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ABSTRACT OF THE THESIS 

 

 

Leptospira in the coastal California ecosystem:  

Challenges and solutions for analyzing  

complex wildlife disease data 

 

by 

 

Riley Olivia Mummah 

 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2021 

Professor James O. Lloyd-Smith, Chair 

 

A major frontier in disease ecology is understanding the transmission dynamics of 

generalist pathogens, where multiple host species are involved in ongoing circulation of a single 

pathogen. These dynamics violate assumptions of the simplest epidemic models and lead to 

challenges in characterizing the determinants of transmission because of the interwoven 

contributions of different host species. Since many pathogens (including all zoonoses, by 

definition) can infect multiple hosts, learning about complex multi-host systems from partial 

evidence is a pervasive problem in disease ecology. Understanding transmission dynamics of a 
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generalist pathogen in a community of wildlife host species faces the additional challenges of 

analyzing sparse wildlife data. Biological and logistical sampling constraints in wildlife systems 

can create temporally and spatially coarse data, which can be difficult to analyze by 

conventional statistical methods. Thus, analyzing and integrating these data streams requires 

the development of novel methods.  

The coastal California ecosystem provides an opportunity to explore the transmission 

dynamics of a generalist pathogen in a multi-host community in the presence of complex 

wildlife data challenges. My primary focus is on the reintroduced Channel Island fox (Urocyon 

littoralis) population on Santa Rosa Island off the coast of southern California. After a 

population crash in the late 1990s and subsequent captive breeding program in the early 2000s, 

the Santa Rosa Island fox population was reintroduced to the wild gradually from 2003 to 2009. 

Shortly thereafter, an outbreak of Leptospira, a pathogenic bacterium known to infect most 

mammals, was detected in the reintroduced population. Within the broader coastal California 

ecosystem, Leptospira was known to circulate endemically in the California sea lion (Zalophus 

californianus) population since at least the 1980s. The context of the Leptospira outbreak on 

Santa Rosa Island prompted questions regarding its origin on the island and determinants of 

transmission in this wildlife community. In this dissertation, I present three studies analyzing 

the ample cross-sectional and longitudinal ecological data on the fox population, which has 

been monitored by the National Park Service for two decades, and pathogen genetic data 

isolated from four potential host species to understand transmission dynamics of a multi-host, 

generalist pathogen in this wildlife community.  
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Ecological data offers only one perspective of Leptospira transmission in the coastal 

California ecosystem. In chapter one, I use bacterial genomic data from four host species to 

provide qualitatively different evidence addressing two particular questions: (i) What was the 

source of the pathogen introduction in the reintroduced island fox population? (ii) Did 

pathogen fadeout occur in California sea lions during a period when other evidence showed an 

unprecedented pause in Leptospira transmission? To address both questions, I construct 

Bayesian time-calibrated phylogenies and use the topology to infer epidemiological linkages 

between hosts. For the former question, I show that bacterial isolates from Santa Rosa Island 

form a distinct cluster in the tree, ruling out sea lions as the direct source of the pathogen 

introduction to the reintroduced island fox population. For the latter question, I show that 

isolates obtained after the suspected pathogen fadeout period are not descended from those 

isolated before, suggesting that pathogen fadeout did occur in the California sea lion 

population, and that the post-fadeout circulation must have arisen via pathogen introduction 

from an external reservoir. These results are consistent with and important corroboration for 

other lines of evidence. This work demonstrates the utility of whole genome sequencing as a 

component of a multi-disciplinary, multi-data source study to untangle the complexity of 

wildlife disease systems. 

In chapter two, I focus on the Leptospira outbreak in reintroduced island foxes to 

identify and quantify risk factors for infection while addressing two challenges that frequently 

arise in wildlife data: interval censoring and time-varying covariates. I first addressed the 

challenge of extensive interval censoring by bootstrapping a set of datasets with an imputed 

time of infection for individual foxes using a quantitative serology model. The resulting 
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synthetic datasets lacked interval censoring, which allowed the use of a Cox proportional 

hazards model and enabled me to account for time-varying covariates through a counting 

process formulation. I find that higher 24-month cumulative precipitation increases the risk of 

infection and suggests that long-term fluctuations in the water table significantly influence 

transmission of Leptospira. I also show that risk of infection decreases with increasing fox 

abundance, contrary to conventional expectation, which may be due to the stabilization of fox 

social structure on the island as the population increased post-reintroduction. This chapter 

highlights the need for intensive and sustained data collection and new methodologies for 

analysis in wildlife systems and lays a foundation for future studies to investigate transmission 

risk to inform prevention and control strategies in wildlife populations. 

Collecting movement data is a resource-limited endeavor, and many studies monitor the 

locations of individuals at a coarser scale for purposes other than movement analyses. In 

chapter three, through the integration of a novel spatial data type, obtained through field notes 

and expert interpretation, and innovative methodology, I propose a method to construct 

wildlife movement trajectories from location data of varying resolution, again using the Santa 

Rosa Island fox population as a case study. I integrate unconventional expert-drawn polygons 

with traditional GPS data by resampling locations on the date of observation for every 

individual fox. I then fit smoothing splines through the coordinate directions to interpolate each 

fox’s location for every day in its observation window. By pairing the movement estimates with 

time of infection estimates estimated via a quantitative serology model, I reconstruct the 

spatiotemporal origin of the Leptospira outbreak and estimate transmission to most likely have 

begun in mid-to-late 2005 along the northern shore of the island. Our approach lays the 



 vi 

groundwork to reap the full benefit of rich, long-term monitoring datasets, which could provide 

vital insights into a species’ movement ecology and better inform conservation and 

management. 

The studies presented in these three chapters apply a breadth of analytic methods to 

tackle challenges of wildlife data and illustrate how methodological developments and 

integration of different data streams can be utilized to describe the transmission dynamics of a 

multi-host generalist pathogen. This work lays the foundation to capitalize on ample lower 

quality data collected from long-term monitoring programs and to address fundamental 

challenges in studying wildlife disease ecology. 
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1 Molecular ecology of Leptospira interrogans in the coastal California 

ecosystem 

1.1 Abstract 

Parsing cross-species transmission in multi-host systems is difficult because the relative 

contribution of each host to the transmission dynamics is unknown, but current sequencing 

technologies have created unprecedented opportunities for inferring host epidemiological 

linkages. Whole genome sequencing has provided powerful insights into the dynamics of fast-

evolving pathogens such as RNA viruses, but the application to slow-evolving pathogens has 

been met with challenges inherent to these microbes (e.g. low mutation rate, slow growth 

rate). In this chapter, we analyze whole genome sequences of Leptospira and build Bayesian 

time-calibrated phylogenies to explore two phenomena: (i) the source of a novel pathogen 

introduction to reintroduced island foxes (Urocyon littoralis) on Santa Rosa Island and (ii) 

apparent pathogen fadeout in California sea lions (Zalophus californianus) during a period when 

other evidence showed an unprecedented pause in Leptospira transmission. We found that sea 

lions were not the likely source of the Leptospira introduction to the island fox population, as 

the clade of isolates from Santa Rosa Island branches separately from the rest of the tree with a 

estimated median date of 1947. In the second case study, our results show that all sea lion 

isolates taken from the period after suspected pathogen fadeout were not descendants of the 

clade of isolates taken prior to fadeout, suggesting that pathogen fadeout did occur in the 

California sea lion population and that the post-fadeout circulation must have arisen via 

pathogen introduction from an external reservoir. This work demonstrates that whole genome 
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sequencing and analysis provide an unprecedented opportunity to resolve epidemiological 

relationships for slow-evolving pathogens such as Leptospira. 

 

1.2 Introduction 

 Many pathogens are capable of infecting multiple host species, creating ample 

opportunity for cross-species transmission within and across ecosystems (Cleaveland et al., 

2001; Taylor et al., 2001; Woolhouse, 2001). However, multi-host pathogen systems are 

understudied due to their complex nature and remain a major frontier in disease ecology 

(Buhnerkempe et al., 2015; Power & Mitchell, 2004; Viana et al., 2014). In multi-host systems, 

transmission patterns are difficult to characterize due to the challenge of investigating the 

relative contribution of each host species to the transmission dynamics as either a pathogen 

source or a focal host species (Viana et al., 2014). However, determining the frequency and 

directionality of transmission in a community of hosts is crucial for understanding the ecology 

of the pathogen as well as for conservation and management.  

 There are two dimensions of transmission within a multi-host system which drive 

incidence patterns in the focal host species: within-species transmission and cross-species 

(source to target) transmission. The frequency of transmission in each dimension can occur 

across a low-to-high gradient and influence the intensity and duration of an outbreak (Viana et 

al., 2014). Low transmission in both dimensions (cross- and within-species) creates a self-

limiting outbreak, as evident for human monkeypox (Grant et al., 2020; Sklenovská & Van 

Ranst, 2018). When a multi-host system has low cross-species transmission, but within-species 

transmission can be sustained by the novel host, a single cross-species transmission event can 
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cause an epidemic. International health crises such as the 2014 West Africa Ebola outbreak and 

the 2009 H1N1 pandemic are products of singular (or few) pathogen spillover events from 

wildlife to humans followed by sustained human-human transmission (Bajardi et al., 2011; 

Bonilla-Aldana et al., 2020; Webb et al., 2015). Alternatively, when cross-species transmission is 

the primary driver of incidence and there is limited within-species transmission, the pathogen 

can appear endemic in the absence of knowledge about the route of transmission. A clear 

example of this phenomenon are the initial dynamics of canine distemper virus (CDV) in the 

wildlife of Serengeti National Park, where it is believed that CDV was repeatedly introduced into 

the wildlife community by unvaccinated domestic dogs outside of the park (Cleaveland et al., 

2000; Viana et al., 2015). High levels of both cross-species and within-species transmission 

complicate accurate characterization of the relative contributions of each host species to the 

community and population level disease dynamics. For example, Mycobacterium bovis 

transmits readily between and among European badgers and domestic cattle, which makes it 

difficult to estimate the relative contributions of each host species to the observed pathogen 

prevalence and thus affects the ability to design effective intervention measures (Crispell et al., 

2019; McDonald et al., 2018). It becomes even more difficult to distinguish between the 

contributions of within- and cross-species transmission when each dimension occurs at an 

intermediate level, transmission occurs within a community of host species, and/or the relative 

importance of each host species is unknown. 

 While identifying patterns in cross-species transmission is extremely important for 

understanding the risks pathogens pose for communities, transmission dynamics are 

particularly challenging to characterize in wildlife systems, and this remains one of the main 
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challenges in disease ecology (Begon et al., 1999; Buhnerkempe et al., 2015; Carslake et al., 

2006; Kilpatrick et al., 2006). These challenges are amplified in studies that attempt to include 

multiple species. Hence, such studies are rare (Almberg et al., 2009; Kamath et al., 2016; Prager 

et al., 2012; Viana et al., 2015). Limited and unequal data from the different hosts can limit 

researchers’ ability to make community-wide inferences. To enrich these datasets and 

maximize the possible inferences, Viana et al. (2014) suggest integrating different types of data 

and methodologies. For instance, epidemiological data on the timing and incidence levels of an 

outbreak could be paired with genomic data reporting on the relatedness of the cases. This 

combination of evidence would enable researchers to address questions about cross- and 

within-species transmission within a multi-host wildlife system.  

 In particular, genomic data have a unique potential to shed light on transmission links, 

especially with the rise of whole genome sequencing (WGS). Broadly, WGS data can provide 

information on temporal and spatial dynamics in pathogen-host systems, identify historic and 

contemporary cross- and intra-species transmission events, and detect the emergence of 

pathogen variants (Biek & Real, 2010). Techniques to analyze WGS data have been successfully 

applied in wildlife and livestock systems to investigate transmission pathways (Benton et al., 

2015). Kamath et al. (2016) examined the transmission dynamics of Brucella abortus within the 

greater Yellowstone ecosystem. Through their use of a time-calibrated Bayesian phylogenetic 

reconstruction, they inferred that free-ranging elk act as the reservoir host for Brucella 

infections in nearby cattle, and so they were able to direct control measures away from bison, 

which have little role in the transmission within the host community. A similar methodology 

was used to investigate transmission pathways of Mycobacterium bovis among cattle herds and 



 5 

badgers in Britain (Crispell et al., 2019), with which they were able to discern that within-

species transmission occurred most frequently and that badgers transmitted more often to 

cattle than the reverse. These insights allowed them to guide the development of control 

measures that were appropriate for both species, and their analysis highlights the potential for 

time-calibrated Bayesian methods to be applied to bacterial genomes to uncover hidden 

transmission dynamics. However, both systems addressed above include livestock and hence 

are easier to sample to have ample data and isolates to infer transmission. This level of data is 

rarely available in other wildlife communities. 

 The time-calibrated phylogenies applied in the Brucella and Mycobacterium systems can 

integrate epidemiological data to reconstruct transmission histories, provide genetic inference 

for the chains of transmission in a system, and even identify and date cross-species 

transmission events due to their extremely dense sampling. However, the ability to resolve and 

date particular cross-species transmission events depends heavily on the samples available, the 

ability to culture the pathogen, and the pathogen’s substitution rate. In systems with sparse 

sampling (i.e. most wildlife systems) of a slow-evolving, hard-to-culture pathogen, it can be 

quite challenging to have the power to accurately date and estimate transmission linkages. To 

tackle this problem, the inferences from time-calibrated phylogenies can be paired with 

ecological data to untangle the transmission dynamics within a wildlife system. 

 

1.2.1 Leptospira interrogans 

 Leptospirosis is the most widespread zoonosis in the world and has been found in most 

mammals and marsupials (Adler & de la Pena Montesuma, 2010). Leptospira interrogans is a 
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slow-evolving spirochete bacterium with a low recombination rate and is one of 13 pathogenic 

species in the Leptospira genus (Levett, 2001; Thaipadungpanit et al., 2007; Vos & Didelot, 

2009), the causative agents of leptospirosis. Leptospires are transmitted through direct contact 

with urine or tissues of an infected animal or indirectly through contaminated soil or water. 

After an incubation period, leptospires circulate in the blood before infecting the renal tubules, 

after which they are shed in the urine (Levett, 2001). Clinical signs of leptospirosis can range 

from asymptomatic to fatal, and infection can resolve rapidly, or become chronic, with 

asymptomatic chronic carriers shedding leptospires into the environment for months to years 

(Levett, 2001). For example, California sea lions (Zalophus californianus) have been shown to be 

chronic carriers of L. interrogans serovar Pomona, which has circulated in the population since 

the early 1980s (Lloyd-Smith et al., 2007; Prager et al., 2013).  

 Leptospira was historically split phenotypically into pathogenic (L. interrogans) and 

saprophytic (L. biflexa) bacteria with over 260 serovars determined by antibody responses 

(Adler & de la Pena Montesuma, 2010). Genotyping led to the reclassification of Leptospira, and 

now some serovars are found in more than one Leptospira species (Levett, 2001). Critically, 

Leptospira serovars are not host-specific. In particular, L. interrogans serovar Pomona has a 

very broad range of host species and is known to infect species including (but not limited to) 

horses, raccoons, white tailed deer, striped skunks, opossums, pigs, foxes, and sea lions (Bolt & 

Marshall, 1995; Lloyd-Smith et al., 2007; Timoney et al., 2011). The combination of multiple 

serovars, multiple hosts, complex and variable host-pathogen interactions, and diagnostic 

challenges in identifying the infecting serovar and strain has led to a muddled understanding of 

Leptospira ecology. 
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 Although different serovars of Leptospira may have one or more primary reservoir or 

host species, most mammals are susceptible to infection. Studies have compared the infecting 

serovars of multiple hosts within a given ecosystem, but generally these studies could only 

draw very limited conclusions due to the cross-reactivity of different serovars during antibody 

testing (Bishara et al., 2002; Panaphut et al., 2002; Santos et al., 2016; Sehgal et al., 1995; 

Tunbridge et al., 2002). In contrast, few studies have used whole genome sequencing to 

examine the nature of cross-species transmission for Leptospira. Recent work by Allan et al. 

(2020) used the Leptospira secY gene sequence to identify infecting species and construct a 

phylogeny with previously sequenced isolates. Of the three human-derived PCR sequences they 

were able to genotype, each sequence was identified as a different Leptospira species. With 

limited knowledge of the circulating species and serovars, little could be learned about cross-

species transmission in the system. Kakita et al. (2021) used whole genome sequences of 

Leptospira borgpetersenii serogroup Javanica to explore the role of cats as a maintenance host 

for human leptospirosis infections in Japan. They inferred that cats as well as mongoose and 

black rats carry and transmit related strains of L. borgpetersenii serogroup Javanica in the 

region, but were limited by small sample sizes with two or fewer isolates from three of their 

four host species. Although they paired their phylogenetic analysis with serological data to 

corroborate their genetic findings, they lacked temporal depth and enough samples per host 

species to infer directionality and frequency of cross-species transmission. These few studies 

demonstrate how powerful WGS can be in disentangling the complex, multi-host ecology of 

Leptospira in a community, but were limited by their small sample sizes and lack of supporting 

ecological data.  
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1.2.2 Study system 

 The coastal California ecosystem is home to diverse flora and fauna in many diverse 

habitats, including the California Channel Islands, an eight-island archipelago located off the 

coast of southern California between Point Conception and San Diego. Five of the islands (San 

Miguel, Santa Rosa, Santa Cruz, Anacapa, and Santa Barbara) comprise Channel Islands National 

Park and are managed by the National Park Service. Marine mammals such as the California sea 

lion (Zalophus californianus; CSL) and the Northern elephant seal (Mirounga angustirostris; ES) 

haul out on the shores of the islands. Only four terrestrial mammal species, island foxes 

(Urocyon littoralis), island deer mice (Perimyscus maniculatus), western harvest mice 

(Reithrodontomys megalotis), and island spotted skunks (Spilogale gracilis amphiala), are native 

to the islands, and no island hosts all four endemic terrestrial species.  

 Santa Rosa Island (SRI) hosts the endemic island fox, the island spotted skunk, and the 

island deer mouse (Wayne et al., 1991). Island foxes are territorial and mark their home ranges 

with urine (Coonan et al., 2010).  Island foxes and spotted skunks exist sympatrically on the 

island and compete for resources with the island fox being the dominant competitor (Crooks & 

Van Vuren, 1995; Jones et al., 2008). 

 California sea lions haul out on rocks and beaches along the California coastline, when 

not foraging in near-shore waters, and share space with other marine mammals such as 

Northern elephant seals (Peterson & Bartholomew, 1967). During the late spring months, San 

Miguel Island serves as a rookery for CSL to give birth (Melin et al., 2000). CSL migrate 

seasonally along the coast of California from the Channel Islands and central California as far 
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north as southeast Alaska (Carretta et al., 2006). Their migration is dictated by age and sex-

specific patterns. Males travel further north outside of the breeding period (May/June) with the 

largest males traveling the furthest (Zuerner et al., 2009).   

 

1.3 Case Studies 

1.3.1 Case study #1: Reconstructing the origin of a wildlife disease emergence event 

1.3.1.1 Context  

 Island fox populations are naturally small and prone to fluctuations.  In the 1990s, 

anthropogenic factors initiated a cascade of events which culminated in golden eagle predation 

causing severe population declines of island foxes on Santa Rosa Island (Coonan et al., 2005). 

Declines also occurred on nearby San Miguel and Santa Cruz Islands. Introduced feral pigs and 

mule deer, which had drawn the non-native golden eagles to the island, have since been 

removed from SRI in 1993 and 2012, respectively (Coonan et al., 2010; Knowlton et al., 2007; 

Roemer et al., 2001, 2002). Prior to the arrival of golden eagles, the foxes had no natural 

predators and, hence, no behavioral adaptations against predation. Mortality through eagle 

predation was high and outpaced the foxes’ ability to reproduce, so the population crashed and 

became critically endangered (Coonan et al., 2005). By 2001 the National Park Service had 

taken the entire remaining SRI population of 14 foxes into captivity, and the population was 

temporarily extinct in the wild (Coonan et al., 2010). A multi-year captive breeding program was 

initiated to reintroduce foxes on the island. Reintroduction began in 2003, but the earliest 

releases were unsuccessful due to ongoing eagle predation and other unknown mortalities. 

Golden eagles were eventually relocated to the mainland. By the end of 2009, 96 captive foxes 
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had been released into the wild. The reintroduced population was recovering, so the captive 

breeding program was concluded. The fox population was delisted as an endangered species in 

2016. 

 In fall 2010, two juvenile male foxes were found dead on SRI with evidence of Leptospira 

infection. At the time, there was no evidence that this strain was circulating on the island prior 

to the fox population crash, which spurred investigation into the origins of the pathogen on the 

island. A follow-up investigation in January 2011 obtained isolates of L. interrogans from island 

foxes and island spotted skunks. Genetic analysis by variable number tandem repeat (VNTR) 

typing showed that the strain was indistinguishable from the strain of L. interrogans serovar 

Pomona circulating in the California sea lion population (Zuerner & Alt, 2009; unpublished 

results), making sea lions a suspected source of the pathogen. Our lab recently conducted 

serological assays of banked sera that suggest that foxes on SRI had exposure to the same strain 

of Leptospira prior to captivity (Lloyd-Smith, 2021). Transmission was interrupted during 

captivity, and all captive-born foxes were seronegative upon release to the island. Yet 

retrospective analysis of samples collected from reintroduced foxes showed that by 2006 

island-wide fox seroprevalence was already high.  

 Clearly, the immunologically naïve captive-born foxes were released to a landscape 

where Leptospira was circulating, but the source of the outbreak was unknown. California sea 

lions and Northern elephant seals were potential sources of the pathogen as they haul out on 

the shores of the island, and Leptospira is endemic in California sea lions. Island spotted skunks 

were another suspected source as we had detected infection in this species, and they and 

island foxes share the same habitat and resources.  
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 To this point, serological data has been the most prominent indicator that the same 

strain was circulating in multiple host species. However, the strain typing performed on sera 

cannot distinguish sub-strain level differences. Thus, by using whole genome sequencing and 

molecular ecology techniques, we sought to independently corroborate the serological, 

demographic, and movement data and investigate the epidemiological linkages between foxes 

and other potential Leptospira hosts in the ecosystem. 

 

1.3.1.2 Data 

 Our dataset includes forty-nine bacterial isolates from four host species: Channel Island 

fox, island spotted skunk, California sea lion, and Northern elephant seal, spanning the years 

1988 to 2017 (Table 1.1).  

 

Table 1.1: Frequency of Leptospira interrogans serovar Pomona isolates by host species and sampling year from 
unique individuals. 

Host species 
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 Total 
by 

host 

CSL 1 3 2 3 1 2 20 2    34 
ES       3     3 
Island fox       4  3 2 1 10 
Spotted skunk       2     2 
Total by year 1 3 2 3 1 2 29 2 3 2 1 49 

 

1.3.1.3 Results 

 The time-calibrated Bayesian phylogeny was constructed with a relaxed lognormal 

molecular clock and HKY + G + I site heterogeneity model. The phylogeny indicates two clearly 
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distinct clades, which are broadly delineated by ecosystem and robust to our imbalanced 

sampling (Figure 1.1; Figure S1.1). One clade (Marine1) consists entirely of marine mammals: 

thirty-three CSL, sampled from 2004 to 2012, and one ES, sampled in 2011. The second clade 

splits into two subclades: Island and Marine2. The Island subclade contains all terrestrial host 

isolates and a single CSL isolate (CSL10040), whereas the Marine2 subclade contains two ES 

isolates from 2011 and a CSL isolate, which was sampled in 1988. 

 

Figure 1.1: Time-calibrated maximum clade credibility tree of Leptospira interrogans serovar Pomona in the 
Channel Island ecosystem. Two major clades were identified through Bayesian phylogenetic analysis: Marine1 and 
Island + Marine2. Interior nodes are labelled with the posterior probability (lower values are purple, higher values 
are yellow). Tips are labeled with host species (CSL = California sea lions, ES = elephant seal), ID number, year, and 
tissue type (K = kidney, U = urine).  

 There are three cross-species transmission events directly evident in the phylogenetic 

reconstruction presented in this case study, but there is more evidence of cross-species 
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transmission when considering the whole tree. The Marine1 clade indicates that transmission 

occurs between CSL and ES, which is ecologically plausible as the two species share haul-out 

and rookery sites and have frequent direct contact. Additionally, these phylogenetic data are 

consistent with epidemiological data (e.g. serology, incidence; not published) which supports 

CSL as a maintenance host for Leptospira and ES more likely as a spillover target rather than a 

maintenance host population. The island clade contains two types of cross-species 

transmission: within the terrestrial ecosystem and between the terrestrial and marine 

ecosystems. The clustering in this clade suggests that island spotted skunks and island foxes had 

multiple cross-species transmission events prior to 2011 because the skunk isolates do not 

cluster separately from the foxes. Rather, they are interspersed with the fox isolates within the 

island clade. Additionally, there is a singular CSL (CSL10040) nestled within the island clade, 

indicating that cross-species transmission can occur from the terrestrial hosts on the island to 

the marine ecosystem, most likely from foxes to CSL.  

 Additional cross-species transmission events can be inferred from the deeper branching 

structure of the tree. Two elephant seal isolates (ES3197 and ES3208) from 2011 cluster with 

the 1988 CSL isolate, but we do not believe this is evidence for contemporaneous cross-species 

transmission, given the 23-year interval between the sampling dates. Rather, we believe that 

there is a separate reservoir that seeded both lineages.  

 The median substitution rate in these genomes was 1.16 x 10-7 substitutions per site per 

year, which is equivalent to 0.37 SNPs per year per genome. This rate is slower than most 

bacteria (range: 10-4-10-8) and most comparable to the genome-wide substitution rate of 

Salmonella Paratyphi A (Duchêne et al., 2016). The variation in the median clock rate was high 
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with the 95% highest probability density (HPD) covering 0.11 – 2.63 x 10-7 substitutions per site 

per year (Table 1.2). Using the estimated rate, we were able to estimate the date when the 

different clades diverged, also known as the time to most recent common ancestor (tMRCA). 

The estimated date for the root of the tree, when isolates from island foxes last shared a 

common ancestor with the larger Marine1 clade, is 1836 (HPD: 1272 - 1980). The estimated 

tMRCA for the Island and Marine2 clades, which represents the last date at which the terrestrial 

isolates shared a known ancestor with the broader marine realm, is 1947 (HPD: 1755-1988). In 

both instances the uncertainties on the tMRCAs are large, due to the limited number of isolates 

and high variation in substitution rates, but notably the intervals do not extend to the period 

after 2000 when the foxes entered captivity. This is consistent with the ecological data, which 

indicate that Leptospira circulated on the island prior to captivity but disappeared in the 

captive-born population. 

 

Table 1.2: Posterior median estimates of genetic and temporal parameters 

Parameter Median (95% HPD) 
Clock rate (× 10!") 1.16 (0.11, 2.63) 
Coefficient of variation^ 2.59 (1.60, 4.87) 
tMRCA date (Root) 1836 (1272, 1980) 
tMRCA date (Island + Marine2) 1947 (1755, 1988) 
HPD: highest posterior density; tMRCA: time to most recent common 
ancestor for marine and island lineages 
^Measure of the variation in evolutionary rate amongst the branches 

 

 The interior nodes of the phylogeny have a wide range of posterior probabilities (PP; 

Figure 1.1). Crucially, the branch point at the root of the tree has a very high posterior 

probability (>99%), but subsequent nodes decline in posterior support. This indicates that the 

separation between isolates circulating in sea lions at the time the SRI outbreak began (i.e. the 
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Marine1 clade) and isolates involved in the SRI outbreak (the Island clade) was almost always 

present in the posterior set of trees, but the specific branching patterns within the clades were 

more variable. This further supports the conclusions from the tMRCA analyses that the source 

of the fox outbreak was terrestrial, not marine. 

 Broad clustering patterns within the tree topology suggest that multiple introductions of 

L. interrogans serovar Pomona into the California coastal ecosystem have occurred from an 

unknown reservoir. These repeated introductions appear to have seeded multiple chains of 

transmission, which circulated simultaneously in different host species. For example, the Island 

clade most likely had a single introduction from an external reservoir. Unfortunately, it is 

difficult to date when this introduction occurred due to the large posterior density on the 

median tMRCA.  It appears likely that the sea lion isolate obtained from CSL06-048 in 1988 was 

seeded by an introduction independent of the one that seeded the Marine1 clade. Finally, the 

cluster of elephant seal isolates in 2011 signifies another potential introduction from an 

unknown reservoir. 

 

1.3.2 Case study #2: Climate-driven fadeout and re-emergence of an endemic pathogen in a 

wildlife host 

1.3.2.1 Context 

 Leptospira interrogans serovar Pomona has circulated in CSL since at least the mid-

1980s (Greig et al., 2005; Gulland et al., 1996). The population experiences yearly, seasonal 

outbreaks of varying magnitude (Lloyd-Smith et al., 2007). We hypothesize that persistent 

circulation in the sea lion population relies on a crucial link between seasonal outbreaks during 
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which Leptospira is transmitted from chronically infected older animals (Buhnerkempe et al., 

2017), to the pool of young susceptible sea lions, during contact which occurs with age- and 

sex-specific seasonal movements. However, serologic, epidemiological, demographic, and 

ecological data collected between 2010-2019 suggest that Leptospira disappeared entirely from 

the CSL population in early 2013. In separate work from our lab, we demonstrate that pathogen 

fadeout (i.e. disappearance of the pathogen from the sea lion population) is associated with a 

reduced pool of susceptible sea lions due to low survival and growth of the 2012 birth cohort 

and disrupted age- and sex-specific movement patterns – all likely driven by oceanographic 

anomalies – which broke the crucial link in the between-season transmission chain. A single 

Leptospira-infected CSL stranded on the California coast in 2016, but no other evidence of 

pathogen circulation was detected in the CSL population during that year. We believe that the 

2016 case arose from a spillover event which failed to lead to pathogen re-emergence. In 2017, 

Leptospira reappeared in the wild and data up through 2020 suggest that it appears to have 

resumed its annual outbreak cycle. This study is the first recorded example of spontaneous 

fadeout of an endemically circulating pathogen from a wildlife population. 

The evidence from field studies and CSL stranding data suggests that Leptospira stopped 

circulating entirely in the CSL population. Despite our intensive surveillance efforts, it is always 

possible that L. interrogans persisted at a low level but was undetectable by our current 

sampling methods. Since the pathogen reemerged in the CSL population, we have been able to 

collect multiple isolates from the post-fadeout period. Through whole genome sequencing, we 

elucidate the relationship between the pre-fadeout (prior to 2013) and post-fadeout (2017 and 

later) strains of the bacteria. The bacterial genomic data provide a qualitatively different type of 
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information, by enabling estimation of the probability that the post-fadeout bacterial lineage is 

an outgrowth of the pre-fadeout lineage. 

 

1.3.2.2 Data 

 Our dataset includes bacterial isolates from five host species, Channel Island fox, island 

spotted skunk, California sea lion, Northern elephant seal, and pig (Sus scrofa), spanning the 

years 1984 to 2018 (Table 1.3). All isolates included in the first case study are also included here 

in addition to four CSL isolates from the post-fadeout period. We also included two isolates 

from neonatal swine obtained in Iowa to serve as a terrestrial mainland comparison.  

 

Table 1.3: Frequency of Leptospira interrogans serovar Pomona isolates by host species and sampling year from 
unique individuals. 
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1.3.2.3 Results 

Whole-genome sequencing of fifty-five L. interrogans serovar Pomona isolates enabled 

a phylogenetic reconstruction using 355 single nucleotide polymorphisms. The phylogeny, built 

with an HKY + G + I substitution model and uncorrelated relaxed molecular clock, indicates 

three broad clades (Figure 1.2). The pre-fadeout CSL, a singular ES isolate (ES077), and one 

post-fadeout CSL isolate (CSL14079) form Clade1. The second clade is comprised of the island 

isolates in one subclade and two pairs of ES (ES3208 and ES3197) and post-fadeout CSL isolates 

(CSL13546 and CSL13755). The two pig isolates and a single post-fadeout CSL isolate (CSL13990) 

form Clade3, and the 1988 CSL isolate clusters as an outgroup.
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Figure 1.2: Time-calibrated maximum clade credibility tree of Leptospira interrogans serovar Pomona in the Channel Island ecosystem. Interior nodes are 
labelled with the posterior probability (lower values are purple, higher values are yellow). Tips are labeled with host species (CSL = California sea lions, ES = 
elephant seal), ID number, year, and tissues type (K = kidney, U = urine). CSL isolates sampled between 2000 and 2013 (pre-fadeout) are contained within the 
light blue box. The terrestrial island isolates are denoted by the grey box. Branches of post-fadeout CSL isolates are highlighted in dark blue. 
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The median substitution rate was estimated to be 1.36 x 10-7 substitutions per site per 

year, which is equivalent to 0.43 SNPs per year per genome. This evolutionary rate varied highly 

among the branches, with the 95% highest probability density (HPD) covering 0.04 – 2.48 x 10-7 

substitutions per site per year (Table 1.4). The root of the tree was predicted to occur in the 

year 1844. 

 

Table 1.4: Posterior median estimates of genetic and temporal parameters. 

Parameter Median (95% HPD) 
Clock rate (× 10!") 1.36 (0.04, 2.48) 

Coefficient of variation^ 2.27 (1.44, 3.73) 
Root height date 1844 (1515, 1966) 
Monophyly of Pre-fadeout clade 0.996* 
Monophyly of Pre-fadeout clade + CSL14079 0.899* 

HPD: highest posterior density 
^Measure of the variation in evolutionary rate amongst the branches 
*Mean is shown 

 

There are four notably robust elements to the tree topology. The island isolate element 

(within Clade2), which contains all skunk and fox isolates in addition to a single CSL isolate 

(CSL10040; Figure 1.2 grey box), has high confidence across the posterior set of trees. The node 

defining Clade2 also has a high posterior support; this branchpoint indicates that two of the 

post-fadeout CSL isolates (CSL13755 and CSL13546) are highly unlikely to be found elsewhere in 

the tree. These isolates are more related to the 2011 ES isolates and the terrestrial island 

isolates than to Clade1. Likewise, the posterior probability for the node of the pre-fadeout 

isolates (deepest node within the blue box of Figure 1.2) is high, but the arrangement within 

this subclade has less posterior support, indicating the relative positions of the subclade were 
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much more variable across the posterior set of trees. Finally, the Clade1 juncture shows that 

CSL14079 is more similar to the pre-fadeout isolates than the terrestrial isolates. 

Because the central hypothesis of our work is that post-fadeout isolates are not 

descended from pre-fadeout isolates (i.e. the post-fadeout isolates are derived from one or 

more separate lineages introduced from some outside reservoir), we investigated the CSL14079 

isolates in more depth. To quantify how often CSL14079 was included in Clade1, we 

summarized two monophyly statistics (Table 1.4). The pre-fadeout clade (Figure 1.2;  light blue 

box) was monophyletic in 99.6% of posterior trees, indicating that this topology is quite robust. 

When CSL14079 was included with the set of pre-fadeout isolates (to form Clade1), the 

monophyly was preserved in 89.9% of posterior trees, meaning that CSL14079 clusters away 

from the pre-fadeout clade about 10% of the time.   

 More broadly, this time-calibrated phylogenetic reconstruction indicates that none of 

the post-fadeout strain(s) are directly descended from the pre-fadeout clade. CSL14079 is most 

related to the Marine1 clade but does not group within the clade, as would be expected if this 

isolate was descended from the pre-fadeout CSL strain. The two monophyly measures show 

that CSL14079 is highly unlikely to cluster within the pre-fadeout clade because the monophyly 

of the pre-fadeout was only broken in 0.4% of posterior trees. When this evidence is combined 

with the lower monophyly statistic for Clade1, it supports that CSL14079 and the other post-

fadeout isolates are not descendants of the pre-fadeout clade, simply that CSL14079 is more 

similar to the pre-fadeout strain than to the others in the tree.  

The CSL13546 and CSL13755 isolates cluster with the 2011 ES pair, but these ES are an 

unlikely source for these post-fadeout isolates. The strain found in this ES pair was isolated 
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while they were in a rehabilitation facility and are believed to have acquired infection after 

arriving (Delaney et al., 2014). The genetic data show clearly that the source of these ES 

infections was not from a wild CSL, but rather from some unknown external reservoir; this 

suggests that these two post-fadeout CSL isolates originated from an external source as well, 

rather than from ES. Additional serologic evidence (unpublished) shows that ES seroprevalence 

plummeted between 2013 and 2017 when pathogen fadeout occurred in CSL. This evidence 

strongly suggests that ES are not the reservoir for Leptospira. It is possible (though not 

necessary or parsimonious) that ES acted as bridge in the re-emergence in CSL, as there were 

cases of leptospirosis in ES in early 2017.  

Finally, CSL13990 clusters with the two pig isolates. These isolates were taken in 1984 in 

Iowa from neonatal swine. Clearly, the CSL infection did not originate directly from these pigs, 

but this clustering links this post-fadeout isolate to a strain that was once in a terrestrial host. 

This evidence all indicates that there is an unknown reservoir host, likely a terrestrial host on 

the mainland, which has seeded the ecosystem multiple times with closely related strains. At 

least five (and as many as eight) introductions have occurred into the ecosystem since the 

1980s (Table 1.5). The 1988 CSL isolate is distinct from the pre-fadeout CSL clade, meaning at 

least two strains have circulated in the CSL population prior to pathogen fadeout. The island 

clade appears to have had its own strain introduction. The strain now circulates readily on the 

island with evidence of occasional spillover into CSL (CSL10040), but there is no evidence that 

the island terrestrial strain seeded the post-fadeout CSL outbreak. The two 2011 ES isolates are 

the fourth strain and are most likely a result of spillover from an unknown terrestrial host. The 

single leptospirosis case detected in a stranded CSL in 2016 represents another strain 
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introduction into the ecosystem, if our interpretation of that event as a failed re-emergence is 

correct. Finally, the post-fadeout CSL isolates represent at least one introduction of a new strain 

into the ecosystem. It is plausible that three separate introductions occurred into the CSL 

population during the post-fadeout period, but further analysis of these isolates and more 

information on potential terrestrial reservoir hosts is needed to resolve the uncertainty. 

 

Table 1.5: Potential introductions of related strains of Leptospira interrogans serovar Pomona in the coastal 
California ecosystem. 

Evidence of new 
strain introduction 

Potential date 
of introduction 

1988 CSL  1984-1988 
Pre-fadeout CSL Prior to 2004 
Island clade Prior to 2000 
ES3208 and ES3197 2011 
2016 stranded CSL 2016 
Post-fadeout CSL Probably 2017 

 

1.4 Discussion 

 In these case studies, we used whole genome sequencing of Leptospira interrogans 

serovar Pomona isolates to reconstruct transmission linkages within the California coastal 

ecosystem. We showed that the source of the Leptospira outbreak in Channel Island foxes post-

reintroduction was not from California sea lions. Additionally, when Leptospira re-emerged in 

the CSL population after a 4-year absence in the wild, our data provide strong corroborating 

evidence that the pre-emergence strain had disappeared and show that re-emergence was the 

result of the introduction of one or more new strains. More broadly, our data suggest that 

transmission occurs primarily within the terrestrial or marine ecosystems but can occasionally 

occur across ecosystems as well, challenging conventional notions of marine island as closed 
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systems and echoing past work on resource subsidies across ecosystem boundaries (Borremans 

et al., 2019). There is additional evidence that an unknown reservoir host (putatively a 

mainland terrestrial species) may be seeding independent introductions of L. interrogans 

serovar Pomona into the different host species within the California coastal ecosystem. 

 Our lab’s recent survey of micro- and macroparasites in urban wildlife (e.g. squirrels, 

raccoons, rabbits, coyotes, opossum) of Southern California detected evidence of Leptospira 

interrogans exposure or infection in several species (Helman et al., unpublished). Using the 

microagglutination test (MAT) to detect anti-Leptospira antibodies, we detected evidence of 

exposure to serovar Pomona in coyotes, raccoons, opossums, and skunks. However, MAT can 

be misleading with respect to infecting serovar because it is subject to high levels of cross 

reactivity (Chirathaworn et al., 2014; Mummah et al., unpublished). Active Leptospira infections 

(via PCR) were detected at low levels in these four species as well. Combined, this evidence 

suggests that any of these mammals are prime candidates as sources of Leptospira transmission 

to marine and island communities. Another study has also shown the presence of feral swine 

along the California coast which have serologic evidence of infection by serovar Pomona, 

making them another candidate reservoir for the pathogen (Pedersen et al., 2015). In general, 

more research is needed to understand the contribution of coastal mainland terrestrial species 

to the Leptospira transmission dynamics of the island and marine systems. 

This work was not without its challenges. As in most multi-host studies, we have uneven 

sampling across the four host species, which limited our ability to estimate of the frequency of 

cross-species transmission. The uneven sampling is in part due to difficulty in obtaining samples 

from hosts but also in culturing isolates. Leptospira is very slow-growing and difficult to culture, 
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which make a study of this kind very difficult to execute. Additionally, Leptospira has a slower 

substitution rate compared to other bacteria, with high variation across the branches of the 

tree (Duchêne et al., 2016). Slow substitution rates can result in a limited number of differences 

between isolates despite the temporal depth in sampling and can hinder the power with which 

the tree topology is formed. Uneven sampling across host species can also potentially lead to 

biases in inferred tree topology, including misinterpretation of the source and target species. 

However, in our system, we have other lines of evidence that support the inferences we have 

drawn (for instance, serologic data spanning the past decade indicate that ES are not a 

maintenance host for Leptospira (Prager et al., unpublished), and our long-term field 

surveillance shows that spotted skunks have played a steadily declining role in the SRI outbreak 

(Lloyd-Smith, 2021)). 

In the future, greater sample sizes and temporal depth across host species would 

improve the estimates achieved in these case studies. Additional isolates from ES, particularly if 

sampled near the times when new strains were introduced to the CSL population, could reveal 

the potential role they play as a bridge between CSL and an unknown terrestrial host and the 

frequency of spillover from the unknown terrestrial host and the marine ecosystem. More post-

fadeout isolates from CSL (including from later than 2018) would shed light on how many 

lineages are circulating after the pathogen re-introduction and may help resolve the structure 

of Clade2 and Clade3 in the phylogeny. Samples isolated from coastal mainland terrestrial hosts 

would be most critical in linking the repeated introductions of Leptospira in the marine and 

island communities to a terrestrial reservoir host. Beyond this system, obtaining broad 

temporal depth is crucial for accurately estimating divergence, especially for slow-evolving 
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pathogens. When the temporal range of isolates is too narrow, the topology can have low 

posterior support, as is seen within the pre-fadeout clade of CSL which has a temporal range of 

7 years (2004-2011). 

 Within Leptospira more broadly, there is the potential for recombination, which could 

bias branch length estimation and node dating on the tree (Kakita et al., 2021; Thaipadungpanit 

et al., 2007; Vos & Didelot, 2009). However, the reported recombination rate for Leptospira 

interrogans is low (Thaipadungpanit et al., 2007; Vos & Didelot, 2009). For these analyses, we 

chose not to address recombination because our primary goal of bacterial phylogenetic 

reconstruction is robust to recombination (Hedge & Wilson, 2014). There is potential within 

these isolates and Leptospira more broadly to identify gene regions with high levels 

recombination amongst a group of related isolates, which would further our understanding of 

Leptospira genomics and the role of recombination in its evolution. 

 Using this unique system of Leptospira dynamics across a marine-terrestrial ecosystem, 

we have demonstrated multiple ways to infer cross-species transmission from genetic data. We 

illustrated clear proximate evidence of transmission when a tip is nested in a clade with isolates 

from other species (e.g. CSL10040 within the island clade or ES077 within the pre-fadeout CSL 

clade), and we showed that the deeper branching structure of the tree can indicate cross-

species transmission events within and across ecosystems. However, our inferences were 

possible because of the extraordinary temporal depth, host breadth, and sampling coverage in 

our dataset. Long-term surveillance programs have the potential to capitalize on the temporal 

depth of their datasets and pair long-term ecological datasets with modern phylogenetic 

methods. Additionally, the use of historic or banked samples could aid in the application of 
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these methods and could also improve the temporal depth of a dataset, as it did in these case 

studies with the inclusion of the 1988 CSL and 1984 pig isolates. Furthermore, integrating 

across different long-term monitoring programs when relevant could improve the host breadth 

or provide vital ecological context to interpret genetic patterns. For instance, Channel Islands 

National Park has multiple long-term monitoring programs in place but are usually class specific 

(i.e. land birds, rocky intertidal zone species). Our work has shown the importance of long-term 

surveillance and sample collection in understanding pathogen dynamics in wildlife. 

The application of this methodology and breadth of data is novel to Leptospira ecology, 

and few studies have examined the ecology of cross-species transmission for L. interrogans. 

Although other studies have applied whole genome sequencing to a limited number of samples, 

our studies are the first with sufficient breadth of host species and depth of temporal 

resolution to examine the fine structure of Leptospira lineages within a single serovar. 

Increased temporal depth and host breadth would provide still greater opportunities to learn 

more about the frequency and nature of cross-species transmission within the coastal California 

ecosystem, and for L. interrogans serovar Pomona more broadly. Beyond Leptospira, our work 

illustrates the range of relative transmission frequencies within and across species, and the 

utility of whole genome sequencing as a component of a multi-disciplinary, multi-data source 

study to untangle the complexity of wildlife disease systems when cross-species and within-

species transmission occur with similar frequency. 
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1.5 Methods 

1.5.1 Bacterial culturing  

Sterile urine samples collected via cystocentesis were cultured by placing 1cc sterile 

urine into EMJH medium at 1:10 dilution (Ellinghausen & McCullough, 1965; Johnson & Harris, 

1967). Culture media was inoculated with 0.1cc of the diluted urine (Adler, 2015). Cultures 

were stored with lids lightly open in a dark room at room temperature until they were sent to 

the National Animal Disease Center (NADC) in Ames, IA, where they were kept in an incubator 

at 30°C for at least 6 months. Cultures were either shipped to NADC or CDC in Atlanta, GA and 

examined periodically for growth using dark field microscopy. 

 

1.5.2 DNA preparation and whole-genome sequencing 

When sufficient genetic material was available for an isolate, DNA was extracted using 

Qiagen Blood Tissue Kit for whole genome sequencing (WGS). RNase was added before 

shipping the extractions to USDA National Animal Disease Center, where they were sequenced 

using Illumina MiSeq, targeting 80-fold coverage across the genome. Sequencing was 

conducted in three separate runs and produced 2x250 bp paired-end reads.  

 

1.5.3 Genome assembly 

Raw short reads were error-corrected and assembled using the shovill pipeline 

(https://github.com/tseemann/shovill). Briefly, the depth of the FASTQ files was reduced and 

adapters were trimmed using Trimmomatic version 0.39. Read sequencing errors were 

corrected and paired-end reads were pre-overlapped prior to assembly. Reads were assembled 
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using SPAdes (Bankevich et al., 2012). Assembled contigs were error corrected by mapping the 

reads back to the contigs; low quality and short contigs were removed. The resulting contigs 

were annotated using PROKKA (https://github.com/tseemann/prokka), requiring a minimum 

contig length of 200 to ensure Genbank compliance. Core and accessory genes were identified 

using Roary (Page et al., 2015). In turn, Roary produced a core genome multi-FASTA alignment 

using MAFFT v7.475. All sites were required to have a base call in the final multi-sequence 

alignment. The alignment used for Case Study #1 ultimately contained 3,188,030 sites, whereas 

the Case Study #2 alignment contained 3,157,250 sites. 

 

1.5.4 Isolate selection 

 In total, seventy-two isolates were sequenced from fifty-three unique hosts (See Table 

S1.1). We have duplicates in two ways: some hosts have two isolates from different tissues, and 

some isolates were resequenced in the last sequencing run. One isolate for each unique host 

was selected for analysis. When a host had two isolates from different tissues (7 CSL; 1 ES), the 

urine-cultured isolate was selected for the sea lions while the kidney isolate was selected for 

the elephant seal (since all other elephant seal isolates were from kidney tissue). Nearly all of 

these dual isolates were in the second sequencing run, and this selection resulted in a more 

even across-batch selection for the phylogenetic analyses. For resequenced isolates, the isolate 

sequenced in the third sequencing run was selected. This resulted in 13, 13, and 12 CSL isolates 

being selected from each sequencing run. We did not see substantial differences between any 

two isolates from the same individual host. Two additional isolates were included which were 
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isolated from neonatal swine in Iowa; these were sequenced in a separate batch using the same 

library preparation and sequencing techniques. Isolate selection is summarized in upplement 

Table S1.1. 

 

1.5.5 Phylogenetic reconstruction of L. interrogans over time 

 We reconstructed the evolutionary relationships among L. interrogans serovar Pomona 

isolates by incorporating molecular sequence and temporal data using a Bayesian Markov chain 

Monte Carlo (MCMC) analysis in BEAST v1.10.1 to estimate a time-calibrated phylogeny 

(Suchard et al., 2018). We applied a Hasegawa, Kishino, and Yano nucleotide substitution model 

with gamma-distributed rate heterogeneity and a proportion of invariant sites (HKY + G + I), and 

we also selected an uncorrelated relaxed molecular clock model as the clock model prior in 

these phylogenetic analyses (Drummond et al., 2006; Hasegawa et al., 1985). Three 

independent MCMC chains were run for 100 million generations, and posterior distributions 

were sampled every 1,000 generations. Independent chains were combined using LogCombiner 

and the first 10% of each independent chain was discarded as burn-in. Model parameters were 

assessed for convergence and sufficient effective sample sizes (>200) in Tracer v1.7.1 (Rambaut 

et al., 2018). The maximum clade credibility tree was identified in TreeAnnotator (Suchard et 

al., 2018).  

 

1.5.6 Post hoc monophyly statistic 

We constructed two monophyly statistics to measure the preservation of clades within 

the posterior set of trees. Monophyly statistics measure how often a set of isolates (taxon set) 
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is preserved as a group with no additional isolates included or any isolates from the set missing. 

Each posterior tree is evaluated as having the taxon set preserved (1) or not (0). The 

arrangement of the taxon set can change but does not affect the statistic. All isolates within the 

pre-fadeout set (Figure 1.2; light blue box) were included in the Pre-fadeout clade monophyly 

statistic. The second monophyly statistic included the same isolates as the first in addition to 

CSL14079 (which together makes the isolates of Clade1). 
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1.6 Supplement 

Table S1.1: Sequenced genomes from four host species in the Channel Island Ecosystem. 

Sequencing 
batch Sample Name ID Host Sample 

tissue Year Paired? Resequenced? 

2 CIslandFox24072_S23 CIslandFox24072 Fox Urine 2015   
2 CIslandFox32256_S3 CIslandFox32256 Fox Urine 2011   

2 CIslandFox36401_S2 CIslandFox36401 Fox Urine 2011   

2 CIslandFoxC0D60_S4 CIslandFoxC0D60 Fox Urine 2011   

2 CIslandFoxE6D47_S1 CIslandFoxE6D47 Fox Urine 2011   

2 CIslandSkunkA0451_S5 CIslandSkunkA0451 Skunk Urine 2011   

2 CIslandSkunkE7B4A_S6 CIslandSkunkE7B4A Skunk Urine 2011   
1 CSL10029_S4 CSL10029 CSL Urine 2011   
1 CSL10039_S5 CSL10039 CSL Kidney 2011   

1 CSL10040_S6 CSL10040 CSL Kidney 2011  Y 
3 CSL10040-Kidney_S15 CSL10040 CSL Kidney 2011  Y 
1 CSL10052_S8 CSL10052 CSL Kidney 2011   

1 CSL10082_S9 CSL10082 CSL Kidney 2011  Y 
3 CSL10082K-1_S23 CSL10082 CSL Kidney 2011  Y 
3 CSL10082K-2_S24 CSL10082 CSL Kidney 2011  Y 
1 CSL10083_S10 CSL10083 CSL Kidney 2011 Y Y 
2 CSL10083_S7 CSL10083 CSL Urine 2011 Y Y 
3 CSL10083K_S22 CSL10083 CSL Kidney 2011  Y 
3 CSL10083U_S21 CSL10083 CSL Urine 2011  Y 
1 CSL10084_S11 CSL10084 CSL Kidney 2011 Y  

2 CSL10084_S8 CSL10084 CSL Urine 2011 Y  
1 CSL10087_S12 CSL10087 CSL Kidney 2011 Y  
2 CSL10087_S9 CSL10087 CSL Urine 2011 Y  

1 CSL10097_S16 CSL10097 CSL Kidney 2011   

2 CSL10101_S10 CSL10101 CSL Urine 2011 Y  

1 CSL10101_S13 CSL10101 CSL Kidney 2011 Y  

1 CSL10113_S14 CSL10113 CSL Kidney 2011   

1 CSL10120_S15 CSL10120 CSL Kidney 2011   

3 CSL10442_S11 CSL10442 CSL  2012   
2 CSL11-224_S19 CSL11-224 CSL Kidney 2011   

3 CSL13546_S5 CSL13546 CSL Kidney 2017 Y  

3 CSL13546-Urine_S12 CSL13546 CSL Urine 2017 Y  

3 CSL13755-Kidney_S13 CSL13755 CSL Kidney 2018   

3 CSL13990-Kidney_S6 CSL13990 CSL Kidney 2018   

3 CSL14079-Kidney_S7 CSL14079 CSL Kidney 2018   

1 CSL6175_S1 CSL6175 CSL Kidney 2004   
2 CSL6187_S11 CSL6187 CSL Kidney 2004   

3 CSL6210_S17 CSL6210 CSL Kidney 2004  Y 
2 CSL6210_S18 CSL6210 CSL Kidney 2004  Y 
2 CSL7091_S12 CSL7091 CSL Kidney 2006   

2 CSL7108_S13 CSL7108 CSL Kidney 2006   

2 CSL7522 CSL7522 CSL Kidney 2007 Y  

2 CSL7522 CSL7522 CSL Urine 2007 Y  
2 CSL7525_S16 CSL7525 CSL Kidney 2007   
2 CSL7533_S15 CSL7533 CSL Kidney 2007   

2 CSL7905 CSL7905 CSL Urine 2008 Y  

2 CSL7905 CSL7905 CSL Kidney 2008 Y  

1 CSL9784_S7 CSL9784 CSL Kidney 2011   

1 CSL9887_S2 CSL9887 CSL Kidney 2010  Y 
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3 CSL9887K_S19 CSL9887 CSL Kidney 2010  Y 
1 CSL9979_S3 CSL9979 CSL Kidney 2011   

3 E7B4A_S20 CIslandSkunkE7B4A CIS Urine 2011  Y 
1 ES3197Kidney_S21 ES3197 NES Kidney 2011 Y  
1 ES3197Urine_S22 ES3197 NES Urine 2011 Y  

1 ES3208_S23 ES3208 NES Urine 2011   

3 Fox23850_S1 CIslandFox23850 CIF Urine 2015   

3 Fox24024_S4 CIslandFox24024 CIF Urine 2017   

3 Fox86076_S8 CIslandFox86076 CIF Urine 2013   

3 Fox87536_S2 CIslandFox87536 CIF Urine 2013   
3 FoxC6561_S9 CIslandFoxC6561 CIF Urine 2013   
2 Po-06-048_S22 Po-06-048 CSL Kidney 1988   

3 Po06-048_S14 Po-06-048 CSL Kidney 1988  Y 
1 WCSL209-11_S18 WCSL209-11 CSL Urine 2011   

1 WCSL215-11_S19 WCSL215-11 CSL Urine 2011   

1 WCSL31_S17 WCSL31 CSL Urine 2010  Y 
3 WCSL31U_S18 WCSL31 CSL Urine 2010  Y 
1 WCSL5651-11_S20 WCSL5651-11 CSL Urine 2011   
3 WCSL6434-11_S3 WCSL6434-11 CSL  2011   

2 WCSL7374-12_S24 WCSL7374-12 CSL Urine 2011   

3 WCSL7703-12_S10 WCSL7703-12 CSL  2012   

3 WDFW2011-077_S16 WDFW2011-077 NES Kidney 2011  Y 
1 WDFW2011-077_S24 WDFW2011-077 NES Kidney 2011  Y 
4 Pig211_S1 Pig211S1 Pig Kidney 1984   
4 Pig211_S13 Pig211S13 Pig Kidney 1984   
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Figure S1.1: Analysis of the effect of the imbalanced sampling across host species through time. There are more 
2011 CSL isolates than other host-year combinations. To analyze the effect of the inclusion of these isolates on the 
tree topology, we randomly subsampled the 2011 CSL isolates down to three and reconstructing the tree with all 
other isolates. Our analysis shows that the tree topology is robust to the exclusion of these isolates. 
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2 Assessing infection risk factors in wildlife populations: a case study of 

Leptospira in Channel Island foxes 

  

2.1 Abstract 

Quantifying risk factors for infection can be difficult in wildlife systems due to significant 

challenges with the data. Two challenges in particular, interval-censored data, which can result 

from infrequent sampling, and time-varying covariates, are often not addressed together when 

estimating infection risk. In this study, we estimate risk of Leptospira infection in Channel Island 

foxes using a novel approach to address these challenges. We impute time of infection using a 

titer kinetics model, which allows us to apply a Cox proportional hazards model with time-

varying covariates to assess risk factors. We find that low fox abundance and high 24-month 

cumulative precipitation provide ideal conditions for the transmission of Leptospira. Our 

innovative approach, in terms of intensive and sustained data collection and new 

methodologies for analysis, lays a foundation for future studies to investigate transmission risk 

to inform prevention and control strategies in wildlife populations. 

 

2.2 Introduction 

Transmission is the crux of disease ecology. The field of disease ecology relies on 

understanding pathogen transmission because it is the pivotal process that determines the 

population-wide effects of any pathogen (Heisey et al., 2006; Weitz et al., 2020). For instance, 

understanding the optimal conditions for host-to-host transmission guides the design of 

prevention and control measures. This was recently demonstrated in the assessment of 



 

 44 

transmission risk of SARS-CoV-2, which prompted public health agencies across the globe to 

instate various public health guidelines, including social distancing, mask wearing, and 

vaccination (CDC, 2021; ECDC, 2021; WHO, 2020). There are countless earlier examples in 

human, wildlife, and livestock populations. For instance, transmission studies coupled with 

novel statistical methods have enabled researchers to investigate the factors that drive 

transmission of Mycobacterium bovis in cattle (Crispell et al., 2019), which guided culling and 

vaccination practices in Great Britain. Furthermore, studies of suburban raccoons have shown 

their role in the maintenance and transmission of rabies in the eastern United States and the 

potential issues with raccoon vaccination strategies (Reynolds et al., 2015). 

As crucial as understanding transmission is, it is notoriously difficult to study because it 

is typically not directly observable and is influenced by many factors. Intrinsic factors such as 

host immunology, social behavior, population density, spatial distribution, sex, age, or immune 

status can affect the probability of an individual becoming infected (Anderson, 1982; Anderson 

& May, 1982, 1992; Kim et al., 2020; Mannelli et al., 2012; Marina et al., 2005; McCallum et al., 

2009; Pourbohloul et al., 2009). Work by Viboud et al. (2004) explored the risk factors for 

influenza transmission within households and the effects of childhood vaccination against the 

virus. They found that preschool-age contacts were driving transmission. Their analyses show 

that if children were vaccinated, it would reduce secondary cases in households by as much as 

41%. Their study highlights the importance of identifying the primary factors of infection risk to 

reduce subsequent cases. Extrinsic factors such as resource availability and environmental 

conditions can also alter the individual-level risk of transmission as well through impacts on 

host immunity and/or pathogen survival in the environment (Koelle & Pascual, 2004; Millán et 
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al., 2018). For instance, a study performed in China showed that Seoul hantavirus infections in 

Norway rats were linked to the extrinsic factor relative humidity (Li et al., 2019).  

However, assessing individual-level risk is less common in studies of wildlife disease due 

to challenges in collecting the necessary data, and challenges in the ensuing analyses. Wildlife 

systems can have many extrinsic factors which affect transmission risk that are not easily 

measured, such as community assemblage, inter- and intra-species interactions, population 

sizes, and environmental, climatic, and oceanographic forces. Additionally, within wildlife 

systems, observation and sampling can be time- or resource-restricted and are frequently 

dictated by the biology of the animals of interest (Childs, 2007). These sampling schemes can 

create irregular and infrequent time intervals between samples, making the already difficult-to-

observe process of transmission even harder to characterize. Furthermore, risk factors often 

vary meaningfully through time on timescales relevant to infection risk. Even in the rare 

instances when risk factors have been evaluated for wildlife infections, these issues arising from 

the sparseness, irregularity and non-stationarity of wildlife data are not typically addressed. 

 

2.2.1 Leptospira interrogans 

Pathogenic species within the genus of spirochete bacteria Leptospira cause the disease 

leptospirosis. Clinical signs can range from asymptomatic to fatal and infections can range from 

acute to chronic. Leptospires circulate in the blood before infecting the renal tubules, after 

which they are shed through urine (Levett, 2001). The pathogen transmits directly or through 

contact with contaminated water or soil sources, where the organism can survive and remain 

infectious for weeks to months (Faine et al., 1999). Leptospira is classified into serovars 
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determined by antibody responses (Adler & de la Pena Montesuma, 2010). Critically, Leptospira 

serovars are not host-specific. L. interrogans serovar Pomona is a multi-host pathogen with a 

complex ecology affected by host (intrinsic) and biotic and abiotic environmental (extrinsic) 

factors.  This serovar has been associated with infections in foxes, skunks, and California sea 

lions (CSL) in the coastal California ecosystem (Dierauf et al., 1985; Gerber et al., 1993; Gulland 

et al., 1996; Lloyd-Smith et al., 2007; Tabel & Karstad, 1967). 

Leptospira ecology has been previously shown to be associated with certain intrinsic and 

extrinsic conditions. Human Leptospira infections often rise after heavy rainfall, but it is still 

unknown how long Leptospira persist in different water and soil types (Bierque et al., 2020). A 

study done on Norwegian rats in an inner-city neighborhood in Vancouver, Canada suggested 

that the prevalence of Leptospira infections was associated with intrinsic factors such as the 

social structure and interactions between rats and indicated some level of positive density 

dependence exists in the transmission of this pathogen (Himsworth et al., 2013). Another study 

performed in Chicago neighborhoods showed that Leptospira infections in rats were linked to 

extrinsic factors such as standing water, a consequence of precipitation (Murray et al., 2020). 

To our knowledge no study has attempted to assess the risk factors for Leptospira transmission 

in (non-urban rat) wildlife, so there is great need and opportunity to explore the extent of the 

intrinsic and extrinsic factors that affect Leptospira transmission. 

 

2.2.2 Channel Island foxes (Urocyon littoralis) 

 The California Channel Islands are an eight-island archipelago located off the coast of 

southern California between Point Conception and San Diego (Figure 2.1). Five of the islands 
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(San Miguel, Santa Rosa, Santa Cruz, Anacapa, and Santa Barbara) comprise Channel Islands 

National Park and are managed by the National Park Service. Only four terrestrial mammal 

species, namely island foxes (Urocyon littoralis), island deer mice (Peromyscus maniculatus), 

western harvest mice (Reithrodontomys megalotis), and island spotted skunks (Spilogale gracilis 

amphiala), are native to the islands, and no island hosts all four species. The focal island of this 

study, Santa Rosa Island, hosts the endemic Channel Island fox, the island spotted skunk, and 

the island deer mouse (Wayne et al., 1991).  

 

 

Figure 2.1: Map of the Channel Islands off the coast of Southern California. (California Department of Forestry 
and Fire Protection, 2021; ESRI Inc., 2017; GEBCO Compilation Group, 2020; NLCD 2016 Land Cover Conterminous 
United States, 2019; NPS Land Resources Division, 2016) 

 The endemic Channel Island fox inhabits six of the islands, each forming their own 

subspecies (Wayne et al., 1991). Island foxes are the smallest North American canid, weighing 

about 1.9 kilograms (Coonan et al., 2010). Their omnivorous diet consists of small animals, 

plants, and insects (Roemer et al., 2001). After forming mated pairs, the foxes annually birth 
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litters of pups in April and May (Roemer et al., 2001). Fecundity and survival exhibit negative 

density dependence (Bakker et al., 2009; Coonan et al., 2010). Adult island foxes lack natural 

predators, so survival is generally high. However, island fox abundance is naturally small and 

prone to fluctuations due to environmental variation. A population viability analysis performed 

by Bakker et al. (2009) suggested that the fox populations were at low extinction risk except in 

the event of predation (by introduced predators) or disease. 

 Although the island fox populations have historically been small and fluctuating, 

anthropogenic factors initiated a cascade of effects which caused very severe population 

declines caused by golden eagle predation in the 1990s on San Miguel, Santa Rosa, and Santa 

Cruz islands (Coonan et al., 2005). In particular, only fourteen foxes (Urocyon littoralis 

santarosae) were left on Santa Rosa Island when the National Park Service took the entire 

population into captivity in 2000, and thus, the population was temporarily extinct in the wild 

(Coonan et al., 2010). A multi-year reintroduction program was initiated in 2003 to reestablish 

foxes on the island. By the end of 2008, 85 captive foxes had been released to the wild, and the 

reintroduced population was recovering, so the captive breeding program was concluded.  

In fall 2010, two juvenile male foxes were found dead on Santa Rosa Island with 

evidence of Leptospira infection. At the time, there was no evidence that this pathogen had 

circulated on the island before, but subsequent serological assays of banked data suggested 

that foxes on SRI had exposure to Leptospira interrogans serovar Pomona prior to captivity 

(Lloyd-Smith, 2021). Retrospective analysis of samples collected from reintroduced foxes 

showed that by 2006 (during reintroduction) island-wide adult fox seroprevalence was already 

high (Figure 2.2). Throughout the post-reintroduction period, adult seroprevalence remained 
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above 55% with a subtle decline in more recent years (2013-2019). Pup seroprevalence 

mirrored the dynamics of adult seroprevalence during the reintroduction period but settled 

into low (less than 30%) seroprevalence during the post-reintroduction period. Broadly, it 

appears there was an initial wave of infection during the reintroduction period, and the system 

settled into an endemic state thereafter, with infection levels fluctuating around a steady state. 

Intriguingly, spotted skunks on the island showed genetic evidence of infection by the same 

strain of L. interrogans serovar Pomona (See Chapter 1). 

 

Figure 2.2: Time series of disease metrics during from 2004 to 2019. The reintroduction period occurred between 
2004 and 2008 (grey shaded region). All-age prevalence of infection (indicated by PCR positivity; red), pup 
seroprevalence (blue solid), adult seroprevalence (blue dashed), and fox abundance (black) vary throughout the 
monitoring period. 

 

2.2.3 Survival Analysis 

Survival analysis is a class of statistical techniques which examine a time-to-event 

outcome variable (e.g., time to death, time to infection), and is conventionally used to quantify 

the rate of dying at a particular point in time. In our epidemiological context, we apply survival 
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analysis to estimate the force of infection, or infection hazard, which is fundamental to 

modeling and predicting transmission dynamics (Heisey et al., 2006). The hazard function, ℎ(#), 

is the instantaneous rate of infection and is commonly modeled using survival analysis, which 

evaluates the dependency of time-to-event data (e.g., time to infection) on explanatory 

variables. Survival analysis involves two primary quantities: the hazard function and the survival 

function. Assuming that the time of infection, T, is a continuous random variable with a 

probability density function f(t), the hazard function is composed of the conditional probability 

that the time of infection will occur in the time interval [#, # + Δt), given that infection has not 

occurred previously, relative to the interval width.  

 

ℎ(#) = lim
∆"→$

.(# ≤ 0 < # + ∆#	|	0 ≥ #)
∆#  

 

The survival function, 6(#), gives the probability that infection has not occurred up to time t, 

and takes the form of the complement of the cumulative distribution function: 

 

6(#) = .(0 ≥ #), 0 < # < ∞ 

 

A key attribute of survival analysis is its ability to deal with censored data. Time-to-event 

data can be censored in four ways (uncensored, right-, left-, and interval-censored), and 

multiple types of censoring can occur within a single dataset. When the time of the event (e.g., 

infection) is known exactly, the data is uncensored. However, this type of data only occurs with 

continuous monitoring and is very rare in wildlife studies. If the event has not occurred by the 
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end of the study but may occur at a later date, the individual is right-censored (Figure 2.3A). 

Left-censoring is much less common than right-censoring and is defined by the occurrence of 

the event prior to the start of the study (Sun, 2006). Finally, interval censoring describes the 

situation when subjects are periodically observed, as in most wildlife trapping and sampling 

schemes, so the time of the event falls within an interval of time, rather than being exactly 

measured (Figure 2.3B, C). 

There can be many factors which affect the rate of an event occurring at a particular 

point in time, and a Cox proportional hazards analysis examines the effect of such factors on 

the hazard rate (D.R. Cox, 1972). A Cox proportional hazards model is expressed by the hazard 

function ℎ(#), which takes the form:  

 

ℎ(#) = ℎ$(#) × :;<(=%;% + =&;&+. . . +=';') 

 

where the hazard function is determined by a set of covariates (;%, ;&, … , ;'). The coefficients 

(=%, =&, … , =') measure the impact of the covariate on the hazard function, and the baseline 

hazard, ℎ$(#), corresponds to the hazard when all the covariates are equal to 0. The hazard 

ratio (HR), :;<(=(), describes the relative effect of the ith covariate on the hazard rate. If =(  is 

equal to 0 or the hazard ratio is equal to one, then there is no effect on the hazard rate. If the 

hazard ratio is greater than one, then the covariate is positively associated with the event 

occurrence and, thus, will lead to a shorter time to event. 
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Figure 2.3: Schematic of censored data types in the context of the fox system. Solid blue lines denote survival 
time within the observation period, whereas the dotted blue lines indicated unobserved time. An individual enters 
the study (orange circles) when they are born in the wild (A, B) or are released from captivity (C) and are at risk for 
infection on the island. Some individuals (B, C) experience the event (red line) during the study time but are 
interval censored (green box). Other individuals are right censored (A) and do not experience the event during the 
time of the study but may or may not experience the event thereafter. The bottom panel also illustrates a long 
interval, where an individual was negative when released from captivity but was positive upon its first capture. 

 

Previous studies have successfully applied survival analysis, in particular Cox 

proportional hazards regression (CPH), to understand factors affecting infection risk (Bui et al., 

2018; Hagan et al., 2004; Satayathum et al., 2006). Human epidemiology studies have 

frequently applied CPH to investigate intrinsic risk factors of infection, but CPH has been less 

frequently applied to evaluate extrinsic risk factors, which often vary through time. Similar 

studies in wildlife systems using CPH are limited, but Almberg et al. (2012) used CPH regression 

to model the pack-level risk of mange infection in wolves. They found that areas of highest 

resource quality, which are also the most likely to host a high density of wolves, were 

associated with the highest infection risk to wolves. However, this study did not address the 

added complications of interval-censored data or time-varying covariates, which are generally 

inherent in wildlife data and sampling schemes. 

In wildlife systems, subjects are sampled in infrequent trapping or other immobilization 

events. This inherently leads to interval censoring because the time of infection falls between 
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the last negative test and first positive test.  Because the fieldwork required to obtain 

biometrics on infection status can be heavily seasonal due to logistical or biological constraints, 

the intervals between sequential samples from individual animals can be irregular or extend 

over long time periods (e.g., up to a year or more). Studies that explore the impacts of interval 

censoring show that long intervals can introduce significant bias (Vandormael et al., 2018). 

Therefore, it is common to impute a time of infection to make the data right-censored only, 

which allows the use of more standard survival analysis techniques. 

Data imputation provides a way to cope with the technical challenge of interval-

censoring, giving rise to augmented datasets with (estimated) precise event times, which 

enable the use of standard statistical techniques. However, Vandormael et al. (2018, 2020) 

have shown that imputing the infection time with the midpoint or endpoint of a censored 

interval can systematically bias estimates of the hazard function. Another common method is to 

impute the time of infection by random sampling from a uniform distribution. Although this is a 

better approach because it avoids systematic bias, it assumes that the hazard is constant across 

the interval and any potentially informative information about the timing of infection is 

discarded (Vandormael et al., 2018).  

Recent methodological advances have harnessed the power of dependably varying 

biomarkers to infer the time of infection (Borremans et al., 2016, In preparation; Pepin et al., 

2019; Wilber et al., 2020). Antibody responses to a pathogen can occur in a predictable way and 

can be described using a titer kinetics model, which estimates the peak antibody titer and 

antibody decay rate. Using longitudinal serological data, the antibody kinetics can be used to 

back-infer the time of infection from an individual’s antibody titer. In this way, longitudinal 
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serological data can greatly improve estimation of incident infections (Borremans et al., 2016). 

Seminal work in this field by Borremans et al. (2016) used lab-infected mice to characterize an 

antibody decay function and demonstrated model improvement with the incorporation of 

additional intrinsic factors such as differing types of antibodies or individual age. However, this 

study utilized data from frequently-sampled individuals, which is generally not possible in field 

systems (Borremans et al., 2015). In recent developments, Wilber et al. (2020) used 

quantitative serology in an extended survival analysis when inferring seasonal infection risk for 

influenza A virus in swine. Their model accounted for interval censoring and explored intrinsic 

factors, host demography and antibody boosting caused by re-exposure to the virus, but their 

inquiry did not include extrinsic factors. 

Inclusion of extrinsic factors in survival analysis can be challenging because extrinsic 

factors of interest frequently vary over time (e.g., precipitation). Intrinsic factors such as host 

population density or demographic rates can be time-varying as well. Time-varying factors are 

covariates whose effect on infection risk is constant but whose values change over the time an 

individual is at risk. For example, if rainfall drives the risk of infection but varies through time, 

then changes in rainfall must be considered over the period that an individual is at risk of 

infection. The inclusion of time-varying covariates in infection risk analyses requires special 

formulation of the time-at-risk and requires right-censored-only data. Thus, few studies address 

both interval-censored data and time-varying covariates, even in analyses of human data, and 

no studies have done this in wildlife. In this study, we aim to identify key factors that affect 

incident infections of Leptospira in Channel Island foxes while addressing key data issues that 

arise in wildlife systems, namely large censoring intervals and time-varying covariates. The 
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insights gained through this study will contribute to our understanding of the basic ecology of 

the system and can be used to develop management strategies and project possible changes 

under future climate scenarios. Furthermore, the methods developed in this study are 

generalizable to other wildlife systems and provide a new set of tools that will enable disease 

ecologists and epidemiologists to better assess infection hazard in their study systems.  

 

2.3 Methods 

2.3.1 Study period and Study cohort 

From 2000 to 2009, the National Park Service (NPS) monitored the health of the island 

foxes brought into the captive breeding program and their captive-born offspring. All captive 

individuals had serum samples taken 1-4 months prior to reintroduction into the wild. During 

reintroduction (2003 - 2009) the NPS continued to monitor the wild fox population and conduct 

health evaluations on individuals captured through target trapping. Sampling coverage was low 

during the first couple of years for logistical reasons, but annual evaluations began in 2006. 

From 2009 to 2019, following the conclusion of the captive breeding program, serum and urine 

were collected via target trapping and a large-scale structured sampling program with 18 

trapping grids run annually from reintroduced and wild-born foxes. 

 The cohort analyzed in this study consisted of 1226 foxes. To be included in this dataset, 

individuals were required to have a known release date from captivity (with a negative 

microagglutination test (MAT) result in their last captive test) or a known year of birth in the 

wild. All individuals that only ever tested seronegative during the study period (2004-2019) 

were included in the dataset. We defined infection of a fox to be when a fox born in the wild or 
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a known seronegative fox tested MAT positive for L. interrogans serovar Pomona or serovar 

Autumnalis. Serovar Autumnalis has been shown to be cross-reactive with serovar Pomona and 

generally has higher titer magnitudes in foxes than serovar Pomona, despite Pomona being the 

infecting serovar (Mummah et al., unpublished). No individuals in this study are classified as 

left-censored (i.e. no individual experienced the event prior to the study start time). 

 

2.3.2 Choice of timescale 

For survival analysis, it is crucial to choose an appropriate timescale (Fieberg & 

DelGiudice, 2009). The timescale is defined as the unit of time over which you are estimating 

risk (e.g. days, weeks, years) from the time where risk accrual begins (e.g. at birth). The choice 

of timescale governs the interpretation of survival times and allows a clear understanding of 

how age and temporal factors are accounted for within the models. In our study, we define our 

timescale as “days since birth/release”. Foxes kept in captivity begin their time-at-risk when 

they were released to island (Figure 2.3C). However, the majority of the foxes in our dataset 

were wild-born post-reintroduction, and, therefore, begin their time-at-risk at birth, assumed 

to be the midpoint (April 1) of the island fox birthing season (Coonan et al., 2010). These 

choices affect our ability to estimate age effects in the models. Because much of our dataset 

are foxes which are wild-born and whose time-at-risk begin at birth, the time-at-risk in the wild 

and the individual’s age are conflated and cannot be separated. This kind of direct correlation 

with time-at-risk is intractable in CPH, and, thus, we cannot estimate the effect of age on 

infection risk with our chosen timescale. 
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2.3.3 Data Imputation 

Rather than using a standard technique to impute the time of infection for each 

individual in an uninformed manner, we generated biologically-informed time of infection 

estimates using the titer kinetics model described in Borremans et al. (Borremans et al., In 

preparation). This model uses longitudinal and quantitative serology data to estimate the peak 

antibody titer and antibody titer decay rate for an individual within the bounds of its infection 

interval (defined by an individual’s last negative test and first positive test; Figure 2.3 - green 

boxes). Given one or more antibody titer values, the model can estimate a posterior probability 

on the time of infection for every day within the bounded interval. The level of precision varies 

by individual with some posteriors being more informative than others (Figure S2.1).  Using 

these probabilities as weights, we construct an ensemble of augmented datasets by bootstrap 

sampling the times of infection for all foxes in an informed way; for each dataset, we assume 

that the event date is known exactly, which enables the incorporation of time-varying 

covariates more easily. 

  

2.3.4 Counting process formulation 

To incorporate time-varying covariates into a proportional hazards model, the data must 

be transformed into a counting process formulation (Fieberg & DelGiudice, 2009). An 

individual’s time-at-risk (Figure 2.3; solid blue lines) is subdivided into smaller intervals over 

which the time-varying covariates can be assigned. This formulation assures that survival time is 

accurately accrued and that the covariates can be updated through time, with appropriate 
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temporal resolution (e.g. monthly or annually). In this study, we divided every individual’s time 

at-risk into monthly intervals (Table 2.1). 

Table 2.1: An example of a counting process formulation for a single individual's risk time. 

Full time at-risk 
(days) Full time at-risk (by date) 

Subdivided 
time at-risk 

(days) 

Subdivided time at-risk 
(by date) 

[0, 100) [04-01-2005, 7-10-2005) 

[0, 30) [04-01-2005, 05-01-2005) 

[30, 61) [05-01-2005, 06-01-2005) 

[61, 91) [06-01-2005, 07-01-2005) 

[91, 100) [07-01-2005, 07-10-2005) 

 

2.3.5 Candidate risk factors for infection with Leptospira 

         Based on our knowledge of the host-pathogen system and the ecology of Santa Rosa 

Island, we investigated potential risk factors for individual foxes to become infected with 

Leptospira. We formed three groups of covariates: individual, biotic environmental, and abiotic 

environmental (Table 2.2). Sex, the only individual-level variation we accounted for, was 

recorded upon birth within captivity or first capture of the fox on the island. 

Table 2.2: Potential factors affecting Leptospira infection risk in 1226 foxes between 2004 and 2019. Descriptive 
statistics are given for the unscaled covariates. The covariates were normalized for the analysis. 

Covariate description Mean SD 
Individual level 

Sex (Male) n=647 (52.8%) 
Abiotic environmental 

1-month cumulative precipitation (precip1) 0.90 1.46 
12-month cumulative precipitation (precip12) 10.70 4.53 
24-month cumulative precipitation (precip24) 20.64 5.67 
Monthly average temperature 56.68 4.78 
Monthly average relative humidity 73.11 11.95 

Biotic environmental 

Fox abundance 812.56 763.40 
Skunk abundance 16.69 14.68 
Pup seroprevalence 0.15 0.16 
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The biotic environmental category includes factors that would conventionally be 

considered intrinsic to the host-pathogen system (fox abundance, skunk abundance, pup 

seroprevalence). We also included skunk abundance in this category because island spotted 

skunks have been shown to carry the same strain of Leptospira as island foxes (Chapter 1). Fox 

abundance was estimated annually by the National Park Service using live trapping and VHF 

radio telemetry data from collared individuals. Between 2004 and 2009, fox captures were 

primarily obtained through target trapping. In 2009, NPS biologists switched to a grid trapping 

scheme. Throughout this entire period, the skunk population was monitored via by-catch in fox 

traps. Skunk abundance was estimated using the number of skunk captures per trap-night. 

Estimation of skunk abundance is fundamentally uncertain because the trapping strategy and 

effort varied across the study time, skunks were not always individually marked in the early 

years of the study, and traps were frequently saturated by foxes, particularly in the later years 

of our study. 

The abiotic environmental category contains extrinsic factors precipitation, 

temperature, and relative humidity. Daily measurements for these variables were obtained for 

Santa Rosa Island from 2003-2020 from the Western Regional Climate Center (WRCC) in Reno, 

Nevada. Monthly averages were calculated for temperature and relative humidity. For 

precipitation, we created three covariates that captured cumulative total precipitation over the 

past 1, 12, and 24 months.  The precip1 variable was intended to capture the immediate effect 

of rainfall, which could affect Leptospira transmission via puddles, wet vegetation, or changes in 

animal behavior. The precip12 and precip24 capture the past one and two rainy seasons in the 

highly seasonal Mediterranean climate on Santa Rosa Island, which affect the quantity of 
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surface water in streams and pools and have bottom-up effects across the island ecosystem 

(Power & Rudolph, 2018). These longer-term variables would also capture the impact of 

extended drought periods.  

         Because we know that a primary driver of infection risk during an outbreak is the 

prevalence of infectious individuals in the island fox population, we also included yearly pup 

seroprevalence as an index of the island-wide force of infection each year (Anderson & May, 

1992).  Although PCR positivity in urine samples would be a more direct measure of active 

shedding island-wide, we lack PCR data in the early phase of the outbreak and reintroduction 

(2004-2010). However, between 2011 and 2019, pup seroprevalence and PCR positivity are 

strongly correlated (Figure 2.2), so we used pup seroprevalence as a proxy for active infections 

on the island. To maintain our focus on non-disease factors while controlling for the influence 

of infection prevalence, in our final analyses we first determined the best model that excludes 

pup seroprevalence. We then tested whether the model’s conclusions were robust to the 

addition of pup seroprevalence as a proxy for outbreak context.  

 

2.3.6 Imputation and Hazard modeling 

We performed 10,000 bootstrap runs in which time of infection for each individual was 

imputed using weights proportional to the posterior probabilities generated by the titer kinetic 

model. The full dataset was subdivided into a counting process formulation by month, and 

time-varying covariates were assigned to each interval. All covariates were standardized to 

have a mean of 0 and a standard deviation of 1.  Then, we fit a series of univariate Cox 
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proportional hazards models to assess the effect of single covariates on the hazard rate using 

the survival package in R version 4.0.5 (R Core Team, 2021; Therneau, 2021). 

We formulated a multivariate model with factors from all three categories. Because 

factors within a category tended to be correlated and we wanted to avoid multicollinearity 

(Figure S2.2), we chose a single factor from each one. In addition to the lone individual factor 

(sex), the best-performing covariate from each environmental category was selected to form a 

multivariate model. We compared different multivariate models using Aikake information 

criterion (AIC) scores to balance parsimony with goodness of fit (Burnham & Anderson, 

2002). We evaluated our final multivariate model with and without pup seroprevalence 

included, to evaluate the robustness of the core findings, and the potential benefit of including 

disease data in such a model when available. 

 

2.4 Results 

2.4.1 Univariate models 

Clear patterns arose within the three categories of factors (individual, biotic 

environmental, and abiotic environmental) in the univariate analysis (Table 2.3; Figure 2.4). 

Twelve- and twenty-four-month cumulative precipitation appeared to increase the risk of 

infection by 6% and 12%, respectively, with every increase in one standard deviation in the 

covariates (4.53 and 5.67 inches, respectively). One-month precipitation, monthly average 

temperature, and monthly average relative humidity showed weak trends but were not 

significant predictors of risk. All biotic environmental variables had significant relationships with 

the risk of infection in univariate analyses. Contrary to the standard expectations of density 
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dependence in pathogen transmission, greater fox abundance was associated with a decrease 

in the risk of infection as the population increases. Skunk abundance had the opposite effect. 

As expected, pup seroprevalence, a proxy for force of infection, had the largest effect size of 

any covariate. For a 16% (1 standard deviation) increase in pup seroprevalence, the individual 

risk of infection increased by 28%. 

 

Table 2.3: Estimated hazard ratio (HR) and center 95% from univariate Cox proportional hazards model with 
imputed time of infection estimates of potential factors affecting Leptospira infection risk in 1226 foxes 
between 2004 and 2019. The variation represented by the interval is generated from the 10,000 bootstrap runs.  

 HR (95% Interval) 
Individual level 

Sex (Male) 1.04 (1.00, 1.09) 
Abiotic environmental 

1-month cumulative precipitation (precip1) 1.04 (0.94, 1.13) 
12-month cumulative precipitation (precip12) 1.06 (1.01, 1.11) 
24-month cumulative precipitation (precip24) 1.12 (1.07, 1.18) 
Monthly average temperature 0.97 (0.89, 1.07) 
Monthly average relative humidity 0.96 (0.90, 1.04) 

Biotic environmental 

Fox abundance 0.93 (0.90, 0.96) 
Skunk abundance 1.11 (1.06, 1.16) 
Pup seroprevalence 1.28 (1.21, 1.36) 
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Figure 2.4: Distribution of hazard ratios estimated by univariate Cox proportional hazards model with imputed 
time of infection estimates. The variation represented by the boxplots is generated from the 10,000 bootstrap 
runs. The edges of the boxes denote the interquartile range and the middle line of the box represents the median 
value.  

 

2.4.2 Multivariate model 

To build our base multivariate model, we included the best-performing covariate from 

each category. In addition to the single individual factor (sex), we chose to include 24-month 

cumulative precipitation (precip24) as it had the greatest effect on infection risk in the 

univariate models in the abiotic environmental category. We chose to include fox abundance 

over skunk abundance for the biotic environmental category. These two covariates are strongly 

negatively correlated (r = -0.81, Figure S2.2), and because foxes were the focal host species in 



 

 64 

this study and there were major sources of bias in the skunk abundance data, the fox 

abundance covariate was retained for analysis in the multivariate model. We additionally 

evaluated the model with and without the inclusion of pup seroprevalence as a proxy for active 

infection. Thus, our multivariate model included sex, fox abundance, and 24-month cumulative 

precipitation (precip24). We also tested the effect of including monthly average temperature or 

relative humidity as well, but neither covariate contributed significantly to the model fit, as 

assessed by minor changes to AIC scores (Table S2.1).  

 The effects observed in the univariate models were all preserved in the multivariate 

model, with greater effect sizes and reduced uncertainties (Figure 2.5A). When the other 

covariates in the model were held constant, 24-month cumulative precipitation exhibited a 

stronger effect of increasing infection risk (median HR = 1.15), and fox abundance exhibited a 

stronger protective effect (median HR = 0.90). When pup seroprevalence was included in the 

model, these effects were qualitatively robust but diminished in magnitude (Table 2.4; Figure 

2.5B). Pup seroprevalence had a median hazard ratio of 1.21 after controlling for sex, 

precipitation, and fox abundance, which means that the risk increases by 21% with every one 

standard deviation increase in pup seroprevalence. 
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Figure 2.5: Distribution of hazard ratios estimated by multivariate Cox proportional hazards model with imputed 
time of infection estimates. Panel A shows the final multivariate model, which includes sex, yearly fox abundance, 
and 24-month cumulative precipitation. Panel B shows the same model with the inclusion of yearly pup 
seroprevalence. 

 

Table 2.4: Estimates of median hazard ratios (HR) of multivariable Cox proportional hazards model with imputed 
times of infection. 

 Without pup SP With pup SP 
 HR (95% Interval) HR (95% Interval) 

Individual level 
Sex (Male) 1.04 (0.99, 1.09) 1.04 (0.99, 1.09)  

Abiotic environmental 

24-month cumulative precipitation (precip24) 1.15 (1.10, 1.21) 1.08 (1.01, 1.15)  
Biotic environmental 

Fox abundance 0.90 (0.87, 0.93) 0.94 (0.90, 0.98) 
Pup seroprevalence  1.21 (1.12, 1.31) 
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2.4.3 Time-to-infection curves 

 To put these model findings into concrete terms to assist population managers, we 

compared median time-to-infection (the time corresponding to a 0.5 probability of becoming 

infected) for males and females at varying levels of fox abundance and 24-month cumulative 

precipitation (Figure 2.6). The low, medium, and high levels of fox abundance and 24-month 

cumulative precipitation were defined by the 10th, 50th, and 90th percentiles of each 

covariate. Regardless of stratification level, most median time-to-infection estimates are 

greater than one year (Table 2.5). Females had 2- to 4-week longer times than those of males 

across all levels of abundance and rainfall. The shortest median times predicted by our best-fit 

model (males: 360 days; females: 364 days) occurred when foxes are at low abundance with 

high precipitation.  
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Figure 2.6: Time-to-infection curves for low, medium, and high levels of fox abundance and 24-month 
cumulative precipitation when stratified by sex. Low, medium, and high levels of abundance and precipitation are 
defined by the 10th, 50th, and 90th percentiles of each covariate (Figure S2.3). Within each subplot, the curves are 
stratified by sex. The male lines (blue) occlude the female lines (red), but in all plots, the female line is slightly 
lower. 

 

Table 2.5: Median survival times (days) given sex, 24-month cumulative precipitation, and fox abundance. The 
median survival time is the time corresponding to a 50% probability of becoming infected. 

 Low abundance Medium abundance High abundance  
Female 497 512 640 Low 

precipitation Male 486 504 617 

Female 433 441 503 Medium 
precipitation Male 426 437 497 

Female 364 377 437 High 
precipitation Male 360 371 432 
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We also compared the model’s predictions for the probability of infection during the 

different periods of time-at-risk on the island under different conditions. After the first year at-

risk, male foxes had, at most, a 51% chance of becoming infected (Table 2.6). If the first year of 

time-at-risk occurred during less ideal conditions for infection (i.e. high fox abundance and low 

cumulative precipitation), the probability of infection was as low as 28%. After 2 years at-risk, 

the highest probability that male foxes were infected was 83%, which occurs under low fox 

abundance and high precipitation. The probability of infection was greater than 56% under all 

abundance and precipitation conditions for both sexes after 2 years at-risk. 

 

Table 2.6: Probability of becoming infected when stratified by sex, fox abundance, and 24-month precipitation 
after 1 and 2 years at risk. 

  Low abundance Medium abundance High abundance  
1-year Female 0.35 0.33 0.28 

Low 
precipitation 

2-year 0.66 0.64 0.56 

1-year Male 0.35 0.34 0.29 

2-year 0.67 0.65 0.57 

1-year Female 0.42 0.40 0.34 

Medium 
precipitation 

2-year 0.74 0.73 0.65 

1-year Male 0.43 0.41 0.35 

2-year 0.75 0.74 0.66 

1-year Female 0.50 0.48 0.41 

High 
precipitation 

2-year 0.82 0.81 0.74 

1-year Male 0.51 0.49 0.42 

2-year 0.83 0.82 0.75 

 

2.5 Discussion 

Transmission is the center of disease ecology and crucial to understand. However, this 

process is difficult to study as transmission is typically not directly observable and is influenced 

by many factors. Assessing risk in a wildlife species increases the difficulty and is rare due to 

challenges in collecting the necessary data, and in analyzing the typically sparse data that can 
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be obtained. In this study, we assessed the key factors that affect individual infection risk in a 

wildlife species, while introducing new approaches to handle the inherent data challenges of 

large censoring intervals and time-varying covariates. By incorporating quantitative serology-

based estimates of individual foxes’ times of infection, we were able to estimate the key factors 

that influenced Leptospira infection risk in Channel Island foxes.  

In a comparison of cumulative rainfall over different periods, we found that 24-month 

cumulative rainfall had a greater effect on infection risk than 12-month cumulative rainfall, and 

one-month rainfall did not have a discernable influence. This indicates that multi-annual trends 

in precipitation and, notably, the previous two rainy seasons are more important in driving 

infection risks than current climate conditions. Thus, under a changing climate, the long-term 

effects on the island’s hydrology will be more important in driving new infections than short-

term fluctuations. We postulate that this effect may be governed by changes in the distribution 

of standing water on the island. The underlying mechanisms are unknown, but we hypothesize 

that effects act on a range of timescales. For example, a recent review of Leptospira in water 

and soil environments proposes that rainfall re-suspends leptospires in the soil, making them 

more accessible to new hosts and potentially increasing risk of exposure (Bierque et al., 2020). 

Given the timescales of the survival of Leptospira in water and soil environments (days to 

months), it does not seem likely that this is the dominant effect driving the 24-month pattern. 

On the contrary, persistent changes in surface water that could provide hospitable 

environments for leptospires that are shed in the months (or years) after the rainfall could 

enable further transmission on a longer timescale. Further research is needed on the 

persistence of Leptospira in the environment to resolve the mechanisms of the precipitation 
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effect. Additional information about the island hydrology and the existence and persistence of 

transient pools could also improve the evaluation of risk for cumulative rainfall. Some work has 

been done to investigate the spatial and temporal variation of pooled water on the island and 

its response to variable precipitation, but the resolution of the data is much coarser than what 

is required to test the importance of the hydrology at this scale (Power & Rudolph, 2018).  

We also found that greater fox abundance was associated with reduced risk of 

Leptospira exposure. This finding differs significantly from the traditional assumption in disease 

ecology that a higher density of hosts leads to higher contact rates and, in turn, higher 

transmission. It is crucial to note that fox abundance increased steadily throughout the study 

period, so this effect could be confounded with other temporal trends. Of particular concern is 

confounding between the increasing fox abundance and the multi-annual dynamics of the 

Leptospira outbreak since the risk of infection is expected to decrease as Leptospira 

transitioned from epidemic to endemic circulation on the island (Figure 2.2). However, when 

pup seroprevalence was added as a proxy for overall prevalence of active infections on the 

island, the effect remained in the model, though with two-fold diminished strength. We believe 

a dominant contributor of this negative density dependence of risk may arise from the 

stabilization of island fox social structure as the reintroduced population became established on 

the island. As foxes were reintroduced to the island landscape (which was devoid of established 

fox territories since the wild population had been extinct for several years), biologists observed 

many long-range movements after release, which could have been movements in search of 

suitable habitat to establish a home range (Coonan et al., 2010). Telemetry data (unpublished) 

showed that movements were more frequent and longer-range in the years immediately after 
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reintroduction, then they gradually diminished in frequency and distance over the ensuing 

decade as home ranges were established. As the population grew, foxes were less likely to 

move outside their home ranges and disperse across the island, potentially due to stronger 

interference competition (Lloyd-Smith, 2021). This reduced overall mixing in the fox population, 

which could explain the decreased risk of new infections despite the higher population density.  

The model predicts the shortest median times-to-infection at low fox abundance and 

high 24-month cumulative precipitation. These conditions were met during the early phase of 

fox reintroduction in 2005 and 2006. In the winter months of 2005, there were fewer than 40 

foxes on the island, and the water table was at a peak with more than 30 inches of cumulative 

precipitation in the previous two years (more than 1.5 standard deviations above the average 

24-month cumulative precipitation) (Figure S2.4). According to our model, these combined 

conditions were highly conducive to Leptospira transmission and may have driven the initial 

outbreak of Leptospira in the population. Precipitation patterns may also have driven the subtle 

decrease in adult seroprevalence seen in recent years (2013-2019; Figure 2.2), as recent 

drought conditions may have led to suboptimal circumstances for Leptospira transmission 

(Figure S2.4). 

As expected, including a measure of the level of infection on the island through pup 

seroprevalence significantly improved model fit and moderated the effects of fox abundance 

and 24-month cumulative seroprevalence. It makes sense that that having more disease 

present on the island would increase the risk of infection and decrease the expected time to 

infection. Assuming there are unobserved factors that increase risk to individuals, they will give 

rise to elevated risk via their direct effect on the individual and via their population-scale effect 
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(i.e., because the risk to other individuals is high, population prevalence will be high, and, 

therefore, force of infection will also be high). In a sense, these factors will be double counted 

in a model that does not control for population prevalence or force of infection. By including 

pup seroprevalence in our model, we have controlled for both routes of influence: individual-

level and population-level. However, in most systems and on other islands, this information 

would be unavailable at the beginning of an outbreak and would require intense monitoring to 

have accurate estimates throughout the study period. Thus, we excluded it in our primary 

multivariate model to assess infection risk when disease-related data were unavailable. 

This work could be broadened to a spatially explicit estimation of risk on the island to 

better understand what local, sub-island conditions may have influenced risk of infection. Few 

environmental covariates are uniformly distributed across the island. For example, due to island 

topography, the presence and duration of seasonal pooled water can vary across the landscape, 

thus shaping the risk of infection (Power & Rudolph, 2018). Many of these spatially varying 

covariates (e.g., local fox density, local skunk density, local standing water, local infection 

prevalence) are challenging and time-consuming to collect and add an additional burden in the 

analysis. However, if these data were available, they would increase model precision and 

enable more targeted control.  

We implemented an improved approach for imputing time of infection data by using a 

quantitative serology model. However, our knowledge of time of infection gained through our 

quantitative serology model is limited by the slow decay rate of antibodies against L. 

interrogans serovar Pomona and serovar Autumnalis and considerable individual variation in 

peak antibody titer magnitude (Borremans et al., In preparation). Some posterior distribution 
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estimates of the time of infection are nearly flat, so they are functionally as imprecise as 

randomly sampling from a uniform distribution across the infection interval (Figure S2.1). Our 

time of infection estimates included only one type of biomarker, the level of serum antibodies, 

as it was the only reliable biomarker available. Estimates in other systems could be improved by 

including multiple biomarkers (e.g. PCR status, serum chemistry) which vary across timescales 

and have different decay rates (Borremans et al., 2016). For example, for Leptospira infections 

in California sea lions, serum chemistry indicates active infection and varies on the scale of 

weeks (Prager et al., 2020). This multiple-biomarker approach was recently applied to model 

the antibody kinetics of IgM and IgG during early SARS-CoV-2 infection since these antibodies 

reach peak levels at different times during an infection (Borremans et al., 2020).  

Understanding transmission and infection risk in a wildlife system is difficult due to the 

challenges in collecting the necessary data that is at an appropriate resolution and accounts for 

the multitude of possible contributing factors. Most wildlife systems have limited data at a fine-

scale resolution reminiscent of human epidemiological studies, but even with infrequent 

sampling and the complication of time-varying factors, we gained insights into the individual 

risk factors for infection. Our innovative approach, in terms of intensive and sustained data 

collection and new methodologies for analysis, lays the groundwork for future wildlife studies 

to investigate transmission risk to inform prevention and control strategies. 
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2.6 Supplement 

 

Figure S2.1: A selected set of time of infection posterior probabilities generated via the quantitative serology 
model. Each panel represents a single fox and are denoted by their ID numbers. The black lines show the posterior 
probabilities for time of infection between an individual’s last negative test and first positive test. The red lines 
represent a uniform distribution for each fox. 
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Figure S2.2: Correlation matrix among potential factors affecting risk of Leptospira infection. 
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Figure S2.3: Distributions of 24-month cumulative precipitation and fox abundance. The 10th, 50th (dashed), and 
90th percentiles define the low, medium, and high levels of each covariate for the time of infection comparisons. 
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Figure S2.4: Fifteen-year time series of risk factors of Leptospira. Twenty-four-month cumulative precipitation is 
shown in red. The black line illustrates the annual fox population abundance through time. The grey box indicates 
the period during reintroduction where the risk factors were optimized for transmission of Leptospira. 
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Table S2.1: Median Akaike information criterion (AIC) for multivariate Cox proportional hazards models across 
10,000 bootstrap runs. Lower AIC values indicate models that achieve superior balance of parsimony and 
goodness of fit, with AIC differences of 10 or more providing a strong basis for model selection. 

Model Median AIC 
Sex 8199.456 
Sex + Fox abundance 8199.456 
Sex + Fox abundance + Precip24 8187.731 
Sex + Fox abundance + Precip24 + Mean temperature 8185.594 
Sex + Fox abundance + Precip24 + Mean rel. humidity 8185.902 
Sex + Fox abundance + Precip24 + Pup seroprevalence 8177.134 
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3 Foxes on the move: Novel methods in spatial movement reconstruction 

3.1 Abstract 

The technology available to study animal movement is becoming ever more advanced, 

leading to data with increasingly fine-scale resolution. However, collecting this data is a 

resource-limited endeavor, and many long-term studies generate datasets, which have coarser 

spatial and temporal resolution, during the course of other types of research and monitoring. 

These data create an opportunity to develop an approach which capitalizes on ample lower-

quality data because these studies often have untapped information that is conventionally not 

used in estimating movement. In this study, by introducing an innovative methodology to 

integrate a novel spatial data type, obtained through expert interpretation of field notes, we 

demonstrate a method to construct wildlife movement trajectories from location data of 

varying resolution, using Santa Rosa Island foxes as a case study. Our approach lays the 

groundwork to reap the full benefit of rich, long-term monitoring datasets, which could provide 

vital insights into a species’ movement ecology and better inform conservation and 

management. 

 

3.2 Introduction 

3.2.1 Background 

Movement is a defining characteristic of an animal’s ecology because it underlies many 

biological phenomena of an animal’s life, including searching for food, finding a mate, avoiding 

predators, and socializing (Kays et al., 2015; Nathan et al., 2008). By understanding an animal’s 

movement across a landscape, scientists can learn how they interact with their ecosystem 
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across timescales. For example, movement associated with foraging or predator avoidance 

varies from day-to-day, but juvenile dispersal and habitat selection occur over longer periods of 

time. These patterns in animal movement can be used to estimate population density, resource 

use, home ranges, and dispersal rates, all of which can inform conservation and management 

decisions. For example, GPS telemetry data has enabled researchers to identify predictable 

feeding areas in Adélie penguins (Pygoscelis adeliae), informing the creation of the South 

Orkney Islands Marine Protected Area (Trathan et al., 2018).  

Movement rates and patterns also influence the speed and spatial spread of infectious 

diseases within a host population (Gaidet et al., 2010; Reynolds et al., 2015; VanderWaal et al., 

2018; Vicente et al., 2007). For directly transmissible diseases, it is well-established that 

contacts between susceptible and infectious hosts drive transmission. In Yellowstone National 

Park, outbreaks of sarcoptic mange between grey wolf packs were driven by the proximity to 

and range overlap with the nearest infected pack (Almberg et al., 2012). Other work has shown 

that seasonal pulses in gastrointestinal nematode infections in domestic sheep and saiga (Saiga 

tatarica tatarica) coincide with annual saiga migration (Morgan et al., 2007). Analyzing 

movement data can thus provide unique insights in terms of individual and population level 

ecology while simultaneously addressing questions about major biological phenomena like 

disease outbreaks. 

The range of technologies used to study animal movements has exploded in the last 50 

years (Wilmers et al., 2015). Non-invasive tracking technology can be used to study animal 

movement rates, home ranges, and migrations for individuals via camera traps or large groups 

by satellite imagery (Fidino et al., 2021; Kucera & Barrett, 1993; Nagy et al., 2017; Rowcliffe et 
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al., 2016; Young et al., 2019). Alternatively, animals can be captured and uniquely tagged 

externally (e.g. bands, ear tags, toe clipping, paint, or dye) or internally (e.g. chemical markers, 

passive integrated transponder (PIT) tags) (Silvy et al., 2012). These identifying markings allow 

researchers to obtain location data at the time of capture and recapture, through camera traps 

or automatic PIT tag readers, and they enable long-term monitoring of populations. While they 

provide valuable information about movement behaviors, they are unable to actively monitor 

an animal’s space use.  

Very high frequency (VHF) radio telemetry pioneered active tracking technology, in 

which animals are equipped with radio transmitters and tracked using specialized antennas, 

allowing for prolonged monitoring at the individual level. VHF telemetry can provide a more 

general location or direction from which the collar’s signal was detected, or it can specify a 

location point obtained through more complex telemetry known as triangulation. Telemetry 

triangulation is accomplished by taking at least 2 bearings based on the direction of the 

strongest signal heard and using the intersection of those bearings to estimate the position of 

the radio transmitter (British Columbia et al., 1998). However, technologies such as VHF still 

requires frequency trips into the field to collect detailed location data, which limits the number 

of obtainable observations. In recent years, with advances in global positioning system (GPS) 

and battery technology, autonomous sensors that are able to collect fine scale movement data 

have gained popularity (Craighead, 1982; Tomkiewicz et al., 2010). These advancements 

facilitate the collection of highly accurate animal location information at a fine temporal scale. 

Meanwhile, the devices themselves have gotten ever-smaller while maintaining functionality, 

increasing the number of small or wide-ranging species that can be tracked (Kays et al. 2015). 
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With the evolution of movement sensor technology, the age of large spatiotemporal datasets 

has followed. 

With the advancements in tracking technology, statistical approaches have evolved in 

parallel to analyze the generated datasets (Kie et al., 2010; Tomkiewicz et al., 2010; Walter et 

al., 2015). The first method to estimate animal locations was developed in 1947 using minimum 

convex polygons (Mohr, 1947), but this method has been heavily criticized for its sensitivity to 

sampling duration (Powell, 2000; Swihart & Slade, 1985), sampling strategy (Börger et al., 

2006), and serial autocorrelation (Laver & Kelly, 2008; Swihart & Slade, 1997). Kernel-based 

methods, which use the density and associated error of observations in a location, followed and 

were some of the first methods to enable parametric estimation of space use, home ranges, 

and utilization distributions (Benhamou & Cornélis, 2010; Bullard, 1999; Mohr, 1947; Worton, 

1989). Work by Getz et al. (2007; 2004) expanded these kernel-based methods into a 

nonparametric framework using local nearest-neighbor convex hulls (LoCoH), which more 

readily account for hard landscape boundaries common in real-world systems. They additionally 

expanded the approach to account for measurements through time, allowing the estimation of 

trajectories, or the path of an animal’s movements. Methods such as Brownian bridge modeling 

or continuous-time discrete-space (CTDS) models have been developed in recent years to 

account for the availability of high-resolution data (Hanks et al., 2015; Kranstauber et al., 2012). 

Despite the many advances in animal tracking technology and analyses of the resulting 

datasets, an important problem in movement analyses has been left unexplored (Cagnacci et 

al., 2010). The types and time intervals of data collected by the advancing sensor technology 

vary significantly across species, technology used, and purpose of study. When research studies 
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are focused specifically on animal movements, more precise and frequent observations are 

collected. For example, Gurarie et al. (2009) used 763 GPS fixes of an individual northern fur 

seal over 38 days to uncover more about their behavioral ecology and develop novel methods 

for identifying behaviors. When location data are collected more opportunistically or without 

the sole purpose of studying animal movements (e.g., for survival analysis or demographic 

studies), the data often have lower temporal and spatial resolution but are still suitable to 

answer the questions of interest (Mereu et al., 2015; White & Shenk, 2001; Winterstein et al., 

2001). Furthermore, limited resources and logistical constraints can reduce the frequency of 

location data collection. When location data are less precise and less frequent, it is non-trivial 

to determine whether the data can be sufficiently utilized to estimate the location or 

movement trajectories of individual animals. Indeed, these datasets are often overlooked in 

formal movement analyses because they are not well suited for use in existing methodological 

approaches. Furthermore, there could be unappreciated opportunities to augment datasets 

with partial or imprecise information that is often overlooked or deemed unsuitable for spatial 

analysis. For instance, field notes often contain a wealth of unused information on the locations 

of animals that only an expert on the system or field site would be able to interpret. By 

harnessing expert knowledge on the system and landscape characteristics, such notes could be 

converted into discrete areas where the animal was located (i.e. not specific point locations or 

circular buffers, but “polygon” areas defined by landscape features), and such data could be 

useful in reconstructing animal movement patterns when higher-resolution data are sparse. 

The integration of these unconventional “polygons” with traditional but temporally 

infrequent location data presents a new frontier in estimating movement trajectories. Most 
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methods used to estimate animal movement trajectories or home ranges mentioned previously 

rely on precise, frequent location data in the form of specific coordinates collected via GPS or 

telemetry triangulation. There are currently no methods to accommodate imprecise “polygon” 

data or a mix of the two data types (GPS and “polygon”). Further challenges arise in estimating 

animal movement trajectories from such integrated data while simultaneously addressing 

irregular or sparse observations. 

 Recent work by Buderman et al. (2016, 2017) addressed a component of the challenge 

of analyzing telemetry datasets collected for purposes other than fine-scale movement 

analyses, by applying a functional data analysis approach to estimating movement and behavior 

of reintroduced Canada lynx (Lynx canadensis) in Colorado. Functional data analysis uses 

functions to interpolate the locations between observation times, smoothing through the 

imprecise location data to estimate and visualize the broad migrations of the animal. Buderman 

et al. (2016, 2017) presented two types of spatial data with differing error structures: Argos and 

GPS. Argos data have a range of seven error categories, whereas GPS data falls into the most 

precise Argos category. To incorporate these data types, they parametrically modelled the error 

structures of each data type and incorporated them into a Markov Chain Monte Carlo (MCMC) 

spline fitting algorithm, which additionally allowed them to derive movement behaviors from 

their estimated trajectories. Buderman et al. (2016) had less frequent data than most 

movement studies with one observation every few days (as opposed to hourly observations). 

Our study will adapt their method to individuals with even less temporal density. Overall, their 

method cannot address “polygon” data or the irregular error structure associated with these 
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data but a similar application of functional data analysis will address the challenge of temporal 

infrequency. 

 

Herein, we propose a new way of estimating animal movement trajectories from 

irregularly-shaped polygon location data arising from VHF telemetry, alongside more spatially 

precise location data, by combining functional data analysis with a spatial resampling algorithm. 

We use location data from the reintroduced Channel Island fox population on Santa Rosa 

Island, California, which were collected at great effort and expense for purposes other than 

movement analyses but provide a unique opportunity to develop and test these novel 

methods. Furthermore, this method enables a disease outbreak reconstruction using data from 

a long-term study of island foxes during reintroduction. 

 

3.2.2 Island fox reintroduction on Santa Rosa Island, California Channel Islands 

The Channel Island fox (Urocyon littoralis) is the smallest north American canid and is 

endemic to six of the eight Channel Islands off the coast of Southern California (Moore & 

Collins, 1995). They are diurnal and omnivorous, mainly subsisting on invertebrates, fruits, and 

rodents. They lack natural predators and, therefore, have high survival and a docile nature 

(Coonan et al., 2010). Island foxes form monogamous pairs and establish territories that they 

inhabit year-round, with little overlap with territories of adjacent pairs (Roemer et al., 2001). 

Females typically give birth between April and May to litters of two to three kits on average. 

The offspring usually disperse in the fall to find a mate and establish their own ranges. 
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In the 1990s, the Channel Island fox population on Santa Rosa Island (SRI) experienced 

severe population declines due to a cascade of anthropogenic factors, and they became 

critically endangered (Coonan et al., 2005). In 2000, the National Park Service (NPS) initiated a 

captive breeding program, bringing the surviving 14 foxes into captivity which left the 

population temporarily extinct in the wild (Coonan et al., 2010). Reintroduction efforts began in 

2003 and, at the conclusion of the breeding program in 2009, 96 captive foxes had been 

released into the wild. The reintroduced population continued to grow, and the fox population 

was delisted as an endangered species in 2016. 

 

3.2.2.1 Post-reintroduction outbreak of Leptospira 

In fall 2010, shortly after the conclusion of the captive breeding program, two juvenile 

male foxes were found dead on SRI with evidence of leptospirosis, a kidney disease caused by 

the bacteria Leptospira (See Chapters 1 and 2). There was no evidence at the time that this 

strain of Leptospira had previously circulated on the island, which spurred investigation into the 

origins of the pathogen on the island. Retrospective analysis of banked serum samples revealed 

widespread seropositivity against Leptospira since 2006 at least (Figure 3.1). With limited 

serological data prior to 2006, this phenomenon prompted questions about whether we could 

reconstruct the outbreak prior to 2006 and potentially learn about the locations of the earliest 

cases.  
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Figure 3.1: Fox serostatus against Leptospira from 2004 to 2010. Seropositivity is shown by red crosses, whereas 
seronegativity is illustrated with blue dots. Beginning in 2006, there was widespread exposure on the island, which 
continues through 2010. Note: The serological reactivity profile of the one positive fox in 2004 does not look like 
that of the outbreak-infected animals. We suspect that it is a false positive or a non-pathogen strain. 

 

3.2.2.2 Origin reconstruction 

Reconstructing the spatiotemporal origin of an outbreak requires two primary pieces of 

information: individual location data and temporal information on serostatus. Recent work by 

Borremans et al. (In preparation) presents a model which utilizes changing antibody titers 

through time to estimate the time an individual was infected (See Chapter 2). The output from 

this model provides the necessary temporal component to estimating the spatiotemporal 

outbreak origin. In the present work, we demonstrate the utility of our movement 

reconstruction algorithm by pairing it with the temporal infection data to gain new insights into 

when and where the outbreak originated. 
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3.3  Methods 

3.3.1 Spatial data collection 

3.3.1.1 Fox trapping 

The NPS has conducted annual fox trapping since 2004 to monitor the reintroduced 

population on SRI. From 2004 to 2008 while the wild population was still small, target trapping 

was conducted on an as-needed basis in locations known to be occupied by foxes. In 2009, the 

NPS began a structured 18-ladder grid trapping program on SRI to estimate the annual fox 

population size and density (Figure S3.1). Each of the ladder grids was run for 6 consecutive 

nights in July or August each year. Additional target trapping efforts were conducted from July 

to January to install radio collars, for targeted sample collection, and to administer vaccines not 

completed on the grids.  

 

3.3.1.2 Fox telemetry 

From 2003 to 2006, all reintroduced and wild-born foxes were collared, PIT-tagged, and 

tracked with very high frequency (VHF) radio telemetry collars (Table S3.1). Locations were 

collected weekly via VHF, although the resolution on these locations could be quite poor at 

times since the primary purpose of these weekly fixes was to detect any mortalities. Additional 

locations were obtained through opportunistic detections. From 2007 onward, only a subset of 

the wild population (40-50 individuals) was collared at any time due to the growing population 

size (Figure S2.4). After the conclusion of the captive breeding program in 2009, telemetry 

efforts shifted from weekly to biweekly observations, which coincided with the shift to the grid 

trapping system. 
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Precise GPS coordinates were obtained for collared foxes at reintroduction release, trap 

capture, carcass collection, or visual confirmation. Location data with GPS-like precision were 

also generated via triangulation telemetry and estimated using the program Locate II (Nams, 

1990). For the subsequent analyses, triangulation telemetry and precise GPS coordinates will 

both be considered “GPS data.” 

The less precise telemetry data were generated via single measurements with 

directional “Yagi” antennas or nondirectional “Omni” antennas, which were both used for 

routine telemetry detections. During telemetry surveillance when a collar signal was heard but 

the fox was not seen or triangulated, the fox PIT tag, time, and a verbal description of the 

general area of the signal were recorded. If the received radio signal was very strong or came 

from a well-defined landscape feature such as a canyon, the name of the feature was recorded. 

If the signal was heard with the directional antenna, the location at which the signal was 

detected and the direction from which it came were recorded. However, when the 

nondirectional antenna was used, only the location at which the signal was detected was 

recorded. These methods resulted in a written list of general locations, landscape features, and 

directions for individual foxes, rather than a set of GPS coordinates. 

 

3.3.2 Digitizing and filtering field data 

To convert the written telemetry locations into a format compatible with geospatial 

analysis, the recorded descriptions were translated by Angela Guglielmino, who worked as a fox 

biologist on SRI for more than 10 years. Each unique place description (n=3,812) was converted 

to a spatial polygon, mapped using the ‘add polygon’ tool in Google Earth Pro, and saved as a 
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.kml file (Figure 1). The bounds of each polygon were informed by the island topography (e.g. 

canyons, coastline, ridges, roads), making the shapes highly irregular. For subsequent analyses, 

each polygon shapefile (.kml) was imported and processed in R version 4.1.0 using the rgdal 

package (Bivand et al., 2021; R Core Team, 2021). 

 

 

Figure 3.2: Spatial polygons converted from telemetry data. Verbal descriptions of telemetry locations were 
mapped in Google Earth Pro and exported to R as a .kml file for analysis. 

 

3.3.2.1 Polygon filtering 

Among the approximately 3,800 unique polygon locations in our dataset, the area of fox 

location polygons varies drastically from less than 1km2 to the entire area of the island (214km2; 

Figure 3.3A). To incorporate these polygons into a movement analysis, they must be at a 
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resolution that yields useful information about the location of the fox, while not adding too 

much noise. For example, polygons that are the same size as the island add no additional 

information on location, and only serve as confirmation that the fox was still alive. As such, we 

excluded polygons with areas more than 2km2 (Figure 3.3B), which is reported as the size of the 

fox home range (Coonan et al., 2010). This reduced the polygon dataset to 848 unique 

polygons. 

 

Figure 3.3: Summary distributions of the non-unique polygons included in the spatial dataset. The distribution of 
non-unique polygon areas (n=42,635) within the entire dataset varies widely (A). Thus, only polygons with areas 
less than 2km2 (n=4,209) were included (B). The length-to-width ratio was also used to filter the polygons (C), with 
ratios less than 5 included. These criteria resulted in the joint distribution of unique combinations of polygon area 
and LWR shown in Panel D. 
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The length-to-width ratio (LWR) was also used to filter out imprecise polygons (Figure 

3.3C). The maximum LWR across all polygons was 8.28 and results in a long, thin polygon. To 

filter the dataset to more elliptical polygons, which would mirror the typical error structure of 

location data, and exclude only the most extreme shapes, we included polygons with a LWR less 

than 5. 

 

3.3.3 Dataset filtering 

To investigate the fundamental challenge of studying movement from a mixed spatial 

resolution dataset, we focused on data in the early period of fox reintroduction between 

November 2003 and March 2007. Both of these data types were collected intensively on a high 

proportion of individuals, making this dataset ideal for the application and testing of the 

method. The dataset contains 61 individual foxes which have location data prior to March 2007. 

Any individual time series of locations which contained a gap of more than 365 days was split 

into two time series, unified by the individual PIT tag, to exclude the gap from trajectory 

estimation. Furthermore, an individual fox (or segment of the time series if it was split) was 

required to have more than 10 observations. 

 

3.3.4 Resampling algorithm to integrate spatial data types 

Because our dataset contained both precise GPS or triangulated locations (GPS data) 

and location data without precise coordinates (polygons), we needed to integrate the data into 

a single type (i.e., point data) that was compatible with appropriate statistical approaches while 

accounting for the spatial error of both. To do this, we created bootstrapped datasets by 
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iteratively resampling point locations from within each observed location on its observation 

date. For a GPS data point, the location was sampled from a circular 1km2 buffer (clipped to the 

island coastline) around the original GPS location; this is greater than the spatial uncertainty of 

the instrument but is intended to represent the spatial scale of fox movements for foraging and 

other purposes. For a polygon, a location was uniformly randomly sampled from within the 

area of the polygon, which allows the full extent of the area to be incorporated into the 

movement estimation. Each iteration of this bootstrap (for every individual fox) leads to a series 

of point locations for each date the fox was located.  

 

3.3.5 Estimate movement through time 

 The resampling algorithm yielded an ensemble of datasets with discrete point locations 

at irregular and varying time intervals. We built on the functional data analysis (FDA) approach 

applied in Buderman et al. (2016) but adapted it to the characteristics of our data. In 

comparison to their study, our system is wholly different in that our polygon data are irregular 

in shape and cannot be parametrically described, but a similar application of an FDA framework 

addresses the challenges of temporal infrequency in our dataset while integrating both spatial 

data types.  

 

3.3.5.1 Functional data analysis 

 Functional data analysis uses smoothing functions called splines to interpolate data. 

There are many varieties of splines. Buderman et al. (2016) use a type of spline called a B-

spline, which forms a linear combination of basis functions. However, this type of spline cannot 
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be readily applied to our data due to the irregularity of our sampling. The function cannot be fit 

over large gaps between observations. Instead, we employed a more flexible approach using a 

cubic smoothing spline. This type of smoothing spline allows the user to define the dimension 

of the basis (in our case, d = 2) and the smoothing parameter. The smoothing parameter can 

alternatively be fit by various procedures (e.g. generalized cross-validation, maximum 

likelihood, Aikake information criterion). 

 

3.3.5.2 Spline-based spatial interpolation 

We fit a smoothing spline to each dimension of the location data (easting and northing) 

as a function of time. For each date within the interval of time an individual was located on the 

island, a location is estimated by a fitted cubic regression spline, where the smoothing 

parameter was fixed at 0.1. For each fox, 100 resampled datasets were created and fitted, 

giving rise to an ensemble of fitted splines. The fits were then summarized by taking the median 

location in each coordinate direction (easting and northing) for each date in the interval of time 

an individual was located on the island, with a 95% percentile envelope of uncertainty. All data 

processing and analysis was performed in R version 4.1.0 (R Core Team, 2021). The fitting of the 

model to each resampled dataset was performed using the R package npreg. 

 

3.3.5.3 Effects of data quantity 

To investigate the effects of sampling frequency, we used a model fox with data 

collected twice per week on average (fox 53313, n = 187 location data points; Figure 3.7) and 

subsampled its full dataset to target four mean frequency levels: once per week (n = 94), every 



 

 101 

other week (n = 44), once per month (n = 22), and every other month (n = 10) (Figure 3.11). The 

spline-based interpolation was applied to each subsampled dataset for comparison. 

 

3.3.6 Reconstructing the Leptospira outbreak origin 

To identify the spatiotemporal origin of the outbreak, we focused on foxes with location 

data in the early reintroduction period prior to November 2006 that also had anti-Leptospira 

antibody titers from a positive microagglutination test (MAT) during this period. These antibody 

titers were used to estimate posterior distributions on each fox’s time of infection (TOI) using 

the titer kinetics model developed by Borremans et al. (In preparation; see Chapter 2). Twenty-

five foxes have TOI estimates and location data available between 2004 and 2006 (Figure 3.4).  

Seven individuals lacked location data at the beginning of their TOI interval (e.g. Fox 

C5B32; Figure 3.4 orange lines), but all seven were born in the wild in the year of their first 

observation. Because they were pups and were unlikely to have dispersed to a new home range 

at their first observation in late summer/early fall, we assume that the location of their first 

observation is near the location of their birth, and we augmented their location dataset 

between their birth (assumed to be 1 April) and their first observation by resampling their first 

location at a rate of one observation per week. 
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Figure 3.4: Foxes with time of infection estimates and location data between 2004 and 2006. Time of infection 
intervals (grey bars) were estimated using the titer kinetic model. Date ranges of location data for each fox are 
shown by the black lines. Intervals shown by the orange lines were imputed, assuming that the pup’s first location 
was representative of the area in which it was born and lived for the first six months of its life.  

 

3.3.6.1 Visualizing the outbreak reconstruction 

For the twenty-five individuals, we estimated a location for every day within their 

observation interval (Figure 3.4) using the interpolation algorithm. Each location estimate was 



 

 103 

paired with their daily probability of infection. For each individual, the cumulative probability of 

infection was calculated by day. To visualize the population-level risk of infection across the 

island, we created a grid of hexagons across the island map. For a given hex in a given quarter, 

we plotted the maximum cumulative probability of infection across all individuals that were 

located in that hex during that time. For example, an individual with an 80% probability of 

infection which spent time on four hexes during a quarter will be shown in the 80% color if 

there were no other foxes with a higher probability of infection during that time. After an 

individual is confirmed infected, it remains at the highest probability of infection for the 

remainder of its location data. 

 

3.4 Results 

3.4.1 Integrated spatial dataset 

Our dataset contained 61 foxes with 1,774 GPS locations from March 2004 to May 2016 

(Table S3.2). The inclusion of the polygon data added an additional 2,719 observations to the 

dataset and 476 unique polygons (Figure 3.6). The proportion of the polygon data of all 

available data for any individual ranged from 0% to 88% (Figure 3.5A), and five individuals had 

no polygon data available during this period. The median interval between observations of an 

individual’s time series was 14 days and the median number of observations per month was 2 

(Figure 3.5B, C). Without the inclusion of the polygon data, thirteen individuals would have 

been excluded by the ten-observation threshold. 
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Figure 3.5: Histograms of metrics of the spatial dataset with the inclusion of the polygon data across 61 
individuals.  
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Figure 3.6: Temporal distribution of filtered location data for 61 individual foxes with observations prior to 
March 2007. Panel A shows the distribution of GPS points (teal) for individual foxes beginning in late 2003 and 
truncated at the end of 2010. With the inclusion of the polygon data filtered to less than 2km2 (B), the number of 
observations included in our dataset in total more than doubles.
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3.4.2 Spline-based movement trajectory estimation  

With the spatial dataset, including both GPS and polygon data, we estimated movement 

trajectories by fitting smoothing splines independently to both easting (Figure 3.7A) and 

northing (Figure 3.7B) coordinate directions of resampled locations. When the spline-fit 

coordinates were then paired based on observation date, a two-dimensional trajectory was 

recreated on the island (Figure 3.7C), where the line represents the median trajectory of the 

individual through time. The 95% envelope represents the bounds of the center 95% of 

trajectories (Figure 3.7; dashed lines). The bounds of the 95% envelope are well-within a 

reasonable range (~1 km2) for daily movements, but many apparent data points fall outside 

these bounds. The polygon data points are resampled in the algorithm using the full polygon 

area but are visualized using the coordinates of the centroid, so they may not fall within the 

bounds of the envelope. The spline fitting smooths through the locations and balances the 

residuals which results in the median and center 95% envelope to appear as an average, 

running between the datapoints.   
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Figure 3.7: Movement trajectories fit via smoothing splines for fox 53313. Smoothing splines were fit to the 
easting and northing coordinates separately (left column). Each plot shows the GPS (teal) and polygon (purple) 
locations on the date they were recorded. Polygon data points represent the coordinates of the polygon centroids, 
but the fitting was done with resampled locations. Individual spline fits are shown by the light grey lines. The solid 
black line denotes the median value across the 100 bootstrap fits, and the center 95% interval is illustrated by the 
dashed black lines. 
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3.4.2.1 Effects of different spatial data types 

To explore the impact of our new method to include polygon data in our movement 

trajectory estimates, we examined three examples that illustrate where incorporating polygon 

data may add meaningful information. These three cases are illustrative of two dimensions: the 

proportion of polygon data to GPS data and temporal resolution. For the first, individual foxes 

may have few or many polygon-based observations and the number of polygons compared to 

GPS points is likely to influence the utility of these data. The second dimension, temporal 

resolution, represents how often a fox is being observed through time. Higher temporal 

resolution means the fox was observed more often, which can affect the quality of movement 

trajectory estimation. We expected the inclusion of polygon data to matter most when the 

proportion of polygons was high or when the temporal frequency was low. 

 

Table 3.1: Metrics on focal individuals of movement reconstruction. 

PIT tag Date interval 
Time 

interval 
(months) 

Max 
interval 

between 
obs. 

(days) 

No. of 
GPS 
data 

points 

No. of 
polygon 

data 
points (% 
of total) 

Average 
obs. per 
month 

A7954 02/05/04 - 06/14/04 4 16 30 6 (17%) 9.00 
F3D2F 10/20/05 - 09/03/06 11 22 12 55 (82%) 6.09 
73D0D 03/18/06 - 07/16/07 16 193 4 11 (73%) 0.94 

 

The inclusion of polygon data can increase the temporal frequency in a more significant 

way when a fox has few GPS points, as demonstrated by fox F3D2F (Figure 3.9). Over an eleven-

month span, this individual only has twelve GPS locations, which are highly concentrated in the 
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first two months (Figure 3.9 column 2). If we only used GPS data, this fox would have low 

temporal frequency and clearly unrepresentative location estimates, as seen in Figure 3.9B. By 

including polygon data, the data available increases four-fold, and the inclusion stabilizes the 

estimate of the trajectory in the second half of this individual’s observation interval (Figure 

3.9A). The inclusion of polygon data in this case refines the estimates to a smaller area of the 

island and fills out the temporal resolution of the data. Conversely, including the GPS data 

extends the temporal range of the data and shows a period when the individual was in a 

different region of the island. 

In the last two examples, we demonstrated the utility of polygon data in enhancing the 

temporal frequency and range of an individual’s dataset. However, when there are large gaps 

(relative to the full interval of observation time), the smoothing algorithm is forced to fit a 

curve to the gap with no information on where the fox is located. This situation can lead to a 

break down of the method and artefacts from the spline fitting as shown by the northward  U-

shaped curve in Figure 3.10C. Even in the best case scenario when both data types are 

combined, the remaining gap in the time series leads to a quadratic curve over the period and 

the trajectory of the fox is projected into the ocean. Across all three divisions of data type for 

fox 73D0D, the temporal irregularity of the data drives large variation in the fits. The 

incorporation of polygon data improves the estimate, but because the polygon points are 

temporally proximate to the GPS data points, they have a limited impact in improving the 

estimate. This illustrates the general importance of temporal regularity in the observations, 

independent of spatial resolution. 
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Figure 3.8: Fitted movement trajectories of fox A7954 by data type. The integration of polygon data to a GPS data rich dataset can improve the temporal 
regularity of observations. The first column (A, B, C) shows the trajectory estimate using all available data. The second (D, E, F) and third (G, H, I) columns show 
the estimated trajectories with GPS and polygon data, respectively. The first row (A, D, G) shows the fit of the easting coordinate. The second row (B, E, H) 
shows the spline fits for the northing coordinate, and the bottom row (C, F, I) shows the trajectory on the map of Santa Rosa Island.
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Figure 3.9: Fitted movement trajectories of fox F3D2F by data type. The integration of polygon to a GPS data poor dataset has the greatest impact in 
narrowing the trajectory estimates. The first column (A, B, C) shows the trajectory estimate using all available data. The second (D, E, F) and third (G, H, I) 
columns show the estimated trajectories with GPS and polygon data, respectively. The first row (A, D, G) shows the fit of the easting coordinate. The second 
row (B, E, H) shows the spline fits for the northing coordinate, and the bottom row (C, F, I) shows the trajectory on the map of Santa Rosa Island.



 

 112 

 

Figure 3.10: Fitted movement trajectories of fox 73D0D by data type. The inclusion of polygon data does not always improve estimates if the data are too 
concentrated during one period of time. The first column (A, B, C) shows the trajectory estimate using all available data. The second (D, E, F) and third (G, H, I) 
columns show the estimated trajectories with GPS and polygon data, respectively. The first row (A, D, G) shows the fit of the easting coordinate. The second 
row (B, E, H) shows the spline fits for the northing coordinate, and the bottom row (C, F, I) shows the trajectory on the map of Santa Rosa Island.
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3.4.2.2 Effects of spatial and temporal frequency 

To further investigate the effects of data quantity, we used a model fox (fox 53313) and 

subsampled its full dataset to target four mean frequency levels: once per week, every other 

week, once per month, and every other month (Figure 3.11). In general, as the observations 

become less frequent, the level of variation in the trajectories increases. The trajectories for 

observations once or twice (Figure 3.11; black line) a week look quite similar. Observations 

taken every other week or once per month) show more variation in the set of trajectories due 

to the smoothing spline’s estimation over more gaps with less data. However, these less 

frequent observations still identify the same region as the location of the fox. When the data is 

sampled down to every other month (n = 10 observations), the model fit yields limited 

information on the trajectory of the fox but may be more useful in estimating its home range.  
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Figure 3.11: Estimated movement trajectories for down-sampled location datasets of fox 53313. The full location 
dataset for fox 53313 was sampled to result in four observation frequencies: once per week, every other week, 
once per month, and every other month (as shown by the four panels). Each down-sampling was performed 10 
times for each observation frequency; the resulting median trajectories from the full algorithm are shown by 
different colored lines in each panel. The median trajectory for the full dataset is shown in black. 

 

3.4.3 Extending the spatial reconstruction to the population-level: Estimating the 

spatiotemporal origin of a Leptospira outbreak 

The pattern in the 2006 serosurvey, as shown in Figure 3.1 and echoed in Q3 and Q4 of 

2006 (Figure 3.12) indicated that the Leptospira outbreak was island-wide by the end of 2006. 

Without this reconstruction, this was the extent of our knowledge about where and when the 

outbreak began. By developing and applying this spatial method and combining it with the time 

of infection estimates (via the titer kinetics model by Borremans et al. (In preparation)), we can 
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conclude with fair confidence that the earliest cases occurred on the north shore of the island, 

most likely in mid-to-late 2005. This is a great advancement in understanding when and where 

the outbreak started, which required the movement reconstructions to achieve. 

By intersecting the cumulative probabilities that an individual was infected during a 

given quarter at a specific area of the island, we can visualize where and when the outbreak 

may have started (Figure 3.12). By quarter 2 (April - June) of 2005, there were two areas of the 

island where a fox had at least a 25% chance of having been infected by then. The probability 

grows in these two areas over the remaining quarters of 2005. By the end of 2005, Leptospira 

infections were more likely than not to have occurred in at least three areas of the island. 

Throughout 2006, there were multiple zones with cumulative probabilities greater than 30% 

with the probability growing stronger through the year, approaching quarter 3 when the island-

wide serosurvey revealed widespread exposure across SRI (Figure 3.1). 
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Figure 3.12: Spatiotemporal probability of infection for twenty-five foxes between 2004 and 2006. Colored grid 
cells represent the presence of foxes with a non-zero probability of having been infected by that time. The color 
scale represents the cumulative probability that an individual had been infected by the end of the quarter in 
question. The darker the color becomes, the higher the probability that an infected fox was present in that cell at 
that time. Once an individual reaches a probability of 1, they remain there. 

 

3.5 Discussion 

Using location data from Channel Island foxes, we have developed novel ways of utilizing 

field data and integrating differing spatial data types to estimate animal movement through 

time. We have shown that incorporating imprecise polygon data, derived from field notes and 

expert interpretation, can enhance spatial datasets and improve estimation of movement 

trajectories. The inclusion of polygon data nearly doubled the number of locations we included 

in the dataset across the 61 individuals and reduced the variation in the fits of the trajectories, 

especially for individuals that have few precise location estimates. This method has broad 
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applications to long-term monitoring datasets that were not collected to explicitly study 

movement. 

Our data demonstrates the interacting roles of spatial and temporal resolution in 

enabling movement reconstruction. The quality of the reconstruction depends first on the 

precision of the data points (as shown by Fox A7954 in Figure 3.8). The time series for this fox 

consists mostly of GPS points, and the resulting median trajectory shows little variation across 

the bootstrapped datasets. Next the quality of the reconstruction depends on the quantity of 

data. When an individual’s time series consists primarily of polygon data (i.e. Fox F3D2F; Figure 

3.9), the algorithm results in a similarly confident median trajectory. The incorporation of the 

polygon data in this instance also has the benefit of filling the temporal gaps in the time series. 

Data quantity and temporal regularity are related, but data quantity does not imply temporal 

regularity as is seen with Fox 73D0D (Figure 3.10). When the incorporation of polygon data 

increases the amount of data available but concentrates the data in time, the algorithm gives 

problematic results (as seen by the trajectory projected into the ocean (Figure 3.10). In sum, 

the quality of the movement reconstruction depends heavily on the spatial and temporal 

resolution of the data. 

When observations are collected at lower temporal frequencies, they can still be useful 

for home range estimation. Sufficient temporal frequency of the data is dependent on the 

species under study. In our system, island foxes form stable, territorial home ranges and do not 

frequently complete long-range dispersals; an individual can be predicted to stay in a restricted 

area. If the foxes were a well-mixed population with large, frequent movements across the 

island, estimation of their movements would require more frequent observations. In systems 
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where animals move more broadly, the presence of temporal gaps will cause issues in the 

movement estimates, and such a system will have higher data demands.  

Our algorithm utilized smoothing splines to interpolate location data through space and 

time. We chose smoothing splines because they offer a flexible approach by tuning a single 

smoothing parameter either manually or through a generalized cross-validated procedure. For 

our analysis, we fixed the smoothing parameter (at 0.1 on a scale of 0 to 1) so the curvature 

was consistent across individuals. If we had chosen a larger smoothing parameter, the 

trajectories would have become less curved and more like connected lines between the 

observation points. Depending on the nature of the system and dataset, more or less curvature 

may be needed, but further study is required to uncover the extent to which the temporal and 

spatial resolution of the dataset influences the choice of smoothing parameter. Additional 

choice of the order of the spline is required. We chose a cubic spline as it is commonly used for 

spline fitting, but a higher order spline would add more flexibility to the fitting and may be 

necessary for other datasets. 

The choice of spline regimes can also impact the results and interpretation of the 

trajectories. An alternative choice of B-spline framework would require the data to be more 

regular through time and is much more sensitive to temporal gaps in the data. Thus, the 

algorithm would fail for individuals with insufficient temporal regularity or data quantity. The 

smoothing spline we chose converges for all individuals but can give biologically unreasonable 

results with insufficient data. Additional information on the extent of the influence of data 

quantity and resolution on the choice of spline is required to improve the biological plausibility 

of some of our current estimates.  
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In outbreak origin reconstruction, the temporal patterns suggest that the origin of the 

Leptospira outbreak most likely occurred in the second half of 2005. The individuals driving the 

high probabilities of infection in two areas of the island in late 2005 had little to no interaction 

with each other, so we believe these spatial patterns are most consistent with multiple 

introductions of Leptospira from a reservoir within the island. Further insights could be gained if 

this reconstruction were paired with additional genetic or ecological data such as the data 

presented in Chapter 1. As skunks are the other terrestrial island host known to be infected 

with the same species and serovar of Leptospira interrogans, it is most likely that skunks 

reintroduced the bacteria to the fox population during reintroduction. 

Tracing a wildlife outbreak back to its origin is difficult, even in human systems with a 

plethora of data, as has been witnessed in the current COVID pandemic. Doing as much in a 

wildlife system is entirely unprecedented. However, this analysis has several caveats. In the 

early years, nearly 90% of the population was sampled, but there is a chance that we missed an 

early positive case. Additionally, there are three foxes which are considered positive by 

immunohistochemistry and lack MAT data but were not included in the reconstruction. 

Together this indicates that there could be positive foxes on the landscape that we are not 

capturing in our reconstruction, which could influence the estimation and interpretation of the 

spatiotemporal origin. Furthermore, the outbreak origin reconstruction indicates that the 

outbreak began along the north shore of the island (Figure 3.10), which is known to have haul 

out sites of California sea lions, another carrier of the bacteria. Without the additional genetic 

or ecological data, which implicate skunks, an introduction from sea lions could be plausible. 
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We have demonstrated the benefit of including polygon data in trajectory estimation, 

but translation of the recorded location descriptions into digital polygons was onerous and 

time-consuming. In future studies, polygon creation could be improved by having pre-defined 

areas on the island that the field notes map onto, rather than translating each phrase into its 

own precise polygon. These pre-defined areas could be delineated by topographical features 

much like our polygons were. However, some level of spatial resolution could be lost by this 

method. There is also scope to apply artificial intelligence methods, whether trained by an 

expert or untrained and working from landscape features, to identify polygons. 

There is great opportunity for data imputation methods to be built-in to modern spatial 

statistical techniques. An extension of this paper would be to integrate the resampling of the 

polygons (to account for their shape/error) into the Bayesian framework developed by 

Buderman et al. (2016). They assumed the spatial dataset was fixed and, instead, described the 

error distributions of their observations parametrically. To integrate the polygon data into their 

framework, the spatial data could be resampled for the MCMC estimation of the spline. Our 

resampling framework could be more broadly incorporated into other statistical techniques and 

provides an avenue to integrate polygon-type location data into other spatial methods as long 

as the data has sufficient temporal frequency for the analysis. 

 In our study, the island boundary serves as an impediment to movement estimation. 

The island coastline is a hard ecosystem boundary for the foxes, but such boundaries have been 

rarely addressed in estimation techniques (e.g. LoCoH and kernel density estimation; 

Benhamou & Cornélis, 2010; Getz et al., 2007). In practice, studies decide to clip the home 

ranges or trajectories at the boundary which could bias the estimates because it does not 
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redistribute the density appropriately. We did not explicitly incorporate a way to address the 

island boundary, but the polygon resampling approach we developed restricts observations to 

the terrestrial surface. However, the spline fitting can fit curves, which extend beyond the 

island boundary (as it did in Figure 3.10C). A more restrictive spline fitting or explicit approach 

to reject any splines which project movement into the ocean could address this shortcoming. In 

general, boundaries need to be more regularly accounted for in movement estimation analyses 

and spatial methods developments. 

Rich datasets are often collected, arising from long-term monitoring programs with 

regular trapping or collared sentinel populations.  However, these datasets have not been 

usable for movement analyses because there were no methods to incorporate the irregular 

data that can occur. The addition of these novel data to spatial datasets enriches movement 

estimation in studies that were not originally designed to study movement.  Our work opens a 

new opportunity to use these unconventional data and to integrate them with other movement 

data at any level of spatial or temporal resolution.  
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3.6 Supplement 

Table S3.1: Total number of actively collared foxes in each season. Season is defined by the fox-year from March 
to February. On average, 40-50 collars were active at any time during the season. 

Season  
(Mar – Feb) 

Number of  
collared foxes 

2003 12 
2004 23 
2005 28 
2006 55 
2007 63 
2008 92 
2009 72 
2010 63 

 

 

 

 

 

Figure S3.1: Map of 18 ladder grids on Santa Rosa Island. Beginning in 2009, grids were run for six consecutive 
nights to mark and recapture Channel Island foxes. 
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Table S3.2: Tabulation of individual location data for the 61 foxes included in the dataset. 

PIT tag Date of first 
observation 

Date of last 
observation 

Time 
between 

first and last 
observations 

(months) 

Total number 
of 

observations 

Number of 
GPS data 

points 

Number of 
polygon 

data points 
(% of total) 

Average 
observations 

per month 

Maximum 
interval 

between two 
observations 

(days) 

01460 02/05/04 08/06/06 30 84 55 29 (35%) 2.80 72 
03332 10/30/04 11/10/06 25 324 84 240 (74%) 12.96 27 
0654E 11/23/05 09/19/06 10 15 3 12 (80%) 1.50 69 
10445 11/08/04 11/17/05 12 13 11 2 (15%) 1.08 310 
12270 10/02/06 08/20/07 10 33 14 19 (58%) 3.30 67 
13737 10/07/05 07/27/09 45 33 23 10 (30%) 0.73 300 
13C24 11/20/03 02/16/04 3 44 44 0 (0%) 14.67 16 
14125 01/19/04 03/12/09 62 77 40 37 (48%) 1.24 344 
1612C 10/11/06 02/18/10 40 32 14 18 (56%) 0.80 140 
21022 11/29/06 04/23/08 17 12 4 8 (67%) 0.71 238 
23450 11/11/06 07/27/08 20 11 6 5 (45%) 0.55 225 
2543F 10/13/06 04/01/08 18 29 10 19 (66%) 1.61 194 
2571A 11/08/04 03/05/06 16 33 30 3 (9%) 2.06 42 
26210 11/04/05 09/19/09 46 62 25 37 (60%) 1.35 272 
3045D 10/18/06 05/10/08 19 26 12 14 (54%) 1.37 132 
34614 01/19/04 05/27/05 16 124 83 41 (33%) 7.75 25 
3512D 09/27/06 09/03/09 36 22 13 9 (41%) 0.61 291 
3581A 10/06/05 08/20/07 22 46 11 35 (76%) 2.09 210 
47304 11/21/03 01/30/04 2 39 39 0 (0%) 19.50 10 
50E01 10/02/06 08/20/10 46 53 19 34 (64%) 1.15 181 
51511 06/25/06 12/30/11 66 104 39 65 (63%) 1.58 320 
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51E3E 10/22/04 04/01/05 6 31 27 4 (13%) 5.17 37 
52E0D 09/10/05 11/03/05 2 11 6 5 (45%) 5.50 21 
53313 01/17/04 11/21/05 22 187 111 76 (41%) 8.50 26 
56141 01/22/07 07/02/11 54 20 19 1 (5%) 0.37 353 
60B1D 11/18/05 09/30/06 10 31 10 21 (68%) 3.10 50 
7145F 07/31/05 01/12/12 78 76 22 54 (71%) 0.97 267 
72139 09/30/06 12/20/09 39 44 19 25 (57%) 1.13 326 
7305C 10/29/04 12/28/04 2 21 18 3 (14%) 10.50 15 
73D0D 03/18/06 07/16/07 16 15 4 11 (73%) 0.94 193 
75125 12/08/03 02/08/04 2 29 29 0 (0%) 14.50 7 
75125 11/20/05 01/31/10 50 70 19 51 (73%) 1.40 651 
7792E 10/22/04 09/14/09 59 291 92 199 (68%) 4.93 169 
83149 11/25/05 11/07/08 36 161 27 134 (83%) 4.47 39 
84F28 10/13/05 07/21/06 9 23 6 17 (74%) 2.56 37 
9230A 10/11/06 11/24/06 1 17 3 14 (82%) 17.00 14 
95906 11/21/03 02/08/04 3 46 46 0 (0%) 15.33 6 
95906 11/20/05 11/15/06 12 32 6 26 (81%) 2.67 651 
A045A 01/17/04 02/02/05 13 147 89 58 (39%) 11.31 15 
A1242 11/30/06 08/26/07 9 17 10 7 (41%) 1.89 46 
A266D 11/21/03 07/27/09 68 142 81 61 (43%) 2.09 251 
A7954 02/05/04 06/14/04 4 36 30 6 (17%) 9.00 16 
B067E 11/20/03 01/06/04 2 32 32 0 (0%) 16.00 8 
B0D62 10/05/06 03/10/08 17 24 14 10 (42%) 1.41 192 
B1311 12/29/06 10/04/12 70 46 32 14 (30%) 0.66 345 
B2D61 10/18/06 07/12/10 45 53 21 32 (60%) 1.18 195 
B4B2B 10/22/04 03/09/05 5 21 17 4 (19%) 4.20 38 
B7A6D 10/29/05 05/01/06 7 15 5 10 (67%) 2.14 35 
B7F1A 01/13/06 09/25/08 32 55 12 43 (78%) 1.72 144 
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C5B32 12/21/06 10/19/08 22 19 11 8 (42%) 0.86 493 
C7B1B 11/13/05 11/05/06 12 70 10 60 (86%) 5.83 27 
D0F75 07/10/04 09/01/10 74 552 76 476 (86%) 7.46 274 
D353A 12/09/06 07/04/11 55 19 18 1 (5%) 0.35 354 
D4C78 10/30/04 11/15/06 25 64 37 27 (42%) 2.56 85 
D516D 11/25/06 09/01/10 46 177 21 156 (88%) 3.85 332 
E1D7D 11/12/06 02/18/10 39 20 17 3 (15%) 0.51 360 
E1F30 08/14/05 02/03/06 6 11 6 5 (45%) 1.83 101 
E5100 10/29/04 01/21/05 3 27 18 9 (33%) 9.00 11 
E6D1E 10/29/05 04/14/10 54 75 34 41 (55%) 1.39 338 
E7E64 04/07/05 01/01/12 81 185 33 152 (82%) 2.28 234 
F3950 10/22/04 09/12/09 59 242 78 164 (68%) 4.10 214 
F3D2F 10/20/05 09/03/06 11 67 12 55 (82%) 6.09 22 
F4A18 05/03/06 04/01/08 23 56 17 39 (70%) 2.43 171 
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4 Conclusions for foxes in the Channel Islands 

 My work in the coastal California ecosystem is a component of a broader project, which 

seeks to characterize Leptospira ecology. There are many elements of this broader project that 

were not explicitly included in this dissertation, namely important ecological and biomarker 

data of multiple host species. My dissertation provides new insights and important 

corroboration for the broad conclusions of this multi-faceted project. This work has revealed a 

new understanding of the history of cross-species transmission in this system and provides a 

qualitatively different set of insights and new methods to examine the origin of the Leptospira 

outbreak. Furthermore, I present the first formal analysis of risk factors for Leptospira in a 

wildlife species. 

 

4.1 Identifying the source and spatiotemporal origin of the Leptospira outbreak 

 A primary objective of my work was to identify the source of the pathogen introduction 

that led to the leptospirosis outbreak in the reintroduced fox population on Santa Rosa Island 

(SRI). Our initial hypothesis was that Leptospira spilled from California sea lions (CSL) into the 

fox population during the reintroduction period. The analysis in Chapter 1 is inconsistent with 

this hypothesis and shows that the introduction was not likely from CSL. The phylogenetic 

reconstruction shows a nested clade structure, with deep separation between the SRI isolates 

from foxes and skunks and a clade of CSL isolates which were circulating at the time of the SRI 

outbreak. We estimated this divergence to have occurred decades to centuries ago, well before 

the fox population collapse in the 1990s and recent Leptospira outbreak. Other analyses of 

serological data indicate that the pathogen was circulating on SRI during the 1980s and 1990s, 
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at least, and that skunks were the likely reservoir of the bacteria while the foxes were in 

captivity. The clustering of the fox and skunk isolates in a separate clade in the phylogeny 

supports this evidence and illustrates that the strains circulating in the fox and skunk 

populations are most similar. 

 The phylogenetic analysis also indicates that cross-species transmission of Leptospira 

occurs within and across ecosystems. There is evidence of transmission from fox-to-skunk, sea 

lion-to-elephant seal, and fox-to-sea lion. The deeper clade structure of the phylogenies also 

indicates past transmission events across ecosystems. We hypothesize that there is an 

undiscovered reservoir of Leptospira, which has seeded multiple lineages in the coastal 

California ecosystem. 

 Another component of my work reconstructed the spatiotemporal origin of the 

outbreak with unprecedented resolution. Despite a limited number of serological samples 

during this critical period of the outbreak, we were able to estimate the timing and location of 

the first cases by constructing the movement trajectories of the foxes present during this early 

period and intersecting their movements with time of infection estimates generated by a serum 

antibody kinetics model. I estimate that the outbreak occurred in mid-to-late 2005 on the 

northern shore of the island. These findings tentatively support multiple introductions of 

Leptospira into the reintroduced fox population, and show no evident link to CSL haulout sites, 

further supporting island spotted skunks as the source of the outbreak. 

 Broadly, it is clear that California sea lions were not the proximate source of the recent 

outbreak on Santa Rosa Island. A terrestrial host species on the island, most likely island 

spotted skunks, introduced the bacteria to the establishing wild fox population. The foxes were 
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reintroduced onto a landscape where Leptospira was already circulating and by mid-to-late 

2005 the outbreak was most likely initiated. 

 

4.2 Implications for other island fox populations 

 There remains a risk of Leptospira introduction to other Channel Island fox populations. 

I have shown that higher cumulative rainfall over a two-year period and smaller fox abundance 

increases the risk of infection. The effect of fox abundance may be more about the particular 

conditions of the reintroduced population than about low population abundance generally. 

These conditions were met during 2005 when the Leptospira outbreak on SRI was estimated to 

originate. The previous two years had high levels of rainfall, and the fox population was fewer 

than 40 individuals. More broadly, these findings have implications on the introduction of the 

pathogen to fox populations on other Channel Islands. The risk of introduction would be 

greatest after an extended rain period with a destabilized population.  

 There is also a question of where an introduction to another island would originate. 

Although our evidence suggests that CSL were not the source of the outbreak on SRI, the 

possibility remains that CSL can transmit and introduce the pathogen to another island. Our 

evidence also suggests there exists an unidentified pathogen reservoir in the coastal California 

ecosystem. Identification of this unknown reservoir would shed light on potential sources of 

risk to other fox populations. Other research done at UCLA shows that raccoons in Los Angeles 

County have high seroprevalence against the same serovar of Leptospira involved in this 

system. Domestic dogs and pigs can be infected with Leptospira and could serve as potential 

terrestrial sources of the pathogen. 
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Understanding the transmission routes of Leptospira on Santa Rosa Island would guide future 

pathogen mitigation and elucidate risks to other species (e.g., humans, spotted skunks, other 

marine mammals). SRI is part of Channel Islands National Park and open to the public. 

Leptospira, as a potentially fatal infection, poses a risk to visitors (both human and other 

wildlife) on the island. We have shown that Leptospira transmission is influenced by long-term 

patterns in rainfall, potentially through the maintenance of environmental reservoirs for the 

pathogen in standing water or moist soil. By identifying potential sources of the pathogen 

through environmental DNA or PCR, we could understand the distribution of risk across the 

landscape. 

 

 This interdisciplinary body of research demonstrates the importance of long-term 

monitoring programs. Although wildlife data are often imperfect, maximal insights can be 

gained by creatively applying existing statistical techniques and inventing novel methods. By 

developing approaches to integrate multiple data streams, we can resolve challenges of 

analyzing complex wildlife disease data to understand transmission in multi-host wildlife 

systems and provide evidence-based recommendations to mitigate threats to at-risk species 

and to humans. 

 




