
UC Riverside
UC Riverside Previously Published Works

Title
Hardness of Approximation of (Multi-)LCS over Small Alphabet

Permalink
https://escholarship.org/uc/item/10z5k3kf

Authors
Bhangale, Amey
Chakraborty, Diptarka
Kumar, Rajendra

Publication Date
2020-06-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/10z5k3kf
https://escholarship.org
http://www.cdlib.org/

ar
X

iv
:2

00
6.

13
44

9v
1

 [
cs

.C
C

]
 2

4
Ju

n
20

20

Hardness of Approximation of (Multi-)LCS over Small Alphabet

Amey Bhangale* Diptarka Chakraborty† Rajendra Kumar‡

June 25, 2020

Abstract

The problem of finding longest common subsequence (LCS) is one of the fundamental problems

in computer science, which finds application in fields such as computational biology, text processing,

information retrieval, data compression etc. It is well known that (decision version of) the problem of

finding the length of a LCS of an arbitrary number of input sequences (which we refer to as Multi-LCS

problem) is NP-complete. Jiang and Li [SICOMP’95] showed that if Max-Clique is hard to approximate

within a factor of s then Multi-LCS is also hard to approximate within a factor of Θ(s). By the NP-

hardness of the problem of approximating Max-Clique by Zuckerman [ToC’07], for any constant δ > 0,

the length of a LCS of arbitrary number of input sequences of length n each, cannot be approximated

within an n1−δ-factor in polynomial time unless P=NP. However, the reduction of Jiang and Li assumes

the alphabet size to be Ω(n). So far no hardness result is known for the problem of approximating Multi-

LCS over sub-linear sized alphabet. On the other hand, it is easy to get 1/|Σ|-factor approximation for

strings of alphabet Σ.

In this paper, we make a significant progress towards proving hardness of approximation over small

alphabet by showing a polynomial-time reduction from the well-studied densest k-subgraph problem

with perfect completeness to approximating Multi-LCS over alphabet of size poly(n/k). As a conse-

quence, from the known hardness result of densest k-subgraph problem (e.g. [Manurangsi, STOC’17])

we get that no polynomial-time algorithm can give an n−o(1)-factor approximation of Multi-LCS over

an alphabet of size no(1), unless the Exponential Time Hypothesis is false.

*University of California Riverside, USA. Email: ameyb@ucr.edu
†National University of Singapore, Singapore. Author is supported in part by NUS ODPRT Grant, WBS No. R-252-000-A94-

133. Email: diptarka@comp.nus.edu.sg
‡IIT Kanpur, India and National University of Singapore. Author is supported in part by the National Research Foundation

Singapore under its AI Singapore Programme [Award Number: AISG-RP-2018-005]. Email: rjndr2503@gmail.com

http://arxiv.org/abs/2006.13449v1
mailto:ameyb@ucr.edu
mailto:diptarka@comp.nus.edu.sg
mailto:rjndr2503@gmail.com

1 Introduction

Finding longest common subsequence (LCS) of a given set of strings over some alphabet is one of the

fundamental problems of computer science. The computational problem of finding (the length of a) LCS

has been intensively studied for the last five decades (see [16] and the references therein). This problem

finds many applications in the fields of computational biology, data compression, pattern recognition, text

processing and others. LCS is often considered among two strings, and in that case it is considered to be

one of the classic string similarity measures (see [5]). The general case, when the number of input strings is

unrestricted, is also very interesting and well-studied. To avoid any confusion we refer to this general version

of the LCS problem as Multi-LCS problem. One of the major applications of Multi-LCS is to find similar

regions of a set of DNA sequences. Multi-LCS is also a special case of the multiple sequence alignment and

consensus subsequence discovery problem (e.g. [27]). Interested readers may refer to the chapter entitled

“Multi String Comparison-the Holy Grail” of the book [13] for a comprehensive study on this topic. Other

applications of Multi-LCS include text processing, syntactic pattern recognition [22] etc.

Using a basic dynamic programming algorithm [30] we can find a LCS between two strings of length n
in quadratic time. However the general version, i.e., the Multi-LCS problem is known to be NP-hard [23]

even for the binary alphabet. This problem remains NP-hard even with certain restrictions on input strings

(e.g. [7]). For m input strings a generalization of the basic dynamic programming algorithm finds LCS in

time O(mnm). Recently, Abboud, Backurs and Williams [2] showed that an O(nm−ε) time (for any ε > 0)

algorithm for this problem would refute the Strong Exponential Time Hypothesis (SETH) even for alphabet

of size O(m).
Due to the computational hardness of exact computation of a LCS, an interesting problem is what is the

best approximation factor that we can achieve within a reasonable time bound. A c-approximate solution

(for some 0 < c ≤ 1) of a LCS is a common subsequence of length at least c · |LCS|, where |LCS| denotes

the length of a LCS. For the Multi-LCS problem, Jiang and Li [18] showed that if Max-Clique is hard to

approximate within a factor of s then Multi-LCS is also hard to approximate within a factor of Θ(s). By the

NP-hardness of the problem of approximating Max-Clique by Zuckerman [31], for any constant δ > 0, the

length of a LCS of arbitrary number of input sequences of length n each, cannot be approximated within

an n1−δ-factor in polynomial time unless P=NP. However, the result of Jiang and Li [18] is only true for

alphabets of size Ω(n). For smaller alphabets (even for size sublinear in n) we do not know any such

hardness result. Jiang and Li [18] conjectured that Multi-LCS for even binary alphabet is MAX-SNP-hard

(see [26] for the definition of MAX-SNP-hardness). To the best of our knowledge no progress has been done

so far on the direction of showing any conditional hardness for smaller alphabets. On the other hand, it is

very easy to get a 1/|Σ|-approximation algorithm for the Multi-LCS problem over any alphabet Σ. The

algorithm just outputs the best subsequence among the subsequences of the same symbol.

In this paper, we make a significant progress towards showing hardness of approximation of Multi-

LCS by refuting the existence of a polynomial time constant factor approximation algorithm under the

Exponential Time Hypothesis (ETH).

Theorem 1.1. There exists a growing function f(n) = no(1) such that assuming ETH, there is no polynomial

time 1
f(n) -factor approximation algorithm for the Multi-LCS problem over no(1)-sized alphabet.

This rules out any efficient poly-logarithmic factor approximation algorithm for the Multi-LCS problem

over any no(1)-sized alphabet. We show the above theorem by providing a polynomial time reduction from

the well-studied densest k-subgraph problem with perfect completeness and its gap version γ-DkS (for the

definition see Section 2).

1

Theorem 1.2. Let k
n = β(n)

γ(n) for β < γ ≤ 1. If there is no polynomial time algorithm that solves (γ2/4)-
DkS(k, n), then there is no polynomial time algorithm that solves 2γ-approximate Multi-LCS problem over

some alphabet of size O(1
β6).

The above reduction together with the ETH-based hardness result for the densest k-subgraph problem

given by Manurangsi [24] implies Theorem 1.1. We refer to Appendix 1.2 for the previous works related to

the LCS problem and the densest k-subgraph problem.

1.1 Techniques

Our reduction starts with the reduction from the Max-Clique problem to Multi-LCS given by [18]. Given

a graph G on n vertices the reduction outputs a Multi-LCS instance I over an alphabet {a1, a2, . . . , an} of

size n with 2n strings. The reduction has a guarantee that the maximum LCS size of I is equal to the size

of the maximum clique in G.

A natural way to reduce the alphabet size is to replace each symbol ai in a string with a string Si ∈ Σm

over a smaller alphabet Σ. Let us denote this new instance by I ′. The hope is that the only way to get a large

LCS in I ′ is to match the corresponding strings whenever the respective symbols in I are matched. But this

wishful thinking is not true when the alphabet size is much smaller than the original alphabet size as one

might get a large common subsequence by matching parts of strings Si, Sj corresponding to the different

symbols ai, aj in the original strings.

We get away with this issue by using a special collection of strings {S1, S2, . . . , Sn} with the guarantee

that for every pair i 6= j, LCS(Si, Sj) is much smaller than m. We can construct such a set deterministically

by using the known deterministic construction of the so called long-distance synchronization strings [9, 14].

There is also a much simpler randomized construction (see Theorem 3.1). It is easy to see that if the original

strings have a LCS of size t, then the new Multi-LCS instance I ′ over alphabet Σ has an LCS of size at least

tm.

The interesting direction is to prove the converse i.e., if the LCS of I ′ is large then the LCS of I is also

large. We do not know if this is true in general. So we rely on the starting problem of Max-Clique from

which the instance I (and hence I ′) was created. We show that if I ′ has large LCS, then we can find a large

subgraph of G which has a non trivial density (instead of finding a large clique). Thus, the reduction relies

on hardness of approximation of the DkS problem with perfect completeness. Then we use the result of

Manurangsi [24] which shows that given a graph G with a guarantee that there is a clique of size k, there

is no polynomial time algorithm which finds a subgraph of G of size k with density at least γ(n) for some

γ(n) = o(n), assuming the ETH.

1.2 Related works

1.2.1 Results on LCS problem

Finding LCS between two strings is an important problem in computer science. Wagner and Fischer [30]

gave a quadratic time algorithm, which is in fact prototypical to dynamic programming. The running time

was later improved to (slightly) sub-quadratic, more specifically O(n
2 log logn
log2 n

) [12, 25]. Abboud, Back-

urs and Williams [2] showed that a truly sub-quadratic algorithm (O(n2−ε) for some ε > 0) would im-

ply a 2(1−δ)n time algorithm for CNF-satisfiability, contradicting the Strong Exponential Time Hypothesis

(SETH). They in fact showed that for m input strings an algorithm with running time O(nm−ε) would re-

fute SETH. Abboud et al. [3] later further strengthened the barrier result by showing that even shaving an

2

arbitrarily large polylog factor from n2 would have the plausible, but hard-to-prove, consequence that NEXP

does not have non-uniform NC1 circuits. In case of approximation algorithm for LCS over arbitrarily large

alphabets a simple sampling based technique achieves O(n−x)-approximation in O(n2−2x) time. Very re-

cently, an O(n−0.497956) factor approximation (breaking O(
√
n) barrier) linear time algorithm is provided

by Hajiaghayi et al. [15]. For binary alphabets another very recent result breaks 1/2-approximation factor

barrier in subquadratic time [29]. (Note, 1/|Σ|-approximation over any alphabet Σ is trivial.) The only

hardness (or barrier) results for approximating LCS in subquadratic time are presented in [1, 4].

For the general case (which we also refer as Multi-LCS), when the number of input strings is unre-

stricted, the decision version of the problem is known to be NP-complete [23] even for the binary alphabet.

The problem remains NP-complete even with further restriction like bounded run-length on input strings [7].

As cited earlier, Jiang and Li [18] (along with the result of Zuckerman [31]) showed that for every constant

δ > 0, there is no polynomial time algorithm that achieves n1−δ-approximation factor, unless P=NP. One

interesting aspect of the reduction in [18] is that in any input string any particular symbol appears at most

twice. It is worth mentioning that if we restrict ourselves to the input strings where a symbol appears exactly

once, then we can find a LCS in polynomial time. The algorithm is just an extension of the dynamic pro-

gramming algorithm that finds a longest increasing subsequence of an input sequence. It is also not difficult

to show that the decision version of the Multi-LCS problem with the above restriction on the input strings

can be solved even in non-deterministic logarithmic space. To see this, consider a LCS as a certificate. Then

the verification algorithm makes single pass on the certificate, and checks whether every two consecutive

symbols in the certificate appears in the same order in all the input strings. Clearly, the above verification

algorithm uses only logarithmic space. Since we know that each symbol appears exactly once in a string,

the above verification algorithm correctly decides whether the given certificate is a valid LCS or not.

1.2.2 Hardness results related to densest k-subgraph problem

Our starting point of the reduction is the hardness of approximating the densest k-subgraph problem. In the

densest k-subgraph problem (DkS), we are given a graph G(V,E) and an integer 1 ≤ k ≤ |V |. The task

is to find a subgraph of G of size k with maximum density. Various approximation algorithms are known

for DkS [10, 21], and the current best known is by [6] which gives n1/4+ε-approximation algorithm for any

constant ε > 0.

A special case of DkS is when it is guaranteed that G has a clique of size k and the task is to find a

subgraph of size1 k with density at least γ for 0 < γ ≤ 1. In this perfect completeness case, Feige and

Seltser [11] gave an algorithm which finds a k sized subgraph with density (1− ε) in time nO((1+log n
k
)/ε).

There are several inapproximability results known for DkS based on worst-case assumptions. Khot [19]

ruled out a PTAS assuming NP * BPTIME (2n
ε

) for some constant ε > 0. Raghavendra and Steurer [28]

showed that DkS is hard to approximate to within any constant ratio assuming the Unique Games Conjecture

where the constraint graph satisfies a small set expansion property.

Assuming the Exponential Time Hypothesis, Braverman et al. [8], showed that for some constant ε > 0,

there is no polynomial time algorithm which when given a graph with a k-clique finds a k sized subgraph

with density (1 − ε). This result is significantly improved by Manurangsi [24] in which he showed that

assuming ETH, no polynomial time algorithm can distinguish between the cases when G has a clique of

size k and when every k sized subgraph has density at most n−1/(log logn)c for some constant c > 0.

1Note, here size of a subgraph refers to the number of vertices present in that subgraph.

3

2 Preliminaries

Notations: We use [n] to denote the set {1, 2, · · · , n}. For any string S we use |S| to denote its length.

By abuse of notation, for any set V we also use the notation |V | to denote the size of V . For any string S of

length n and two indices i, j ∈ [n], S[i, j] denotes the substring of S that starts at index i and ends at index

j. We use α(n), β(n), γ(n) to denote that α, β, γ are allowed to depend on n.

2.1 Longest Common Subsequence

Given m sequences S1, . . . , Sm of length n over an alphabet Σ, the longest common subsequence is the

longest sequence S such that ∀i ∈ [m], S is a subsequence of Si.

We will refer to the computational problem of finding or deciding the length of LCS as a Multi-LCS

problem. In this paper, we consider the decision variant of this problem: Given an integer ℓ ≤ n, we have to

decide whether LCS has a length greater than equal to ℓ, or less than ℓ. For the approximation, we consider

the following gap-version of this problem.

Problem 2.1. For any 0 < κ < 1, the κ-approximate Multi-LCS problem is defined as: Given sequences

S1, . . . , Sm of length n over an alphabet Σ and an integer ℓ, the goal is to distinguish between the following

two cases

• YES instance: A LCS of S1, . . . , Sm has length greater than or equal to ℓ.

• NO instance: A LCS of S1, . . . , Sm has length less than κ · ℓ.
We use the following definition of alignment.

Definition 2.1 (Alignment). Given two strings S1 and S2 of lengths n and m respectively, alignment σ is a

function from [n] to [m] ∪ {∗} which satisfies ∀i ∈ [n], if σ(i) 6= ∗ then S1[i] = S2[σ(i)] and for any i and

j if σ(i) 6= ∗, σ(j) 6= ∗ then for i > j, σ(i) > σ(j).

For an alignment σ between two strings S1 and S2 we say σ aligns some subsequence T1 = S1[i1]S1[i2] · · · S1[iℓ1]
of S1 with some subsequence T2 = S2[j1]S2[j2] · · ·S2[jℓ2] of S2 if and only if for all p ∈ [ℓ1], σ(ip) ∈
{j1, j2, · · · , jℓ2}.

2.2 Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) was introduced by Impagliazzo and Paturi [17]. It refutes the

possibility of getting much faster algorithm to decide satisfiability of a 3-CNF formula (also referred as

3-SAT problem) than that by the trivial brute force method.

Hypothesis 1 (ETH). There is no 2o(n) time algorithm for the 3-SAT problem over n variables.

2.3 Densest k-Subgraph problem and related hardness results

For any graph, the density is defined as the ratio of the number of edges present in it and the number of

edges in any complete graph of the same size. So given a graph G = (V,E), the density of G is
2|E|

|V |2−|V | .

The Densest k-Subgraph (DkS) problem is the following: Given a graph G on n vertices and a positive

integer k ≤ n, the goal is to find a subgraph of G with k vertices which has maximum density.

In this paper we will consider the following gap-version of densest k-subgraph, which in the literature

is sometimes referred as densest k-subgraph with perfect completeness.

4

Problem 2.2. For any γ ≤ 1, γ-DkS(k, n) is defined as: Given a graph G on n vertices and a positive

integer k ≤ n, the goal is to distinguish between the following two cases

• YES instance: There exists a clique of size k.

• NO instance: All subgraphs of size k have density at most γ.

We say that an algorithm solves γ-DkS(k, n) if given any input it can distinguish whether the input is a

YES instance or a NO instance. If the algorithm is randomized then it should succeed with probability at

least 2/3.

In this paper we use the following hardness result by Manurangsi [24].

Theorem 2.1 ([24]). There exists a constant c0 > 0 such that assuming the Exponential Time Hypothesis,

for all constants ε > 0, there is no polynomial time algorithm for γ-DkS(k, n) where γ = n
−O

(

1
(log log n)c0

)

and k
n ∈

[

n−ε, n
−Ω

(

1
log log n

)]

.

3 Reduction

In this section we provide a reduction from the densest k-subgraph problem to the problem of approximating

Multi-LCS and prove Theorem 1.2. Note that, Theorem 1.2 and Theorem 2.1 together immediately imply

Theorem 1.1 by plugging γ(n) = n
−O

(

1
(log log n)c0

)

, β(n) = γ(n)2.

Remark 3.1. If we want to get the hardness of Multi-LCS for a constant sized alphabet using Theorem 1.2

then k must be Ω(n). However, when k = Ω(n) Theorem 2.1 does not imply any hardness result. In fact,

when k = Ω(n), there is a polynomial time algorithm for (1 − ε)-DkS(k, n) for any constant ε > 0 [11].

Therefore our reduction will not give any hardness for constant sized alphabet. However, if one can improve

Theorem 2.1 for k/n = 1/poly(log n) and γ(n) = 1/poly(log n), then our main reduction in Theorem 1.2

will imply Multi-LCS hardness for poly(log n) sized alphabet!

Our reduction involves two steps: First, we use the reduction from the Max-Clique problem to the

Multi-LCS problem over large alphabet given in [18]. Next we perform alphabet reduction by replacing

each character by a “short” string over a small-sized alphabet.

Revisiting the reduction from Max-Clique to Multi-LCS. We first recall the reduction from [18]. We

are given a graph G = (V,E) on n vertices and an integer k ≤ n. Fix an arbitrary labeling on the vertices

of V as v1, . . . , vn. For every vertex vi, partition its neighbors into two subsets: N<(vi) contains all the

neighboring vertices vj with j < i; and N>(vi) contains all the neighboring vertices vj with j > i.
Consider an alphabet Σ containing a separate symbol for each vertex. We use vi to denote both the

vertex and its corresponding symbol in Σ. Now for each vertex vi ∈ V , construct the following two strings

Xi and X ′
i

Xi = v1 . . . vi−1vi+1 . . . vnvivir . . . vis and X ′
i = vip . . . viqviv1 . . . vi−1vi+1 . . . vn

where N>(vi) = {vir , · · · , vis} with ir < · · · < is, and N<(vi) = {vip , · · · , viq} with ip < · · · < iq. The

following proposition is immediate from the above construction.

Proposition 3.1 ([18]). If there is a clique of size c in G, then there is a common subsequence of X1, · · · ,Xn,

X ′
1, · · · ,X ′

n of length c.

5

The converse has also been shown in [18].

Proposition 3.2 ([18]). For any common subsequence S of X1, · · · ,Xn,X
′
1, · · · ,X ′

n, all the vi’s present

in S form a clique in G.

The proofs of these propositions follow from the facts that any common subsequence is of the form

vi1 , vi2 , . . . , vit where i1 < i2 < . . . < it and that there must be an edge between vij and vij′ for 1 ≤ j <
j′ ≤ t.

Reducing the size of the alphabet. For some parameter α(n) < 1, let {S1, . . . , Sn} be a set of strings of

length m over some alphabet Σ′ such that: for all i 6= j |LCS(Si, Sj)| ≤ αm. We will fix the value of m
and |Σ′| later. The following theorem (Theorem 1 of [20]) shows that if we pick strings from Σ′m uniformly

at random then for |Σ′| = O(1/α2), with high probability the sampled strings will satisfy the above desired

property.

Theorem 3.1 ([20]). For every ε > 0 there exists c > 0 such that for large enough sized alphabet Σ′ for

any m if two strings S1, S2 are picked uniformly at random from Σ′m then

Pr
[∣

∣

∣
|LCS(S1, S2)| −

2m
√

|Σ′|

∣

∣

∣
≥ ε

2m
√

|Σ′|
]

≤ e−cm/
√

|Σ′|.

Now by suitably choosing ε,m the following lemma directly follows from a union bound over every

pair of n chosen strings.

Lemma 3.1. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−2) such that for

any m ≥ cα−1 log n (for some suitably chosen constant c > 0), if we choose a set of strings S1, · · · , Sn

uniformly at random from Σ′m then with probability at least 1− 1/n for each i 6= j, |LCS(Si, Sj)| ≤ αm.

The above lemma gives us a randomized reduction. However we can deterministically find such a

collection (with a slight loss in the parameters) using the known construction of synchronization strings.

The proof of the following Lemma is deferred to Appendix A.

Lemma 3.2. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−3) such that for any

m > 2α−2 log n, there is a deterministic construction of a set of strings S1, · · · , Sn ∈ Σ′m such that for

each i 6= j, |LCS(Si, Sj)| ≤ αm. Moreover, all the strings can be generated in time O(α−2nm).

Remark 3.2. One advantage of using the randomized construction is the alphabet size (as well as the length

of strings); randomized construction has only a quadratic loss whereas the deterministic construction has a

cubic loss in the alphabet size. However this will not matter much for the parameters we need to prove our

main theorem.

Now let us continue with the description of our reduction. We replace each vj ∈ Σ by the string Sj .

After the replacement we get the following two strings Yi and Y ′
i respectively from Xi and X ′

i .

Yi = S1 . . . Si−1Si+1 . . . SnSiSir . . . Sis and Y ′
i = Sip . . . SiqSiS1 . . . Si−1Si+1 . . . Sn

Note, Yi and Y ′
i ’s are over the alphabet Σ′. For notational convenience we use SN>i

to denote the substring

Sir . . . Sis , and SN<i
to denote the substring Sip . . . Siq . From now on, for simplicity, we will refer to these

Si’s as blocks. Note, due to deterministic construction of strings Si’s by Lemma 3.2 our whole reduction is

deterministic and polynomial time.

It follows directly from Proposition 3.1 that:

6

Lemma 3.3 (Completeness). If graph G is a YES instance of
γ2

4 -DkS (with clique of size k), then a LCS of

Y1, . . . , Yn, Y
′
1 , . . . , Y

′
n is of length at least km.

We devote the rest of this section to proving the soundness of our reduction.

Lemma 3.4 (Soundness). Let α ∈ (0, 1/8) and β =
√
8α. If graph G is a NO instance of

γ2

4 -DkS (every

subgraph of size k has density less than
γ2

4), then a LCS of Y1, . . . , Yn, Y
′
1 , . . . , Y

′
n has length at most 2βmn.

3.1 Proof of Soundness

Let L be an (arbitrary) LCS of Y1, · · · , Yn, Y
′
1 , · · · , Y ′

n of size greater than 2βmn. By the construction

Yn = S1 . . . Sn (since N>(vn) = ∅). So we can partition the subsequence L as Z1, · · · , Zn where ∀i ∈ [n]
Zi is a subsequence of Si. (Zi can be an empty string). Now consider all the Zi of length at least βm, and

let W denote the set of all such Zi’s, i.e., W = {Zi | |Zi| ≥ βm}. Suppose L1 is the string formed by

removing all Zi 6∈ W from L. Clearly, |L1| ≥ |L| − βmn ≥ βmn.

For all i, j ∈ [n] such that i < j, define C[i, j] as: C[i, j] := {Zt ∈ W | i ≤ t ≤ j}. Note, W = C[1, n].
Next we show that either the size of C[1, n] is small or there exists a subgraph in G which has large density.

Let us consider the set of vertices VH := {vt|Zt ∈ W}. So |VH | = |W| ≥ |L|
m − βn ≥ βn. If we could

show that the subgraph H of G induced by the set of vertices VH has high density (ideally, a clique), then

that will imply Lemma 3.4.

Now consider an (arbitrary) alignment between L1 and Y1, · · · , Yn, Y
′
1 , · · · , Y ′

n. Let us denote the align-

ment between L1 and Yi (Y ′
i) by σi (σ′

i). From now on whenever we will talk about alignment we will refer

to these particular alignments (σi or σ′
i depending on strings under consideration) without specifying them

explicitly. Consider a Zt ∈ W . We say Zt is ε-aligned (for some ε ∈ [0, 1]) with some substring S′ of some

Yi (or Y ′
i) if and only if either the first or the last ε fraction of symbols of Zt is aligned by the alignment σ′

i

(or σ′
i) with some subsequence of S′. Throughout this proof we will set ε = 1/2. Note that, if we partition

Yi into (any) two parts Y l
i and Y r

i then Zi is 1/2-aligned to at least one of Y l
i and Y r

i , and this justifies our

setting of parameter ε.

By following the argument of the proof of Proposition 3.2 given in [18], it is possible to show that if

σ aligns all Zt with some subsequence of St in all strings Yi (and Y ′
i), then the subgraph H induced by

vertices in VH has high density (actually forms a clique). Unfortunately we do not know whether all the

Zt’s are aligned with their corresponding St’s in all the Yi’s (and Y ′
i ’s). Following are the different cases of

mapping Zi ∈ W with Yi:

1. Zi is 1/2-aligned with the substring S1 . . . Si−1 of Yi.

2. Zi is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi and there exists a j > i such that a symbol of Zj in

L1 is aligned with some symbol of Sj in the substring Si+1 . . . SnSi.

3. Zi is 1/2-aligned with the substring Si+1 . . . SnSiSN>i
in Yi and there exists no j > i such that a

symbol of Zj ∈ W is aligned with some symbol of Sj in the substring Si+1 . . . Sn.

Similarly, we will also consider the mapping with Y ′
i ’s. We will categorize first and second case as sparse

case and the third one as the dense case. Next we analyze these cases.

7

3.1.1 Sparse Case: Improper mapping leads to small LCS locally

Let us recall that Yi = S1 . . . Si−1Si+1 . . . SnSiSN>i
and Y ′

i = SN<i
SiS1 . . . Si−1Si+1 . . . Sn. The next

two claims demonstrate that if Zi is not mapped to Si in Yi (or Y ′
i) then there is a portion C[j, i] (or C[i, j])

in L1 such that
|C[j,i]|
i−j (or

|C[i,j]|
j−i) is small, i.e., that portion of L1 is “sparse” with respect to the number of

Zt blocks present in it.

Claim 3.1. If Zi ∈ W is 1/2-aligned with the substring S1 . . . Si−1 of Yi (by the alignment σi), then there

exists a j < i such that |C[j, i]| ≤ 2α
β (i − j + 1). Similarly, if Zi ∈ W is 1/2-aligned with the substring

Si+1 . . . Sn of Y ′
i (by the alignment σ′

i), then there exists a j > i such that |C[i, j]| ≤ 2α
β (j − i+ 1).

Proof. Suppose Zi is 1/2-aligned with S1 . . . Si−1 of Yi. Let j be the largest index less than i such that a

symbol in Zj is aligned (by σi) with some symbol in Sj in Yi (if there does not exist such a j then take

j = 0). Note, by the definition of 1/2-alignment at least first βm/2 symbols of Zi are mapped (by σi) in

S1 . . . Si−1. Recall, the definition of 1/2-alignment ensures the mapping of the first or the last half fraction

of symbols. However in this case if Zi’s last βm/2 symbols are mapped in S1 . . . Si−1 then the whole Zi is

actually mapped in S1 . . . Si−1, which is even stronger than what we state.

By the properties of strings Sk’s specified in Lemma 3.2, the first βm/2 symbols of Zi require at least
β
2α blocks from {Sj , Sj+1, . . . , Si−1} to map completely (see Figure 1).

Si−1St

ZiL1

Yi

≥ β
2α blocks

Figure 1: Zi is 1/2-aligned with S1 . . . Si−1 where t > j

Similarly each element of C[j + 1, i − 1] also requires at least β
α blocks from {Sj , Sj+1, . . . , Si−1}.

However any two Zp, Zp+1 ∈ C[j + 1, i] may share a block (more specifically, the last block used for Zp

and the first block used for Zp+1) for mapping. So, we get

β

2α
+ (

β

α
− 1)|C[j + 1, i − 1]| ≤ i− j ⇒ β

2α
|C[j + 1, i]| ≤ i− j.

Note, β
α − 1 ≥ β

2α as α ≤ 1/8 (recall, β =
√
8α), and C[j + 1, i− 1] ∪ {Zi} = C[j + 1, i].

Similarly, suppose Zi is 1/2-aligned with Si+1 . . . Sn of Y ′
i . Let j be the smallest index greater than i

such that a symbol of Zj is aligned (by σ′
i) with some symbol of Sj in Y ′

i (if there does not exist any j then

take j = n+ 1). Using an argument similar to the above, we get

β

2α
+ (

β

α
− 1)|C[i + 1, j − 1]| ≤ j − i ⇒ β

2α
|C[i, j − 1]| ≤ j − i.

Claim 3.2. Suppose (by the alignment σi) Zi ∈ W is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi, and there

exists a j > i such that a symbol of Zj in L1 is aligned with some symbol of Sj in the substring Si+1 . . . SnSi.

Then there exists r such that i < r ≤ j and |C[i, r − 1]| ≤ 2α
β (r − i).

8

Similarly, suppose (by the alignment σ′
i) Zi ∈ W is 1/2-aligned with SN<i

SiS1 . . . Si−1 of Y ′
i , and

there exists a j < i such that a symbol of Zj in L1 is aligned with some symbol of Sj in the substring

SiS1 . . . Si−1. Then there exists r such that j ≤ r < i and |C[r + 1, i]| ≤ 2α
β (i− r).

Proof. Suppose Zi is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi and there exists a j > i such that a symbol

of Zj in L1 is aligned (by σi) with some symbol of Sj in the substring Si+1 . . . SnSi. Let us choose r to be

the smallest j with the above condition. By the argument used in the proof of Claim 3.1, Zi requires at least
β
2α blocks from {Si+1, Si+2, · · · , Sr}, and every element in C[i+ 1, r − 1] requires at least

β
α blocks from

{Si+1, Si+2, · · · , Sr}. Again, any two Zp, Zp+1 ∈ C[i, r− 1] may share a block (more specifically, the last

block used for Zp and the first block used for Zp+1) for mapping. So we get

β

2α
+ |C[i+ 1, r − 1]|(β

α
− 1) ≤ r − i ⇒ β

2α
|C[i, r − 1]| ≤ r − i.

Similarly, suppose Zi is 1/2-aligned with SN<i
SiS1 . . . Si−1 of Y ′

i and there exists a j < i such that a

symbol of Zj in L1 is aligned (by σ′
i) with some symbol of Sj in the substring SiS1 . . . Si−1. Let us choose

r to be the largest j with the above condition. Then we get

β

2α
+ |C[r + 1, i− 1]|(β

α
− 1) ≤ i− r ⇒ β

2α
|C[r + 1, i]| ≤ i− r.

3.1.2 Dense Case: Proper mapping implies large number of neighbors

Recall that VH = {vt | Zt ∈ W}. For each vi ∈ VH further define V >i
H := {vt ∈ VH | t > i} and

V <i
H := {vt ∈ VH | t < i}. The next two claims show that if Zi is aligned with Si in Yi and Y ′

i then “most”

of the vertices in VH are connected to (i.e., neighbors of) the vertex vi. This eventually helps us to show that

density of H is high.

Claim 3.3. Suppose (by the alignment σi) Zi ∈ W is 1/2-aligned with Si+1 . . . SnSiSN>i
in Yi, and there

exists no j > i such that a symbol of Zj ∈ W is aligned with some symbol of Sj in the substring Si+1 . . . Sn.

Then

|V >i
H

⋂

N>(vi)|+
β

2α
|V >i

H \ N>(vi)| ≤ 2(n− i) + 1.

Proof. Zi is 1/2-aligned with Si+1 . . . SnSiSN>i
of Yi. So to align all Zr ∈ C[i+1, n] (note, |C[i+1, n]| =

|V >i
H |) at most 2(n− i) + 1 blocks of Sp’s are available. Since for no j > i a symbol of Zj ∈ W is aligned

with some symbol of Sj in Si+1 . . . Sn, each Zr such that vr ∈ V >i
H \ N>(vi) requires at least β

α blocks of

Sp’s to map. Any two Zr, Zr+1 such that vr, vr+1 ∈ V >i
H \N>(vi) may share a block (more specifically, the

last block used for Zp and the first block used for Zp+1) for mapping. Recall for our choice of parameters

α, β, β
α − 1 ≥ β

2α . So we get

|V >i
H

⋂

N>(vi)|+
β

2α
|V >i

H \ N>(vi)| ≤ 2(n− i) + 1.

Similarly, we consider the mapping of Zi in the string Y ′
i .

9

p1 q1 p2 q2

p1
i1

i2
j1 i3

j2 q1
j3

C[1, n]

Shaded region is included in T

Considering s = 3,

(i1, j1),(i2, j2),(i3, j3) is a se-

ries of pairs to cover C[p1, q1]
where i1 = p1 and j3 = q1

Figure 2: T as a union of disjoint subsets

Claim 3.4. Suppose (by the alignment σ′
i) Zi ∈ W is 1/2-aligned with SN<i

SiS1 . . . Si−1 in Y ′
i , and there

exists no j < i such that a symbol of Zj ∈ W is aligned with some symbol of Sj in the substring S1 . . . Si−1.

Then

|V <i
H

⋂

N<(vi)|+
β

2α
|V <i

H \ N<(vi)| ≤ 2i− 1.

Proof. Zi is 1/2-aligned with SN<i
SiS1 . . . Si−1 of Y ′

i . So to align all Zr ∈ C[1, i−1] (note, |C[1, i−1]| =
|V <i

H |), at most 2i − 1 blocks of Sp’s are available. Since for no j < i a symbol of Zj ∈ W is aligned with

some symbol of Sj in S1 . . . Si−1, each Zr such that vr ∈ V <i
H \ N<(vi) requires at least β

α blocks of Sp’s

to map. Any two Zr, Zr+1 such that vr, vr+1 ∈ V <i
H \N<(vi) may share a block (more specifically, the last

block used for Zp and the first block used for Zp+1) for mapping. Recall for our choice of parameters α, β,
β
α − 1 ≥ β

2α . So we get

|V <i
H

⋂

N<(vi)|+
β

2α
|V <i

H \ N<(vi)| ≤ 2i− 1.

3.1.3 Removing sparse blocks from LCS

Next we choose a subset of vertices from the set VH so that the graph induced by that subset has high density.

For that purpose we remove the “sparse” portions from the subsequence L1 in the following way:

1. Initialize an empty set T .

2. For each Zi ∈ W identify the largest j > i such that
|C[i,j]|
j−i+1 ≤ 2α

β , and then add all Zk ∈ C[i, j] in

the set T . (If no such j exists then do not add anything to T .)

3. Define a new set W ′ = W \ T .

Let L2 be the string formed by removing all Zi 6∈ W ′ from L1. Let us also define a set of vertices V ′
H =

{vt|Zt ∈ W ′}. (Note, V ′
H ⊆ VH .) Now we will argue that the set VH has not shrunk by much after removing

the sparse blocks and each vertex in V ′
H has high degree in the subgraph H , which eventually implies that

the subgraph H has high density.

Claim 3.5. |V ′
H | ≥ |VH | − 4α

β n.

Proof. Let us consider the set T . We can write T as a union of disjoint subsets as T = C[p1, q1]∪C[p2, q2]∪
· · · ∪ C[pr, qr] for some integer r ∈ [n], such that ∀1≤ℓ≤r−1 C[qℓ, pℓ+1] 6= ∅ (see Figure 2).

10

Now if we could show that for each ℓ ∈ [r], |C[pℓ, qℓ]| ≤ 4α
β (qℓ − pℓ), then

|T | =
r

∑

ℓ=1

|C[pℓ, qℓ]| ≤
4α

β

r
∑

ℓ=1

(qℓ − pℓ) ≤
4α

β
n

where the last inequality is true since p1 < q1 < p2 < q2 < · · · < pr < qr. So to conclude the proof of the

claim next we show that for all ℓ ∈ [r] |C[pℓ, qℓ]| ≤ 4α
β (qℓ − pℓ).

It is immediate from the construction of the set T that there exists a sequence of pair of indices

(i1, j1), · · · , (is, js) (for some positive integer s) where i1 = pℓ and js = qℓ, such that for all t ∈ [s]
while processing Zit we add blocks of C[it, jt] in T , and C[pℓ, qℓ] =

⋃

t∈[s]C[it, jt]. We can further

assume that there exists no t′ ∈ [s] such that C[it′ , jt′] ⊆ ⋃

t∈[s]\{t′} C[it, jt]. (In words it means that

C[i1, j1], · · · , C[is, js] is a minimal sequence of subsets whose union is C[i1, js].) Due to this assumption

we can write that i2 ≤ j1 ≤ i3 ≤ j2 ≤ · · · ≤ is ≤ js−1 and ∀t ∈ [s− 2], it+2 ≥ jt + 1 (see Figure 2). So,

|C[pℓ, qℓ]| ≤
s

∑

t=1

|C[it, jt]| ≤
2α

β

s
∑

t=1

(jt − it + 1)

=
2α

β

[

s+ (js − i1) +
s−1
∑

t=1

(jt − it+1)
]

≤ 2α

β

[

s+ (js − i1) + (js−1 − i2 − (s− 2))
]

≤ 2α

β

[

2(js − i1)
]

where second last inequality uses the fact that ∀t ∈ [s − 2], it+2 ≥ jt + 1 and last inequality uses the fact

that js ≥ js−1 + 1 and i2 ≥ i1 + 1. Hence we conclude that |C[pℓ, qℓ]| ≤ 4α
β (qℓ − pℓ), and this completes

the proof.

Claim 3.6. For each vertex vi ∈ V ′
H , |VH

⋂N (vi)| ≥ |VH | − 4α
β n.

Proof. By the construction of W ′, for each Zi ∈ W ′ we know that there exists no j > i (or < i) such

that
|C[i,j]|
j−i+1 ≤ 2α

β (or
|C[j,i]|
i−j+1 ≤ 2α

β). Then by Claim 3.1 and Claim 3.2 it follows that all Zi ∈ W ′ satisfy

preconditions of both Claim 3.3 and Claim 3.4. Otherwise by Claim 3.1 and Claim 3.2 we know that there

exists a j > i (or < i) such that
|C[i,j]|
j−i+1 ≤ 2α

β (or
|C[j,i]|
i−j+1 ≤ 2α

β). For j > i when we process Zi to construct

the set T we add all the blocks of C[i, j], and for j < i when we process Zj we add all the blocks of

C[j, i]. So it must be the case that the alignment σi between L1 and Yi, 1/2-aligns Zi to the substring

Si+1 . . . SnSiSN>i
and there exists no j > i such that Zj ∈ W aligns with Sj in the substring Si+1 . . . Sn.

Also, σ′
i 1/2-aligns Zi to the substring SN<i

SiS1 . . . Si−1 and there exists no j < i such that Zj ∈ W aligns

with Sj in the substring S1 . . . Si−1. So by Claim 3.3

|V >i
H

⋂

N>(vi)|+
β

2α
|V >i

H \ N>(vi)| ≤ 2(n− i) + 1,

and by Claim 3.4

|V <i
H

⋂

N<(vi)|+
β

2α
|V <i

H \ N<(vi)| ≤ 2i− 1.

11

These two claims together imply

|VH

⋂

N (vi)|+
β

2α
|VH \ N (vi)| ≤ 2n

⇒|VH

⋂

N (vi)|+
β

2α
(|VH | − |VH

⋂

N (vi)|) ≤ 2n

⇒(
β

2α
− 1)|VH

⋂

N (vi)| ≥
β

2α
|VH | − 2n

⇒|VH

⋂

N (vi)| ≥ |VH | − 4α

β
n.

Now we are ready to complete the proof of soundness (Lemma 3.4).

Proof of Lemma 3.4. For the sake of contradiction let us assume that the LCS is of size at least 2βmn.

Recall, we have already seen that |VH | ≥ βn. Now we consider the following two cases depending on the

size of VH .

Case 1: (When |VH | ≤ β
γn) Suppose |VH | ≤ β

γn (= k). Let V ′ ⊇ VH be an arbitrary set of size exactly
β
γn. Let H ′ be the subgraph induced by the vertices V ′. Using Claim 3.5 and Claim 3.6, we can lower

bound the density of the subgraph H ′ by:

1
2

∑

v∈V ′

H

(

|VH | − 4α
β n

)

(|V ′|
2

)
≥

(

β − 4α
β

)

n ·
(

β − 4α
β

)

n

β
γn · β

γn
≥

(

γ − 4αγ

β2

)2

.

As we set α = β2/8, we get that the density of the subgraph induced by V ′ is at least (γ/2)2.

Case 2: (When |VH | > β
γn) If |VH | > β

γn, the density of the subgaph H induced by VH is lower bounded

by:

1
2

∑

v∈V ′

H

(

|VH | − 4α
β n

)

(|VH |
2

)
≥

|V ′
H |

(

|VH | − 4α
β n

)

|VH |(|VH | − 1)

≥

(

|VH | − 4α
β n

)2

|VH |2

=

(

1− 4αn

β|VH |

)2

≥ (1− γ

2
)2 (since |VH | > β

γ
n and we set α = β2/8)

≥ (γ/2)2 (since γ ≤ 1).

Now since density of the subgraph is at least (γ/2)2, it follows from the following simple claim that there

exists a subgraph of H of size β
γn which has density at least (γ/2)2.

12

Claim 3.7. Suppose a graph G = (V,E) has edge density c, then for any 2 ≤ k ≤ |V |, there exists a

subgraph of size k with density at least c.

Proof. Let n = |V |. Pick a subset H ⊆ V of size exactly k uniformly at random. For a fixed edge e in G,

the probability that the edge e is present in the subgraph induced by H is exactly
(n−2
k−2)
(nk)

. Since G has c ·
(n
2

)

edges, by linearity of expectation, the expected number of edges in the subgraph induced by H is equal to

c ·
(n
2

)

· (
n−2
k−2)
(nk)

= c ·
(k
2

)

. Therefore, the expected density of the subgraph is exactly equal to c. Hence, by an

averaging argument, there exists a subgraph of G of size k with density at least c.

In both the cases, we have shown that there exists a subgraph of size β
γn(= k) with density at least

(γ/2)2, which is a contradiction to the fact that we started with a NO instance of γ2

4 -DkS
(

β
γn, n

)

. Therefore

in this case, the size of LCS must be at most 2βmn.

Proof of Theorem 1.2: If there is no polynomial time algorithm to distinguish between the YES and NO

instances of γ2

4 -DkS
(

β
γn, n

)

, then using Lemma 3.3 and Lemma 3.4, it follows that there is no polynomial

time algorithm to distinguish between the cases when the LCS of Y1, · · · , Yn, Y
′
1 , · · · , Y ′

n is of size
β
γmn

vs. 2βmn. Also note that if we use Lemma 3.2 to construct the strings Si’s then the alphabet size is

O(α−3) = O(β−6). This proves the main theorem.

4 Conclusion

In this paper we show hardness of constant factor approximation of Multi-LCS problem with input of length

n over no(1) sized alphabet assuming the Exponential Time Hypothesis (ETH). This is the first hardness

result for approximating Multi-LCS problem for sublinear sized alphabet. To prove our result we provide a

reduction from the densest k-subgraph problem with perfect completeness, and then use the known hardness

results for the latter problem from [24]. One interesting fact is that if one could show hardness of the γ-

DkS(k, n) problem for k = Θ(n
poly logn) and γ = (log n)−c for some c > 0, then due to our reduction that

will directly imply constant factor hardness for Multi-LCS over poly-logarithmic sized alphabet under ETH.

Acknowledgements. Authors would like to thank anonymous reviewers for providing helpful comments

on an earlier version of this paper and especially for pointing out a small technical mistake in the proof of

Lemma 3.4. Authors would also like to thank Pasin Manurangsi for pointing out that for certain regimes no

hardness result is known for the densest k-subgraph problem.

References

[1] Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time problems.

In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017,

Berkeley, CA, USA, pages 11:1–11:26, 2017.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for LCS and

other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations of Computer

Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78, 2015.

13

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. Simu-

lating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made.

In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,

Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.

[4] Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approximation algorithms

for LCS imply new circuit lower bounds. In 9th Innovations in Theoretical Computer Science Confer-

ence, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages 35:1–35:14, 2018.

[5] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence algo-

rithms. In Pablo de la Fuente, editor, Seventh International Symposium on String Processing and

Information Retrieval, SPIRE 2000, A Coruña, Spain, September 27-29, 2000, pages 39–48. IEEE

Computer Society, 2000.

[6] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. De-

tecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In Leonard J. Schulman,

editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,

Massachusetts, USA, 5-8 June 2010, pages 201–210. ACM, 2010.

[7] Guillaume Blin, Laurent Bulteau, Minghui Jiang, Pedro J. Tejada, and Stéphane Vialette. Hardness

of longest common subsequence for sequences with bounded run-lengths. In Combinatorial Pattern

Matching - 23rd Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceedings, pages

138–148, 2012.

[8] Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness for densest-

k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 1326–1341. SIAM, 2017.

[9] Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchronization

strings: Highly efficient deterministic constructions over small alphabets. In Proceedings of the Thirti-

eth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,

January 6-9, 2019, pages 2185–2204, 2019.

[10] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–

421, 2001.

[11] Uriel Feige and Michael Seltser. On the densest k-subgraph problem. 1997.

[12] Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for sequence

similarity problems. Discrete Applied Mathematics, 212:96–103, 2016.

[13] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational

Biology. Cambridge University Press, 1997.

[14] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit constructions, local

decoding, and applications. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory

of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 841–854, 2018.

14

[15] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun. Approximating

LCS in linear time: Beating the
√

n barrier. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages

1181–1200, 2019.

[16] D.S. Hirschberg. Recent results on the complexity of common subsequence problems. In Time Warps,

String Edits, and Macromolecules, D. Sankoff and J.B. Kruskal, ed., Addison-Wesley, pages 323–328,

1983.

[17] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer and

System Sciences, 62(2):367–375, 2001.

[18] Tao Jiang and Ming Li. On the approximation of shortest common supersequences and longest com-

mon subsequences. SIAM J. on Computing, 24(5):1122–1139, 1995.

[19] Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM

Journal on Computing, 36(4):1025–1071, 2006.

[20] Marcos Kiwi, Martin Loebl, and Jiřı́ Matoušek. Expected length of the longest common subsequence

for large alphabets. Advances in Mathematics, 197(2):480–498, 2005.

[21] G Kortsarz and D Peleg. On choosing a dense subgraph. In Proceedings of the 1993 IEEE 34th Annual

Foundations of Computer Science, pages 692–701. IEEE Computer Society, 1993.

[22] S. Lu and K. S. Fu. A sentence-to-sentence clustering procedure for pattern analysis. IEEE Transac-

tions on Systems, Man, and Cybernetics, 8(5):381–389, May 1978.

[23] David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,

25(2):322–336, April 1978.

[24] Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-subgraph. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 954–961.

ACM, 2017.

[25] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances. Journal

of Computer and System Sciences, 20(1):18 – 31, 1980.

[26] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity

classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[27] Pavel A. Pevzner. Multiple alignment with guaranteed error bounds and communication cost. In

Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April 29

- May 1, 1992, Proceedings, pages 205–213, 1992.

[28] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture. In Pro-

ceedings of the forty-second ACM symposium on Theory of computing, pages 755–764. ACM, 2010.

[29] Aviad Rubinstein and Zhao Song. Reducing approximate longest common subsequence to approximate

edit distance. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1591–1600. SIAM, 2020.

15

[30] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM, 21(1):168–

173, January 1974.

[31] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic

number. Theory of Computing, 3(6):103–128, 2007.

A Derandomized version of Lemma 3.1

To achieve deterministic reduction we need to construct the set of strings S1, · · · , Sn deterministically

in time poly(n). For that purpose we use the notion of synchronization strings used in the literature of

insertion-deletion codes [9, 14].

Definition A.1 (c-long-distance ε-synchronization string). A string S ∈ Σn is called a c-long-distance

ε-synchronization string for some parameter ε ∈ (0, 1), if for every 1 ≤ i < j ≤ i′ < j′ ≤ n with

i′ − j ≤ n · 1(j+j′−i−i′)>c logn, |LCS(S[i, j], S[i′ , j′])| ≤ ε(j + j′ − i − i′), where 1(j+j′−i−i′)>c logn is

the indicator function for (j + j′ − i− i′) > c log n.

Note, in the definition of c-long-distance ε-synchronization string in [9] authors used the notion of edit

distance instead of LCS. More specifically, they specified the edit distance between S[i, j] and S[i′, j′]) is

at least (1 − ε)(|S[i, j]| + |S[i′, j′]|). However both the notions can be used interchangeably since for any

two strings S, S′, |LCS(S, S′)| = |S| + |S′| − ED(S, S′), where the edit distance ED(S, S′) is defined

as the minimum number of insertion and deletion operations required to transform S to S′. One may note

that, generally while defining the edit distance we also allow substitution operation. However here we are

not allowing substitution operation, and that is why we are able to write the following equivalence between

LCS and the edit distance of two strings S, S′: |LCS(S, S′)| = |S| + |S′| − ED(S, S′). We would like

to mention that in [9] authors also used this particular version of the edit distance notion (i.e., without

substitution operation).

Several constructions of such long-distance synchronization strings are given in [9, 14] with different

parameters. However we restate one of the theorems from [9] that we find useful for our purpose.

Theorem A.1 (Rephrasing of Theorem 5.4 of [9]). For any n ∈ N and parameter ε ∈ (0, 1), there is a

deterministic construction of an ε−2-long-distance ε-synchronization string S ∈ Σn for some alphabet Σ of

size O(ε−3). Moreover, for any i ∈ [n] the substring S[i, i+ log n] can be computed in time O(ε−2 log n).

Now using the above we will provide deterministic construction of set of strings S1, · · · , Sn with our

desired property.

Lemma 3.2. For any α ∈ (0, 1), and n ∈ N there exists an alphabet Σ′ of size O(α−3) such that for any

m > 2α−2 log n, there is a deterministic construction of a set of strings S1, · · · , Sn ∈ Σ′m such that for

each i 6= j, |LCS(Si, Sj)| ≤ αm. Moreover, all the strings can be generated in time O(α−2nm).

Proof. For a specified α and n, set ε = α/2. Then use the construction from Theorem A.1 to get an

ε−2-long-distance ε-synchronization string S of length 2nm, for any m > 1
2ε

−2 log n. The bound on

m is required to satisfy the condition that (j + j′ − i − i′) > c log n of Definition A.1. (Note, in our

case (j + j′ − i − i′) = 2m and c = ε−2.) Then divide the string S into m length blocks. Finally

choose alternate blocks as S1, · · · , Sn. More specifically, S1 = S[1,m], S2 = S[2m + 1, 3m], · · · , Sn =
S[(2n − 2)m + 1, (2n − 1)m]. Now the bound on |LCS(Si, Sj)| for any i 6= j, directly follows from

Definition A.1.

16

	1 Introduction
	1.1 Techniques
	1.2 Related works
	1.2.1 Results on LCS problem
	1.2.2 Hardness results related to densest k-subgraph problem

	2 Preliminaries
	2.1 Longest Common Subsequence
	2.2 Exponential Time Hypothesis
	2.3 Densest k-Subgraph problem and related hardness results

	3 Reduction
	3.1 Proof of Soundness
	3.1.1 Sparse Case: Improper mapping leads to small LCS locally
	3.1.2 Dense Case: Proper mapping implies large number of neighbors
	3.1.3 Removing sparse blocks from LCS

	4 Conclusion
	A Derandomized version of Lemma 3.1

