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Major impacts of widespread structural variation
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Illinois 61801, USA; 2Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; 3High
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Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agro-

nomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses

in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-

nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in ge-

nome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing

of diverse sorghum lines (n= 363), validated the correlation of photoperiod sensitivity and variety type, and identified

SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complemen-

tary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymor-

phisms in association studies revealed genotype–phenotype associations not observed with SNPs alone. Three-way

genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP+ SV data sets showed sub-

stantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability es-

timates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our

discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism

for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes

the extensive impacts of SVs on sorghum.

[Supplemental material is available for this article.]

High-throughput sequencing technologies have sped up the pro-
cess of discovery for natural genetic variation. However, as a con-
sequence of limited read length and variant calling algorithms,
single-nucleotide polymorphisms (SNPs) and small indels are dis-
proportionately overrepresented within characterized sequence
variation (Audano et al. 2019). Nevertheless, a growing number
of research projects indicate that structural variations (SVs), in-
cluding large (>30-bp) deletions (DELs), insertions (INSs), duplica-
tions (DUPs), inversions (INVs), and translocations (TRAs) (Feuk
et al. 2006), greatly contribute to crop phenotypic diversity and se-
lection for physiological and morphological phenotypes (Alonge
et al. 2020; Li et al. 2020). Two major SV classes have been pro-
posed to explain how SVs are formed and how they impact pheno-
types. The first involves genome rearrangement, such as INVs and
TRAs; the second includes large DELs, INSs, and DUPs, collectively
referred to as copy number variations (CNVs) (Scherer et al. 2007;
Alkan et al. 2011). Because SVs are diverse and influence gene se-
quence and expression via a myriad of mechanisms, it has been
challenging to assess the impact of SVs systematically and compre-

hensively. In addition, current sequencing and detection technol-
ogies leave the bulk of SVs poorly resolved, so they are often not
included in studies of genome-wide variation.

Because of their low cost,mature and reliable technology, and
proven high accuracy reads, second or “next-generation” short-
read sequencing technologies are still the main technology for
most studies. Long-read sequencing techniques, such as Pacific
Biosciences (PacBio) HiFi and ultralong Oxford Nanopore
Technologies (ONT), are both more expensive and more demand-
ing of DNA quantity and quality. Numerous tools have been devel-
oped to detect SVs using paired-end short reads over the past
decade. There are primarily three strategies used in popular algo-
rithms for SV calling based on short-read sequencing: read-pair
technologies, read-depth methods, and split-read approaches
(Alkan et al. 2011). However, there is currently no individual algo-
rithm that is able to successfully identify all types of SVs across the
entire range of sizes, as strategies display a diversity of strengths
and weaknesses in their ability to detect various types of SVs.
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Utilization of multiple algorithms based on different strategies for
SV detection has been proven a viable way to overcome this issue.
Zarate et al. (2020) found that reaching a consensus among multi-
ple short-read SV callers can lead to improved precision without
significantly compromising sensitivity in human genome.
Alonge et al. (2020) deployed three independent tools to call SVs
from the short-read alignments of 847 tomato accessions and suc-
cessfully identified the diverse modern and domesticated samples
that maximize SV diversity. In this study, we developed an ensem-
ble pipeline for SV calling based on five independent algorithms
involving different SV detection strategies: Sentieon (Kendig
et al. 2019), which uses split-read strategy to call SVs and was
also used for SNP calling in this study; DELLY (Rausch et al.
2012), which uses paired-end, split-read, and read-depth strategies
to sensitively and accurately delineate SVs; Smoove (https://github
.com/brentp/smoove), which is an improved version of lumpy and
integrates the paired-end and split-read strategies; Manta (Chen
et al. 2016), which combines paired and split-read evidence during
SV discovery; and CNVnator (Abyzov et al. 2011), which uses read-
depth methods.

The standard assumptions of genome-wide association stud-
ies (GWAS) include the concept that each SNP used in the study
will capture heritable variation via “tagging” any other SNPs, or
SVs, in the genome within the range of local linkage disequili-
brium (LD) (Kruglyak 2008). For this reason, it has been widely as-
sumed that causative SVs will be detected in GWAS via being
“tagged” by adjacent SNPs in LD. Recent evidence has shed doubt
on this assumption in plants, owing to the limited LD ofmany SVs
with surrounding SNPs in soybean (Fliege et al. 2022) and maize
(Yang et al. 2019). For this reason, many of the effects of SVs on
crop phenotypes may still be unknown.

Sorghum (Sorghum bicolor (L.)Moench) is a versatile cropwith
wide adaptability and broad applications. It has been selectively
bred into different varieties for different end uses such as grain sor-
ghum for human consumption; forage sorghum, which is primar-
ily for feeding livestock; and sweet sorghum, which can be used as
a food sweetener or for biofuel and chemical production. These
types have been created by selective breeding following sorghum
domestication in northern Africa ∼10,000 yr ago and its subse-
quent spread to a variety of areas across Africa, India, the Middle
East, and east Asia (Lobell et al. 2008; Morris et al. 2013a). Broad
distribution of SVs in sorghum and correlation with local adapta-
tion has been reported (Songsomboon et al. 2021), and each spe-
cific sorghum type is characterized by particular morphological
and physiological features. A better understanding of the genetic
pathways and mechanisms that underpin these features is essen-
tial for accelerating future sorghum breeding and improvement.
Here, we aimed to build an SV data set based on whole-genome
short-read resequencing of 363 sorghum lines from the global
Bioenergy Association Panel (BAP) (Brenton et al. 2016) using a fu-
sion workflow, to investigate the impacts of SVs on sorghum ge-
netics, and to find new knowledge of allelic variation that can be
used in crop improvement.

Results

Identification of genome-wide variations in the BAP

To explore the genetics of SVs within sorghum germplasm, we used
the Illumina short-read whole-genome resequencing data from 363
global sorghumaccessions in the BAP (Supplemental Table S1; Bren-
ton et al. 2016; https://terraref.org/). This panel was developed and

characterized as a set of racially, geographically, and phenotypically
diverse lines aiming to cover a significant portion of the genetic
variation within sorghum (Hu et al. 2019). The panel has been
classified intothreebroadtypes: cellulosic,grain,andsweet (Brenton
et al. 2016). The mean sequencing depth is ∼29×, and the mean
breadth of the coverage is ∼91%. Sorghum BTx623 (v3.1.1) from
Phytozome (https://phytozome.jgi.doe.gov/) was used as the refer-
ence genome in SNP and SV calling. To enhance the accuracy
and sensitivity of SV detection, five inference software packages—
Sentieon (v202010.01) (Kendig et al. 2019), DELLY (v0.8.1)
(Rausch et al. 2012), Smoove (https://github.com/brentp/smoove),
Manta (v1.6.0) (Chen et al. 2016), and CNVnator (v0.3.3)
(Abyzov et al. 2011)—involving different SV detection strategies
wereappliedtothedata.Weconductedasimulationstudytoestimate
therecallandprecisioninSVcallingusingvariousthresholds,consid-
eringSVs supportedbyone to five callers (Supplemental Fig. S1; Sup-
plemental Results). Based on the simulation result, only SVs
supported by at least two callers were reported by our fusion work-
flow, and the two calls must agree on the type and the strand of SV.
A total of 7,162,000 filtered SNPs and 622,236 high-confidence SVs
were identified on 10 chromosomes, including 158,614 DELs,
18,028 DUPs, 216 INSs, 142,219 INVs, and 303,159 TRAs (Supple-
mental Fig. S2A).

To validate the quality of the identified SVs, three new chro-
mosome-scale de novo assemblies (Supplemental Fig. S2B–D;
Supplemental Table S2) and two public whole-genome sequence
assemblies available at Phytozome (https://phytozome-next.jgi
.doe.gov/) for five BAP accessions (PI 329545, PI 337680, PI
651495, Rio [S. bicolor Rio v2.1], and RTx430 [S. bicolor RTx430
v2.1]) were aligned to the standard reference genome (BTx623
v3.1.1) and SVs called by assembly comparison. SVs identified
from whole-genome alignment information were then compared
with the SVs detected by the fusion workflow using Illumina
data. Overall, we observed a high percentage of overlapping fusion
workflow calls with assembly comparison for both DEL/INS and
DUP and traceable breakpoints of TRA and INV. We concluded
that our fusion pipeline is sufficiently sensitive and accurate for
SV detection (see Supplemental Results; Supplemental Fig. S3).

We then surveyed the distribution of genes and variants.
Annotated genes are primarily located toward the telomeres, and
most of the identified SNPs are distributed in the gene-sparse re-
gions flanking the centromeres (Fig. 1A). In contrast, detected
SVs were mainly situated in the gene-rich regions (Fig. 1A,B).
Frequent TRAs and INVs were observed from the breakpoints in
gene-rich regions (Fig. 1B). Even though the density of called SVs
is higher in gene-rich regions, only 0.2%of these SVs affected exons
directly.

Because of the limitations of the SV detection algorithms
based on short reads, the length of the INV and TRA cannot be pre-
cisely inferred from the positions of the two breakpoints of an SV.
We further examined the length distribution of DELs, DUPs, and
INSs, which showed that most SVs were relatively small, but a sub-
stantial minority are large: 30–250 bp, 30.3%; 250–500 bp, 13.1%;
500 bp–1 kb, 13.9%; 1 kb–2 kb, 9%; and >2 kb, 33.6%. Two size
bands of enrichment were observed at ∼75 bp and 250 bp for
DEL (Supplemental Fig. S4). There were also obvious peaks at
∼150bp and60bp forDUPand INS, respectively. Thesemay reflect
specific, abundantmobile elements. Sequence composition survey
of the SVs indicated that the two most abundant transposable ele-
ment sequence signatures were Gypsy and EnSpm (Supplemental
Fig. S5). These well-known LTR transposable elements play signifi-
cant roles in plant genome structure and evolution.

Impacts of structural variation on sorghum
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The “domestication syndrome” in sorghum: photoperiod

sensitivity and variety type

To explore the population structure of the BAP based on SVs, we
first investigated the distribution of SVs across the BAP.
Structural changes identified in sweet sorghum and typical grain
sorghum were fewer than those observed in cellulosic sorghum
(Fig. 2A; Supplemental Fig. S6). Photoperiod sensitivity is a key
trait thatmust bemodified to reconcile environmental cues, repro-
ductive cycles, and planting/harvest during crop domestication
and radiation from center of origin. Modification of photoperiod
sensitivity is accompanied by the occurrence of other domestica-
tion traits, considered collectively the “domestication syndrome”
(Allaby et al. 2008; Liu et al. 2015; Song et al. 2017; Lu et al.
2020). Genotype data from a total of 339 sorghum lines with vari-
ety type and photoperiod information were used for population
structural analyses. Principal component analysis (PCA) based on
SNP, SV, or combined SNP+ SV data sets showed a similar popula-
tion structure pattern (Fig. 2B; Supplemental Fig. S7). We exam-
ined the first two principal components in a region deviating
from the main population (PC1 > 50 and PC2 <−50) in the SV
PCA results and found, as expected, that the photoperiod-sensitiv-
ity feature is strongly linked with cellulosic sorghum whereas the
derived sweet sorghumhas photoperiod insensitive characteristics
(Fig. 2B). Sorghum, unusually, has bidirectional gene flowbetween
wild/weedy relatives and cultivated sorghum lines in sympatric
and allopatric species (Mace et al. 2013). Exceptions to the popula-

tion clusters may reflect gene flow. Grain and sweet sorghum are
not well differentiated, although SVs show somewhat better sepa-
ration than SNPs for these variety types. This finding prompted us
to explore the relationship between photoperiod sensitivity and
sorghum variety types via haplotype network analysis. As shown
in Figure 2C, the edges connecting cellulosic sorghumvarieties ap-
pear to correspond to those for photoperiod sensitivity, whereas
the edges for sweet sorghum correspond to those for photoperiod
insensitivity in minimum spanning trees derived from both SNP
and SV data sets.

Identification of SVs underlying the divergent evolution

of cellulosic and sweet sorghum

Structural sequencedivergence, initiating fromhotspots alongchro-
mosomes and subsequently expanding through the accumulation
ofminorgenomicvariants,hasbeen foundtobeanimportantdriver
of divergent evolution (Song et al. 2002). For the purpose of investi-
gating the location of structural genetic differences that may under-
lie the divergent evolution of cellulosic and sweet sorghum, we
curated 43 cellulosic (PC1>50) and 33 sweet (PC2<−50) sorghum
lines from the BAP with consistent genetic clustering based on
the SV PCA results (Fig. 2B; Supplemental Tables S3, S4). Genetic-re-
latedness analyses based on both the SNP and SV data sets were per-
formed. The maximum likelihood tree based on the SV data set
shows as expected that the selected cellulosic (solid red pentagram)

A B

Figure 1. Distribution of genome-wide variations in the sorghum Bioenergy Association Panel (BAP). (A) Distribution of gene density and copy number
variant (CNV) type structural variants (SVs), including deletions (DELs), duplications (DUPs), and insertions (INSs). From the outermost layer to the innermost
layer of the Circos (Krzywinski et al. 2009) plot are chromosomes (a), DEL density (b), DUP density (c), INS density (d ), single-nucleotide polymorphism
(SNP) density (e), and gene density ( f ). Annotated genes were primarily located flanking centromeres as expected. Most of the identified SNPs were dis-
tributed in the gene-sparse regions. CNV-type SVs showed a different distribution pattern than did SNPs and weremainly situated in the gene-rich regions.
The densities of the genes and CNV-type SVs were calculated in 500-kb windows. (B) Distribution of gene density and rearrangement (REA)-type SVs, in-
cluding inversions (INVs) and translocations (TRAs). From the outermost layer to the innermost layer of the Circos plot are chromosomes (a), gene density
( f ), INV density (g), and TRA density (h). The core of the Circos plot is a spanning diagramof the identified TRAs. The links show the two breakpoints located
in different chromosome positions for each TRA. Each link is colored by the chromosome color of the start position of the corresponding TRA. As with CNV-
type variations, identified INVs and TRAs were distributed mainly in gene-enriched zones. Frequent rearrangement flows were observed between chromo-
somes. The densities of the genes and REA-type variants were calculated in 500-kb windows. The link diagram was evenly thinned (1/256) from the total
TRAs.
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A

B

C

Figure 2. Structural variation (SV) distributions in different sorghum variety types and population structural analyses. (A) Violin and boxplot for SVs count
distributions in cellulosic, grain, and sweet sorghumgroups. DEL, DUP, INS, INV, and TRA count distributionswere calculated separately in cellulosic (green,
left), grain (yellow, center), and sweet (red, right) sorghum groups. Compared with the other two sorghum variety types, cellulosic sorghum contained the
most called SVs, indicating that sweet sorghummay be closer to grain sorghum than cellulosic sorghum in SV content as the reference BTx623 is a typical
grain sorghum. (B) Principal component analysis (PCA) based on SNP (left) and SVs (right). Photoperiod sensitivity—Photoperiod insensitive (circle),
Photoperiod sensitive (triangle), and unknown (square)—and sorghum variety type information—cellulosic (green), grain (yellow), and sweet (red)—
were differentiated by PCA based on SNPs and SVs. In SV PCA, the corner in the upper antidiagonal with the translucent green background shows the zones
with PC1>50; the corner in the lower antidiagonal with the translucent red background shows the area with PC2<−50. The percentages in both colored
corners represent the proportions of different sorghums with the corresponding attributes. (C ) Minimum spanning trees. Minimum spanning trees were
shown based on both SNPs (top) and SVs (bottom). In the first column, sorghum variety type information is coded: cellulosic (green), grain (yellow), and
sweet (red). In the second column, photoperiod-sensitivity information is coded: photoperiod insensitive (sky blue) and photoperiod sensitive (purple). In
the third column, distribution of the selected representative cellulosic (green) and representative sweet (red) is shown from the PCA analysis. In general,
sweet sorghum spreading branches matched those of photoperiod-sensitive sorghum lines, whereas cellulosic sorghum spreading branches matched
those of photoperiod-insensitive sorghum lines and variety type.
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and sweet (hollow redpentagram) sorghumswere eachgrouped into
one cluster (Fig. 3A,B). These results indicate that the curated sor-
ghum lines potentially underwent strong variety-specific selections
during sorghumdomestication and breeding. To investigate the fix-
ation index of the SVs between selected cellulosic and sweet sor-
ghum groups, FST for each site was estimated between the
cellulosic group and the sweet group in the BAP based onwhole-ge-
nome SNPs. Before establishing the selection threshold, we exam-
ined the FST distribution in our study and found that it captured
the top 1% of the SNP FST distribution when FST≥0.15. Hence, we
considered FST≥0.15 a robust threshold for our selection analysis.
There were 1637 SNPs shown to be highly differentiated between
the cellulosic and sweet subpopulations with FST≥0.15 (from 0.15
to0.36). SVsbetweenthecurated43cellulosicand33sweet sorghum
lines were then compared with the loci of the 1637 highly differen-
tiated SNPs. Comparison showed that 76% (1250/1637) of the high-
ly differentiated SNPs were adjacent to at least one SV (range from
one to 45 SVs) within 10 kb (Supplemental Table S5). This result in-
dicates that the SVs identified between the curated 43 cellulosic and
33 sweet sorghum lines likely underwent strong selection while ac-
companied by the closely linked SNP loci, and the 43 cellulosic
and 33 sweet sorghums selected based on the SV PCA results were
representative lines that underwent differential selection during
the divergent improvement of cellulosic (tropical landraces) and
sweet sorghum subpopulations.

To find potential hypervariable regions across the groups, we
thenexamined the SVdetection frequency in these twogroups, con-
sisting of the 43 curated cellulosic and 33 curated sweet sorghum
lines respectively, across 1-Mb windows. Common SVs that were
present in both the cellulosic and sweet sorghum groups were ex-
cluded to reduce the backgroundnoise. Genomic regionswith obvi-
ous variable SV frequency between the representative cellulosic and
sweet sorghum groups were observed (Fig. 4A). The heatmap of SV
detection frequency manifested that 186 out of 688 SV frequency
windows, including 73 continuous genomic regions, showed signif-
icant differences (adjusted P-value<0.01 and average SV difference

between two groups was ≥20) in frequen-
cy between representative cellulosic and
sweet sorghums (Fig. 4B; Supplemental
Table S6). Some hotspots of SV frequency
we detected have been reported in previ-
ous publications; 56–57 Mb on
Chromosome 1 and 61–62 Mb on
Chromosome 2 have been identified as
hotspots for controlling protein, starch,
and amylose content (Ayalew et al.
2022). In addition, 52.23–61.18 Mb on
Chromosome 1, 2.52–11.43 Mb on
Chromosome 2, and 1.32–3.95 Mb on
Chromosome 3 were also hotspots for
source-sink-related traits (Chiluwal et al.
2022). Boatwright et al. (2022) identified
18 genomic regions under selection across
six generic sorghum subpopulations un-
derlying the evolutionary divergence dur-
ing domestication. Six out of 10 selection
regions with prior QTL information were
covered by our identified SV hotspots,
whereas onlyone out of eight selection re-
gions without prior QTL information was
covered by our identified SV hotspots.

SVs reveal extensive contributions to heritability

Decades of studies have provided evidence that, despite their rarity
compared with SNPs, SVs account for a substantial fraction of char-
acterizedmolecular genetic variationwith phenotypic consequenc-
es (Freeman et al. 2006). To examine the likely impact of the
identified SVs on gene function, we evaluated the predicted func-
tional effects of the variants in our SV and SNP data sets. As shown
in Supplemental Figure S8, SVs were more likely to have large im-
pacts on gene function, for example gene duplication, exon loss, co-
don frame shift, and transcript ablation, whereas SNPs generally
were predicted tohave lower impacts. The annotationof thepredict-
ed impacts of SNPs and SVs on sorghum gene function suggested
that SVs could have a significant impact on functional genetic vari-
ation in sorghum.

We then investigated the potential contributions of our SV
set to the inheritance of 29 quantitative traits and one binary
trait (Supplemental Table S7; Brenton et al. 2016, 2020). The
overall proportion of variance explained by the additive effect
of genomic variants (narrow-sense heritability) was estimated
by using mixed model analysis for each trait for whole-genome
SNP variation only, as well as a combined set of SNPs and SVs,
that is, SNP + SV. The estimated heritability ranged from 2%–

57% (median, 20%) when we considered only SNP variation.
However, the estimated heritability increased substantially, by
16%–99% (median, 26.5%) for all but one trait (2015_ADF,
which stands for acid detergent fiber content in 2015), when tak-
ing both SNP and SVs into account. The additive effect of SNP +
SV was particularly marked for the trait of photoperiod sensitiv-
ity and for the sorghum variety type itself when used as a pheno-
type (Fig. 5A). Compared with the heritability contributed by
SNP data alone, the reduced heritability of 2015_ADF for SNP +
SV (from 57% to 33%) likely resulted from the opposite additive
effects contributed by SNP and SV data sets separately. Overall,
CNV-type variations consistently produced higher heritability
estimates than SNPs for nearly all traits and explained 6.2%

A B

Figure 3. Phylogenetic trees of 339 sorghum lines in the BAP. Phylogenetic trees were conducted us-
ing SNPs (A) and SVs (B) as characters. Sorghum variety type and photoperiod sensitivity were marked as
different colors and shapes: cellulosic (green line), grain (yellow line), sweet (red line), photoperiod in-
sensitive (blue solid circle), photoperiod sensitive (blue solid triangle), selected representative cellulosic
accessions (red solid pentagram), and selected representative sweet accessions (red hollow pentagram).
Themaximum likelihood phylogenetic tree based on the SV data set shows a clearer classification of phy-
logeny, sorghum variety type, and photoperiod sensitivity than the maximum likelihood phylogenetic
tree based on SNPs, with selected cellulosic and sweet sorghums being almost monophyletic based
on SV data.
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A

B

Figure 4. Typical SVs in the divergent evolution of cellulosic and sweet sorghum. (A) Circos (Krzywinski et al. 2009) plot for the SV frequency differences
between the selected representative cellulosic sorghum group and the sweet sorghum group: (a) chromosomes, (b) SV frequency of cellulosic group, and
(c) SV frequency of sweet group. SV frequencies were calculated in 1-Mb sliding windows in each group. Hypervariable genomic regions were observed
between representative cellulosic and sweet sorghum groups. (B) Heatmap of SV frequency for selected representative cellulosic and sweet sorghum lines.
SV frequencies were detected individually and chromosome by chromosome in 1-Mb sliding windows. The vertical axis stands for the stacked heatmaps for
each sorghum line per chromosome. A cyan bar shows the range of the stacked heatmaps for cellulosic sorghum lines in each chromosome. Amagenta bar
shows the range of the stacked heatmaps for sweet sorghum lines in each chromosome. The x-axis stands for the physical distance for every chromosome.
High SV detection frequencies were observed toward the telomeres in each chromosome for both the cellulosic group and sweet group. One hundred
eighty-six out of 688 SVs frequency windows were tested as significant difference windows between representative cellulosic and sweet sorghum acces-
sions. A red dash box indicates the hotspots previously reported covered by the 186 significant difference windows.
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more of the phenotypic variance than REA-type variations (Fig.
5B). These findings show that, although SNPs are generally able
to capture the bulk of the heritable genetic effects on phenotype,
SVs accounted for a substantial proportion of the missing herita-
bility in SNP-based analysis for most traits.

SV data allow detection of new GWAS associations

To further investigate the causative genomic loci associated with
the increased heritability gained by adding SVs to the polymor-
phism data set, we performed GWAS based on the whole-genome

A

B

Figure 5. SV contributes substantially to heritability. (A) Heritability estimates are improved by the addition of SVs. Narrow-sense heritability was estimat-
ed for 29 quantitative traits and one binary trait. The upper diagonal colored by melon is the area in which the heritability of SNP+ SV is greater than the
heritability of SNP only (h2

SNP + SV > h
2
SNP). The lower diagonal colored by spring green is the area in which the heritability of SNP+ SV is less than the her-

itability of SNP only (h2
SNP + SV < h

2
SNP). The diagonal line illustrates where heritability estimates with and without SVs are the same (h2

SNP + SV = h
2
SNP). Thirty

traits were dotted by different colors in the plot. The embedded upper triangular dot plot shows themagnification of the shaded area. All of traits, except for
2015_ADF, were observed in the upper h2

SNP + SV > h
2
SNP area, which indicates the predicted total heritability increase for most traits when taking both SNP

and SVs into account compared with taking SNPs only into consideration. This was particularly marked for two traits: photoperiod sensitivity (pointed by
blue arrow) and sorghum variety type (pointed by red arrow). (B) A bar plot for estimation of heritability contribution from SNP, copy number variations
(CNVs), and REA-type variation. Narrow-sense heritability was estimated for 29 quantitative traits and one binary trait (Supplemental Table S7):
(2014_ADF) acid detergent fiber content in 2014; (2014_Days_to_harvest) days to harvest in 2014; (2014_Dry_Weight) dry weight of biomass in
2014; (2014_Lignin) lignin content in 2014; (2014_NDF) neutral detergent fiber in 2014; (2014_NFC) nonfibrous carbohydrates content in 2014;
(2014_WSC) water-soluble carbohydrates content in 2014; (2015_ADF) acid detergent fiber content in 2015; (2015_Days_to_harvest) days to harvest
in 2015; (2015_Dry_Weight) dry weight of biomass in 2015; (2015_Lignin) lignin content in 2015; (2015_NDF) neutral detergent fiber in 2015;
(2015_NFC) nonfibrous carbohydrates content in 2015; (2015_WSC) water-soluble carbohydrates content in 2015; (ADF) average acid detergent fiber
content of 2014 and 2015; (Anthesis_date) date of anthesis; (Brix_maturity) brix content in maturity stage; (Brix_milk) brix content in milk stage;
(Days_to_harvest) average days to harvest of 2014 and 2015; (Dry_tons_per_acre) dry tons per acre; (Dry_Weight) dry weight of biomass; (Lignin) lignin
content; (NDF) average neutral detergent fiber content of 2014 and 2015; (NFC) average nonfibrous carbohydrates content of 2014 and 2015;
(Pericarp_pigmentation) pericarp pigmentation; (Photoperiod_sensitivity) photoperiod sensitivity; (Sorghum_type) sorghum variety type (sweet, grain,
and cellulosic); (Stalk_height) stalk height; (Total_fresh_weight) total fresh weight; and (WSC) average water-soluble carbohydrates content of 2014
and 2015. Blue bars, orange bars, and gray bars with green frame indicate the heritability contributions from SNPs, CNV-type variations, and REA-type
variations, respectively. For most of the traits, CNV-type variations explained more variance than REA-type variations.
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SNP, SV, and combined SNP and SV data sets. First, we investigated
associations with a sorghum seed pericarp pigmentation trait,
“Pericarp_pigmentation,” a well-studied trait whose global varia-
tion is owing largely to the Y locus, which encodes a MYB tran-
scription factor Yellow seed1 (Y1), although the causative variants
in this gene have not been definitely identified (Ibraheem et al.
2010; Morris et al. 2013b; Rhodes et al. 2014). GWAS based on
SV found three significant association signals for seed pericarp
pigmentation, including an SV underlying the Y1 gene
(Sobic.001G397900) as expected (Fig. 6A), whereas SNP and
SNP + SV analyses did not detect association at this locus (Fig.
6B,C). The SV (1.5 kb downstream from Y1) underlying the Y1 lo-
cus was called as a TRA from Chromosome 1 to Chromosome 4
(Fig. 6D). The breakpoint on Chromosome 4 was also detected
by SV-based GWAS. Another substantial SV association signal
was detected on Chromosome 8. The polymorphism associated
with this locus is a 2.6-kb DEL/INS located 3.2 kb upstream of
TIM22-2 (Sobic.008G111800), a mitochondrial import innermem-
brane translocase and a homolog of a protein involved in seed de-
velopment in Arabidopsis (Zhang et al. 2023b). Further haplotype
analyses of the TRA allele underlying the Y1 locus on Chromo-
some 1 and the 2.6-kb DEL/INS on Chromosome 8 validated their
significant correlation with phenotypic variance in “Pericarp_pig-
mentation” (Supplemental Figs. S9A–D, S10A–D; Supplemental
Tables S8 and S9; see Supplemental Results for details). Our
GWAS results for seed pericarp pigmentation based on SVs thus
not only found a significant SV association for the well-studied
Y1 locus, whichwas not detected in SNPGWAS, but also identified
a potential TRA involved in the genesis of this locus and a compel-
ling new candidate gene for the control of seed pericarp
pigmentation.

To further confirm the enhanced detectable heritability con-
ferred by SVs in GWAS, we surveyed the number of significant
variations detected in GWAS based on each of the SV, SNP, and

SNP+ SV data sets for an additional 29 morphological and physio-
logical traits (Supplemental Table S7; Brenton et al. 2016, 2020).
We detected the largest number of GWAS associations using the
combined SNP+ SV data set, including 234 SV hits and 43 SNP
hits. This was substantially larger than the number of signals
(212 hits) detected in SV-alone GWAS. By far the fewest signals
were detected in SNP-only GWAS (50 SNP hits). The number of
significantly associated loci in SNP-only GWAS was by far the low-
est for all traits except days to harvest. SV or SNP+ SV found the
largest number of significant association signals for all traits
(Supplemental Table S10). SNP hits in SNP+ SV GWAS were also
observed in SNP-based GWAS for most traits (except for
“Total_fresh_weight,” 3/5), with SNP-only GWAS findingmore as-
sociated SNPs for several traits (likely as a result of an altered mul-
tiple-testing correction). Interestingly, however, SVs between
SNP+SVand SV-basedGWAS results had only 32.6%of loci in com-
mon (median across traits, 19.1%) (Fig. 7; Supplemental Table S10).
This finding indicates that association analysis based on SNPs and
SVs separately, as well as the integrated SNP+SV data set, can
each yield distinct and potentially important associations.

Considering that sorghum variety type is associated with
photoperiod sensitivity (Figs. 2B,C, 3), we further investigated
the genetic mechanisms that may underlie their divergent evolu-
tion by using three GWAS analyses based on the SNP, SV, and
SNP+ SV data sets for six photoperiod-sensitivity-related traits,
and 23 traits related to the differentiated sorghum variety types
(Supplemental Table S7). There were 171 significantly trait-associ-
ated SVs detected in SV GWAS; 33 SNPs were detected in SNP
GWAS; and 182 variants including 152 SVs and 30 SNPs were de-
tected in GWAS based on SNP+ SV data set, of which just 21 SVs
were common with those from SV GWAS, whereas all significant
SNPs foundwere in commonwith those detected using SNP-based
GWAS (Supplemental Table S10). In total, 238 polymorphisms,
containing 228 SVs and 10 SNPs, were identified as significantly

A D

B

C

Figure 6. Manhattan plots of genome-wide association study (GWAS) results for “Pericarp Pigmentation.” (A) GWAS result for the pericarp pigmentation
trait based on SVs alone. Three significant signals were detected using a compressed mixed linear model (CMLM) including a signal underlying the well-
known pericarp pigmentation–related Y1 gene. The corresponding signal underlying the Y1 was a TRA variation between Chromosome 1 and
Chromosome 4. The signal at the other breakpoint on Chromosome 4 of the TRA underlying Y1 was also detected (solid red inverted triangle). The signal
on Chromosome 8 was a 2.6-kb DEL/INS located near TIM22-2 (Sobic.008G111800). (B,C) GWAS results for the “Pericarp_pigmentation” based on SNPs
alone (B) and SNPs + SVs (C). The red dotted lines in the Manhattan plots show the Bonferroni-corrected threshold of α=0.05. The red numbers near the
red dotted lines were the corresponding values of the Bonferroni-corrected threshold of α=0.05 based on different data sets; no loci reached the corrected
significance threshold. (D) A diagram for the TRA underlying Y1. The corresponding signal underlying Y1was a TRA with a ∼10.9-kb span including a cod-
ing gene (Sobic.004G350800) located on Chromosome 4 in the reference genome.
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associated with the sorghum differentiated variety type–related
traits, whereas 97 variants, including 74 SVs and 23 SNPs, were
found to be significantly associated with photoperiod-sensitivity
traits. There were 65 polymorphisms, including 54 SVs and 11
SNPs, that were associated with at least two different traits. Among
these variations, we identified a potentially pleiotropic SV associat-
ed withmultiple traits, sv_529156_Chr09_59249767, a 1.3-kb DEL
from 59,249,767 bp to 59,252,667 bp on Chromosome 9, located
11.3 kb upstream of a CCT domain–containing gene,
Sobic.009G259100. Not only is this locus significantly associated
with days to harvest (in both 2014 and 2015) and stalk height,
but it is also linked with multiple variety type–related traits:
“Dry_tons_per_acre,” “Dry_Weight,” and “Total_fresh_weight.”

Candidate genes within 20 kb of each breakpoint were then
investigated for each significant polymorphism. We found 242
candidate genes, such as dof21, SNAC1, andTEOSINTE BRANCHED
1 (tb1), close to SVs associated with sorghum variety type–related
features and 69 candidate genes, including likely orthologs of
the Arabidopsis genes FL and FAR-RED ELONGATED HYPOCOTYL
3 (FHY3) adjacent to SVs associated with photoperiod-sensitivity
traits (Supplemental Table S11). We noted that certain genes
were annotated as potentially involved in agronomic variety traits
but were also associated with the photoperiod-sensitivity traits,
whereas some known photoperiod-related genes were adjacent
to SVs associated with usage-related traits. This finding illustrates
the relationship between the sorghum usage or variety type and
photoperiod sensitivity; for example, modern grain or sweet sor-
ghum varieties will be expected to flower at different latitudes
and times than forage or biomass sorghum. Based on analysis of
all traits, we selected 13 candidate loci that were correlated with
bothphotoperiod sensitivity and sorghumvariety usage type (Sup-
plemental Table S12).

SVs have widespread impacts on gene expression

By modifying the sequence or location of cis-regulatory elements,
splicing of a gene, copy number, or regulatory RNAmolecules, SVs
can readily alter the expression pattern of genes (Li et al. 2012;
Alaei-Mahabadi et al. 2016; Chiang et al. 2017; Alonge et al.
2020). To explore the impact of SVs on gene expression, we per-
formed RNA sequencing (RNA-seq) on four sorghum inbred lines
included in the BAP: BTx623, which is a typical grain sorghum
and also used as the standard reference genome in our study;
RTx430, a grain sorghum inbred with a repeat-rich genome
(Deschamps et al. 2018); and Tracy and Ramada, which are typical
sweet sorghum lines. Gene expression profiles were generated for
both leaf and stem, at three stages: preflowering, flowering, and
milk. Because of the limitation of associating other types of SV
with specific genes, only CNV-type variations (DEL, DUP, INS)
were taken into consideration for this analysis. Hypergeometric
testingwas used for enrichment analysis of differentially expressed
genes (DEGs) in SV-associated genes. The P-values were adjusted
using the Bonferroni correction. More DEGs were associated
with SVs than not. The percentage of SV-associated DEGs, as a per-
centage of all genes, was notably higher than that of the non-SV-
associated DEGs across all tissues and developmental stages, and
the DEGs were significantly enriched in the SV-associated genes
(Fig. 8A; Supplemental Fig. S11A; Supplemental Table S13). SVs
with higher predicted impact on the sorghum genome were asso-
ciated with more DEGs than the SVs with lower predicted impact
(Fig. 8B; Supplemental Fig. S11B); however, the percentage of the
DEGs associated with the lower predicted impact SVs was still

higher than the percentage of non-SV-associated DEGs, with an
average of 9.31% versus 3.21% in leaves and 9.57% versus 4.96%
in stems across different accessions and development stages (Sup-
plemental Table S13). Some previously reported genes of pheno-
typic interest were found among the identified SV-associated
DEG set, such as theDry gene, which is an important gene control-
ling the stempithy/juicy trait (Zhang et al. 2018); SUT5, which en-
codes a sucrose transporter (Cooper et al. 2019); Heading Date 1
(Liu et al. 2015); lipid-transfer protein 1 (Pelèse-Siebenbourg et al.
1994); gs, which is a glutamine synthetase gene that affects growth
and development in sorghum (Urriola andRathore 2015); andAe1,
which is associatedwith grain quality in sorghum (Figueiredo et al.
2010). These findings suggest that SVs are strongly associated with
heritable differential gene expression across varieties, giving a
plausible mechanism by which SVs may have a disproportionate
impact on phenotypic variation.

Discussion

Recent studies have revealed an abundance of large-scale genomic
variants in many plant species, but the effects of SV on global var-
iation of quantitative traits are not yet established.Herewe built an
SV data set based on Illuminawhole-genome data for 363 sorghum
lines. The apparent discrepancy between detected SNP and SV dis-
tribution in the genome (Fig. 1A,B) may illustrate the different
mechanisms of creation andmutation of SVs and SNPs. We exam-
ined in detail the representative 43 cellulosic and 33 sweet
sorghum lines from the BAP. Structural genetic differences under-
lying the divergent evolution of the representative cellulosic and
sweet sorghum lines helped us show the extent of the role played
by SVs in sorghumvariety type differentiation, and provide poten-
tial targets for sorghumbreeding and engineering. GWAS based on
whole-genome SV revealed novel genetic associations and new
candidate genes for sorghum seed pericarp pigmentation, which
were not detected in previous GWAS or our SNP-alone analysis.
Strong and extensive correlations between SVs and sorghum phe-
notypes were observed in subsequent association analysis for 29
additional traits. Formost of these traits, heritability was improved
by the addition of SVs to the extensive set of SNPs, in some cases
substantially so, and in many cases, associations were detected
that were not seen in SNP data alone. RNA-seq analysis of four sor-
ghum lines in two tissues and three developmental stages showed
impacts of SVs on gene expression in the sorghum genome. These
findings show that the SVdata setwe built is a powerful addition to
GWAS analysis in sorghum, providing insights into key loci under-
lying sorghum adaptation and improvement, mechanisms of var-
iation in gene expression, and improved methodologies to
maximize discovery of causative genetic alleles.

Limitations in sensitivity and specificity are perhaps themain
reason why SV analysis has not yet been more widely used in crop
genetics. There are three strategies partly or completely applied to
SV calling in current popular algorithms for short-read sequencing
data sets: read-pair technologies, read-depth methods, and split-
read approaches, all of which are based on aligning sequencing
reads to a reference genome and detecting discordances underly-
ing the SVs (Alkan et al. 2011). Depending on the type of variants
or the features of the underlying sequence at the SV locus, each al-
gorithm has different strengths and disadvantages in terms of SV
detection. The weaknesses can be overcome to some extent by ex-
tracting the consensus of multiple algorithms based on different
strategies in an ensemble approach, as applied here (Zarate et al.
2020). The common limitation of the short-read reference-based
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SV callers is that they are heavily biased against INSs relative to the
reference, because inserted sequences do not appear in the refer-
ence genome (The 1000 Genomes Project Consortium 2010;
Mills et al. 2011). Long-read sequencing technologies and assem-
bly-based methods are therefore necessary to provide complete
coverage of SVs, particularly insertional polymorphisms, and to
fully understand the sequence underlying the different allelic
forms of SV. We show here that the ensemble approach, although
necessarily incomplete, is nonetheless a powerful addition to un-
derstanding causative genetic variation; pangenome construction
using long-read technologies will further validate our results and
help complete the SV data sets in the future.

As a comparator for the short-read based methods, we used
whole-genome alignment of assemblies based on long-read technol-
ogies. TheMUMmer system, as well as the genome sequence aligner
NUCmer included within it, has been widely used for alignment at
genome scale (Marçais et al. 2018).Many approaches for variant call-
ing by assembly comparison use the MUMmer system for the ge-
nome-scale alignment step. In this study, we used MUM&Co
(v3.7) (O’Donnell and Fischer 2020) to call the SVs from five genome
assemblies against BTx623 to provide a ground truth in order to eval-
uate the SV calling approach we deployed. A substantial number of
SVs were identified by the mate-pair-based fusion pipeline that did

not have a clear match with any of the SVs called by MUM&Co.
To cross-reference the accuracy and validity of MUM&Co, we com-
pared the SVs data sets called by MUM&Co to those identified by
Assemblytics (Nattestad and Schatz 2016), which is also derived
from theMUMmer system. The interpretation of complex SVs posed
challenges for these evolving whole-genome comparison methods.
We found substantial discrepancies even between the SVs data sets
called by MUM&Co and by Assemblytics for the five genomes we
compared to the BTx623 reference. The SVs called by Assemblytics
also heavily depend on the “unique sequence anchor” and “maxi-
mum variant size” parameters, whereas MUM&Co can produce
very large artifactual SVs, againmaking themaximum size threshold
a critical parameter. Even when they use the same widely accepted
aligner, the inconsistency and parameter sensitivity of whole-ge-
nome comparison methods limit their utility, especially for larger
variants. We therefore conclude that short-read methods remain a
valid and cost-effective approach for SV detection, with no decisive
disadvantages when using a single reference approach.

SV GWAS and heritability

Importantly, by adding SV data to GWAS analysis, we found addi-
tional significant association peaks. In other words, SNPs alone do

Figure 7. Number of significant genotype–phenotype associations detected in GWAS. Number of significant associations for 28 traits (there were 29
traits in total being analyzed, but there was no significant signal detected for “Brix_milk”) (Supplemental Table S10) detected in GWAS based on the
SV (red columns, the first column per three column set), SNP (blue columns, the second column per three column set), and SNP+ SV (the third stacked
column per three column set, including both SVs [SV#, green] and SNPs [SNP#, orange]) data sets. (2014_ADF) Acid detergent fiber content in 2014,
(2014_Days_to_harvest) days to harvest in 2014, (2014_Dry_Weight) dry weight of biomass in 2014, (2014_Lignin) lignin content in 2014,
(2014_NDF) neutral detergent fiber in 2014, (2014_NFC) nonfibrous carbohydrates content in 2014, (2014_WSC) water-soluble carbohydrates content
in 2014, (2015_ADF) acid detergent fiber content in 2015, (2015_Days_to_harvest) days to harvest in 2015, (2015_Dry_Weight) dry weight of biomass in
2015, (2015_Lignin) lignin content in 2015, (2015_NDF) neutral detergent fiber in 2015, (2015_NFC) nonfibrous carbohydrates content in 2015,
(2015_WSC) water-soluble carbohydrates content in 2015, (ADF) average acid detergent fiber content of 2014 and 2015, (Anthesis_date) date of anthesis,
(Brix_maturity) brix content in maturity stage, (Days_to_harvest) average days to harvest of 2014 and 2015, (Dry_tons_per_acre) dry tons per acre,
(Dry_Weight) dry weight of biomass, (Lignin) lingnin content, (NDF) average neutral detergent fiber content of 2014 and 2015, (NFC) average nonfibrous
carbohydrates content of 2014 and 2015, (Pericarp_pigmentation) pericarp pigmentation, (Photoperiod_sensitivity) photoperiod sensitivity,
(Sorghum_type) sorghum variety type (sweet, grain, and cellulosic), (Stalk_height) stalk height, (Total_fresh_weight) total fresh weight, and (WSC) aver-
age water-soluble carbohydrates content of 2014 and 2015. Data labels on the top of each tripartite column set indicate the percentage of SVs (the value
before the colon) and SNPs (the value behind the colon) detected in SNP+ SV GWAS that were also detected in SV GWAS or SNP GWAS. (NA) There was no
signal detected in SNP+ SV GWAS. The number of identified signals in SNP GWAS was always the lowest compared with other data sets for all phenotypes.
The detected SNP signals in SNP+SVGWASmostly overlappedwith the results of SNPGWAS. However, SVs detected in SV and SNP-SV GWASwere far from
identical. This indicates that association analysis based on all three of the SNP, SV, and integrated SNP+ SV data sets is necessary to dissect genetic mech-
anisms thoroughly.
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not identify all the detectable LD blocks
in association with the target traits. This
violates the basic assumptions of GWAS
(Lipka et al. 2015), because genome-
wide SNP data should provide multiple
polymorphisms within the range of LD
for each causative locus, even if the caus-
ative locus is an SV not detected by SNP
genotyping. However, recent studies
have shown that SVs causing important
trait variation in crops (e.g., soybean pro-
tein and oil content) (Fliege et al. 2022)
are not always in strong LD with sur-
rounding SNPs, because of transposon
excision, illegitimate recombination,
and other mechanisms independent of
the Mendelian assumptions underlying
LD calculations. Notably, by including
SVs in our GWAS, we were not only
able to identify more loci in significant
association with traits but also substan-
tially increased the measured narrow-
sense heritability for some traits, in one
case approaching the maximum value
of one. Previous studies in other species
have also shown the power of SVs to
identify missing heritability (Jeffares
et al. 2017; Alonge et al. 2020). The ca-
pacity of SVs to capturemissing heritabil-
ity could be attributed, at least in part, to
their frequent direct impact on gene ex-
pression. Chiang et al. (2017) performed
the eQTLs mapping using joint analysis
of SVs, SNVs, and indels in humans and
observed a notable abundance of SV-as-
sociated gene expression. Our findings
confirm in sorghum that missing herita-
bility may be at least partially owing to
SVs that are not in strong LDwith any lo-
cal SNPs.

Potential for SV-driven breeding

of sorghum

Sorghum is a good resource for bioenergy
production, and production of lipids is of increasing interest to
remedy the world-wide energy crisis (Sandesh and Ujwal 2021).
To verify the possibility of sorghum as a feedstock for oil produc-
tion by SV-driven breeding, we identified 331 orthologs character-
ized as involving oil synthesis in Arabidopsis (Supplemental Table
S14). We predicted the potential functional effects of SVs on the
oil-related genes. Ninety-six percent (323/331) and 99% (328/
331) of the oil gene orthologs were associated with CNV-type
SVs and rearrangement-type SVs, respectively (Supplemental Ta-
bles S15, S16). Almost half of the orthologs (48%, 159/331) are pre-
dicted to be highly impacted by CNV type SVs (Supplemental Fig.
S12). We found also that DEGs are strongly associated with SVs,
even in populations outside the BAP (Supplemental Figs. S13–
S15; Supplemental Table S17; for details, see Supplemental Results)
These results suggest that bioenergy traits, including oil traits,
could be enhanced via breeding endeavors and that specific target-

ing of SVs via marker-assisted selection could allow modification
of gene expression levels in many cases.

Altogether, our study highlights the complementary contri-
bution of the underexplored SVs in heritability of important traits,
reveals their widespread impacts on gene expression, and shows
their crucial role in shaping population genetic diversity as well
as trait determination. The findings in our study have significant
implications for crop breeding and improvement, underscoring
the indispensable role of SVs in future studies.

Methods

Resequencing data set and phenotypes

The Illumina short-read sequence data set and phenotypes of the
sorghum lines used in this study were collected by the TERRA-

A

B

Figure 8. SVs have a widespread impact on gene expression. (A) SVs have an impact on gene expression
in sorghum leaf across all developmental stages. The differentially expressed gene (DEG) analysis was per-
formed by comparison of expression profiles in RTx430, Tracy, and Ramada with the expression profile in
Tx623 (as control) in leaf tissue at three development stages. The blue and pink bars represent the percent-
ages of SV-associated and non-SV-associated DEGs, respectively. The P-values on the top of SV-associated
DEG bars, which were adjusted using Bonferroni correction, indicate the hypergeometric testing results
for enrichment of DEGs in SV-associated genes. DEGs were significantly enriched in SV-associated genes,
with SV-associated DEGs increased 1.1%∼4.3% compared with non-SV-associated DEGs in different sor-
ghum lines. Only the results in leaf tissuewere showed here. Similar results were also observed in stem tissue
(see Supplemental Fig. S11A,B). (B) SV-associated DEG count changed according to different impact pre-
dictions. Different classes of variant effects were predicted by SnpEff (v5.0) (Cingolani et al. 2012). The ver-
tical axis showed the SV-associated DEG count. The blue, pink, and green bars represent the DEG counts
associated by high impact SVs (impact_HIGH), moderate impact SVs (impact_MODERATE), and low im-
pact SVs (impact_LOW), respectively, in leaf tissue of different sorghum lines in three developmental stages
(preflower, flower, and milk). The P-values show the significance levels between groups (see Methods).
Differential DEG counts between “impact_HIGH” and “impact_MODERATE” were all statistically signifi-
cant. The significant level of DEG counts between “impact_MODERATE” and “impact_LOW” varied de-
pending on lines and stages. In general, higher impact SVs associated more DEGs.
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REF project (https://terraref.org) (Brenton et al. 2016); 339 sor-
ghum lines with population information were considered for pop-
ulation genetic analysis. Information for each line is included in
Supplemental Table S1.

Plant tissue and sequencing

Leaves from the seedlings of sorghum were sampled in the green-
house. At least 10 g of leaf tissue for each sorghum accession was
sent to the Roy J. Carver Biotechnology Center at the University
of Illinois at Urbana-Champaign. Raw HIFI sequence data in
BAM format were generated by the PacBio Sequel IIe platform.

Variant calling

SNPs were called using the Sentieon (version 202010.01) (Kendig
et al. 2019) DNA-seq pipeline. Ensemble variant calling using
five independent tools based on different algorithms was used to
call SVs. For details, see the Supplemental Methods and Code.

De novo assembly and comparison

BAM files were converted to FASTQ files by SAMtools (Li et al.
2009). Reads <1 kb were identified and filtered by SeqKit tools
(Shen et al. 2016). Genome de novo assembly was performed by
hifiasm (Cheng et al. 2021). Genome assembly quality was evalu-
ated by quast (Gurevich et al. 2013) and BUSCO (Simão et al.
2015). MUM&Co (v3.7) (O’Donnell and Fischer 2020) was used
to evaluate SVs based on assembly comparison.

The heatmap of SV detection frequency

The heatmap of SV detection frequencywas built individually in 1-
Mbp sliding windows for the representative 43 cellulosic and 33
sweet sorghum lines to identify regions with elevated genetic dif-
ferentiation. To reduce the noise from the background, SVs that
were present in both cellulosic sorghum lines and sweet sorghum
lines were excluded individually. The P-values for the difference
tests were adjusted using Bonferroni correction; significance hy-
pervariable regionswere defined as adjusted P-value <0.01; and av-
erage SV difference between two groups was ≥20.

Heritability estimation

LDAK (v5.1) (Zhang et al. 2021) was used to estimate the trait her-
itability explained by the SNP and SV polymorphisms.

Population genetics analysis

SNPRelate (Zheng et al. 2012) was used for data handling and for-
mat conversion. SVs were converted to present–absent binary rep-
resentation before conducting PCA. FST was calculated by using
VCFtools (v0.1.16) (Danecek et al. 2011). PCA was performed us-
ing the R function prcomp() (R Core Team2022). Aminimum span-
ning tree was created using the R package Poppr (Kamvar et al.
2014). SNPhylo (Lee et al. 2014) was used to create maximum like-
lihood phylogenetic trees.

GWAS

GWAS was performed by GAPIT3 using the compressed mixed
linear model (CMLM) model (Zhang et al. 2010; Wang and
Zhang 2021). For details on SV association methods, see the
Supplemental Methods.

Haplotype analyses

The R package geneHapR (Zhang et al. 2023a) was used to perform
analyses.

RNA-seq analysis

Tissues samples for RNA were collected from plants grown in the
field at the Energy Farm at the University of Illinois at Urbana-
Champaign in 2018. RNA-seq data were analyzed using the
DESeq2 package (Love et al. 2014), and plots were drawn by
ggplot2 (Wickham 2016).

Data access

The raw sequencing data for the 363 TERRA-REF lines are available
at Data Commons (https://datacommons.cyverse.org/browse/
iplant/home/shared/terraref/genomics/raw_data/bap/resequenci
ng). The raw gene expression data are available at JGI Genome
Portal (https://genome.jgi.doe.gov/portal/SorbicEProfiling_31_F
D/SorbicEProfiling_31_FD.info.html and https://genome.jgi.doe
.gov/portal/SorbicEProfiling_30_FD/SorbicEProfiling_30_FD.info
.html). The SV and SNP data sets used in this study are available as
Supplemental Material.
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