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Abstract

The Brazelton Neonatal Behavioral Assessment Scale (NBAS) evaluates a 

newborn infant’s autonomic, motor, state, temperament, and social-

attentional systems, which can help to identify infants at risk of 

developmental problems. Given the prevalence of rhesus monkeys being 

used as an animal model for human development, here we aimed to validate

a standardized test battery modelled after the NBAS for use with non-human

primates called the Infant Behavioral Assessment Scale (IBAS), employing 

exploratory structural equation modeling using a large sample of rhesus 

macaque neonates (N=1056). Furthermore, we examined the repeated 

assessments of the common factors within the same infants to describe any 

changes in performance over time, taking into account two independent 

variables (infant sex and rearing condition) that can potentially affect 

developmental outcomes. Results revealed three factors (Orientation, State 

Control, and Motor Activity) that all increased over the first month of life. 

While infant sex did not have an effect on any factor, nursery-rearing led to 

higher scores on Orientation but lower scores on State Control and Motor 

Activity. These results validate the IBAS as a reliable and valuable research 

tool for use with rhesus macaque infants and suggest that differences in 

rearing conditions can affect developmental trajectories and potentially pre-

expose infants to heightened levels of cognitive and emotional deficiencies.
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Introduction

It is routine practice in hospitals that each newborn baby is carefully checked

for signs of health problems by doctors, nurses, and other health care 

providers. While some conditions can predict complications in physical health

(Bateson, et al., 2004; Rees, Harding, & Walker, 2008), others may have 

more subtle influences e.g. on stress responsiveness or cognitive 

performance (Sackett, Ruppenthal, Hewitson, Simerly, & Schatten, 2006). 

The Neonatal Behavioral Assessment Scale (NBAS), developed in 1973 

(Brazelton, 1973) and revised in 1995 (Brazelton & Nugent, 1995), has been 

used to evaluate health status, maturity, and temperament of neonates over

the first four weeks of life (Als, Tronick, Lester, & Brazelton, 1977), and 

consists of a standardized battery of tests for rating normative reflexes, 

responses, and arousal states. Its purpose is to describe neurotypical 

development, to give an indication of the infant’s ability to regulate its own 

behavior, and to document his or her interactional capacity (Hawthorne, 

2005). The NBAS is based on the idea that neonates are complexly 

organized, able to protect themselves from negative stimuli, in control of 

motor responses in order to attend to external stimuli, and capable of 

influencing their environment to optimize their emotional, social, and 

cognitive development (Als et al., 1977). The rearing environment may 

further enhance or suppress a neonate’s capabilities (Weinberg, Kim, & Yu, 

1995), and cross-cultural differences have been noted with regard to 

performance on the NBAS (Brazelton, Koslowski, & Tronick, 1976; Brazelton, 
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 Paukner 5

Robey, & Collier, 1969). Its applications have included: evaluating the effects

of maternal obstetric medication; describing characteristics associated with 

failures in developmental outcomes; assessing the effects of maternal 

narcotic addiction; characterizing infants’ individual differences in interaction

with caregivers; and determining the effects of intervention programs for low

birth weight infants (Als et al., 1977).

The NBAS allows for comparing groups of infants, either at one point or

over time, as well as describing the performance of a single infant. It consists

of 27 behavioral items and 20 reflex items (Brazelton & Nugent, 1995), 

grouped into several a-priori subscales including Interactive Processes, 

Motoric Processes, State Control, and Physiological Response to Stress (Als et

al., 1977). However, other statistical analyses have also been used to 

interpret findings including item-by-item comparison, factor analysis, overall 

summary scale, and type and profile analysis (Als et al., 1977). 

For research purposes, the NBAS has been adapted for use with non-

human primate (NHP) neonates and has been called the Infant Behavioral 

Assessment Scale (IBAS; Coe, Lubach, Crispen, Shirtcliff, & Schneider, 2010).

NHP models are particularly useful for neurodevelopmental studies due to 

NHPs’ similarity to humans in physiology, neuroanatomy, development, 

cognition, and social complexity (Phillips et al., 2014). In addition, 

researchers can tightly control environmental and lifestyle variables of NHPs

in a way that is not possible with humans (Schneider & Coe, 1993). Past 

studies have shown, for example, that chimpanzees perform remarkably 
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 Paukner 6

similarly to human neonates in their behavioral response on the IBAS 

(Hallock, Worobey, & Self, 1989; Bard, Platzman, Lester, & Suomi, 1992). 

Other adaptations have included marmoset (Braun, Schultz‐Darken, 

Schneider, Moore, & Emborg, 2015) and squirrel monkey neonates 

(Schneider & Coe, 1993). The most widely applied use has been with rhesus 

macaque neonates (Schneider, Moore, Suomi, & Champoux, 1991), 

measuring (like the human instrument) dimensions of arousal, orientation, 

and neuromotor maturity, all of which have implications for later cognitive 

and emotional development (Schneider & Suomi, 1992). Its application has 

revealed, for example, that maternal stress during pregnancy (Schneider & 

Coe, 1993), maternal alcohol consumption during pregnancy (Schneider, 

Roughton, & Lubach, 1997), and genetic differences (Champoux, Suomi, & 

Schneider, 1994; Champoux et al., 2002) significantly impact performance 

on the IBAS in rhesus macaque neonates. 

Analyses of the rhesus IBAS data have been similarly varied with some 

investigators performing principal components or common factor analyses 

to generate interpretable factors (e.g. Schneider et al., 1991; Coe et al., 

2010), and others comparing single items between groups or over time (e.g.

Ferrari et al., 2009; Dettmer, Ruggiero, Novak, Meyer, & Suomi, 2008). Both 

approaches can be problematic: item-by-item comparisons may suffer from 

the post-hoc nature of the interpretation of differences as well as the 

magnitude of reported differences being conceptually meaningless (Als et 

al., 1977). Common factor and principal components analyses may be prone
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 Paukner 7

to sampling error when only small sample sizes (N<50, common in NHP 

studies) are available, meaning that a particular solution may not be 

applicable to other populations. The most rigorous validation of the rhesus 

IBAS to date have been by Coe et al. (2010) and Kay, Marsiske, Suomi, & 

Higley (2010). Coe et al. (2010) used principal components analysis on the 

data of 413 2-week-old rhesus macaque infants, which resulted in the 

generation of 4 factors: state control, motor activity, orientation, and 

sensory sensitivity. Sex differences in state control (with females being more

reactive than males) and varying with several different pregnancy 

manipulations were also observed. Kay et al. (2010) used data from 542 1-

week-old rhesus macaque infants and 26 items hypothesized to be relevant 

to infant temperament. An exploratory factor analysis revealed three 

components, named Negative Affect, Orienting/Regulation, and 

Surgency/Extraversion, that resemble previously identified component of the

IBAS (State Control, Orientation, and Activity) as well as factors identified in 

human infant temperament models (Kay et al., 2010).

The present study sought to expand on Coe et al.’s (2010) and Kay et 

al.’s (2010) findings by validating the rhesus IBAS scale using an exploratory

structural equation modeling (ESEM) with a large sample of rhesus macaque

infants. Thus, in contrast to past investigations that have performed either 

an exploratory or confirmatory analysis using data collected at a single point

in time, we relied on a repeated measures analysis to study the underlying 

factor structure of the measured items across multiple points in time 
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(Asparouhov & Muthén, 2009). We note as well that we applied common 

factor analysis and not principal components analysis. Common factor 

analysis assumes that one or more latent factors account for the patterns of 

correlations between measured items and that residual variance in the 

observed items is due to measurement error (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999). Conversely, principal components analysis is 

a data reduction method that results in linear weighted combinations of the 

measured items that maximally account for variance in the items (Costello &

Osborne, 2005). In addition to the ESEM, we applied a second-order latent 

curve model to further examine the repeated measures assessments of the 

common factors within the same infants (up to 4 within the first month of 

life) and describe any changes in performance of factors over time, taking 

into account two independent variables (infant sex: male, female; and 

rearing condition: mother-reared, nursery-reared) that can potentially affect 

developmental outcomes. 

Methods

Ethical approval

Research methods were approved by the Animal Care and Use Committee, 

Eunice Kennedy Shriver National Institute of Child Health and Human 

Development, National Institutes of Health. The study was conducted in 

accordance with the Guide for the Care and Use of Laboratory Animals and 
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 Paukner 9

complied with the Animal Welfare Act and the American Society of 

Primatologists Ethical Principles for the Treatment of Non-Human Primates.

Subjects

Subjects were 1056 infant rhesus macaques (Macaca mulatta), 

spanning 27 different birth cohorts (1989-2016). For 15 infants, rearing 

condition and infant sex was not documented. 541 infants (276 male) were 

reared by their mothers and lived in social groups comprised of 1-2 adult 

males, 8-12 adult females, and 2-6 infants of similar age. This type of social 

housing approximates rhesus macaques’ field ecology, where groups are 

multi-male / multi-female and can consist of 6-90 individuals (Makwana, 

1978). Social groups were housed in indoor-outdoor enclosures measuring 

2.44m x 3.05m x 2.21m indoors and 2.44m x 3.0m x 2.44m outdoors, and 

enriched with wood chips, multiple perches, swings, and other enrichment 

devices. Monkeys were fed Purina High Protein Monkey Chow (#5054, St. 

Louis, MO) and supplemental fruit and other foraging materials such as 

peanuts or sunflower seeds twice daily. Water was available ad libitum. 

561 infants (305 male) were separated from their mothers on the day 

they were born (typically by 8am), and were reared in a nursery facility for 

ongoing, unrelated research studies (e.g. Provençal et al., 2012; Schneper, 

Brooks-Gunn, Notterman, & Suomi, 2016; Baker et al., 2017). All infants were

individually housed in incubators (51 cm × 38 cm × 43 cm) maintained at 

24-28°C for the first two weeks of life and in metal cages (61 × 61 × 76 cm) 
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 Paukner 10

thereafter. Room temperature was maintained between 22° and 26°C, and 

humidity was maintained at 50 to 55%. All housing arrangements contained 

a moveable fleece surrogate, loose pieces of fleece fabric, and various plush,

plastic, and rubber toys. For the first month of life, infants could see and 

hear, but not physically contact, other infants of similar age. Human 

caretakers were present for 13h each day and interacted with infants every 

2h for feeding and cleaning purposes. Infants were bottle fed ready-to-feed 

Similac™ formula and as they became older, were offered water ad libitum. 

Starting at 16 days of age, infants were given Purina High Protein Monkey 

Chow (#5054, St. Louis, MO). Daily enrichment consisting of fruit, seeds, or 

nuts was added at 2 months old (for further details see Simpson, Miller, 

Ferrari, Suomi, & Paukner, 2016).

Procedure

The neonatal assessments were planned for postnatal days 7, 14, 21, 

and 30 (+/- 1 day).  Though the majority (n = 767) of infants were measured 

on these days, the remainder were measured according to different subsets 

of these days, resulting in 15 patterns of observation (see Appendix 1). 

Mother–infant dyads were separated from their social group beginning at 

11:00 each testing day. The mother was anesthetized (ketamine HCl, 10 mg/

kg, IM); the infant was transported to the neonatal nursery for testing and 

reunited with the mother after completion of the test.
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 Paukner 11

Each infant was evaluated with the standardized rhesus monkey test 

battery based on the IBAS (Schneider & Suomi, 1992) consisting of 46 items. 

All tests were administered by trained raters with interrater reliability 

determined by independently scoring the test and comparing the two sets of 

scores with r>.90. Ratings were based on scales ranging from 0 to 2 with 

half steps allowed (i.e., 0.5 and 1.5). 

Data analytic strategy

The data analysis followed a two-stage approach. First, exploratory 

structural equation models using geomin rotation (Asparouhov & Muthén, 

2009) were applied to responses on 46 items across the four waves of data 

collection to identify subsets of items whose correlations could be accounted 

for by a relatively small number of latent constructs.  Infants with missing 

data were included in this analysis, with these animals contributing data as 

available. In this first stage of data analysis the full sample of n = 1056 was 

divided into two independent sets, of the same size, formed by random 

sampling. The goal was to apply ESEM to one data set (calibration sample, n 

= 528) and to evaluate the performance of the model using a confirmatory 

model applied to an independent sample (validation sample, n = 529). In 

ESEM, all items may have loadings on all factors; in the confirmatory model, 

items have loadings on specific factors and all other loadings are set equal to

zero. The ESEM assumed that the factor loading of each item was invariant 

across the four measurement waves. Other aspects of the model were not 
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restricted to be the same across the four waves of measurement. These 

included the intercepts of the measurement models for each item, the 

residual variances of the individual items and the variances of the latent 

constructs. Additionally, the residuals corresponding to the same item could 

covary between waves, and the latent constructs could covary within and 

between waves. 

In the second stage of analysis, the reduced item set (based on results 

from the first stage) was studied using a repeated measures second-order 

latent growth model. This model allows for evaluation of change in the latent

constructs across waves of measurement and to test if infant sex and rearing

condition accounted for individual differences in change. The model was 

applied to both the calibration and validation samples. All models were 

estimated using Mplus version 8 (Muthén & Muthén, 2017) with maximum 

likelihood estimation with standard errors which are robust to non-normality. 

Missing data were assumed to be missing at random. Fifteen animals with 

missing values for sex and rearing condition were excluded from analyses 

that included these covariates in the model.

Results

From the repeated measures EFA using the calibration sample, three 

factors based on 19 of the set of 46 items were deemed meaningful, as 

judged by the estimated factor loadings that were large relative to their 

standard errors and that followed a factor loading pattern that was generally 
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consistent with reports by Coe et al. (2010) and Schneider & Suomi (1992).  

Factor 1, Orientation, included moderate to high factor loadings for visual 

orientation, visual following, looking duration, attention span, and reach & 

grasp. Factor 2, State Control, included moderate to high factor loadings for 

response intensity, soothability, vocalization count, irritability, consolability, 

struggle during test, predominant state, cuddliness, tremulousness, and self-

quieting. Factor 3, Motor activity, included moderate to high factor loadings 

for motor activity, passivity, coordination, and locomotion. Standardized 

maximum likelihood estimates from the two analyses using the reduced set 

of 19 items are given in Table 1, along with the root mean square error of 

approximation (RMSEA) and the standardized root mean square residual 

(SRMR) that were used to evaluate model fit. Values less than .05 for both 

measures are typically used to judge a model as providing a close fit to the 

data. The EFA yielded an acceptable level of fit, with an RMSEA value of .045 

(90% CI: .043, .046). The SRMR was .059.

Table 1 about here

Next, a 3-factor CFA was fit to the validation sample using the pattern 

of factor loadings suggested by EFA. Specifically, CFA allowed for items to 

differ from zero if their loadings from EFA were large relative to their 

standard errors and were set equal to zero if the loadings were otherwise 

small. Estimates from CFA using the validation sample are in Table 2, along 
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with the RMSEA. As judged by the RMSEA, the factor structure based on CFA,

as suggested by EFA using the calibration sample, provided a good fit to the 

validation sample (RMSEA = .047, 90% CI: .045, .048). The SRMR was .07.

Table 2 about here

In fitting the second-order latent growth model, the form of change in 

the factors was evaluated before adding the covariates to the model. For 

these models, time was defined by the animal’s age in weeks at each 

measurement occasion, with time centered at one week of age (i.e., time = 0

corresponded to age = D7). Thus, the intercept of the growth model is 

interpreted as the factor score at 7 days of age. Time was coded to reflect 

change in each factor per week (i.e., time = 0, 1, 2, 3.3 [reflecting the 9 day 

time difference between the third and fourth measurement point] 

corresponded to age = D7, D14, D21, and D30). The first growth model 

assumed a constant rate of change for each of the three factors, and the fit 

of this model was compared to that of a second model that assumed 

quadratic change (i.e., the model included both a linear and a quadratic time

effect) for each of the three factors. Based on model fit comparisons using 

the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC), first using the calibration sample and then replicating the analysis 

using the validation sample, a linear growth model best described change in 

the three factors (Factor 1 Orientation, Factor 2 State Control, Factor 3 Motor
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Activity). Based on the estimates of this model for both samples, the means 

of each factor increased over time. Estimates of this model, referred to as 

Model 1, are given for the calibration sample in the first column and upper 

part of Table 3, and those for the validation sample appear in the first 

column and lower part of Table 3. 

Table 3 about here

Individual differences in the factors were assessed by examining the 

variances of the random effects of the growth models. The variance-

covariance matrix of the random effects is given in the upper part of Table 4 

for the calibration sample and in the lower part of Table 4 for the validation 

sample. In each matrix, the estimated variances are in the diagonal of the 

matrix, the covariances are given below the diagonal, and the correlations 

are given above the diagonal. Individual differences in each of the factors at 

7 days of age is evidenced by the estimated variances of the intercepts of 

each growth model, all of which are large relative to their standard errors. 

Individual differences in the linear rates of change is revealed by the large 

variances of the random effects relating to change in Orientation and State 

Control but not Motor Activity. 

Table 4 about here
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The covariates, sex (male=1, female=0) and rearing (nursery-

reared=1, mother-reared=0), were added to the latent growth model to 

predict the factors at 7 days of age and their change over time. Estimates of 

this model, referred to as Model 2, for the calibration sample are in the 

second column and upper part of Table 3 and those for the validation sample

are in the second column and lower part of Table 3. For both samples, sex 

was not a reliable predictor of the factors at 7 days of age or their change 

over the study period. Sex was dropped as a covariate and the models 

refitted, with estimates provided in the last column of Table 3. At 7 days of 

age, nursery-reared animals were relatively high on Orientation and 

relatively low on both State Control and Motor Activity compared to mother-

reared animals. With regard to change, mother-reared animals did not 

change, on average, in Orientation, whereas nursery-reared animals 

increased, on average. Whereas mother-reared animals increased in State 

Control, nursery-reared animals did not change, on average. For Motor 

Activity, nursery-reared and mother-reared did not differ in their mean rate 

of change, with both groups increasing over time. Parameter estimates were 

comparable between the calibration and validation samples. 

Expected mean trajectories for mother- and nursery-reared animals 

and corresponding 95% confidence intervals of the expected trajectories of 

individual animals within these groups are displayed in Figure 1. For 

Orientation (Figure 1a), the fitted means for the nursery-reared animals over 

days were such that the factor mean scores at 7 days of age were relatively 
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high (the factor mean score for mother-reared animals was arbitrarily set 

equal to 0 for model identification purposes) with the estimated between-

group difference in the intercept being 0.35 (SE = 0.05). For mother-reared 

animals, the factor mean scores remained fairly stable across days 

(estimated slope = 0.03, SE = 0.01); for nursery-reared animals, the factor 

mean scores increased at a relatively fast rate across days (the estimated 

between-group difference in the slope was 0.09, SE = 0.02).  For State 

Control (Figure 1b), the fitted means for the nursery-reared animals over 

days were such that the factor mean scores at 7 days of age were relatively 

low (again, the factor mean score for mother-reared animals was arbitrarily 

set equal to 0 for model identification purposes) with the estimated between-

group difference in the intercept being 0.43 (SE = 0.04). For mother-reared 

animals, the factor mean scores increased across days (estimated slope = 

0.22, SE = 0.01); for nursery-reared animals, the factor mean scores 

remained fairly stable (the estimated between-group difference in the slope 

was -0.20, SE = 0.01).  For Motor Activity (Figure 1c), the fitted means for 

the nursery-reared animals over days were such that the factor mean scores 

at 7 days of age were relatively low (again, the factor mean score for 

mother-reared animals was arbitrarily set equal to 0 for model identification 

purposes) with the estimated between-group difference in the intercept 

being -0.31 (SE 0.05). For mother-reared animals, the factor mean scores 

increased across days (estimated slope = 0.11, SE = 0.01); for nursery-
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reared animals, the factor mean scores increased at about the same rate 

(the estimated between-group difference in the slope was 0.01, SE = 0.02). 

Figure 1 about here

Discussion

Our analyses of the largest-to-date sample of rhesus macaques further 

validated and calibrated the IBAS scale for use with rhesus macaque 

neonates. The large sample size (N=1056) allowed us to perform both 

exploratory and confirmatory factor analyses, which resulted in three robust 

factors: Orientation (Factor 1), State Control (Factor 2), and Motor Activity 

(Factor 3). Compared to previous factor analyses with much smaller sample 

sizes (N=23, Schneider et al., 1991; N=413, Coe et al., 2010; N=542, Kay et 

al., 2010), there was nonetheless surprising overlap in loadings of 

Orientation and State Control factors, and, perhaps to a lesser degree, the 

Motor Activity factor between all studies. Kay et al. (2010) found similar 

factors in 7 day old rhesus macaque infants, which also resemble those of 

the three factor model of human infant temperament. Schneider et al. (1991)

differentiated between Motor Maturity and Activity, which did not emerge in 

the present analyses. Coe et al. (2010) obtained a fourth factor, labeled 

Sensory Sensitivity; none of the variables loading onto this factor were 

deemed meaningful in the current analyses (with the exception of 

Vocalization, which in the current analysis as well as Coe et al.’s (2010) 

analyses also loaded onto the State Control factor). Thus, we recognize all 
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 Paukner 19

three factors as the most common and reliable constructs of the rhesus 

monkey IBAS scale.

It is also of interest that only 19 of the original 46 items were deemed 

meaningful in the construct of these factors. It may be tempting to therefore 

reduce the number of test items altogether in order to make the assessment 

faster, more streamlined, and thereby resulting in less stress to rhesus 

monkey neonates. However, items that did not contribute to the three 

factors may still be of interest to individual research studies. For example, in 

human infant studies individual items of the NBAS have been used to study 

neurobehavioral conditions in preterm infants (Alvarez-Garcia, Fornieles-Deu,

Costas-Moragas, & Botet-Mussons, 2015) or the effects of the 

haemoconcentration on neonatal behavior (Aranda, Hernández-Martínez, 

Arija, Ribot, & Canals, 2017). Furthermore, some items that loaded onto the 

three factors, particularly those related to State Control, are assessed at the 

end of the test battery and evaluate the infants’ behavior throughout the 

test (e.g. Irritability, Consolability). Changing the structure and length of the 

test items may reduce the opportunities examiners have to evaluate infants 

on these items and introduce artificial bias to the assessment. Care should 

therefore be taken before considering dropping any individual test items 

from the test battery.

Similar to previous studies (Schneider & Suomi, 1992), the means of all

three factors showed an increase over time, meaning that over the first 

month of life infant rhesus macaques improved in Orientation, Motor Activity,
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and State Control. This change is likely related to the maturation of the 

infants’ visual (Ordy, Latanick, Samorajski, & Massopust, 1964) and motoric 

(Armand, Olivier, Edgley, & Lemon, 1997) systems, as well as an increasing 

ability to self-sooth and self-calm. However, there were also individual 

differences in the linear rates of change for Orientation and State Control, 

but not Motor Activity. While this finding may suggest that in healthy infant 

macaques, postnatal motor maturation proceeds in a predictable pattern and

is undisturbed by either genetic or environmental variables, others have 

found that stress levels during gestation can significantly affect motor 

development (Schneider, 1992). Maturation of Orientation and State Control 

appear to similarly be subject to either genetic (Champoux et al., 2002) and/

or environmental (Sackett, 1972) influences, which will require further 

clarification in future studies.

  Looking in more detail at variables that may affect neuromotor 

development, we found no significant effects of infant sex on any factor at 1 

week old or over the first month of life. A similar lack of sex differences on 

the IBAS has been reported for squirrel monkey neonates (Schneider & Coe, 

1993) and for a previous study on rhesus neonates (Schneider et al., 1991). 

In contrast, Braun et al. (2015) report that female marmosets display 

significantly more aggression than male marmosets at day 30 of age, and 

Coe et al. (2010) found that female rhesus macaques are more reactive 

(lower State Control) than males at 14 days of age. Human male infants are 

often regarded as being more vulnerable (Geschwind & Galaburda, 1985), 
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showing higher rates of disordered regulation (Degangi, Dipietro, Greenspan,

& Porges, 1991) and lower apgar scores (Singer, Westphal, & Niswander, 

1968), and rhesus infants exhibit similar trends, with males reared in 

isolation being more aggressive, less exploratory, more stereotyped 

(Sackett, 1972), and being more affected by pregnancy manipulations than 

females (Coe et al., 2010). However, these sex differences are not universal 

and depend on the experimental condition employed (Morse, Beard, Azar, & 

Jones, 1999). While rhesus males may be more vulnerable to developmental 

difficulties, these susceptibilities were not apparent in the current sample. 

Still, latent effects such as increased risk of psychopathology in humans 

(Brown, 2006) or dysregulated physiology and poorer emotion regulation in 

rhesus monkeys (Weinstein & Capitanio, 2008; Capitanio, Mendoza, Mason, 

& Maninger, 2005) may persist.

Furthermore, we observed several effects of rearing condition on all 

three factors. Previous factor analyses of the IBAS limited the sample 

population to either only nursery-reared (Schneider et al., 1991), only 

mother-reared rhesus infants (Coe et al., 2010), or did not take rearing 

effects into account (Kay et al., 2010), although differences according to 

various forms of environmental enrichment have been previously described 

(Schneider et al., 1991). At 1 week of age, nursery-reared animals scored 

higher on Orientation and lower on both State Control and Motor Activity 

compared to mother-reared animals. Differences in test performance 

according to rearing condition may reflect differences brought about by the 
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test conditions themselves as mother-reared animals, unlike nursery-reared 

animals, were not used to being handled by human caretakers. In addition, 

nursery-reared infants were more likely to have experienced additional 

behavioural experimental procedures (e.g. Nelson et al., 2011; Paukner, 

Simpson, Ferrari, Mrozek, & Suomi, 2014; Vanderwert et al., 2012), which 

may have been stressful to infants. Alternatively, nursery-rearing in rhesus 

macaques (without a mother as a consistent attachment figure) has been 

shown to lead to poor emotional and cognitive development, including poor 

socialization skills in adulthood (Corcoran et al., 2012; Gilmer & McKinney, 

2003; Machado & Bachevalier, 2003), paralleling many features of affective 

disorders shown by human infants with early adverse experience and thus 

making rhesus macaques a good model for socio-affective development 

(Sclafani, Paukner, Suomi, & Ferrari, 2015). The observed differences at 1 

week of age suggest that these changes may already occur after only a 

relatively brief period of time and during an age when infants may be 

particularly vulnerable, making nursery-reared animals more vigilant, more 

reactive, and perhaps more fearful (resulting in an increased freeze 

response; Kalin & Shelton, 1998). While rearing did not appear to affect 

Motor Activity over time, nursery-rearing influenced the developmental 

trajectory of both Orientation and State Control with nursery-reared animals 

increasing their Orientation scores over time but not their State Control 

scores, suggesting that they remained more vigilant than mother-reared 

animals and had more difficulties to self-sooth under test conditions. Both 
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propensities further emphasize that nursery-reared animals’ developmental 

trajectories pre-expose them to heightened levels of cognitive and emotional

deficiencies, making them ideal models to investigate how to mitigate and 

reverse these effects through behavioral (Sclafani et al., 2015) or 

pharmacological interventions (Simpson et al., 2014).

In conclusion, the IBAS for rhesus macaque neonates remains an 

important and valuable tool to assess neurobehavioral development in a 

widely-used animal model. The current analyses validated three robust 

factors (Orientation, State Control, and Motor Activity) and described their 

development over the first month of life, taking into account infant sex and 

rearing condition. Future studies should focus on the long-term implications 

of these initial behavioral tendencies, the stability of these traits throughout 

infancy and juvenility, and how to potentially stage interventions to reverse 

suboptimal trajectories. 
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Table 1
Repeated measures exploratory structural equation modeling
using the calibration sample (n = 528)

Factor 1
Orientation

Factor 2
State

Control

Factor 3
Motor

Activity
Item Loading Loading Loading
Visual orientation .84     .03 -.01
Visual following .75 -.04 -.00
Looking duration .94 -.00 -.00
Attention span .80 -.10 .02
Reach and grasp .47 .08 .05
Response 
intensity

-.04 .66 .01

Soothability .02 .90 -.02

Vocalization (log) .02 .37 -.08
Irritability .03 -.80 .00
Consolability .04 -.89 -.03
Struggle during 
test

-.03 .85 .05

Predominant 
state

.00 .89 -.00

Cuddliness .10 -.74 -.06
Tremulousness .02 .25 .04
Self-quieting .07 .47 -.06
Motor activity -.01 .04 .90
Passivity -.01 .06 -.98
Coordination .03 .04 .29
Locomotion .08 .10 .37

Notes: Estimates are standardized maximum likelihood estimates assuming 
invariance of the factor loadings across the four repeated measurements. 
The variances of all factors were set equal to 1. For the calibration sample, 
RMSEA = .045, 90% CI of RMSEA: (0.043, 0.046).
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Table 2
Repeated measures confirmatory factor analysis using the 
validation sample (n = 528)

Factor 1
Orientation

Factor 2
State Control

Factor 3
Motor Activity

Item Loading Loading Loading
Visual 
orientation

.80

Visual following .70     
Looking duration .93   
Attention span .83     
Reach and grasp .43     
Response 
intensity

.70

Soothability .88     
Vocalization 
(log)

.26     

Irritability -.78    
Consolability -.90    
Struggle during 
test

.85     

Predominant 
state

.86     

Cuddliness -.78    
Tremulousness .28     
Self-quieting .41     
Motor activity .99
Passivity -.92    
Coordination .29     
Locomotion .42     

Notes: Estimates are standardized maximum likelihood estimates. The variance of 
each factor corresponding to the first wave of measurement was set equal to 1 to 
set the scale of the corresponding factor. For the validation sample, RMSEA = .046, 
90% CI of RMSEA: (0.045, 0.048).
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Table 3
Fixed-effects estimates of a second-order latent curve model
Sample Parameter Model

1
Model 2 Model 3

Calibrati
on

Orientation, age 1 week 0* 0* 0*

n = 528 Male -.04(0.05)
Nursery Reared 0.37(0.05)a 0.36(0.05)

a

Orientation, linear change 
rate

.06(.01
)a

0.01(0.02) 0.02(0.01)

Male 0.02(0.02)
Nursery Reared 0.09(0.02)a 0.09

(0.02)a

State Control, age 1 week 0* 0* 0*
Male -0.04(0.03)

Nursery Reared -0.55(0.04)
a

-0.55
(0.04)a

State Control, linear 
change rate

.11(.01
)a

0.20(0.01)a 0.21(0.01)
a

Male 0.01(0.01)
Nursery Reared -0.18(0.01)a -0.18

(0.01)a

Motor Activity, age 1 week 0* 0* 0*
Male 0.04(0.05)

Nursery Reared -0.37(0.05)a -0.37
(0.05)a

Motor Activity, linear 
change rate

.11(.01
)a

0.10(0.02)a 0.09(0.02)
a

Male -0.01(0.02)
Nursery Reared 0.03(0.02) 0.03(0.02)

Validatio
n

Orientation, age 1 week 0* 0* 0*

n = 528  Male 0.03 (0.05)
Nursery Reared 0.35 (0.05)a 0.35(0.05)

a

Orientation, linear change 
rate

.08
(.01)a

0.03 (0.02) 0.03(0.01)

Male -0.01 (0.02)
Nursery Reared 0.09 (0.02)a 0.09

(0.02)a

State Control, age 1 week 0* 0* 0*
Male -0.04 (0.03)

Nursery Reared -0.43
(0.04)a

-0.43
(0.04)a

State Control, linear 
change rate

.12
(.01)a

0.22 (0.01)a 0.22(0.01)
a

Male 0.01 (0.01)
Nursery Reared -0.20

(0.01)a
-0.20

(0.01)a
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Motor Activity, age 1 week 0* 0* 0*
Male -0.09 (0.05)

Nursery Reared -0.31
(0.05)a

-0.31
(0.05)a

Motor Activity, linear 
change rate

.11
(.01)a

0.10 (0.02)a 0.11(0.01)
a

Male 0.01 (0.02)
Nursery Reared 0.01 (0.02) 0.01(0.02)

Notes: Estimates are unstandardized maximum likelihood estimates with standard 
errors in parentheses. 0* denotes that the mean of the factor at age 1 week was set
equal to 0. a denotes statistically significant effects at the .05 level.
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Table 4.

Estimated variance-covariance matrix of the factor levels and rates of change

Calibration sample, n = 528

[F 1level F 1rate F 2level F 1rate F 1level F 3rate

F 1level .16 −.12 −.57 .02 ¿
.06¿F 1rate¿−.00¿.01¿−.19¿−.89¿−.18¿.25¿F 2level ¿−.09¿−.01¿ .16¿.34¿.67¿−.56¿F 2rate¿.00¿−.01¿.01¿.01¿.29¿ .00¿F 3level¿−.05¿−.01¿.10¿.01¿.14¿−.28¿F 3rate¿.00¿.00¿−.02¿.00¿−.01¿.01¿]

Validation sample, n = 528

[F 1level F 1rate F 2level F 2rate F 3level F 3rate

F 1level .17 −.19 −.45 −.25 ¿
−.10¿F 1rate¿−.01¿.01¿−.32¿−.45¿−.23¿ .25¿F 2level¿−.07¿−.01¿.12¿.40¿.72¿−.44¿F 2rate¿−.01¿−.01¿ .02¿.02¿.33¿.00¿F 3level¿−.04¿−.01¿.09¿.01¿.11¿−.08¿F 3rate¿−.00¿.00¿−.01¿−.00¿−.00¿.01¿]

Notes: F1 Orientation, F2 State Control, F3 Motor Activity. For the random growth 
coefficients, the variances are along the diagonal, covariances in the lower off-
diagonal, and correlations in the upper off-diagonal. Estimates are based on Model 
1. Correlations of at least .09 are statistically significant at the .05 level.
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Figure legends

Figure 1. Expected mean trajectories for mother- and nursery-reared 

animals and corresponding 95% confidence intervals of the expected 

trajectories of individual animals within these groups for Orientation (1a), 

State Control (1b), and Motor Activity (1c). The mean trajectories for each 

group are displayed using bold lines and 95% intervals of the within-group, 

between-animal differences in change are displayed by the shaded areas. 

Estimates are based on the validation sample. The variances of the random 

intercept and slope correspond to the between-animal variability in the 

factor scores at 7 days of age and in the linear rates of change, respectively. 

Assuming that the random effects are normally distributed, then 

approximately 95% of the individual intercepts and slopes are expected to 

range about their respective mean values by ± 1.96*SD of the corresponding

random effect.  For instance, the mean intercept of Orientation (1a) for 

nursery-reared animals was equal to 0.35 and the SD of the random 

intercept was 0.41. It follows that approximately 95% of intercepts for 

nursery-reared animals are expected to range from 0.35 ± 1.96*0.41 or -

0.45 to 1.15. These values are shown for each of the three factors by the 

shaded areas. The lightest shading represents expected animal-level 

trajectories for the mother-reared animals and the darkest shading 

represents expected trajectories for the nursery-reared animals. The overlap 

between groups is represented by the medium shade of gray. As shown, 

there is overlap between groups in the expected range of the individual-level
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trajectories for each other the three factors. Thus, even though there were 

statistically significant differences in the mean factor scores between groups,

there was considerable overlap in the expected trajectories of the individual 

animals.
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