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Abstract

Convolutional neural networks (CNNs) are a promising technique for automated glaucoma 

diagnosis from images of the fundus, and these images are routinely acquired as part of an 

ophthalmic exam. Nevertheless, CNNs typically require a large amount of well-labeled data 

for training, which may not be available in many biomedical image classification applications, 

especially when diseases are rare and where labeling by experts is costly. This article makes 

two contributions to address this issue: (1) It extends the conventional Siamese network and 
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introduces a training method for low-shot learning when labeled data are limited and imbalanced, 

and (2) it introduces a novel semi-supervised learning strategy that uses additional unlabeled 

training data to achieve greater accuracy. Our proposed multi-task Siamese network (MTSN) can 

employ any back-bone CNN, and we demonstrate with four backbone CNNs that its accuracy 

with limited training data approaches the accuracy of backbone CNNs trained with a dataset 

that is 50 times larger. We also introduce One-Vote Veto (OVV) self-training, a semi-supervised 

learning strategy that is designed specifically for MTSNs. By taking both self-predictions and 

contrastive predictions of the unlabeled training data into account, OVV self-training provides 

additional pseudo labels for fine-tuning a pre-trained MTSN. Using a large (imbalanced) 

dataset with 66,715 fundus photographs acquired over 15 years, extensive experimental results 

demonstrate the effectiveness of low-shot learning with MTSN and semi-supervised learning with 

OVV self-training. Three additional, smaller clinical datasets of fundus images acquired under 

different conditions (cameras, instruments, locations, populations) are used to demonstrate the 

generalizability of the proposed methods.

Keywords

Convolutional neural networks; glaucoma diagnosis; low-shot learning; semi-supervised learning

I. INTRODUCTION

GLaucoma is a prevalent and debilitating disease that can lead to progressive and 

irreversible vision loss through optic nerve damage [1]. The global incidence of glaucoma 

was estimated at 64.3 million in 2013, and due to aging populations, this number is expected 

to rise to 111.8 million by 2040 [2]. Improvement in the management of glaucoma would 

have a major human and socio-economic impact [3]. Early identification and intervention 

would significantly reduce the economic burden of late-stage disease [4]. In addition, visual 

impairment in glaucoma patients has been associated with decreased physical activity and 

mental health [5], [6] and increased risk of motor vehicle accidents [7], [8].

With the recent advances in machine learning, convolutional neural networks (CNNs), 

trained via supervised learning, have shown promise in diagnosing glaucoma from fundus 

images (photographs of the back of eyes) [9]. However, this requires large amounts of 

empirical data for supervised training [10]. In this study, we use 66,715 fundus photographs 

from the Ocular Hypertension Treatment Study (OHTS) [11]–[13], which is a 22-site 

multi-center, longitudinal (phase 1 and 2, 1994–2008) randomized clinical trial of 1,636 

subjects (3,272 eyes). The primary goal of the OHTS was to determine if topical ocular 

hypotensive medications could delay or prevent the onset of glaucoma in eyes with high 

intraocular pressure [11]. Conversion to glaucoma was decided by a masked endpoint 

committee of three glaucoma specialists using fundus photographs and visual fields. Owing 

to its well-characterized ground-truth labels, the OHTS dataset provides us a basis to explore 

an effective way of training CNNs to diagnose glaucoma with low-shot learning when only 

a small quantity of labeled data is available, and/or semi-supervised learning when raw data 

is abundant, but labeling resources are scarce, costly, require strong expertise, or are just 

unavailable. However, as shown in Fig. 1, conventional semi-supervised learning approaches 
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typically require a reliable pre-trained CNN (using a small sample) as prior knowledge, 

which is often challenging due to the over-fitting problem. Moreover, there is also a strong 

motivation to design a feasible semi-supervised learning strategy capable of determining 

confident predictions and generating pseudo labels for unlabeled data. We focus specifically 

on fundus images and glaucoma diagnosis in this article because we have sufficient data to 

accurately characterize the effectiveness of our methods. The same techniques could also be 

applied to tasks where there is limited data, such as rare diseases or where limited labels are 

available (e.g., asthma and diabetes prediction from fundus images). Therefore, this article 

aims to answer the following questions:

1. Can a CNN be developed to accurately diagnose glaucoma, compared to the 

expert graders of the OHTS? Will the model be generalizable to other datasets?

2. Is it necessary to train CNNs with thousands of labeled fundus images to 

diagnose glaucoma, or can diagnosis be achieved using only one image per 

patient (approximately 1.1K fundus images in the OHTS training set)?

3. Can the performance of a CNN trained using a small sample be improved further 

by fine-tuning it with additional unlabeled training data?

To answer these questions, we first evaluate the performance of state-of-the-art (SoTA) 

glaucoma diagnosis algorithms, including six supervised learning algorithms [3], [14]–[18], 

one low-shot learning algorithm [19], and two semi-supervised learning algorithms [20], 

[21], on the OHTS dataset. Their generalizabilities are further validated on three additional 

clinical datasets of fundus images: (a) ACRIMA (Spain) [22], (b) Large-Scale Attention-

Based Glaucoma (LAG, China) [9], and (c) the UCSD-based Diagnostic Innovations in 

Glaucoma Study and African Descent and Glaucoma Evaluation Study (DIGS/ADAGES, 

US) [23].

Furthermore, we propose a novel extension to the conventional Siamese network, referred to 

as the Multi-Task Siamese Network (MTSN), as depicted in Fig. 2. By minimizing a novel 

Combined Weighted Cross-Entropy (CWCE) Loss, the MTSN can simultaneously perform 

two tasks: measuring the similarity of a given pair of images (primary task) and classifying 

them as healthy or glaucoma (secondary task). With a small training set of approximately 

1.1K fundus images, we explore the feasibility of training an MTSN for glaucoma diagnosis. 

Although the MTSN may not provide complementary information, it effectively performs 

a type of “data augmentation” by generating C N, 2  pairs of fundus images for training 

instead of using N independent fundus images. The visual features learned from these 

two tasks prove to be more informative for glaucoma diagnosis when the training set is 

small. Our experimental results demonstrate that the MTSN greatly reduces over-fitting 

and achieves an accuracy on a small training set comparable to a large training set, which 

contains approximately 53K fundus images.

Moreover, we propose a novel semi-supervised learning strategy, referred to as One-Vote 

Veto (OVV) Self-Training, which generates reliable pseudo labels for the unlabeled 

training data and incorporates them into the labeled training data to fine-tune the 

MTSN for improved performance and generalizability. Our extensive experiments show 

that the MTSN fine-tuned with OVV self-training achieves similar performance to the 
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corresponding backbone CNN trained via supervised learning on the OHTS dataset, and 

achieves higher area under the receiver operating characteristic curve (AUROC) scores on 

the additional fundus image datasets. The fine-tuned MTSN also outperforms SoTA semi-

supervised glaucoma diagnosis approaches [20], [21], and in some cases, even outperforms 

SoTA supervised approaches. Additionally, we compare our proposed OVV self-training 

approach with four SoTA general-purpose semi-supervised learning methods, including 

FreeMatch [24], SoftMatch [25], FixMatch [26], and FlexMatch [27], all of which utilize 

vision Transformer [28] as their backbone network. The results demonstrate that our 

proposed OVV self-training approach outperforms these methods on the OHTS dataset and 

demonstrates better generalizability on three additional fundus image test sets.

We also conduct two additional few-shot biomedical image classification experiments (chest 

X-ray image classification [29], [30] and lung histopathological image classification [31]) 

to further validate the effectiveness of the MTSN on other types of image data. The 

promising results indicate that our proposed algorithms have the potential to solve a variety 

of biomedical image classification problems.

II. RELATED WORKS

Most SoTA glaucoma diagnosis algorithms are developed based on supervised fundus image 

classification. For example, Judy et al. [16] trained an AlexNet [32] to diagnose glaucoma. 

As VGG architectures [33] can learn more complicated image features than AlexNet, 

Gómez-Valverde et al. [15] employed a VGG-19 [33] model to diagnose glaucoma. 

Nevertheless, VGG architectures [33] consist of hundreds of millions of parameters, making 

them very memory-consuming. In contrast, GoogLeNet [34] and Inception-v3 [35] have 

lower computational complexities. Hence, Ahn et al. [36] and Li et al. [14] utilized transfer 

learning to re-train an Inception-v3 [35] model (pre-trained on the ImageNet [37] database) 

for glaucoma diagnosis, while Serener and Serte [17] re-trained a pre-trained GoogLeNet 

[34] model to diagnose glaucoma. However, with the increase of network depth, accuracy 

gets saturated and then degrades rapidly due to vanishing gradients [38]. To tackle this 

problem, the residual neural network (ResNet) [38] was developed. Due to its robustness, 

ResNet-50 [38] has been extensively used for biomedical image analysis, and it is a popular 

choice [3], [39]–[43] for fundus image classification. Additionally, developing low-cost and 

real-time embedded glaucoma diagnosis systems [18], [44], [45], e.g., based on MobileNet-

v2 [46], for mobile devices is also an emerging area.

Machine/deep learning has achieved compelling performance in data-intensive applications, 

but it is often challenging for these algorithms to yield comparable performance when only 

a limited amount of labeled training data is available [47]. Low-shot and semi-supervised 

learning can address these issues. Unfortunately, they are rarely discussed in the field of 

glaucoma diagnosis. To the best of our knowledge, [19] is the only published low/few-shot 

glaucoma diagnosis algorithm. This algorithm employs a conventional Siamese network 

to compare two groups of (negative and positive) fundus images. The Siamese network 

utilizes two identical CNNs to learn visual embeddings. A bi-directional long short-term 

memory [48] component is then trained over the CNN outputs for glaucoma diagnosis. 

However, the training process is complicated since different types of losses are minimized, 
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and the achieved glaucoma diagnosis results are unsatisfactory since each sub-network is 

only fed with one type of fundus images (either negative or positive). The lack of same-class 

comparisons leads to a performance bottleneck when compared to the MTSN proposed in 

this article.

A thorough search of the relevant literature yielded only two published studies on semi-

supervised learning specifically for glaucoma diagnosis [20], [21]. Diaz-Pinto et al. [21] 

utilized a deep convolutional generative adversarial network (DCGAN) [49] for semi-

supervised learning of glaucoma diagnosis, where the discriminator is trained to classify 

healthy and glaucomatous optic neuropathy (GON) fundus images, while also distinguishing 

between real and fake fundus images. The classifier for the former task is then employed 

for glaucoma diagnosis. On the other hand, Al Ghamdi et al. [20] developed a glaucoma 

diagnosis approach based on self-training [50], which is a typical semi-supervised learning 

approach that uses a pre-trained model (typically yielded via supervised learning) to 

produce pseudo labels of the unlabeled data. However, producing reliable pseudo labels is a 

significant challenge in self-training, and the pseudo labels generated by a single pre-trained 

CNN are usually not trustworthy enough for CNN fine-tuning [51]. Additionally, training a 

reliable pre-trained classifier with only a small amount of labeled data is notably demanding. 

In this article, we combine semi-supervised learning with low-shot learning to address these 

issues using glaucoma diagnosis as an example case. Specifically, our proposed OVV self-

training strategy, as discussed in Sect. III-B, is inspired by the mechanism of learning with 
external memory (LwEM), used in low-shot learning [52], where the labels of unlabeled 

training data are predicted by a classifier trained via low-shot learning on a small collection 

of fundus images with ground-truth labels.

III. METHODOLOGY

A. Multi-Task Siamese Network

As illustrated in Fig. 1, conventional semi-supervised learning methods initialize a network 

by pre-training it with a small number of fundus images for glaucoma diagnosis. However, 

we observed that such approaches are highly sensitive to noise. As a result, we design 

a novel MTSN specifically for our semi-supervised learning approach, which requires 

not only predicting the label of a given fundus image but also determining the similarity 

between a pair of given fundus images to generate pseudo labels through a voting process.

Conventional Siamese networks have become a common choice for metric learning and few/

low-shot image recognition tasks [53]. These networks comprise two identical sub-networks, 

as depicted in Fig. 2. Each pair of fundus images xi and xj are separately fed into these 

sub-networks, producing two 1D embeddings (features) hi and hj, respectively. Another 1D 

embedding hi, j is generated by Φ ⋅ . hi, j is then passed through a fully connected (FC) layer 

to produce a scalar q xi, xj ∈ 0,1  indicating the similarity between xi and xj. If xi and xj

are dissimilar, q xi, xj  approaches 1, and vice versa. The ground-truth labels of xi and xj are 

represented by yi ∈ 0,1  and yj ∈ 0,1 , respectively, where 0 denotes a healthy image, and 1 

denotes a GON image.
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However, a conventional Siamese network can only determine whether xi and xj belong to 

the same category, rather than predicting their independent categories. A straightforward 

solution is to connect hi and hj to separate FC layers, producing two scalars p xi  and p xj

indicating the probabilities that xi and xj are GON images, respectively. Refer to Fig. 2 and 

note that the two FC layers connected to hi and hj use the same weights. In this article, we 

refer to the network architecture in Fig. 2 as an MTSN, which can simultaneously measure 

the similarity of a given pair of fundus images and classify them as either healthy or GON. 

These two tasks are dependent yet not directly deducible from one another. A well-trained 

glaucoma diagnosis network can be employed to compare differences between given pairs 

of fundus images, but a well-trained fundus image similarity measurement network cannot 

directly output the category of a given fundus image.

In addition, the visual features learned from the primary and secondary tasks are distinct 

from one another. For the primary task, the network learns the visual features to classify 

same-class and different-class fundus image pairs. On the other hand, for the secondary task, 

the network learns the visual features to classify GON and healthy fundus images. Although 

this network architecture may not provide complementary information, it effectively 

performs a type of “data augmentation” by producing C N, 2  pairs of fundus images for 

training, rather than using N independent fundus images. The visual features learned from 

these two tasks prove to be more informative for glaucoma diagnosis when the training 

set is small. Furthermore, multi-task learning is effective because requiring an algorithm 

to perform well on a related task induces regularization, which can be superior to uniform 

complexity penalization for preventing over-fitting. This idea has been explored in many 

Siamese neural network works, such as [54]–[56].

In this article, we use n0 and n1 to respectively denote the numbers of healthy and GON 

fundus images used to train the MTSN, with n = n0 + n1. n0 is usually much greater than n1, 

because there are fewer patients with glaucomatous disease than healthy patients, resulting 

in a severely imbalanced dataset. Therefore, the MTSN is trained by minimizing a CWCE 

loss as follows:

L = Lsim + λLcla,

(1)

where

Lsim = − n0 n0 − 1 + n1 n1 − 1
n n − 1 yi − yj log q xi, xj

− 2n0n1
n n − 1 1 − yi − yj log 1 − q xi, xj ,

(2)

Lcla = − 1
n n0 yi log p xi + yj log p xj

+n1 1 − yi log 1 − p xi + 1 − yj log 1 − p xj ,
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(3)

The hyper-parameter λ balances the primary task loss Lsim and the secondary task loss Lcla. 

The choice of λ and Φ ⋅  is discussed in Sect. IV-B. The motivations for using such a 

CWCE loss function instead of the commonly used triplet loss [57] or contrastive loss [58] 

to train the MTSN are:

1. Most datasets for rare disease diagnosis are imbalanced. As detailed in Sect. 

IV-A, the OHTS training set is severely imbalanced, with 50,208 healthy 

images and only 2,416 GON images for supervised learning, and 995 healthy 

images and 152 GON images for low-shot learning. Learning from such an 

imbalanced dataset without weights on different classes can result in many 

incorrect predictions, with most GON images likely to be predicted as healthy 

images. To address this issue, a higher weight should be used for the minority 

class to prevent the CNN from predicting all fundus images as the majority class.

2. In multi-task learning, weighing different types of losses, such as regression and 

classification, is typically challenging [59]. Assigning an incorrect weight may 

cause one task to perform poorly, even when other tasks converge to satisfactory 

results. Therefore, formulating Lsim as a weighted cross-entropy loss function is a 

simple but effective solution. However, due to the dataset imbalance problem, the 

cross-entropy losses have to be weighted.

3. As shown in Fig. 3, OVV self-training requires both labels and probabilities (of 

being GON images), predicted by a pre-trained model, to produce pseudo labels 

for unlabeled data. Such network architecture and training loss can efficiently 

and effectively provide both “self-predicted” and “contrastively-predicted” labels 

and probabilities, as described in Sect. III-B.

It should be noted here that using the fundus images from the same patient as an image pair 

for MTSN training is not necessary.

B. One-Vote Veto Self-Training

As discussed in Sect. I, self-training aims to improve the performance of a pre-trained 

model by incorporating reliable predictions of the unlabeled data to obtain useful additional 

information that can be used for model fine-tuning. A feasible strategy to determine such 

reliable predictions is, therefore, key to the success of self-training [60].

In conventional semi-supervised learning algorithms, a pre-trained image classification 

model (obtained through supervised learning) can be fine-tuned by assessing the reliability 

of unlabeled images. To determine the reliability of an unlabeled image, its probability 

distribution for the most likely class is compared to a pre-determined threshold. If 

the probability surpasses this threshold, the prediction is considered a pseudo label. 

Subsequently, the image and its corresponding pseudo label are utilized to fine-tune the 

pre-trained model.

However, relying solely on probability distributions to generate pseudo labels is often 

insufficient [50]. Drawing inspiration from LwEM [61], we introduce One-Vote Veto 
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self-training in this paper, as illustrated in Fig. 31. Similar to LwEM [61], we use a 

collection of m reference (labeled) fundus images x1
r, …, xm

r ∈ Xr to provide “contrastive 

predictions” to the target (unlabeled) fundus images x1
t , …, xm

t ∈ Xt. The contrastive 

predictions subsequently vote to veto the unreliable “self-predictions” y1
t , …, ym

t  produced 

by the MTSN. Our OVV self-training is detailed in Algorithm 1, where the target model 

updates its parameters during self-training but the reference model does not.

When fine-tuning an MTSN pre-trained through low-shot learning, each mini-batch contains 

a discrete set of m reference

1The superscripts r and t denote “reference” and “target”, respectively.
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Algorithm 1:

One-Vote Veto Self-Training Strategy.

fundus images x1
r, …, xm

r ∈ Xr, their ground-truth labels y1
r, …, ym

r ∈ Yr, and an equal 

number of m target fundus images x1
t , …, xm

t ∈ Xt without labels. hk
r and hk

t  represent the 1D 
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embeddings learned from xk
r and xk

t k ∈ 1, m ∩ ℤ , respectively. Given a pair of reference and 

target fundus images, xl
r and xk

t , the pre-trained MTSN can “self-predict”:

• the scalars p xl
r  and p xk

t  which indicate the probabilities that xl
r and xk

t  are GON 

images, respectively;

• their labels yl
r = δ p xl

r  and yk
t = δ p xk

t  using its fundus image classification 

functionality (δ p = 1 when p > 0.5, and δ p = 0 otherwise).

p xl
r  is then used to determine whether the reference fundus image xl

r is qualified to veto 

unreliable predictions. If p xl
r − yl

r > κ2, its vote will be omitted, where κ2 is a threshold used 

to select qualified reference fundus images (step 6 in Algorithm 1). In the meantime, the 

pre-trained MTSN can also “contrastively-predict” the scalar

pl, k
r t xl

r, xk
t = p xl

r − q xl
r, xk

t

(4)

indicating the GON probability as well as the label

yl, k
r t xl

r, xk
t = δ p xl

r − δ q xl
r, xk

t

(5)

of xk
t  from xl

r using its input similarity measurement functionality2. To determine the 

reliability of yk
t  and whether it can be used as the pseudo label of xk

t , all the reference fundus 

images x1
r, …, xm

r ∈ Xr in the mini-batch are used to provide additional judgements. Each 

pair of contrastively-predicted scalar (indicating GON probability) and label form a vote 

pl, k
r t xl

r, xk
t , yl, k

r t xl
r, xk

t . With all votes collected from the qualified reference fundus images, 

the OVV self-training algorithm determines whether yk
t  should be used as the pseudo label 

for xk
t  based on the following criteria (step 9 in Algorithm 1):

• Identical to the process of determining qualified reference fundus images, if any 

pl, k
r t xl

r, xk
t l ∈ 1, m ∩ ℤ ) or p xk

t  is not close to either 0 (healthy) or 1 (GON), as 

evaluated by the threshold κ2, yk
t  will not be assigned to xk

t .

• If a minority of more than κ1 qualified reference fundus images disagree with the 

majority of the qualified reference fundus images, yk
t  will not be assigned to xk

t .

As discussed in Sect. IV, κ1 = 0 (all qualified reference images vote for the same category) 

achieves the best overall performance. Therefore, the aforementioned strategy is named 

“One-Vote Veto” in this paper. Since each target fundus image is required to be compared 

with all the reference fundus images in the same mini-batch, the proposed self-training 

strategy has a computational complexity of O n2 , which is relatively memory-consuming. 

The reliable target fundus images and their pseudo labels are then included into the low-shot 

training data to fine-tune the pre-trained MTSN with supervised learning by minimizing a 

2In rare cases, yl, k
r t xl

r, xk
t  might not be equivalent to δ pl, k

r t xl
r, xk

t .
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CWCE loss. The OVV self-training performance with respect to different κ1, κ2, and m values 

is discussed in Sect. IV.

IV. EXPERIMENTS

A. Datasets and Experimental Setups

The datasets utilized in our experiments were collected by various clinicians in different 

countries using distinct fundus cameras. The ACRIMA [22] and LAG [9] datasets are 

publicly available, while the OHTS [11], [12] and DIGS/ADAGES [23] datasets are 

available upon request after appropriate data use agreements are initiated. Their details are 

as follows:

• The OHTS [11], [12] is the only multi-center longitudinal study that has precise 

information on the dates/timing of the development of glaucoma (the enrolled 

subjects did not have glaucoma at study entry) using standardized assessment 

criteria by an independent Optic Disc Reading Center and confirmed by three 

glaucoma specialist endpoint committee members. In our experiments, a square 

region centered on the optic nerve head was first extracted from each raw 

fundus image using a well-trained DeepLabv3+ [63] model. A small part of 

the raw data are stereoscopic fundus images, each of which was split to produce 

two individual fundus images. Through this image pre-processing approach, 

a total of 74,678 fundus images were obtained. Moreover, ENPOAGDISC 

(endpoint committee attributable to primary open angle glaucoma based on 

optic disc changes from photographs) [3] labels are used as the classification 

ground truth. The fundus images are divided into a training set (50,208 healthy 

images and 2,416 GON images), a validation set (7,188 healthy images and 426 

GON images), and a test set (13,780 healthy images and 660 GON images) 

by participant. Splitting by participant (instead of by image) ensured that the 

validation and test sets did not contain images from any eyes or individuals 

used to train the model. More details on dataset preparation and baseline 

supervised learning experiments are provided in our recent publications [3], [10]. 

Additionally, we select one image (from only one eye) from each patient in the 

training set to create the low-shot training set (995 healthy images and 152 GON 

images). If both eyes of a patient do not convert to glaucoma in the study, the 

first captured fundus photograph is selected. If either eye of a patient converts to 

glaucoma in the study, the first glaucoma fundus photograph is selected.

• The ACRIMA [22] dataset consists of 309 healthy images and 396 GON 

images. It was collected as part of an initiative by the government of Spain. 

Classification was based on the review by a single experienced glaucoma expert. 

Images were excluded if they did not provide a clear view of the optic nerve head 

region [43].

• The LAG [9] dataset contains 3,143 healthy images and 1,711 GON images3, 

collected by Beijing Tongren Hospital. Similar to the OHTS dataset, we also use 

3The number of fundus images being published is fewer than what was reported in publication [9].
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the well-trained DeepLabv3+ [63] model to extract a square region centered on 

the optic nerve head from each fundus image.

• The DIGS and ADAGES [23] are longitudinal studies designed to detect and 

monitor glaucoma based on optical imaging and visual function testing that, 

when combined, have generated tens of thousands of test results from over 4,000 

healthy, glaucoma suspect, or glaucoma eyes. In our experiments, we utilize 

the DIGS/ADAGES test set (5,184 healthy images and 4,289 GON images) to 

evaluate the generalizability of our proposed methods.

Visualizations of the four test sets using t-SNE [62] are provided in Fig. 4. Since healthy 

and GON images are distributed similarly between the OHTS and LAG datasets, we expect 

models to perform similarly on these datasets. Dissimilar distributions in the ACRIMA and 

DIGS/ADAGES datasets led us to believe the performance of models on these datasets 

would be somewhat worse. Using these four datasets, we conduct three experiments:

1. Supervised learning experiment: We employ transfer learning [64] to train 

ResNet-50 [38], MobileNet-v2 [46], DenseNet [65], and EfficientNet [66] 

(pre-trained on the ImageNet database [37]), on the entire OHTS training set 

(including ∼53K fundus images). The best-performing models are selected using 

the OHTS validation set. Their performance is subsequently evaluated on the 

OHTS test set, the ACRIMA dataset, the LAG dataset, and the DIGS/ADAGES 

test set.

2. Low-shot learning experiment: The four pre-trained models mentioned above 

are used as the MTSN backbones and trained on the OHTS low-shot training 

set (containing 1,147 images) to validate the effectiveness of our proposed low-

shot glaucoma diagnosis algorithm. The validation and testing procedures are 

identical to those in the supervised learning experiment.

3. Semi-supervised learning experiment: The MTSNs trained on the low-shot 

training set are fine-tuned on the entire OHTS training set without using 

additional ground-truth labels. The fine-tuned MTSNs are referred to as 

MTSN+OVV. The validation and testing procedures are identical to those in 

the supervised learning experiment.

The fundus images are resized to 224 × 224 pixels. The initial learning rate is set to 0.001, 

which decays gradually after the 100th epoch. Due to the dataset imbalance problem, F1-

score is utilized to select the best-performing models during the validation stage. Moreover, 

we adopt an early stopping mechanism during the validation stage to reduce over-fitting (the 

training will be terminated if the achieved F1-score has not increased for 10 epochs). We 

use three metrics: (1) accuracy, (2) F1-score, and (3) AUROC to quantify the performances 

of the trained models. While accuracy is generally reported in image classification papers, 

F1-score and AUROC are more comprehensive and reasonable evaluation metrics when the 

dataset is severely imbalanced.

Fan et al. Page 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Ablation study and Threshold Selection

We set λ in (1) to 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, and compare the MTSN 

performance when Φ computes the element-wise absolute difference (EWAD) and element-

wise squared difference (EWSD), respectively. The comparisons in terms of F1-score and 

AUROC on the OHTS test set are provided in Fig. 5. It can be seen that the MTSN achieves 

the best overall performance when λ = 0.3. This is reasonable, as a higher λ weighs more 

on the image classification task, easily resulting in over-fitting. Additionally, the MTSN in 

which Φ ⋅  computes the EWSD between hi and hj performs better when using ResNet-50 

as the backbone CNN but slightly worse when using MobileNet-v2 as the backbone CNN. 

Therefore, we further evaluate their generalizability on three additional test sets, as shown 

in Table I. When Φ ⋅  computes the EWAD, the MTSN generally performs better or very 

similarly on the additional test sets, especially when testing the MTSN assembled with 

ResNet-50 on the ACRIMA dataset. EWAD is, therefore, used in the following experiments. 

Furthermore, Table I provides the results of a baseline supervised learning experiment 

conducted on the low-shot training set. The results suggest that low-shot learning performs 

much better than supervised learning when the training size is small.

Furthermore, we discuss the selection of the thresholds κ1 and κ2 (used to select reliable 

“self-predictions” and “contrastive predictions” in our OVV self-training) as well as the 

impact of different mini-batch sizes 2m on OVV self-training (each mini-batch contains m
pairs of reference and target fundus images). Table II shows the MTSN performances with 

respect to different κ1, κ2, and m. When evaluated on the OHTS test set, it can be seen that 

accuracy and F1-score increase slightly, but AUROC almost remains the same, with the 

decrease of m. Moreover, with the increase of κ1 and κ2, the standard to determine reliable 

predictions becomes lower, making the semi-supervised learning performance degrade. 

Based on this experiment, we believe OVV self-training benefits from smaller κ1 and κ2.

Additionally, MTSNs, trained under different m, are evaluated on the three additional 

test sets, as shown in Table II. It can be seen that the network trained with a larger 

typically shows better results. When m decreases, the generalizability of MTSN degrades 

dramatically, especially for F1-score (decreases by around 9–19%). Therefore, increasing 

the mini-batch size can improve the MTSN generalizability, as more reference fundus 

images are used to provide contrastive predictions for the target fundus images, which can 

veto more unreliable predictions on the unlabeled data. Hence, we to 30 to further improve 

OVV self-training when comparing it with other published SoTA algorithms, as shown 

in Sect. IV-D. Since our threshold selection experiments cover a very limited number of 

discrete sets of κ1, κ2, and m, we believe better performance can be achieved when more 

values are tested.

C. Comparison of Supervised, Low-Shot, and Semi-Supervised Glaucoma Diagnosis

Comparisons of supervised learning, low-shot learning, and semi-supervised learning (w.r.t. 

four backbone CNNs: ResNet-50, MobileNet-v2, DenseNet, and EfficientNet) for glaucoma 

diagnosis are provided in Table III. First, these results suggest that the MTSNs fine-tuned 

with OVV self-training that requires a small number of labeled fundus images perform 
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similarly (AUROC 95% CI overlaps considerably) and, in some cases, significantly better 

(AUROC 95% CI does not overlap) than the backbone CNNs trained with a large number of 

labeled fundus images (50 times larger) under full supervision.

Specifically, when using ResNet-50, MobileNet-v2, or DenseNet as the backbone CNN, 

semi-supervised learning performs similarly to supervised learning on the OHTS and DIGS/

ADAGES test sets, and in most cases, significantly better than supervised learning on the 

ACRIMA and LAG datasets. Although EfficientNet trained through supervised learning 

performs unsatisfactorily on all four test sets, it shows considerable compatibility with 

MTSN in the low-shot and semi-supervised learning experiments. Second as expected, the 

AUROC scores achieved by low-shot learning are in most, but not all, cases slightly lower 

than those achieved by the backbone CNNs, when evaluated on the OHTS test set. However, 

low-shot learning shows better generalizability than supervised learning on the ACRIMA 

and LAG datasets. Moreover, since low-shot learning uses only a small amount of training 

data, training an MTSN is much faster than supervised learning. As MTSNs assembled 

with ResNet-50 and MobileNet-v2 typically demonstrate better performances than the ones 

assembled with DenseNet and EfficientNet, we only use the former two CNNs for the 

following experiments.

We also employ Grad-CAM++ [67] to explain the models’ decision-making, as shown in 

Fig. 6. These results suggest that the optic nerve head areas impact model decisions most. 

The neuroretinal rim areas are identified as most important, and the periphery contributed 

comparatively little to model decisions for both healthy and GON eyes [42].

We also carry out a series of experiments with respect to different percentages of training 

data, as shown in Table IV, to further validate the effectiveness of our proposed low-shot 

and semi-supervised learning algorithms. The backbone CNNs trained via supervised 

learning on the small subsets generally perform worse than the MTSNs trained via low-

shot and semi-supervised learning. With the labeled training data increase, the models’ 

performance gets saturated. When using less labeled training data (0.5% and 1.0%), the 

MTSN performance degrades. However, its performance can still be greatly improved with 

OVV self-training (accuracy, F1-score, and AUROC can be improved by up to 6%, 11%, and 

0.08, respectively). In addition, when using over 10% of the entire training data, the MTSN 

performance saturates, and the OVV self-training can bring very limited improvements on 

MTSNs.

D. Comparisons with other SoTA glaucoma diagnosis approaches

Table V provides comprehensive comparisons with nine SoTA glaucoma diagnosis 

algorithms4. The results suggest that (a) for low-shot learning, the MTSNs trained by 

minimizing our proposed CWCE loss perform significantly better than the SoTA low-shot 

glaucoma diagnosis approach [19] on all four datasets (accuracy, F1-score, and AUROC 

are up to 5%, 15%, and 0.08 higher, respectively), and (b) for semi-supervised learning, 

the MTSNs fine-tuned with OVV self-training also achieve the superior performances over 

another two SoTA semi-supervised glaucoma diagnosis approaches [20], [21] (accuracy, 

4Our recent work [3] provides the baseline supervised learning results.
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F1-score, and AUROC are up to 6%, 11%, and 0.07 higher, respectively). Compared with 

the SoTA supervised approaches, the fine-tuned MTSNs demonstrate similar performance 

on the OHTS test set and better generalizability on three additional test sets. Therefore, 

we believe that MTSN with our proposed OVV self-training is an effective technique for 

semi-supervised glaucoma diagnosis.

E. Comparisons with SoTA general-purpose semi-supervised learning approaches

Table VI provides a comprehensive comparison of our proposed OVV self-training approach 

with four SoTA general-purpose semi-supervised learning methods: FreeMatch [24], 

SoftMatch [25], FixMatch [26], and FlexMatch [27], which all employ vision Transformer 

[28] as their backbone network. Our results demonstrate that the proposed OVV self-training 

approach outperforms these methods in terms of F1-score and AUROC on the OHTS 

dataset. Specifically, we observe improvements in F1-score ranging from approximately 

11% to 13%, and improvements in AUROC ranging from around 9% to 20%. Furthermore, 

our method demonstrates better generalizability in terms of AUROC across three additional 

fundus image test sets. Although their results are inferior to ours, particularly in terms of 

AUROC, it may be unjust to compare them as they were not specifically designed for the 

diagnosis of glaucoma or other diseases.

F. MTSN and CWCE Loss for Few-Shot Multi-Class Biomedical Image Classification

We conduct two additional few-shot multi-class lung disease diagnosis experiments: (a) 

chest X-ray image classification for COVID-19 and viral pneumonia detection [29], [30], 

and (b) lung histopathological image classification for lung cancer diagnosis [31], to validate 

the effectiveness of our proposed MTSN and CWCE loss. The first experiment has three 

classes of images: (1) healthy, (2) viral pneumonia, and (3) COVID-19 (an example of each 

class is shown in Fig. 7), while the second experiment also has three classes of images: (1) 

benign tissue, (2) adenocarcinoma, and (3) squamous cell carcinoma (an example of each 

class is shown in Fig. 7). In these two experiments, we only select a few images from each 

class for MTSN training. The numbers of images used for training, validation, and testing 

are given in Table VII, where it can be observed that the training set is much smaller than the 

validation and test sets. Since (1) can only be used for binary image classification problems, 

we extend it here to tackle multi-class image classification problems.

Let us consider the chest X-ray image classification task as an example. Each image x is 

assigned a pair of two labels (r, s) with the following values:

• r = 1 and s = 0 when x is a healthy image;

• r = 2 and s = 1 when x is a viral pneumonia image;

• r = 3 and s = 3 when x is a COVID-19 image.

The numbers of healthy images (class 1), viral pneumonia images (class 2), and COVID-19 

images (class 3) are denoted as n1, n2, and n3, respectively. The total number of images is 

N = n1 + n2 + n3. The weight ωcla, e used in the image classification loss Lcla w.r.t. class e is 

given by:
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ωcla, e = N − ne
2N .

(6)

e = 1
3 ωcla, e = 1. Therefore, Lcla can be written as follows:

Lcla = −
e = 1

3
ωcla, e ke, ilog pe xi + ke, jlog pe xj ,

(7)

where pe(x) ∈ [0, 1] indicates the probability that x belongs to class e. ∑e = 1
3 pe(x) = 1 . ke, i = 1

when e = ri, and ke, i = 0 otherwise. Given a pair of images xi and xj with ground-truth labels 

(ri, si) and (rj, sj), respectively, there are four cases:

• case 1: si − sj = 1 (healthy v.s. viral pneumonia);

• case 2: si − sj = 2 (viral pneumonia v.s. COVID-19);

• case 3: si − sj = 3 (COVID-19 v.s. healthy);

• case 4: si − sj = 0 (two images are of the same class).

The weight ωsim, c used in the image similarity comparison loss ℒsim with respect to case c is 

given by:

ωsim, c =

1
3 1 − 2n1n2

N(N − 1) if c = 1

1
3 1 − 2n2n3

N(N − 1) if c = 2

1
3 1 − 2n1n3

N(N − 1) if c = 3

1
3 1 −

∑w = 1
3 nw nw − 1

N(N − 1) if c = 4

,

(8)

∑c = 1
4 ωsim, c = 1. Therefore, ℒsim can be written as follows:

ℒsim = − ∑c = 1
4 ωsim, cℎc, (i, j)log qc xi, xj ,

(9)

where qc xi, xj ∈ [0, 1] indicates the similarity between xi and xj under case c. 

∑c = 1
4 qc xi, xj = 1 . ℎc, (i, j) = 1 when xi and xj belong to case c, and ℎc, (i, j) = 0 otherwise. The 

hyper-parameter λ is empirically set to 0.3.

The experimental results of these two multi-task biomedical image classification tasks are 

presented in Fig. 8 with two confusion matrices. These results demonstrate that our proposed 
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MTSN can be effectively trained with very few images to solve multi-class biomedical 

image classification problems. Specifically, the achieved accuracy values for chest X-ray 

image classification (∼25-shot learning) and lung histopathological image classification 

(10-shot learning) are 93% and 90%, respectively. The chest X-ray image classification 

result compares favorably with the accuracy range of 82%−93% achieved by supervised 

methods (2,520 images for training, 840 images for validation, and 840 images for testing) 

using all available training data [68]. Although the accuracy achieved by MTSN for lung 

histopathological image classification is lower than the accuracy of over 97% reported in 

[69] by supervised approaches using the full training set (8,250 images for training, ∼3,000 

images for validation, and 3,744 images for testing), we believe that our proposed low-shot 

learning method can achieve comparable results when a small amount of additional images 

are incorporated for MTSN training.

V. DISCUSSION

Extensive experiments demonstrate the effectiveness and efficiency of training an MTSN 

by minimizing our proposed CWCE loss. Such a low-shot learning approach significantly 

reduces over-fitting and achieves an accuracy on a small training set (1,147 fundus images) 

comparable to a large training set (approximately 53K fundus images). We also demonstrate 

its effectiveness on two additional multi-class few-shot biomedical image classification 

tasks. Additionally, the MTSNs fine-tuned with OVV self-training outperform the SoTA 

semi-supervised glaucoma diagnosis algorithms [20], [21] as well as general-purpose semi-

supervised learning algorithms [24]–[27] trained for glaucoma diagnosis. They perform 

similarly, and in some cases, better than SoTA supervised algorithms. However, our 

proposed method has two limitations:

• In the OVV self-training, each target fundus image must be compared with all 

the reference fundus images in the same mini-batch, resulting in a computational 

complexity of O n2 . As the mini-batch size increases, OVV self-training 

becomes relatively memory-consuming. The high computational complexity of 

OVV self-training may reduce the feasibility of this method in clinical practice 

for now. Therefore, we plan to improve the OVV self-training strategy in 

the future by adaptively selecting only a limited number of reference fundus 

photographs for semi-supervised glaucoma diagnosis, which can reduce the 

computational complexity and make the method more practical in clinical 

settings.

• Our proposed OVV self-training strategy is developed for binary image 

classification and may not be directly applicable to multi-class image 

classification problems. Therefore, we plan to extend the contrastive prediction 

procedure to handle multi-class image classification problems in future work. 

More hyper-parameter tuning can always be done, but it is so easy to over-fit 

with limited data.
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VI. CONCLUSION

The main contributions of this paper include: (1) a multi-task Siamese network that 

can learn glaucoma diagnosis from very limited labeled training data; (2) an effective 

semi-supervised learning strategy, referred to as One-Vote Veto self-training, which can 

produce pseudo labels for the unlabeled data to fine-tune a pre-trained multi-task Siamese 

network. Extensive experiments conducted on four fundus image datasets demonstrated the 

effectiveness of these proposed techniques. The low-shot learning reduces over-fitting and 

achieves an accuracy on a small training set comparable to that of a large training set. 

Furthermore, with One-Vote Veto self-training, the multi-task Siamese networks perform 

similarly to their backbone CNNs (trained via supervised learning on the full training set) on 

the OHTS test set and show better generalizability on three additional test sets. The methods 

introduced in this paper can also be applied to other few-shot multi-class biomedical image 

classification problems, e.g., COVID-19 and lung cancer diagnosis, and other diseases in 

which only a small quantity of ground-truth labels are available for network training.
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Fig. 1: 
Supervised learning v.s. semi-supervised learning.
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Fig. 2: 
An illustration of our MTSN for joint learning of fundus image similarity measurement 

(primary task) and glaucoma diagnosis (secondary task) in a low-shot manner.
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Fig. 3: 
An illustration of our One-Vote Veto Self-Training strategy. h1, k

d  and hm, k
d  are two 1D 

embeddings, followed by an FC layer to produce scalars indicating the similarities 

between the given pairs of reference and target fundus images. The reference fundus 

images having ground-truth labels are used to train the MTSN by minimizing (1). The 

contrastive predictions are obtained using (4) and (5). The pseudo labels of the target 

fundus photographs are generated using One-Vote Veto Self-Training strategy, as detailed in 

Algorithm 1.
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Fig. 4: 
Comparisons of dataset visualizations produced by t-SNE, where • and • represent the 

healthy and GON images in the OHTS test set, respectively; • and • in (a) represent the 

healthy and GON images in the ACRIMA dataset, respectively; • and • in (b) represent 

the healthy and GON images in the LAG dataset, respectively; • and • in (c) represent the 

healthy and GON images in the DIGS/ADAGES test set, respectively.
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Fig. 5: 
MTSN performance on the OHTS test set with respect to different λ and Φ( ⋅ ).
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Fig. 6: 
Examples of Grad-CAM++ [67] results: (i) fundus images; (ii) and (v) show the class 

activation maps of (i), obtained by the backbone CNNs trained through supervised learning 

on the entire training set (containing ∼53K fundus images); (iii) and (vi) show the class 

activation maps of (i), obtained by MTSNs trained through low-shot learning on a small 

training set (containing 1,147 fundus images); (iv) and (vii) show the class activation maps 

of (i), obtained by MTSNs fine-tuned with our proposed OVV self-training on the entire 

training set (containing ∼53K fundus images without ground-truth labels).
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Fig. 7: 
Examples of images used in two few-shot multi-class lung disease diagnosis tasks.
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Fig. 8: 
Experimental results of two few-shot lung disease diagnosis tasks. REC: recall; PRE: 

precision; ACC: accuracy.
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TABLE VII:

Training, validation, and test sample sizes in the two few-shot biomedical image classification experiments.

Class Training Validation Test

Healthy 27 657 657

Viral pneumonia 27 659 659

COVID-19 24 588 588

(a) Chest X-ray image classification.

Class Training Validation Test

Benign tissue 10 2,495 2,495

Adenocarcinoma 10 2,495 2,495

Squamous cell carcinoma 10 2,495 2,495

(b) Lung histopathological image classification.
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