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Motion-Robust Quantitative Multiparametric Brain MRI with 
Motion-Resolved MR Multitasking

Sen Ma1, Nan Wang1, Yibin Xie1, Zhaoyang Fan1,2, Debiao Li1, Anthony G. Christodoulou1,*

1.Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

2.Department of Radiology, Keck School of Medicine, University of Southern California, Los 
Angeles, CA, USA

Abstract

Purpose: To address head motion in brain MRI with a novel motion-resolved imaging 

framework, with application to motion-robust quantitative multiparametric mapping.

Methods: MR Multitasking conceptualizes the underlying multiparametric image in the presence 

of motion as a multidimensional low-rank tensor. By incorporating a motion-state dimension into 

the parameter dimensions and introducing unsupervised motion-state binning and outlier motion 

reweighting mechanisms, the brain motion can be readily resolved for motion-robust quantitative 

imaging. A numerical motion phantom was used to simulate different discrete and periodic motion 

patterns under various translational and rotational scenarios, as well as investigate the sensitivity 

to exceptionally small and large displacements. In vivo brain MRI was performed to also evaluate 

different real discrete and periodic motion patterns. The effectiveness of motion-resolved imaging 

for simultaneous T1/T2/T1ρ mapping in the brain was investigated.

Results: For all 14 simulation scenarios of small, intermediate, and large motion displacements, 

the motion-resolved approach produced T1/T2/T1ρ maps with less absolute difference errors 

against the ground truth, lower RMSE and higher SSIM of T1/T2/T1ρ measurements compared to 

motion-removal and no motion handling. For in vivo experiments, the motion-resolved approach 

produced T1/T2/T1ρ maps with the best image quality free from motion artifacts under random 

discrete motion, tremor, periodic shaking and nodding patterns, compared to motion-removal and 

no motion handling. The proposed method also yielded T1/T2/T1ρ measurement distributions 

closest to the motion-free reference, with minimal measurement bias and variance.

Conclusion: Motion-resolved quantitative brain imaging is achieved with Multitasking, which is 

generalizable to various head motion patterns without explicit need for registration-based motion 

correction.

*Corresponding author: Anthony G. Christodoulou, 8700 Beverly Blvd, PACT 400, Los Angeles, CA 90048, 
anthony.christodoulou@cshs.org, phone: 3104236754. 

Data/Code Availability
The Multitasking image reconstruction software in the form of MATLAB p-code is available from the corresponding author upon 
reasonable request. The data supporting the findings of this study (both in the main text and in the Supporting Information) are 
available from the corresponding author upon reasonable request.
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1. Introduction

Motion is one of the most challenging issues in clinical brain MRI, especially for the elderly 

or those with specific neurological syndromes (i.e., Parkinson’s disease and epilepsy). 

In fact, nearly 30% of inpatient MR scans were found to suffer from motion artifacts1. 

Intra-scan motion causes blurring and ghosting artifacts that may lead to a loss of valuable 

diagnostic information, whereas inter-scan motion produces misaligned images that pose 

challenges for clinical interpretation. The most common strategy to deal with motion 

is reacquisition, but it greatly lengthens the scan time, costing approximately $115,000 

per scanner per year for hospitals1. Other approaches to handling brain motion include 

the use of external hardware such as an optical tracking system2 and active marker 

headband3, navigator- and image-based motion tracking4-6, prospective motion correction4,7, 

and retrospective motion correction4,8,9. However, despite all these efforts, there is still no 

single method generalizable enough to tackle all the motion issues, but rather a toolbox of 

partial solutions depending on specific imaging experiments and motion types10.

Multiparametric mapping techniques, which quantify relaxation (e.g., 

T1/T2/T2*/QSM/T1ρ), diffusion (e.g., ADC), perfusion and vascular permeability 

parameters, among others, measure imaging biomarkers with complementary tissue 

information for early detection, diagnosis, and treatment monitoring of various diseases. 

However, these techniques are especially prone to motion due to the lengthy scan times and 

need for multiple image sets, limiting their applicability in clinical practice. Head fixation 

with cushions has been used to reduce motion during mapping sequences11, but doesn’t 

completely eliminate motion. The impact of motion on multiparametric maps has been 

investigated in the context of MR fingerprinting (MRF)12, where motion robustness has been 

found to vary with the timing and type of motion. For example, 2D MRF with data rejection 

and motion correction have both shown limitations in handling through-plane motion13,14. 

Motion robustness and motion correction have been investigated for 3D MRF but are either 

limited to the very early part of data acquisition15 or abrupt motion only16.

In recent years, motion-resolved imaging has drawn significant interests as a novel approach 

for motion handling. XD-GRASP groups continuously acquired radial spokes into multiple 

cardiac and/or respiratory motion states, thus introducing extra motion dimensions along 

which the first-order finite differences between adjacent motion states is exploited for 

multidimensional image reconstruction17. Our group recently developed a multidimensional 

imaging framework named MR Multitasking, which allows for simultaneous acquisition 

of multiple tissue parameters by conceptualizing each parameter as a different “time 

dimension”18. This framework has inherent advantages for handling motion, as motion­

related time dimensions can be included in addition to the parameter dimensions, thus 

achieving motion-resolved quantitative imaging by exploring multidimensional signal 
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correlation along and across different time dimensions (including tissue parameter 

dimensions and motion dimensions). Elastic physiological motion (e.g., cardiac contraction 

and dilation, respiration) can be resolved in moving organs, enabling ECG-free, free­

breathing T1, T2, and ECV mapping in the heart18,19, and free-breathing whole-abdomen 

DCE imaging20. In organs with less motion such as carotid arteries, breast, and brain, abrupt 

motion detection and motion rejection have also been efficiently incorporated into this21-24. 

No external motion-monitoring devices are required with this framework.

In this work, we propose to handle head motion in brain MRI in a motion-resolved manner 

extending our previously proposed Multitasking approach for motion-resolved cardiac 

imaging18 to brain simultaneous T1, T2, and T1ρ quantification22, showing that motion­

resolving with Multitasking is generalizable to other tissue parameter combinations and 

organs such as the brain, where self-gated motion-resolved imaging is often overlooked as 

a viable technique. Unlike spontaneous physiological motion, head motion could potentially 

be more complicated with various distinct patterns. We demonstrate that the proposed 

solution is generalizable to translation, rotation, discrete motion, and periodic motion 

without explicit need for image registration-based motion correction. By incorporating a 

motion-dedicated dimension and multiple parameter dimensions into this multidimensional 

framework, alongside unsupervised motion-state clustering and outlier reweighting, brain 

motion can be readily resolved for motion-robust quantitative imaging by modeling the 

signal correlation along this motion-dedicated dimension (i.e., between different motion 

states). A numerical motion phantom is used to investigate both discrete motion and periodic 

motion under different translational and rotational motion scenarios. In vivo experiments are 

also performed for both discrete and periodic motion patterns.

2. Methods

2.1. Image model

We represent an multiparametric MR image as x(r, t1, t2, … , tN, s), a multidimensional 

function of spatial location r = [x,y,z], motion-state index s, and N time-varying sequence 

variables ti with i = 1,2, … , N encoding different tissue parameters (i.e., T1/T2/T2*/T1ρ/

ADC, etc.). The “time dimensions” s and {ti}i = 1
N  both vary with real elapsed time t during 

the experiment as s(t) and {ti(t)}i = 1
N , but we will suppress their time dependence for notional 

simplicity unless otherwise required.

Due to multidimensional spatiotemporal correlation, x can be efficiently represented in 

low dimensional subspaces through partial separability of space and each of the “time 

dimensions” s and {ti}i = 1
N 25-27:

x(r, t1, t2, …, tN, s) = ∑j = 1
J uj(r)φj(t1, t2, …, tN, s) (1)

φj(t1, t2, …, tN, s) = ∑j = 1
J ∑l1 = 1

L1 …∑lN = 1
LN ∑k = 1

K cjl1…lNkv1, l1(t1
)…vN, lN(tN)zk(s)

(2)
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where {uj(r)}j = 1
J  are spatial basis functions, cjl1…lNk are the elements of a core tensor 

C, {vi, li(ti)}i = 1, li = 1
N, Li  are N sets of temporal basis functions with respect to each 

parameter dimension, {zk(s)}k = 1
K  are temporal basis functions describing motion, and 

{φj(t1, t2, …, tN, s)}j = 1
J  spans the multidimensional temporal subspace comprising all the 

dynamic processes.

The image function x can be rearranged into an (N+2)-way tensor X with elements 

Xm1m2…mN+2 = x(rm1, tm2, … , tmN+1, smN+2. X is a low-rank tensor (LRT) according 

to eqs. (1-2) whose structure can be explicitly expressed in the matrix form of the Tucker 

tensor decomposition28:

X(1) = UΦ (3)

Φ = C(1)(Z ⊗ VN ⊗ … ⊗ V1)T (4)

where X(1) and C(1) are the mode-1 unfolding of X and C, U is the spatial factor matrix, 

Z and {Vi}i = 1
N  are temporal factor matrices whose rows are temporal basis functions that 

span the respective temporal subspaces, Φ is the combined multidimensional temporal factor 

matrix, and ⊗ stands for the Kronecker product.

We specifically note that in this framework, head motion is modeled with the motion­

dedicated time dimension, and is represented with basis functions {zk(s)}k = 1
K  in a low­

dimensional subspace. Motion-resolved imaging is thus achieved by modeling the signal 

correlation between different motion states along this motion-dedicated dimension, without 

the need for image registration-based motion correction between different motion states in 

the sense of deformation, translation, and rotation.

2.2. Sequence and sampling strategy for Multitasking quantitative imaging

Many pulse sequences are compatible with the Multitasking framework for simultaneous 

multiparametric mapping. The most common sequences are magnetization preparation­

based (i.e., T2-preparation, T1ρ-preparation, diffusion-preparation, etc.) saturation recovery 

or inversion recovery sequences18-24. Fast low angle shot (FLASH) readouts fill the recovery 

period between two preparations. K-space data are continuously collected and the entire 

dataset of k-space lines can be seen as the union of two non-overlapping subsets: 1) 

auxiliary training data Dtr are periodically collected every a few readouts either at the 

center k-space line for Cartesian sampling, or using the 0° spoke for radial sampling for 

motion identification and the estimation of Φ;18-24 2) the rest of the k-space lines belongs to 

imaging data Dimg, which traverses the entire k-space with either Gaussian-density random 

Cartesian trajectory or stack-of-stars trajectory for the estimation of U18-24.

2.3. Image reconstruction

Motion-resolved imaging is achieved following four stages serially (Figure 1).
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2.3.1. Single-time 3D navigator (3DNAV) image reconstruction—Prior to 

forming the multidimensional image x(r, t1, t2, …, tN, s), we reconstruct a time-resolved 

3D navigator (3DNAV) image xrt(r,t) with only a single elapsed time dimension t. xrt(r,t) 
displays the MR image as it occurred in “real-time” during the scan and is related to the 

multidimensional image as xrt(r,t) = x(r(t), t1(t), t2(t), … , tN(t), s(t)). With only a single 

time dimension t, the LRT model is reduced to Xrt = UrtΦrt where Φrt contains the real-time 

temporal basis functions, and Urt is the real-time spatial factor matrix. The images in Xrt 

contain a mixture of different image dynamics (relaxation/diffusion/motion, etc.), which 

will then be used for motion identification and clustering, and can be reconstructed using a 

low-rank matrix imaging strategy27:

Urt = arg minUrt‖Dimg − Ω(FSUrtΦrt)‖F
2

(5)

where Ω performs k-space sampling, F performs spatial encoding, S performs multichannel 

encoding, and ∥·∥F denotes the Frobenius norm.

2.3.2 Rigid motion state clustering—The last inversion time of each recovery period 

(i.e., immediately before the next preparation pulse is played) is extracted from Xrt, creating 

a subset denoted as Xs, for motion identification and motion state clustering. In this work, 

we assume that all the images within the same recovery period belong to the same motion 

state as the last inversion time of this recovery period, although multi-contrast clustering18 is 

an option when faster motion time scales are desired. All images in Xs have similar image 

contrast to minimize the effect of the image contrast variation on the subsequent motion 

clustering, as signals from most brain tissues are close to the FLASH steady state by the last 

inversion time.

Xs = [xs, 1, xs, 2, …, xs, Ns] ∈ ℂNv × Ns is organized such that the ith column xs,i represents the 

vectorized 3D image at the last inversion time of the ith recovery period, where Nv and 

Ns denote the number of voxels and recovery periods, respectively. A k-means clustering 

algorithm29 is performed on Xs, such that the rows of Xs corresponds to variables and the 

columns of Xs corresponds to observations, to identify different motion states. To select the 

number of motion states/clusters K0, the algorithm is performed for K0=1,2,…,20, and for 

each K0 we calculate the sum of Euclidean distances between each feature vector and its 

corresponding centroid:

dK0 = ∑k0 = 1
K0 ∑xs, i ∈ Ck0 xs, i − ck0 2, i ∈ {1, 2, …, Ns} (6)

where ck0 is the centroid of the k0th cluster Ck0. We choose the K0 heuristically at 

the maximal curvature of the (K0, dk0) plot, which bears analogy to the well-known “L­

curve” method for choosing the regularization parameter for ill-posed convex optimization 

problems30. Example (K0, dk0) plots are shown in Supporting Information Figure S2, S3 and 

S8.

Supporting Information Video S1 demonstrates the motion clustering process in detail. 

Xrt contained 2760 frames (for display purpose, only 1/5, 552 frames, were shown) with 
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varying image contrasts (e.g., mixed relaxometry weightings). Xs was taken from the last 

inversion time of each recovery period, creating 184 frames with similar contrasts. These 

184 frames were clustered into 4 different motion states. After that, the motion bins of the 

2760 frames in Xrt were directly obtained by extending the bins of the 184 frames in Xs with 

respect to each recovery period. This resulting motion bins were then used to construct the 

motion-dedicated dimension so that indices along this dimension represented the individual 

motion states that occurred throughout the scan. Therefore, the motion-related variance of 

the data was accounted for by this motion-dedicated time dimension.

2.3.3 Multidimensional tensor subspace estimation—In this stage, we estimate 

the temporal factor matrices Z and {Vi}i = 1
N , as well as the unfolded core tensor C(1). 

Together, they form the multidimensional temporal factor matrix Φ according to Eq. (4).

First, without loss of generality, we denote V1 as the temporal basis functions for the T1 

relaxation dimension. Because T1 relaxation is physically governed by the Bloch equations, 

V1 can be pre-determined from a training dictionary of feasible FLASH signal curves 

constructed using varying tissue and imaging parameters (TR, T1, flip angle, etc.)18,21,22. 

The SVD of this dictionary yields the factor matrix V1.

Second, the training data matrix Dtr ∈ ℂ(Nx × Nc) × Nt stacks all the training lines in the 

elapsed time order (Nx, Nc, Nt represent the readout matrix size, the number of coils, 

and the number of training lines respectively). These training lines can be rearranged by 

mapping the elapsed time indices to the multidimensional time indices (i.e., inversion time, 

preparation index, the identified motion states), suggesting a small-scale auxiliary training 

tensor Atr in the (k, t1, t2, … , tN, s)-space, i.e., Atr ∈ ℂ(NxNc) × Nt1 × Nt2 × … × NtN × K0, 

where Nt1, Nt2, … represent the size of each time dimension. However, Atr is likely to 

be incomplete and contain missing entries (i.e., zero elements), as not all contrast/motion 

combinations are experienced throughout the entire scan. We propose to complete the 

undersampled Atr (i.e., fill the missing entries) via a Bloch-constrained small-scale LRT 

completion problem18,21,22:

Atr = arg minAtr, (2) ∈ range(V1)‖[Dtr − M(Atr)]Wr‖F
2 + λ∑i ≠ 2‖Atr, (i)‖∗ + R

(Atr)
(7)

where M(·) is the sampling mask applying to Atr that preserves its non-missing entries 

(i.e., those entries corresponding to the ti/s combinations that are actually experienced 

in Dtr)18,21,22, Atr,(i) is the mode-i unfolding of Atr, ∥·∥* denotes the nuclear norm, λ 
weights the nuclear norm penalties, and R(·) applies regularization such as total variation 

(TV) along the motion-state dimension. Atr,(2) ∈ range(V1) enforces that the T1 relaxation 

temporal subspace is spanned by the predetermined V1, where the second dimension of 

Atr represents T1 relaxation18,21,22. Wr is a diagonal weighting matrix that reweights each 

auxiliary k-space line to reduce the effect of misidentified or outlier motion. Here Wr is 

calculated from the real-time auxiliary data residual R:
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R = Dtr − DtrΦtr
†Φrt (8)

and

W r, jj = (∑i = 1
Nx × Nc ∣ Rij ∣2 )−1 ∕ 2 (9)

The unfolded core tensor C(1) and the remaining temporal factor matrices can be quickly 

extracted from the completed Atr via high-order SVD31. Specifically, {Vi}i = 1
N  and Z 

can directly be found as the {Li}i = 1
N  and K most significant left singular vectors of 

{Atr, (i)}i = 2
N + 2, while C(1) is found as the J most significant right singular vectors of Atr,(1)·(V1 

⊗ V2 ⊗ … ⊗ VN ⊗ Z).

2.3.4 Spatial factor estimation—The final stage estimates the spatial factor matrix U 
by fitting the multidimensional temporal factor matrix Φ to the imaging data, with a similar 

motion-weighting scheme:

U = arg minU [Dimg − Ω(FSUΦ)]Wt F
2 + Rs(U) (10)

where Rs(·) applies spatial regularization that leverages compressed sensing. Wt plays a 

similar role to Wr to also tackle the misidentified or outlier motion, but reweights each 

individual imaging readout rather than each training readout. Wt is derived using Eqs. (7-8), 

but replacing the real-time temporal factor Φrt with the multidimensional temporal factor Φ 
with columns reordered to match the timings of Dimg.

The final image tensor can be reconstructed as X(1) = UΦ. Figure 2 provides a graphical 

demonstration of the multidimensional image tensor with the application of motion-resolved 

T1, T2, and T1ρ mapping. There are four time dimensions in this tensor representing T1 

relaxation, T2 relaxation, T1ρ relaxation, and motion-states.

2.4. Motion simulation

One set of 3D whole-brain PD/T1/T2/T1ρ maps22 was used to generate a numerical 

phantom for motion simulation. K-space data corresponding to a 15min Multitasking scan 

were simulated, containing 96000 k-space lines in total, which followed our T1/T2/T1ρ 
mapping sequence22. Four T2-prepared inversion recovery (T2-IR) preparations with 

different durations (τ=[14,36,60,80]ms) and four T1ρ-prepared inversion recovery (T1ρ­

IR) preparations with different spin-lock times (τSL=[15,41,65,91]ms) were cycled 50 

times throughout the scan, creating 50x8=400 recovery periods (i.e., Xs contains 400 

image frames) where each one contained Nseg=240 lines. A fixed sampling pattern was 

pre-generated according to Section 2.2, which was subsequently used for all simulation 

scenarios: specifically, Dtr was periodically sampled at the center k-space location (i.e., 

ky=kz=0) every 8 samples; and the rest of the data formed Dimg, which was sampled 

following Gaussian variable density along ky and kz. The simulation pipeline is as follows:
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For each time point, i.e., t from 1 to 96000:

1. Determine the preparation index 

nprep = (t − Nseg × 8 × t
Nseg × 8 − 1 ) ∕ Nseg , and the readout index n = t − 

⌊(t − 1)/Nseg⌋×Nseg, where ⌊·⌋ and ⌈·⌉ denotes the flooring and ceiling operators. 

nprep ranges from 1 to 8 and determines which τ or τSL to use for the current t. n 
ranges from 1 to Nseg and determines the current inversion time.

2. Convert the 3D PD/T1/T2/T1ρ maps to a 3D multi-contrast image voxel-by­

voxel, following the signal equation22:

St = PD ⋅ 1 − e− TR
T1

1 − e− TR
T1 cos(α)

[1 + Be−
τ(nprep)

T2 e−
τSL(nprep)

T1ρ − 1 e− TR
T1 cos(α)

n
]sin

(α)
(11)

where α denotes the FLASH flip angle, and B represents the effective inversion 

efficiency independent of T2 and T1ρ. Both α and B are fitted parameters and 

come with our numerical phantom maps.

3. Add motion to the 3D multi-contrast image depending on the current simulated 

motion scenario (which will be described in detail later).

4. Convert the 3D multi-contrast motion image to a 4D multi-contrast, multi­

channel motion image by the multiplication of actual sensitivity maps originally 

calculated during the original reconstruction of the numerical phantom source 

images.

5. Perform 3D spatial Fourier transform on the 4D image to generate 4D k-space.

6. Add Gaussian white noise to the real and imaginary parts of the k-space data, 

yielding SNR≈30 (similar to the original Multitasking images used to generate 

the numerical phantom).

7. Take a single multi-channel k-space line from the 4D k-space at each time point 

according to the prescribed sampling pattern.

We evaluated the proposed motion-resolved technique under 14 motion scenarios including 

discrete motion and periodic motion patterns with different combinations of translational 

and rotational displacements. For each scenario, the corresponding k-space data was 

simulated according to the above pipeline. These 14 scenarios are described in detail in 

Supporting Information. Here we specifically highlight two scenarios that are generalizable 

to frequently occurred head motion patterns (as a notation, in the following text, we use (Tx, 

Ty, Tz) to represent the 3 translational parameters with unit millimeter, and (Rx, Ry, Rz) to 

represent 3 rotational parameters with unit degree):

Mixed discrete/periodic motion with regular motion scale (scenario #10, 
representing abrupt switch of head position and periodic nodding and/or 
shaking32): the entire 15min scan was equally divided into 5 periods (3min each). The 
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1st, 3rd, and 5th periods each contained a distinct motion state, where for each motion state, 

(Tx, Ty, Tz) and (Rx, Ry, Rz) were randomly selected from [−8mm,8mm] and [−8°,8°] – 

which are regular motion scales according to the literature2,3,14,32. The 2nd and 4th periods 

each contained one periodic motion, where Rz linearly transited from −8° to 8° back and 

forth.

Pseudo-continuous non-periodic motion with small motion scale (scenario 
#13, representing involuntary motion caused by breathing and/or feet 
wiggling2,32,33): the 15min simulated scan was divided into 25 periods (0.6min each). 

A rotation range of [0°,3°] was divided into 25 intervals to produce small rotational motion 

scale. The i-th period was assigned with Rz = ∕25
3i  (deg), and the rest of the motion 

parameters (i.e., Tx, Ty, Tz and Rx, Ry) were set as 0. This agreed with the literature in terms 

of small-scale involuntary motion2,32,33.

A comprehensive description of the 14 simulation scenarios are summarized in the online 

Supporting Information. The evolution of 6 motion parameters for each scenarios is shown 

in Supporting Information Figure S1. The simulated k-space data were used for image 

reconstruction. For each scenario, we went through the estimation of K0 and the motion state 

clustering process without incorporating any knowledge of the ground truth motion.

2.5. In vivo experiments

Four healthy volunteers (2 females, age 36.3±16.0 years) were scanned on a 3T 

clinical scanner (Biograph mMR, Siemens Healthineers, Erlangen, Germany) using a 

20-channel head coil. The study was approved by the institutional review board of our 

institution. Our T1/T2/T1ρ mapping sequence was implemented22. Scan parameters were: 

FOV=240x240x140mm3, voxel size=1.0x1.0x3.5mm3, FLASH TR/TE=9.4/4.9ms, FLASH 

flip angle=5°. Four T2-IR and four T1ρ-IR preparations were cycled 23 times throughout 

the scan, leading to a scan time of 7min with 23x8=184 recovery periods (i.e., Xs contains 

184 image frames). The data sampling employed 1 training line (Dtr) collected at the center 

k-space followed by 15 imaging lines (Dimg) collected with Gaussian variable density along 

ky and kz.

The Multitasking sequence was performed three times for each subject. A 3.5s low­

resolution calibration scan preceded each Multitasking scan for sensitivity map estimation 

using ESPIRiT34. For the first scan, the subject was instructed to remain still, generating 

a motion-free scenario as a reference. For the second scan, the subject was instructed 

to perform discrete motion more than twice during the 7min. The subject was allowed 

to decide for themselves at which point during the 7min they would move, how many 

times they would move, which direction they would move each time, and the amount of 

displacement. For the third scan, the subject was instructed to perform periodic motion for 

at least 2min during the 7min. The subject was allowed to decide for themselves at what 

point during the 7min they would start moving, how long they would move, whether they 

performed periodic shaking or nodding, and the amount of displacement. Subjects were not 

instructed to return to the original position after the movement, allowing scenarios such as 

discrete plus periodic motion. The subjects were given as much freedom in terms of the 
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motion as possible, in order to mimic a real clinical scenario and to rule out any prior 

knowledge about the specific motions each subject would perform. The volunteers were 

instructed on the two types of motion before entering the scan room.

2.6. Evaluation

Image reconstructions were performed on a Linux workstation with a 2.70GHz dual 12­

core Intel Xeon processor equipped with 256GB RAM and running MATLAB 2016b 

(MathWorks, Natick, Massachusetts). The motion simulation time (i.e., steps 1–7 in section 

2.4) was ~6.1h per simulation scenario regardless of the motion pattern. The image 

reconstruction time was ~1.6h per dataset (both for simulated data and in vivo data) 

regardless of the motion pattern. The ranks of different parameter dimensions were chosen 

as L1=5, L2=4, and L3=4, respectively, the rank of the motion dimension K = K0, and the 

rank of the spatial dimension J was chosen between 5 to 20, depending on the motion 

patterns. It is expected that more complicated motion patterns would lead to higher J. 

T1/T2/T1ρ maps were obtained from the reconstructed image tensor X(1) following Eq. 

(11) using the MATLAB nonlinear least-squares solver (lsqnonlin) based on the trust-region­

reflective algorithm35.

For both simulation and in vivo experiments, three motion-handling reconstructions were 

performed on each dataset: i) no motion handling, where all k-space data were assigned to a 

single motion state (i.e., K0=1); ii) motion-removal, where only the k-space data belonging 

to the most populous motion bin were used for reconstruction, and the rest of the k-space 

data were discarded; iii) motion-resolved, as described in Section 2.2. The T1/T2/T1ρ maps 

were obtained for each reconstruction.

For simulation experiments, the numerical phantom itself was used as the reference images 

for subsequent comparisons. Root-mean-squared-error (RMSE) and structural similarity 

index measure (SSIM) of the reconstructed T1/T2/T1ρ maps against the reference images 

were calculated for each reconstruction in each simulated scenario. The motion state 

corresponding to the same spatial position as the reference images were used for T1/T2/T1ρ 
fitting.

For in vivo experiments, the most populous motion state was used for T1/T2/T1ρ fitting (i.e., 

might be misaligned from the reference). For each subject, an axial slice around the middle 

portion of the brain where the ventricle could be clearly seen while the putamen was still 

invisible was chosen for ROI analysis. White matter (WM) and cortical gray matter (GM) 

ROIs were obtained by thresholding the reconstructed image tensor at a fixed inversion time 

(1219ms) along the T1 time dimension22. Quantitative WM/GM T1/T2/T1ρ measurements 

were calculated and compared with the motion-free reference for each reconstruction in each 

subject.

3. Results

3.1. Simulation results

Mixed discrete/periodic motion with regular motion scale: Supporting Information 

Figure S2 shows the “L-curve”-like (K0, dK0) plot, where K0=7 was chosen at the maximum 

Ma et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



curvature, and the associated binning of 7 motion states. Figure 3 shows the comparison of 

the three motion-handling reconstruction methods. Substantial blurring and almost complete 

loss of image features were observed if no motion handling was done, with exceptionally 

large absolute difference errors in T1/T2/T1ρ against the reference maps. With motion­

removal, most artifacts disappeared and image features were recovered. The proposed 

motion-resolved solution not only improved the image quality, but also further reduced 

the absolute difference errors in T1/T2/T1ρ compared to motion-removal. Supporting 

Information Video S2 shows the example Xs images and the identified 7 motion states.

Pseudo-continuous non-periodic motion with small motion scale: Supporting 

Information Figure S3 shows the “L-curve”-like (K0, dK0) plot and the motion state 

binning results. K0=5 was chosen at the maximum curvature rather than the ground 

truth K0=25. The clustered 5 motion states were approximately equal in duration. 

Figure 4 shows the comparison of the three motion-handling reconstruction methods. For 

small-scale displacements, without motion handling, the blurring artifacts could still be 

observed especially in GM/WM boundaries, leading to the highest absolute difference 

errors in T1/T2/T1ρ maps. Both motion-removal and motion-resolved approaches produced 

T1/T2/T1ρ maps with sharp tissue structures and good image quality, while the motion­

resolved solution yielded notably less absolute difference errors than simple motion­

removal. Supporting Information Video S3 shows the example Xs images and the identified 

5 motion states.

Aside from the two representative motion scenarios, other simulation scenarios were also 

investigated (Supporting Information Figures S4-S9; Supporting Information Videos S4­

S8). The motion-resolved method demonstrated superior performance over motion-removal 

and no motion handling, producing the best reconstructed T1/T2/T1ρ image quality free 

from motion-induced ghosting artifacts and the least absolute difference errors against the 

reference maps, under all simulation scenarios with various combinations of translation and 

rotation.

RMSE and SSIM of the reconstructed T1/T2/T1ρ against the reference images for all 14 

simulation scenarios were shown in Figure 5. For motion-resolved, motion-removal, and no 

motion handling respectively, RMSE and SSIM of T1 were (17.20±7.27ms, 46.10±18.23ms, 

168.40±72.89ms) and (0.9758±0.0190, 0.9301±0.0381, 0.7565±0.0869); RMSE and SSIM 

of T2 were (1.47±0.46ms, 2.77±0.66ms, 9.73±5.23ms) and (0.9476±0.0269, 0.9069±0.0332, 

0.7148±0.0916); RMSE and SSIM of T1ρ were (1.57±0.48ms, 2.88±0.76ms, 11.06±6.96ms) 

and (0.9492±0.0264, 0.9087±0.0339, 0.7074±0.0945).

3.2. In vivo results

Supporting Information Figure S10 shows the results under moderate discrete motion (as 

likely to occur in real clinical cases) from one subject. Corresponding Xs images and the 

identified K0=3 motion states are shown in Supporting Information Video S9. The proposed 

method restored T1/T2/T1ρ maps resembling the motion-free reference, while apparent 

blurring and ghosting artifacts were observed without motion handling. Motion-removal 

produced biased parameter maps and loss of image features.
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Figure 6 shows the results under large discrete motion (less likely to occur in real clinical 

cases) from one subject. Corresponding Xs images and the identified K0=4 motion states 

are shown in Supporting Information Video S10. Despite the notably large translation and 

rotation in this scenario, motion-resolved T1/T2/T1ρ maps were recovered with good image 

quality. Motion-removal produced substantially biased parameter maps and loss of image 

features, while notable motion artifacts were seen without motion handling.

One volunteer performed “tremor-like” head motion during their discrete motion session. 

More than 15 movements were performed in 7min, which were clustered into K0=6 

motion bins shown in Supporting Information Video S11 along with the Xs images. This 

case resembled patient movement with Parkinson’s disease or epilepsy. Motion-resolved 

T1/T2/T1ρ maps were with good image quality and sharp tissue structures. Ghosting 

artifacts were seen without motion handling. Motion-removal led to blurring and substantial 

loss of image features. (Figure 7).

Supporting Information Video S12 and S13 demonstrate two periodic motion scenarios 

on two subjects and the respective motion state clustering results – S12 corresponds to 

periodic shaking (K0=4) and S13 corresponds to periodic nodding (K0=4). For both cases, 

the proposed method was effective in recovering T1/T2/T1ρ maps with the best image 

quality, consistent with the performance as in discrete motion scenarios (Figure 8; Figure 9).

Figure 10 shows the quantitative T1/T2/T1ρ measurements of WM and GM of all four 

subjects. On average across all subjects (considering both motion types), no motion 

handling, motion-removal, and motion-resolved produced: 7.0%, 6.0%, 0.6% absolute 

difference against the reference T1 mean, and 186.6% higher, 71.8% higher, 4.7% lower 

than the reference T1 standard deviation; 7.8%, 7.0%, 1.0% absolute difference against the 

reference T2 mean, and 292.6% higher, 80.1% higher, 8.8% higher than the reference T2 

standard deviation; 4.9%, 6.9%, 0.9% absolute difference against the reference T1ρ mean, 

and 253.6% higher, 94.4% higher, 1.5% higher than the reference T1ρ standard deviation.

4. Discussion

We proposed a motion-resolved solution to quantitative multiparametric brain MRI using 

the Multitasking framework. This framework conceptualizes overlapping image dynamics 

as different time dimensions. An LRT image model is used to simultaneously resolve 

motion and other tissue parameters by exploiting the spatiotemporal correlation of the 

multidimensional image function. Motion simulations were performed for various scenarios 

including discrete motion and periodic motion that involved different combinations of 

translation and rotation, as well as a total-displacement exploration over both large and 

small translations and rotations. In vivo experiments were conducted to investigate the 

performance under discrete and periodic motion. The proposed method handled both cases 

well by producing parametric maps with good image quality free from motion artifacts and 

quantitative measurements closely resembling the motion-free reference measurements.

Popular techniques to address brain motion include motion tracking using either 

external hardware2,3 or navigator/image signals4-6, prospective and retrospective motion 
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correction4,7-9. The proposed method does not rely on external motion-monitoring devices, 

which simplifies the scanning workflow. The head motion patterns throughout the scan 

were identified and binned into different motion states via unsupervised clustering. The 

dynamic head motion process was then captured with one motion-dedicated time dimension 

and motion-resolved imaging was achieved by modeling the signal correlation between 

different motion states along this dimension, so that there was no explicit need for image 

registration-based motion correction between these motion states to account for deformation, 

translation, and rotation. Note that motion correction between different motion states could 

be complementary to the current framework by registering all motion states to a target 

state, which could have the benefit of improving signal correlation along motion dimension, 

thus further facilitating low-rankness and reducing the degrees of freedom20. However, 

because head motion is a composition of translation and rotation, motion correction with 

rigid-body transform would lead to non-Cartesian k-space not inherently compatible with 

Cartesian FFT reconstruction. Future works may investigate stack-of-stars or stack-of-spiral 

trajectories that provide better motion robustness and are more straightforward for rotational 

motion correction.

Other self-gated multidimensional techniques such as XD-GRASP17 have been recently 

demonstrated in the heart and abdomen, and may also be useful in the brain if similarly 

adapted. XD-GRASP was not originally described for relaxometry, and its use of first­

order finite difference sparsity (temporal total variation) could induce physically unrealistic 

piece-wise steps in the relaxation dimensions; however, expansion of the XD-GRASP 

approach to induce high-order finite differences could be appropriate for the smooth 

temporal curves associated with relaxation. Even so, Multitasking has potential practical 

advantages over XD-GRASP and similar approaches. Multitasking reconstructs images 

in compressed form, as individual factors are recovered, and all calculations are done 

in low-dimensional subspaces. This is in contrast to compressed sensing approaches like 

XD-GRASP which recover images that are “compressible” but not actually compressed. 

This memory advantage is a major practical consideration when there are many timepoints 

to recover, as in high-dimensional problems. For example, with J=5 and K=4, the total 

memory of Multitasking factors U, V1, V2, V3, Z and C was 16B/entry × (NxNyNzJ 
+ NT1L1 + NT2L2 + NT1ρ × L3 + K0K + JKL1L2L3)entries = 176 MB at complex 

double precision. If the entire image tensor was instead stored and operated upon, 

it would require 16B/entry × (NxNyNzNT1NT2NT1ρK0)entries = 527 GB. Generally 

speaking, the factorized LRT approach would offer a memory/storage advantage whenever 

NxNyNzJ + ∑i = 1
N NtiLi + K0K + JK∏i = 1

N Li < NxNyNzK0∏i = 1
N Nti.

There are several different ways of considering motion within the Multitasking framework. 

It is possible to ignore motion, as if all the data belong to a single motion state (i.e., 

K0=1). However, when motion does exist, this assumption would cause spatiotemporal 

blurring by grouping data of different spatial positions into the same bin during temporal 

subspace estimation. Therefore, the reconstructed images would be corrupted by motion. 

A separate strategy is motion-removal, which was adopted in our brain T1/T2/ADC and 

T1/T2/T1ρ mapping techniques21,22, where the corrupted data were identified either by 

visual inspection or through real-time auxiliary data residual and subsequently removed 
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to avoid introducing motion artifacts. This solution may suffice when only a brief portion 

of the acquisition is corrupted by motion (i.e., suddenly switching position and quickly 

returning to the initial position). However, in real cases, patients do not necessarily 

return to the initial position. Therefore, motion-removal can result in a significant loss of 

information and heavy undersampling artifacts when only very few data are kept, leading 

to subpar reconstruction and corrupted quantitative measurements in extreme scenarios. The 

motion-resolved reconstruction detailed here exploits multidimensional signal correlation 

and retains all the data for reconstruction, which is data-efficient, greatly improves the image 

quality, and can be applied to a wide variety of motion types. We have demonstrated the 

effectiveness of motion-resolved imaging in the brain: for simulations, the motion-resolved 

solution yielded smaller RMSE and higher SSIM, and for in vivo experiments, the motion­

resolved solution produced T1/T2/T1ρ maps with much more improved image quality and 

similar measurement distributions to the motion-free reference.

The proposed method provides a unified motion-resolved framework that is generalizable 

to discrete and periodic motion patterns that compose translation and rotation. These 

motion patterns have been widely studied and frequently occur during head shaking and 

head nodding in clinical brain MRI32. The effectiveness of the proposed method has 

been demonstrated under reasonable ranges of translational distances (−8mm−8mm) and 

rotational angles (−8°−8°) which has been reported in previous studies2,3,14,32, as well as 

exceptionally large translational distances (up to 60mm) and rotational angles (up to 60°) 

that are less likely to occur in clinical MRI. Very small translation and rotation (usually 

within 1mm and 1°) could also happen in clinical MRI in the form of involuntary motion 

induced by breathing or feet wiggling2,32,33. In simulation scenarios #13 and #14, our 

motion detection and clustering algorithms identified 5 motion states out of the ground 

truth 25 motion states linearly spaced between 0–3mm and 0–3° respectively, indicating 

the smallest detectable motion ranges within 0.6mm and 0.6°. Motion states that are 

separated by <0.6mm or <0.6° could be binned together without introducing notable blurring 

under the acquired voxel size of 1x1x3.5mm3. However, for ultra-high spatial resolution 

(≤0.5mm), involuntary motion may create spatial blurring between voxels necessitating a 

higher number of motion states.

In this work, only Xs corresponding to the last inversion time of each recovery period in 

Xrt were used for motion identification. Images in Xs have very similar image contrasts as 

shown in all supporting videos, as every image in Xs is the closest to the FLASH steady 

state of the corresponding recovery period. This minimizes the effect of the varying image 

contrast throughout the scan on the subsequent motion clustering. The use of Xs for motion 

identification is based on the assumption that all the data belong to the same motion state 

in each recovery period, which can be represented by the motion state at the last inversion 

time. This assumption is valid if the time scale for motion is longer than TR (~2.3s in our 

study) so that a single motion state is contained in one TR, usually when motion happens 

at random and at low frequency. If the time scale for motion is shorter than TR and more 

than one motion states occur during a single TR, which is usually the case of periodic 

motion or the transition periods between different motion states, they are considered as 

misidentified or outlier motion and are properly weighted by the motion weighting matrices. 
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A similar strategy has been applied to our abdominal DCE study20. Note that it is possible 

to incorporate the multi-contrast model into the motion clustering algorithm to handle the 

dynamically varying image contrasts, which allows motion states to be resolved at motion 

time scales shorter than TR (for example, in the heart)18.

It is worth mentioning that although this work focused on motion-resolved T1/T2/T1ρ 
mapping as an application, the proposed method could be extended to other tissue parameter 

combinations that are available with the Multitasking framework, including but not limited 

to T1/T2/ADC21, T1/T2/T1ρ/T2*/QSM36, T1/T2*/proton density fat fraction (PDFF)37, 

CEST38, and perfusion and vascular permeability parameters with DCE MRI20,23,24, 

with proper sequence modification but without changing the reconstruction pipeline. We 

aim to provide a unified framework generalizable enough to not only different head 

motion patterns, but also different tissue parameters in various clinical applications. More 

investigation on other tissue parameters in the brain as well as clinical studies will be 

conducted in the future.

5. Conclusion

We proposed a motion-resolved solution for quantitative multiparametric brain MRI using 

MR Multitasking. For simultaneous T1/T2/T1ρ mapping, motion-resolved imaging heavily 

reduced motion artifacts and provided comparable quantitative measurements to motion­

free references, which greatly outperformed motion-removal or no motion handling. The 

extension to other tissue parameter combinations is straightforward within the proposed 

framework. The motion-resolved solution is generalizable to translation, rotation, discrete 

motion, and periodic motion without requiring external motion-tracking devices or explicit 

need for registration-based motion compensation, providing a potential avenue for efficiently 

addressing head motion in quantitative brain MRI for clinical applications.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Motion-resolved image reconstruction schematics. The dataset of the entire k-space lines is 

a union of two non-overlapping subsets: auxiliary training data (green) and imaging data 

(red). 3DNAV images Xrt contain a mixture of T1/T2/T1ρ contrasts and different motion 

states. The last inversion time of each recovery period is extracted from Xrt, creating Xs 

for motion identification. Example motion weights Wr, auxiliary training data residuals and 

motion state assignments are shown for tensor subspace estimation. Motion weights Wt are 

calculated from the multidimensional temporal factors. Low motion weightings reduce the 

effect of misidentified or outlier motion.
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Figure 2. 
Multidimensional image tensor demonstration with four time dimensions – T1 relaxation 

dimension (t1), T2 relaxation dimension (t2), T1ρ relaxation dimension (t3), and motion state 

dimension (s). There are 240 inversion times along T1 relaxation dimension (6 are shown), 

4 T2-IR preparation durations along T2 relaxation dimension (all are shown) , 4 T1ρ-IR 

preparation durations (TSL) along T1ρ relaxation dimension (all are shown), and 4 motion 

states along motion state dimension (only motion state 1 and 4 are shown).
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Figure 3. 
Simulation results of mixed discrete/periodic motion with regular motion scale (scenario 

#10). The 1st motion state is used for fitting. Top left: numerical phantom T1/T2/T1ρ maps 

as reference images. Top right: reconstructed T1/T2/T1ρ maps and error maps against the 

reference images without motion handling. Bottom left: reconstructed T1/T2/T1ρ maps 

and error maps against the reference images with motion removal. Bottom right: motion­

resolved T1/T2/T1ρ maps and error maps against the reference images.
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Figure 4. 
Simulation of pseudo-continuous non-periodic motion with small motion scale (scenario 

#13). The 1st motion state is used for fitting. Top left: numerical phantom T1/T2/T1ρ maps 

as reference images. Top right: reconstructed T1/T2/T1ρ maps and error maps against the 

reference images without motion handling. Bottom left: reconstructed T1/T2/T1ρ maps 

and error maps against the reference images with motion removal. Bottom right: motion­

resolved T1/T2/T1ρ maps and error maps against the reference images.
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Figure 5. 
(A) RMSE of T1/T2/T1ρ against the reference images for the 14 simulation scenarios. The 

proposed method (motion-resolved) produces the least RMSE for all scenarios. (B) SSIM 

of T1/T2/T1ρ against the reference images for the 14 simulation scenarios. The proposed 

method (motion-resolved) produces highest SSIM for all scenarios.

Ma et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
In vivo T1/T2/T1ρ maps from one subject under large discrete motion. K0=4 motion states 

were identified for this case. The 1st motion state was used for fitting. The motion-resolved 

solution produced clean T1/T2/T1ρ maps with sharp tissue structure. Notable blurring 

and ghosting artifacts were observed for no motion handling. Motion-removal produced 

substantially biased parameter maps with a loss of image features.
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Figure 7. 
In vivo T1/T2/T1ρ maps from one subject under “tremor-like” motion. K0=6 motion states 

were identified for this case. The 4th motion state was used for fitting. The motion-resolved 

solution produced clean T1/T2/T1ρ maps with sharp tissue structure. Notable blurring 

and ghosting artifacts were observed for no motion handling. Motion-removal produced 

substantially biased parameter maps with a loss of image features.
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Figure 8. 
In vivo T1/T2/T1ρ maps from one subject under “shaking” periodic motion. K0=4 motion 

states were identified for this case. The 1st motion state was used for fitting. The motion­

resolved solution produced clean T1/T2/T1ρ maps with sharp tissue structure. Motion 

artifacts and loss of image features were observed for no motion handling and motion­

removal.
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Figure 9. 
In vivo T1/T2/T1ρ maps from one subject under “nodding” periodic motion. K0=4 motion 

states were identified for this case. The 1st motion state was used for fitting. The motion­

resolved solution produced clean T1/T2/T1ρ maps with sharp tissue structure. Blurring 

and ghosting artifacts were observed for no motion handling. Motion-removal produced 

parameter maps with substantial loss of image features and biased measurements.

Ma et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Quantitative T1/T2/T1ρ measurements of white matter and gray matter in four subjects with 

motion-free reference, no motion handling, motion-removal, and motion-resolved solution, 

in (A) discrete motion and (B) periodic motion experiments. The proposed method (motion­

resolved) produced measurements closest to the reference, with matched mean values and 

standard deviation. No motion handling and motion-removal produced measurements with 

large biases and/or substantially deviated distributions, which corresponds to the motion 

artifacts and loss of image features of the parameter maps.
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