available, while the OHTS [11], [12] and DIGS/ADAGES [23] datasets are
available upon request after appropriate data use agreements are initiated. Their details are

as follows:

The OHTS [11], [12] is the only multi-center longitudinal study that has precise
information on the dates/timing of the development of glaucoma (the enrolled
subjects did not have glaucoma at study entry) using standardized assessment
criteria by an independent Optic Disc Reading Center and confirmed by three
glaucoma specialist endpoint committee members. In our experiments, a square
region centered on the optic nerve head was first extracted from each raw
fundus image using a well-trained DeepLabv3+ [63] model. A small part of

the raw data are stereoscopic fundus images, each of which was split to produce
two individual fundus images. Through this image pre-processing approach,

a total of 74,678 fundus images were obtained. Moreover, ENPOAGDISC
(endpoint committee attributable to primary open angle glaucoma based on
optic disc changes from photographs) [3] labels are used as the classification
ground truth. The fundus images are divided into a training set (50,208 healthy
images and 2,416 GON images), a validation set (7,188 healthy images and 426
GON images), and a test set (13,780 healthy images and 660 GON images)

by participant. Splitting by participant (instead of by image) ensured that the
validation and test sets did not contain images from any eyes or individuals

used to train the model. More details on dataset preparation and baseline
supervised learning experiments are provided in our recent publications [3], [10].
Additionally, we select one image (from only one eye) from each patient in the
training set to create the low-shot training set (995 healthy images and 152 GON
images). If both eyes of a patient do not convert to glaucoma in the study, the
first captured fundus photograph is selected. If either eye of a patient converts to
glaucoma in the study, the first glaucoma fundus photograph is selected.

The ACRIMA [22] dataset consists of 309 healthy images and 396 GON
images. It was collected as part of an initiative by the government of Spain.
Classification was based on the review by a single experienced glaucoma expert.
Images were excluded if they did not provide a clear view of the optic nerve head
region [43].

The LAG [9] dataset contains 3,143 healthy images and 1,711 GON images3,
collected by Beijing Tongren Hospital. Similar to the OHTS dataset, we also use

3The number of fundus images being published is fewer than what was reported in publication [9].

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.
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the well-trained DeepLabv3+ [63] model to extract a square region centered on
the optic nerve head from each fundus image.

. The DIGS and ADAGES [23] are longitudinal studies designed to detect and
monitor glaucoma based on optical imaging and visual function testing that,
when combined, have generated tens of thousands of test results from over 4,000
healthy, glaucoma suspect, or glaucoma eyes. In our experiments, we utilize
the DIGS/ADAGES test set (5,184 healthy images and 4,289 GON images) to
evaluate the generalizability of our proposed methods.

Visualizations of the four test sets using t-SNE [62] are provided in Fig. 4. Since healthy
and GON images are distributed similarly between the OHTS and LAG datasets, we expect
models to perform similarly on these datasets. Dissimilar distributions in the ACRIMA and
DIGS/ADAGES datasets led us to believe the performance of models on these datasets
would be somewhat worse. Using these four datasets, we conduct three experiments:

1. Supervised learning experiment: We employ transfer learning [64] to train
ResNet-50 [38], MobileNet-v2 [46], DenseNet [65], and EfficientNet [66]
(pre-trained on the ImageNet database [37]), on the entire OHTS training set
(including ~53K fundus images). The best-performing models are selected using
the OHTS validation set. Their performance is subsequently evaluated on the
OHTS test set, the ACRIMA dataset, the LAG dataset, and the DIGS/ADAGES
test set.

2. Low-shot learning experiment: The four pre-trained models mentioned above
are used as the MTSN backbones and trained on the OHTS low-shot training
set (containing 1,147 images) to validate the effectiveness of our proposed low-
shot glaucoma diagnosis algorithm. The validation and testing procedures are
identical to those in the supervised learning experiment.

3. Semi-supervised learning experiment: The MTSNs trained on the low-shot
training set are fine-tuned on the entire OHTS training set without using
additional ground-truth labels. The fine-tuned MTSNs are referred to as
MTSN+OVV. The validation and testing procedures are identical to those in
the supervised learning experiment.

The fundus images are resized to 224 x 224 pixels. The initial learning rate is set to 0.001,
which decays gradually after the 100th epoch. Due to the dataset imbalance problem, F1-
score is utilized to select the best-performing models during the validation stage. Moreover,
we adopt an early stopping mechanism during the validation stage to reduce over-fitting (the
training will be terminated if the achieved F1-score has not increased for 10 epochs). We
use three metrics: (1) accuracy, (2) F1-score, and (3) AUROC to quantify the performances
of the trained models. While accuracy is generally reported in image classification papers,
F1-score and AUROC are more comprehensive and reasonable evaluation metrics when the
dataset is severely imbalanced.
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B. Ablation study and Threshold Selection

We set 4 in (1) to 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, and compare the MTSN
performance when ® computes the element-wise absolute difference (EWAD) and element-
wise squared difference (EWSD), respectively. The comparisons in terms of F1-score and
AUROC on the OHTS test set are provided in Fig. 5. It can be seen that the MTSN achieves
the best overall performance when A = 0.3. This is reasonable, as a higher 1 weighs more

on the image classification task, easily resulting in over-fitting. Additionally, the MTSN in
which @( - ) computes the EWSD between h, and h, performs better when using ResNet-50
as the backbone CNN but slightly worse when using MobileNet-v2 as the backbone CNN.
Therefore, we further evaluate their generalizability on three additional test sets, as shown
in Table I. When @( - ) computes the EWAD, the MTSN generally performs better or very
similarly on the additional test sets, especially when testing the MTSN assembled with
ResNet-50 on the ACRIMA dataset. EWAD is, therefore, used in the following experiments.
Furthermore, Table I provides the results of a baseline supervised learning experiment
conducted on the low-shot training set. The results suggest that low-shot learning performs
much better than supervised learning when the training size is small.

Furthermore, we discuss the selection of the thresholds «, and «, (used to select reliable
“self-predictions” and “contrastive predictions” in our OVV self-training) as well as the
impact of different mini-batch sizes 2m on OVV self-training (each mini-batch contains m
pairs of reference and target fundus images). Table 1l shows the MTSN performances with
respect to different «, x,, and m. When evaluated on the OHTS test set, it can be seen that
accuracy and F1-score increase slightly, but AUROC almost remains the same, with the
decrease of m. Moreover, with the increase of «, and «,, the standard to determine reliable
predictions becomes lower, making the semi-supervised learning performance degrade.
Based on this experiment, we believe OVV self-training benefits from smaller «, and «..

Additionally, MTSNSs, trained under different m, are evaluated on the three additional

test sets, as shown in Table Il. It can be seen that the network trained with a larger
typically shows better results. When m decreases, the generalizability of MTSN degrades
dramatically, especially for F1-score (decreases by around 9-19%). Therefore, increasing
the mini-batch size can improve the MTSN generalizability, as more reference fundus
images are used to provide contrastive predictions for the target fundus images, which can
veto more unreliable predictions on the unlabeled data. Hence, we to 30 to further improve
OVV self-training when comparing it with other published SoTA algorithms, as shown

in Sect. IV-D. Since our threshold selection experiments cover a very limited number of
discrete sets of «,, «,, and m, we believe better performance can be achieved when more
values are tested.

C. Comparison of Supervised, Low-Shot, and Semi-Supervised Glaucoma Diagnosis

Comparisons of supervised learning, low-shot learning, and semi-supervised learning (w.r.t.
four backbone CNNs: ResNet-50, MobileNet-v2, DenseNet, and EfficientNet) for glaucoma
diagnosis are provided in Table I11. First, these results suggest that the MTSNs fine-tuned
with OVV self-training that requires a small number of labeled fundus images perform
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similarly (AUROC 95% CI overlaps considerably) and, in some cases, significantly better
(AUROC 95% CI does not overlap) than the backbone CNNs trained with a large number of
labeled fundus images (50 times larger) under full supervision.

Specifically, when using ResNet-50, MobileNet-v2, or DenseNet as the backbone CNN,
semi-supervised learning performs similarly to supervised learning on the OHTS and DIGS/
ADAGES test sets, and in most cases, significantly better than supervised learning on the
ACRIMA and LAG datasets. Although EfficientNet trained through supervised learning
performs unsatisfactorily on all four test sets, it shows considerable compatibility with
MTSN in the low-shot and semi-supervised learning experiments. Second as expected, the
AUROC scores achieved by low-shot learning are in most, but not all, cases slightly lower
than those achieved by the backbone CNNs, when evaluated on the OHTS test set. However,
low-shot learning shows better generalizability than supervised learning on the ACRIMA
and LAG datasets. Moreover, since low-shot learning uses only a small amount of training
data, training an MTSN is much faster than supervised learning. As MTSNs assembled

with ResNet-50 and MobileNet-v2 typically demonstrate better performances than the ones
assembled with DenseNet and EfficientNet, we only use the former two CNNs for the
following experiments.

We also employ Grad-CAM++ [67] to explain the models’ decision-making, as shown in
Fig. 6. These results suggest that the optic nerve head areas impact model decisions most.
The neuroretinal rim areas are identified as most important, and the periphery contributed
comparatively little to model decisions for both healthy and GON eyes [42].

We also carry out a series of experiments with respect to different percentages of training
data, as shown in Table 1V, to further validate the effectiveness of our proposed low-shot
and semi-supervised learning algorithms. The backbone CNNs trained via supervised
learning on the small subsets generally perform worse than the MTSNSs trained via low-
shot and semi-supervised learning. With the labeled training data increase, the models’
performance gets saturated. When using less labeled training data (0.5% and 1.0%), the
MTSN performance degrades. However, its performance can still be greatly improved with
OVV self-training (accuracy, F1-score, and AUROC can be improved by up to 6%, 11%, and
0.08, respectively). In addition, when using over 10% of the entire training data, the MTSN
performance saturates, and the OVV self-training can bring very limited improvements on
MTSNSs.

D. Comparisons with other SoTA glaucoma diagnosis approaches

Table V provides comprehensive comparisons with nine SOTA glaucoma diagnosis
algorithms#. The results suggest that (a) for low-shot learning, the MTSNs trained by
minimizing our proposed CWCE loss perform significantly better than the SoTA low-shot
glaucoma diagnosis approach [19] on all four datasets (accuracy, F1-score, and AUROC
are up to 5%, 15%, and 0.08 higher, respectively), and (b) for semi-supervised learning,
the MTSNSs fine-tuned with OVV self-training also achieve the superior performances over
another two SoTA semi-supervised glaucoma diagnosis approaches [20], [21] (accuracy,

40ur recent work [3] provides the baseline supervised learning results.
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F1-score, and AUROC are up to 6%, 11%, and 0.07 higher, respectively). Compared with
the SoTA supervised approaches, the fine-tuned MTSNs demonstrate similar performance
on the OHTS test set and better generalizability on three additional test sets. Therefore,
we believe that MTSN with our proposed OVV self-training is an effective technique for
semi-supervised glaucoma diagnosis.

E. Comparisons with SoTA general-purpose semi-supervised learning approaches

Table VI provides a comprehensive comparison of our proposed OVV self-training approach
with four SOoTA general-purpose semi-supervised learning methods: FreeMatch [24],
SoftMatch [25], FixMatch [26], and FlexMatch [27], which all employ vision Transformer
[28] as their backbone network. Our results demonstrate that the proposed OVV self-training
approach outperforms these methods in terms of F1-score and AUROC on the OHTS
dataset. Specifically, we observe improvements in F1-score ranging from approximately
11% to 13%, and improvements in AUROC ranging from around 9% to 20%. Furthermore,
our method demonstrates better generalizability in terms of AUROC across three additional
fundus image test sets. Although their results are inferior to ours, particularly in terms of
AUROC, it may be unjust to compare them as they were not specifically designed for the
diagnosis of glaucoma or other diseases.

F. MTSN and CWCE Loss for Few-Shot Multi-Class Biomedical Image Classification

We conduct two additional few-shot multi-class lung disease diagnosis experiments: (a)
chest X-ray image classification for COVID-19 and viral pneumonia detection [29], [30],
and (b) lung histopathological image classification for lung cancer diagnosis [31], to validate
the effectiveness of our proposed MTSN and CWCE loss. The first experiment has three
classes of images: (1) healthy, (2) viral pneumonia, and (3) COVID-19 (an example of each
class is shown in Fig. 7), while the second experiment also has three classes of images: (1)
benign tissue, (2) adenocarcinoma, and (3) squamous cell carcinoma (an example of each
class is shown in Fig. 7). In these two experiments, we only select a few images from each
class for MTSN training. The numbers of images used for training, validation, and testing
are given in Table VII, where it can be observed that the training set is much smaller than the
validation and test sets. Since (1) can only be used for binary image classification problems,
we extend it here to tackle multi-class image classification problems.

Let us consider the chest X-ray image classification task as an example. Each image x is
assigned a pair of two labels (r, s) with the following values:

. r=1and s = 0 when x is a healthy image;
. r=2and s = 1 when x is a viral pneumonia image;
. r=3and s = 3 when x isa COVID-19 image.

The numbers of healthy images (class 1), viral pneumonia images (class 2), and COVID-19
images (class 3) are denoted as n,, n,, and n;, respectively. The total number of images is

N = n, + n, + n;. The weight w,,,, Used in the image classification loss &, w.r.t. class e is
given by:
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N —n,
2N

Dcla,e =

(6
23 - 1 @ = 1. Therefore, &, can be written as follows:

L= § :U’ud o(ke, 10g(pe(x:)) + ke, Jog(pe(x)))),

e=1

™

where p,(x) € [0, 1] indicates the probability that x belongs to classe. 3> _ px)=1. k., =1
when e = r,, and k., = 0 otherwise. Given a pair of images x, and x, with ground-truth labels
(r, s;) and (r;, s;), respectively, there are four cases:

. case 1: |s;— s = 1 (healthy v.s. viral pneumonia);

. case 2: |s; — s, = 2 (viral pneumonia v.s. COVID-19);
. case 3: |s; — s, = 3 (COVID-19 v.s. healthy);

. case 4: |s; — s/ = 0 (two images are of the same class).

The weight w,,, . used in the image similarity comparison loss Z,, with respect to case c is
given by:

1 2mm, _
§(1 N(N—l)) if c=1
1 2ny13 —
?(l N(N—l)) if e=2
Ogim,e = 1 1 2nin; _
§(1 N(N—l)) if c=3
— 1M —1)
( N(N ) ] if c=4
®)
3 @um. = 1. Therefore, Z,,, can be written as follows:
4
gsim = - ZC _ 1wsim.chc.(l./)log(qt(xi’ Xj))’
©)

where ¢.(x;,x;) € [0, 1] indicates the similarity between x; and x; under case c.
> q(x.x)=1. h..,=1whenx, and x, belong to case ¢, and k., , = 0 otherwise. The
hyper-parameter A is empirically set to 0.3.

The experimental results of these two multi-task biomedical image classification tasks are
presented in Fig. 8 with two confusion matrices. These results demonstrate that our proposed
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MTSN can be effectively trained with very few images to solve multi-class biomedical
image classification problems. Specifically, the achieved accuracy values for chest X-ray
image classification (~25-shot learning) and lung histopathological image classification
(10-shot learning) are 93% and 90%, respectively. The chest X-ray image classification
result compares favorably with the accuracy range of 82%—-93% achieved by supervised
methods (2,520 images for training, 840 images for validation, and 840 images for testing)
using all available training data [68]. Although the accuracy achieved by MTSN for lung
histopathological image classification is lower than the accuracy of over 97% reported in
[69] by supervised approaches using the full training set (8,250 images for training, ~3,000
images for validation, and 3,744 images for testing), we believe that our proposed low-shot
learning method can achieve comparable results when a small amount of additional images
are incorporated for MTSN training.

V. Discussion

Extensive experiments demonstrate the effectiveness and efficiency of training an MTSN

by minimizing our proposed CWCE loss. Such a low-shot learning approach significantly
reduces over-fitting and achieves an accuracy on a small training set (1,147 fundus images)
comparable to a large training set (approximately 53K fundus images). We also demonstrate
its effectiveness on two additional multi-class few-shot biomedical image classification
tasks. Additionally, the MTSNs fine-tuned with OVV self-training outperform the SOTA
semi-supervised glaucoma diagnosis algorithms [20], [21] as well as general-purpose semi-
supervised learning algorithms [24]-[27] trained for glaucoma diagnosis. They perform
similarly, and in some cases, better than SoTA supervised algorithms. However, our
proposed method has two limitations:

. In the OVV self-training, each target fundus image must be compared with all
the reference fundus images in the same mini-batch, resulting in a computational
complexity of 6(n?). As the mini-batch size increases, OVV self-training

becomes relatively memory-consuming. The high computational complexity of
OVV self-training may reduce the feasibility of this method in clinical practice
for now. Therefore, we plan to improve the OVV self-training strategy in

the future by adaptively selecting only a limited number of reference fundus
photographs for semi-supervised glaucoma diagnosis, which can reduce the
computational complexity and make the method more practical in clinical
settings.

. Our proposed OVV self-training strategy is developed for binary image
classification and may not be directly applicable to multi-class image
classification problems. Therefore, we plan to extend the contrastive prediction
procedure to handle multi-class image classification problems in future work.
More hyper-parameter tuning can always be done, but it is so easy to over-fit
with limited data.
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VI. ConcLusion

The main contributions of this paper include: (1) a multi-task Siamese network that

can learn glaucoma diagnosis from very limited labeled training data; (2) an effective
semi-supervised learning strategy, referred to as One-Vote Veto self-training, which can
produce pseudo labels for the unlabeled data to fine-tune a pre-trained multi-task Siamese
network. Extensive experiments conducted on four fundus image datasets demonstrated the
effectiveness of these proposed techniques. The low-shot learning reduces over-fitting and
achieves an accuracy on a small training set comparable to that of a large training set.
Furthermore, with One-Vote Veto self-training, the multi-task Siamese networks perform
similarly to their backbone CNNs (trained via supervised learning on the full training set) on
the OHTS test set and show better generalizability on three additional test sets. The methods
introduced in this paper can also be applied to other few-shot multi-class biomedical image
classification problems, e.g., COVID-19 and lung cancer diagnosis, and other diseases in
which only a small quantity of ground-truth labels are available for network training.
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Fig. 1:
Supervised learning v.s. semi-supervised learning.
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An illustration of our MTSN for joint learning of fundus image similarity measurement
(primary task) and glaucoma diagnosis (secondary task) in a low-shot manner.
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Fig. 3:

An illustration of our One-Vote Veto Self-Training strategy. h{ , and h(,, are two 1D
embeddings, followed by an FC layer to produce scalars indicating the similarities

between the given pairs of reference and target fundus images. The reference fundus
images having ground-truth labels are used to train the MTSN by minimizing (1). The
contrastive predictions are obtained using (4) and (5). The pseudo labels of the target
fundus photographs are generated using One-Vote Veto Self-Training strategy, as detailed in
Algorithm 1.
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Fig. 4:

Cgmparisons of dataset visualizations produced by t-SNE, where « and « represent the
healthy and GON images in the OHTS test set, respectively; « and « in (a) represent the
healthy and GON images in the ACRIMA dataset, respectively; ¢ and « in (b) represent
the healthy and GON images in the LAG dataset, respectively;  and « in (c) represent the
healthy and GON images in the DIGS/ADAGES test set, respectively.
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Fig. 6:

Examples of Grad-CAM++ [67] results: (i) fundus images; (ii) and (v) show the class
activation maps of (i), obtained by the backbone CNNs trained through supervised learning
on the entire training set (containing ~53K fundus images); (iii) and (vi) show the class
activation maps of (i), obtained by MTSNSs trained through low-shot learning on a small
training set (containing 1,147 fundus images); (iv) and (vii) show the class activation maps
of (i), obtained by MTSNs fine-tuned with our proposed OVV self-training on the entire
training set (containing ~53K fundus images without ground-truth labels).
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Fig. 7:
Examples of images used in two few-shot multi-class lung disease diagnosis tasks.
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Experimental results of two few-shot lung disease diagnosis tasks. REC: recall; PRE:

precision; ACC: accuracy.
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TABLE VII:

Training, validation, and test sample sizes in the two few-shot biomedical image classification experiments.

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Class Training Validation  Test

Healthy 27 657 657

Viral pneumonia 27 659 659
COVID-19 24 588 588

(a) Chest X-ray image classification.

Class Training Validation  Test
Benign tissue 10 2,495 2,495
Adenocarcinoma 10 2,495 2,495
Squamous cell carcinoma 10 2,495 2,495

(b) Lung histopathological image classification.
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