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ABSTRACT OF THE DISSERTATION 

Exploring the Global Virome and deciphering the role of phages in Cystic Fibrosis 

by 

Ana Georgina Cobián Güemes 

Doctor of Philosophy in Biology 

University of California San Diego, 2019 

San Diego State University, 2019 

Professor Forest Rohwer, Chair 

Viruses are the most abundant and diverse life form on Earth. In Chapter 1 of this 

dissertation, a global census of the number of viral particles showed that 6.03 x 1031 viral 

particles are distributed across almost every ecosystem. The global census results showed that 

most viruses are in soils and sediments, two unexplored biomes for viral diversity. Accurate 

and fast bioinformatics methods to explore viral and bacterial composition in metagenomes 

are presented in Chapter 2 as “Fragment Recruitment Assembly Purification.”  



v 

Phages are viruses that infect bacteria, their role in polymicrobial infections such as 

Cystic Fibrosis is explored. Cystic Fibrosis is a genetic disease in which the lung phenotype 

promotes mucus accumulation and microbial colonization. A multi-omics strategy to explore 

changes in the lung microbial community during acute pulmonary exacerbations is presented 

in Chapter 3 as “Cystic Fibrosis Rapid Response: Translating Multi-omics data into Clinically 

Relevant Information.” In Chapter 4, eight acute exacerbations were studied, and a trend of 

loss of diversity and viral lytic lifestyle was observed. Two Cystic Fibrosis patients studied in 

Chapter 4 were colonized by antibiotic resistant bacteria from the genera Achromobacter. 

Both patients suffered fatal exacerbations. This motivated the isolation and characterization of 

lytic phages to be used as antimicrobials against bacterial infections.



1 

Chapter 1 : Viruses as Winners in the Game of Life 

Abstract 

Viruses are the most abundant and the most diverse life form. Their global abundance 

was previously estimated as 1031, but their abundance remains uncertain and their global 

distribution vague. In this meta-analysis we estimated that there are 4.80 × 1031 phages on 

Earth. Further, 97% of them are in soil and sediments—two underinvestigated biomes that 

combined account for only ~2.5% of publicly available viral metagenomes. The majority of 

the most abundant phage sequences from all biomes are novel. Our analysis drawing on all 

publicly available viral metagenomes predicted a mere 257, 679 phage genotypes on Earth—

an unrealistically low number— which attests to the current paucity of metagenomic data. 

Further advances in viral ecology and diversity call for a shift of attention to previously 

ignored major biomes and careful application of verified methods for viral metagenomic 

analysis.  

J.B.S. Haldane observed, “God has an inordinate fondness for stars and beetles.” 

To which we would add, “…and viruses.” 

How many viruses? 

Until the 1970s, viruses were of import only insofar as they were found to cause 

disease in us, our domesticates, and other eukaryotes of economic value. Bacteriophages —

viruses that infect bacteria— were proving themselves to be eminently useful as model 

systems for molecular biology research, but were still thought to be of little significance to the 

functioning of the biosphere. There simply could not be enough environmental phages to 
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matter, given the then measurable number of potential prokaryotic hosts counted by culturing 

techniques. Since typically only ~ 1% of the Bacteria were culturable by methods at that time, 

bacterial populations were routinely underestimated by two orders of magnitude: the “great 

plate count anomaly” (Staley and Konopka, 1985) . In the late 1970s, the reported 

environmental bacterial populations jumped 100-fold or more with the development of 

improved direct counting methods employing epifluorescence microscopy (Hobbie, Daley, 

and Jasper 1977). In 1979 Torrella and Morita (Torrella and Morita 1979) concentrated 

particles larger than 0.2 μm from Oregon bay water by filtration and made direct counts of 

virus-like particles (VLPs) by transmission electron microscopy. Their counts, only about 104 

mL–1 or one VLP per microbial cell, overlooked VLPs <0.2 μm, the majority of phages. This 

omission was corrected in 1989 when Bergh and associates centrifuged water samples directly 

onto grids for viewing by transmission electron microscopy (Bergh et al. 1989). They reported 

direct virion counts up to 1.5 × 107 mL–1, an order of magnitude greater than their hosts. 

Moreover, based on several reasonable assumptions, they predicted that in marine 

environments, as much as one-third of the bacterial population suffered phage attack daily—

hardly insignificant.  

This was only the beginning as abundant microbes, and even more numerous phages, 

were then found in many environments, including inhospitable locations such as glacial ice 

(Anesio et al. 2007), bubbling acidic hot springs (Bolduc et al. 2015), deep-sea vents 

(Ortmann and Suttle 2005), and deep sediments (Engelhardt et al. 2014). Based on subsequent 

methodological developments, viruses are now recognized for what they are: the winners in 



3 

the game of life. They are the most abundant and the most diverse life forms, and are of great 

import for ecology and evolution. 

A Global Census 

How many viruses are there on Earth, and where are they located? One would expect 

to find the most viruses in the habitats with the most host organisms. The most abundant 

cellular organisms are the prokaryotes with an estimated 4.15 × 1030 cells, the majority of 

which are found in soil, subseafloor sediments, and marine waters (Table 1.1) (Whitman, 

Coleman, and Wiebe 1998; Williamson, Radosevich, and Wommack 2005; Kallmeyer et al. 

2012; DeLong 2003). The number of microbial eukaryotes, including algae, is comparatively 

small, in the range of only 103 to 104 mL–1 in seawater and other planktonic environments 

(Rocke et al. 2015).  

Taking a global phage census poses methodological challenges. Current methods for 

direct counting of VLPs commonly combine nucleic acid stains with EFM or flow cytometry. 

These methods were developed for aquatic environments, and their application to soil and 

sediment is problematic. Additional steps are required to detach prokaryotes and VLPs from 

particles and surfaces, and successful methods are specific to particular situations. Both may 

be obscured by opaque particles, and background fluorescence can interfere. The marine 

environment remains the most extensively sampled and best studied biome. Other intensively 

studied locations, such as the human gut and freshwater, make a relatively small contribution 

to the global total. Soils and the extensive subsurface sediments warrant more attention as 

their contribution is expected to be major.  
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Table 1.1 Estimated number of virus-like particles on Earth. Virus-to-microbe ratios 

(Supplemental Table 2 in Cobián et al., 2016) were extracted from 53 previous studies ratios 

(Supplemental Table 1 in Cobián et al., 2016) and used to calculate virus-like particles in each 

biome. Numbers of prokaryotic cells in marine, freshwater, other aquatic, sediment, and soil 

biomes are from Whitman at al., 1998. Number of cells per human is from Sender et al. 2016; 

human population is from United Nations, 2016. Median virus-to-microbe ratio for human 

biome is from Kim et al., 2011. 

Biome 

Number of 

prokaryotic 

cells 

Median virus-

to-microbe 

ratio 

Virus-like 

particles 

per biome 

Percentage of 

total virus-like 

particles 

Marine 1.01 x 1029 12.76 1.29 x 1030 2.6828 

Freshwater 1.26 x 1026 14 1.76 x 1027 0.0037 

Other aquatic 2.44 x 1027 30 7.32 x 1028 0.1524 

Sediment 3.80 x 1030 11 4.18 x 1031 87.0131 

Soil 2.50 x 1029 19.5 4.88 x 1030 10.1481 

Human-associated 2.80 x 1023 0.1 2.80 x 1022 0.0000 

Other host-associated Unknown 25 Unknown Unknown 

Total 4.15 x 1030 12 4.80 x 1031 

Marine sediment contains up to 105 times more organic matter than the water column 

above, supporting bacterial densities about 103 times higher (Kallmeyer et al. 2012). Summed 

globally, the total number of prokaryotes in subseafloor sediment (2.9 × 1029) is roughly equal 

to the estimates of Whitman et al. (Whitman, Coleman, and Wiebe 1998) for the total number 

of prokaryotes in seawater (1.2 × 1029) and in soil (2.6 × 1029). Cell densities alone would 

predict good hunting for the phage, as the probability of non-specific phage-host contact 

would be ~103 times greater on average than in the water column above. Indeed, VLP counts 

of 109 ml–1 in sediment have been reported, three orders of magnitude greater than that 
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observed in the overlying water column at that depth (Danovaro and Serresi 2000). Similarly, 

the large numbers of prokaryotes in soil, the rhizosphere, and the rhizosheath, and their 

associated phages, remain largely terra incognita despite their accessibility and their 

importance to agriculture.  

VLPs outnumber their hosts by approximately a factor of ten-to-one in various oceanic 

locations (Wommack and Colwell 2000), and similar ratios have been observed in some other 

biomes (Figure 1.1). It is not understood what drives this consistency, nor the observed 

variations. On this basis, earlier extrapolations from the prokaryote abundances in the major 

biomes yielded an estimated 1.2 × 1030 in open ocean, 2.6 × 1030 in soil, 3.5 × 1031 oceanic 

subsurface, and 0.25–2.5 × 1031 in terrestrial subsurfaces, consistent with the rule-of-thumb 

estimate of 1031 viruses on Earth (Mokili, Rohwer, and Dutilh 2012). Here we revisited this 

question by combining the prokaryote populations drawn primarily from the classic 1998 

paper by Whitman et al. (Whitman, Coleman, and Wiebe 1998) with the median measured 

VMRs from 53 previously-reported studies (Supplemental Table 1 in Cobian et al. 2016). In 

addition to the major biomes, we included some specialized environments of particular 

interest, such as niches associated with humans and other hosts. From a global perspective, 

the majority of prokaryotes inhabit soil, seawater, and the sediments. Thus, we expected that 

these biomes would also account for the majority of viruses.  
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Figure 1.1 Virus-to-microbe ratios for major biomes. Box plots of biome virus-to-microbe 

ratios drawn from 53 previous studies (see Supplemental Methods). The means are indicated 

with gray diamonds. The medians are indicated with red lines. 

This approach yielded 1.29 × 1030 VLPs in marine waters, 4.18 × 1031 in sediments, 

and 4.88 × 1030 in soil (Table 1.1). Adding in other lesser contributors brought the global total 

to 4.80 × 1031 VLPs (details in Supplemental Table 2 in Cobian et al. 2016). This confirms 

and slightly augments the oft-quoted number of 1031. Given that the vast majority of cellular 

entities are prokaryotes, this number represents the global phage population. Significantly, 

sediments and soil combined accounted for 97% of the global total. In sum, phages are the 

most abundant life forms, exceeding the runner-up, the prokaryotes, by more than an order of 

magnitude. Populations of this magnitude dictate that phage evolution is driven by selection, 

with the contribution of drift being insignificant (Kimura 1962).  

Caveats: To the best of our knowledge, there are only two published reports of VMRs 

for human-associated communities. One reported VMRs of 38.6 and 7.9 for gum-associated 

mucus and the adjacent milieu, respectively (Barr et al. 2013), while the other reported a 

mean VMR of 0.129 and a median VMR of 0.1 in fecal matter (M.-S. Kim et al. 2011). Since 
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the vast majority of human-associated microbes and VLPs are in the distal gut (Sender, Fuchs, 

and Milo 2016; Haynes and Rohwer 2011), the fecal VMR was used to calculate the total 

VLPs for the human-associated biome. Admittedly, that fecal VMR, being two orders of 

magnitude lower than the VMRs typical of most other biomes, was suspect. However, 

combining it with the recently revised estimate of 3.9 × 1013 human-associated prokaryotes 

(Sender, Fuchs, and Milo 2016) yields 3.9 × 1012 human-associated VLPs, in good agreement 

with the previous estimate of 3.0 × 1012 (Haynes and Rohwer 2011). Unraveling the phage-

host dynamics in the human-associated microbiome will require further investigation. 

Several factors may result in underestimations of phage abundance. 1) Equating the 

number of VLPs with the number of phages overlooks those residing as prophages in bacterial 

genomes—not an insignificant number (see below). 2) Some stains used to enumerate 

microbial cells and VLPs by EFM, such as SYBR Green, are relatively insensitive to single-

stranded DNA and RNA, thus overlook many small viruses. A more representative assay can 

be made using SYBR Gold (Tuma et al. 1999). 3) VLP counts for soil and sediment are 

biased by reduced extraction efficiencies, while visualization and identification of VLPs can 

be compromised by particulate matter in samples of fecal matter, soil, sediment, etc. 4) Some 

VLP isolation methods for EFM include filtration through 0.2 μm filters which miss larger 

virions and also virions stuck to particulate matter. 5) The 0.02 μm grids used for TEM 

viewing miss the smallest virions.  

Conversely, are these VLPs really viruses? In some environments, some VLPs may be 

gene transfer agents (GTAs), i.e., packaged cellular genes masquerading as tailed phage 

particles (Lang, Zhaxybayeva, and Beatty 2012). Although GTAs are produced by 
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roseobacters, a group that may account for more than 25% of the prokaryotes in some marine 

environments (Lang, Zhaxybayeva, and Beatty 2012), it remains unknown whether GTAs 

make a significant contribution to marine VLP counts. Also unknown is what fraction of the 

VLPs in various environments are infectious, and what percentage were defective upon 

release or subsequently inactivated by UV irradiation, physical damage, or enzymatic attack.  

Phages Matter 

How much do 1031 viruses matter? One measure of this is to consider the matter they 

contain. The mass of a typical phage virion containing 50 kbp DNA packaged inside an 

icosahedral capsid is calculated to be 0.0823 fg; of this, 0.054 fg is DNA and 0.0283 fg is the 

protein capsid (Antoni Luque, personal communication). For comparison, each 

Prochlorococcus, a particularly small autotrophic marine bacterium, has a mass of 300 fg. 

Based on this virion mass, the 4.80 × 1031 VLPs on Earth have a total mass of 3.95 × 1015 g or 

3.95 Pg. The stoichiometry of carbon, nitrogen, and phosphorus (C/N/P) in this typical virion 

is 20/6/1 (Jover et al. 2014), which partitions that mass as approximately 0.06 fg C, 0.02 fg N, 

and 0.0075 fg P. Calculation based on these data suggests that the Earth's VLPs represent 

roughly 2.9 Pg C, i.e., two orders of magnitude less than the 350-500 Pg total carbon 

previously estimated for Earth's prokaryotes (Whitman, Coleman, and Wiebe 1998). 

Compared to microbial cells, virions are enriched in both nitrogen and phosphorus, with 

estimated global totals of 0.96 Pg N, and 0.36 Pg P. As a result of this enrichment, >5% of the 

total marine DOP and DON pools is estimated to reside in virions in some locations (Jover et 

al. 2014).   
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It is now widely recognized that microbes are of tremendous importance for global 

biogeochemical processes, and consequently, that which controls the microbes — the 

phages — runs the world. Prokaryotes are subject to predation by both heterotrophic protists 

and phages. Grazing by protist predators is size-selective, whereas lysis by phages is strain-

specific. Moreover, in the oceans grazing moves the organic carbon and nutrients to higher 

trophic levels, whereas lysis routes these components instead through the viral shunt as 

dissolved organic matter (DOM). This DOM feeds the heterotrophic microbial community, 

thereby increasing net primary productivity and slowing the movement of carbon to the deep 

ocean (Fuhrman 1999; Weinbauer 2004; Wommack and Colwell 2000; Weitz et al. 2015; 

Proctor and Fuhrman 1990; C A Suttle 2005). Because of the stoichiometric mismatch 

between virions and their host cells, after lysis, a disproportionate amount of the P is found in 

the progeny virions, leaving the cellular debris that feeds the heterotrophs depleted in P (Jover 

et al. 2014). An estimated 1028 marine bacteria are lysed daily including ~30% of the 

cyanobacteria and ~60% of the heterotrophic bacteria (Curtis A.  Suttle 2007; Proctor and 

Fuhrman 1990). This selective, strain-specific lysis profoundly impacts prokaryote 

community diversity increasing both richness and evenness (Wommack and Colwell 2000; 

Fuhrman 1999; T.F. Thingstad 2000; T.F. Thingstad et al. 2015; Sandaa et al. 2009). 

Phages also add a horizontal dimension to microbial evolution by mediating the 

transfer of genes between cells (John H Paul 1999). They nab useful metabolic genes from 

their hosts, maintain them, evolve them further to suit their own needs, and then sometimes 

return the new version to the microbial gene pool (Frank et al. 2013; Lindell et al. 2004; 

Sullivan et al. 2006; D.B. Goldsmith et al. 2011). On an ecosystem level, the phage 
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community encodes environment-specific repertoires of microbial metabolic genes (Dinsdale 

et al. 2008).  

Through lysogeny, phage genes are a continual presence in microbial communities. 

Identification of prophages in microbial genomes is challenging, and numerous bioinformatic 

methods have been developed (Bose and Barber 2006; Zhou et al. 2011; McNair, Bailey, and 

Edwards 2012; Akhter, Aziz, and Edwards 2012; Fouts 2006)  Estimates of the percentage of 

prokaryotes in various biomes that carry one or more prophages have ranged between 0% and 

100% (J.H. Paul 2008). Approximately 82% of the sequenced prokaryotic genomes available 

as of 2015 are predicted to contain at least one prophage (Katelyn McNair, personal 

communication). Resident prophages often account for the differences between strains within 

a bacterial species (Canchaya et al. 2003). Prophage-encoded exotoxin genes cause many 

notable human diseases, including cholera, diphtheria, and enterohaemorrhagic diarrhea 

(Casas et al. 2006) as well as diseases that plague our agriculture and aquaculture.  

We do not yet understand the factors influencing the prevalence of lysogeny in any 

biome. Siphoviruses have long been associated with the temperate lifestyle, although 

lysogeny is not confined to that family. This group was observed to dominate the community 

in the Southern Ocean, marine sediment, desert, hypersaline ponds, and human fecal samples, 

accounting for 44% of the total in sediment (M. Breitbart et al. 2004; M Breitbart et al. 2002; 

M. Breitbart et al. 2003; Brum et al. 2015; Adriaenssens et al. 2015; Roux et al. 2016).

However, whether a temperate phage will follow the lytic or lysogenic pathway is decided at 

the start of each infection in response to host and environmental factors. The common 

interpretation based primarily on studies of coliphage λ posits that host abundance, as sensed 
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by a low multiplicity of infection (MOI), favors lytic replication, while high MOI favors 

lysogeny (Herskowitz and Hagen 1980). A recent analysis of phage communities on coral 

reefs suggests more complex dynamics (Knowles et al. 2016). 

How many different viruses? 

Ever since the discovery of phages, it has been evident that there are different ones 

capable of killing different bacteria. However, one hundred years later we are still do not 

know the extent of this diversity, its biogeography, or its dynamic role in ecosystem function. 

While the diversity of all cellular life has been probed using universal genes such as the small 

subunit ribosomal RNA gene, the polyphyletic viruses have no gene in common, thus 

precluding a comprehensive PCR-based survey of viral diversity (F Rohwer and Edwards 

2002; Dwivedi et al. 2012). Therefore, other methods had to be devised.  

Two approaches based on data available in 2003 both yielded an estimated 100 million 

phage 'species' (F. Rohwer 2003). One conservatively assumed that 10 phage 'species' infect 

each of the estimated 10 million microbial species — thus 100 million different phages. This 

alone does not measure genetic diversity since two 'different' phages might differ in only one 

or two key proteins that determine host range. Similarly, the swapping of structural gene 

modules can yield a new 'species' that differs in virion morphology without any increase in 

the global genetic diversity, while two phages indistinguishable by morphology and host 

range can differ significantly in other genome modules. The second approach compared all 

the sequenced phage ORFs in GenBank at that time using BLAST and clustered the ORFs 

using a E-value of 10–4. From this data the non-parametric estimator Chao1 (Chao 1984) 

predicted that 2 × 109 phage ORFs remained to be discovered. Assuming 50 ORFs per phage 
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genome with 50% of those being novel, calculations based on the Chao1 value predicted 100 

million different phages.  

A decade later, armed with more metagenomic data and new analysis tools, Sullivan 

and colleagues presented an analysis based on protein clustering that reduced the estimated 

total number of phage ORFs from 2 × 109 to only 3.9 × 106 (Ignacio-Espinoza, Solonenko, 

and Sullivan 2013), a demotion of almost three orders of magnitude. The debate continues. 

Signature Genes 

Although there is no universal phage gene, diversity within phage groups can be 

assessed using signature genes shared by all group members (Adriaenssens and Cowan 2014). 

For instance, the capsid portal gene (g20) is conserved among many of the large 

cyanomyophages that inhabit marine and freshwater environments. Several studies using g20 

reported rich community diversity, typically 100 or more OTUs and including clades for 

which there are no cultured isolates (Zhong et al. 2002; Jameson et al. 2011). Attempts to 

correlate variations in community composition with depth, host abundance, season, and 

geographic distance yielded inconsistent results. Some OTUs demonstrated consistent 

seasonal variation while others persisted in moderate abundance from year to year (Chow and 

Fuhrman 2012). Sampling across a north-south Atlantic Ocean transect found similar 

cyanomyophages to be widely distributed with no apparent geographical segregation 

(Jameson et al. 2011), while others were present in both marine and freshwater environments 

(Dorigo, Jacquet, and Humbert 2004). However, some diversity within this group eluded 

these surveys; of 39 cyanophage isolates from the Gulf of Mexico, only 63% carried 

detectable g20 sequences (McDaniel, DelaRosa, and Paul 2006).  
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The entire T4 superfamily (Myoviridae) was similarly surveyed using their major 

capsid protein (MCP, gp23). In aquatic environments, these are primarily T4-like 

cyanomyophages. The results here echoed the same trends: diversity (more than 100 OTUs) 

exceeding that represented in cultured isolates (Comeau and Krisch 2008), seasonal 

succession patterns, and long-term persistence of some OTUs (Chow and Fuhrman 2012; 

Pagarete et al. 2013). In some cases persistent OTUs were also the most abundant (>4% 

relative abundance), thus contradicting predictions of both the Bank Model of viral 

community structure and the classic Kill-the-Winner dynamic (T. Thingstad and Lignell 

1997; Pagarete et al. 2013; M. Breitbart and Rohwer 2005).  

These analyses based on g20 and gp23 are limited to the myophages (predominantly 

cyanomyophages) and miss the podophages and the abundant siphophages. A more inclusive 

assessment of cyanophage diversity, including myophages and podophages, used psbA, the 

gene that encodes the D1 protein of oxygenic photosystem II (Chenard and Suttle 2008). 

Phage-encoded sequences clustered by both phage family and by host, separate from the host 

psbA genes, and included clusters with no cultured isolates. Multiple clusters coexisted in 

some locales while some clusters extended over vast geographic distances. Moreover, one 

cyanopodovirus subcluster was found to be globally distributed based on its DNA polymerase 

gene (pol) (Huang et al. 2010). 

Other signature genes can provide a more complete picture of marine phage diversity. 

For example, the phosphate-starvation gene phoH is present in nearly 40% of all marine 

phages compared to 4% of non-marine phages, reflecting the scarcity of phosphate in the 

marine environment (D.B. Goldsmith et al. 2011). It is not restricted to a single viral family 
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and is found in phages that infect heterotrophs as well as autotrophs, even in viruses of 

photosynthetic green algae. A phoH-based marine survey found, yet again, that most of the 

environmental diversity was not represented in cultured isolates, that phoH homologs are 

widely distributed with most clusters represented in multiple oceanic regions, and that marine 

phage community composition varies with depth and geographical location. A subsequent 

survey of the phoH genes in Sargasso Sea phage communities at depths of 0 to 1,000 m over a 

two-year period identified 3,619 OTUs (97% identical) and provided new insights into 

community dynamics (Dawn B Goldsmith et al. 2015). Approximately 96% of those OTUs 

were rare, each accounting for <0.01% of the total sequences, while more than 50% of the 

sequences were from five abundant OTUs. The presence of a few abundant OTUs (1-4 in any 

particular sample) and many rare ones is consistent with the Bank Model of phage community 

structure. However, whereas that model predicts the cycling of phages between the two 

groups over time, here the rare OTUs remained rare, and the most abundant OTUs persisted 

through seasons and years. 

To date, signature genes have been developed for only some viral families. They are 

strikingly lacking for the Siphoviridae, the family that includes many temperate phages and 

that dominates both metagenomic datasets and cultured isolates. In even the best cases, 

signature genes fail to capture the full richness present in natural communities. However, they 

have provided insights into the global distribution of specific phage genes. The DNA 

polymerase conserved in the T7-like podophages and restricted to that group was found in 

multiple biomes (M. Breitbart, Miyake, and Rohwer 2004). Moreover, identical or nearly-

identical 533 bp segments were recovered from different biomes, indicating that phages, or at 
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least phage genes, have moved between biomes in recent evolutionary time. Similarly, >98% 

identical sequences from algal virus DNA polymerase genes were found from the northern 

Pacific Ocean to Antarctica (Short and Suttle 2005). These observations could represent either 

the movement of phages or of individual phage genes. That phages from freshwater, 

sediment, and soil are able to infect marine prokaryotic communities suggests that phages can 

move successfully between biomes (Sano et al. 2004). These, and similar observations, 

suggest that the global viral diversity may be less than previously estimated based on the 

diversity in individual biomes.  

Phage Metagenomics 

Expansion of the field of view from signature genes to assessment of phage 

community diversity was made possible by the development of viral metagenomics. Earlier 

sequencing methods that required cloning of phage DNA had often encountered issues. Many 

phages carry genes that are lethal to the cloning host cells, or their DNA contains modified 

bases that block cloning. An alternative method, linker-amplified shotgun sequencing, was 

first used to assess near-shore marine communities (M Breitbart et al. 2002). Sample 

preparation included passage through a 0.16 μm tangential flow filter, purification of VLPs by 

CsCl gradient centrifugation, and subsequent DNA extraction. This procedure did not recover 

large viruses (e.g., algal Phycodnaviruses) or RNA phages. This initial marine survey found 

that more than 65% of the phage sequences were novel. Four years later, viromes prepared 

using next generation sequencing from four oceanic regions contained >90% unknowns 

(Angly et al. 2006). Even 15 or more years later, despite the increased number of sequenced 

viral genomes in the public databases, 60-99% of the sequences in viromes from diverse 
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biomes are still unknowns (Mokili, Rohwer, and Dutilh 2012; Brum and Sullivan 2015; 

Adriaenssens et al. 2015; Watkins et al. 2015; Roux et al. 2016). More than 99% of viral 

genetic diversity remains to be explored (Mokili, Rohwer, and Dutilh 2012).  

Even though most sequences recovered are unknowns, bioinformatics methods can 

provide insights into community structure. Metagenomic reads are assembled into contigs in 

silico. The more diverse the community, the lower the probability of sequencing two 

overlapping fragments from the same genome, thus shorter contigs and more unassembled 

singleton reads. Plots of contig spectra (number of contigs versus contig length) were best 

represented by power-law based mathematical models and provided estimates of both the 

richness and evenness of the sampled community (M Breitbart et al. 2002). Application of 

this approach to near-shore marine communities estimated 374 – 7,114 genotypes present. Of 

these, the most abundant one represented only 2 – 3% of the total community, while only 

three contributed more than 1% of the reads. Subsequent metagenomic surveys of diverse 

environments reported genotypes numbering in the hundreds to tens of thousands [reviewed 

in (Youle, Haynes, and Rohwer 2012); data in (M. Breitbart et al. 2003; Angly et al. 2006; 

Tseng et al. 2013; Bolduc et al. 2015; Youle, Haynes, and Rohwer 2012)]. 

Virome Meta-analysis 

We have developed a new bioinformatics method, FRAP (Fragment Recruitment, 

Assembly, Purification) (Figure 1.2, Supplemental Methods) and used it to assess global 

phage diversity by analyzing 1,623 publicly available viromes (Supplemental Table 3 in 

Cobian et al. 2016). To create a reference library of the observed phage genotypes on Earth, 

all reads from each of the viromes were assembled separately using SPAdes with the K value 
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adjusted to maximize the incorporation of base pairs into contigs (Bankevich et al. 2012). 

Comparative evaluations of assembler performance on metagenomic datasets had ranked 

SPAdes among the best based on contig accuracy (García-López, Vázquez-Castellanos, and 

Moya 2015). We assumed that each ≥ 1kbp contig represented a partial phage genotype that 

was relatively abundant in that biome. Rarely more than one non-overlapping contig might 

have been recovered from the same genotype. All of these ≥1 kbp contigs were added to the 

reference library. In addition, the 2,669 sequenced phage genomes (December 2015) and 67 

archaeal virus genomes (February 2016) in the NCBI Viral Genomes database were added to 

the library, along with an additional 123 bacteriophage genomes from the Broad Institute 

Marine Phage Sequencing Project. Subsequent dereplication by CD-HIT (Li and Godzik 

2006) at 98% identity yielded 2,267,978 phage contigs plus genomes.  

Given this reference library, the fragment recruitment step could then retrieve the 

matching reads from any virome. In principle this FRAP method could be used to retrieve and 

thus purify sequences that are only minor components of any dataset. For our analysis all 

reads from all viromes were mapped to the reference library at 90%. 95%, and 99% identity, 

and the normalized number of hits to each contig was tallied for each biome (Table 1.2, 

Supplemental Methods). This yielded the fractional abundance in each biome of every contig 

that is also present in the reference library (Figure 1.3 b–g). Parallel mapping was performed 

on a pooled global virome prepared by proportionate subsampling of the individual biome 

files (Figure 1.3 a). Of these pooled reads, 87% were from sediment and 10% were from soil. 

The ten most abundant viral contigs in each case occupied the same rank for all three mapping 

identities, evidencing the robustness of the method.  
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Figure 1.2 Bioinformatics pipeline for the FRAP (fragment recruitment, assembly, 

purification) method (see Supplemental Methods). 
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Table 1.2 Virome metrics. 1For the Tara Oceans Virome data set, only 1% of the reads were 

used. Including all would increase the number of reads from the marine biome to 

1,688,798,702. 

Biome 

Number 

of 

viromes 

Number of 

reads 

Percentage 

of reads 

assembled 

into ≥1 kbp 

contigs 

Percentage of reads mapped 

to reference library 

90% 

identity 

95% 

identity 

99% 

identity 

Marine 192 56,676,5171 11.83 38.1 29.4 20.4 

Freshwater 48 11,519,523 19.51 15.7 11.4 8.1 

Other aquatic 19 3,342,537 14.04 40.2 35.8 27.3 

Sediments 21 15,729,082 10.00 54.7 51.7 44.2 

Soil 9 2,459,152 15.54 41.9 36.6 29.0 

Human-

associated 1158 481,172,486 25.16 30.3 27.2 12.4 

Other host-

associated 167 34,600,192 
3.81 34.6 31.1 25.3 

Other 7 396,889  28.22 44.3 36.8 17.4 

Total 1621 605,896,378 16.01 31.8 28.1 14.7 

Mapping at 99% identity provided the most conservative estimate of the number of 

identified viral contigs and was used to calculate the number of viral genotypes potentially 

encoded for each biome (Figure 1.3). Here we summed the lengths of all observed phage 

contigs and divided by the assumed average phage genome size of 50 kbp. The most viral 

genotypes were observed in the marine and human-associated biomes, the least in soil. This 

reflects the size of the datasets: 192, 1158, and 7 viromes for marine, human-associated, and 

soil, respectively. This meta-analysis demonstrated that even when using all the information 

currently available for DNA-containing phages, we detect only 1,160 viral genotypes in the 
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pooled global virome, likely due to the low number of viromes from soil and sediment 

biomes.  

The rank abundance plots for each biome are best described by a power law model 

(Supplemental Table 5 in Cobian et al. 2016). Using this model, we calculated the predicted 

richness of each biome (Supplemental Methods). This approach predicted only 24,795 viral 

genotypes for the marine biome, which is not realistic (Supplemental Table 5 in Cobian et al. 

2016). We conclude that we have insufficient information about the shape of the curve to 

calculate the actual viral richness of each biome. Further work is needed before we even know 

how much we still do not know, i.e., how far we are from understanding the viral dark matter 

of the biosphere.  
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Figure 1.3 Viral rank abundance curves for (a) marine, (b) sediment, (c) freshwater, (d ) soil, 

(e) other aquatic, and ( f ) human-associated biomes. Reads in these six major biomes were

mapped to the genotypes present in the reference library at 90%, 95%, and 99% identity. In

each case, the relative abundance of all recovered viral genotypes is shown as well as the

observed coding capacity expressed as the potential number of different 50-kbp phage

genomes and the predicted viral genotypes using both the curve fit and tail fit methods.
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How many different phages on Earth? 

Providing a direct answer to this question remains challenging, in part because we do 

not know whether phages are provincial or cosmopolitan. If a biome is sampled in two 

geographic locations, A and B, and the number of phage genotypes present in each is 

estimated, is the richness of the phage community in that biome equal to A + B, or is it 

significantly less? Likewise, if the number of phage genotypes in each biome is known, are 

we justified in summing them to calculate the global virome? Other studies have addressed 

this by assessing the fraction of genotypes shared between biomes or geographical regions. A 

three-pronged analysis of viromes from four oceanic regions (the Pacific off the coast of 

British Columbia, Arctic Ocean, Gulf of Mexico, and Sargasso Sea) found that a large 

fraction of the phage community is cosmopolitan, that is they are found in two, three, or even 

four of the surveyed regions (Angly et al. 2006). Within this global distribution, the phage 

communities showed regionalization in that community members, including the cosmopolitan 

and the most abundant, shifted in relative abundance from region to region. Assembly of 

reads from each region separately yielded a total of ~150,000 genotypes, whereas co-

assembly reduced the total to only 57,600 different genotypes. Similarly, a recent study of 

hypersaline ponds on three continents found that community composition varied with the 

level of salinity but that communities in the same salinity are genetically connected across the 

globe (Roux et al. 2016). Conversely, phage communities present in three soil biomes shared 

essentially no genotypes (Fierer et al. 2007).  

The cosmopolitan range of individual phage genes or gene modules is another factor 

that complicates determination of the ecological or geographical range of phage genotypes. 
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Studies described earlier that found nearly identical sequences of signature genes to be 

globally distributed indicated a global phage gene pool, at least within the marine biome. 

However, even within that biome, this does not distinguish between the global travels of 

phage genes by horizontal gene transfer and the presence of the same phage genotypes in 

geographically remote locations.  

Here we used the number of phage encoding capacity observed in our meta-analysis to 

estimate the number of possible phage genotypes on Earth (Supplemental Methods). In brief, 

we used the sum of lengths of all the phage contigs as a proxy for all phage DNA currently 

available in the databases, and then divided by the assumed 50 kbp average phage genome 

length (Supplemental Table 5 in Cobian et al. 2016). On this basis we estimate that the 

observed phage DNA is sufficient to encode 257, 698 different phages.  

This estimate is undoubtedly low. The sequenced samples so far represent only a 

minute fraction of the total phage-encoded information present in every biome. For example, 

including all 2.16 × 109 reads from the massive Tara Oceans Viromes dataset (average read 

length of ~101 bp) would provide 2 × 108 kbp of marine phage genomic sequence. To put this 

in perspective, 1.29 × 1030 marine VLPs with an average genome of 50 kbp would contain 6.5 

× 1031 kbp of DNA. 

Which are the most abundant phage genes? 

To explore this, we annotated the 10 most abundant contigs in each biome and in the 

pooled global virome (Supplemental Table 4 in Cobian et al. 2016). The majority of them 

have no significant similarity to sequences in the NCBI database. For the soil biome, none of 

the 10 have similarities to known sequences. A podovirus polymerase is the most abundant 
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contig in the marine biome followed by several uncultured virus clones and unknown 

sequences. For the freshwater biome, nonstructural viral genes were detected among the most 

abundant ones, as well as others with no similarities to known sequences. Similarly, for the 

global virome the most abundant contigs have no significant hits in the databases, followed by 

contigs annotated as circovirus, a circular virus, and a cryptic MLU1 plasmid from 

Micrococcus.  

Caveats: Our reference database was clustered at 98% identity. The 2 most abundant viral 

contigs in the marine biome were podovirus polymerase genes that share >98% identity 

among themselves. Methodological improvements allowing clustering at 100% identity 

sequences would eliminate this issue.  

Further, all of our results are unavoidably skewed due to the biased distribution of the 

current viromes. Of the 1,623 viromes, 71% were from human-associated communities, 10% 

from communities associated with other animals or plants, and 11% from marine 

environments (Table 1.2). Thus 92% of the viromes explored 3% of the VLPs on Earth, while 

only 1.8% investigated the two biomes with 97% of the VLPs — soil and sediment (Table 

1.1). Some biomes remain virtually unsampled. Even in the marine biome, only a very limited 

geographic territory and range of environmental parameters have been sampled. Despite the 

surging interest in the human microbiome, published counts for human-associated prokaryotic 

cells and VLPs are strikingly lacking.  

The publicly available viromes are further compromised by poor methods. Of those 

viromes, 132 (7.5%) were omitted from our library because they were mislabeled microbial 

metagenomes or showed obvious contamination with human or microbial sequences. Some 
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contained abundant φX174 sequences due to either the amplification bias of multiple 

displacement amplification (K.-H. Kim and Bae 2011; Duhaime and Sullivan 2012) or, when 

sequencing on the Illumina platform, the failure to remove the PhiX quality control sequences 

prior to submission to the public databases. In the sediment biome, the highly abundant 

fragments from Staphylococcus aureus plasmids could be from phages or GTAs, or from 

bacterial contaminants of viromes due to inadequate viral purification during sample 

preparation. Many sources of error can be avoided and more quantitative data obtained by 

carefully adhering to current best practices (Duhaime and Sullivan 2012; Duhaime et al. 2012; 

K.-H. Kim and Bae 2011). Still needed is the comparable development of methods for RNA 

viruses and ssDNA phages, as well as VLP purification procedures that do not exclude the 

largest viruses.  

The future for FRAP 

Given a high-quality reference library, FRAP can be used to get rid of the crap, i.e., to 

fish out matching sequences from a metagenomic dataset, even when they comprise only a 

small percentage of the reads. This can potentially eliminate some sample purification steps or 

enable you to selectively retrieve different components from a mixed sample. However, 

FRAP's utility depends on the completeness and quality of the reference library. Library 

development, in turn, calls for clean sample preparation methods, sequencing of more bp, and 

longer read lengths (such as the 10 to 15 bp lengths now possible with PacBio SMRT℗ 

sequencing). 
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Recent advances in phage ecology have heightened our awareness that we live in a phage 

world. Much of that world remains a terra incognita. For the careful researcher equipped with 

today's technology, the opportunities for discovery are vast.  

Summary Points 

1. Phages are the winners: the most numerous and genetically diverse life forms on

Earth. The estimated 4.80 × 1031 VLPs on Earth comprise at least 257,698 different phage 

genotypes. 

2. We have barely begun to explore phage diversity. Metagenomic studies have

focused on a few biomes and have ignored soil and sediment—the two that combined contain 

97% of the global phage population. Sampling has been sparse at best, while numerous 

environments remain terra incognita.  

3. Global phage diversity far exceeds that represented by cultured isolates.

4. One cannot fully understand the ecology or evolution of any ecosystem without

including the phages. 

5. Our current knowledge of the fractional abundances of phages on each biome is

limited and we need better strategies to describe the population structure of the phages on 

each biome. 

Future Issues 

1. Metagenomic sampling has been narrowly focused on selected regions of the

marine environment and on host-associated communities, primarily human-associated. Most 
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of the globe and most biomes await exploration. Initial surveys of the human-associated 

phage community uncovered anomalous dynamics that await resolution. 

2. Viruses that have chromosomes of RNA or single-stranded DNA are significant

components of some communities, but have been generally ignored. Correcting this requires 

new inclusive methods for both their direct VLP counts and their metagenomics. 

3. Some phages and some phage genes are cosmopolitan, while others appear to be

geographically or ecologically restricted. The question remains: do all phages share the same 

global gene pool, with varying levels of access? 

4. Genomic analysis of both phages and their hosts indicates that lysogeny is

commonplace. Awaiting further exploration are the prevalence of temperate phages in various 

environments, the lysis-lysogeny decision, and the impact of lysogeny on the ecology and 

evolution of both phages and their hosts. 

5. Phages are the greatest reservoir of unexplored genetic diversity on Earth. Current

estimates of the number of different proteins encoded by phages vary widely. After more than 

a decade of phage metagenomics, the majority of phage sequences remain novel. Sequencing 

technology has advanced rapidly, and now enhanced bioinformatics methods are essential to 

analyze the mushrooming metagenomic data.  

6. Assignment of function to phage-encoded proteins based on sequence homology is

limited by the rapid rate of phage evolution. Other approaches are called for in order to 

translate environmental metagenomic data into the metabolic potential of phage communities. 
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7. The species concept is not directly applicable to viruses. An alternative, generally-

accepted metric is needed to facilitate discussion of viral diversity, ecology, and evolution.  

8. In the current era of the microbiome, researchers are actively investigating the roles 

of microbes in processes including human health, ecosystem functioning, and global 

biogeochemical cycles. Now, a century after the discovery of phage, exploration of the role of 

phage in these and other activities is overdue.  

Definition of terms 

Virome: a viral metagenome  

OTU: operational taxonomic unit 

Phage: a virus that infects a prokaryote (Bacteria and Archaea) 

Microbe: a prokaryote, i.e., an archaeon or a bacterium 

PFU: plaque-forming unit 

Virion: the intercellular transport form of a virus, typically comprising the chromosome(s) 

enclosed within a protein capsid  

VLP: virus-like particle 

VMR: the virus-to-microbe ratio 

EFM: epifluorescence microscopy 

fg: 10–15 g 

Pg: 1015 g 

Prophage: a phage chromosome that resides within a host cell (lysogen) without immediately 

engaging in lytic replication 
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Cyanophage: a phage that infects cyanobacteria 

Myophage: a member of the family Myoviridae 

Podophage: a member of the family Podoviridae 

Siphophage: a member of the family Siphoviridae 

DOP: dissolved organic phosphorus 

DON: dissolved organic nitrogen 
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Appendix for Chapter 1 

Supplemental methods 

Global VLP calculation 

A total of 6,154 VMR measurements were collected from 53 research papers 

(Supplemental Table 2 in Cobian et al. 2016). When specific VMR values were not provided 

in the manuscript, the VMRs were extracted from the published plots using Web Plot 

Digitizer (Rohatgi). Each VMR value was assigned to one of 7 major biomes (marine, 

freshwater, other aquatic, sediments, soil, human-associated, and other host-associated) and 

both the mean and median VMRs were calculated for each biome. Boxplots for each biome 

VMR were generated using R (R Core Team 2013). Sources for the number of prokaryotic 

cells are noted on Figure 1. For each biome, the number of VLPs was estimated by 

multiplying the number of prokaryotic cells by the calculated median VMR. The global VMR 

was calculated by summing the VLPs for all 7 biomes and then dividing by the sum of the 

number of prokaryotic cells.  

Virome collection 

Virome FASTA sequences were obtained from MGRAST (Meyer et al. 2008), 

MetaVir (Roux et al. 2011), iVIRUS (Bolduc et al.), SRA (SRA), and ENA (ENA). Since 

there is overlap between these databases, virome duplicates were removed by manual 

curation. Only viromes accompanied by a peer-reviewed paper were included. For the large 

Tara Ocean Viromes dataset, one sequencing run per site was selected, of which a 1% 

subsample without replacement was used for analysis. FASTA sequences from MGRAST 

were downloaded after quality filtering using MGRAST API (Wilke et al. 2015); those from 
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SRA and ENA were quality filtered with PRINSEQ (Schmieder and Edwards 2011) (99% 

quality); raw FASTA files were used from MetaVir and iVIRUS. Six viromes (metavir_2726, 

metavir_2727, MGRAST: 4519681, 4519682, 4519683, 4519684) had been spiked with PhiX 

control DNA; those introduced sequences were eliminated from the FASTA files using in-

house scripts (SMALT mapping at 95% identity to the φX174 genome; Genbank accession 

J02482.1). When viromes had been sequenced as paired-end, only one read was used for 

subsequent analysis. Of the 1,622 viromes collected, 1,615 were assigned to one of the 7 

major biomes (marine, freshwater, other aquatic, sediments, soil, human-associated, and other 

host-associated). The remaining 7 viromes were classified as 'other' (fermented food and air 

viromes). The available metadata and major biome classification for each virome are provided 

in Supplemental Table 3. 

Reference library creation 

Each virome was assembled de novo using SPAdes (Bankevich et al. 2012) and all 

contigs ≥1000 nt from all viromes were  merged into a single file for further analysis. A 

prokaryotic virus reference database was created from 2,699 bacteriophage genomes and 67 

archaeal virus genomes from the NCBI RefSeq database (January 2016) (RefSeq), plus an 

additional 123 bacteriophage genomes from the Broad Institute Marine Phage Sequencing 

Project (Broad Institute). The virome contig file and the prokaryotic virus reference database 

were merged into a single file and clustered using CD-HIT-EST (Fu et al. 2012) at 98% 

identity. BLASTn (e-value cutoff of 0.001) was used to identify cloning vectors (UNIVEC) 

and rRNA (SILVA) sequences (using SSU Ref NR and LSURef_123_10_07_15). Removal of 

these sequences left a reference library containing 2,258,219 phage (sensu lato) contigs.  
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Size of the global virome 

All assembled contigs <1000 nt were merged into a single file and clustered at 98% 

identity using CD-HIT-EST to generate the small_contigs_98 database.  The lengths of every 

sequence in this database, and in the reference library were obtained and summed to yield the 

size of the global virome in nucleotides (1.29 × 1010). This total was divided by 50 kbp, the 

assumed average phage genome size, to yield the number of viral genotypes on Earth.   

Virome mapping to the reference library 

All viromes were mapped individually to the reference library using SMALT 

(SMALT) in 3 separate runs using 99%, 95%, and 90% alignment identity cutoff values. The 

mapping at 99% alignment identity was used when calculating both observed and predicted 

viral genotypes.  

In addition, a separate global analysis was performed by first creating a pool of all 

virome FASTA sequences for each of the 5 biomes with the most VLPs. A pooled global 

virome (1,000,000 reads) was then generated by subsampling with replacement from each 

biome pool, with the percentage contributed by each biome being the percentage of global 

VLPs present in that biome (i.e., 26,857 marine reads, 37 freshwater, 1,525 other aquatic, 

870,833 sediments, and 101,667 soil). This pooled global virome was mapped to the reference 

library as above.  

Fractional abundances of viral genotypes 
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Mapping as described above yielded the number of hits to each genotype in the 

reference library for each virome. The fractional abundance (f) of each viral genotype in each 

virome was then calculated as:  

Equation 1.1 Fractional abundance of viral genotypes 

𝑓(𝑖) ≅
𝑟(𝑖)

𝑇(𝑗)
∗

𝐿(𝑚𝑒𝑎𝑛)

𝐿(𝑖)

where 

f (i): the fractional abundance of contig i in this virome 

r (i): the number of reads that map to contig i 

T (j): the total number of reads in virome j 

L (mean): the mean genome length (bp), assumed to be 50,000 bp (Steward, Montiel, and 

Azam 2000) 

L (i): the length (bp) of contig i 

Then the fractional abundance of contig i in a biome was calculated as: 

Equation 1.2 Fractional abundance of contigs 

𝑓(𝑖𝑏𝑖𝑜𝑚𝑒) ≅
𝑓(𝑖)

𝑁

where 

f (ibiome): the fractional abundance of contig i in the biome 

N: number of viromes in biome 
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Parallel calculations were made to calculate the fractional abundance of contig i in the global 

virome sample. Rank abundance plots for each biome and the global virome sample were 

generated using R. 

Annotation  

The 10 viral genotypes with the greatest fractional abundance in each biome and in the 

pooled global virome were annotated through online NCBI BLASTn against the nr/nt 

database. 

Observed viral genotypes  

For each biome and the pooled global virome, the sum of the lengths of every contig 

with a fractional abundance at 99% identity > 0 was divided by 50,000 (the assumed average 

phage genome length) to estimate the number of observed viral genotypes. 

Predicted viral genotypes 

Curve fitting was performed for the 99% identity rank abundance plots for each biome 

using the Matlab Curve Fitting ToolboxTM R2015b (Mathworks, Inc.). Several curve fit 

models were evaluated when applied to the first 100, 1,000, and 10,000 fractional abundance 

ranks for each sample (Supplemental Table 5 in Cobian et al. 2016). The power law model 

gave the best fit and was therefore used to calculate the predicted number of viral genotypes 

for each biome. Estimated a and b for each curve were used to calculate the number of VLPs 

on each rank of the curve as follow: 

Equation 1.3 Estimated a and b for rank abundance curves 

𝑉𝑖 = 𝑎𝑖𝑏 × 𝑉𝑡𝑜𝑡𝑎𝑙
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where 𝑉𝑖 is the number of VLPs on rank i, and 𝑉𝑡𝑜𝑡𝑎𝑙 is the total number of VLPs in the 

biome (from Table 1.1). The values for 𝑉𝑖 were summed until the following condition was 

met: 

Equation 1.4 Number of viral genotypes prediction 

𝑉𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑎𝑖𝑏  ×  𝑉𝑡𝑜𝑡𝑎𝑙
𝑥

𝑖=1
. 

At that point, the sum was considered to be the predicted number of viral genotypes. For the 

soil virome, the curve was asymptotic, and x was not calculated.  
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Chapter 2: Fragment Recruitment Assembly Purification (FRAP): Put bioinformatics 

back into the hands of biologists. 

Abstract 

A strict or exact match strategy for the analysis of metagenomes is presented as 

Fragment Recruitment Assembly Purification. This strategy reduces the problem of 

metagenomic assignments to text matching using strict or exact hits from a dataset to a 

database. Such databases are constructed by the user and tailored to adrress specific biological 

questions. With the increasing number of available genomes, and the high number of reads 

generated by current sequencing technologies, unreliable assignments can be eliminated from 

the analysis. Reliable assignments can be identified by using only strict and exact matches, 

such strategy limits the occurrence of false positives. Here the implementation of Fragment 

Recruitment Assembly Purification is presented as well as a set of auxiliary tools that allow 

the user to quickly build heatmaps, coverage plots, and fragment recruitment plots; and then 

use these data to make biological inferences. The performance of the presented algorithm was 

tested in aquatic, and host associated metagenomes. Fragment Recruitment Assembly 

Purification was used for the exploration of The Global Virome (Chapter 1) and in the 

analysis of Cystic Fibrosis metagenomes and viromes (Chapter 4).   
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Introduction 

Current bioinformatics 

Current bioinformatic methods have become a convoluted land for biologists. In 

metagenomic studies, once next generation sequencing (NGS) data (Singer et al. 2016) is 

generated, there are a myriad of options (Fonseca et al. 2012; Naccache et al. 2014; 

Huttenhower 2019; Huson et al. 2016) and opinions (Greninger 2018) about the best way to 

analyze (Sczyrba et al. 2017; 2019, n.d.; McIntyre et al. 2017) such data.  

Bioinformatic metodologies to compare a dataset (i.e. a metagenome) to a database 

(i.e. viral reference genomes) rely heavily on statistics in calculating the probability that a 

DNA fragment originated from a given organism (reference genome). Variability in the 

results of metagenomic analyses using different methods and pipelines is embedded in several 

steps such as: 1) the scoring systems used for each application (i.e. BLAST family algorithms 

developed by Altschul et al. 1990), 2) the construction of k-mer profiles with different 

databases, k-mer sizes and inference methods (i.e. KAIJU(Menzel, Ng, and Krogh 2016) and 

FOCUS2 (Silva, Dutilh, and Edwards 2016)), and 3) the use of different sets of marker genes 

for taxonomical inferences (i. e. MetaPhlan2, MetaVir (Roux et al. 2011)). Such variability in 

the search methods can result in distinct biological interpretations when comparing the 

analysis of the same dataset through different software or platforms.  

To overcome these issues, Fragment Recruitment Assembly Purification (FRAP) was 

developped, as a simple and reproducible method to compare a dataset to a database through 

strict or   exact hits. FRAP assign strict (96% identity over 100% of the read) or exact hits 
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(100% identity over 100% of the read) in the dataset to a custom database specific to the 

biological problem at hand.  

Why use FRAP? 

FRAP aims to be a simple approach to bioinformatics with a fast learning curve. Exact 

hits are reliable and reproducible, which is defined as 100% of the read matching to the 

database with 100% identity. As the probability of having a specific 100 nucleotides sequence 

by chance is 1/4100, it is hard to argue that an exact hit is not a true positive. The exact hits 

approach is possible because the amount of sequences in the databases and in the datasets is 

large enough so that non perfect matches can be ignored or used for separate analysis. 

Databases and datasets size will continue to increase(Stephens et al. 2015), so much so that 

eventually we will have the Earth’s metagenome.  As the databases become bigger, the more 

FRAP will become relevant. 

The FRAP approach has an adaptable design in which datasets and databases are any 

collection of sequences in fasta format. This makes the strategy directed towards answering 

biological questions and researchers can easily construct databases relevant to their questions. 

FRAP reduces metagenomic assignments to text strings comparisons which have been 

implemented in several operating systems (such as Unix) as low level functions. This allows 

FRAP to be a “never break” pipeline which should be stable across platforms and versions. 

String matching algorithms have at worst lineal time complexity(Pandiselvam, Marimuthu, 

and Lawrance 2014). Regardless of the method used to obtain exact hits, FRAP results should 

always be the same.  
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How to use FRAP? 

Databases and datasets are nucleotide fasta files. Datasets are usually short DNA 

fragments (reads) from metagenomes, metatrascriptomes or viromes. Databases are usually a 

set of genomes of interest such as bacteria representative genomes, archaea reference 

sequences, and viral reference sequences; or a set of genes of interest such as bacteria 

metabolic genes (i.e. the SEED (Overbeek et al. 2014) database), virulence factors (Sayers et 

al. 2019; Chen et al. 2016), or antibiotic resistance genes (Jia et al. 2017). These are popular 

examples, but a dataset and a database can be any collection of sequences in a fasta file 

format.  

Several exact hit implementations were explored in this study, such as the use of 

mapping algorithms with adjusted parameters to obtain exact hits such as smalt (“SMALT 

Manual” 2010) and HISAT (Kim, Langmead, and Salzberg 2015); the implementation of a 

search via a hash table, called hash exact hit (heh), and the use of the Unix command grep.  

FRAP has two main applications: basic FRAP and blind FRAP. Basic FRAP 

compares a set of reads to a set of known reference genomes or genes. Examples include 

comparing aquarium metagenomes to bacteria and archaea representative genomes and 

comparing lung metagenomes to virulence factors genes and antibiotic resistance genes. In 

basic FRAP the reported fractional abundances are interpreted as taxonomical or functional 

assignments. Basic FRAP  can also be used to filter out or retrieve reads present in a database 

of interest, for example to filter out the human genome reads present in a lung metagenome 

and keep the remaining reads for further analysis, or to retrieve the viral reads in a lung 

metagenome and assemble all of them together to discover viral like contigs.  
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Furthermore, basic FRAP aids in the detection of contamination in samples or in 

databases. For example, a marine bacteria was detected in a lung metagenome. Upon closer 

inspection, all the detected reads map to a single short region of the marine bacteria genome, 

in this case the sample was contaminated with a marine bacteria PCR product. Contamination 

in the databases can be detected, for example a human biopsy sample had exact hits to a 

bacteria and all hits were in a very short region, further exploration led to the identification of 

a human genome region in the assembly of the bacteria in the reference database.  

Blind FRAP compares a dataset to itself via contigs or reads. In blind FRAP the 

database has no identified function or taxa and the databases are usually contigs assembled 

from the dataset or contigs assembled from another dataset. One example of blind FRAP is 

presented in Chapter 1, where contigs assembled from viromes were used as a database and 

reads from the same viromes were used as datasets. The resulting fractional abundances for 

each contig represent the abundance of viral-like elements that have no functional or 

taxonomical annotation yet. A second example of blind FRAP is obtaining viromes and 

metagenomes from the same sample and using the contigs from a virome as database and the 

reads from metagenomes as datasets, in this case the fractional abundances of virome derived 

contigs is interpreted as the presence of viral-like elements in metagenomes.  

Challenges in the development of FRAP 

FRAP needs further development to become portable and fast. ideally FRAP should be 

easy to use, not requiring the use of the terminal and where dataset and database files can be 

dragged and dropped into the analysis window.  
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Computational challenges in the development of FRAP are: 1) The development of 

efficient search algorithms (So 2017) for text search which is currently limited by database 

size, and 2) Determine the amount of computational power needed for large scale analysis, for 

example, how much computing power do we need to use the Earth’s metagenome?  

Biological challenges in the development of FRAP rely on the compilation of reliable 

databases that are vetted for reproducible results. 

Results and Discussion 

FRAP was used in several projects. FRAP generalized pipeline (Figure 2.1) inputs are 

a single fasta file containing a database and one or multiple fasta files containing the reads in 

a dataset or datasets. The implemented methods to obtain exact hits are smalt at 100% 

identity, HISAT at 100% identity, hash exact hit, and grep. FRAP outputs are a tab delimited 

file containing the fractional abundances of each element in the database in each dataset, a tab 

delimited file containing the number of hits to each element in the database in each dataset 

and fragment recruitment plots for the 10 database elements with the highest fractional 

abundances. In addition, frap-tools can be used to obtain a fasta file containing the reads that 

have hits to the database (si_hits.pl) or a fasta file containing the reads that have no hits to the 

database (no_hits.pl). FRAP can be accessed through the GitHub repository 

https://github.com/yinacobian/frap  

https://github.com/yinacobian/frap
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Figure 2.1 Fragment Recruitment Assembly Purification general case. 

Basic FRAP 

The simplest implementation of FRAP is the “just map FRAP” approach (Figure 2.2-

A). FRAP normalization to obtain fractional abundances from exact hits (Figure 2.2-B) is 

based on the principle that datasets have different sizes and the length of each element in the 

database is different. The fractional abundance of each element in the database (f(i)) is 

calculated by dividing the number of hits to an element in the database (r(i)) by the total 

number of sequences in the dataset (T(j)), next this term is multiplied by the mean length of 
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the elements in the dataset (L(mean)) divided by the length of the database element (L(i)). 

Fractional abundances are then scaled by a factor of 1,000,000.  

Figure 2.2 FRAP basic concept and normalization. A) FRAP implementation as “Just map 

FRAP” which is implemented in the script jmf.pl B) FRAP normalization to fractional 

abundances 

L(mean) values represent the average genome length. When the database is composed 

of complete genomes, the L(mean) value can be pre-determined and used for the calculations. 

Microbial average genome length was calculated from publicly available complete genomes 

included in RefSeq-release80 (Table 2.1). Based on this set of genomes, virus average 

genome length is 29,936 bp, bacteria average genome length is 4,028,000 bp and archaea 

average genome length is 2,730,000 bp. For fungi and protozoa, the average genome length 
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was calculated using locus length, which can be the complete genome, or a chromosome 

(Table 2.2). Subsequent calculations are needed to get accurate average genome lengths for 

this organisms. L(mean) values represent the average gene length when the database is 

composed of genes. The average gene length for virus, bacteria, archaea, fungi and protozoa 

was calculated (Table 2.3). The average gene length for virus is 741 bp, for bacteria 899 bp, 

for archaea 855 bp, for fungi 1,660 bp and for protozoa 1,798 bp.  

Table 2.1 Average genome length for FRAP normalization. RefSeq-release80 published on 

January 9, 2017. Genomes/ASSEMBLY_REPORTS/ published on March 6, 2017. Virus: 

obtained from all viral genomes available at refseq. Bacteria: obtained from assembly reports, 

the average genome length per taxid group was used as input, 67,706 genomes are distributed 

in 964 taxid groups. Archaea: obtained from assembly reports, the average genome length per 

taxid group was used as input, 192 genomes are distributed in 11 taxid groups. Information 

not available for fungi and protozoa, everything is together in an eukaryotes genome size file. 

GENOME LENGTH 

N minimum  1st quartile median mean 3rd quartile maximum 

Virus 8,321 200 2,737 7,233 29,936 38,124 2,473,870 

Bacteria 67,706 162,600 2,425,000 3,912,000 4,028,000 5,193,000 11,930,000 

Archaea 192 174,700 2,150,000 2,486,000 2,730,000 3,046,000 4,568,000 
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Table 2.2 Average locus length for FRAP normalization. Locus length for L-mean in FRAP 

normalization. RefSeq-release80 published on January 9, 2017. A LOCUS is a refseq entry, in 

the case of viruses one locus is one genome, for the rest of the groups a locus can be either a 

compelte genome, a plasmid, a contig or any refseq entry. 

LOCUS LENGTH 

N minimum 

1st 

quartile median mean 

3rd 

quartile maximum 

Virus 8,321 200 2,737 7,233 29,936 38,124 2,473,870 

Bacteria 8,067,030 16 886 4,656 36,891 25,351 14,782,125 

Archaea 20,952 4 2,851 11,354 30,810 32,179 4,064,496 

Fungi 74,670 86 664 2,226 89,939 14,047 11,880,248 

Protozoa 247,163 22 922 1,158 14,559 2,514 13,391,543 

Table 2.3 Average gene length for FRAP normalization. 1min represent the start site of 

regulatory regions in the database, therefore it does not represent an accurate minimum gene 

length. 

GENE LENGTH 

N min1 
1st 

quartile median mean 

3rd 

quartile maximum 

Virus 308,153 1 260 443 747 860 262,387 

Bacteria 291,916,012 1 437 773 899 1,179 110,417 

Archaea 1,638,741 1 419 731 855 1,124 32,447 

Fungi 2,195,385 3 857 1,394 1,660 2,100 186,159 

Protozoa 976,901 3 649 1,221 1,798 2,168 131,440 
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FRAP-tools are a set of auxiliary scripts to visualize and generate fasta files from 

jmf.pl outputs. Heatmaps are generated from fractional abundances (Figure 2.3). Fragment 

recruitment plots (Figure 2.4) are generated for the 10 elements in the database with the 

highest fractional abundances. In the case of complete genomes as a database, the confidence 

of the identification of a bacteria genome in the dataset is assessed by the distribution of 

fragments across most of the genome.  

A basic FRAP approach was used in a set of metagenomes from an aquarium water 

column microbial community establishment process, in which 47 samples were obtained over 

a 6 months period. The databases used were bacteria representative genomes (Figure 2.3-A) 

and archaea representative genomes (Figure 2.3-B). The dominant bacteria during the 

microbial community establishment was Phaeobacter galleciensis, whose hits are distributed 

across the whole genome (Figure 2.4) which provides evidence of the presence of the 

organism in the system. Results from this study will be further discussed and published by 

Calhoun S. et. al.  
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Figure 2.3 Heatmap of the 100 most abundant bacteria in the aquarium metagenomes. FRAP 

at 96% identity. A) Heatmap of the most abundant bacteria found in the aquarium 

metagenomes. B) Heatmap of the most abundant archaea in the aquarium metagenomes. 

Propionibacterium acnes was manually removed from the analysis since it is not a marine 

bacteria and is a possible contamination. 
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Figure 2.4 Fragment recruitment plot of Phaeobacter gallaciensis, the most abundant bacteria 

in the aquarium metagenomes. 

A basic FRAP approach was used in the analysis of CF associated microbial 

metagenomes obtained from sputum samples of acute exacerbations. These results are 

discussed in detail in Chapter 4 of this dissertation. Human DNA in the sputum metagenomes 

was removed using FRAP and FRAP-tools, in which the remaining sequences were compared 

to a set of bacteria reference genomes. In a sample from patient CF418, the microbial 

community was dominated by Achromobacter xylosoxidans, which is the closest reference 

genome and evidence for its presence in the clinical sample is supported by hits across the 

genome. In Chapter 4 of this dissertation a detailed analysis of the genome deletions supports 

the hypothesis that the genome deletions are phage regions which may be excising from the 

genome. In clinical metagenomic studies is essential to use exact hits with curated reference 

databases so clinicians receive complete information that they can trust for trearment 

consideration.  
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Visual inspection of fragment recruitment plots allows the identification of 

contaminants in the dataset or in the databases. In a sputum metagenome from patient CF01, 

sample contamination was detected when for three bacteria genomes hits in a 1,500 nt region 

were identified (Figure 2.5). Such bacteria were Delftia acidovorans, Bordetella petrii, and 

Marinomonas aquamarina and the identified regions are the result of amplicons amplification 

of such regions. Contamination in an assembled reference bacteria genome present in the 

bacteria representative genomes database was identified when a metatranscriptome from a 

human lung biopsy had hits to a small region of Microbacterium barkeri (Figure 2.6), in this 

case the region in the bacteria reference genome had a human origin, which implies it was 

contaminated during the sequencing and assembly process. It is important to identify and flag 

this reference genomes to avoid further misassignments.  

The reproducibility of FRAP was assessed using replicates of subsamples with 

replacement from a human plasma metagenome spiked with 104 copies of human 

immunodeficiency virus (Naccache et al. 2014). Five subsamples with replacement were 

compared to viral refseq (Supplemental Table 4.1), overall the fractional abundances of 

viruses in each replicates have low variability. The mean standard deviation from all datasets 

was 0.0109, which means the replicates show reproducibility.  
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Figure 2.5 Contamination detection in CF samples. The most abundant bacteria found in 

CF01 were Delftia acidovorans, Bordetella petrii and Marinomonas aquimarina. In these 3 

bacteria, all the hits mapped in one isolated position, supporting the idea of a sample 

contamination. 
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Figure 2.6 Genome contamination detection. Recruitment plot of the most abundant bacteria 

(Microbacterium barkeri) in a cancer biopsy sample. All the 2,295,340 reads map in the same 

position. 

Blind FRAP 

The second family of FRAP uses is the blind FRAP strategy. Its basic principle is the 

use of a database that does not have taxonomical or functional assignments to obtain 

fractional abundances for each contig in the datasets. The database are contigs assembled 

either from the dataset or an extended dataset. Functional assignments are obtained for the 

contigs with highest fractional abundances though distant evolutionary relationships 

assignments such as tBLASTx.  

A blind FRAP strategy was used in the global virome calculations presented in 

Chapter 1 of this dissertation. In that study a global virome database was constructed using 

available public viromes from several biomes. Datasets were viromes in each biome, the 

result was the fractional abundances of contigs per biome. The contigs with highest fractional 

abundance on each biome were annotated using tBLASTx, those contigs represent new 

diversity which has not yet been described.  
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A second blind FRAP strategy is proposed for the study of pairs of metagenomes and 

viromes from the same sample (Figure 2.7). The rationale behind this strategy is to estimate 

the fractional abundances of viral-derived elements in metagenomes, which otherwise would 

be missed since they are unrepresented viruses that are not yet in reference databases. 

Viromes to metagenomes FRAP was used in a test dataset of coral and algae interactions 

(Figure 2.8). The samples are punches from a coral-algae interaction transect in which 

samples A and B are coral punches, sample C is the interaction zone between coral and algae 

and samples D and E are algae tissue. Metagenomes were obtained from all samples and 

viromes were obtained from samples A, B and C. Hits to viral like elements derived from 

coral punches were identified in all the coral derived samples and in the interaction zone, in 

algae samples, two contigs had hits to the coral-derived viral elements. This data will be 

explored in further detail and published by Little M. et. al.   

A blind FRAP strategy in which reads and contigs originated from the same sample 

are compared to each other is proposed. In this case fractional abundance of contigs can be 

obtained from the samples themselves. This strategy was applied to two cheese rinds viromes. 

Viromes from Winnimere cheese and Bailey cheese rinds were obtained and contigs were 

assembled and used as a database, the reads were used as dataset. The percentage of exact hit 

reads to the contigs database was 77.5 % for Winnimere and 63.8% for Bailey (Table 2.4). 

From these estimates we can calculate false negatives as the number of fragments that don’t 

recruit to the assembly, which is 23% for Winnimere and 36% for Bailey. An assessment of 

how accurate the exact hit search algorithm is to compare reads to reads. In the case of cheese 
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rind viromes, the search strategies are good, with 99.8% reads recruited back to reads for 

Winnimere and 99.98% for Bailey (Table 2.5).     

Figure 2.7 Generalized FRAP pipeline to map metagenomes to viral assembled contigs. 
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Figure 2.8 FRAP metagenomes to viromes in coral-algae interactions. Samples 2A and 2B are 

coral punches, sample 2C is a punch of the coral-algae interaction zone, samples 2D and 2E 

are algae punches. Viromes were obtained for samples 2A, 2B and 2C. Metagenomes were 

obtained for all samples. Contigs fractional abundances were visualized in Anvi’o (Eren et al. 

2015). 
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Table 2.4 Exact hit, using smalt at 100% identity. Dataset: polished reads, q-phred>30 (99.9% 

base call accuracy), no low complexity (Shannon entropy 0.5) single end. Database: all 

assembled contigs (spades --only-assembler) from single end. 

Exact hit reads to contigs 

Winnimere 

cheese virome 

Bailey cheese 

virome 

number of reads 3,256,476 1,714,998 

number of nucleotides 497,990,024 262,232,327 

number of contigs 30,484 23,315 

number of nucleotides in contigs 26,541,438 13,239,529 

number of reads that map to contigs 2,523,962 1,095,563 

number of contigs with no reads mapped back 533 1,253 

percentage of reads that map back to contigs 77.51 63.88 

percentage of contigs with no reads 1.75 5.37 

Table 2.5 Exact hit, using smalt at 100% identity. Dataset: polished reads, q-phred>30 (99.9% 

base call accuracy), no low complexity (Shannon entropy 0.5) single end. Database: polished 

reads, q-phred>30 (99.9% base call accuracy), no low complexity (Shannon entropy 0.5) 

single end. 

Exact hit reads to reads 

Winnimere 

cheese virome 

Bailey cheese 

virome 

# reads 3,256,476 1,714,998 

# reads that map to reads 3,249,940 1,714,714 

% reads map back to reads 99.80 99.98 
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The future of FRAP 

A third family of FRAP uses is proposed, in which two or more sample groups are 

compared using blind FRAP, then the fractional abundances are used as input for machine 

learning algorithms such as random forests and a group of contigs that better differentiate 

among samples is identified. This strategy needs further exploration.  

FRAP aims to enable easy, robust and meaningful bioinformatics to accelerate 

biological discoveries. To get to this point, FRAP needs to be adapted as an easy to use 

platform and optimization of exact hits search are needed to be able to use large databases and 

datasets and obtain results in a short time.  

Biological insights from FRAP 

Inferences about biological mechanisms are enabled through FRAP analysis, 

ecological and evolutional processes can be elucidated using FRAP. For example, the co-

occurrence of changes across contigs shows an ecological relation among such contigs. 

Contigs that increase by the same amount are part of an ecological unit that co-varies. Also, 

the co-occurrence of changes at specific sites shows an evolutionary relation between such 

sites, viral quasispecies(Lauring and Andino 2010) can be identified in this way.  

Methods 

File types 

The input for FRAP are nucleotide fasta files.  Datasets are usually fasta files 

containing multiple reads (DNA fragments between 35 and 1000 nucleotides originated from 

an NGS instrument), several datasets can be used at the same time as long as each sample is in 
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a single fasta file and have a unique identifier. Databases are usually fasta files containing 

several reference genomes or genes. Databases or Datasets can also be contigs.  

FRAP outputs are tab delimited files, each column is a dataset and each row is an 

element of the database. Both files are provided as outputs in the basic version of FRAP, just 

map frap (jmp.pl). Such files are the hits file which contains the number of exact hits to each 

element of the database (hits.tab) and the normalized file (normalized.tab) which contains the 

FRAP values to each element of the database.   

Two graphical outputs are generated using frap-tools. The first one is a generic 

heatmap of the FRAP values. The second are fragment recruitment plots in which the x axis is 

the element in the database and the y axis is the identity of each hit.   

A fasta output with the reads that have exact hits to the database can be generated 

using the script si_hit.pl, a fasta file containing the reads that do not have exact hits to the 

database can be generated using the script no_hit.pl.  

FRAP implementations 

FRAP implementations using existing mapper algorithms are FRAP-smalt and FRAP-

HISAT, both can be used through the perl script jmf.pl. The arguments of jmf.pl are the 

complete path to the database fasta file, the path to the folder containing the datasets, the path 

to the results folder that would be created, the mapper to use, and the average L(mean) to use.  

FRAP-smalt is a FRAP implementation that uses the mapper smalt (“SMALT 

Manual” 2010) to find exact hits between dataset and database. To use smalt, the database is 

indexed using a k-mer of 10 (-k 10) with a step size of 5 (-s 5), next the dataset is mapped to 
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the database using an identity filter of 100% (y=1), the selected output format is samsoft (-o 

samsoft). From the samsoft file, the exact hits are counted, and tab delimited files generated. 

FRAP-HISAT is a FRAP implementation that uses the mapper HISAT (Kim, 

Langmead, and Salzberg 2015) to find exact hits between dataset and database. HISAT uses 

scores to evaluate if a read map to the database. To obtain a score equivalent to 100% identity 

over 100% of the read, the scores were back calculated to identity the corresponding identity 

to score (Figure 2,9). In a read of length 100, a score of 0 represents 75% identity, a score of 

120 represents 90% identity, a score of 160 represents 95% identity, a score of 200 represents 

100% identity. A score of 200 is used in FRAP.   

FRAP was implemented in Perl using a hash strategy, this implementation is called 

hash exact hit (heh). FRAP-heh is available in the repository 

https://github.com/yinacobian/frap-heh, to construct the index a k-mer size is selected, viral 

refseq index was contructed using 50, 100 and 200 k-mers, index construction is made using 

the program heh-db2.pl. The database in then indexed in a hash that is used to compare the 

dataset to, which is implemented in the program heh-compa.pl. Further development is 

needed to make FRAP-heh efficient.  

FRAP was implemented using the command grep. FRAP-grep is available in the 

repository  https://github.com/yinacobian/FRAP-grep, the database is converted to a single 

line, then each read is compared to the database. This approach in portable since grep is a 

broadly used command available in many operating systems. In an Ubuntu operating system 

with 156 Gb of RAM, each read took 0.5 seconds to be searched against viral refseq (7,194 

https://github.com/yinacobian/frap-heh
https://github.com/yinacobian/FRAP-grep
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genomes and 218Mb), which is very slow. FRAP-grep needs further development to be more 

efficient.  

Figure 2.9 Relation between HISAT2 score and identity for reads of length 100nt. HISAT2 

(Kim, Langmead, and Salzberg 2015) scores are calculated as following: score = ((number of 

mismatches * (match weight=2)) + (length – number of mismatches))*(mismatch weight=-6). 

In a read of length 100, a score of 0 represents 75% identity, a score of 120 represents 90% 

identity, a score of 160 represents 95% identity, a score of 200 represents 100% identity. 
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FRAP-tools 

Graphic outputs from FRAP are obtained using frap-tools, which uses R and python. 

The script Plot_Heatmap.R creates a heatmap from FRAP values, this is a generic heatmap 

that can be further customized by the user. The script fragplot2.py creates individual fragment 

recruitment plots. The program si_hit.pl is used to generate a fasta file containing the reads 

that map the dataset, the program no_hit.pl is used to generate a fasta file containing the reads 

that do not map to the database.  

Reference databases 

Three main databases were used in the presented FRAP examples: bacteria 

representative genomes, archaea refseq, and viral refseq. Bacteria representative genomes 

contains 5,460 complete genomes which include at least one genome from each branch of the 

bacteria phylogenetic tree as calculated by NCBI(O’Leary et al. 2016). Archaea refseq 

contains 192 complete genomes. Viral refseq contains 8,321 complete genomes. All databases 

are part of RefSeq-release80 and were accessed on 01/09/2017.  

Denovo assemblies 

Denovo assemblies were performed using SPAdes (Bankevich et al. 2012) with the 

parameter –only-assembler. For some of the test cases, only contigs >900 nucleotides were 

used as database.  
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Appendix for Chapter 2 

Supplemental tables 

Supplemental Table 2.1. FRAP vs viral refseq of plasma metagenome spiked with 

HIV. Five subsample replicates. spikeHIV-mg-SRR1106548-2. 

id name R1 R2 R3 R4 R5 Mean SD 

gi|9628705|ref|NC_001710.1| GB virus 
C/Hepatitis G virus, 
complete genome 

899.54 899.54 899.54 899.54 899.54 899.54 0.0000 

gi|9629357|ref|NC_001802.1| Human 
immunodeficiency 
virus 1, complete 
genome 

324.90 324.90 324.90 324.90 324.90 324.90 0.0000 

gi|56718463|ref|NC_003287.2| Enterobacteria 
phage M13, 
complete genome 

17.59 17.70 17.59 17.33 17.73 17.59 0.1420 

gi|295413923|ref|NC_014075.1| Torque teno virus 
12, complete 
genome 

13.68 13.68 13.68 13.68 13.68 13.68 0.0000 

gi|9627425|ref|NC_001604.1| Enterobacteria 
phage T7, 
complete genome 

7.96 7.96 7.96 7.96 7.96 7.96 0.0000 

gi|339832375|ref|NC_015783.1| Torque teno virus, 
complete genome 

6.36 6.36 6.36 6.36 6.36 6.36 0.0000 

gi|29502191|ref|NC_002076.2| Torque teno virus 
1, complete 
genome 

5.72 5.72 5.72 5.72 5.72 5.72 0.0000 

gi|730977588|ref|NC_025824.1| Enterobacteria 
phage fd strain 
478, complete 
genome 

5.13 5.01 5.13 5.39 4.99 5.13 0.1420 

gi|295413965|ref|NC_014082.1| Torque teno mini 
virus 7, complete 
genome 

4.29 4.29 4.39 4.34 4.34 4.33 0.0382 

gi|9634957|ref|NC_002195.1| Torque teno mini 
virus 9, complete 
genome 

3.93 3.93 3.83 3.88 3.88 3.89 0.0387 

gi|9626243|ref|NC_001416.1| Enterobacteria 
phage lambda, 
complete genome 

3.13 3.09 3.13 3.13 3.13 3.12 0.0166 

gi|295413834|ref|NC_014073.1| Torque teno virus 
28, complete 
genome 

1.83 1.83 1.83 1.83 1.83 1.83 0.0000 

gi|295413918|ref|NC_014074.1| Torque teno virus 
27, complete 
genome 

1.74 1.74 1.74 1.78 1.74 1.75 0.0162 

gi|295413958|ref|NC_014081.1| Torque teno virus 
3, complete 
genome 

1.77 1.77 1.77 1.77 1.77 1.77 0.0000 

gi|295413928|ref|NC_014076.1| Torque teno virus 
10, complete 
genome 

1.56 1.56 1.56 1.56 1.56 1.56 0.0000 

gi|295441877|ref|NC_014089.1| Torque teno mini 
virus 5, complete 
genome 

1.56 1.56 1.56 1.56 1.56 1.56 0.0000 

gi|418487627|ref|NC_019445.1| Escherichia phage 
TL-2011b, 
complete genome 

1.27 1.27 1.27 1.27 1.27 1.27 0.0000 

gi|295441896|ref|NC_014094.1| Torque teno virus 
6, complete 
genome 

0.85 0.85 0.85 0.85 0.85 0.85 0.0000 
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Supplemental Table 2.1. FRAP vs viral refseq of plasma metagenome spiked with HIV. 

Five subsample replicates. spikeHIV-mg-SRR1106548-2. (Continued) 

id name R1 R2 R3 R4 R5 Mean SD 

gi|727071839|ref|NC_025726.1| Torque teno mini 
virus ALA22, 
complete genome 

0.72 0.72 0.72 0.72 0.72 0.72 0.0000 

gi|295441905|ref|NC_014096.1| Torque teno virus 
15, complete 
genome 

0.48 0.48 0.48 0.48 0.48 0.48 0.0000 

gi|209427726|ref|NC_011356.1| Enterobacteria 
phage YYZ-2008, 
complete prophage 
genome 

0.68 0.68 0.68 0.68 0.68 0.68 0.0000 

gi|46401626|ref|NC_005856.1| Enterobacteria 
phage P1, 
complete genome 

0.59 0.63 0.64 0.62 0.60 0.62 0.0179 

gi|557307526|ref|NC_022749.1| Shigella phage 
SfIV, complete 
genome 

0.70 0.66 0.66 0.68 0.71 0.68 0.0197 

gi|744692686|ref|NC_026013.1| Microviridae IME-
16, complete 
sequence 

0.71 0.71 0.71 0.71 0.71 0.71 0.0000 

gi|971482474|ref|NC_028748.1| Bacillus phage 
BMBtpLA, 
complete genome 

0.46 0.42 0.40 0.42 0.44 0.43 0.0206 

gi|374531645|ref|NC_016765.1| Pseudomonas 
phage 
vB_PaeS_PMG1, 
complete genome 

0.28 0.28 0.28 0.28 0.28 0.28 0.0025 

gi|124300942|ref|NC_008376.2| Geobacillus phage 
GBSV1, complete 
genome 

0.26 0.26 0.26 0.26 0.26 0.26 0.0000 

gi|221328618|ref|NC_011976.1| Salmonella phage 
epsilon34, 
complete genome 

0.32 0.32 0.32 0.32 0.32 0.32 0.0000 

gi|849250250|ref|NC_027339.1| Enterobacteria 
phage SfI, 
complete genome 

0.18 0.16 0.15 0.16 0.15 0.16 0.0109 

gi|82700933|ref|NC_007623.1| Pseudomonas 
phage EL, 
complete genome 

0.16 0.16 0.16 0.16 0.16 0.16 0.0000 

gi|295441884|ref|NC_014091.1| Torque teno virus 
16, complete 
genome 

0.16 0.16 0.16 0.16 0.16 0.16 0.0000 

gi|209447126|ref|NC_011357.1| Stx2-converting 
phage 1717, 
complete prophage 
genome 

0.15 0.15 0.15 0.15 0.15 0.15 0.0000 

gi|937456792|ref|NC_027991.1| Staphylococcus 
phage SA1, 
complete genome 

0.16 0.16 0.16 0.16 0.16 0.16 0.0000 

gi|939482395|ref|NC_002484.2| Bacteriophage D3, 
complete genome 

0.13 0.13 0.14 0.14 0.14 0.14 0.0024 

gi|428782011|ref|NC_019711.1| Enterobacteria 
phage HK629, 
complete genome 

0.14 0.13 0.15 0.13 0.15 0.14 0.0096 

gi|428782787|ref|NC_019723.1| Enterobacteria 
phage HK630, 
complete genome 

0.12 0.19 0.16 0.17 0.16 0.16 0.0220 

gi|29134936|ref|NC_004629.1| Pseudomonas 
phage phiKZ, 
complete genome 

0.11 0.11 0.11 0.11 0.11 0.11 0.0000 
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Supplemental Table 2.1. FRAP vs viral refseq of plasma metagenome spiked with HIV. 

Five subsample replicates. spikeHIV-mg-SRR1106548-2. (Continued) 

id name R1 R2 R3 R4 R5 Mean SD 

gi|428783345|ref|NC_019769.1| Enterobacteria 
phage HK542, 
complete genome 

0.04 0.03 0.03 0.03 0.04 0.04 0.0045 

gi|428783215|ref|NC_019767.1| Enterobacteria 
phage HK544, 
complete genome 

0.04 0.06 0.03 0.02 0.01 0.03 0.0169 

gi|428782316|ref|NC_019716.1| Enterobacteria 
phage mEp460, 
complete genome 

0.07 0.07 0.07 0.07 0.07 0.07 0.0000 

gi|966201269|ref|NC_028694.1| Propionibacterium 
phage PA1-14, 
complete genome 

0.03 0.04 0.05 0.05 0.07 0.05 0.0117 

gi|408905847|ref|NC_018852.1| Propionibacterium 
phage P100D, 
complete genome 

0.06 0.05 0.06 0.06 0.04 0.05 0.0088 

gi|543171632|ref|NC_022342.1| Propionibacterium 
phage 
PHL111M01, 
complete genome 

0.05 0.05 0.05 0.05 0.05 0.05 0.0021 

gi|330858351|ref|NC_015453.1| Propionibacterium 
phage PAS50 
endogenous virus, 
complete genome 

0.02 0.05 0.04 0.05 0.07 0.04 0.0185 

gi|849254459|ref|NC_027373.1| Propionibacterium 
phage PHL030N00, 
complete genome 

0.06 0.04 0.06 0.04 0.02 0.04 0.0150 

gi|408905837|ref|NC_018842.1| Propionibacterium 
phage P1.1, 
complete genome 

0.08 0.06 0.04 0.05 0.05 0.06 0.0128 

gi|682123269|ref|NC_024787.1| Listeria phage 
LMTA-148, 
complete genome 

0.02 0.02 0.02 0.02 0.02 0.02 0.0000 

gi|238801880|ref|NC_012753.1| Streptococcus 
phage 5093, 
complete genome 

0.02 0.02 0.02 0.02 0.02 0.02 0.0000 

gi|89152530|ref|NC_007805.1| Pseudomonas 
phage F10, 
complete genome 

0.03 0.03 0.03 0.03 0.03 0.03 0.0000 

gi|431809676|ref|NC_019914.1| Staphylococcus 
phage StB27, 
complete genome 

0.00 0.00 0.00 0.00 0.00 0.00 0.0000 

gi|849251120|ref|NC_027346.1| Propionibacterium 
phage 
PHL171M01, 
complete genome 

0.00 0.00 0.01 0.01 0.01 0.00 0.0038 

gi|543171262|ref|NC_022334.1| Propionibacterium 
phage PHL112N00, 
complete genome 

0.00 0.01 0.00 0.00 0.01 0.00 0.0025 

gi|906475910|ref|NC_027624.1| Propionibacterium 
phage SKKY, 
complete genome 

0.01 0.00 0.01 0.00 0.00 0.00 0.0025 

gi|422933554|ref|NC_019491.1| Cyprinid 
herpesvirus 1 strain 
NG-J1, complete 
genome 

0.00 0.00 0.00 0.00 0.00 0.00 0.0002 

gi|363539767|ref|NC_016072.1| Megavirus 
chiliensis, complete 
genome 

0.00 0.00 0.00 0.00 0.00 0.00 0.0000 

Mean of 
all SD 

0.0109 
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Chapter 3 : Cystic Fibrosis Rapid Response: Translating Multi-omics Data into 

Clinically Relevant Information 

Abstract 

Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF). To 

track microbial dynamics during acute exacerbations, a CF Rapid Response (CFRR) strategy 

was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics and 

metabolomics data to rapidly monitor active members of the viral and microbial community 

during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, 

in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial 

community in the patient’s lungs was closely monitored through the multi-omics strategy, 

which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) 

expressing shiga toxin. This case study illustrates the potential for CFRR to deconstruct 

complicated disease dynamics and provide clinicians with alternative treatments to improve 

the outcomes of pulmonary exacerbations and expand the lifespans of individuals with CF. 

Introduction 

Cystic fibrosis (CF) is a recessive genetic disease in which defects or deficits in the 

cystic fibrosis transmembrane conductance regulator (CFTR) protein result in disease 

phenotypes of the pancreas, sweat glands and reproductive, respiratory and digestive systems 

(Knowles and Drumm, 2012).  In the lungs of individuals with CF, mucociliary clearance is 

impaired, which promotes chronic polymicrobial infections (Laguna et al., 2016). Antibiotic 

treatments and proper disease management have extended the average lifespan of CF patients; 
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nevertheless, these polymicrobial lung infections are still the primary cause of morbidity and 

mortality (Alexander et al., 2016). Common bacteria that colonize CF lungs over the long-

term include Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, 

Burkholderia cepacia complex, Rothia mucilaginosa and Streptococcus spp. (Surette 2014; 

LiPuma 2010; Lim et al. 2013; Whiteson et al. 2014), but every CF individual presents a 

unique microbial community that changes over time (Lim et al., 2014a; Whelan et al., 2017; 

Zhao et al., 2012). This highlights the need to characterize the microbial communities in each 

CF individual. 

Microbial community dynamics in CF lungs follow the Climax Attack Model (CAM) 

(Conrad et al., 2013; Quinn et al., 2014), in which a climax community is acclimated to the 

host and dominates during stable periods, and a transient attack community is associated with 

exacerbations. Attack communities are virulent and colonize the CF lungs either from an 

external source or are already present in the CF lungs and become active during 

exacerbations. In the CAM, attack communities lead to Cystic Fibrosis Pulmonary 

Exacerbations (CFPE), declines in lung function, and eventually death. Preventing CFPE 

relies on quickly identifying attack viral and microbial communities and the genes they carry 

and express, such as those encoding specific toxins (Gallant et al., 2015), to efficiently tailor 

antimicrobial therapies.  

Herein we propose Cystic Fibrosis Rapid Response (CFRR), a strategy for 

determining microbial dynamics during CFPE. This strategy is a personalized multi-omics 

approach that uses viromes (Willner et al., 2012), metagenomes, metatranscriptomes (Lim et 

al., 2013b), and metabolomes (Quinn et al., 2016a; Whiteson et al., 2014) from longitudinal 
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samples to monitor the whole microbial community, particularly its active members and their 

metabolic products. Using CFRR to obtain personalized taxonomic and functional profiles of 

the lung microbial communities would provide clinicians with comprehensive information 

about each patient’s viral and microbial ecosystem. This information allows clinicians to 

generate testable hypotheses, test those hypotheses using standard clinical tests, and propose 

specific clinical interventions (e.g., precisely targeted antibiotic therapy) to improve CFPE 

outcomes.  

The ability to generate multi-omic datasets and analyze large amounts of data in a 

clinically relevant time frame (i.e., ≤ 48 hours) makes the CFRR approach applicable in CF 

clinical practice, especially in clinics closely related to research institutions. It requires access 

to a sequencing instrument, mass spectrometer, computational resources and specialized 

personnel in each one of these areas. In an optimal situation, the time between sample 

collection and data interpretation is 30 hours for metabolomes (Quinn et al. 2016), 38 hours 

for metagenomes and metatranscriptomes, and 48 hours for viromes. These times are 

expected to shorten as technologies improve. The rapid decrease in sequencing costs 

(National Human Genome Research Institute, 2018) and incorporation of sequencing cores 

within hospitals (Deurenberg et al., 2017) will increase CF patients accessibility to the CFRR 

in the foreseeable future.   

A case study is presented to demonstrate the potential of the CFRR strategy. A 37-

year-old male CF patient (CF01) was monitored over a two-year period with metagenomes, 

metatranscriptomes and metabolomes. Integrating the information from these sources led to 
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the identification of an attack community in which a strain of E. coli that likely produced 

shiga-toxin was detected during a fatal exacerbation. 

Results 

Patient CF01 fatal exacerbation expedited monitoring: metatranscriptomes and metabolomes 

An overall decline in lung function was observed in patient CF01 during his last year 

of life and four CFPEs were reported. In the last month of life 10% of predicted FEV1 was 

lost (Figure 3.1-A). During the last exacerbation, the patient was hospitalized at the intensive 

care unit (ICU) for seven days and then died. The fatal exacerbation was characterized by 

severe lung tissue damage (Figure 3.1- D, Supplemental Table 3.1A), an increase in white 

blood cell counts (Figure 3.1-B, Supplemental Table 3.1B) and a general decline in health. 

During the fatal exacerbation, clinical microbiology lab cultures from sputum samples tested 

positive for P. aeruginosa, Stenotrophomonas maltophilia, Aspergillus terreus and yeast 

(Figure 3.1-C, Supplemental Table 3.1C). Treatment alternated between the antibiotics 

aztreonam, azithromycin, in addition to a sulfonamide and a quinolone; at the ICU, colistin 

and meropenem were administered (Supplemental Table 3.1D) but no improvement was 

observed. 

The CFRR strategy was launched to rapidly identify the cause of the CFPE. Sputum 

samples were collected 7 and 8 days before death (samples D-7 and D-8). In samples D-7 and 

D-8 active members of the microbial community were determined using metatranscriptomics.

In sample D-8 small molecule profiles (using metabolomics) were characterized and a total 

DNA metagenome was sequenced.  
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Figure 3.1 Clinical data for the last 24 months of patient CF01’s life. (A) Percentage of 

predicted FEV1 of patient CF01 over the last 24 months of life. Solid dots are FEV1 

measurements. The line is included to highlight lung function dynamics and does not 

represent measurements. Seven exacerbation periods were reported and are shown in gray. 

(B) White blood cell (WBC) counts for the last month of life. (C) Clinical microbiology

positive cultures from patient CF01’s sputum samples over the last 24 months of life. Dots

represent days where cultures were positive for each microbe tested in the clinical

microbiology panel. Omics sampling points for metagenomes, metatranscriptomes, and

metabolomes are indicated by dots in the Omic panel. Performed X rays and WBC

measurement days are indicated with dots in the clinical care panel. (D) Patient CF01 chest X

rays in a frontal view with quantitative disease severity evaluation using Brasfield scores. D-

193, mild exacerbation; D-8, acute exacerbation, the time point where CFRR data were

obtained; D-1, 1 day before death. A lower Brasfield score represents a higher disease

severity. The Brasfield score scale is from 25 to 0, where 25 is lower disease severity and 0 is

higher disease severity. Parameters used for Brasfield scores calculations are air trapping,

linear markings, nodular cystic lesion, large lesions, and general severity, and individual

scores are shown in Supplemental Table 3.1A in the supplemental material.
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Metatranscriptomics data from sample D-8 showed that the most abundant microbial 

ribosomal RNAs (rRNA) belonged to the genera Bacillus (29.9%), Escherichia-Shigella 

(23.9%), Streptococcus (11.6%), Salmonella (6.9%) and Lactococcus (4.4%) among other 

genera (23.3%) (Supplemental Figure 3.1-A). The microbial messenger RNA (mRNA) 

composition was dominated by the genera Pseudomonas (97.1%), followed by 

Stenotrophomonas (1.9%) and Escherichia (0.07%) (Supplemental Figure 3.1-B). At species 

level resolution, the most abundant bacterial genomes (based on total RNA, Figure 3.2) were: 

Bacillus sp., E. coli (STEC), Salmonella enterica serovar Infantis, P. aeruginosa and S. 

maltophilia. Enterobacteria phage SP6, Pseudomonas phages and Stenotrophomonas phage 

S1 were also detected. Two members of the phylum Ascomycota were identified: Candida 

albicans and Aspergillus fumigatus. Metagenomics data of sample D-8 detected Pseudomonas 

(98.5%) as the dominant bacterial genus (Supplemental Figure 3.5-A). 
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Figure 3.2 The most abundant bacterial genera of fatal exacerbation sample D-8. The relative 

abundances of each genus as determined by rRNA, mRNA, and total RNA are shown. A 

reference genome from each genus was selected based on the number of reads recruited in the 

rRNA (Escherichia, Bacillus, and Salmonella) or mRNA (Pseudomonas and 

Stenotrophomonas) category. Fragment recruitment was visualized using Anvi’o, showing a 

logarithmic scale for mRNA and rRNA from 1 to 1,000. Anvi’o plots show reads mapped 

along the genome coordinates. Nonribosomal microbial reads were recruited against each 

reference genome using SMALT with an identity cutoff of 80% and are shown in brown 

along the external ring. rRNA reads were classified into each genus by BLASTn, were 

recruited against the corresponding reference genome using SMALT with an identity cutoff of 

60% and are shown in gray along the internal ring. 

 

The presence of Escherichia-Shigella in the lungs of a CF patient is unusual and thus a 

detailed analysis was performed to further resolve the taxonomy at strain level. Strain level 

analysis identified that E. coli present in CF01’s lungs was most closely related to the genome 

of E. coli (STEC) B2F1. This strain typically carries the shiga toxin 1 and shiga toxin 2 genes, 

both of which were identified in the metatranscriptomes (Figure 3.3-B, C).  Furthermore, the 

shiga toxin receptor, globotriaosylceramide (Gb3), was detected in the metabolome from 

sample D-8 (Figure 3.3-A). This suggests that shiga toxin, and its Gb3 target, were being 

produced in the lungs of CF01. Gb3 is produced in human cells by Gb3 synthase, which adds 

a sugar to a lactosylceramide molecule. Ceramide is produced by sphingomyelinase (SMase) 



83 

in the host cell or by the action of bacterial encoded SMase (Figure 3.5-B). The gene that 

encodes a P. aeruginosa secreted SMase, the hemolytic phospholipase C (PlcH) (Vasil et al., 

2009), was detected in the sample D-8 metatranscriptome (Supplemental Figure 3.2-B).  

Figure 3.3 Shiga toxin and its human receptor globotriaosylceramide (Gb3). (A) The masses 

of globotriaosylceramide and its precursors lactosylceramide and sphingomyelin from 

exacerbation sample D-8 and 14 historical nonexacerbation samples were determined by 

parent mass searching and validated by MS/MS matching. The fatal exacerbation sample is 

shown in gray. (B) STEC BRF1 was used as a reference genome for fragment recruitment to 

the Shiga-like toxin 2 subunit A protein sequence. The amino acid sequence position is shown 

on the x axis, and percent identity is shown on the y axis. The nucleotide sequences from 

patient CF01 metatranscriptome exacerbation sample D-8 were mapped to proteins using 

BLASTx with an E value cutoff of 0.001 and filtered by an identity of ⬎60%. (C) 

Metatranscriptome recruitment as explained above for panel B, except that in this case, reads 

were recruited to the Shiga-like toxin 2 subunit B amino acid sequence. 

In a longitudinal metabolomics dataset, Gb3 was highly abundant (p < 0.0001) in 

sample D-8 but was in low abundance in the prior samples (Figure 3.3-A). The Gb3 precursor 

lactosylceramide (18:1/16:0) (Sandvig et al., 2012) and its ceramide donor sphingomyelin 

(18:1/16:0) (Obrig et al., 2003) were abundant in all samples throughout the longitudinal 

dataset (Figure 3.3-A, Supplemental Table 3.2A). These data demonstrate that Gb3 precursors 
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were present for at least a year before the fatal exacerbation, but Gb3 was produced in 

significantly high quantities eight days before death (sample D-8).  

Gb3 levels positively correlate with shiga toxin levels (Boyd et al., 1993) although the 

mechanism behind this positive correlation is not clear. Gb3 is the only known functional 

receptor for shiga toxins (Aigal et al., 2015) and shiga toxins induce reorganization of lipids 

in the epithelial cell’s membrane. Shiga toxin B can bind up to 15 Gb3 molecules (Ling et al., 

1998) and this binding result in the aggregation of Gb3 in lipid rafts. The aggregation of Gb3 

in lipid rafts promotes a negative membrane curvature and internalization of shiga toxin (Betz 

et al., 2011). Spatial distribution of Gb3 in the cell membrane has a regulatory role in its 

presentation (Lingwood et al., 2010), thus higher recruitment of Gb3 in lipid rafts may induce 

the production of more Gb3.  

Antibiotic resistance genes were detected in the metatranscriptomes of D-8 and D-7 

samples. Transcripts encoding all the protein components were identified for two RND-type 

multidrug exporters, MexGH1-OpmD (Aendekerk et al., 2002) and MexA-MexB-OprM (Li et 

al., 1995) previously described in Pseudomonas, as well as the tetracycline efflux pump tet(C) 

previously described in Achromobacter. Transcripts encoding several beta-lactamases were 

identified, such as TEM-116, PDC-3, OXA-50 and BEL-3 (Jia et al., 2017), which are 

typically found in Pseudomonas, and CTX-M-21 (Saladin et al., 2002), which is usually 

found in Enterobacteriaceae. Transcripts encoding for enzymes that are involved in resistance 

to macrolides, aminoglycosides, lincosamide, diaminopyrimidine and glycopeptide antibiotics 

were detected; these enzymes were previously described in Pseudomonas, Achromobacter, 
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Escherichia, Streptomyces, Paenibacillus, Clostridium and Morganella (Supplemental Table 

3A).   

A partial P. aeruginosa genome sequence was recovered by assembling reads from the 

fatal exacerbation metatranscriptomes (D-8 and D-7) into contigs and then mapping those 

contigs to the P. aeruginosa PAO1 reference genome (Supplemental Figure 3.2-A). In the 

resulting P. aeruginosa CF01 contigs, 38 genes related to resistance to antibiotics and toxic 

compounds were identified (Supplemental Table 3.3B). Two prophages were also identified 

in the assembled P. aeruginosa CF01 contigs (D-8 and D-7); one was complete and the 

second one was a partial prophage (Supplemental Figure 3.2-C and 3.2-D).  

Bacterial small molecule profiles before and during fatal exacerbation.  

Longitudinal metabolomic data from CF01 historical samples and fatal exacerbation 

sample D-8 were compared to metabolic profiles from six pathogenic bacterial isolates 

previously detected in CF sputum (P. aeruginosa VVP172, Enterococcus sp. VVP100, E. coli 

VVP427, Streptococcus sp. VVP047, Stenotrophomonas sp. VVP327 and S. aureus 

VVP270). The goal was to identify metabolites produced by pathogenic bacteria and track 

how changes in their abundances might have preceded the fatal exacerbation. Metabolites 

from these pathogens were consistently detected throughout the longitudinal samples. In 

sample D-8 there was an increase (p < 0.001) in the number of metabolites that matched P. 

aeruginosa VVP172, E. coli VVP427, Streptococcus sp. VVP047 and S. aureus VVP270 

(Supplemental Figure 3.3, Supplemental Table 3.2B).  
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Active members of the microbial community during a stable period and the fatal 

exacerbation.  

Analysis of metatranscriptomes from a stable period 10 and 9 months before the fatal 

exacerbation event (samples D-303 and D-279) identified several differences between this 

stable period and the fatal exacerbation. First, Firmicutes was the most active phylum during 

the stable period whereas Proteobacteria was the most active during exacerbation (Figure 3.4-

A). Second, samples from the stable period showed an active microbial community that was 

more even and diverse than the community in exacerbation samples (Figure 3.4-D). Third, 

transcripts from Pseudomonas were detected at very low levels in stable samples (average 

relative abundance 3%), but at high levels (average relative abundance 37%) in exacerbation 

samples (Supplemental Figure 3.2-A). Fourth, the percentages of unclassified sequences were 

higher in the stable samples D-303 and D-279 (40.9% and 39.0%) than in the exacerbation 

samples D-8 and D-7 (27.6% and 17.0%). Fifth, a higher fractional abundance of 

bacteriophages was detected in the fatal exacerbation samples relative to the stable ones. 

Enterobacteria phage SP6, several Pseudomonas phages (Figure 3.4-B) and sarcoma viruses 

(Figure 3.4-C) were the dominant viruses in samples D-8 and D-7.  
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Figure 3.4 Actively transcribing members of the viral and bacterial communities in sputum 

samples of patient CF01. Metatranscriptomes from two exacerbations and two stable samples 

were obtained. (A) Bacterial taxonomical assignments were made using KAIJU at the genus 

level and are color-coded by phylum. (B) Fractional abundances of bacteriophages based on 

viral RefSeq mapping and FRAP normalization. (C) Fractional abundances of eukaryotic 

viruses based on viral RefSeq mapping and FRAP normalization. (D) Bacterial rank 

abundance plot generated using relative abundances at the genus level. Evenness was 
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calculated as H/In(S), where H is the Shannon diversity index and S is the total number of 

species. 

Microbial community dynamics during a non-fatal exacerbation. 

Two years before the fatal exacerbation, CF01’s lung function declined faster than in 

previous years (Supplemental Figure 3.4-A). The rate of lung function change in the last two 

years of life was -9.75 FEV1%/year (Supplemental Figure 3.4-C). The overall rate of lung 

function change during CF01 last 14 years of life was -1.39 FEV1%/year. During a two-year 

period of 4 and 3 years before death, the rate of lung function change was 1.30 FEV1%/year 

(Supplemental Figure 3.4-B).  

During the two-year period leading up to the fatal exacerbation, seven exacerbation 

events were reported, and sputum samples were periodically screened for fungi and bacteria at 

the clinical microbiology lab (Supplemental Table 3.1-C). P. aeruginosa was detected in all 

samples. Six months before the fatal exacerbation S. maltophilia was detected, and during the 

last two months of life, Enterobacter cloacae was detected. A. terreus was detected in two 

samples in the last six months of life. Yeast was detected in all screened samples, except for 

the final exacerbation samples. Based on this information, several antibiotics were prescribed 

to manage the exacerbations (Supplemental Table 3.1-D); these included monobactams, 

macrolides, quinolones, beta-lactams, sulfonamides and a cationic polypeptide.  

Two years before CF01’s death, metagenomics was used to monitor the microbial 

composition of the respiratory tract during an exacerbation event, the subsequent antibiotic 

treatment (samples D-724 to D-718), and a stable period that followed (samples D-409 and D-

286) (Supplemental Figure 3.5-A). The bacterial genera that best differentiated between

samples collected during antibiotic treatment (D-722 to D-718) and no antibiotic treatment 
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(D-724 and D-723) were Rothia, Campylobacter, Veilonella and Prevotella (Supplemental 

Figure 3.6). The antibiotics prescribed during this exacerbation were a fluoroquinolone 

(ciprofloxacin), and a tetracycline (doxycycline). Clinical microbiology lab tests performed 

on D-719 were positive for P. aeruginosa, Pseudomonas fluorescens, A. fumigatus and yeast 

(Supplemental Table 3.1C). Exacerbation and stable samples had Streptococcus phages, 

Staphylococcus phages and Pseudomonas phages, whereas only exacerbation samples had a 

shigatoxin-converting phage (Supplemental Figure 3.5-B), and stable samples had higher 

abundances of Herpesviruses (Supplemental Figure 3.5-D).  

Discussion 

CF01 fatal exacerbation mechanism 

The unusually fast decline of patient CF01 led to the implementation of the CFRR. 

During CF01 fatal exacerbation, E. coli mRNA, rRNA and metabolites were detected, which 

demonstrated not only the presence but also the activity of shigatoxigenic E. coli. The 

identification of a shigatoxinogenic E. coli is supported by ribosomal RNA (36,590 unique 

ribosomal RNA sequences in metatranscriptome D-8), messenger RNA (1,412 E. coli mRNA 

reads in metatranscriptome D-8, and 11 partial mRNA reads at 60% identity to STEC BRF1), 

and metabolites (10 matched metabolome spectra to E. coli in D-8). The presence of STEC in 

the lungs of a CF patient was alarming as this strain causes severe damage to the lung 

epithelium (Bergan et al., 2012; Uchida et al., 1999). Moreover, interactions between shiga 

toxin and the host epithelium were inferred from metabolomes. The molecule 
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globotriaosylceramide (Gb3), the receptor for shiga toxin, showed an increase of three orders 

of magnitude during the fatal exacerbation (sample D-8), compared to previous samples.  

Figure 3.5 Proposed model of lung dynamics resulting in patient CF01’s death. (A) A nonfatal 

exacerbation (days ⫺724 to ⫺718) was followed by a recovery of lung function, and attack 

and climax communities were diverse. (B) The fatal exacerbation was triggered by 

colonization by STEC, which is supported by the presence of its rRNA in the 

metatranscriptomes. This bacterium encodes Shiga toxin, which was likely taken into host 

cells by the human receptor globotriaosylceramide. (C) Later during the fatal exacerbation, 

Shiga toxin was internalized and then induced apoptosis, necrosis, and inflammation. P. 

aeruginosa was reestablished and came to dominate the community, as suggested by its 

abundant mRNA. 

Altogether, these multi-omics data support the following model of microbial dynamics 

that caused patient CF01’s death. At the beginning of the fatal exacerbation, STEC produced 

shiga toxin that remained inside the bacterial cells. Later in the exacerbation, STEC’s cell 

membranes were disrupted and the shiga toxin was released (Figure 3.5-B). This release may 

have been triggered by the action of the cationic polypeptide colistin (Gupta et al., 2009). 

Next, the toxin was taken up by lung epithelial cells through the host membrane receptor 

globotriaosylceramide (Gallegos et al., 2012) (Figure 3.5-C). Inside the lung epithelial cells 

(Uchida et al., 1999), shiga toxin inhibited host translation by blocking the ribosomes, thereby 
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inducing cell death, necrosis and an acute inflammatory response (Melton-Celsa, 2014; Obrig, 

2010; Uchida et al., 1999). The immune response and lung tissue damage was evident in the 

chest X-rays and the increase in white blood cells (Figure 3.1-D, D-8 and D-1). 

During the fatal exacerbation, STEC led the attack community that ultimately 

destabilized the climax community, a phenomenon previously reported in CF exacerbations 

(Conrad et al., 2013); this resulted in a decline of evenness (diversity index that quantifies 

how equal the community is (Pielou, 1979)) and diversity (the number of different species in 

a community (Shannon and Weaver, 1949)), a switch from a community dominated by 

Firmicutes to one dominated by Proteobacteria, and transcription of Enterobacteria and 

Pseudomonas bacteriophages and sarcoma viruses. This event was followed by a 

Pseudomonas and Stenotrophomonas bloom, characterized by active transcription, as both 

rRNA and mRNA were detected, as well as an increase in their metabolites. Pseudomonas 

was the most active member of the microbial community with an mRNA abundance of 97%, 

followed by 1.92% of Stenotrophomonas mRNA. Bacillus was either lysed or dormant as 

only rRNA was detected.  A feature that may have contributed to the success of Pseudomonas 

was its resistance to multiple antibiotics, as detected by the transcription of over 38 antibiotic 

resistance genes. This scenario is congruent with the one described by the clinical laboratory, 

as positive cultures for Pseudomonas and Stenotrophomonas were reported during the fatal 

exacerbation.   

Additional dynamics such as bacteriophage induction may have happened during the 

fatal exacerbation, as active transcription was detected from Enterobacteria phage SP6 and 
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Pseudomonas bacteriophages. Bacteriophage induction is known to play a role in the control 

of bacterial populations in CF lungs (James et al., 2015). 

CFRR for polymicrobial infections management, the importance of historical samples and a 

fast sample to results strategy.  

The CFRR emerged from the need to investigate the cause of acute exacerbations. The 

power of the CFRR is shown in the information obtained for CF01 case study. The CFRR is 

ideal for medical centers closely associated with research facilities where the equipment is 

available. However, as technologies improve and become more accessible, CFRR could be 

implemented within the clinic.  

A key component of the CFRR strategy is the comparison between acute exacerbation 

and stable periods. Because CF microbial communities are heterogeneous, a baseline needs to 

be determined for each patient. Longitudinal samples are essential to identify the changes in 

the microbial community and metabolites during acute exacerbations.   

In the presented CF01 case study, historical samples were essential to differentiate the 

attack community that led to a fatal exacerbation from the attack community associated with a 

non-fatal exacerbation. The increase in Gb3 abundance during CF01 fatal exacerbation 

(Figure 3.3) was detected when comparing its abundances in historical samples. In the case of 

metabolites, a baseline is necessary for each CF patient because for many compounds the 

basal levels are not known. Accumulation of ceramides and sphingomyelins is observed in CF 

lungs (Seitz et al., 2015). In particular, sphingomyelins, ceramides and lactosylceramide are 

significantly higher in CF lungs compared to non-CF ones (Quinn et al., 2015). 
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A challenging component of the CFRR is the collection and storage of historical 

samples. Sputum samples intended for viromes, metagenomes and metabolomes (Wandro et 

al., 2017) analysis are stable if stored at -20 ºC or -80 ºC. Metatranscriptomes are prone to 

RNA degradation and sputum collection intended for this purpose requires RNA stabilization 

prior to -20 ºC or -80 ºC storage. Given these considerations, each patient can be provided 

with a non-thaw cycle -20 ºC freezer where individual raw sputum samples can be stored for 

viromes, metagenomes and metabolomes (Supplemental Figure 3.7-A).  Sputum samples for 

metatranscriptomes can be collected during the patient’s visit to the CF clinic, where 

immediately after collection the RNA integrity is preserved by adding TRizol or RNAlater. 

RNA should then be extracted as soon as possible. A proposed sampling scheme, in which 

higher resolution of samples is desired close to an acute exacerbation and fewer samples far 

away from the exacerbation event is proposed (Supplemental Figure 3.7).  

Historical samples collected by the patient at home or during routine visits to the clinic 

are a valuable resource in the event of an acute exacerbation. In these cases, historical samples 

would be processed along with those from acute exacerbations in the CFRR pipeline (Figure 

3.6) and valuable information would be obtained in less than 48 hours. This information is 

then analyzed by a multidisciplinary scientific team along with the clinician to 1) validate the 

multi-omics findings with approved clinical tests and 2) identify appropriate therapeutic 

options.  

The information presented by the CFRR to the clinician is more detailed than that 

provided by classical clinical microbiology. A clear understanding of how this information is 

obtained and the exploratory nature of the findings needs to be considered when interpreting 
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the results. Discussion among clinicians and experts on the benefits and limitations of each 

‘omics approach is essential to identify the elements causing CF acute exacerbations and then 

select the course of action to prevent a fatality. The final treatment decision is always in the 

hands of the clinician, who evaluates the different lines of evidence for each finding and 

considers the cost to benefit ratio of possible therapeutic interventions. The application of the 

CFRR in a clinical context gives CF patients the opportunity for a better outcome based on an 

informed treatment decision. Another consideration when implementing the CFRR in the 

clinic is the availability of financial resources to perform the multi-omics strategy in 

exacerbation and historical samples.  

Figure 3.6 Cystic fibrosis rapid response. Our proposed multi-omics strategy is to analyze 

sputum samples from cystic fibrosis patients, in which metabolomes, metagenomes, 

metatranscriptomes, and viromes are obtained from a single sputum sample. Estimated times 

and equipment for each omics step are included, as are recommended transport conditions. 

Recommended transport condition temperatures can be achieved by using ice, dry ice, or 

liquid nitrogen. 
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Considerations about implementing the Cystic Fibrosis Rapid Response. 

This was a retrospective study in which the patient’s treatment was not modified based 

on the presented meta-omics results. The course of action of the CFRR strategy is to provide 

information to clinicians so that they can evaluate and confirm the findings before proceeding 

with pertinent treatment modifications.  

In the case of CF01’s fatal exacerbation, the information obtained from the CFRR 

strategy could have informed the course of action in the treatment with the following 

modifications: 1) use of different antibiotics, since colistin mechanism of action results in 

liberation of the bacteria cell contents such as shiga toxin, and 2) administration of 

neutralizing antibodies against shiga toxin. Colistin is a cationic polypeptide that disrupts the 

cell membrane of gram-negative bacteria through a detergent-like mechanism and it is often 

used in the treatment of multidrug-resistant exacerbation in patients with CF (Wishart et al., 

2018). 

In the presented case study only metatranscriptomes, metabolomes and metagenomes 

were used to elucidate the cause of a fatal exacerbation. In future CFRR case studies the use 

of viromes could be incorporated. The combination of metagenomes and viromes allows the 

identification of viral induction events, for example of prophages carrying toxins. 

Shigatoxigenic phages are capable of lysogenic conversion (Krüger and Lucchesi, 2015; 

Moons et al., 2013), and in the case of the CF01 fatal exacerbation, an early detection of 

shigatoxin in the viromes of historical samples could have provided valuable information 

about the coding potential of the viral community.  
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Time is crucial during the management of CF exacerbations. The estimated execution 

time of the CFRR in an ideal situation with specialized staff working 24/7 is 48 hours. Each 

step has room for improvement that would shorten the execution times. For example, real 

time direct sequencing, such as Oxford Nanopore, can eventually be used for the CFRR 

metagenomes, metatranscriptomes and viromes. These technologies provide genomic 

information as it is being sequenced (Greninger et al., 2015; Schmidt et al., 2017), which will 

be ideal for CFRR once sample preparation and data analysis are optimized for human DNA 

removal (Gu et al., 2016), and once high amounts of sputum starting material (400 ng of DNA 

needed for a Nanopore run) are no longer necessary for DNA for sequencing. 

Combining data from multiple ‘omics sources enabled the identification of 

shigatoxigenic E. coli as the likely cause of patient CF01’s fatal exacerbation. Although these 

‘omics data were not used to alter clinical treatment of CF01, future applications of CFRR are 

expected to provide information that is essential for improving therapy, e.g., antibiotic 

resistance predictions and gene expression in major attack community pathogens. Although 

each individual’s CF community is unique, these methods will allow for the observation of 

overarching trends within and between patients, for example a loss in diversity in acute 

exacerbations. 

Materials and methods 

Clinical data 

Sample collection procedures and access to clinical data were approved by the 

Institutional Review Board of University of California San Diego (HRPP 081510) and San 

Diego State University (IRB#1711018R). Clinical microbiology, hematology, and X-rays 
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were taken during the normal care of the patient at UCSD medical center. Spirometry tests 

were used to calculate the percentage of predicted FEV1 as previously described (Hankinson 

et al., 1999). Clinical status (exacerbation or stable) was determined by the clinician. Lung 

function dynamics were modeled using splines and linear model fitting as previously 

described (Conrad et al., 2017). 

Metagenome and Metatranscriptome shotgun sequencing 

Sputum samples were collected by expectoration in a sterile cup and processed for 

metagenomes or metatranscriptomes as previously described (Lim et al., 2014b). Metagenome 

libraries were constructed using Nextera DNA library preparation kit. Metatranscriptome 

libraries were constructed using TruSeq RNA library preparation kit. All libraries were 

sequenced on the Illumina GAIIx platform. Metatranscriptomes D-7 and D-8 were prepared 

using a modified procedure to obtain rRNA and mRNA in a single sequencing step, where 

half of the sample was depleted of rRNA using Ribo-Zero Gold kit (Lim et al., 2013b) while 

total RNA was extracted from the other half. Both fractions were pooled in a proportion of 

4:1, and then a single Illumina library was constructed and sequenced.  

Sequencing data processing  

Quality filtering and dereplication was done using PRINSEQ (Schmieder and 

Edwards, 2011) (-min_qual_mean 20 -derep 1245 -lc_method entropy -lc_threshold 50 -

ns_max_p 1 -out_bad null). Cloning vector sequences were removed using SMALT (-y 0.8 -

x) with 80% identity against the UniVec database (National Center for Biotecnology

Information, 2016a), possible sources of cloning vector sequences are reagents used in the 

library preparation (National Center for Biotecnology Information, 2016b; Woyke et al., 
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2011). Human genome sequences were removed using BLASTn (E value of 0.1) against the 

human reference genome GRCh38. The resulting FASTA files are available on NCBI SRA 

with the following accession numbers: (SAMN10605049 to SAMN10605062, n=12). 

Metagenome and metatranscriptome datasets presented in this study are summarized in 

Supplemental Table 3.1E. Microbial taxonomy assignments at the genus level were made 

from BLASTn against NT (E value of 0.001, the hit with lowest E value out of 10 hits was 

kept) for metagenomes and KAIJU (Menzel et al., 2016) for metatranscriptomes. Viral 

assignments were made by mapping reads against the viral reference genomes database 

(NCBI RefSeq, release 87) using SMALT (2010) with 80% identity. Fractional abundances 

were calculated using FRAP as previously described (Cobián Güemes et al., 2016) and 

expressed per million reads.  After quality filtering and removing reads that mapped to the 

human genome, metatranscriptome D-8 reads were compared to the SILVA SSU database 

using BLASTn with an E-value cutoff of 0.001, and taxonomy was assigned at the genus level 

using the best hit from 10000 subsample replicates. Non-ribosomal reads were compared to 

the NCBI nucleotide database (NT) using BLASTn with an E-value cutoff of 0.001. The best 

hit was selected and used to assign bacterial taxonomy at the genus level. Species level 

assignments were determined by the genome that recruited the most reads for each genus 

either at the rRNA (Bacillus, Escherichia, and Salmonella) or mRNA (Pseudomonas and 

Stenotrophomonas) levels. The bacterial genome with more hits in the BLASTn analysis was 

selected as the closest strain and used as reference genome. rRNA and mRNA reads were 

mapped against each one of the reference genomes using SMALT with an identity cutoff of 

60% and 80%, respectively, and the results were visualized using Anvi’o (Eren et al., 2015).  
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Reads from metatranscriptomes D-8 and D-7 were together assembled de novo using 

SPADES (Bankevich et al., 2012), and all resultant contigs were compared to NT using 

BLASTn with an E-value cutoff of 0.001; taxonomies were assigned using MEGAN6 (Huson 

et al., 2016). Contigs identified as Pseudomonas in all metatranscriptomes were separately 

mapped to the reference genome P. aeruginosa PAO1 using SMALT with an identity cutoff 

of 80%. Pseudomonas contigs (n=4965, a total of 2,686,355 base pairs) were annotated using 

PATRIC (Wattam et al., 2017); genes identified by subsystems classification as resistance to 

antibiotics and toxic compounds were summarized in Supplemental Table 3.3A .  All contigs 

were screened for antibiotic resistance genes using the Resistance Gene Identifier 

implemented in the CARD database (Jia et al., 2017). All perfect and strict hits were retained, 

as was any hit with an identity ≥ 80%. Metatranscriptomes D-8 and D-7 reads were mapped to 

the proteins shiga-like toxin subunit A and subunit B using BLASTx with an E-value cutoff 

of 0.1 and identity of 60%. Fragment recruitment plots were generated using custom python 

scripts.  

Samples comparison 

Random forest, a non-parametric statistical method, was used to determine the 

bacterial genera that best differentiated between (1) antibiotic treatment and no antibiotic 

treatment in the metagenomes and (2) stable from exacerbation states in the 

metatranscriptomes. The importance of each variable was assessed using the R 

implementation of the algorithm random forest (Wiener, 2002) using 2000 trees.  

The R package vegan (Jari et al., 2017) was used with the metatranscriptomes to 

calculate Pielou’s evenness using Shannon diversity.  
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Metabolomics 

LC-MS/MS metabolomics data were generated on the sputum sample D-8 and 

compared to a set of 15 samples routinely collected from the previous 426 days. Metabolite 

extraction (ethyl acetate and methanol), LC-MS/MS methods and data analysis were 

performed as described in (Quinn et al., 2016a). Data from these same sputum samples have 

been published previously (Quinn et al., 2016a), but the metabolites reported here were not 

presented in that study making these data novel (metabolomic data for this project are 

available under MassiVE dataset ID MSV000079444).  

Metabolomics data processing 

Metabolomics data were analyzed using molecular networking (Watrous et al., 2012) 

and GNPS (Wang et al., 2016). Molecular networking parameters were altered for this study 

and are as follows: cosine minimum of 0.7, 6 minimum matched peaks for spectral clustering, 

and a precursor mass and fragment ion mass tolerance of 0.1 Da. Molecular networks were 

visualized using the Cytoscape® software (Shannon et al., 2003). Molecules were annotated 

by searching the GNPS libraries and specific metabolites of interest were searched for using 

the MS1 parent mass and then compared to the Metlin MS/MS spectral libraries (Smith et al., 

2005). Area under the curve abundances of metabolites in the LC-MS/MS data were 

calculated using the mzMine 2 software (Pluskal et al., 2010) using selected masses. The 

parameters of the feature finding were as follows: minimum time span of 0.05 min, a 

minimum feature height of 2 and an m/z tolerance of 0.05 m/z or 15.0ppm. The 

chromatograms were deconvoluted, isotope peaks were grouped, and the peaks were aligned 

with the same ion mass tolerance and a retention time tolerance of 1 min. The final matrix of 
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features was gap filled. All metabolite annotations based on spectral alignment are considered 

level 2 according to the metabolomics proposed minimum reporting standards (Sumner et al., 

2007). 

Isolates of CF pathogens P. aeruginosa VVP172, Enterococcus sp. VVP100, 

Escherichia coli VVP427, Streptococcus sp. VVP047, Stenotrophomonas maltophilia 

VVP327 and Staphylococcus aureus VVP270 were obtained from the UCSD Center for 

Advanced Laboratory Medicine. These isolates were grown in artificial sputum medium 

according to the method of (Quinn et al., 2014) and their metabolomes were extracted using 

an ethyl acetate and methanol sequential extraction (the same method as for the sputum 

samples described in (Quinn et al., 2016a)). The LC-MS/MS data were generated with the 

same protocols as the sputum samples and the data were uploaded to GNPS. The MS/MS data 

from these bacterial isolates were used individually as a reference for searching for matching 

spectra in the CF01 longitudinal sputum data. Spectral matching parameters were as follows: 

parent and fragment mass tolerance of 0.1, minimum matched peaks of 6, cosine of 0.7 and a 

minimum spectral count of 3 in the dataset. Spectral matches between a sputum sample file 

and a bacterial isolate were summed for each sample for each bacterium and plotted to 

identify metabolite matches through the longitudinal datasets from pathogens known to be 

present in CF01 from clinical culture history (it must be noted these isolates were obtained 

from CF patients in the same clinic as CF01, but not from CF01). It is unknown if specific 

bacteria molecules were detected. 
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Data availability 

Sequencing data is available on SRA with the study number SRP173673 (Nacional 

Center for Biotechnology Information, 2016). Metabolomics data is available on GNPS with 

the MassiVE dataset ID MSV000079444 (GNPS, 2019). 
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Appendix for Chapter 3 

Supplemental figures 

Supplemental Figure 3.1 Total bacterial RNA composition during a fatal exacerbation 

(sample D-8). A) Bacterial ribosomal RNA composition was assigned with BLASTn against 

the SILVA SSU database, with an E-value cutoff of 0.001. The best hit from 10,000 

subsample replicates was used. Results are shown at the genus level. B) Bacterial non-

ribosomal RNA composition at genus level assigned by BLASTn vs NT with an E-value 

cutoff of 0.001. The best hit was selected.   
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Supplemental Figure 3.2 A) P. aeruginosa gene expression during a stable period (D-279 & 

D-303) and fatal exacerbation (D-7 & D-8) based on fragment recruitment to the P.

aeruginosa PAO1 reference genome. All microbial reads from metatranscriptomes D-303, D-

279, D-8, and D-7 were individually mapped to the reference genome with SMALT using an

identity cutoff 80%. Reads from samples D-8 and D-7 were denovo assembled into contigs.

Contigs were mapped to the reference genome using SMALT with an identity cutoff 80%. B)

P. aeruginosa SMase plcH coverage plot. Reads from metatranscriptome D-8 were mapped to

the gene PlcH using SMALT at 80% identity cutoff. C)  Predicted prophages from assembled

genome P. aeruginosa CF01.  Prophages were predicted using the online version of

PHASTER. Protein annotations for partial prophage 1. PLP: phage like protein, Sha: tail

protein, Fib: fiber protein. D) Predicted prophages from assembled genome P. aeruginosa

CF01.  Prophages were predicted using the online version of PHASTER Protein annotations

for complete prophage 2. PLP: phage like protein, Sha: tail protein, Fib: fiber protein, Coa:

coat protein, Por: portal protein, Att: attachment site.
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Supplemental Figure 3.3 Metabolomes from sample D-8 and their comparison to historical 

samples for CF01. Spectra from CF01 historical samples and fatal exacerbation sample D-8 

were mapped to the individual spectra from known bacteria.   
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Supplemental Figure 3.4 A) Percentage of predicted FEV1 of patient CF01 for 14 years. B) 

Percentage of predicted FEV1 of patient CF01 for years 4 and 3 before death. C) Percentage 

of predicted FEV1 of patient CF01 for last two years of life. In all panels measurements 

obtained are represented by black dots. The grey line is the calculated spline as described by 

Conrad et al. The red line is the fitting of a linear model for the measurements shown in each 

panel. The slope of the linear model fitting in shown in the header of each panel as the slope. 
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Supplemental Figure 3.5 Metagenomic analysis was performed from sputum samples 

collected over a seven-day exacerbation period, during a subsequent stable period of 10 to 14 

months and fatal exacerbation. A) Bacterial taxonomy was obtained at the genus level using 

BLASTn against NT. Relative abundances were calculated for genera whose abundances 

were greater than or equal to 0.1%. The phylum to which each genus belongs is indicated by a 

similar color gradient. B) The fractional abundances of phages obtained by mapping to 

ViralRefseq and FRAP normalization. C) Bacteria rank abundance plots for CF01 

metagenomes described in panel A. Relative abundances are shown at genus level, genera 

with a relative abundance lower than 0.1% were not included in the plots D) The fractional 

abundances of eukaryotic viruses obtained by mapping to ViralRefseq and FRAP 

normalization.  
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Supplemental Figure 3.6 Variable importance plot using mean decrease accuracy for a 

supervised random forest with 5000 trees. Taxonomical relative abundance at genus level in 

metagenome samples of an exacerbation event two years before CF01’s death. During the 

exacerbation event, two groups of samples were analyzed: antibiotic treatment and no 

antibiotic treatment.   
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Supplemental Figure 3.7 Sampling scheme for collection of “historical” sputum samples. A) 

Proposed at-home sample collection scheme where sputum samples are obtained daily. By the 

end of the first collection month, half of the samples are discarded (purple dots) and daily 

collection continues for the new month. By the end of the second month, half of all the 

previous months samples are discarded (purple and green dots) and so on. B) In an acute 

exacerbation event, the patient will bring the samples to the clinic and the CFRR methods will 

be applied to acute exacerbation and historical samples. With the proposed at home collection 

scheme, a higher sampling density will be obtained in the exacerbation month and less in the 

months before the exacerbation.  



118 

Supplemental tables 

Supplemental Table 3.1A Brasfield scores of CF01 X-rays. X-rays were performed as part of 

the patient’s regular clinical care.  

Day 
Air 

trapping 
Linear 

markings 

Nodular 
cystic 

lesions 

Large 
lesions 

General 
severity 

Brasfield 
score 

D-1 3 4 4 5 4 5 

D-8 2 3 3 0 3 14 

D-193 2 2 2 0 2 16 

Supplemental Table 3.1B Hematology of CF01 during their last month of life. White blood 

cell counts are expressed in cells per microliter. 

Day 
White Blood Cells 

count 
segmented 
neutrophils 

D-0 24,000 
96% 

D-1 17,400 
96% 

D-2 12,400 
95% 

D-7   7,100 
97% 

D-23 10,900 
95% 
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Supplemental Table 3.1C Bacteria and fungi cell culture results from the clinical 

microbiology laboratory for patient CF01 during their last two years of life.   

Day Status Bacteria Fungi 

D-0
exacerbation 

Pseudomonas aeruginosa Aspergillus terreus 

Stenotrophomonas maltophilia 

D-1
exacerbation 

Pseudomonas aeruginosa 

Stenotrophomonas maltophilia 

D-7
exacerbation 

Pseudomonas aeruginosa Yeast 

Stenotrophomonas maltophilia 

D-14
exacerbation 

Pseudomonas aeruginosa Yeast 

D-24
exacerbation 

Pseudomonas aeruginosa Yeast 

Enterobacter cloacae 

D-48
stable 

Pseudomonas aeruginosa Yeast 

Stenotrophomonas maltophilia 

Enterobacter cloacae 

D-192
exacerbation 

Pseudomonas aeruginosa Aspergillus terreus 

Stenotrophomonas maltophilia Yeast 

D-204
exacerbation 

Pseudomonas aeruginosa Yeast 

Stenotrophomonas maltophilia 

D-373
stable 

Pseudomonas aeruginosa Yeast 

D-414
stable 

Pseudomonas aeruginosa Yeast 

D-540
stable 

Pseudomonas aeruginosa Yeast 

D-547
stable 

Pseudomonas aeruginosa Yeast 

D-674
stable 

Pseudomonas aeruginosa 

D-719
exacerbation 

Pseudomonas aeruginosa Yeast 

Pseudomonas fluorescens 
Aspergillus 
fumigatus 
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Supplemental Table 3.1D  Antibiotic received as treatment during the last two years of 

CF01’s life. Class and mechanism of action were obtained from PubChem and DrugBank. 

Month Antibiotic Class Comments Mechanism of action 

M-0 Aztreonam monobactam 
Inhibit synthesis of bacteria cell 
wall, binds to and inactivates 
penicillin-binding-protein-3. 

Azithromycin 
macrolide → 
azalide 

Inhibit protein synthesis, 
reversible binding to 50S 
ribosomal subunit,  

- sulfa sulfonamide 

Interfere with folic acid 
synthesis, competition for the 
enzyme dihydropteorate 
synthetase  

- quinolone quinolone Inhibits DNA gyrase 

Colistin 
cationic 
polypeptide 

ER 
response 

Solubilize cell membrane 
through a detergent like 
mechanism.  

Meropenem 
beta-lactam → 
carbapenem 

ER 
response 

Inhibits cell wall synthesis, 
penetrates cell wall to reach 
penicillin-binding-protein targets. 

M-1 Aztreonam monobactam 
Inhibit synthesis of bacteria cell 
wall, binds to and inactivates 
penicillin-binding-protein-3. 

Azithromycin 
macrolide → 
azalide 

Inhibit protein synthesis, 
reversible binding to 50S 
ribosomal subunit, 

- quinolone quinolone Inhibits DNA gyrase 

- sulfa sulfonamide 

Interfere with folic acid 
synthesis, competition for the 
enzyme dihydropteorate 
synthetase 

M-6 Azithromycin 
macrolide → 
azalide 

Inhibit protein synthesis, 
reversible binding to 50S 
ribosomal subunit, 

- sulfa sulfonamide 

Interfere with folic acid 
synthesis, competition for the 
enzyme dihydropteorate 
synthetase 

- quinolone quinolone Inhibits DNA gyrase 

Meropenem beta-lactam 
ER 
response 

Inhibits cell wall synthesis, 
penetrates cell wall to reach 
penicillin-binding-protein targets. 

M-24 Doxycycline tetracycline 

Inhibit protein synthesis, 
reversible binding to 30S 
ribosomal subunit and possibly 
50S.  

Ciprofloxacin fluoroquinolone 
Inhibits topoisomerase II (DNA 
gyrase) and topoisomerase IV 
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Supplemental Table 3.1E Metagenome and metatranscriptome sequencing overview for CF01 

sputum samples. All libraries were sequenced on the Illumina platform. The Nextera library 

prep kit was used for all metagenomes whereas TruSeq was used for metatranscriptomes.  

Day Status Library type File name SRA ID 

D-724 Exacerbation  metagenome polihed_CF01mgD724.fasta SAMN10605062 

D-723 Exacerbation  metagenome polished_CF01mgD723.fasta SAMN10605061 

D-722 Exacerbation  metagenome polished_CF01mgD722.fasta SAMN10605060 

D-721 Exacerbation  metagenome polished_CF01mgD721.fasta SAMN10605059 

D-720 Exacerbation  metagenome polished_CF01mgD720.fasta SAMN10605058 

D-719 Exacerbation  metagenome polished_CF01mgD719.fasta SAMN10605057 

D-718 Exacerbation  metagenome polished_CF01mgD718.fasta SAMN10605056 

D-409 Stable metagenome polished_CF01mgD409.fasta SAMN10605055 

D-286 Stable metagenome polished_CF01mgD286.fasta SAMN10605054 

D-8 Exacerbation metagenome polished_CF01mgD8.fasta SAMN10605053 

D-303 Stable metatranscriptome polished_CF01mtD303.fasta SAMN10605052 

D-279 Stable metatranscriptome polished_CF01mtD279.fasta SAMN10605051 

D-8 Exacerbation metatranscriptome polished_CF01mtD8.fasta SAMN10605050 

D-7 Exacerbation metatranscriptome polished_CF01mtD7.fasta SAMN10605049 
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Supplemental Table 3.2A Comparison of molecules spectra between non-exacerbation 

samples (D-426 to D-248) and exacerbation sample D-8.  P-values were calculated from a 

single tail normal distribution (pnorm function in R).  

Supplemental Table 3.2B Comparison of number of specific bacteria spectra between non-

exacerbation samples (D-426 to D-248) and exacerbation sample D-8.  P-values were 

calculated from a single tail normal distribution (pnorm function in R).  

Molecule p-value z score 

Globotriaosylceramide ~0 512960.92 

Lactosylceramide ~0 44.60 

Sphingomyelin 0.90 -1.28

Bacteria spectra in D-8 CF strain ID p-value z score 

Escherichia coli VVP427 1.99e-17 8.41 

Enterococcus sp. VVP100 0.043 1.71 

Pseudomonas aeruginosa VVP172 3.38e-69 17.5 

Staphylococcus aureus VVP270 2.58e-05 4.04 

Stenotrophomonas maltophilia VVP327 0.005 2.51 

Streptococcus sp. VVP047 2.39e-14 7.53 
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Chapter 4 : Mobile genetic elements in Cystic Fibrosis exacerbations 

Abstract 

Phages and microbes colonize the respiratory airways of patients with Cystic Fibrosis 

causing persistent infections that impact lung function. Per treatment regimes, the microbial 

communities in Cystic Fibrosis respiratory airways is continuously exposed to antibiotics 

which confers enhanced antibiotic resistant to the population of bacterial pathogens present in 

the Cystic Fibrosis lung. In this work the microbiome of a group of patients whose lung 

function declined sharply and were non-responsive to the antibiotics treatment was studied 

through metagenomics. The lung microbiomes of Cystic Fibrosis patients in this study were 

characterized by enhanced bacterial growth with a reduction in community diversity and 

elevated lytic phage production. Four fatal exacerbations were dominated by Pseudomonas 

aeruginosa or Achromobacter spp. and four non-fatal exacerbations were dominated by 

Stenotrophomonas maltophilia, Mycobacterium avium-intracellulare or Streptococcus 

salivarius. The dominant bacteria in these exacerbations have between 3% and 6% of genome 

insertions, of which >60% of the coding sequences are phage-derived. Phages that encode 

toxins which damage the host tissue were identified, such as Stenotrophomonas phage 

phiSHP2 that encodes zonula occludens toxin. This work suggests phage activity in Cystic 

Fibrosis exacerbations as a likely mechanism of increased pathogenic virulence.      



124 

Introduction 

Cystic Fibrosis (CF) is a recessive genetic disease in which malfunctioning of the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) causes insufficient anion 

exchange across membranes and dehydration of mucosal surfaces. Mucus dysfunction in CF 

airways results in chronic polymicrobial infections (Laguna et al. 2016). Overtime, the 

vigorous innate and adaptive host immune responses to these chronic infections result in 

airway remodeling, gas exchange abnormalities and eventually respiratory failure. Airway 

clearance treatments, antibiotics, anti-inflammatory drugs, and new CFTR modulator 

therapies have extended median lifespan of CF patients, yet these polymicrobial lung 

infections persist as the major drivers of CF morbidity and mortality for the foreseeable future 

(Alexander et al. 2016).  

Common bacteria that chronically colonize CF airways include Pseudomonas 

aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia, Achromobacter spp., 

Haemophilus influenzae, and Burkholderia cepacia (Surette 2014; LiPuma 2010; Lim et al. 

2013; Whiteson et al. 2014), but every CF individual has a unique microbial community that 

changes over time (Whelan et al. 2017; Zhao et al. 2012; Lim et al. 2014). This highlights the 

need to characterize the microbial communities temporally in each CF patient. Viruses 

(eukaryotic and bacteriophage) contribute to these unique microbial signatures among CF 

patients by acting as remodeling agents of bacterial communities (Reyes et al. 2015). How 

phage lytic-lysogenic life cycles provide top down control (James et al. 2015) of specific 

bacterial populations and drive bacterial population rank abundance and metagenomic 

composition is largely unexplored in the CF lung environment (Silveira and Rohwer 2016). 
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An accurate description of the dynamics between these viruses and their bacterial hosts is 

critical to understanding the drivers of the microbial community dynamics, the capacity for 

virulent metabolic processes, and the subsequent host immune response. Phage are known to 

transfer exotoxins (Wilson and Ho 2006; Krüger and Lucchesi 2015; Dobrindt et al. 2015), 

antibiotic resistance genes (Budzik et al. 2004), and virulence factors (Busby, Kristensen, and 

Koonin 2013) to bacterial populations which can confer enhanced virulence in host-pathogen 

systems. Detailed exploration of phage insertions in CF bacterial infections is needed to 

understand CF disease progression.  

In this work we applied a Cystic Fibrosis Rapid Response strategy (Cobián-Güemes et 

al. 2019) to reveal genetic exchange between viral and bacterial populations during CF 

exacerbations. To accomplish this, a personalized multi-omics approach was used to 

characterize viromes (Willner et al. 2012), metagenomes and metatranscriptomes (Lim et al. 

2013) in order to comprehensively monitor the microbial and viral dynamics during CF 

pulmonary exacerbations. The CF exacerbations of each patient were all dominated by a 

single pathogenic bacteria, resulting in low community diversity and were associated with 

host tissue damage via toxins. Using a tailored bioinformatics approach, we identified 1) 

previously unidentified pathogens in the CF lung, 2) toxin production and 3) unique mobile 

elements.   
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Results  

Clinical characterization of Cystic Fibrosis pulmonary exacerbations. 

To investigate the microbial community composition of CF acute exacerbations, eight 

patients in the UCSD adult Cystic Fibrosis clinic that suffered pulmonary exacerbations 

(CFPE) and required hospitalization within a one-year interval were included in this study 

(Table 4.1). Four patients suffered fatal exacerbations (CF01, CF094, CF116 and CF418) and 

four patients survived the exacerbation event (CF318, CF409, CF292 and CF146). 

Exacerbations were defined by the treating clinician and were characterized by a decrease in 

lung function (measured as FEV1), no response to antibiotics treatment, and general health 

decline.  

The study population age ranged from 18 to 40 years. Exacerbations ranged from 8 to 

63 days and a loss of lung function relative to each patient baseline ranged between 10% to 

48%. The clinical laboratory reported the presence of Pseudomonas aeruginosa (CF01, 

CF094, CF146), Stenotrophomonas maltophilia (CF01, CF409, CF318), Achromobacter sp. 

(CF116), Achromobacter xylosoxidans (CF116, CF418), Mycobacterium avium-intracellulare 

(CF292, CF318), Multidrug Resistant Staphylococcus aureus (CF409), Aspergillus terreus 

(CF01), and yeast (not Cryptococcus neoformans) (CF409, CF318, CF292).  
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Table 4.1 Cystic Fibrosis patients clinical data during exacerbations (Ex.) that required 

hospitalization. 

Ex. 
Outcome 

Patient 
ID 

Gender Age 
Ex. 

FEV1 
loss 

Ex. length 
(days) 

Clinical 
microbiology 

during Ex. 

Antibiotics used 
during Ex. 

Fatal CF01 Male 37 10% 8 ●Pseudomonas
aeruginosa

●Stenotrophomona
s maltophilia

●Aspergillus
terreus

aztreonam, azithromycin, 
colistin, meropenem 

Fatal CF094 

Fatal CF116 Male 30 43% 27 ●Achromobacter
species

●Achromobacter
xylosoxidans

ceftazidime-avibactam, 
doxycycline, 
sulfamethoxazole-
trimethroprim, vancomycin, 
tigecycline, colistin, 
azithromycin, meropenem,  
imipenem-cilastatin,  
minocycline 

Fatal CF418 

Non-fatal CF409 Female 18 40% 63 ●MRSA

●Stenotrophomona
s maltophilia

●Aspergillus
fumigatus

●Yeast, not
Cryptococcus
neoformans

sulfamethoxazole-
trimethroprim, ceftaroline, 
minocycline, linezolid, 
ceftazidime, tobramycin 

Non-fatal CF318 Male 27 29% 37 ●Stenotrophomona
s maltophilia

●Mycobacterium
avium-intracellulare

●Yeast, not
Cryptococcus
neoformans

levofloxacin, 
sulfamethoxazole-
trimethroprim, minocycline, 
meropenem 

Non-fatal CF292 Female 34 48% 53 ●Mycobacterium
avium-intracellulare

●Yeast, not
Cryptococcus
neoformans

aztreonam, linezolid, 
moxifloxacin, amikacin, 
azithromycin, ethambutol, 
rifampin 

Non-fatal CF146 Male 31 36% 14 ●Pseudomonas
aeruginosa

colistin, 
piperacillin-tazobactam 
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Cystic Fibrosis exacerbations display higher microbial loads and phage production. 

Viral and microbial counts and virus to microbe ratios from the CF lungs were 

obtained for exacerbation samples and for a set of stable CF samples (n=16) (Figure 4.1). 

Exacerbation samples had an average bacterial abundance of 2.9 x 109 cells ml-1, an average 

viral abundance of 2.5 x 1010 VLPs ml-1, and an average virus to microbe ratio of 12.5. Stable 

samples were nearly an order of magnitude lower than exacerbation samples with an average 

bacterial abundance of 5.8 x 108 cells ml-1, an average viral abundance of 3.1 x 109 VLPs ml-1, 

and a virus to microbe ratio of 6.5. Exacerbation samples showed a significantly higher virus 

to microbe ratio than stable samples, suggesting enhanced bacteria growth and viral activity in 

CF exacerbations. 

Figure 4.1 Virus to Microbe Ratio (VMR) in CF sputum samples quantified by 

epifluorescence microscopy. Exacerbation and stable samples VMR are significantly different 

(T-test p-value < 0.05, Wilcoxon test p-value 0.010 and w=88).  
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Microbial community composition of pulmonary exacerbations. 

The microbial community composition of the described CFPEs was obtained from 

sputum or bronchioalveolar lavage samples and characterized molecularly using total DNA 

metagenomes or total RNA metatranscriptomes. The exacerbation microbial communities 

presented low diversity in both evenness and richness (Supplemental Figure 4.1) and were 

dominated by a single microbe (Figure 4.2). Diversity indexes were compared to a cohort of 

CF patients suffering mild exacerbations (Losada et al. 2016). Acute exacerbations presented 

here have significantly lower diversity than mild exacerbations. Species-level resolution was 

obtained from each dataset by comparing the microbial reads to bacterial reference genomes 

at a high identity (>96% identity over 100% of the read length). P. aeruginosa was the most 

active microbe in two fatal exacerbations, CF01 (96% relative abundance) and CF094 (98% 

relative abundance), as shown by transcriptomic analysis. Achromobacter spp. was the 

dominant genus in two fatal exacerbations. In CF116, Achromobacter ruhlandii relative 

abundance was 80% and in CF418 Achromobacter xylosoxidans relative abundance was 76%. 

In non-fatal exacerbations, the microbial community was dominated by Stenotrophomonas 

maltophilia (CF318 and CF409), Mycobacterium intracellulare (CF292) and Streptococcus 

salivarius (CF146) (Figure 4.2). Propionibacterium acnes was detected in all samples and is 

probably ubiquitous in CF respiratory samples. The yeast Candida glabrata was identified in 

CF292 (Supplemental Figure 4.2).  

In exacerbations dominated by the genus Achromobacter, other members of the 

microbial community had a very low fractional abundance. In Stenotrophomonas-dominated 

exacerbations, the genera that followed in abundance were Rothia, Streptococcus and 
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Achromobacter. In Patient CF292, the genus Mycobacterium had the highest fractional 

abundance followed by the genera Rothia and Streptococcus. Patient CF146 microbial 

community was more diverse, Streptococcus was the genera with higher fractional abundance, 

followed by Rothia, Neisseria and Prevotella.  

Figure 4.2 Bacterial abundance in CF exacerbations metagenomes. Polished reads were 

mapped to bacteria RefSeq database (n=66,000 genomes) using fragment recruitment 

assembly purification (FRAP) at 96% identity over 100% of the read. Fractional abundances 

from individual genomes were added by bacteria genera. 



131 

Temporal dynamics of microbial community composition 

Longitudinal sampling of patient CF318 for a month before the acute exacerbation 

event showed that the microbial diversity (evenness) decreased from 0.88 to 0.28 

(Supplemental Figure 4.3-A). The dominant genera in this microbial community was 

Stenotrophomonas (Supplemental Figure 4.16-B) during the sampling period, but the absolute 

abundance increased by an order of magnitude (from ~2x108 cells ml-1 to ~1x109 cells ml-1). 

An increase in relative abundance of virulence factors was also observed during the 

exacerbation period (Supplemental Figure 4.3-C), which may be explained by the 

colonization of a different Stenotrophomonas species carrying these virulence factors.  

Genomic insertions and deletions in CF pulmonary exacerbations. 

Genome plasticity appeared common in the dominant bacteria present in CF 

exacerbation metagenomes, therefore insertions and deletions were quantified based on 

comparisons to the closest reference genome. Deletions that met a criteria of > 10,000 

nucleotides were observed between 13 and 24 excised regions in the most abundant bacteria 

present in each patient metagenome (Supplemental Figures 4.4 to 4.9). These deleted coding 

sequences represented between 5% and 13% of the bacterial reference genomes. Annotation 

of these excised regions also showed that between 10% and 66% of the excised regions 

coding sequences were phage related (Table 4.2). 
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Table 4.2 Deletions in dominant genomes. 

Patient 
ID 

Reference 
genome 

Deletions 
(nt) 

% of genome 
deletions 

Phage and hypothetical 
CDS in deletions (%) 

CF116 
Achromobacter ruhlandii 
(CP017433.1) 

327,280 5.14 71.72 

CF418 
Achromobacter xylosoxidans 
strain FDAARGOS_150 
(CP014028.1) 

376,964 6.01 63.32 

CF409 
Stenotrophomonas maltophilia 
strain FDAARGOS_325 
(CP022053.2) 

410,006 8.45 79.91 

CF318 
Stenotrophomonas maltophilia 
strain FDAARGOS_325 
(CP022053.2) 

347,490 7.16 81.93 

CF292 
Mycobacterium intracellulare 
(CP023149.1) 

859,906 15.32 58.68 

CF146 
Streptococcus sp. 
(CP014264.1) 

285,568 13.11 60.11 

Insertions were determined as regions >10,000 nucleotides present in metagenome 

assembled contigs but not in the closest reference genome (Supplemental Figures 4.10 to 

4.12). Three bacterial genomes had enough coverage to obtain quality sequence assemblies in 

order to detect insertion regions (A. ruhlandii, and S. maltophilia strains from two different 

patients; Table 4.3). Between 3% and 6% of these assembled bacterial genomes were 

annotated as insertions.  
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Table 4.3 Insertions in dominant genomes. 

ID 
Microbial community 

dominant bacteria  

Nucleotide
s in contigs 

> 1000 nt

Insertions 
(nt) 

% of genome 
that are 

insertions 

Phage and 
hypothetical CDS in 

insertions (%) 

CF116 Achromobacter ruhlandii 6,636,892 283,932 4.2 77.1 

CF318 
Stenotrophomonas 
maltophilia 

4,845,908 190,605 3.9 67.8 

CF409 
Stenotrophomonas 
maltophilia 

4,917,770 311,160 6.3 68.4 

Annotations of these inserted regions showed that between 67% and 77% of the 

coding sequences are phage-related. In A. ruhlandii assembled from CF116 metagenome, 12 

insertions were identified, two of which were annotated with high confidence as phages 

(Figure 4.3-A). From 13 inserted regions identified in S. maltophilia assembled from CF318 

metagenome, three of the regions encode phage-related proteins and two of them encode 

integrases (Figure 4.3-B). In S. maltophilia assembled from CF409, 14 inserted regions were 

identified, two of which are phages (Figure 4.3-C). S. maltophilia 409 insertion 14 is a 61.4 

Kb region with phage replication and structural coding sequences (Figure 4.4-A). S. 

maltophilia 409 insertion 7 is a 23.3 Kb region inside a contig which is 51 Kb and is flanked 

by tRNAs (Figure 4.4-B). Both the insertion and the contig have coding sequences annotated 

as phage replication and structural proteins. 
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Figure 4.3 Insertions in CF exacerbation dominant genomes. Insertions are defined as regions 

>10,000 bp that are present in metagenome assembled contigs but are not present in the

closest reference genome. A) Achromobacter ruhlandii CF116 B) Stenotrophomonas

maltophilia CF318 C) Stenotrophomonas maltophilia CF409.
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Figure 4.4 Stenotrophomonas insertions are phages. Annotations from PATRIC are in black. 

Annotation from the Conserved Domains Database are in grey. A) S. maltophilia CF409 

insertion 14. B) S. maltophilia CF409 insertion 7 and the complete contig where the insertion 

was detected. 

Phage activity in pulmonary exacerbations 

The dominant microbes present in CF exacerbations are lysogens carrying known and 

uncharacterized prophages in their genomes. In exacerbations that led to patient mortality, an 

Achromobacter phage was detected in CF116 whose dominant bacteria was A. xylosoxidans. 

Lysogens in CFPEs that were not fatal were also observed, such as a Streptococcus phage 

detected in CF146 whose dominant bacteria was S. salivarius, and Stenotrophomonas phages 

were detected in CF409 whose dominant bacteria was S. maltophilia. Additional phages were 

detected in both fatal and non-fatal exacerbations such as, Burkholderia phage, Pseudomonas 

phage, Staphylococcus phage, Salmonella phage and nine other phages (Supplemental Figure 

4.13-B). 
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Phages are known to carry toxins that can enhance replication and virulence of 

bacterial pathogens. An exotoxin carried by Stenotrophomonas phage phiSHP2 (Hagemann, 

Hasse, and Berg 2006) was identified during CF409 exacerbation. Stenotrophomonas phage 

phiSHP2 is a 5.8 Kb phage (Figure 4.5-A) that encodes nine proteins, only two of them with 

functional annotations: a replication protein and zonula occludens toxin. CF409 microbial 

community was dominated by S. maltophilia carrying a prophage that was induced during the 

exacerbation, as detected by the recovery of the viral genome in the total metagenome (Figure 

4.5-B and C) and viral particle-enriched virome (Figure 4.5-D). This bacteriophage was 

carrying the exotoxin zonula occludens which disrupts tight junctions in epithelial cells (Di 

Pierro et al. 2001).  
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Figure 4.5 Stenotrophomonas phage SHP2 and zonula occludens toxin. CF409 exacerbation 

sample metagenome in which Stenotrophomonas relative abundance was 97%. A) S. 

maltophilia phage phiSHP2 complete genome annotation, a replication protein and zonula 

occludens toxin are annotated, the remaining 7 ORFs are annotated as hypothetical proteins. 

B) Fragment recruitment plot. C) Coverage plot from metagenome. D) Coverage plot from

virome.

Discussion 

CF exacerbations and bacteria genomic insertions 

The microbial communities of the CF exacerbations explored in this study were 

dominated by distinctive bacteria strains that had unique genomic insertions. Such insertions 

included prophages encoding toxins and other mobile elements carrying antibiotic resistance 

genes. These results illustrate that precise identification of not only strain level, but unique 

genomic material in the CF microbiome is essential to understand each CF exacerbation.  
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Achromobacter in CF exacerbations 

Achromobacter is an emerging genera in CF exacerbations (Amoureux et al. 2013; 

Rudkjøbing et al. 2012; Ridderberg, Nielsen, and Nørskov-Lauritsen 2015). In this study, the 

lung microbial community of two CF fatal exacerbations was dominated by A. ruhlandii and 

A. xylosoxidans, respectively. Potential mechanisms contributing to the development of fatal

exacerbations by Achromobacter spp. include direct attack to the host tissue via toxins, 

resistance to antibiotics (Bador et al. 2013), and the ability to perform aerobic and anaerobic 

respiration (Jakobsen et al. 2013). Hemolysins were detected in both fatal exacerbations 

(Supplemental Figure 4.13-C); these hemolytic proteins are known to be carried by 

Achromobacter and can directly damage host tissues (Benz 2015). In addition to hemolysins, 

Achromobacter can deliver other virulence factors to host tissues using type III secretion 

systems and attack competing bacteria with the protein colicin V (Swenson and Sadikot 2015; 

Jakobsen et al. 2013; Rodrigues et al. 2016). These factors are posited to contribute to 

Achromobacter pathogenicity in the CF lung, leading to fatal exacerbations. 

Stenotrophomonas in CF exacerbations 

Stenotrophomonas acquisition is related to a decrease in lung function in CF (Waters 

et al. 2013; Barsky et al. 2017). In this study, two exacerbations were dominated by S. 

maltophilia, one of which carried the Stenotrophomonas phage phiSHP2 encoding zonula 

occludens toxin (Figure 4.5). S. phage phiSHP2 was active in this exacerbation, since its 

genome was identified in viral particles. Zonula occludens toxin is an exotoxin that induces 

actin depolymerization, which provokes opening of tight junctions and disruption of epithelial 

integrity (Di Pierro et al. 2001; Fasano et al. 1991; Uzzau et al. 2001). This mechanism 
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possibly contributed to the disruption of lung epithelial cells (Ruan et al. 2014) in this CF 

exacerbation.    

Unique mobile elements in CF exacerbations 

Phages and genomic islands are the main components of a unique CF mobilome in 

every exacerbation presented in this study. The mobilome facilitates pathogen adaptation to 

the local environment (Dobrindt et al. 2015; Jeukens et al. 2017). The detailed comparative 

genomics methods presented here allowed for the identification of already characterized 

phages such as Stenotrophomonas phage phiSHP2, previously uncharacterized genomic 

islands, and new prophages identified in inserted regions of Achromobacter spp. and 

Stenotrophomonas spp.  

Microbial ecology models of acute CF exacerbations. 

The CF mobilome is an essential component to understand the pathogenesis of CF 

microbial communities. In this study, acute exacerbations were characterized by low 

microbial diversity and the dominance of a single microbe with a unique mobilome. Toxins 

that directly attack host tissues were also present in the described CF exacerbations. These 

exacerbations were distinct from CF exacerbations previously studied by our group (Lim et al. 

2014; Quinn et al. 2014; Whiteson et al. 2014) and others (Moran Losada et al. 2016; 

Feigelman et al. 2017). Therefore, the following model for descriptions of the microbial 

ecology in CF acute exacerbations is proposed: pathogens dominance, in which acute 

exacerbations are characterized by low diversity, dominance of a single microbe with unique 

mobile elements including toxins and lysogenic phages. In this model, the CF mobilome plays 

an essential role to understand and treat CF acute exacerbations.  
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Materials and methods 

Clinical data. 

Sample collection procedures and access to clinical data were approved by the 

Institutional Review Board of University of California San Diego (HRPP 081510) and San 

Diego State University (IRB#1711018R). 

Samples collection and pre-processing. 

Sputum samples were collected by hospital personnel during the patient’s stay at the 

hospital. Expectorated phlegm was collected in a sterile cup and stored at 4 ºC while 

transported to the research lab. In the research lab samples were homogenized with a syringe 

(no needle) and distributed into 500µl aliquots.  

Viral and microbial enumeration. 

Sputum samples were homogenized in SM buffer (1:6 dilution) and treated with 

DNAse (1000 U ml-1) for 1h. Next, they were filtered sequentially through Whatman 

Nucleopore Track-Etched Membranes of 8 um and 2 um pore sizes to remove large particles 

and eukaryotic cells. The filtrate was fixed with paraformaldehyde (2%), stained with SYBR 

Gold (Life Technologies, USA) and filtered on a 0.02 um Anodisc membrane (Whatman) for 

epifluorescence microscopy. Viral and microbial particles were quantified based on size 

(viral-like-particles < 0.2 um, and bacterial cells > 0.2 um) in at least 10 images for each 

sample. The dilution factors were used to calculate viral particles or cells per ml.  
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Total DNA metagenomes. 

Five hundred microliters of sputum were transferred to a cryovial. The tube was 

submerged in a dry-ice and ethanol bath for 5 minutes, then transferred to a water bath at 

100ºC for 5 minutes, this process was repeated 3 times. The sample was transferred to the 

beads tube from Qiagen power soil DNA extraction kit and homogenized by shaking for 45 

minutes. The rest of the Qiagen power soil DNA extraction kit protocol was used. Ten 

nanograms of DNA were used for Nextera library prep. Libraries were sequenced on Illumina 

MiSeq using 150 cycles as single end. This procedure is illustrated in Supplemental Figure 

4.14 

Total RNA metatranscriptomes. 

Five hundred microliters to 2 ml of sputum were mixed with 4 mL of guanidinium 

thiocyanate (TRIzol, Invitrogen), homogenized by vortexing and stored at -80 ºC until further 

processing. Samples were defrosted and 0.2 volume of chloroform was added, the mixture 

was homogenized by vortexing and incubated for 20 minutes at 4 ºC. Samples were 

centrifuged at 13,800 x G for 20 minutes at 4 ºC and the aqueous layer was transferred to a 

new RNase free tube. Aqueous phase volume was measured and an equal volume of 

isopropanol and 2µl of glycogen (20mg ml-1) were added, the mixture was incubated at 4 ºC 

for 20 minutes to precipitate nucleic acids. The sample was centrifuged at 13,800 x G for 20 

minutes at 4 ºC and the supernatant was removed and discarded. The pellet was washed with 

1 ml of 75% ice cold ethanol and centrifuged 5 minutes at 4 ºC, this procedure was repeated 2 

times. The pellet was air dried for 15 minutes and resuspended in 50 µl of molecular grade 

water and incubated at 55 ºC for 5 minutes. DNase treatment was performed by adding 2 µl of 

https://en.wikipedia.org/wiki/Guanidinium_thiocyanate
https://en.wikipedia.org/wiki/Guanidinium_thiocyanate
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TURBO DNase and 5 µl of DNase buffer, the mixture was incubated at 37 ºC for 30 minutes, 

0.2 volume of DNase inactivation reagent was added and incubated 5 minutes at room 

temperature. The sample was centrifuged at 10,000 x G for 1.5 minutes at 24 ºC and the 

aqueous phage was transferred to a new RNase free tube.  RNA concentration was measured 

using Qubit (between 50 and 200 ng µl-1 were obtained in all samples). Total RNA 

sequencing libraries were prepared using Illumina TruSeq total RNA without ribosomal RNA 

depletion and no fragmentation. One µg of total RNA in 8.5 µl of molecular grade water was 

used as input for library prep. RNA was mixed with 8.5 µl of fragment prime finish mix and 5 

µl of 5X first strand buffer and incubated at 65  ºC for 5 minutes, at 72 ºC for 5 minutes and 4 

ºC for 5 minutes. Next 1 µl of superscript II reverse transcriptase and 8 µl of first strand mix 

ActD were added and the protocol followed without modifications, in the last PCR 15 cycles 

were used. When libraries were ready the volume was brought up to 50 µl and a right-side 

selection was performed using SPRIselect beads in a ratio of 0.9X. Libraries quality was 

evaluated using Bioanalyzer. Libraries were sequenced on Illumina MiSeq using 150 cycles 

as single end. 

Virome 

Sputum samples were homogenized in SM buffer (1:6 dilution) and treated with 

DNAse (1000 U ml-1) for 1h. at 37 ºC Next, they were filtered sequentially through 8 um, 2 

um and 0.45 um filters to remove large particles and eukaryotic cells. The filtrate was mixed 

with chloroform (10 %) and homogenized by hand for 5 min. The sample was centrifuged at 

3,000 g for 5 min and the chloroform was removed. CsCl was added to the chloroform-treated 

sample at 1.15 g ml-1 density. The sample was was added onto a CsCl gradient comprised of 4 
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layers: 1.7 g ml-1, 1.5 g ml-1, 1.35 g ml-1 and 1.2 g ml-1 prepared with SM buffer. The sample 

was centrifuged at 4 ºC for 14 h at 35,000 rpm in a Beckman Coulter Ultracentrifuge using the 

rotor SW41 (151263 x g average and 210053 x g max). The 1.5 g ml-1 fraction was collected 

after the centrifugation using a needle and transferred to an epi tube. A 50 ul aliquot was 

checked for purity using epifluorescence microscopy, as described above. The remaining 

sample was subjected to DNA extraction using the formamide and CTAB protocol (Thurber 

et al 2009). The DNA was prepared for sequencing using the Accel-NGS 2S library prep kit 

(Swift Biosciences) using Covaris fragmentation (Covaris). Library quality was evaluated 

using Bioanalyzer and the libraries were sequenced on the Illumina MiSeq Platform. 

Clinical isolates genome sequencing. 

 Stenotrophomonas spp. and Achromobacter spp. isolates were characterized at the 

clinical lab. Liquid cultures were grown overnight in LB media at 37ºC. Cells were pelleted 

and resuspended in 200µl of PBS, DNA extraction was performed using DNeasy blood and 

tissue kit (Qiagen). Four hundred nanograms of gDNA were used for Nanopore sequencing, 

libraries were prepared and sequenced in individual flow cells on the MinION instrument. 

Reads were base called using ALBACORE, error correction and contigs assembly were 

performed with CANU(Koren et al. 2017) with an estimated genome length of 5Mb. Contigs 

were annotated using RAST(Overbeek et al. 2014) server.  

Mycobacterium spp. isolates were characterized at the clinical lab. A scrap of the 

bacteria growing on the solid media tube (1.5g) was homogenized in a cryovial with buffer 

from the Qiagen power soil DNA extraction kit. The tube was submerged in a dry-ice and 

ethanol bath for 5 minutes, then transferred to a water bath at 100ºC for 5 minutes, this 
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process was repeated 3 times. The sample was transferred to the beads tube from Qiagen 

power soil DNA extraction kit and homogenized by shaking for 45 minutes. The rest of the 

Qiagen power soil DNA extraction kit protocol was used, and DNA was obtained at a 

concentration of 20 ng µl-1 in 200 µl.  

Metagenomes, metatranscriptomes and viromes data analysis. 

Raw fastq files were filtered and dereplicated using PRINSEQ++ with minimum 

quality threshold 20, dereplication and entropy threshold 50. Cloning vector sequences were 

removed using SMALT with 80 % identity against the NCBI UniVec database. Human 

genome sequences were removed using SMALT with 80 % identity against the human 

reference genome GRCh38 (Supplemental Figure 4.15). The remaining reads are refered as 

polished reads. Polished reads were mapped to the NCBI RefSeq database of complete 

bacterial genomes using SMALT at 96 % identity. Hits were normalized using Fragment 

Recruitment Assembly Purification (FRAP, code available at 

https://github.com/yinacobian/frap). This procedure is illustrated in Supplemental Figure 4.16 

Genomic insertions and deletions identification. 

The closest reference genome for each dataset was identified as the genome that 

recruited more reads at 96% identity over 100% of the read. Regions >10,000 bp with no 

coverage in the reference genome were identified and extracted from the reference genome 

(code available at https://github.com/yinacobian/getholes). Insertions were identified by 

mapping de novo assembled polished reads (SPAdes –only-assembly) to the closest reference 

genome using MEDUSA. Regions >10,000 bp that were present in assembled contigs but not 

https://github.com/yinacobian/frap
https://github.com/yinacobian/getholes
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in the reference genome were identified as insertions and extracted from the contigs (code 

available at https://github.com/yinacobian/getaddons).  

Insertions and deletions annotations. 

Fasta files of insertions and deletions were annotated using PATRIC 

(https://www.patricbrc.org/), Conserved Domains Database 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) and PHANNS 

(https://edwards.sdsu.edu/phanns). Genome maps were generated with EasyFig. 

Technical considerations for CF sputum metagenomics. 

CF sputum is a complex mixture of host derived cells, free DNA and mucus 

(Manzenreiter et al. 2012; Martínez-alemán, Campos-garcía, and Palma-nicolas 2017) in 

which viral, bacterial and fungi cells are entangled (DePas et al. 2016). Methods to get rid of 

host cells and DNA or RNA result in biases in the microbial community composition 

sampling. To preserve the abundances of each microbe in the system, a procedure with 

minimal sample manipulation was implemented.  

Raw sputum or BAL samples were homogenized, and total DNA extracted without 

host removal or further manipulation. This procedure result in a high abundance of human 

genome reads (between 52% to 95% of total reads) in the metagenomes (Supplemental Figure 

4.15). A sequencing depth of at least 5 million reads per sample is needed to detect the 

microbial community reads in this samples. Since sequencing costs are decreasing, we 

consider this strategy viable in the future of CF clinical metagenomics efforts.  

https://github.com/yinacobian/getaddons
https://www.patricbrc.org/
https://www.google.com/url?q=https://edwards.sdsu.edu/phanns&sa=D&source=hangouts&ust=1575411682844000&usg=AFQjCNEQgNNyjTukH9zDjrvrjnFH92m1JA
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In the CF microbial community, the detection of Mycobacterium and fungi is very 

important and cannot be ignored. To make sure that DNA from this hard to lyse 

microorganisms was extracted from sputum samples, a modified DNA extraction protocol 

was developed. It consists of three rounds of submerging the sputum sample in a cold bath 

(ethanol and dry ice) for 5 minutes and in a hot bath (water bath at 100 ºC) for 5 minutes, 

after which a bead-beating step was incorporated and DNA extraction performed with power-

soil DNA kit. We showed that this procedure opens Mycobacterium and Candida cells, which 

are both concerns in CF clinical care. Metagenomic data analysis was designed for precise 

identification at strain level resolution. Recruitment at 100% identity allowed the 

identification of closest reference strain, in addition insertions and deletions were detected in 

CF patients metagenomes. This addresses the individual nature of CF disease progression, 

where even the same bacteria species have a distinctive mobilome. Genome plasticity can be 

identified with metagenomes and careful genomes analysis considering uncharacterized 

mobile elements.     
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Appendix for Chapter 4 

Supplemental figures 

Supplemental Figure 4.1 Bacteria diversity in acute and mild CF exacerbations. Bacteria 

relative abundance was obtained from sputum metagenomes from acute exacerbations (this 

study) and mild exacerbations (Losada, 2016). A) Relative abundance of most abundant 

member of the microbial community. B) Shannon diversity (H). C) Evenness calculated as 

H/In(S). D) Richness (S) calculated as the total number of bacteria species. An unpaired two-

samples Wilcoxon test between the acute and mild groups was performed for all 

measurements, in all cases the two populations are significantly different with a p-value < 

0.01. Wilcoxon test results are: rank 1 relative abundance w=81, p-value 0.015, Shannon 

diversity w=10, p-value=0.002, richness w=17, p-value=0.015, evenness w=20, p-value 

0.030. 



154 

Supplemental Figure 4.2 CF292 exacerbation sample metagenome and gram-stain. B) 

Candida glabrata genome coverage. C) Gram-stain of sputum sample, Candida glabrata cells 

stained gram positive. 
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Supplemental Figure 4.3 CF318 historical sampling. Weekly monitoring of hyper-variable CF 

patient CF318 for one month which includes three stable samples (D-21, D-14 and D-7) and 

one exacerbation sample (D-1). A) Microbial community structure from bacteria relative 

abundances obtained from metagenomes. B) Bacteria genus absolute abundances inferred 

from metagenomes relative abundances combined with microbial cells/mL counts. C) 

Virulence factors fractional abundances obtained from sputum metagenomes. D) Viral 

particles and bacteria cells quantification by epifluorescence microscopy. 
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Supplemental Figure 4.4 Excised regions in Achromobacter ruhlandii from CF116 

exacerbation metagenome.  
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Supplemental Figure 4.5 Excised regions in Achromobacter xylosoxidans from CF418 

exacerbation metagenome.  
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Supplemental Figure 4.6 Excised regions in Stenotrophomonas maltophilia from CF409 

exacerbation metagenome.   
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Supplemental Figure 4.7 Excised regions in Stenotrophomonas maltophilia from CF318 

exacerbation metagenome.  
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Supplemental Figure 4.8 Excised regions in Mycobacterium intracellulare from CF292 

exacerbation metagenome.  
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Supplemental Figure 4.9 Excised regions in Streptococcus sp. from CF146 exacerbation 

metagenome.  
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Supplemental Figure 4.10 Insertions in contigs from CF116 metagenome A) Synteny between 

the closest reference genome and contigs assembled from CF116 metagenome. B) Addon 

regions identified in assembled contigs.  
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Supplemental Figure 4.11 Insertions in contigs from CF409 metagenome A) Synteny between 

the closest reference genome and contigs assembled from CF409 metagenome. B) Addon 

regions identified in assembled contigs.  
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Supplemental Figure 4.12 Insertions in contigs from CF318 metagenome A) Synteny between 

the closest reference genome and contigs assembled from CF318 metagenome. B) Addon 

regions identified in assembled contigs.  
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Supplemental Figure 4.13 Bacteria and bacteriophages fractional abundance in metagenomes 

from CF acute exacerbations. A) Bacteria refseq database (n=66,000 genomes) B) 

Bacteriophages refseq (n=4,500 genomes). Polished metagenomes were compared to each 

database using fragment recruitment assembly purification (FRAP) at 96% identity over 

100% of the read. C) Virulence factors. Polished metagenomes were compared to virulence 

factors database Set A using fragment recruitment assembly purification (FRAP) at 96% 

identity over 100% of the read. 
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Supplemental Figure 4.14 CF sputum bronchioalveolar lavage total DNA metagenomes 

prodecure.  



167 

Supplemental Figure 4.15 CF metagenomes composition. Raw reads were quality filtered 

using prinseq++ (q-phred > 30), compared to the human reference genome using smalt (y = 

0.5). Polished sequences were compared to NT using BLASTn with an e-value cutoff of 0.1 

with output taxonomy for each hit, the best hit was kept.  
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Supplemental Figure 4.16 CF metagenomes bioinformatic methods.  
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Chapter 5 : Compounding Achromophages for therapeutic applications 

 

Abstract 

Achromobacter spp. colonization in Cystic Fibrosis respiratory airways is an 

increasing concern. Two adult Cystic Fibrosis patients colonized by Achromobacter 

xylosoxidans CF418 or Achromobacter ruhlandii CF116 experienced fatal exacerbations. 

Achromobacter species are naturally resistant to several antibiotics, therefore the use of phage 

therapy for the control of Achromobacter is proposed in this study. Twelve lytic phages were 

isolated and characterized at a morphological and genomic level. They are presented as the 

Achromobacter phages Kumiai collection. The proposed methods for large-scale production 

of phages and removal of endotoxins resulted in a phage concentrate of 1x109 plaque forming 

units per mililiter with an endotoxin concentration of 65 endotoxin units per mililiter, which is 

below the Food and Drugs Administration recommended maximum threshold for human 

administration. The infectivity of all phages in the Kumiai collection was tested in 23 

Achromobacter clinical isolates. Eighteen out of the 23 tested Achromobacter isolates were 

lysed by at least one phage. Six distinctive Achromobacter phage genome clusters were 

identified based on a comprehensive phylogenetic analysis of all publicly available 

Achromobacter phage genomes. A cryptic prophage was induced in Achromobacter 

xylosoxidans CF418 when infected with lytic phages. This prophage genome was also 

characterized and is presented as Achromobacter phage CF418-P1. Thus lytic-lysogenic 

phage interactions require further exploration in the context of phage therapy interventions. 

This study provides a framework for the isolation and characterization of phages to 

kill Achromobacter species in order to manage Cystic Fibrosis pulmonary infections.  
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Introduction 

Achromobacter spp. were identified as the dominant member of the microbial 

community in sputum samples from two Cystic Fibrosis (CF) patients that suffered acute 

exacerbations. Achromobacter spp. are Proteobacteria of the order Burkholderiales, they can 

use anaerobic metabolism in the presence of nitrate or nitrite and can use denitrification for 

respiration. Achromobacter spp. are long term colonizers of the CF lungs (Ridderberg, 

Nielsen, and Nørskov-Lauritsen 2015) and of increasing concern. Achromobacter 

xylosoxidans isolated from CF patients have pathogenic characteristics such as the presence of 

toxins and virulence factors (Jakobsen et al. 2013). In addition to infections in the CF lungs, 

Achromobacter spp. have been reported to cause urinary tract infections (Tena et al. 2008), 

endocarditis (Tokuyasu et al. 2012), meningitis (Manckoundia et al. 2011), and ocular 

infections (Park, Song, and Koh 2012). 

Bacteriophages (phages) have been used as therapeutics to modify the microbiome and 

aid in the clearance of bacterial infections (Gordillo-Altamirano and Barr 2019, Kortright et 

al. 2019). A CF patient was treated with therapeutic phages targeting Achromobacter spp. 

(Hoyle et al. 2018). The use of phages as therapeutics has been empirical and the phages 

applied to patients are not always characterized (Kutateladze and Adamia 2008), which poses 

a safety concern.  

There are 24 publicly available Achromobacter phages (Achromophages) genomes in 

the literature (Table 5.1). The first sequenced Achromophages (Wittmann, Dreiseikelmann, 

Rohde, Meier-Kolthoff, et al. 2014) are members of the N4-like phages, Achromobacter 

phage JWAlpha and Achromobacter phage JWDelta, both of them are Podoviridae. Several 
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Achromophages have been isolated, but their genomes are not sequenced (Wittmann, 

Dreiseikelmann, Rohde, et al. 2014).  

The need for lytic phages targeting Achromobacter is addressed by the isolation and 

characterization of twelve lytic phages. Their host range was tested in 23 Achromobacter 

clinical isolates from CF patients. Phage preparation methods to remove endotoxins were 

successful in providing high titer phages with low endotoxin levels. Achromobacter 

xylosoxidans CF418 carries a temperate phage that was induced when the strain was infected 

with lytic phages. These dynamics deserve further attention. Considerations when isolating 

and characterizing phages for therapeutic applications are addressed, such as the presence of 

prophages in the host strain, presence of toxins in the isolated phages, and lack of functional 

annotation on most phage proteins.   

Results 

Cystic fibrosis and Achromobacter 

Achromobacter spp. were identified as the dominant members of the microbial 

community in two CF fatal exacerbations. Patient CF116 respiratory tract microbial 

community was dominated by A. ruhlandii with a relative abundance of 98.5% based on a 

sputum metagenome. The clinical laboratory reported the presence of Achromobacter sp. and 

A. xylosoxidans. Patient CF116 was treated with the following antibiotics over a month during

the acute exacerbation: ceftazidime-avibactam, doxycycline, sulfamethoxazole-trimethoprim, 

vancomycin, and tigecycline. A second scheme during the acute exacerbation was composed 

of colistin, azithromycin, meropenem, imipenem-cilastatin, azithromycin, and minocycline. 
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Patient CF116 Achromobacter spp. infection was not resolved and the patient died three 

months after the acute exacerbation.  

Patient CF418 respiratory tract microbial community was dominated by A. 

xylosoxidans with a relative abundance of 76.7% based on a bronchioalveolar lavage 

metagenome obtained during an acute exacerbation. The clinical laboratory reported a 

rhinovirus infection one week before the acute exacerbation and chronical presence of 

Achromobacter sp. and Pseudomonas aeruginosa. Patient CF418 was on cardiopulmonary 

bypass and waiting for a lung transplant. Patient CF418 died during the acute exacerbation. 

These unresolved Achromobacter spp. infections in two fatal exacerbations motivated 

the implementation of a phage therapy strategy to kill the bacteria.  

Achromobacter clinical isolates 

Achromobacter spp. clinical isolates were obtained during acute exacerbations of 

patients CF116 and CF418. These isolates were characterized by 16S rDNA amplicon Sanger 

sequencing and whole genomes were obtained using Nanopore and Illumina sequencing. 

Strains are further referred as Achromobacter ruhlandii CF116, and Achromobacter 

xylosoxidans CF418.  

Twenty additional Achromobacter clinical isolates from CF patients were obtained 

from the San Diego CF clinic. A reference Achromobacter xylosoxidans strain C54, HM-235 

from a non-CF individual was obtained from the BEI collection (BEI, 2019).   
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Achromophage isolation and characterization 

Availability of genomically characterized Achromophages is limited. Twenty four 

Achromophage genomes (Wittmann, Dreiseikelmann, Rohde, Meier-Kolthoff, et al. 2014; 

Rohde, Nimtz, and Wittmann 2017; Ma et al. 2016; Li, Yin, et al. 2016; Li, Zhao, et al. 2016) 

were available in public databases (Table 5.1). 

Two genomically characterized Achromophages were obtained from the DSMZ-

German collection of microorganisms (Leibniz Institute, 2019). These are Achromobacter 

phage JWalpha (DSM 26830) and Achromobacter phage JWDelta (DSM 26829). Their 

propagation was not succesfull in any of the Achromobacter spp. strains in our collection 

(n=23). A previous study reported the use of Achromophages in a CF patient as a phage 

therapy clinical intervention (Hoyle et al. 2018). Access to these phages was requested to the 

research group, but it was not granted. This motivated a phage hunt strategy to construct a 

publicly available Achromophage library whose genomes are characterized. 

Table 5.1 Achromobacter lytic phages in the literature (n=24).  

Phage name Genome 
length 

(bp) 

Accession 
number 

Clade Morphology 
(virus 
family) 

Reference Propagation 
strain 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy04 

73,834 MK962626 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy06 

45,830 MK962627 JWX 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy09 

43,287 MK962628 Axy09 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy10 

73,898 MK962629 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 
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Table 5.1 Achromobacter lytic phages in the literature (n=24). (Continued) 

Phage name Genome 
length 

(bp) 

Accession 
number 

Clade Morphology 
(virus 
family) 

Reference Propagation 
strain 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy11 

73,413 MK962630 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy12 

74,096 MK962631 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy13 

70,103 MK962632 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy14 

46,703 MK962633 JWX 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy16 

46,178 MK962634 JWX 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy18 

45,500 MK962635 phiAxp1 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy19 

46,036 MK962636 phiAxp1 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy20 

46,352 MK962637 phiAxp1 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy21 

43,049 MK962638 Axy09 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AXyS_19-
32_Axy22 

71,710 MK962639 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AxyS_19-
32_Axy23 

43,773 MK962640 Axy09 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage 
vB_AxyS_19-
32_Axy24 

74,744 MK962641 JWAlpha 
Unpublished 
(Pourcel C, 
et al., 2019) 

Achromobacter 
xylosoxidans 
I2BC 

Achromobacter 
phage phiAxp-
1 

45,045 NC_029033.1 phiAxp1 Siphoviridae 
(Li E, et al., 
2016) 

Achromobacter 
xylosoxidans 
A22732 
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Table 5.1 Achromobacter lytic phages in the literature (n=24). (Continued) 

Phage name Genome 
length 

(bp) 

Accession 
number 

Clade Morphology 
(virus 
family) 

Reference Propagation 
strain 

Achromobacter 
phage phiAxp-
2 

62,220 NC_029106.1 phiAxp2 Siphoviridae 
(Li E, et al., 
2016) 

Achromobacter 
xylosoxidans 
A22732 

Achromobacter 
phage phiAxp-
3 

72,825 NC_028908.2 JWAlpha Podoviridae 
(Ma Y, et 
al., 2016) 

Achromobacter 
xylosoxidans 
A22732 

Achromobacter 
phage 83-24 

48,216 NC_028834.1 JWX Siphoviridae 
(Rohde M, 
et al., 2017) 

Achromobacter 
xylosoxidans 
HER 83-190 

Achromobacter 
phage JWX 

49,714 NC_028768.1 JWX Siphoviridae 
(Rohde M, 
et al., 2017) 

Achromobacter 
xylosoxidans 
LMG 3465 

Achromobacter 
phage JWF 

81,541 NC_029075.1 JWF Siphoviridae 
(Rohde M, 
et al., 2017) 

Achromobacter 
xylosoxidans 
CCUG 48136 

Achromobacter 
phage 
JWDelta 

73,659 KF787094.1 JWAlpha Podoviridae 
(Wittmann 
J, et al., 
2014) 

Achromobacter 
xylosoxidans 
DSM 11852 

Achromobacter 
phage 
JWAlpha 

72,329 NC_023556.1 JWAlpha Podoviridae 
(Wittmann 
J, et al., 
2014) 

Achromobacter 
xylosoxidans 
DSM 11852 

Twelve lytic phages were isolated from environmental water sources including lakes, 

ponds, fountains, and influents of wastewater treatment plants in San Diego, CA (Table 5.2). 

The set of 12 phages is referred to as the Achromobacter phages Kumiai collection. Seven 

Achromophages were isolated on A. ruhlandii CF116 using LB media. It was not possible to 

isolate phages in A. xylosoxidans CF418 using LB media. Therefore the media was changed 

to BHIS and five Achromophages were isolated in A. xylosoxidans CF418. A previously 

uncharacterized prophage was induced from A. xylosoxidans CF418 when the strain was 

infected with lytic phages. The 12 new Achromophage names etymologies are from the 

Kumiai language spoken by native San Diegans (also known as Kumeyaay). 



 

176 

Table 5.2 Achromobacter bacteriophages isolated in this study. Etymologies are from the 

Kumiai language. All isolation sources are from San Diego, CA. Coding sequences, tRNAs 

and repeat regions were annotated from PATRIC. 

 
Phage name Genome 

length 
(bp) 

GC 
content 

CDS tRNA repeat 
regions 

Clade Host Phage 
isolation 
source 

Phage 
name 

etymology 
 

Achromobacter 
phage nyashin 

45,982 56.31 68 0 2 phiAxp1 
A.ruhlandii 
CF418 

Influent 
water 

nyashin – 
sun 

Achromobacter 
phage shaaii 

45,029 56.11 63 0 0 phiAxp1 
A.ruhlandii 
CF418 

Influent 
water 

shaaii - 
buzzard 

Achromobacter 
phage nyaak 

46,478 55.77 66 1 2 JWX 
A. 
ruhlandii 
CF116 

Influent 
water  

nyaak -
north 

Achromobacter 
phage kewaak 

46,215 56.19 66 1 0 JWX 
A. 
ruhlandii 
CF116 

SDSU 
fishpond  

kewaak -
south 

Achromobacter 
phage wiik 

50,543 55.75 83 1 37 JWX 
A. 
ruhlandii 
CF116 

Lake 
Murray 

wiik - east 

Achromobacter 
phage tuull 

47,460 55.79 92 1 15 JWX 
A. 
ruhlandii 
CF116 

Influent 
water 
site 2 

tuull - 
west 

Achromobacter 
phage maay 

46,086 56.31 62 1 2 JWX 
A. 
ruhlandii 
CF116 

Influent 
water 
site 1 

maay - 
clouds or 
sky 

Achromobacter 
phage xasilly 

46,478 55.77 65 1 2 JWX 
A. 
ruhlandii 
CF116 

Influent 
water 
site 3 

xasilly - 
sea or 
waves 

Achromobacter 
phage ahaak 

46,435 56.17 64 1 0 JWX 
A.ruhlandii 
CF418 

Influent 
water 

ahaak – 
raven 

Achromobacter 
phage emuu 

46,012 55.86 62 1 2 JWX 
A.ruhlandii 
CF418 

Influent 
water 

emuu - 
mountain 
sheep 

Achromobacter 
phage ewii 

43,305 55.51 64 1 0 JWX 
A.ruhlandii 
CF418 

Influent 
water  

ewii - 
snake 

Achromobacter 
phage kwar 

33,215 55.59 73 0 6 JWX 
A. 
ruhlandii 
CF116 

Influent 
water 
site 4 

kwar - red 

Achromobacter 
prophage 
CF418-P1 

58,030 65.63 73 1 2  
A.ruhlandii 
CF418 

  

 

Achromophage genomes were sequenced using Illumina (Supplemental Table 5.1) and 

Nanopore (Supplemental Table 5.2) platforms. Genome lengths were between 33,215 bp and 

50,543 bp. The GC content was between 55% and 56%. The number of coding sequences on 
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each phage was between 62 and 92. A tRNA was identified in 10 phages. Achromophage 

genome sizes for 10 out of 12 phages were corroborated by Pulse Field Gel Electrophoresis 

(PFGE), all the genomes were close to the 48.5 Kbp marker (Supplemental Figure 5.1). 

Achromophage morphology was determined by Transmission Electron Microscopy (TEM); 

siphoviridae and podoviridae morphologies were observed (Supplemental Figure 5.2).    

Achromophage comparative genomics 

Protein level whole genome comparisons to the Phage Proteomic Tree (Rohwer and 

Edwards 2002) were performed among previously published Achromophages (n=24, Table 

5.1) and Achromophages form this study (n=12, Table 5.2) using VIPTree (Nishimura et al. 

2017) (Figure 5.3-A). Isolated Achromophages clustered in 2 clades (Figure 5.1-B). Clade 

JWX (from A. phage JWX, NC_028768.1) included Achromobacter phage tuull, 

Achromobacter phage emuu, Achromobacter phage ahaak, Achromobacter phage kewaak, 

Achromobacter phage maay, Achromobacter phage kwar, Achromobacter phage nyaak, 

Achromobacter phage xasilly, Achromobacter phage wiik, and Achromobacter phage ewii. 

Clade phiAxp-1 (from A. phage phiAxp-1, NC_029033.1) included Achromobacter phage 

shaaii and Achromobacter phage nyashin. Achromobacter phage 83-24 (NC_028834.1) 

clustered in the JWX clade. Achromobacter phage phiAxp-2 (NC_029106.1) did not clustered 

with other Achromophages, it clustered with Burkholderia and Xylella phages. A third cluster 

identified as JWDelta (after A. phage JWDelta, KF87094.1) was formed by A. phage 

JWDelta, A. phage JWAlpha and Achromobacter phage phiAxp-3. Achromobacter phage JWF 

(NC_029075.1) did not clustered with other Achromophages and was more distantly related 
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to the rest of Achromophages, it clustered close to the Archaea virus Natrinema virus SNJ1 

and four Holoarcula viruses.  

 

 

Figure 5.1 Achromobacter phages on The Phage Proteomic Tree. 

 

Small variations were observed between phages in the Clade JWX (Figure 5.2). A. 

phage emuu, A. phage ahaak, and A. phage kewaak showed variation in a 3.5 Kbp region 
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containing 6 CDS. A. phage ahaak and A. phage kewaak showed variation in a tail fiber 

protein. A. phage kwar was closely related to A. phage maay and A. phage nyaak. Deletions 

were observed in A. phage kwar. A. phage nyaak, and A. phage xasilly differed only by 50 

nucleotides in a CDS that is 118 aminoacids long and contains a ribon-helix-helix domain. A. 

phage xasilly, A. phage wiik, and A. phage ewii were closely related and rearrangements on 

their genomes were observed in the synteny plots, a 4 Kbp insertion was observed in A. phage 

wiik.    

 

Figure 5.2 Achromobacter phages clade phiAxp1. 
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Figure 5.3 Achromobacter phages clade JWX, genomes comparisons. 
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In clade phiAxp1 (Figure 5.3) A. phage phiAxp-1, and A. phage shaaii were similar, 

with variation in a 3.2 Kbp region that contained 8 CDS, this variation region was also 

observed in A. phage nyashin.  

 

Achromophage genome annotation  

Achromophages genomes from the Kumiai collection encode between 62 and 92 CDS 

per genome. Genome annotations using protein comparisons based on k-mers (Brettin et al. 

2015) resulted in mostly hypothetical proteins, which is a common challenge in phage 

annotations. Further annotations using conserved domains (CDD), hidden Markov models 

(HMMER Search), and artificial neural networks (ANNs for structural proteins), followed by 

expert curation, were used to annotate the phage genomes. Using this holistic approach, the 

number of hypothetical proteins was reduced. A terminase was identified in all analyzed 

phage genomes. The small and large terminases form the packaging machinery (Sun et al. 

2012) which is responsible for feeding the DNA into the phage capsids. A transcriptional 

regulator was identified in all analyzed phage genomes, its original annotation was done in the 

ACLAME server (ACLAME, 2019). A tRNA was identified on each genome of the clade 

JWX, no tRNA was identified in the phages of clade phiAxp1.  

 

Toxins annotations in Achromophages 

A concern in the use of phages for therapeutic application is the production of toxins. 

Achromophages from the Kumiai collection have no identified toxins or virulence factors 

when annotated using PATRIC resources, which perform protein level comparisons to the 
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virulence factors database (~30,000 virulence factors reported by Chen et al. 2016), 

VICTORS (5,296 virulence factors reported by S. Sayers et al. 2019), and a PATRIC curated 

virulence factors database (1,293 virulence factors reported by Wattam et al. 2017). 

Conserved domains database annotations identified a potential toxin in one phage. A 39 aa 

long CDS in A. phage tuull was annotated by HMMER Search (EBI, 2019) as a hemolysin-

type calcium binding region, 12 out of 19 aa were recognized as part of the toxin motif.  

 

Achromophage lifestyle determination  

The use of temperate phages for phage therapy is not desirable since the integration of 

phages in bacteria genomes may have unexpected results. No integrases were detected in any 

of the Achromobacter phages of the Kumiai collection. Lifestyle characterization using 

PHACTS (McNair, Bailey, and Edwards 2012) classified A. phage shaaii and A. phage 

nyashin as lytic, the lifestyle classification for the remaining 10 phages was inconclusive, 

potentially due to the lack of well characterized Achromophages for comparisons 

(Supplemental Table 5.4).  

Prophage CF418-P1 induction and characterization 

Multiple phage genomes were identified in the genome sequencing of phage lysates 

LB5, LB7 and LB8 (Supplemental Figure 5.3). A new prophage CF418-P1, was identified 

(Figure 5.4-A). It was induced when A. xylosoxidans CF418 was infected by Achromophages. 

Prophage CF418-P1 was induced with the following pairs of phages: A. phage shaii and A. 

phage ahaak were present in lysate LB5; A. phage nyashin, and A. phage ewii were present in 

phage lysate LB7; and A. phage nyahin and A. phage emuu were present in lysate LB8. Reads 
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from lysates LB6, LB5, LB7, and LB8 were mapped to the reference genome Achromobacter 

xylosoxidans NCTC10807 and showed recruitment in the prophage region (Supplemental 

Figure 5.4).  

 

Figure 5.4 Achromobacter prophage induced when infected with other lytic phages. A) 

Prophage in A. xylosoxidans CF418.The prophage genome was assembled from samples LB5, 

LB7 and LB8 using SPades (Bankevich et al. 2012). Prophage annotation using PATRIC, 

CDD, HMMER and ANNs. B) Prophage in A. xylosoxidans CF418 in bacteria genomes. C) 

Prophage in A. xylosoxidans CF418. Fragment recruitment plots of phage lysate against 

Achromobacter xylosoxidans NCTC10807 reference genome. Prophage region recruited reads 

around 5.8 Mbp (highlighted in red square).  
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Prophage CF418-P1 showed identity to A. xylosoxidans NCTC10807 (96.85% 

identity and 73% query coverage), Achromobacter xylosoxidans strain FDAARGOS_150 

(95.70% identity and 74% query coverage), and Achromobacter denitrificans strain PR1 

(82.77% identity and 55% query coverage) (Figure 5.4-B). Prophage CF418-P1 is not closely 

related to the Achromophages from the Kumiai collection, it formed a separate branch in the 

Phage Proteomic Tree and shared 6 short regions with low identity to Pseudomonas virus H66 

and Pseudomonas virus F116 (Supplemental Figure 5.5).  

Prophage CF418-P1 genome length is 58,030 bp, with a GC content of 65.7%, it 

encodes an integrase and has a temperate lifestyle. Nucleic acid metabolism and structural 

proteins were identified, as well as an endopeptidase and a peptidoglycan hydrolase. Most 

likely, Prophage CF418-P1 packages pieces of the host genome in its viral capsids, being 

able to perform generalized transduction. The fragment recruitment plots to the host genome 

(Figure 5.4-C) suggested that.  

 

Host range determination for Achromophages  

The host range of Achromophages from the Kumiai collection was tested in 22 

Achromobacter isolates from 13 patients with CF in the San Diego clinic, and the reference 

strain A. xylosoxidans HM-235 (Figure 5.5). Eighteen out of the 23 tested Achromobacter 

isolates were lysed by at least one phage from the Kumiai collection (n=12). Additional 

phages were isolated to cover a broader host range, these five phages (Supplemental Table 

5.5) are Achromobacter phage SE2, Achromobacter phage M1, Achromobacter phage ENA1, 

Achromobacter phage M2, and Achromobacter phage MW2. Twenty out of the 23 
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Achromobacter strains were infected and lysed by at least one of the isolated lytic phages. 

Three Achromobacter clinical strains were not infected by any of the isolated phages, we 

hypothesize that these strains carry more prophages which prevent further infections and pose 

a challenge for lytic phages isolation. A. phage SE2 presented the broadest host range, it 

infects 13 out of 23 tested strains. A. phage nyashin showed a generalist behavior since it 

infected 10 out of 23 tested strains, and A. phage MW2 showed a specialist behavior since it 

only infected 2 out of 23 tested strains.   
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Figure 5.5 Achromobacter phages host range test. Twentytwo Achromobacter strains isolated 

from CF patients sputum and characterized by the clinical lab were used for host range test. 

Achromobacter reference strain (HM-235) was also used for host range test. Host range test 

was tested by spot test on a lawn of the host bacteria.  
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Achromobacter phages lysates preparation for therapeutic applications 

Phage production for therapeutic application requires a high titer phage lysate with a 

low concentration of lipopolysaccharides (also known as LPS, lipoglycans or endotoxins). 

Thus, the production method needs to preserve the phage titer and ideally concentrate it, be 

fast, and avoid the use of toxic compounds. This method was illustrated using A. phage nyaak 

(Figure 5.6), the final preparation is a 0.15 M NaCl solution with a phage concentration of 

1x1011 PFU ml-1 and a lipopolysaccharides concentration of 6500 EU ml-1.  

The proposed production method for Achromophages (Figure 5.6) started with one 

liter of overnight phage culture in LB media with a titer of 1x109 PFU ml-1. Bacterial cell 

debris was reduced by centrifugation and decantation, followed by the elimination of 

remaining bacteria cells by filtration. It is important to note that remaining bacterial cells were 

not disrupted by chloroform treatment to avoid an increase in LPS in the solution. This 

solution was concentrated to a volume of 55 ml using tangential flow filtration. It had a phage 

titer of 1x1010 PFU ml-1. Phages are more stable in SM buffer than in LB, thus a buffer 

exchange and further concentration was performed via ultrafiltration using a 100 kDa 

regenerated cellulose membrane, this step resulted in a 10.6 ml solution with a phage titer of 

1x1011 PFU ml-1. Lipopolysaccharides were removed by 1-Octanol (Szermer-Olearnik and 

Boratyński 2015; Morrison and Leive 1976). The residual 1-Octanol was eliminated from the 

solution via dialysis, this resulted in 13 ml of a 0.15 M NaCl solution with a phage titer of 

1x1011 PFU ml-1. Lipopolysaccharides in the phage stock solution were quantified as 

endotoxin units (EU) using recombinant factor C based fluorescence detection (EndoZyme II, 

Biomérieux). 
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Figure 5.6 Achromobacter phage nyaak high titer lysate production and endotoxin removal 

procedure.   
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Discussion  

 

Achromophages hunting  

Phages capable of killing Achromobacter spp. were isolated from water samples 

collected around San Diego, CA. A. ruhlandii CF116 phages were isolated in the first two 

weeks of the search, however A. xylosoxidans CF418 phages were isolated in six months. The 

prophage present in A. xylosoxidans CF418 could be providing superinfection exclusion 

agains invading phages, therefore the isolation of phages against this strain was challenging. 

In the Achromobacter spp. collection (n=23) used in this study, three bacteria strains couldn’t 

be infected by the tested lytic phages. Publicly available phage collections and cooperation 

among research groups are relevant resource for the advancement of the phage therapy field.   

Achromophages genomics 

Two distinctive clades were identified in the Achromophages Kumiai collection, this 

information may be usefull to design phage cocktails, since theoretically phages that are 

distantly related have a distinctive host range.  

Toxins characterization in phage genomes.  

Characterization of phage toxins based on genome sequencing is challenging 

(Philipson et al. 2018). A toxin motif was identified in A. phage tuull, therefore is not a 

suitable candidate for therapeutic use. No known toxins were identified in the rest of the 

Kumiai collection phages. Since most of phage proteins are annotated as hypotheticals, there 

is still a concern for the presence of uncharacterized toxins in phages intented for therapeutic 
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use. An alternative to evaluate their safety is to test the phage cytotoxicity in eukaryotic cell 

lines (Shan et al. 2018; Porayath et al. 2018) and their tolerance in animal models.   

Cryptic prophages induction  

During the isolation of lytyc phages, a cryptic prophage was induced from A. 

xylosoxidans CF418, wether this phage induction is promoting the expression of toxins is not 

known. Generalized transduction was observed in Prophage CF418-P1, since it packages 

pieces of the host genome in its viral capsids. This phenomenon has been observed in other 

Achromophages, such as Achromobacter phage α (Woods and Thomson 1975). Cryptic 

Achromobacter prophages induction mediated by superinfected by a related phage has been 

reported before (Thomson and Woods 1974).   

Endotoxin removal from phage lysates for therapeutic applications.  

The proposed method for endotoxin removal from phage lysates was succesfull in the 

number of phages recovered and the low amount of endotoxin in the prepatation. Phages for 

therapeutic applications are usually applied as a 1x109 PFU ml-1 solution. The phage stock 

presented in this work, when diluted to a concentration of 1x109 PFU ml-1 has a final 

concentration of 65 EU ml-1. The FDA recommended maximum amount of endotoxin units 

(EU) in an intravenous solution is 5 EU per kilogram of body weight per hour. Up to 6 ml of 

the phage stock of 1x109 PFU ml-1 which contains 65 EU ml-1 can be applied to a patient 

(average weight of 80 kg) every hour. Dosage of phage preparations is empirical and efforts 

towards understanding phage pharmacokinetics  are needed (Malik et al. 2017).  
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A concern in the removal of endotoxin is the residual amount of 1-Octanol. It is 

important to note that 1-Octanil can be metabolized in the human body by class IV alcohol 

dehydrogenases (Danielsson et al. 1994; Satre, Žgombić-Knight, and Duester 1994; Jelski et 

al. 2006), which is an advantage of using 1-octanol for LPS removal, although other methods 

are available such as Hexafluoro isopropanol (McCord, Muddiman, and Khaledi 2017). 

Beyond phage hunting 

Alternative solutions to phage isolation are the engineering of phages to expand their 

host range (Lemire, Yehl, and Lu 2018); the use of phage tails to for therapeutic applications 

(Scholl 2017); or phage derived endolysins (Young and Gill 2015).  

Materials and methods  

 

Cystic fibrosis metagenomes 

Informed consent was obtained from patients CF116 and CF418. This study was 

approved by UCSD (HRPP 081510) and San Diego State University (IRB#1711018R). For 

patient CF116, a sputum sample was collected in a sterile cup after sputum induction. For 

patient CF418 a bronchioalveolar lavage sample (BAL) was collected. From BAL or sputum 

samples, 500 µl were transferred to a cryovial. The tube was submerged in a dry-ice and 

ethanol bath for 5 minutes, then transferred to a water bath at 100 ºC for 5 minutes, this 

process was repeated 3 times. The sample was transferred to the beads tube from Qiagen 

power soil DNA extraction kit (catalog number 12888-100) and homogenized by shaking for 

45 minutes. The rest of the Qiagen power soil DNA extraction kit protocol was followed. Ten 
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nanograms of DNA were used for Nextera library prep. Libraries were sequenced on the 

Illumina MiSeq platform.  

Achromobacter strains  

Achromobacter clinical isolates from patients CF116 and CF418 were phenotypically 

characterized by the UCSD clinical laboratory and grown in Remel blood agar. Both clinical 

isolates can grow in tryptone yeast extract glucose medium (TYG), supplemented brain heart 

infusion broth (BHIS) and lysogeny broth (LB). BHIS was supplemented with the following 

per liter: hemin 5 mg, menadione 1 mg, yeast extract 5 g, L-cysteine HCl 50 mg, MgSO4 120 

mg, and CaCl2 50 mg. Each clinical isolate was cultured in liquid LB media at 37 ºC for 16 

hours, cells were pelleted by centrifugation and resuspended in molecular grade water. Total 

DNA was extracted using Qiagen blood and tissue kit (Cat. No.  69504). 16S PCR was 

performed on each isolate using 27F and 1492R primers and ~1,500 bp amplicons 

sequenced by Sanger. Sanger sequences were compared to all NCBI using online megablast. 

The closest hit was to A. xylosoxidans for both isolates. In liquid culture, capsule formation 

was observed, characteristic of many pathogenic Achromobacter. A total of 400 nanograms of 

DNA were used for whole genome sequencing on the Nanopore platform. Whole genome 

analysis of both isolated determined the strains Achromobacter xylosoxidans CF418 and 

Achromobacter ruhlandii CF116.  

Phage hunting  

Aqueous samples (lake water, pond water, and fountain water) were collected and 

filtered with a 0.22 µm filter, and stored at 4 °C. Samples of influent from wastewater 
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treatment plants were stored at 4 ºC, then a 50 ml aliquot was centrifuged at 4000 RPM for 10 

minutes to pellet debris and the supernatant was filtered with a 0.45 µM filter. Chloroform 

was added to 5% v/v for long term storage at 4 ºC.  

Phage isolation for A. ruhlandii CF116 was performed based on PhagesDB (Russell 

and Hatfull 2017) protocols with the addition of 10 mM MgSO4 and 5 mM CaCl2 to bacterial 

cultures and top agar. Plates were incubated at 37 ºC overnight and examined for phage 

plaques. Individual plaques were streaked onto a top agar plate for phages purification, this 

procedure was repeated 3 times. After plaque purification, 3.5 ml of phage lysates were 

prepared by transferring a purified plaque into a growing bacteria culture, which was then 

incubated overnight at 37 ˚C. To prepare a stock of phage lysate (50 ml), previous 3.5 ml of 

phage lysate was used (Supplemental Table 5.3) 

A. xylosoxidans CF418 from frozen glycerol stocks was streaked onto BHIS plates and 

incubated at 37 °C for 24 hours in an anaerobic chamber. Individual colonies were then 

cultured at 37 °C for 24 hours in 3-5 ml BHIS broth. Phages were isolated from influent 

samples from 4 sewage treatment sites, ponds, fountains, and a lake. Four ml of BHIS top 

agar, 200 µl host overnight culture, and processed influent (0.1-1 ml) were combined and 

poured as top agar over BHIS plates. Individual plaques were then be selected by streak-

isolation with a toothpick to new top agar plate. The phages were passaged at least 3 times 

until only one phenotype was visible after last passage with individual plaques present. The 

phages library was preserved at 4 ºC and in glycerol stocks.  
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Phages Transmission Electron Microscopy (TEM)  

Phages were stained for transmission electron microscopy. Glow-discharged 300-mesh 

copper grids coated with carbon and formvar were overlaid with drops (30 µl) of purified 

phage samples for 3 minutes. Salts were removed from the buffer by rinsing the grids 3 times 

with drops of water (20 µl). Next, the grids were negatively stained with uranyl acetate (0.5 

%) for 15 seconds, dried, and examined using a FEI Tecnai T12 TEM (FEI, Hillsboro, OR) at 

the SDSU Electron Microscopy Facility, operating at 120 kV. Micrographs were taken with 

an AMT HX41 side mounted digital camera (Advanced Microscopy Technique, Woburn, 

MA) (Supplementa Figure 5.2). 

Phages genome size determination by Pulse Field Gel Electrophoresis (PFGE)  

Two hundred and fifty µL of pure phage resuspended in SM buffer were added to an 

equal volume of 1.6 % low melting (LM) agarose prepared in molecular grade 0.02 µm 

filtered water. Phage concentration in the starting suspensions are shown in Supplemental 

Figure 1-C.  Before mixing, the LM agarose was placed in 50 ºC water bath for 20 minutes to 

avoid heat damage to the phage particles. The mix was immediately distributed in individual 

75 µL wells of plug molds and allowed to solidify for 20 min at 4 ºC. A small suction bulb 

was used to pump the plugs out of the molds and place them in TE (10 mM Tris-HCl, 0.1 mM 

EDTA, pH 7.5) (always 2 ml of solution/3 plugs). Using flat bottom tubes avoid breaking the 

plugs during the procedure. Free DNA contamination was treated with DNase I by incubating 

the plugs in a solution containing 1 µg ml-1 of DNase and 1X DNase buffer in TE. Incubations 

were kept at 37 ºC for 1 hour. The liquid was removed, the plugs were transferred to a new 

tube containing ESP (0.5 M EDTA, pH 9, 1% N-laurylsarcosine, 1 mg ml-1 proteinase K), and 
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then incubated at 50 ºC overnight (ON). In order to inactivate the proteinase K, the plugs were 

transferred to a new tube containing PMSF solution (1 mM PMSF, 20 mM Tris-HCl, pH 8, 50 

mM EDTA). The incubation was carried out for 1 hour at room temperature (RT) on a tube 

rocker under gentle agitation. The plugs were washed six times with TE, but in the first wash 

the plugs were transferred to a new tube and left ON at RT under gentle agitation. The five 

following washes were performed for 30 minutes each and no tube exchange was needed. 

Using low EDTA TE (10 mM tris and 0.1 mM EDTA), six extra washes of 30 minutes each 

were performed at the same conditions of the previous ones. After this step, the plugs were 

maintained in low EDTA TE at 4 ºC until the Pulsed-field agarose gel was prepared. The 0.22 

filtered 0.5x TBE was kept in the PFGE machine until the temperature reached 14 ºC. After 

this step, the plugs were cut in half and placed in the wells of the 1% PFGE Agarose (Bio-rad) 

in the same filtered TBE. The wells were closed with melted agarose used to make the gel that 

was kept in a 50 oC water bath. The gel was left at room temperature for 5 minutes until the 

agarose polymerized and loaded. The electrophoresis conditions were automatically set by the 

instrument using the option “auto algorithm” and adding the range of the standard marker (in 

this case, from 15 Kb to 300 Kb). The gradient selected was 6 V/cm, the time 23:52 h, the 

included angle 120º, the initial switch time of 1.19 s and the final switch times of 26.29s. The 

MidRange PFG marker (New England Biolabs) and T4 phage were used as size standards 

(Supplemental Figure 1-B).  

Phages host range determination 

Host range of isolated phages was tested in a collection of 22 Achromobacter strains 

isolated from sputum of cystic fibrosis patients at the UCSD CF clinic, and then in the 
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reference strain Achromobacter xylosoxidans HM-235. Host range was tested by spot test of 

10 µl of phage lysate in top agar of a lawn of the bacteria. Lysis was evaluated after 16 hours 

of incubation at 37 ºC.    

Phages DNA isolation for sequencing 

Fifty mililiters of phage lysate were produced without chloroform treatment to 

minimize the amount of free bacterial DNA. Phage DNA isolation protocol(Gill, n.d.) 

(Supplemental Figure 2) consists of phage lysate filtration through a 0.22 μm filter, followed 

by DNAse and RNAse treatment, PEG precipitation, DNAse and RNAse treatment, 

proteinase K treatment, and viral particles opening through resin from Promega Wizard DNA 

clean-up system (Cat. No. A7280). DNA was resuspended in molecular grade water 

(Supplemental Figure 5.6).  

Phages Illumina sequencing 

Ten nanograms of phage DNA were used for library preparation using Swift ACCEL-

NGS 1S PLUS (Cat. No. 10024) with 16 cycles of PCR amplification and an additional bead 

cleanup step (AMPure XP, Beckman-Coulter, Cat. No. A63881) with a proportion of 0.85X at 

the end of library prep to remove sequencing adapters. Libraries were pooled and sequenced 

in the Illumina platform MiSeq as pair end 300. The number of reads obtained per phage was 

between 400 and 5 million (Supplemental Table 5.1).   
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Phages Nanopore sequencing  

Three to 400 ng of phage DNA were used for Nanopore sequencing using barcoding 

and flow cell R9, between 200 to 5000 reads were obtained per phage (Supplemental Table 

5.2).  

Phages genome assembly  

Pair end reads were quality filtered using prinseq++ (Cantu, Sadural, and Edwards 

2019) (-lc_entropy=0.5 -trim_qual_right=15 -trim_qual_left=15 -trim_qual_type mean -

trim_qual_rule lt -trim_qual_window 2 -min_len 30 -min_qual_mean 20). A subsample with 

replacement of 50,000 and 100,000 reads per phage was obtained and used for denovo 

assembly with SPades(Bankevich et al. 2012) (--only-assembler). Attempts to assemble using 

all reads resulted in fragmented phage genomes. Assembly graphs (.fastg files) were inspected 

using BANDAGE(Wick et al. 2015), for some phages contigs were merged to obtain the 

complete genome, in most of the cases a complete genome was obtained in a single contig. 

Phage lysates propagated in Achromobacter CF418 had more than one phage in the assembled 

contigs, a common phage was identified in lysates LB5, LB7 and LB8 (Supplemental Figure 

2) and further identified as a temperate phage in Achromobacter CF418, this is 

Achromobacter prophage CF418-P1. Phage genomes were sorted by the terminase gene using 

circulaline.  

Phages genome annotation  

Phage genomes were annotated in PATRIC (Wattam et al. 2017) using optimized gene 

calling for phages, which uses PHANOTATE (McNair et al. 2019). Using this approach most 
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of the protein annotations were hypothetical. To improve annotations, the phage protein 

sequences were annotated using the conserved domains database (CDD) (Sayers et al. 2009), 

HMMER search (EBI, 2019), and ANNs for structural proteins(Cantú, 2019). Expert manual 

curation of each phage annotation was performed and genome maps were obtained using 

EasyFig (Sullivan, Petty, and Beatson 2011).  

Phages comparative genomics 

Available Achromobacter phage genomes (n=24) and phage genomes isolated in this 

study (n=13) were compared to the Phage Proteomic Tree (Rohwer and Edwards 2002) using 

VIPTree (Nishimura et al. 2017).  

High titer phage production and endotoxin removal and quantification 

One L of phage lysate (1x109 PFU ml-1) was produced in LB media supplemented 

with 10 mM MgSO4 and 5 mM CaCl2. Lysate was centrifuged to remove bacteria debris, 

filtered twice through a 0.22 µm filtering cup. Concentration was performed in a tangential 

flow filter (viva flow 200) to 55 ml, followed by filtration through a 0.22 µm filtering cup, 

phage titer after this step was 1x1010 PFU ml-1. A buffer exchange from LB to SM was 

performed in an Amicon filter (100 kDa), concentration volume was 10.6 ml and phage titer 

1x1011 PFU ml-1. Endotoxins (lipopolysaccharides) were removed with incubation of 10% 1-

Octanol, then it was removed by centrifugation followed by dialysis, volume after dialysis 

was 13 ml and phage titer of 1x1010 PFU ml-1 in a solution of 0.15 M NaCl. 

Lipopolysaccharides were quantified using a colorimetric essay (Biomerieux) and a total of 

6500 EU ml-1 were present in a 0.15 M NaCl solution with a phage titer of 1x1010 PFU ml-1. 
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This procedure is illustrated in Figure 5.6. Phage stock was stored at 4 ºC. This procedure was 

adapter from previous reports(Bonilla et al. 2016; Szermer-Olearnik and Boratyński 2015).  
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Appendix for Chapter 5 

 

Supplemental figures 

 

Supplemental Figure 5.1 Phages genome size by Pulse Field Gel Electrophoresis. A) 

Molecular size ladder B) Pulse Filed Gel Electrophoresis. C) Phages concentration used for 

Pulse Field Gel Electrophoresis plugs.  
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Supplemental Figure 5.2 Achromobacter phages transmission electron microscopy. 

Achromobacter phages ewii and Achromobacter phage maay were not imaged. 

Achromobacter phage ahaak and Achromobacter phage shaii were in a mixed lysate, imaging 

is not shown. Names etymology from the kumeyaai language spoken by native tribes of San 

Diego, CA.  

 

 

    
Achromobacter phage 
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kewaak 

Achromobacter phage wiik Achromobacter phage tuull 
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nyashin 
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Supplemental Figure 5.3 Prophage induced in Achromobacter CF418 when infected with 

additional lytic phages. Contigs assembled from each phage lysate using SPADES were 

visualized in BANDAGE. A) Assembly with 100,000 reads. One bacteriophage genome 

present. B) Assembly with 100,000 reads. Two bacteriophage genomes present, one with high 

coverage of 250X (light purple) and another one with low coverage 5X (dark purple). One 

Achromobacter element present (green) C) Assembly with 100,000 reads. Two bacteriophage 

genomes present, one with high coverage of 250X (light purple) and another one with low 

coverage 5X (dark purple). One Achromobacter element present (green) D) Assembly with 

100,000 reads. Two bacteriophage genomes present with similar coverage (dark purple). 

Achromobacter element present (green).  
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Supplemental Figure 5.4 Prophage induced in Achromobacter CF418 when infected with 

additional lytic phages. Genome coverage of bacteria reference genome. Region in red box is 

the prophage. 
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Supplemental Figure 5.5 Achromobacter prophage CF418-P1 and its closest phage relatives, 

genomes comparisons. 
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Supplemental Figure 5.6 Phages propagation and DNA extraction for genome sequencing.   



 

212 

Supplemental tables 

Supplemental Table 5.1 Achromobacter phages Illumina sequencing information.   

 

Phage 
lysate  

Illumina 
good quality 

reads 

Hits to 
A. 

ruhlandii 
NZ_CP0
17433.1 

Hits to A. 
xylosoxidans 

NZ_LN831029.1 

% 
Achromobacter 

reads 

Hits to 
human 
genome  

% 
Human 
genome 

reads 

TL2-B-
filtered 1,894,772 4 1 0.0003 3 0.0000 
TL3-C-
filtered 1,749,597 3 2 0.0003 0 0.0000 
LB1-D-
filtered 2,537,881 12 6 0.0007 1 0.0000 
LB2-E-
filtered 705 0 4 0.5674 0 0.0000 
LB3-F-
filtered 2,274,283 14 12 0.0011 0 0.0000 
LB4-G-
filtered 406 0 0 0.0000 0 0.0000 
TL1-M-
cscl 3,406,503 73 12 0.0025 10 0.0001 
TL4-U-
cscl 5,142,519 315 105 0.0082 35 0.0001 
LB5-V-
cscl 4,040,869 207 112,219 2.7822 0 0.0000 
LB6-T-
cscl 1,874,759 4 3,970 0.2120 0 0.0000 
LB7-W-
cscl 3,895,260 1,826 102,389 2.6754 145 0.0002 
LB8-X-
cscl 2,473,235 3,115 183,814 7.5581 23 0.0001 
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Supplemental Table 5.2 Achromobacter phages Nanopore sequencing information.   

 

Sample 
type 

Sample ID 
DNA amount 
(nanograms) 

BARCODE Reads 
% total 
reads 

Phage TL1 397.50 RB01 772 0.84 

Phage TL2 400.00 RB02 1867 2.04 

Phage TL3 400.00 RB03 1642 1.79 

Phage TL4 203.25 RB04 2700 2.95 

Phage LB4 60.75 RB05 5023 5.49 

Phage LB3 18.00 RB06 1127 1.23 

Phage LB7 10.50 RB09 585 0.64 

Phage LB8 3.26 RB10 231 0.25 

Bacteria 
Achromo 
CF418 213.75 RB12 21470 23.47 

      Unclassified 35399 38.70 

      Total  91482   
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Supplemental Table 5.3 Phage lysates and phage genomes names 

Isolation 
ID 

Sequencing 
ID 

Phage contig ID  Phage name Host  
Phage 
isolation 
source 

IS TL1 
Achromobacter 
phage nyaak TL1 

Achromobacter phage 
nyaak 

A. ruhlandii 
CF116 

Influent 
water 
sample 

pond TL2 
Achromobacter 
phage kewaak TL2 

Achromobacter phage 
kewaak 

A. ruhlandii 
CF116 

SDSU 
fishpond 
water 

LM TL4 
Achromobacter 
phage wiik TL4 

Achromobacter phage 
wiik 

A. ruhlandii 
CF116 

Lake 
Murray 

IS2 LB2 
Achromobacter 
phage tuull LB2 

Achromobacter phage 
tuull 

A. ruhlandii 
CF116 

Influent 
water site 2 

IS1 LB1 
Achromobacter 
phage maay LB1 

Achromobacter phage 
maay 

A. ruhlandii 
CF116 

Influent 
water site 1 

IS3 LB3 
Achromobacter 
phage xasilly LB3 

Achromobacter phage 
xasilly 

A. ruhlandii 
CF116 

Influent 
water site 3 

SA2 LB5 
Achromobacter 
phage LB5-A 

Achromobacter phage 
ahaak 

A.ruhlandii 
CF418 

Infuent 
water 

SA3 LB5 
Achromobacter 
phage LB5-B 

Achromobacter phage 
shaaii 

A.ruhlandii 
CF418 

Infuent 
water 

S315S LB7 
Achromobacter 
phage LB7-A 

Achromobacter phage 
emuu 

A.ruhlandii 
CF418 

Influent 
water 

S313L LB8 
Achromobacter 
phage LB8-B 

Achromobacter phage 
ewii 

A.ruhlandii 
CF418 

Influent 
water  

S2D 
LB6-
repeated 

Achromobacter 
phage nyashin LB6 
(repeated in 3 
samples) 

Achromobacter phage 
nyashin 

A.ruhlandii 
CF418 

Infuent 
water 

S313L 
LB8-
prophage 

Achromobacter 
prophage CF418-P1 
(prophage from 
CF418) 

Achromobacter 
prophage CF418-P1 

A.ruhlandii 
CF418 

Influent 
water  

IS4 LB4 
Achromobacter 
phage LB4 (partial 
genome ?) 

Achromobacter phage 
kwar 

A. ruhlandii 
CF116 

Influent 
water site 4 
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Supplemental Table 5.4 Lifestyle prediction for Achromobacter phages.  

Phage name Lifestyle  

probability 
of 
temperate 
lifestyle 

sd for 
temperate 
lifestyle  

probability 
of lytic 
lifestyle 

sd for 
lytic 
lifestyle 

Integrase 
in 
genome 

Achromobacter phage 
nyaak   0.514 0.041 0.486 0.041 0 
Achromobacter phage 
kewaak   0.512 0.040 0.488 0.040 0 
Achromobacter phage 
wiik   0.509 0.045 0.491 0.045 0 
Achromobacter phage 
tuull   0.504 0.043 0.496 0.043 0 
Achromobacter phage 
maay   0.517 0.042 0.483 0.042 0 
Achromobacter phage 
xasilly   0.509 0.041 0.491 0.041 0 
Achromobacter phage 
ahaak   0.486 0.043 0.514 0.043 0 
Achromobacter phage 
shaaii Lytic 0.468 0.039 0.532 0.039 0 
Achromobacter phage 
emuu   0.482 0.039 0.518 0.039 0 
Achromobacter phage 
ewii   0.505 0.043 0.495 0.043 0 
Achromobacter phage 
nyashin Lytic  0.461 0.039 0.539 0.039 0 
Achromobacter 
prophage CF418-P1 Temperate 0.526 0.040 0.474 0.040 1 
Achromobacter phage 
kwar   0.508 0.037 0.492 0.037 0 
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Supplemental Table 5.5 Isolated Achromobacter phages for broader host range.  

Phage 
ID 

Phage name 
Phage 

isolation host 
Phage isolation source 

Phage 
isolation 
source 

collection date 

M1 Achromobacter phage 
M1 

Achromobacter 
sp. VVP0357 

Vallecitos Wastewater 
District. (Meadowlark 
Water Reclamation 
Facility), Carlsbad, CA. 

2/20/2019 

M2 Achromobacter phage 
M2 

Achromobacter 
sp. VVP0357 

Vallecitos Wastewater 
District. (Meadowlark 
Water Reclamation 
Facility), Carlsbad, CA. 

2/20/2019 

ENA1 Achromobacter phage 
ENA1 

Achromobacter 
sp. VVP0357 

Encina Wastewater 
Authority, Carlsbad CA. 
92011 

2/20/2019 

MW2 Achromobacter phage 
MW2 

Achromobacter 
sp. VVP0426 

Vallecitos Wastewater 
District. (Meadowlark 
Water Reclamation 
Facility), Carlsbad, CA.  

2/20/2019 

SE2 Achromobacter phage 
SE2 

Achromobacter 
sp. VVP0426 

San Elijo Joint Powers 
Authority, Cardiff by the 
Sea, CA. 

4/16/2019 
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Chapter 6 : Synthesis 

 

In this dissertation the role of phages in an environmental and host-associated context 

was explored. Phages were studied at different scales, from a global environmental context 

(Chapter 1) to specific interactions in host-associated systems (Chapter 3 and Chapter 4). In 

addition, accurate methods to describe the effects of phages in microbiomes were developed 

(Chapter 2). 

Phages abundance, diversity and lifestyle.  

The most common mechanism by which phages influence microbial ecosystems is by 

controlling bacteria populations and therefore maintaining diversity. Phages exist as free viral 

particles (lytic phages) or inside bacteria genomes (lysogenic phages) and they can alternate 

between these two lifestyles. In host associated systems a third player is involved, the 

eukaryotic immune system. This tripartite association of host-bacteria-phage results in a more 

complex system.  

 Most phage particles on Earth are in soils and sediments (97%), these biomes have a 

high bacteria abundance and a virus to microbe ratio smaller than 10, which is indicative of a 

phage lysogenic lifestyle (Figure 6.1-A). The viral genetic diversity in soils and sediments is 

still underexplored. Since the publication of “Viruses as winners in the game of life” (Cobián 

Güemes et al. 2016), 35 new soils and sediment viromes have been published (Yoshida 2018; 

Bryson et al. 2015; Adriaenssens et al. 2017; Yu et al. 2019; Emerson et al. 2018; Trubl et al. 

2018; Han et al. 2017; Scola et al. 2018; Corinaldesi, Tangherlini, and Dell’Anno 2017).   
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Figure 6.1Virus to microbe ratio, microbial and viral abundance in Earth biomes and in Cystic 

Fibrosis (CF) stable and exacerbation respiratory tract samples. Aquatic, soil and sediments, 

and animal associated data points were compiled from the literature and published in Cobián 

2016 and Knowles and Silveira 2016. Cystic Fibrosis data points were obtained from Chapter 

4 of this dissertation. A) Microbes per milliliter and the virus to microbe ratio. B) Microbial 

and viral abundances. A virus to microbe ratio of 10 is presented for reference. 
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Host-associated environments present high bacteria abundances. The lungs of Cystic 

Fibrosis (CF) patients have between 108 and 1010 microbes per mililiter. In such high bacteria 

abundances, viral abundances do not scale linearly. This phenomenon is an indication of 

phages integrating in bacteria genomes, a mechanism described as Piggyback the winner 

(Knowles and Silveira et al. 2016). In periods of stability in the lungs of CF patients, a phage 

lysogenic lifestyle is predominant; in exacerbations, a phage lytic lifestyle is observed (Figure 

6.1-B). This finding suggests that phage inductions increase in exacerbation periods, an 

observation explored in Chapter 4. We predict that phage-pathogen intereactions are 

contributing to pathogenesis in the CF lung. Thus, characterization of bacterial and viral 

communities is needed to design effective therapeutic strategies during exacerbation events.  

Are phages hard to find? 

Phage identification in metagenomes and viromes is challenging since most phages are 

not characterized yet. In the exploration of the global virome, around 200,000 viral genotypes 

were identified, most of which represent new phages. To identify phages and mobile elements 

in CF metagenome assembled genomes (MAGs) an exact match strategy was developed 

(Chapter 2) and new phages were identified in every CF patient. This approach highlights the 

importance of accurate and detailed metagenomic studies. In this dissertation, methods to 

detect mobile elements in MAGs were developed and applied to successfully detect new 

phages and multispecies mobile elements.   

The personalized nature of Cystic Fibrosis exacerbations 

The CF lung is a harsh environment for microbes, nevertheless they colonize the 

mucosal surfaces persistently over the patient’s lifetime. During this time the microbial 
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community adapts to the CF lung through constant exposure to antibiotics and host immune 

responses. Thus, microbial species that inhabit the lungs of each CF patient have unique 

adaptations. In the case of Stenotrophomonas maltophilia, the same species dominated 

exacerbation periods of two CF patients; however, each S. maltophilia carried unique 

insertions that represented 3% of the genome. One of these insertions was a filamentous 

phage encoding zonula occludens toxin. This finding highlights the importance of accurate 

and detailed metagenomic analysis for the study of the CF lung and other polymicrobial 

infections. In Chapters 3 and 4 of this dissertation, I provided the methods to detect mobile 

elements and illustrated their importance in understanding their effect in host-pathogen-phage 

interactions.  

Model for Cystic Fibrosis acute exacerbations  

CF acute exacerbations in which the lung function declines rapidly and there is no 

improvement with treatment are identified by the clinicians as a danger signal for CF patients. 

To improve survival rates of these patients, a CF rapid response strategy was adopted. 

Lessons learned from these acute exacerbations include: 1) the microbial community exhibits 

low diversity, 2) the dominant microbes employ mechanisms to cause direct damage to the 

host epithelium and access oxygen and nutrients, 3) the dominant microbes appear to replicate 

rapidly, 4) these infections are not recurrent, and 5) the phages lytic lifestyle dominates the 

system. Examples of CF microbes associated with acute exacerbations that follow the 

described principles are: Achromobacter spp. which encode hemolysins that attack the host 

tissue in order to access nutrients and oxygen; Stenotrophomonas spp. carrying a filamentous 

phage encoding zonula occludens toxin; Escherichia coli carrying shigatoxin; as well as 
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Haemophilus spp., Staphylococccus spp. and Streptococcus spp. carrying several virulence 

factors (Figure 6.2).  

 

Figure 6.2 Model for Cystic Fibrosis acute exacerbations. 

 

The Chaotic Neutral Phage 

Phages are the winners in the game of life since they are the most abundant and 

diverse life form on Earth (Hendrix et al. 1999; Breitbart et al. 2002; Rohwer and Edwards 

2002; Edwards and Rohwer 2005; Cobián Güemes et al. 2016). How they maintain a total of 

6.03 x 1031 particles in the biosphere is still an open question, however we have some hints 

about their dominance strategies: 1) phages switch between a lytic and lysogenic lifestyle 
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which allow them to survive as free viral particles or in a latent state inside bacteria genomes 

(Ptashne 2004; Knowles et al. 2016; Zeng et al. 2010; Erez et al. 2017; Broussard et al. 2013); 

2) phages encode their genomic information in different kinds of genetic material, such as 

dsDNA, ssDNA, dsRNA and ssRNA (Koonin, Dolja, and Krupovic 2015; Ofir and Sorek 

2018), a feature that expands the genomic space they can explore and; 3) phages attack 

bacteria which leads to an arms race between them and allows for the development of 

multiple evasion and infection strategies (Benler et al. 2018, Lee et al. 2018, Rauch et al. 

2017). The diverse strategies phages employ seem chaotic (Cook, Tweet, and Williams 2003) 

in the sense that they do not follow a set of established rules, nor do we understand the extent 

of these rules yet. Phages seem to be neutral in the sense that their effect to their host is 

sometimes beneficial and sometimes detrimental, but they do not have an agenda (i.e. 

evolution is not intentional). The question of the nature of phages is still open, maybe they are 

lawful evil, and do abide by a strict set of rules to dominate the world.  
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