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Abstract

Estimation of the costs and benefits of climate change mitigation

by

Kendon Matthew Bell

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Maximilian Auffhammer, Chair

The global climate is changing, and it is incumbent on researchers to determine both the
costs and benefits of slowing this change. This dissertation contributes to the study of both
of these goals. One chapter examines the effect that measurement error in control variables
can have on the empirical estimation of the relationship between economic variables and
temperature, using the case of maize in the United States of America. This chapter suggests
that measurement error in precipitation could bias temperature coefficients away from zero,
in this context. One chapter studies the effect of weather variables on the world’s largest
livestock industry, dairy, in the New Zealand context, and finds large and different effects of
weather in summer and winter, and finds that bottom-line conclusions are sensitive to the
assumption that the effects do not vary by season. Finally, with a co-author, one chapter
studies the potential for a low carbon fuel source that uses a proven, mature, technology,
sugarcane ethanol, and finds that a substantial proportion of carbon-intensive fuel could be
displaced, under modest subsidies, suggesting that some fossil fuels can be replaced with low
abatement costs.
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Chapter 1

Overview

This dissertation brings together research on three topics in environmental and resource
economics. Specifically, each of the chapters contributes to either the study of the costs or of
the benefits of slowing climate change, which is an issue which global policy makers continue
to consider.

The first chapter investigates the potential effect of measurement error in control variables
on the estimated responses of economic variables to temperature. I use the case of agricul-
ture, in which an extensive literature of process crop models provides a set of output response
functions that is uncontaminated by errors in measurement. I show that temperature re-
sponses in statistically emulated maize models are attenuated when including precipitation,
while the response in the empirical counterpart is not. I also find that the precipitation
response functions in the emulated maize models conform to reasonable prior expectations,
while the response in the empirical counterpart does not. I also find that the residual corre-
lation between extreme temperature and precipitation is large and negative. The results are
consistent with two narratives: one where the true precipitation response function is very
different from those in agronomic crop models and one where mis-measurement of precipita-
tion biases the empirical extreme temperature response away from zero. I provide suggestive
evidence that using long differences can partially solve the problem and I propose a solution
that uses instruments.

The second chapter examines the relationship between weather and dairy production in
New Zealand, which is a major pasture-based livestock producer. The vast majority of the
land used in the global agricultural system supports livestock systems, with the vast majority
of this land in pasture. Due to concern about the environmental effects of changing land
uses, and expected future demand increases for animal products, it is crucial to understand
how these systems will react to future climate change. Using data on the production and
quality of milk produced in New Zealand, this chapter estimates the nonlinear relationship
between weather and dairy production. I estimate models both restricting response functions
to be the same throughout the dairy season and allowing for heterogeneity by time-of-year.
I find large and negative impacts of moderate to high temperatures in summer months and
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large and positive impacts of moderate temperatures during winter months. I give suggestive
evidence that allowing for seasonality in responses results in less pessimistic projections of the
response to future climate change in this context. I find statistically, but not economically,
significant negative impacts of rising temperatures on milk quality.

In the third chapter, which is joint work with David Zilberman, we develop a supply
model for ethanol production in Brazil with spatially disaggregated potential yield, freight
costs, and pasture land available for conversion. We show that, under the assumptions of
free capital markets, constant prices, and a modest increase over the current oil-equivalent
price, a non-trivial amount of future global liquid fossil fuel can be profitably displaced by
Brazilian ethanol production using existing pasture land. Along with policies to encourage
the intensification of existing beef production, the dominant current land use, this new
production can occur without the use of additional agricultural land, assuaging concerns
about indirect land use change. At the current ethanol price, which includes the subsidizing
effect of the mandate, the model predicts a substantial expansion of sugarcane ethanol,
indicating that real-world considerations, such as capital controls and institutional, policy,
and price uncertainty, are considerable barriers to investment in this context.
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Chapter 2

Does the ‘Iron Law’ always hold? The
impact of measurement error in
climate econometrics

2.1 Introduction

Accurate measurement of the effect of climate on societies is crucial to understanding the
costs and benefits of climate change, and identifying opportunities for reducing economic de-
pendence on the climate. In climate econometrics, researchers often focus on the response of
temperature, while controlling for precipitation (Schlenker and Roberts 2009; Burke, Miguel,
et al. 2009; Deschênes and Greenstone 2011; Deryugina and Hsiang 2014; Burke, Hsiang,
and Miguel 2015). Generally, studies that find large temperature effects also find relatively
small effects of precipitation. Precipitation has been shown to be difficult to accurately in-
terpolate across space, while temperature interpolations are quite accurate (Hijmans et al.
2005; Lobell and Asseng 2017).

It is well known that classical measurement error in a single regressor results in bias
towards zero, or attenuation bias, in OLS regression, for the estimated coefficient on that re-
gressor; Hausman (2001) refers to this bias as the “Iron Law of Econometrics”. However, less
attention has been paid to the potential bias in coefficients of interest that might result from
including control variables that are mis-measured (Atkinson and Crocker 1992). In general,
the coefficients on all variables will be biased in this situation; Garber and Klepper (1980)
provide a formula that shows that, when a single control variable is mis-measured, this bias
depends on the correlations between all variables, and is not necessarily attenuating, except
for the coefficient on the mis-measured variable. For research on weather impacts, if we be-
lieve that error in the measurement of precipitation is large relative to that for temperature,
there is cause for concern about bias away from zero in the temperature coefficients (Lobell
2013). In the extreme, if precipitation was measured so poorly that there was no signal at
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all, and temperature was measured correctly, then all of the effect of precipitation would
load on to the temperature effect, if these variables are correlated.

This chapter provides several pieces of evidence that suggest that, for the case of maize in
the United States of America, measurement error in precipitation does indeed cause bias away
from zero for the effects of extreme hot temperature. Firstly, I statistically emulate1 nonlinear
temperature response functions for each of seven process crop models, using the exact inputs
that forced the models, thus providing responses that are uncontaminated by measurement
error. I then compare the effect of introducing precipitation as a control variable in the
emulated process models to that for the equivalent empirical model and show that the
effects of extreme temperature attenuate substantially in the process models, while that in
the empirical model does not.2 Next, I show that the process models produce inverted-U-
shaped precipitation response functions, while the empirical model does not, consistent with
attenuation bias in the precipitation coefficients in the empirical model. Next, I show that
the residual correlation between precipitation and extreme hot temperatures, after partialling
out fixed effects and other temperature variables, is large and negative, consistent with that
which would be required for bias away from zero in the extreme hot temperature coefficient.

The results suggest that future changes in precipitation will have a larger impact than
empirical maize models suggest, and future changes in temperature will have a smaller
impact.

A natural question to ask is does this bias matter for climate change impacts estima-
tion? For many studies, the bottom-line quantity of interest is not necessarily the impact of
contemporaneous temperature, but a projection or forecast of the response of an economic
variable under future expected changes in both temperature and precipitation. I derive an
expression that shows that, when future changes in temperature and precipitation retain
their historical bivariate relationship, coefficients on correctly measured temperature vari-
ables can successfully recover an unbiased estimate of the future change in an economic
variable, conditional, of course, on the historical relationship between weather and the eco-
nomic variable also continuing to hold. In essence, the projected future temperature impact
subsumes the future precipitation impact. However, climate models generally do not project
that the future bivariate relationship between temperature and precipitation will be the same
as today, with temperature increasing everywhere and precipitation changes varying greatly
across models and space, so this result is not necessarily cause for optimism.

Using long differences models (Burke and Emerick 2016) over periods of temperature
change could partially alleviate the problem of measurement error in precipitation for two
reasons. Firstly, the long differences model uses fewer time fixed effects, reducing the amount
of signal that is taken out of the data by the fixed effects estimator. Secondly, the longer run
temperature change may break the problematic correlation between extreme temperature

1See in Blanc and Sultan (2015) and Schauberger et al. (2017) for examples of this approach.
2Asymptotically, omitting a control variable causes the same bias as including a highly mis-measured

proxy for the same control variable.
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and precipitation. I find that, indeed, using this longer run variation reduces the residual
correlation between extreme temperature and precipitation; however, the correlation remains
large. I also find that moderate temperatures in the long differences model have a significant
negative residual correlation with precipitation, while they do not in the fixed effects model;
this finding then causes concern about negative bias in the effect of moderate temperatures.

The most optimistic path forward, for contexts in which researchers expect precipitation
impacts to be large, and precipitation monitors are dense, is computing two interpolations
of each grid cell with different sets of monitors for each grid cell-day, then instrument one
interpolation with the other. However, this relies on correct spatial aggregation within each
unit and time period as incorrect aggregation leaves relevant variables in the error term, and
the weather at the incorrectly omitted grid cell is likely to be more correlated with one of
the sets of monitors more than the other. A future iteration of this project will implement
this solution.

This chapter proceeds as follows: the following section briefly outlines the theory of the
effect of measurement error in control variables in OLS regression. Next, I outline the data
I use in my analyses; following that, I specify the regression methods I use and discuss the
results. Finally, I conclude with some thoughts about the implications of this work.

2.2 Theory

This section outlines the econometric theory of the effect of classical measurement error in one
variable on the coefficient on a second variable. Griliches (1957), Theil (1957), Blomqvist
(1972), McCallum (1972), Wickens (1972), Levi (1973), Aigner (1974) all made relevant
contributions that analyzed some aspect of this problem. The exposition here draws heavily
on Garber and Klepper (1980) and I express all variables in demeaned form.

Suppose we have an economic variable, y, that depends on both temperature, T ∗, and
precipitation, P ∗:

y = β∗TT
∗ + β∗PP

∗ + ε (2.1)

where ε is a standard noise term. Suppose further that precipitation is measured with error
such that observed precipitation is:

P = P ∗ + u (2.2)

Modifying the results presented in Garber and Klepper (1980)3 provides the expressions
for the probability limits on each estimated coefficient in a regression of y on the true

3These authors cite Chow (1957), which is not readily accessible, when they obtain these results.
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temperature, T ∗, and the mis-measured precipitation, P :

β̂P =

(
σ∗P

σ∗P + σ2
u

)
β∗P (2.3)

β̂T = β∗T +

(
σ2
u

σ∗P + σ2
u

)
γ∗PTβ

∗
P (2.4)

where β̂P and β̂T are the estimated coefficients in the regression of y on T ∗ and P , σ∗P is the
variance in the true precipitation variable, σ2

u is the variance of the measurement error term
u, β∗P and β∗T are the true effects of precipitation and temperature, and γ∗PT is the coefficient
in a regression of the true precipitation, P ∗, on the true temperature, T ∗.

Equation (2.3) shows the familiar “Iron Law” result, where the precipitation coefficient
is attenuated. However, Equation (2.4), shows that the bias in the temperature coefficient,
β̂T −β∗T , depends on the measurement error to total variance ratio in precipitation, the linear
relationship between precipitation and temperature, and the size of the precipitation effect
in the main regression. The measurement error to total variance ratio is in the interval [0, 1),
so the total bias is bounded between 0 and the product of the coefficient in a regression of
P ∗ on T ∗ and the effect of precipitation in the main estimating equation. Importantly, this
implies that only control variables that are both relevant in the main relationship of interest
and correlated with the variable of interest can cause substantial bias, and that the bias
increases with the degree of mis-measurement.

If temperature and precipitation are negatively correlated, and precipitation has a pos-
itive effect, then the bias in the temperature coefficient is negative. If the true effect of
temperature is negative or zero, then this bias is away from zero.

Climate change impacts

If the researcher is not interested in β∗T and β∗P , but only in the total impact of changes
in both of these variables, ∆y, as in the case of projections of the future impact of climate
change, then the bias I described in the previous subsection does not necessarily imply biased
estimates of ∆y. The formal expression for the bias in ∆̂y, ignoring error terms, is:

∆̂y −∆y =
(
β̂T − β∗T

)
∆T ∗ +

(
β̂P − β∗P

)
∆P ∗

=

(
σ2
u

σ∗P + σ2
u

)
γ∗PTβ

∗
P∆T ∗ −

(
σ2
u

σ∗P + σ2
u

)
β∗P∆P ∗

= (γ∗PT∆T ∗ −∆P ∗)

(
σ2
u

σ∗P + σ2
u

)
β∗P (2.5)

Equation (2.5) states that projected changes in y will be unbiased if the relationship between
temperature and precipitation in future changes is the same as it is in levels (i.e. γ∗PT∆T ∗ =
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∆P ∗). Intuitively, if climate change preserves the historical relationship between temperature
and precipitation, and current precipitation effects are subsumed in temperature effects, then
projected effects of temperature changes will also subsume the future effects of precipitation
changes.

2.3 Data

Yield data

I collect historical maize yield data from USDANASS for the empirical model. Following
Schauberger et al. (2017), I subset these data to include counties where 90% or more of the
maize land is rain-fed, as measured in the MIRCA2000 dataset, which measures rain-fed and
irrigated land uses by crop for the year 2000. The empirical model’s time period is defined
by the availability of the weather dataset I use.

The “Intersectoral Impact Model Intercomparison Project” (ISIMIP) provides modeled
yields from seven crop process models: EPIC, GEPIC, IMAGE, LPJ-GUESS, LPJmL,
pDSSAT and PEGASUS. These data are gridded at the 0.5◦×0.5◦ level and, also follow-
ing Schauberger et al. (2017), and motivated by a desire to use the same geographic scale for
both the empirical and the process models, I spatially aggregate these data up to the county
level using area-overlap weights. The historical ISIMIP yield data are available for various
periods within 1971-2010; these time periods define the process models’ time periods.

Weather data

I use a reanalysis weather dataset, AgMERRA, for the empirical data.4 Precipitation, rela-
tive humidity, and wind speed are gridded at the 0.25◦×0.25◦ level; temperature is gridded
at the 0.5◦×0.5◦ level, and solar radiation is gridded at the 1◦×1◦ level.5 Following Schlenker
and Roberts (2009), I construct linear spline transformations of these variables at the grid
cell-day level, spatially aggregate the variables using area-overlap weights, and temporally
aggregate these using the sum over days in the March-August growing season. These data
are available for the period from 1980-2010, defining the time period for the empirical model.

4See Auffhammer, Hsiang, et al. (2013) for a discussion of the use of reanalysis data in economic appli-
cations.

5I have two motivations for using these data instead of a higher spatial detail dataset, such as PRISM.
Firstly, the Agricultural Model Intercomparison Project’s (AgMIP) subproject, the Global Gridded Crop
Model Intercomparison (GGCMI) uses these data to force the process crop models being compared. When
the crop model output from those data are available (I have been told they will be released “soon”), they can
be readily included in this project. Secondly, the AgMERRA data include relative humidity, wind speed,
and solar radiation, which are variables that are also considered important for crop growth, along with
temperature and precipitation.
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The ISIMIP data also includes the exact weather used to force the process models. I
transform and aggregate these data in the same manner as the empirical data. The ISIMIP
data contains forced crop models from five different climate models, and I pool all of these
in all the process model regressions. However, to ensure the average climate is similar in the
process and empirical models, I subset to only counties that appear in the empirical sample.

2.4 Methods

Comparing regressions across process and empirical models

In the first stage of this analysis, I will compare the process and empirical models across
several specifications with increasingly detailed controls. I can represent all the specifications
in this stage in the following form:

yit = f(Tit) + g(Pit) + zitα+ γi + δi1t+ δi2t
2 + εit (2.6)

where yit is the maize yield in county i and year t, f is a function of the vector of daily
temperature maxima and minima within a county-year, g is a function of the vector of daily
precipitation within a county-year, zit is a vector of other control variables, γi is a county
fixed effect, and δi1t+ δi2t

2 is a state-specific quadratic trend.
The base specification is similar to the linear spline specification in Schlenker and Roberts

(2009) with no control variables:

f(Tit) = S1
0,27(Tit) (2.7)

g(Pit) = 0 (2.8)

α = 0 (2.9)

where S1
0,27(Tit) denotes a linear spline in the full time series of temperature, assuming single

sine interpolation within each day, with knots at 0◦C and 27◦C.6 The base specification is
intended to represent the case where the effect of measurement error in control variables
leaves no useful signal in these variables.

The first specification with controls introduces a quadratic in total season precipitation:

g(Pit) = βp1Pit + βp2P
2
it (2.10)

Here, Pit denotes total season precipitation. This is the specification that is used in both
Schlenker and Roberts (2009) and Schauberger et al. (2017).

6The apparent turning point for the relationship between temperature and yields in the ISIMIP data
tends to be 27◦C; for AgMERRA, 25◦C appears to be the optimal turning point. Note that these datasets
have lower spatial aggregation than the dataset used in Schlenker and Roberts (2009), which finds a turning
point of 29◦C, so there is more spatial averaging of temperature extremes.
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The next specification replaces the precipitation quadratic with a flexible linear spline in
daily precipitation:

g(Pit) = S1
0,1,5,10,15,20(Pit) (2.11)

where S1
0,1,5,10,15,20(Pit) denotes a linear spline in daily precipitation with knots at 1mm,

5mm, 10mm, 15mm, and 20mm.
Next, I investigate the effect of additional controls by adding flexible linear splines in

each of solar radiation, relative humidity, and windspeed:

zitα = h1(Rit) + h2(Hit) + h3(Wit) (2.12)

h1(Rit) = S1
0,2,4,8,12,16,20,24,28,32,36(Rit) (2.13)

h2(Hit) = S1
0,21,39,60,81(Hit) (2.14)

h3(Wit) = S1
0,2,4,6,8(Wit) (2.15)

where the spline functions are defined similarly to that for precipitation. To ensure that the
simple specification of temperature does not obscure important features of the temperature
responses, as a robustness check I implement a flexible specification that replaces (2.7) with:

f(Tit) = S1
−5,0,5,10,15,17,19,21,23,25,27,29,31,33,35(Tit) (2.16)

which is a linear spline in the full time series of temperature with knots at the values in the
subscript.

In all specifications that use the ISIMIP data, I pool the observations across all five
climate models, for each crop model, and I allow the county fixed effects and state-specific
quadratic trends, but not weather responses, to vary across climate models.

Examining residual correlations

As alluded to in the Theory section, Garber and Klepper (1980) show that the bias in the
coefficient on a variable of interest caused by mis-measurement of a control variable depends
on the correlation between the two variables, after partialling out the effects of all other
included variables. The true bias depends on the correlation between the true, rather than
the observed, variables, but we can use the observed variables as proxies, so long as the
signal contained in the mis-measured variable is large enough. If the measurement error is
classical, the correlation between the observed variables should be lower than the correlation
between the true variables, so using observed variables should be a conservative indicator of
potential bias.

2.5 Results

Figure 2.1 plots the results for both the process (column 1) and empirical (column 2) models
using the temperature specification in Equation (2.7). The rows of the figure use increasingly
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Figure 2.1: Process model and empirical model temperature response functions
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This figure plots Equation (2.7) for a single day of temperature. Each plot is vertically centered so
that change in log(yield) takes a value of zero when temperature is 27◦C. The first column plots the results
for the statistically emulated process crop models; the light gray lines represent each individual model and
the red line is the median of the plotted points for each value of temperature. The second column plots the
results for the empirical model with 95% confidence bands calculated assuming error clustering by state and
year. Subplot titles describe which control variables are included. Below each plot is a histogram of the full
time series of temperature using single sine interpolation.
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detailed controls: the first row only containing temperature variables, the second row using
a quadratic in season-level precipitation (Equation (2.10)), the third using a flexible linear
spline in daily precipitation (Equation (2.11)), and the fourth using flexible linear splines in
each of precipitation, solar radiation, relative humidity, and wind speed (Equations (2.11),
(2.13), (2.14), and (2.15)). I plot the results for the individual process models in light gray
and the median value for each value of temperature in red; all the process model values are
point estimates. I plot the results for the empirical models with 95% confidence bands that
are calculated assuming error clustering by state and year.

Firstly, I find that the median point estimate within the process models for the impact of
extreme temperature, when including no control variables, is remarkably similar to that for
the empirical model. Two process models show much larger temperature effects and one pro-
cess model shows almost no temperature effect. The similarity between the median process
model function and the empirical function is consistent with measurement error in tem-
perature being sufficiently small such that the temperature response does not substantially
attenuate, if the median process model response is correct.

Introducing the precipitation quadratic reduces the median extreme temperature effect
in the process models to 73% of the slope in the no-controls regression, while it increases
the slope on extreme temperature in the empirical model by around 5%. Using the flexible
precipitation specification further reduces the extreme temperature effect in the process
models to 66% of the slope in the no-controls regression,7 while slightly increasing the slope
further in the empirical model. Introducing the other control variables further reduces the
extreme temperature effect in the process models to 60% of the slope in the no-controls
regression. If the median process model response is correct, these results are consistent
with substantial measurement error in the control variables causing bias in the coefficient on
extreme temperature in the empirical model.

Focusing on the median obscures some substantial heterogeneity amongst the process
models. Figure 2.2 plots the extreme temperature slope against the increase in the R2 over
a regression with no control variables. The values within each of the seven process models
as well as the empirical model are joined by lines. This plot is intended to communicate the
degree to which each set of controls both explains variation in yields and shifts the extreme
temperature response. If controlling for more variables tends to reduce the observed impact
of extreme temperature, then the plotted lines should be upward sloping.

The figure shows three stark features: all seven process models’ extreme temperature
effects reduce when including controls, the models with the largest temperature effects have
the largest reductions, and all seven process models’ extreme temperature effects are smaller
than the empirical model’s, after including all controls.

Figure 2.3 shows the precipitation response functions for the three specifications in Figure

7Note that the season-level quadratic actually explains more variation in annual yields than the daily
model. However, the using the daily precipitation variation might control for more of the portion of precip-
itation that varies with extreme temperature.
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Figure 2.2: Extreme temperature slopes against increase in R2, by model
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This figure plots the slopes on the portion of the temperature response function above 27◦C against the
increase in adjusted R2 over a regression including temperature variables only, for each of the specifications
in Figure 2.1, and each of the seven process models as well as the empirical model. The figure links the four
specifications for each of the eight models with a line.

2.1 that include precipitation. The season-level quadratic functions in the process models
are all inverted-U-shaped, though quite flat where most of the distribution of rainfall lies.
The empirical precipitation response function, however, is a very tight zero, consistent with
what we would expect when using a highly mis-measured regressor. In the model with
flexible linear splines in daily precipitation and no other control variables, I find that the
process models generally have an inverted-U relationship between daily precipitation and
yield. Oddly, the empirical response function features a strange large and negative effect
of small amounts of precipitation. Absent this feature, the precipitation response function
appears to be qualitatively similar to the median response in the process models. Introduc-
ing other controls, including solar radiation, substantially reduces the size of the negative
impact of small amounts of precipitation in the empirical model, indicating that it was likely
omitted solar radiation that caused the strange negative effect of small amounts of precipi-
tation.8 However, introducing the extra controls also reduces the estimated positive effects

8Very low levels of precipitation should have little impact on yields compared to no precipitation, but
cloudy days also have less sunlight, so solar radiation is likely negatively correlated with the low-precipitation
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Figure 2.3: Process model and empirical model precipitation response functions
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This figure plots Equations (2.10) for average daily precipitation and (2.11) for a single day of precipitation.
Each plot is vertically centered so that change in log(yield) takes a value of zero when precipitation is 0mm.
The first column plots the results for the statistically emulated process crop models; the light gray lines repre-
sent each individual model and the red line is the median of the plotted points for each value of precipitation.
The second column plots the results for the empirical model with 95% confidence bands calculated assuming
error clustering by state and year. Subplot titles describe which control variables are included. Below the
plots in the first row is a histogram of average daily precipitation. Below the plots in the second and thirds
rows are histograms of daily precipitation.
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Figure 2.4: Process model and empirical model flexible response functions to
other control variables
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This figure plots Equations (2.13), (2.14), and (2.15) for a single day. Each plot is vertically centered so
that change in log(yield) takes a value of zero when solar radiation is 23MJ/m2/day, daily average relative
humidity in the process models is 80%, relative humidity at the time of maximum temperature in the empirical
model is 50%, and wind speed is 0m/s. The first column plots the results for the statistically emulated process
crop models; the light gray lines represent each individual model and the red line is the median of the plotted
points for each value of the independent variable. The second column plots the results for the empirical model
with 95% confidence bands calculated assuming error clustering by state and year. Subplot titles indicate which
control variable is being plotted. Below each plot is a histogram of the daily values of each variable.

of precipitation, leaving the entire function statistically indistinguishable from zero. The
median crop model precipitation response does not change substantially when introducing
other controls.

regressors.
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Figure 2.4 plots the responses for the control variables other than precipitation. Despite
a large amount of variation in solar radiation in both the process and the empirical models,
neither model seems to recover the positive effect across the spectrum that we expect.

We expect relative humidity to have an inverted-U-shaped relationship with yields, with
low humidity increasing water demand, and high humidity potentially increasing disease
susceptibility. In the empirical model, humidity appears to have a small inverted-U-shaped
response in the main part of the support of the independent variable, while the process
models show mostly flat responses.

Wind speed appears to have very little effect in the main part of its support in both the
process and empirical models.

To ensure the simple base specification of temperature is not obscuring features of the
underlying response functions, Figure 2.5 replaces the temperature specification in Figure
2.1 with a flexible linear spline. The functions look generally similar to those in the sim-
pler model, with temperatures starting to worsen yields close to 27◦C. There is, however,
substantial heterogeneity and “spikiness” in the process models’ responses. The empirical
temperature response closely mirrors the simpler specification’s.

The lack of smoothness in the flexible temperature responses highlights a problem in
the emulation of the process models. While the process model emulations do not suffer
from measurement error, they do suffer from specification error.9 It is unclear exactly how
incorrect specification would affect the bottom-line conclusions of this chapter. To remedy
this problem, a future iteration of this project will attempt to identify the complicated
relationships between annual simulated yields and the many possible input variables using
LASSO regression, a machine learning technique that will help to choose which of the many
possible specifications best represents each process crop model.10

Examining residual correlations

Table 2.1 presents the correlations between each of the temperature variables in Equation
(2.7) and precipitation, after partialling out the effects of all fixed effects, trends, and the
other temperature variables. For simplicity, I omit the square of the precipitation variable
when calculating these correlations. The table shows a strikingly large and negative residual
correlation between total season precipitation and the number of degree days in a season
above 27◦C. Because the effect of precipitation is positive, Equation (2.4) states that the
bias in the coefficient on the temperature regressor is negative. This diagnostic is unable

9Throughout, I use “specification error” to refer to omitted variable bias that arises from correlations
between included regressors and omitted nonlinearities and seasonal heterogeneity in response functions.
Correlation between the extreme temperature regressor and the cube of season-level precipitation would be
a possible source of “specification error”, for example.

10There are six weather inputs for 184 days per growing season, with non-linear transformations, and
interactions.
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Figure 2.5: Process model and empirical model flexible temperature response
functions
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This figure plots Equation (2.16) for a single day of temperature. Each plot is vertically centered so that
change in log(yield) takes a value of zero when temperature is 27◦C. The first column plots the results for
the statistically emulated process crop models; the light gray lines represent each individual model and the red
line is the median of the plotted points for each value of temperature. The second column plots the results
for the empirical model with 95% confidence bands calculated assuming error clustering by state and year.
Subplot titles describe which control variables are included. Below each plot is a histogram of the full time
series of temperature using single sine interpolation.
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Table 2.1: Residual correlations between non-linear temperature and precipita-
tion

Temperature regressors (S1
0,27)

T < 0 0 ≤ T < 27 T ≥ 27

Residual correlation with
season precipitation

−0.041
(0.063)

0.118∗

(0.064)
−0.526∗∗∗

(0.067)
Following Garber and Klepper (1980), this table presents residual correlations between each temperature
regressor in the linear spline with knots at 0◦C and 27◦C and season level precipitation, after controlling
for state-specific quadratic trends, county fixed effects, and the other temperature regressors. I calculate
the standard errors for these correlations assuming error clustering by state and year. For simplicity, I omit
the square of the precipitation variable when calculating these correlations. If the effect of precipitation is
positive, and only precipitation is measured with error, the bias in the temperature coefficient is the same
sign as the reported correlation. The magnitude of the bias depends on the signal-to-total variance ratio for
the residualized precipitation variable, the size of the true precipitation effect, and the ratio of the standard
deviations of the residualized precipitation variable and the residualized temperature variable. “*”, “**”,
and “***” denote statistical significance at the 10%, 5%, and 1% levels respectively.

to give any guidance as to how large the bias might be, as that requires knowledge of the
magnitude of the measurement error in precipitation.
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2.6 Possible solutions

This section briefly outlines some suggested solutions from the literature, implements the
proposed long differences solution, and outlines my proposed instrumental variable solution.

Test for measurement error using Griliches and Hausman (1986)

As implemented in Burke and Emerick (2016), Griliches and Hausman (1986) suggest com-
paring the coefficients from a random effects and a fixed effects model to indicate if mea-
surement error is causing problems in the latter. However, while the random effects model
will suffer less from the measurement error problem, it will suffer more from the omitted
variables bias problem. In the random effects model, it’s possible that the increase in omit-
ted variables bias and the decrease in measurement error bias could offset each other and
result a coefficient similar to the fixed effects model. Thus, it’s unclear if this test is a useful
diagnostic in this context.

Using reverse regressions

Following Klepper and Leamer (1984), I experimented using a reverse regression to bound
the true value of the temperature response. The specification used Equations (2.7) and
(2.10), and reversed the two precipitation regressors. The implied coefficients on the extreme
temperature variable in the two reverse regressions were implausibly large and positive,
suggesting that this method is unlikely to be a viable solution in this context.

Long differences

Burke and Emerick (2016) use a long differences model to detect the fingerprint of adaptation
to climate change in the context of maize in the USA. They posit that farmers may react
to longer run changes in climate differently to short-run changes and thereby reduce the
impact of extreme temperature on their yields. However, this method could also partially
remedy the problem of measurement error in precipitation for two reasons. Firstly, the
long differences model uses fewer time effects, increasing the proportion of signal used by
the estimator. Secondly, the longer run temperature change may reduce the problematic
correlation between extreme temperature and precipitation. However, it is then unclear how
to distinguish the effect of farmer adaptation from the effect of reductions in measurement
error in precipitation, both of which should reduce the impact of extreme temperatures.
If measurement error in precipitation is indeed a problem here, any apparent adaptation
observed by the long differences model may be spurious.

This section replicates the analysis in this chapter thus far, using long differences. Fol-
lowing Burke and Emerick (2016), I sum the observations within each unit for each of the
first five and the last five years in the respective samples. As the samples now only have two
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Figure 2.6: Process model and empirical model temperature response functions
in the long differences model
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This figure plots Equation (2.7) for a single day of temperature. Each plot is vertically centered so that
change in log(yield) takes a value of zero when temperature is 27◦C. The first column plots the results for
the statistically emulated process crop models; the light gray lines represent each individual model and the red
line is the median of the plotted points for each value of temperature. The second column plots the results
for the empirical model with 95% confidence bands calculated assuming error clustering by state and year.
Subplot titles describe which control variables are included. Below each plot is a histogram of the full time
series of temperature using single sine interpolation.
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time periods, I omit the state-specific trends and include a sample-level time fixed effect in
the empirical model, and a climate-model-specific time fixed effect in the process models.

Figure 2.6 replicates the specifications in Figure 2.1, using long differences. As expected,
the empirical response function is now more sensitive to the inclusion of control variables,
consistent with the long differences model lessening the problem of measurement error in
precipitation. In the empirical model, including the precipitation quadratic decreases the
temperature response to around 71% of that for the regression with no controls. However,
including the flexible spline in daily precipitation increases the temperature response back to
100% of that for the no-controls specification. Including flexible splines in all control variables
decreases the temperature response to 62% of that for the regression with no controls.

While the results for the empirical model are encouraging, what is discouraging is that the
sensitivity to the inclusion of controls in the process models has also increased. Introducing
the precipitation quadratic, the flexible spline in daily precipitation, and flexible splines in
all control variables respectively reduces the median extreme temperature response to 49%,
26%, and 23% of that for the regression with no controls.

While the results appear puzzling, it is possible that the process models are suffering from
omitted variables bias (or specification error), and the correlation between temperature and
the omitted variables changes when using the different time scales for estimation. It’s not
clear which direction this bias might go. For this reason, it’s important that a future iteration
of this project can more confidently determine the underlying functions in the process models
before drawing hard conclusions.

Figure 2.7 summarizes the results of the previous figure by plotting the slopes on the
extreme temperature portion of the response function against the gain in R2 over a regression
with no controls. The most notable difference, compared with the equivalent plot that
used the fixed effects specifications, Figure 2.2, is that the process models with the largest
temperature impact in the no-controls specification have such large reductions that they
become the second and third smallest temperature impacts in the specification with flexible
splines in all control variables. As in the previous plot, introducing controls reduces the
temperature response in all the process models.

Figure 2.8 shows the precipitation response functions. As expected, the empirical re-
sponse for the season-level quadratic model is now statistically significant, and is close to
that for the median response from the process models. However, the flexible spline spec-
ification still shows large negative effects of small amounts of precipitation on yields. In
the previous section, I suggested that the omission of solar radiation could have caused this
anomaly; however, in the long differences specification, introducing solar radiation does not
substantially reduce this negative effect. Examining Figure 2.9 shows that the empirical
solar radiation response function slopes downward for much of the support. The downward
slope suggests that mis-measurement or mis-specification in other variables is causing bias in
the response to solar radiation, causing some new concern for the robustness of the empirical
model.

Figure A2 plots the responses using the flexible temperature specification. Both the
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Figure 2.7: Extreme temperature slopes against increase in R2, by model in the
long differences model

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0 0.2 0.4

Increase in Adjusted R2 over

 a regression with no control variables

S
lo

pe
 o

n 
27

+
 °C

 p
or

tio
n 

of
 te

m
pe

ra
tu

re
 re

sp
on

se

Temperature only

Flexible linear spline
in precipitation

Precipitation quadratic

Flexible linear spline
in all controls

Empirical model

Process models

This figure plots the slopes on the portion of the temperature response function above 27◦C against the
increase in adjusted R2 over a regression including temperature variables only, for each of the specifications
in Figure 2.1, and each of the seven process models as well as the empirical model. The figure links the four
specifications for each of the eight models with a line.

responses in the process and empirical models are quite noisy, so it is difficult to draw
conclusions from this figure.

The final piece to replicate for the long differences model is to examine the residual
correlations between the temperature regressors and precipitation. Indeed, I do find that
the negative correlation between the extreme temperature regressor and precipitation is less
than that in the fixed effects model. However, it remains large and statistically significant
at -0.45. Unfortunately, the long differences variation also creates significant correlations
between precipitation and the cold and moderate temperature regressors of 0.309 and -0.221
respectively, causing concern about possible bias in the coefficients on those variables.

To summarize the results from the long differences specifications, I find that the empirical
temperature response functions are more sensitive to the inclusion of controls, and that
the empirical control variables explain more variation in yields, when compared with the
fixed effects model. However, I also find that the temperature response functions for the
process models are also more sensitive to the inclusion of controls, potentially indicating
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Figure 2.8: Process model and empirical model precipitation response functions
in the long differences model
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This figure plots Equations (2.10) and (2.11) for a single day of precipitation. Each plot is vertically centered
so that change in log(yield) takes a value of zero when precipitation is 0mm. The first column plots the results
for the statistically emulated process crop models; the light gray lines represent each individual model and
the red line is the median of the plotted points for each value of precipitation. The second column plots the
results for the empirical model with 95% confidence bands calculated assuming error clustering by state and
year. Subplot titles describe which control variables are included. Below each plot is a histogram of daily
precipitation.
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Figure 2.9: Process model and empirical model flexible response functions to
other control variables in the long differences model
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This figure plots Equations (2.13), (2.14), and (2.15) for a single day. Each plot is vertically centered so
that change in log(yield) takes a value of zero when solar radiation is 23MJ/m2/day, daily average relative
humidity in the process models is 80%, relative humidity at the time of maximum temperature in the empirical
model is 50%, and wind speed is 0m/s. The first column plots the results for the statistically emulated process
crop models; the light gray lines represent each individual model and the red line is the median of the plotted
points for each value of the independent variable. The second column plots the results for the empirical model
with 95% confidence bands calculated assuming error clustering by state and year. Subplot titles indicate which
control variable is being plotted. Below each plot is a histogram of the daily values of each variable.
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Table 2.2: Residual correlations between non-linear temperature and precipita-
tion in the long differences model

Temperature regressors (S1
0,27)

T < 0 0 ≤ T < 27 T ≥ 27

Residual correlation with
season precipitation

0.309∗∗∗

(0.082)
−0.221∗∗∗

(0.086)
−0.452∗∗∗

(0.1)
Following Garber and Klepper (1980), this table presents residual correlations between each temperature
regressor in the linear spline with knots at 0◦C and 27◦C and season level precipitation, after controlling
for state-specific quadratic trends, county fixed effects, and the other temperature regressors. I calculate
the standard errors for these correlations assuming error clustering by state and year. For simplicity, I omit
the square of the precipitation variable when calculating these correlations. If the effect of precipitation is
positive, and only precipitation is measured with error, the bias in the temperature coefficient is the same
sign as the reported correlation. The magnitude of the bias depends on the signal-to-total variance ratio for
the residualized precipitation variable, the size of the true precipitation effect, and the ratio of the standard
deviations of the residualized precipitation variable and the residualized temperature variable. “*”, “**”,
and “***” denote statistical significance at the 10%, 5%, and 1% levels respectively.

that those models suffer from specification error. I find that the empirical precipitation
response function when using the quadratic specification is reasonable, and similar to that
for the process models; however, when using the flexible linear spline I still find large negative
effects of small amounts of precipitation, as with the fixed effects model. I also find that
the empirical solar radiation response function slopes downward for much of the support,
suggesting that there are still measurement problems in the long differences specification for
the empirical model.

Using interpolated weather as an instrument

The most optimistic path forward, for contexts in which researchers expect precipitation
impacts to be large, and precipitation monitors are somewhat dense, is computing two in-
terpolations of each grid cell with different sets of monitors for each grid cell-day, then
instrument one interpolation with the other. However, this relies on correct spatial aggre-
gation within each unit and time period as incorrect aggregation leaves relevant variables
in the error term, and the weather at the incorrectly omitted grid cell is likely to be more
correlated with one of the sets of monitors more than the other. A future iteration of this
project will implement this solution.

2.7 Conclusion

This chapter gave several pieces of evidence that suggest that standard empirical maize yield
models overstate the impact of extreme temperature due to mis-measurement of control vari-
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ables. Specifically, the chapter finds that temperature response functions in maize process
models have much higher sensitivities to the inclusion of control variables than their empirical
counterpart. Importantly, the chapter also documents that extreme temperature and pre-
cipitation have a large negative correlation after removing the effects of other variables and
fixed effects, consistent with what would be required for mis-measurement of precipitation
to cause bias away from zero in effect of extreme temperature.

But does this finding have implications for the wider field of weather impacts estimation
for sectors other than agriculture? I argue that the answer is yes, for any sector for which
we believe that variables other than temperature might have an impact, and those variables
are either omitted or measured with error. Temperature and humidity, for example, interact
in the relationship between weather and mortality; precipitation also reduces air pollution,
which contributes to mortality. Precipitation is important for agricultural mechanisms in
the relationships between weather and conflict or migration. Outdoor labor supply and
productivity depends on both temperature and precipitation. Future research could re-
examine each of these contexts with an eye to determining any possible biases from omission
or mis-measurement of control variables and, if the biases might be substantial, attempt to
correct for the problem using an instrumental variables estimator based on multiple spatial
interpolations.

Importantly, the finding of this chapter does not necessarily imply that we should expect
to find that prior studies have overstated the effects of temperature; the opposite is possible.
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Chapter 3

Empirical estimation of the impact of
weather on dairy production

3.1 Introduction

Agricultural production depends heavily on the weather, causing widespread and early con-
cern about the effects of global climate change on this sector. In the economics literature,
seminal papers have focused on the effects of average temperature on agricultural land val-
ues (Mendelsohn, Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fisher 2005), the
effects of contemporaneous shocks to temperature on agricultural profits (Deschênes and
Greenstone 2007; Fisher et al. 2012; Deschênes and Greenstone 2012), and the nonlinear ef-
fects of contemporaneous temperature shocks on several crop yields (Schlenker and Roberts
2009) (for other work on this topic, see Auffhammer and Schlenker (2014) for a review).
More recent research has combined data from agronomic models with global agricultural
trade models to suggest that reallocation of crops can moderate projected negative impacts
of climate change by around a third (Costinot, Donaldson, and Smith 2014).

However, while crops provide the majority of the supply of most nutritional variables for
most places, livestock systems comprise a very large portion of the agricultural system and a
substantial portion of nutrition. For example, livestock systems account for most of the land
used in agriculture, with the vast majority of this land in pasture, and livestock contributes
around 30% of the global protein supply, with this proportion higher in the developed world
and projected to increase in the developing world. To date, there has been little work that
has examined the effects of climate change on any livestock systems. In the livestock context,
changing climates could affect each of feed production, the level of production of final output
per unit of feed, and the quality of the final product, potentially resulting in a triple whammy
for the food system.

This chapter extends the climate and agriculture literature in two ways. Firstly, using
data from New Zealand, the largest dairy exporter and a major producer, it examines the
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effect of climate change on the largest animal sector, as measured by the contribution to both
the global protein and calorie supply, dairy, using an empirical panel fixed effects approach.
Secondly, it allows for heterogeneity in response functions by time-of-year and examines the
impact of this modeling choice on bottom-line conclusions about the costs and benefits of
future climate change. In addition to the contributions to the literature on climate and
agriculture, this chapter also provides calculations of the relative contributions of the major
land uses to the global food supply, including those from pasture.

Because livestock is a weather sensitive industry, with weather sensitive feed inputs that
may be transported some distance before being consumed by the animal, identification of
climate change impacts using weather impacts is complicated by the need to account for
upstream impacts in the feed industry. New Zealand is an attractive setting to study the
potential impact of climate change on a livestock sector, as it is both a large producer and
an industry that primarily uses local feed. Anecdotally, over the time period I study, only
around 10% of the feed used is from a source other than direct intake from pasture, and a
large proportion of the supplemental feed either comes from on farm or the nearby area. This
suggests that I’m able to identify the impact of future climate change using local weather
shocks, conditional on the assumption that the historical relationship between weather and
output continues to hold (Hsiang 2016).

When restricting the temperature response function to be the same throughout the year,
I find large and negative impacts of moderate to high temperatures above 19◦C, with a
statistically insignificant response to temperature below 19◦C. However, when allowing for
seasonality in the response function, I still find large and negative impacts of moderate to
high temperatures in summer months but the model also shows large and positive impacts
of moderate temperatures during winter months. When projecting these response functions
forward, using the output from a climate model, I find that the discounted present value
of the projected change in revenue is -US$8.4 billion when using the restricted model, and
+US$2.1 billion when using the flexible model. The total farm gate value of annual New
Zealand dairy production is currently approximately US$8 billion.

Existing evidence on the effect of temperature in dairy systems has shown reductions
in dry matter intake with moderate to extreme temperatures, causing reductions in milk
output (West 2003). Pasture growth also responds negatively to high temperatures (Cros
et al. 2003). Work has also demonstrated direct effects on production of heat stress when
controlling for feed intake, as well as suggestive evidence that protein percentage slightly
decreases under heat stress (Rhoads et al. 2009). Studies have estimated the production effect
of cattle heat stress using a stochastic frontier approach (Mukherjee, Bravo-Ureta, and De
Vries 2013; Qi, Bravo-Ureta, and Cabrera 2015). One work combined process and climate
models to estimate the impact of climate change on dairy production in the Australian
context (Hanslow et al. 2014).

Several studies have reported functions that allow for different responses to weather at
different times of the year (Welch et al. 2010; Cooper, Nam Tran, and Wallander 2017;
Schlenker and Roberts 2009). I extend the ideas in these studies by examining the impact
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of this modeling choice on climate change projections. Results from financial econometrics
suggest that bias can result by restricting responses to be the same throughout the season
(Andreou, Ghysels, and Kourtellos 2010).

This chapter proceeds as follows. Firstly, the following section describes where both the
dairy industry and pasture-based livestock systems sit in relation to the larger agricultural
system. Next, Section 3.3 describes the sources of my dairy production and weather data,
Section 3.4 describes the theoretical concepts that inform the analysis, Section 3.5 outlines
the econometric specifications I use, Section 3.6 reports my results and projections of the
consequences of climate change in this context, and Section 3.6 concludes.

3.2 The importance of dairy and pasture

Since staple crops dominate the climate and agriculture literature, it is useful to consider
where each of dairy and pasture stand in relation to the rest of the food system. Table
3.1 ranks FAO (2014) food balance data for the proportion of world protein coming from
different food groups. The FAO food balance data aims to measure the total food available
for human consumption by type and country. I present global aggregates in this chapter.

Despite their relatively low ratio of protein to other calories, the prevalence of wheat and
rice in the global food system makes them the largest contributors to protein consumed, with
19.7% and 12.7% of the world totals, respectively. Dairy is the largest contributor to global
protein consumed amongst both animal products and high protein foods (i.e. including beans
and pulses) generally. Table 3.2 provides the same ranking for global calorie contributions.
Again, wheat and rice are the dominant calorie sources with 18.3% and 19% respectively,
with dairy again contributing the largest proportion amongst animal products with 5.9%.

Table 3.1: Foods ranked by contribution to world
protein

FAO Food Balance Item World Protein Percentage
Wheat and products 19.7%
Rice (Milled Equivalent) 12.7%
Dairy 10.3%
Fish, Seafood 6.5%
Poultry Meat 6.2%
Pigmeat 5.6%
Vegetables, Other 4.7%
Bovine Meat 4.4%
Maize and products 4.4%
Eggs 3.4%

Source: FAO (2014).
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Table 3.2: Foods ranked by contribution to
world calories

FAO Food Balance Item World Calorie Percentage
Rice (Milled Equivalent) 19%
Wheat and products 18.3%
Sugar (Raw Equivalent) 6.8%
Dairy 5.9%
Maize and products 5.1%
Pigmeat 4.2%
Soyabeans 3.4%
Vegetables, Other 2.5%
Potatoes and products 2.2%
Poultry Meat 2%

Source: FAO (2014).

Table 3.3: Land uses ranked by contribution to world food supply

FAO Food Balance Item World Calorie Percentage including Contribution via Animals
Low High

Rice (Milled Equivalent) 19.2% 19.1%
Wheat and products 18.9% 18.5%
Pasture and Crop Residues 9.7% 14.6%
Sugar (Raw Equivalent) 6.8% 6.8%
Maize and products 7.2% 6%
Soyabeans 3.5% 3.5%
Vegetables, Other 2.5% 2.5%
Potatoes and products 2.3% 2.3%
Palm Oil 1.8% 1.8%
Cassava and products 1.4% 1.4%

1 The contribution of pasture and crop residues is not directly measured in the FAO food balance
data. I fully describe the calculation of this item in Section B.1. The low estimate assumes that
no pasture or crop residues are used to feed pigs and chickens and no grain is used to feed bovine
animals, goats, and sheep. The high estimate assumes that all feeds are used with equal proportions
for all animals.
2 Sources: FAO (2014).



CHAPTER 3. EMPIRICAL ESTIMATION OF THE IMPACT OF WEATHER ON
DAIRY PRODUCTION 30

Table 3.3 shows estimates of the contribution of different land uses to the global food
supply. I use animal contributions to the food supply, assumed feed conversion ratios, and
data on the amount of grain feed utilized to calculate the contribution of pasture and crop
residues as a residual. I fully describe the calculations in Section B.1. The “Low” estimate,
meaning a low estimate for the contribution of pasture and crop residues to the food supply,
assumes that no pasture or crop residues are used to feed pigs and poultry, both high feed
conversion animals, and no grain is used to feed bovine animals, goats, and sheep. The high
estimate assumes that all feeds are used with equal proportions for all animals. All food
items that are also used as animal feed include both the contribution via direct consumption
and via animals, not accounting for crop residues.

I find that, consistent with the prior two tables, that rice and wheat are the dominant
contributors to the food supply, each with almost 20% of global caloric production. Pasture
and crop residues is then the next highest category, providing 9.7% using the low estimate
and 14.6% using the high estimate, with pasture contributing approximately 70% of the
category (Wirsenius 2003). The contribution of pasture is then of a similar magnitude to
that for maize, or possibly larger.

3.3 Data

Dairy production data

I use New Zealand dairy production data at the territorial local authority (TLA)1 and
dairy season2 level from the New Zealand Dairy Statistics series published by Livestock
Improvement Corporation (LIC) and DairyNZ, both industry-owned bodies. In this chapter,
I will refer to TLAs as districts. The production statistics are compiled from raw data
collected from all major New Zealand dairy companies and can be considered a near census
of production.3 The variables I use from these publications are the number of cows milked at
least one day during the season, the number of farms, production of milk per farm, production
of protein per farm, and production of milkfat per farm. Data are available annually from
1999 to 2015, and the dairy production data define the period of study for this chapter.

Figure 3.1 shows the distributions of each of the main outcome variables of interest in
this chapter, the yield of milk per cow per day, the proportion of milkfat, and the proportion
of protein.

1Similar to US counties or cities.
2In New Zealand, this is June 1 to May 31.
3A very small amount of boutique local supply milk is not counted in these data.



CHAPTER 3. EMPIRICAL ESTIMATION OF THE IMPACT OF WEATHER ON
DAIRY PRODUCTION 31

Figure 3.1: Density plots of the distributions of dairy outcome variables. Annual
LIC data by district from New Zealand from 1999-2015.
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Weather data

New Zealand’s primary atmospheric research unit, the National Institute of Atmospheric
Research (NIWA) provides a gridded weather data product, the Virtual Climate Station
Network (VCSN), which provides a rich array of weather variables on a daily scale and on
a regular grid of approximately 5km × 5km. The variables I use from the VCSN are daily
rainfall, maximum and minimum air temperature, and soil moisture. Following Schlenker
and Roberts (2009), I interpolate minimum and maximum air temperature using the single
sine method, and compute linear spline transformations of all variables.

I obtain the 2015 proportion of each VCSN grid cell that is covered by dairy land from
the Ministry of Primary Industries. I use these proportions to weight the weather grid cells
when aggregating spatially. I aggregate the dairy-land-weighted weather grid cells using a
dataset of district polygons using area-overlap weights.

All transformations are first done at the grid cell-day level, then aggregated spatially and
temporally. I include distributions of all included variables in the Results section.

The soil moisture variable used in this chapter is modeled from a time series of historical
temperature and precipitation data as described in Porteous, Basher, and Salinger (1994).
These authors report that the model yields results with quite high accuracy, though I do not
know of more recent validation exercises.

3.4 Conceptual framework

In this chapter, the big-picture parameter of interest is the change in producer surplus
in a local production center under climate change. Local production regressions that use
historical data are able to recover information about the production function as it relates to
weather variables; however, these regressions are unable to be used to estimate changes in
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surplus under climate change due to induced changes in either input prices, output prices,
or management actions which are not available on the same time-scale of the shocks used
to estimate the regression parameters (Hsiang 2016). While the data used in this chapter
are not rich enough to give indications of potential changes in input prices, output prices,
or long-run management changes, I would like to be explicit that these are missing pieces to
be filled in by future research, as is the potential impact on consumer surplus, where several
downstream industries (processing, logistics, and retail), complicate a full accounting. In
this section, I formalize these ideas using a standard production function framework that
considers a final consumption good produced in a competitive market, where environmental
conditions enter the production function directly, as well as affecting the prices of both inputs
and output.

Production of the good in the local region, y, depends on inputs that are adjustable
in the short-run, Xs, inputs that are fixed in the short-run, Xl, and local environmental
conditions E`. Examples of inputs that are adjustable in the short-run are fertilizer, water
use, and use of off-farm feed, while examples of inputs that are fixed in the short-run are
milking infrastructure, cooling infrastructure, and on-farm feed species.

y = f(Xs,Xl,E`) (3.1)

Given the assumption that there are global markets for all commodities, prices of both inputs
and outputs will depend on environmental conditions in all locations the goods are produced
in, which I denote as E, with dim(E`) < dim(E). Profit, π, for the competitive firm, is
then:

π = py(E)f(Xs,Xl,E`)− pXs(E) ·Xs − pXl
(E) ·Xl (3.2)

The firm’s optimization implies that optimal output, y∗, depends on both local and outside
environmental conditions:

y∗ = f(X∗s (E`,E−`),X
∗
l (E`,E−`),E`) (3.3)

where (E`,E−`) ≡ E. In this framework, I represent global climate change as a change in
the full vector E, denoted by ∆E. To simplify the exposition, I make the assumption that
prices do not depend on supply in the local region: py(E) = py(E−`), pX(E) = pX(E−`),
where pX ≡ (pXs ,pX`

).
Omitting cross terms, the change in production is then:

∆y∗ u
∆f

∆E`

·∆E`︸ ︷︷ ︸
Direct production effect

+
∆f

∆Xs

· ∆X∗s
∆E`

·∆E`︸ ︷︷ ︸
Short-run adaptation effect

+
∆f

∆Xl

· ∆X∗l
∆E`

·∆E`︸ ︷︷ ︸
Long-run adaptation effect

+

∆f

∆X
· ∆X∗

∆py
· ∆py

∆E−`
·∆E−`︸ ︷︷ ︸

Output price effect

+
∆f

∆X
· ∆X∗

∆pX
· ∆pX

∆E−`
·∆E−`︸ ︷︷ ︸

Input price effect

(3.4)
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where X ≡ (Xs,Xl). Equation (3.4) highlights that long run environmental shocks can
affect output through several channels. The first term represents the direct impact climate
has on production; in this context through changes in on-farm feed growth and heat stress.
The second term represents the impact of climate change on production through adjustments
in short-term inputs. In the regression framework, the sum of these first two terms is able
to estimated with a standard fixed effects approach, which this chapter implements. With a
long dataset, researchers can estimate the sum of the first three terms using a long-differences
approach (Burke and Emerick 2016), which involves a trade-off in terms of statistical power
(Hsiang and Burke 2013). However, the estimation of the final two terms depends on global
market responses to climate change, so is not able to be informed by data on production in
a single area.

In the New Zealand dairy context, because such a large proportion of feed comes from
on-farm, I would like readers to interpret ∆f/∆E`, the direct effect of the environment, as
being the combined effect of the environment directly on cows as well as via shocks to local
feed. In the extreme, the supplemental feed portion of Xs is then at a corner solution where
feed consumed is equal to zero, which is often the case in New Zealand. In this context, I
am able to provide information on the response of pasture to environmental shocks, via the
effect on dairy production.

When focusing on the level of production, y, we expect that the direct effects will dom-
inate the climate change induced changes in production. However, as aforementioned, the
big picture quantity of interest for this line of research is the change in producer surplus,
which also includes first-order changes in both output and input prices. Omitting both cross
terms and second-order terms, the change in producer profit is:

∆π∗ u
∆f

∆E`

· py ·∆E`︸ ︷︷ ︸
Production effect

+
∆py
∆E`

· y∗ ·∆E`︸ ︷︷ ︸
Output price effect

+
∆pX
∆E−`

·X∗ ·∆E−`︸ ︷︷ ︸
Input price effect

(3.5)

Yield studies like this chapter contribute to the estimation of the first term in Equation
(3.5), but a global analysis would be required to estimate the second and third terms, which
is a task for future research.

In summary, the fixed effects models that I show in this chapter are able to estimate
the sum of the direct production effect of weather via thermal stresses on cows, the direct
production effect of weather via impacts on locally grown feed, and the indirect production
effect of weather via changes in inputs that are adjustable in the short-term. Output and in-
put prices have a first-order effect on producer surplus but are not included in the estimation
in this chapter.
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Figure 3.2: New Zealand production by month in 2015-2016
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3.5 Methods

This chapter uses established econometric methods to estimate the relationship between
weather and my economic variable of interest, the average milk yield per cow, within a dis-
trict. For a review of the econometrics of weather and climate, see Hsiang (2016). Following
Schlenker and Roberts (2009), for my primary specifications I use linear splines, with knot lo-
cations estimated using nonlinear least-squares (NLLS). I can express each of the estimating
equations in the following form:

yit = f(Tit) + g(Mit) + δi0 + δi1t+ εit (3.6)

where yit is dairy production outcome of interest for district i and year t. In this chapter, yit
is one of the average milk yield per cow, the average protein content of milk, or the average fat
content of milk, each within a district. f is a function of the full vector of daily temperature
within a district-year (Tit), g as a function of the full vector of daily soil moisture within a
district-year (Mit), and δi0 + δi1t is a unit specific affine trend.

In all specifications in this chapter, f is a linear spline function in temperature interpo-
lated using the single sine method and g is is a linear spline function in daily soil moisture,
each with a single knot. I estimate each specification using NLLS, restricting all knot loca-
tions to be between the 10th and 90th percentiles of daily support of the regressors.

Figure 3.2 shows country-level monthly production in the 2015-2016 dairy season. The
plot clearly shows the seasonality in dairy production in New Zealand. Importantly, the
seasonality motivates me to relax the assumption in the standard model that a weather
shock in different stages of the dairy season has the same impact. One might expect that a
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weather shock in spring would have a larger effect on annual production than an equivalent
shock in autumn, both because there is more production to impact, and a longer amount of
time remaining in the aggregation period for lagged effects to realize.

In specifications that restrict the response to weather to be the same throughout the
year, I aggregate the weather variables across the New Zealand dairy season (June-May).
In specifications that allow for flexibility in weather responses by time-of-year, I aggregate
the weather variables by weather seasons, June-August, September-November, December-
February, and March-May, which also corresponds to general stages of the New Zealand
dairy season.4

3.6 Results

Figure 3.3 plots the temperature response function in a regression with no control variables
and aggregating the temperature variables across the entire dairy season. The red dashed
lines indicate positive and negative average daily production; I include these to give readers
a sense of the scale of the impacts. The NLLS estimator finds an optimal turning point of
19◦C, with a statistically insignificant effect of increasing temperatures below the turning
point and a large and statistically significant negative effect of increasing temperatures above
the turning point. To give a sense of the magnitude of the estimated relationship, moving
24 hours of temperature from 19◦C to 22◦C reduces annual production by the equivalent of
that for an average day of the year, a large effect.

Figure 3.4 plots the temperature response function introducing soil moisture as a control
variable. In this response function, one would have to move 24 hours of temperature from
19◦C to 24◦C to reduce annual production by the equivalent of that for an average day of the
year, showing that some of the temperature effect works through its impact on soil moisture.
This is a substantial reduction in the direct effect of temperature but it remains large.5 In
unreported results, I find that including precipitation does not provide extra information
over the soil moisture variable and, thus, I omit it.

Figure 3.5 plots the soil moisture response function for the specification where weather
is aggregated across the entire dairy season. The NIWA data represents soil moisture as the

4In financial econometrics, the flexible specification is known as the “step function MIDAS” model
(Ghysels, Sinko, and Valkanov 2007). This literature examines the econometrics of regressions between
variables of differing frequencies. Here, for example, I am regressing annual milk yields on daily weather.
The MIDAS literature is mostly focused on estimators that allow flexible specification of the structure of
how response functions change throughout the aggregation period. I use the “step function MIDAS” model,
where the aggregation is flat within several subperiods of the low frequency variaable, as it allows me to use
OLS estimation, after the estimation of linear spline knot locations using NLLS.

5Bell (2017, Chapter 2), in the context of maize in the United States, gives suggestive evidence that
the estimated effect of extreme temperature could be partially due to mis-measurement of precipitation. It
is possible that the estimation in this chapter suffers from the same problem described in Bell. A future
iteration of this project will implement the solution suggested in that chapter.
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Figure 3.3: Production response function to temperature with no controls
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This figure plots f in Equation (3.6) with g = 0 for a single day of temperature, estimated using NLLS. The
turning point is restricted to lie between the 10th and 90th percentiles of the full distribution of temperature.
The plot is vertically centered so that the change in yield per cow takes a value of zero when temperature
is 19◦C. The dashed red lines indicate positive and negative average daily production. The plot shows 95%
confidence bands calculated assuming error clustering by district and year; confidence bands do not take
account of the uncertainty in the knot location. Below the plot is a histogram of the full time series of
temperature using single sine interpolation.

negative of the “soil moisture deficit”, which is the quantity of rainfall required to bring the
soil up to capacity. In these units, very dry soils have large negative numbers and very wet
soils have positive numbers. The figure finds that extreme wet conditions have large negative
impacts on milk yields, and that dry conditions have moderate negative impacts. The main
mechanism by which very wet soils impact milk production in the pasture-based context is
via soil compaction. Compaction occurs when stock intensively trample wet soil, causing
poor subsequent water absorption and lower pasture growth. I find that the overall scale of
yield impacts of changes in soil moisture is large but smaller than that of temperature.

Figure 3.6 shows the temperature response functions estimated separately for the different
weather seasons, including soil moisture controls. Several qualitative differences emerge
when moving to this more flexible specification. Firstly, I find large and positive impacts
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Figure 3.4: Production response function to temperature with soil moisture
controls
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This figure plots f in Equation (3.6) for a single day of temperature, estimated using NLLS. The turning
point is restricted to lie between the 10th and 90th percentiles of the full distribution of temperature. The
plot is vertically centered so that the change in yield per cow takes a value of zero when temperature is 19◦C.
The dashed red lines indicate positive and negative average daily production. The plot shows 95% confidence
bands calculated assuming error clustering by district and year; confidence bands do not take account of the
uncertainty in the knot location. Below the plot is a histogram of the full time series of temperature using
single sine interpolation.
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Figure 3.5: Production response function to soil moisture
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This figure plots g in Equation (3.6) for a single day of soil moisture, estimated using NLLS. The turning
point is restricted to lie between the 10th and 90th percentiles of the daily distribution of soil moisture. In
the NIWA data, the units of soil moisture are the negative of the quantity of water in mm required to bring
the soil up to capacity; this plot uses these units. Positive values indicate the quantity of water running off.
The plot is vertically centered so that the change in yield per cow takes a value of zero when the negative of
soil moisture deficit is -10mm. The dashed red lines indicate positive and negative average daily production.
The plot shows 95% confidence bands calculated assuming error clustering by district and year; confidence
bands do not take account of the uncertainty in the knot location. Below the plot is a histogram of daily soil
moisture.



CHAPTER 3. EMPIRICAL ESTIMATION OF THE IMPACT OF WEATHER ON
DAIRY PRODUCTION 39

Figure 3.6: Production response function to temperature estimated by weather
season
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This figure plots f in Equation (3.6), where the linear spline functions are estimated by weather season, for
a single day of temperature, estimated using NLLS. The subplots are vertically centered so that the change
in yield per cow takes a value of zero when temperature is at the respective knot locations. The dashed red
lines indicate positive and negative average daily production, averaged over the year. The plot shows 95%
confidence bands calculated assuming error clustering by district and year; confidence bands do not take
account of the uncertainty in the knot location. Below the subplots are histograms of the full time series of
temperature, within a weather season, using single sine interpolation.
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of moderate temperatures during the pre-dairy-season winter. This is likely due to pasture
responses that both result in improved cow condition before calving and larger pasture stocks
for spring grazing. Secondly, I find negative and marginally insignificant impacts of moderate
temperature in summer and autumn. Thirdly, I find no impact of extreme temperature on
milk yields in autumn.

Figure 3.7 plots the soil moisture response functions by weather season. As in Figure
3.5, I find small impacts of drying soils and I find that the large negative impact of very wet
soils is concentrated in spring. In spring, stock are on pasture much more than in winter, so
we would expect to see the negative effects of compaction much more in spring.

Figure 3.8 plots the response functions of fat proportion to temperature, estimated by
season. I choose the knot locations to be the same as in the milk volume regression. Though
economically smaller than the impacts on milk volume,6 I find negative impacts of increas-
ing temperatures across the spectrum in summer, spring, and autumn, with these impacts
statistically significant for moderate summer temperatures. I find large negative impacts
of increasing cool temperatures in winter and large positive impacts of increasing moderate
temperatures in winter. Figure 3.9 plots the same for protein proportion and finds the same
qualitative and similar quantitative results as Figure 3.8.

Projections under climate change

To more closely examine the economic significance of the results of the previous subsection,
I use the HadGEM-ES climate model to project forward changes in milk production under
climate change. Following Burke, Dykema, et al. (2014), I simulate future weather by adding
changes from the climate model to historical weather levels. As in Houser et al. (2015), I
randomly choose historical weather years to map to future simulated years.

Unlike past work, I compute projections for all future years to 2100. To isolate only
decadal variation from the climate model, I compute LOWESS smoothed trends of each
variable by month-of-year. The full details of the projection computation is in Section B.2.

Figure 3.10 plots the projection results as the proportion of lost annual revenue under
climate change. The main stark feature from this figure is that the model that restricts
response functions to be the same throughout the year results in much more pessimistic
forecasts of the response to climate change. While the two projections trend downwards from
around 2035, the flexible model both reduces ultimate production by less and includes a larger
upward trend at the beginning of the simulation period, which is statistically significant.

To better show the relative economic importance of the initial upward trend to around
2035 versus the subsequent downward trend, Figure 3.11 plots the same data as the previous
figure adjusting all quantities with a 3% discount rate. The proportions plotted in this figure
are then discounted revenues as a proportion of current revenue. This figure make clear that

6Note that the red dashed lines indicating average daily fat proportion are placed closer to the limits of
the plots.
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Figure 3.7: Production response to soil moisture estimated by weather season
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This figure plots g in Equation (3.6), where the linear spline functions are estimated by weather season, for
a single day of soil moisture. In the NIWA data, the units of soil moisture are the negative of the quantity of
water in mm required to bring the soil up to capacity; this plot uses these units. Positive values indicate the
quantity of water running off. The subplots are vertically centered so that the change in yield per cow takes
a value of zero when the negative of soil moisture deficit is at the respective knot locations. The dashed red
lines indicate positive and negative average daily production. The plot shows 95% confidence bands calculated
assuming error clustering by district and year; confidence bands do not take account of the uncertainty in
the knot location. Below the subplots are histograms of daily soil moisture, within a weather season.
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Figure 3.8: Fat response function to temperature estimated by weather season
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This figure plots f in Equation (3.6), where the linear spline functions are estimated by weather season, for
a single day of temperature, using fat proportion as the outcome variable. I use the same knot locations
estimated in the milk yield regressions. The subplots are vertically centered so that the change in yield
per cow takes a value of zero when temperature is at the respective knot locations. The dashed red lines
indicate positive and negative average fat proportion, averaged over the year. The plot shows 95% confidence
bands calculated assuming error clustering by district and year; confidence bands do not take account of the
uncertainty in the knot location. Below the subplots are histograms of the full time series of temperature,
within a weather season, using single sine interpolation.
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Figure 3.9: Protein response function to temperature estimated by weather
season
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This figure plots f in Equation (3.6), where the linear spline functions are estimated by weather season,
for a single day of temperature, using protein proportion as the outcome variable. I use the same knot
locations estimated in the milk yield regressions. The subplots are vertically centered so that the change in
yield per cow takes a value of zero when temperature is at the respective knot locations. The dashed red lines
indicate positive and negative average fat proportion, averaged over the year. The plot shows 95% confidence
bands calculated assuming error clustering by district and year; confidence bands do not take account of the
uncertainty in the knot location. Below the subplots are histograms of the full time series of temperature,
within a weather season, using single sine interpolation.
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Figure 3.10: Projected change in revenue
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This figure plots the projected proportional change in revenue under climate change as simulated in the
HadGEM2-ES model for the annual and the by-season models. The current value of annual New Zealand
dairy production at the farm gate is approximately US$8 billion. The projection simulation assumes constant
output prices and constant milk quality. The simulation projects both temperature and soil moisture forward.
At a 3% discount rate, the point estimate of the present value of the change in production is -US$8.4 billion
for the annual model, and +US$2.1 billion for the by-season model.

the negative impacts in the later period dominate the projection results in terms of economic
importance in the restricted annual model, whereas the early period gains balance with the
later period losses in the flexible by-season model. When aggregating these values, I find
that the point estimate of the present value of the change in production is -US$8.4 billion
for the annual model, and +US$2.1 billion for the by-season model. The current value of
annual New Zealand dairy production at the farm gate is approximately US$8 billion.
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Figure 3.11: Projected change in revenue with discounting
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This figure plots the projected proportional change in revenue, adjusted with a 3% discount rate, under
climate change as simulated in the HadGEM2-ES model for the annual and the by-season models. The
current value of annual New Zealand dairy production at the farm gate is approximately US$8 billion. The
projection simulation assumes constant output prices and constant milk quality. The simulation projects both
temperature and soil moisture forward. The point estimate of the present value of the change in production
is -US$8.4 billion for the annual model, and +US$2.1 billion for the by-season model.

3.7 Conclusion

This chapter has estimated the impact of weather variables on dairy production in New
Zealand. It finds that restricting the weather response functions to be the same throughout
the year results in more pessimistic projections of the consequences of future climate change
in the New Zealand dairy context than allowing for responses to be flexible by time-of-year.
More generally, it highlights that bias can result in applied research contexts with dependent
variables of a lower frequency than independent variables and models that restrict responses
to be the same throughout the aggregation period, as has been shown theoretically (Andreou,
Ghysels, and Kourtellos 2010).

It also highlights that pasture-based livestock production is highly sensitive to the weather,
with large and opposing effects of winter and summer temperatures. New Zealand dairy pro-
duction exists in a temperate climate, with temperatures seldom moving outside the range
of 0-30◦C. If these results are indicative of the weather-pasture production relationship in
cooler or warmer places, they imply that these areas will respectively experience large gains
and large declines under climate change.
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While New Zealand dairy producers are highly exposed to the global export industry, an
important stylized fact about the industry more generally is that production tends to be close
to consumption. While a global market exists for milk powder, cheese, butter, and whey,
exports only account for around 10% of global milk production. Fluid milk, in particular, has
very high transportation costs both due to the water carrier needing to be transported and
spoilage. If my results are indicative of the weather-dairy production relationship in other
contexts, this fact suggests that a large portion of the incidence of the costs and benefits of
climate change will fall on consumers.
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Chapter 4

The potential for renewable fuels
under greenhouse gas pricing: The
case of sugarcane

4.1 Introduction

Oil accounts for 33% of global greenhouse gas (GHG) emissions (International Energy Agency
2015). It is crucial to examine the scaling potential of alternative fuels as ambitious climate
mitigation action is considered around the world, since the costs of possible policies, such
as cap and trade programs and carbon taxes, must be evaluated. In the 1970s, Brazil es-
tablished the first large-scale alternative transportation fuel sector under the Pró-Álcool
program, demonstrating the commercial viability of the ethanol industry. The sector ex-
panded aggressively in the 2000s; however, in recent years, a constellation of factors has
contributed to slowing investment in new capacity. These include an unfavorable policy
environment, particularly restrictions on the ownership of land that discourage the entry of
foreign capital, energy policies that encouraged expansion of the oil sector, especially by in-
vesting in deepwater production (Moraes and Zilberman 2014), and decreasing energy prices.
Today, ethanol is mandated to be blended into domestic fuel in Brazil at a proportion of
27%, providing an implicit subsidy to producers.

Three features of the Brazilian ethanol context make it particularly attractive to consider
the expansion of low-carbon fuels on a large scale. First, the Brazilian climate allows for high
yields of sugarcane (both in potential and reality), which is readily convertible into ethanol
using a production process that emits relatively little GHG, when compared to gasoline
or US corn ethanol (State of California 2009). Brazil also has a large amount of pasture
land that is appropriate for growing this sugarcane (approximately 170 Mha, compared to
around 10 Mha in use today), which emits a relatively small amount of carbon dioxide
when converted to sugarcane, compared with forest or savanna systems (Mello et al. 2014).
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Further, the primary use of Brazilian pasture land is low-intensity ranching of beef cattle,
which can plausibly intensify with low or no cost. An appropriate suite of policies that
achieves sugarcane ethanol expansion into pasture land, along with matching intensification
in the beef industry, can assuage concerns about indirect land-use change (Cohn et al. 2014),
as would the enforcement of restrictions on deforestation.

This chapter presents an optimization model of the Brazilian sugarcane industry that is
used to simulate the effects of a range of assumptions about future variables. In particular,
our main research question is: assuming free markets and a constant price, what would
be the quantity and net present value (NPV) of the additional ethanol that firms produce
in Brazil over the next 30 years. Further, we explore the impacts on this supply function
of a global GHG price (or a policy that similarly affects the price of ethanol), aggressive
technology investments resulting in high yield increases, evaluating the investment decisions
in the model using a “social” discount rate, and different levels of available construction
resources.

We set up and solve a mixed integer linear program (MILP) which allocates both new
refineries and new sugarcane land over space and time to optimize total profits, depending on
spatial variation in potential yield and freight cost to port and constrained by the available
construction resources and pasture for conversion.

There are several novel features of this chapter as a contributor to the literature on the
potential for renewable fuels and agricultural land-use change. We are the first to examine
the supply of sugarcane ethanol in Brazil explicitly in an optimal investment framework.
We use spatially disaggregated data on potential yield, freight costs, and available pasture
land. We also explicitly account for the limits to investment over time due to constraints on
construction capacity.

Most of the literature on the expansion of the biofuel sector analyzes the dynamics
of feedstock area only (Khanna, Dhungana, and Clifton-Brown 2008). In contrast, our
approach focuses on the investment in the processing facility and the change in the use of
the land simultaneously. Consideration of the simultaneous adoption of several production
technologies (i.e. a processing unit as well as feedstock units), as opposed to the adoption
of an atomistic element of a supply chain, is particularly important for industries where
a downstream subindustry depends on specific units of an upstream subindustry. In the
case of sugarcane, the feedstock inputs are highly perishable and must be processed quickly,
restricting the size of the catchment area for any given refinery. The sugarcane land would
not be profitable without the nearby refinery, and vice versa. Essentially, the important
industry feature is a high ratio of input to output freight costs, per unit value. This high
ratio is a feature of almost every agricultural supply chain, in addition to many mining
supply chains. The MILP framework is useful as it allows for the simultaneous modeling
of the construction of the discrete refineries as well as the continuous feedstock land area
around them.

In our primary results that assume recent oil-equivalent prices, our simulation model
suggests that expansion of sugarcane ethanol over the coming decades would be unprofitable
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in Brazil. However, as we add more optimistic assumptions, the outlook improves. In our
most optimistic scenario, which assumes aggressive technology investments that result in
high yield increases, evaluates investment decisions using a social discount rate, uses a GHG
price, and allows for a large construction capacity, we calculate that 11% of global fuel liquids
would be produced by Brazilian ethanol on 1.8% of global agricultural land, yielding $2859
billion in value. We believe that these more optimistic assumptions are safely in the space
of reasonable parameters.

Background

Brazilians have both produced and consumed ethanol on a large scale in for many decades.
In 2012, sugarcane for both ethanol and sugar production occurred on 9.8 Mha of land,
and domestic production of ethanol amounted to 23.2Mm3 (Brazilian Sugarcane Industry
Association 2014). Lifecycle emissions of modern Brazilian sugarcane ethanol, absent land
conversion, are just 13% of those associated with gasoline on an energy basis (State of
California 2009). Mello et al. (2014) find that conversion from pasture to sugarcane in
Brazil results in a cumulative reduction in soil organic carbon of 31.8Mg/ha over 20 years
which, in our most optimistic scenario, is 5% of gasoline emissions, when averaged over 30
years of ethanol production. Estimates of emissions associated with indirect land-use change
vary widely from -5 to 159 g CO2-eq/MJ (Ahlgren and Di Lucia 2014), or -5.2% to 166% of
gasoline emissions.

For a review of the numerous studies of global bioenergy potential, see Slade, Bauen,
and Gross (2014). The majority of these studies do not examine any economic incentives;
they just assess the physical potential of bioenergy production. To our knowledge, one
article attempts to evaluate the global economic supply of biofuels; de Vries, van Vuuren,
and Hoogwijk (2007) use the IMAGE model to estimate global bioenergy supply curves;
however, the cost estimation, other than differences in yields, appears not to be spatially
explicit beyond world regions (Hoogwijk 2004).

Two articles have performed more straightforward analyses of the physical potential of
biofuel in Brazil in particular; Somerville et al. (2010) discuss the prospects for several biofuel
crops, including Brazilian sugarcane, and Cerqueira Leite et al. (2009) ask what proportion
of pasture land in Brazil would be required to displace 5% of world gasoline consumption.
Both extrapolate existing yields to new sugarcane regions and perform straightforward mul-
tiplications of averages.1 Accounting for the spatial variation in potential feedstock yields
is crucial. Simple extrapolation based on empirical yields is inappropriate, as optimizing
farmers will choose the land most appropriate for sugarcane first, so expansion areas will

1Somerville et al. arrive at a capacity of 500Mm3 of conventional sugarcane ethanol per year in 2030 by
multiplying the 2030 sugarcane yield prediction from FAPRI (96.47Mg Cane/ha) by their assumed area used
for sugarcane ethanol production (59.28Mha) by the current typical ethanol conversion efficiency (0.086m3

Ethanol/Mg Cane). Cerqueira Leite et al., in their main result, assume ethanol production of 102Mm3, 71
Mg Cane/ha, and 0.085m3 Ethanol/Mg Cane to arrive at 17Mha of land required for production.
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likely be lower yielding than existing sugarcane land. For this reason, estimates of biomass
potential that extrapolate using empirical yields will be biased upwards.

In the economics literature, Holland, Hughes, Knittel, and Parker (2014) employ a similar
simulation model to ours in the US context. Their article examines the costs and benefits of
various fuel policies and the correlation of these costs and benefits over space with voting on
a cap-and-trade bill. Parker (2011) describes the underlying biofuel supply model. Like ours,
it also solves a spatially explicit optimization problem designed to calculate the supply of
biofuels; however, it does not account for the limited construction industry capacity to build
new refineries, making it interpretable as a “long run” supply model. A model that does
not account for supply over time can adequately answer questions relating to differences in
profitability across space, as in Holland, Hughes, Knittel, and Parker (2014), but is not able
to answer questions relating to the scale of potential production in the near to medium term.
Considering the medium term potential is especially important in the biofuel supply context
as it is not likely to become a dominant global energy source, due to the higher energy per
unit land that solar photovoltaics can extract (e.g. Nelson (2010)).

This chapter proceeds as follows: the following section presents our high-level modeling
framework, then describes our optimization model in detail. Next, we outline our full list of
data sources then discuss our results. The final section concludes.

4.2 Conceptual framework

In this section, we describe the conceptual pieces that make up our larger simulation model.
Firstly, to model the refinery investment decision, we use the standard NPV method, first
formalized in Fisher (1907), where the refinery operator invests if the NPV is positive, and
otherwise does not invest.2

To obtain indicative price changes for ethanol over time under a greenhouse price, we
use a simple partial equilibrium model of the global energy market with constant elasticity
demand and supply functions. The key assumptions we employ are: oil supply, ethanol
supply, and energy demand are constant elasticity functions of price, oil and ethanol are
perfect substitutes in the energy market, BTUs are the only valued component of either fuel,
and oil BTUs are adjusted using a scalar multiplier to equate the prices of the two fuels on
a per-BTU basis, before adjustments due to GHG pricing. We use the central parameter
values from Holland, Hughes, Knittel, and Parker (2014). We fully describe the model in
the Appendix.

2We do not account for uncertainty in this chapter. A more complicated, and realistic, investment
decision rule that applies under uncertainty is optimal stopping (e.g. Dixit and Pindyck (1994)). However,
in the usual way optimal stopping problems are set up, with just the output price uncertain, the decision
rule is isomorphic to one where the operator invests if, and only if, NPV is above a threshold. One could
then, in principle, map our analysis to one that uses optimal stopping investment rules and uncertainty, by
identifying parameter values in the optimal stopping problem that produce the same marginal refinery. One
could then interpret the prices that we assume in our calculations could as “certainty-equivalent” prices.
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Both price expectations and constraints on refinery construction are not explicitly mod-
eled but are of first order importance to our results. We assume prices are constant, before
the effects of GHG pricing, and explore sensitivities to generate a full supply curve; in our
specifications that calculate more outputs than just quantity, we assume a recently observed
oil-equivalent price. We estimate the limit on refinery construction by doubling the histor-
ical maximum annual capacity installed, and we explore sensitivity to this assumption by
tripling this limit.

Finally, we combine these elements in an optimization model, presented in full in the
following subsection. Our model is similar in spirit to the classic models of von Thünen, or
Alonso (1964), Mills (1967), and Muth (1969), with a monocentric destination for output
and spatial allocation of firms driven by output freight costs and spatial variability in yields.
A complete model would also expressly incorporate input freight costs and economies of scale
in processing; firms would locate in resource-rich areas due to the trade-off between input
and output freight costs, when the former are much larger than the latter per unit value,
as is the case in our context. Economies of scale would then prevent processing units from
being atomistic and thus driving input freight costs to zero. However, for computational
tractability, we make simple restrictions to account for each of these features.

To account for input freight, we limit land to only come from nearby areas and assume a
fixed cost per unit of sugarcane. To account for economies of scale in processing, we restrict
all refineries built to have the same capacity, on the order of that for recently-built large
refineries.3 The amount of input land is then chosen to match this capacity.

Optimization model

In this section, we describe our simulation model, which we parameterize to the Brazilian
sugarcane context. In this model, the unit of analysis is a municipality-year and all feed-
stock land comes from land that is currently in pasture. The model chooses the number
of refineries built in each municipality-year and the amount of pasture purchased by each
refinery operator.

The sugarcane cycle in Brazil is typically six years long, beginning with an initial planting
that takes twelve to eighteen months to produce a first harvest, followed by four annual
cuttings with declining productivity, finishing with a fallowing stage before the beginning
of the next cycle. To account for this behavior, we assume the investor staggers her land
purchases over six periods. At the time each production unit is built, the investor plants
one sixth of the total area that will ultimately be used by the refinery. This land is first
harvested in the following period.4 The investor then continues to purchase and plant land

3The empirical relationship between capacity and construction cost is approximately linear, suggesting
that the benefits from economies of scale lie outside the empirical range of refinery sizes.

4We do not model the dynamics of yields throughout the sugarcane lifecycle. This slightly biases the
model against investing in ethanol as we force the model to transfer production from the early years of the
cycle to the latter years.
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for a total of six years. Five periods after the initial planting, the refinery operates at its
capacity of 250ML/year, the size of a typical large ethanol refinery in Brazil. In the sixth
period, the land that was first purchased is replanted, and the cycle restarts. Absent yield
increases, this planting pattern allows the refinery to operate at a constant rate from the
period five years following construction to the period 30 years following construction, after
which we assume the project is abandoned and the land is sold at the initial purchase price.
We account for yield increases in the model with simultaneous capacity upgrades, with costs
proportional to the initial construction costs.

Refineries process all sugarcane into ethanol and send all production to Pauĺınia in São
Paulo state, currently a delivery hub for both domestic consumption and export. We restrict
the analysis to the Central-West, Southeast, and South regions, as well as Bahia state, to
encapsulate all high-yielding areas that have pasture land available, to keep our freight
destination assumption reasonable, and to maintain the tractability of the model.

We set up the supply model as a mixed integer linear program (MILP). For each run, we
solve the problem to within 1% of the best objective bound using the optimization software
Gurobi.

The full solution procedure is as follows. First, we calculate the NPV of revenue, per-
hectare land operating costs, cane transport costs, refinery operating costs, construction
costs, freight costs, and upgrade costs for a refinery located in each municipality i, and built
at each time t. Next, we calculate the NPV of land conversion and purchase costs for a hectare
located in each municipality i, and for each time t. For space, we omit the full definitions
of these NPVs.5 Finally, using Gurobi, we choose the (integer) number of refineries built in
each municipality i and year t, and the (continuous) pasture land in municipality j used by
refineries in each municipality i, where j ∈ Ji. Ji denotes i itself, i’s direct spatial neighbors,
and neighbors of neighbors.

The objective function is:

OBJ : max
K,H

N∑
i=1

T∑
t=0

(NPVNoLand,itkit −
∑
j∈Ji

NPVLand,jthijt), (4.1)

where kit ∈ K is the integer number of new refineries built in municipality i at time t,
hijt ∈ H is the amount of pasture (in hectares) used in municipality j by a refinery located
in municipality i at time t. NPVNoLand,it is the NPV per refinery in municipality i built at
time t, excluding land purchase and conversion costs. NPVLand,jt is the NPV of conversion
and land costs per hectare in municipality j.6

5We provide all parameter values, with sources, in the Appendix. The calculation code is available from
the authors on request.

6We do not account for emissions associated with land-use change in our simulation of the global oil and
ethanol market, as these vary with the number of hectares, rather than the number of units of output. To
account for this when we simulate the effects of a greenhouse gas price, we modify NPVLand,jt to include
the change in soil organic carbon that results from the conversion from pasture to sugarcane from Mello
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The first constraint ensures that the total pasture used does not exceed some maximum
allowable limit P̄ . In all model runs presented in this chapter, we do not allow the total
pasture converted to be more than 50% of what remains in Brazil; this acts as a constraint
on the total eventual expansion of ethanol. In notation, this is:

s.t.
N∑
i=1

T∑
t=0

∑
j∈Ji

hijt ≤ P̄ . (4.2)

Next, we ensure that the pasture land used in a municipality does not exceed the total
amount in that municipality, which we denote P̄i:

T∑
t=0

∑
j∈Ji

hjit ≤ P̄i ∀i, (4.3)

where hjit is the pasture used in i by a refinery in j at time t.
Recalling that refineries reach capacity after five years, the next constraint ensures that

the sugarcane production from the land used by a refinery in municipality i, built at time t,
matches the sugarcane production required by the refinery at time t+ 5 so that it operates
at capacity: ∑

j∈Ji

hijtYj,t+5 = kitF ∀i, t, (4.4)

where Yj,t+5 is the yield of sugarcane per hectare of pasture in municipality j at time t+ 5,
and F is the sugarcane required for a refinery to operate at capacity.

To substitute for explicit modeling of the supply curve of refinery construction, the final
set of constraints limit the total number of refineries that can be built in each year. These
constraints act as the main limit on the expansion of ethanol over time.

N∑
i=1

kit ≤ K ∀t, (4.5)

where K is the maximum refineries built in a year.
Because yields vary across municipalities, the total hectares required for a refinery can

vary depending on the configuration of land chosen by the optimization algorithm. Fur-
ther, because we assume linear yield trends, along with matching increases in capacity, the
change in production of a unit over time (part of the NPV calculation) can also depend

et al. (2014), prorated over the first 20 years from conversion, and monetized using the same GHG prices as
above.
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on this configuration, which is chosen by the MILP. Thus, the correct NPVNoLand,it coeffi-
cients in Equation 4.1 are determined by the final model solution, making the optimization
problem nonlinear. To overcome this issue, we simplify by assuming that, when calculating
NPVNoLand,it, the production increases for a refinery in municipality i are the same as those
that would result from a refinery that only used land from within municipality i.7 If a refin-
ery were to use a neighboring municipality’s land, which was lower yielding than the land in
its own municipality, this assumption would have the effect of lowering production increases
over time, as the number of hectares per refinery would be lower than what the optimization
chooses.

4.3 Data

This section describes the input data for our model, along with sources. Our general aim
is to incorporate all readily available information and to be conservative when making as-
sumptions; that is, biased against investment in ethanol.

Yield data and calculations

The FAO-GAEZ dataset (IIASA and FAO 2012) uses agronomic modeling, based on cli-
mate, soil and terrain data, to provide global gridded datasets of potential yields for many
important crops, including sugarcane. These data give the relative spatial arrangement of
the yield assumptions in our analysis. All scenarios presented in this chapter use the yield
values predicted for the 2020s using the Hadley CM3 A1F1 scenario,8 assuming “high” input
levels9 and rain as the water supply.10 The grid is then aggregated up to the municipality-
level on an area-weighted basis. Figure 4.1 displays the FAO-GAEZ yields for the areas in
our analysis.

We obtain empirical yields for São Paulo from the Brazilian Sugarcane Industry Associa-
tion (UNICA), which provides a long time series of state-level yields. We collect municipality-
level planted areas for 2012 from the Brazilian Institute of Geography and Statistics (IBGE).

7The spatial autocorrelation of rain-fed potential yields for neighbors within two spatial lags is 0.91.
8The SRES A1F1 scenario corresponds closely in predicted temperature increases to the RCP8.5 scenario

(Rogelj, Meinshausen, and Knutti 2012).
9The FAO-GAEZ documentation states: “Under a high level of input (advanced management assump-

tion), the farming system is mainly market-oriented. Commercial production is a management objective.
Production is based on improved or high yielding varieties, is fully mechanized with low labor intensity and
uses optimum applications of nutrients and chemical pest, disease and weed control” (IIASA and FAO 2012,
p. 38).

10We do not allow our model to invest in irrigation as we were unable to find reliable cost estimates for
irrigation installation. The omission of irrigation as an option biases our results against the construction of
new ethanol capacity.
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Figure 4.1: Municipality-level potential yield predictions

Obtained from IIASA and FAO (2012). Results displayed for the Central-West, Southeast, and South
regions, as well as Bahia state. Predictions are for the 2020s using the Hadley CM3 A1F1 scenario, and
rain-fed systems. Omitted municipalities have either zero potential yield or zero pasture land available.

Potential yields derived from the FAO-GAEZ data are somewhat higher than empirical
yields in the regions of Brazil with already developed sugarcane land. To correct for this,
we scale down the FAO-GAEZ yields so that the planted-area-weighted São Paulo (the most
advanced sugarcane area) empirical average yield matches the FAO-GAEZ average for the
same region. This process ensures that the yield assumptions are initially at status quo
levels and that the arrangement of these across space reflects variation in climate, soil, and
terrain.

The empirical data only reports the average of rain-fed and irrigated yields, whereas
the FAO-GAEZ data separates these. We recover separate estimates by assuming that the
true ratio is equal to the ratio between the irrigated and rain-fed yields in the FAO-GAEZ
dataset. That is, we solve the following equations for ȳR and ȳI :

ȳ = ρI ȳI + (1− ρI)ȳR
ȳR
ȳI

=
ȳR−GAEZ
ȳI−GAEZ

,

where ȳ is the empirical planted-area weighted sugarcane yield, taken from the UNICA data,
ρI = 0.39 is the proportion of sugarcane land irrigated,11 ȳR is the empirical planted-area

11We know of no detailed data on sugarcane irrigation levels in Brazil. We use the national average
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weighted sugarcane yield for rain-fed plots, ȳI is the empirical planted-area weighted sugar-
cane yield for irrigated plots, ȳR−GAEZ is the planted-area weighted FAO-GAEZ predicted
potential yield for rain-fed plots, and ȳI−GAEZ is the planted-area weighted FAO-GAEZ pre-
dicted potential yield for irrigated plots. The two unknowns in the above are ȳR and ȳI
and all yield averages here are for São Paulo. Municipality level planted areas, used for
aggregating the GAEZ data up to the state level, are taken from the IBGE data.

Next, we scale the municipality-level FAO-GAEZ yields for all municipalities to get our
first-period yield assumptions:

yiR0,F inal =
ȳSPR0

ȳSPR−GAEZ
∗ yiR,GAEZ

where i indexes municipalities, ȳSPR0 denotes the empirical yield in São Paulo in our first
model year.

Finally, to incorporate expected productivity increases, we estimate the yield trend using
ordinary least squares (OLS) for São Paulo, using the UNICA data, and predict for all
years in our analysis (2014–2068).12 Because São Paulo is the Brazilian state with the most
developed sugarcane industry, these figures represent a reasonable point prediction of ongoing
yield increases, given normal to good production practices.

yiRt,F inal = yiR0,F inal + 0.3243t

In an alternative scenario, we also assume high yield increases, that could eventuate from
more aggressive investment in yield-improving technology, of 2 Mg/ha. Near the end of our
study period, some areas’ assumed yields would then be close to recent experimental maxima
reported in Waclawovsky et al. (2010).13

Land Prices

Because Brazilian land price survey data is proprietary, we simply use a recent academic
article which reports averages for 2002, 2006, and 2010 (Richards, Walker, and Arima
2014). Because the values have trended slightly downwards in real terms, instead of ex-
tending the trend, we conservatively assume pasture prices average to the most recent value,
2014R$1514/ha. We then assume land prices can be expressed as a linear function of the pe-
riod 0 rain-fed yield as calculated in the previous subsection. Because land prices comprise a

proportion to proxy for the São Paulo proportion (Soybean And Corn Advisor 2014; Brazilian Sugarcane
Industry Association 2014).

12We use data for 1980-2012 and outliers near the beginning and end of the sample period (1981, 1982,
1983, 2000, 2011, and 2012). Keeping the outliers produces a prediction around 0.8% higher than that which
is used. ȳSP

R0 is calculated in this prediction.
13Note that the maximum yield that we assume over all scenarios and time periods we consider is 55%

of the theoretical maximum reported in Waclawovsky et al. (2010).
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small fraction of total costs in our model, the qualitative results are insensitive to reasonable
adjustments to these assumptions. Importantly, the prices we use were originally derived
from sales data, which is indicative of land values conditional on the land being sold. If sold
land is systematically higher or lower value than average, our land price assumptions may
be biased. However, as aforementioned, because land prices comprise such a small fraction
of total costs, this bias would have to be large to affect our results materially.

In addition to the land purchase price, we obtain land conversion costs from Bonomi
et al. (2012). These costs cover roads construction, terraces construction, agricultural area
systematization, and roads maintenance. Again, these costs are small in comparison to total
costs, so results are insensitive to reasonable adjustments to this input.

Refinery construction, upgrade costs, and construction industry
capacity

Refinery construction costs are estimated using data obtained from the Bloomberg New
Energy Finance (BNEF) database. This database includes construction costs and capacities
of many ethanol refineries built in Brazil. As aforementioned, we simplify our model by
restricting each refinery to have a capacity of 250ML/year. We estimate the cost of each of
these plants by regressing real construction costs on capacity and a trend line, and predicting
for 250ML/year and our first model period14. Refineries included in this estimation are those
that are ethanol-only, located in Brazil, and use sugar crops as the feedstock. Upgrade costs
are assumed to be equal to construction costs on a per-unit-capacity basis.

The same dataset is used to obtain a reasonable assumption of how many refineries
might be able to be constructed during any year. We assume that the industry can double
the capacity increase of the highest construction year, which was 4548ML. We observe a
total of 3735.6ML nameplate capacity for 23 refineries built in 2009 in the BNEF data, of 28
total (Barros 2014). We estimate total new capacity in 2009 using the product of the total
capacity observed in the BNEF data and the ratio of total refineries built to the number
observed in the BNEF data.15

Operating Costs

We obtain typical annual operating costs from both PECEGE (2012) and Bonomi et al.
(2012). In the model, we collapse these costs into a per-hectare component, which does not
increase with yields, a per-unit of sugarcane component, and a per-unit of ethanol component.

The per-hectare component covers all expenses after land conversion costs and before
transportation costs from the field to the refinery, not including rent. These include costs

14The trend is slightly downward in real terms, but statistically insignificant.
15This is 28/23*3735.6 = 4548.
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related to planting, fertilizer, and harvesting. The number is obtained by taking total oper-
ating expenses less land rent and sugarcane transportation, for refinery operated sugarcane
operations in the expansion region, from PECEGE (2012).16

The per-unit-of-sugarcane component accounts for the cost of sugarcane transport from
field to refinery per metric ton of cane from Bonomi et al. (2012).

The per-unit-of-ethanol component captures all refinery processing and maintenance
costs. We calculate this as the total cost less feedstock cost, depreciation, cost of capital,
and working capital.

In all specifications, we keep these operating costs constant in real terms.

Ethanol Freight Costs

For simplicity, we assume all ethanol freight goes to Pauĺınia, SP, the delivery destination
for the BM&F Bovespa ethanol futures contract, and the location of a major delivery hub.

We obtain empirical intercity ethanol freight costs per m3 from ESALQ-LOG (2013). Be-
cause the municipalities we allow in our analysis are far more numerous than those observed
in the empirical data, we use a simple predictive model for freight costs, based on distance by
road. The Google Maps API is used to obtain road distances between all origin-destination
pairs in ESALQ-LOG (2013). We then estimate the following predictive relationship using
OLS:17

Fij = α + β1Dij + β2D
2
ij (4.6)

Finally, we use the Google Maps API to obtain the road distance to Pauĺınia, SP for all
municipalities and predict the freight costs using (4.6).

Pasture Location Data

A shapefile containing pasture data is obtained from IBGE (2013). This file contains the
locations of pasture farms in Brazil as of 2012. We calculate the pasture land available in
each municipality by spatially aggregating this shapefile up to the municipality-level and
computing the total area.

16Total operating costs and land rent are collected from table 14 in PECEGE (2012). The operating
expenses category includes costs of transport from the field to the refinery, but it is not specifically itemized.
To calculate the adjustment, we use table 6 in Bonomi et al. (2012) and calculate the proportion that
transportation contributes to costs related to planting, cultivation, harvesting, and transportation, and
subtract this from the operating expenses in PECEGE (2012).

17We trialed several alternative polynomial specifications, including ones that include elevation as a
predictor. None substantially improve the predictive power of the estimated relationship.
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Figure 4.2: Model predicted freight rates per m3 of ethanol

Raw data obtained from ESALQ-LOG (2013). Unobserved routes are extrapolated using a quadratic predictive
relationship between freight rates and roading distances.

Output Prices

In our results, we calculate supply curves over many assumed output prices. For comparison
to status quo prices, we collect output prices for ethanol from BM&F Bovespa (2015). We
use a recently collected futures prices for hydrous ethanol delivered in São Paulo (delivery
October, 2016, collected October 25, 2016).18.

Because ethanol has traded at a premium over oil on an energy basis, we also compare
our supply curves to an oil-equivalent price. The ethanol BTU premium/discount is due to
a number of factors, including oil refining costs, the value of ethanol as an oxygenate/octane
enhancer, the lower energy density of ethanol (meaning transport and storage costs are
higher for ethanol), short run market conditions, and relative policy support for ethanol
versus gasoline. As of October 25, 2016, the ethanol premium, adjusted only for the lower
energy density of ethanol, is 209%. After accounting for refining costs, calculated using
the United States Energy Information Administration’s (EIA) decomposition of the gasoline
price for September, 2016, the premium becomes 123%. When accounting for a further
USD$0.25/gallon value to account for ethanol’s value as an oxygenate (as suggested in Hurt,
Tyner, and Doering (2006)), ethanol has an implied premium of 98%. When we explore
model outputs in addition to quantity, we assume an oil-equivalent price that removes the

18There are few ethanol futures contracts for Brazilian delivery. As of October 25, 2016, the contract
with the most distant delivery was March, 2017.
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98% premium.
To generate indicative price changes that may result from a global greenhouse price, we

simulate a simple global oil and ethanol market with GHG pricing, discussed further in the
Appendix. Oil prices for this exercise, and for calculating the above oil-equivalent price, are
collected from CME Group (2015), and we use all available futures prices that do not appear
stale.19

Greenhouse Gases

In the aforementioned oil and ethanol market exercise, we use the values for the social cost of
carbon (SCC) emitted in different years, as calculated by the Interagency Working Group on
Social Cost of Carbon of the United States Government (US EPA Climate Change Division
2013), to calculate a total social value of the GHG emissions of oil and ethanol respectively.20

We use the values reported using a 3% discount rate and linearly interpolate between years.
We obtain the lifecycle GHG emissions of sugarcane ethanol from California’s Low Carbon

Fuel Standard (LCFS) documentation. We make use of the estimate that does not take
account of indirect land-use emissions. The LCFS implicitly assumes that carbon fluxes
that directly arise from changes in land-use are zero, so we also account for changes in soil
organic carbon due to the permanent conversion of land from pasture to sugarcane using
Mello et al. (2014).

We obtain lifecycle GHG emissions of conventional oil from Chavez-Rodriguez and Nebra
(2010).

4.4 Results

We present results for six scenarios. The first is the “Reference” scenario, where we assume
free and efficient land markets, constant prices, and otherwise make assumptions that reflect
the status quo.21 Second, we present a “GHG price” scenario that features an increasing pro-
file of global GHG prices over time (or equivalent domestic policy), resulting in immediately
higher and further increasing ethanol prices over time. Third, we show a “Social discount
rate” scenario where we assume a 3% real discount rate, versus the reference 6.08%,22 which
some argue is more appropriate than financial investment rates when evaluating the impacts
of government policies. Fourth, in our “High yield increase” scenario, we assume aggressive
investments in sugarcane technology that produce an annual yield increase of 2 Mg, versus

19We define this to be all monthly prices before the first change of more than 5% between consecutive
months.

20See Greenstone, Kopits, and Wolverton (2013) for a discussion of the methodology of this process.
21The full set of parameter values, with sources, is presented in the Appendix.
22The “Reference” scenario discount rate is calculated using the nominal USD weighted average cost of

capital for Petrobras, obtained from www.wikiwealth.com, adjusted for expected USD inflation, obtained
from www.tradingeconomics.com.
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the reference 0.32 Mg. Fifth, our “High construction capacity“ scenario substantially relaxes
the constraint on building by allowing 108 refineries to be built per year, versus the reference
36.23 Finally, in our “All” scenario, we assume all the changes in the “GHG price”, “Social
discount rate”, “High yield increase”, and “High construction capacity” scenarios.

Profitability over space

First, we can see that in the “Reference” scenario, the model predicts no expansion of the
ethanol sector in Brazil under the subsidy-free price. We also see that the model predicts
such large production growth that the refinery building constraint binds for all years at the
current ethanol price. This price increase is reasonably large (98%); however, only an 18%
increase is required for the model to predict enough expansion to meet the construction
capacity constraint for all periods. The modest slope is mostly driven by the small variation
in yields and freight costs over the space that’s initially invested in (i.e. near Pauĺınia), and
the low pasture land prices we see in Brazil. As aforementioned, because our cost model
includes a substantial per-hectare cost component, the largest contributor to the spatial
variation in profitability is differences in yields.

23In this scenario, the annual increase in capacity is 27000ML. For comparison, the maximum historical
annual production increase in the USA was 10554ML in 2008.

Figure 4.3: NPV per refinery in the “GHG price” scenario

Values are for refineries constructed at time 0 and are censored at the negative of the refinery construction
cost.
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In the “GHG price” scenario, we plot the ethanol price before adjustments due to GHG
pricing on the vertical axis. Recall that the GHG price, and thus the ethanol price, is
increasing over time in these scenarios. The ethanol price faced by the refineries in these
scenarios is substantially higher than in the “Reference” scenario, resulting in investment
taking place at much lower initial ethanol prices. Here, the supply curve shifts down and
becomes less elastic.24

Assuming aggressive investments in technology that result in high yield increases gener-
ates both a supply curve that is somewhat less elastic, and extends to much higher quantities
of total ethanol production when the building constraint binds, as each refinery eventually
upgrades by a larger amount, when compared to the previous scenarios.

Upweighting more distant cash flows by utilizing a social discount rate likewise shifts
the curve down. However, the relative importance of this variable, when compared to GHG
pricing, is small.

The “High construction capacity” scenario highlights the importance of the refinery build-
ing constraint. While not substantially changing the supply curve in the region of total
production where the limits on refinery construction do not bind for all periods, relaxing
this constraint increases the total potential production considerably.

In our “All” scenario, which combines the adjustments from all of the previous four
scenarios, we see a combination of the shifting down and extending the supply curve. What
is striking here is the scale of production implied at today’s oil-equivalent price. The model
suggests that Brazil can eventually economically produce levels of sugarcane ethanol energy
at a similar level of that which Saudi Arabia and Russia produce in oil energy today.

Because we find such small slopes on the supply curves, the construction capacity con-
straint binds at many different reasonable prices, even in the scenarios that partially relax
this. An improvement to this modeling exercise would be to directly model the construction
supply curve to reflect increasing scarcity of human and physical capital inputs into this
process. While beyond the scope of the current project, this improvement is an important
avenue for future research that would move further towards a complete characterization of
the supply function for ethanol.

24The slope increase is driven by the result that, under GHG pricing, the most profitable investments
occur in the later periods, because the combined effect of the increasing price profile over time and yield
increases outweighs the effect of discounting. So, the marginal refinery can now be in an earlier period, where
the initial price facing the refinery is now lower (due to the increasing price profile). So, the price increase
required to bring the marginal refinery into production must be higher, when compared to the “Reference”
scenario.
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Figure 4.4: Calculated supply curves for Brazilian ethanol production in 30 years
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Total production is the sum of existing ethanol production and new model-predicted ethanol production.
World crude oil supply in 30 years is projected to be energy equivalent to 5765 Mm3 of ethanol. Optimization
is performed to within a 1.5% MILP gap to reduce the computational burden. Oil equivalent price removes
the ethanol BTU premium but retains the premiums associated with ethanol’s value as an oxygenate and
oil’s need for further costly refining.
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Various model outputs

For each scenario, table 4.1 presents each of total NPV, investment cost (excluding land
purchases), and the amount of pasture converted, again using the oil-equivalent price. Be-
fore the discussion, note well that the analysis in our model abstracts from both taxation
and the increases in land prices that would likely result from the prospect of substantial
investment in the sugarcane industry. As such, the NPV numbers should be interpreted as
the amounts to be shared between refinery/sugarcane investors, government revenue, and
current landowners.

In our “Reference” and “High construction capacity” scenarios, the model finds that no
new refineries are profitable. Using a social discount rate or assuming fast-growing yields
increases the profitability somewhat, so that the model predicts aggregate NPVs of $4.4 and
$18 billion for these scenarios respectively. These both represent substantial expansions over
current production.

Introducing a GHG price greatly increases the profitability of sugarcane ethanol to yield a
model-predicted NPV of $272 billion. Production, in this scenario, is limited by the refinery
construction constraint.

However, the most interesting result from this table is that the combination of all the
optimistic deviations from the “Reference” scenario results in investments totaling almost
$3 trillion in present value. This massive increase in profitability, when compared with the

Table 4.1: Aggregate profit, investment cost, and land used by model scenario

Scenario Total NPV
($ billion)

Investment Cost
NPV (Land

Conversion and
Refinery) ($ billion)

Pasture
Converted

(Mha)

Reference scenario 0 0 0
GHG price 271.7 115.7 31.51
Social discount rate (3%) 4.411 23.35 6.178
High yield increase (2
tonne/year)

17.52 74.04 16.35

High construction
capacity (108
refineries/year)

0 0 0

All 2859 672.6 84.4

Total NPV is the sum of the NPV of refinery construction costs, land purchase costs, land conversion costs,
feedstock costs (production and transport), refinery operating costs, and ethanol freight costs. Investment
Cost includes land conversion, refinery construction costs, and refinery upgrade costs. There is approximately
4,912 Mha of agricultural land and 3,359 Mha of pasture land globally. There is approximately 281 Mha of
agricultural land and 172 Mha of pasture land in Brazil.
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Table 4.2: Decomposition of NPV by scenario

Scenario Revenue Refinery
Opera-

tion

Land
Opera-

tion

Construction/
Upgrade

Freight Other

Reference/High
construction
capacity

0.00 0.00 0.00 0.00 0.00 0.00

GHG price 824.97 131.78 211.62 109.40 42.21 58.23
Social discount
rate (3%)

152.23 41.10 60.58 23.17 7.69 15.28

High yield
increase (2
tonne/year)

319.95 86.39 88.01 73.69 21.58 32.76

All 6588.36 1015.09 1121.54 641.63 557.47 393.45

Revenue accounts for all receipts at the delivery point. Refinery operation accounts for all operating expenses
at the refinery. Land operation accounts for all operating expenses in sugarcane fields, including capital
depreciation, and excluding rent. Construction/Upgrade accounts for all capital expenditure at the refinery.
Freight accounts for transportation costs from the refinery to the delivery point. Other includes the cost of
transporting sugarcane from the field to the refinery, land purchases, and land conversions.

Table 4.3: Aggregate output and percentage of global agricultural area by model
scenario

Scenario Percentage
of Global
Agricul-

tural
Area

Total
Production in

30 Years
(million
m3/year)

Total Brazil Ethanol
as Percentage of

World Liquids in 30
Years

Reference scenario 0.1% 26.66 0.3%
GHG price 0.74% 264.2 2.9%
Social discount rate (3%) 0.23% 74.8 0.83%
High yield increase (2
tonne/year)

0.43% 245.1 2.7%

High construction
capacity (108
refineries/year)

0.1% 26.66 0.3%

All 1.8% 997.1 11%

Total production includes both current production and the model-predicted new production. 30 year pro-
jection of world liquids is linearly extrapolated from the BP world energy outlook. World crude oil supply
in 30 years is projected to be energy-equivalent to 5765 Mm3 of ethanol.
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“GHG price” scenario, arises from the combination of several complementary effects. First,
much more production occurs due to a tripling of the allowed number of refineries built in
the model. Next, large increases in both output and profit per unit arise due to high yield
growth; the latter effect is occurring as we have a large per-hectare cost component. Lastly,
future cash flows are up-weighted when using the social discount rate. Table 4.2 decomposes
the NPV by scenario into several categories, allowing the reader to further explore how the
components change by scenario.

Table 4.3 presents two measures of aggregate production predicted by the model in each
of the scenarios; these are total output in 30 years, both expressed as a level and as a
percentage of world liquids production in 30 years, and the proportion of land employed in
sugarcane in Brazil.

In the “Reference” and “High construction capacity” scenarios, no new production occurs
so we report only existing production, which we assume will continue as is. In the “Social
discount rate” scenario, many areas become profitable, and investments are made to increase
production to almost 1% of world liquids production.

When we assume high yield increases, many more areas become profitable and, because
those areas are also more productive, total output increases to around 3% of global liquids
production, an amount similar to that of a top 10 oil producing country today. The “GHG
price” scenario, where the refinery construction constraint binds, yields a similar level of
production on a larger amount of land.

Again, it is the optimistic scenario that contains the most striking result here. When
allowing for highly profitable production through a GHG price, a large amount of construc-
tion resources, and high yield increases, we calculate that Brazil would produce more liquids
energy than the USA does today. When adding Brazil’s current oil production, this would
make it the largest liquids producer globally.

Limitations

Our model predicts substantial investment today, at current ethanol prices. There are several
real-world barriers to investment that can account for this disconnect from the relatively low
levels of sugarcane ethanol investment we have observed empirically in recent years.

Firstly, due to the mandate, the current ethanol price includes an observed premium
over oil, even when adjusting for refining costs and ethanol’s value as an oxygenate. So,
the current ethanol price does not reflect the prevailing energy price. However, the implicit
subsidy in Brazil is highly unlikely to be reduced substantially in the near term, so real-world
price expectations should likely be formed with this premium for several years to come.

Capital controls and general uncertainty over the stability of institutions in Brazil can
partially account for low investment. These capital controls manifest in restrictions on the
amount of land that can be controlled (including leasing) by foreign interests. However,
our discussions with local experts indicate that no such restrictions exist on contracts with
local farmers, so presumably the development of this institutional arrangement, in this con-
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text, could be a path forward for would-be investors. However, it is also plausible that the
government could view long-term production contracts with local landholders as a form of
leasing. The magnitude of the effect of general institutional instability cannot be known,
but it surely non-zero.

We do not model yield variability, which could reduce capacity utilization below what it
is in the model. We do not model any land market frictions, essentially assuming eminent
domain. Uncertainty over sugarcane production in the refinery catchment area would reduce
investment.

Our model makes the simplifying assumption that real ethanol prices will remain the
same over the investment period. As ethanol production expands, obviously demand will
also have to increase to keep prices constant. While this is simply an assumed scenario, it
is important for the reader to understand the type of world this imagines. For example,
a scenario in which ethanol blending and E85 are progressively adopted globally would be
consistent with our more optimistic results, as we project up to 11% of global energy liquids
supply will come from Brazilian biofuel.

We know of no study that examines the effect of price volatility on investment in ethanol
refineries specifically, through the mechanism of utilizing the option value of investment
delay (Dixit and Pindyck 1994). Kellogg (2014) uses data on Texas drilling operations to
indicate the effect of uncertainty on investment in an empirical context. Extending Kellogg’s
result to the full certainty case suggests that uncertainty can account for approximately a
25% reduction in investment rates, in that circumstance. However, the effect of uncertainty
in any given context is highly dependent on the level of profitability of the investment, so
a parametrization for the Brazilian ethanol context would be required to better understand
how large the magnitude of this effect is.25 This would be a fruitful avenue for future research.

We also do not directly model the supply curve for refinery construction, choosing to
make the simplifying assumption that the number of refineries built is limited to 36 per year
in most scenarios and 108 in the “Low Building Constraint” and “All” scenarios. There
are several reasons why direct modeling of the refinery construction supply curve is difficult
in our context. Firstly, an increasing construction cost curve would make our optimization
model nonlinear, increasing an already large computational burden. Secondly, even simple
empirical estimation of this supply curve is limited by the few observations of ethanol re-
fineries constructed in Brazil. Thirdly, careful modeling of the refinery construction process
is outside the scope of this chapter. Doing so would be another avenue for future research.

Another potentially important omission is any modeling of the sugar market. However,
because this chapter is primarily focused on scenarios in which sugarcane production for
ethanol is vastly expanded, the relative importance of the sugar market will be much dimin-
ished.

There are also several limitations of our model that may bias us against investment in
ethanol. Of first order concern is the relative future cost reductions in ethanol versus other

25See figure 6 in Kellogg (2014, pp. 1715).
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transportation fuels. For example, plant growth technologies, such as CRISPR (Doudna
and Charpentier 2014), could potentially vastly reduce the cost of producing sugarcane, and
decrease conversion costs if sugar density increases. Cost reductions in second generation
biofuels could similarly vastly improve the profitability of ethanol. Of course, these cost
reductions have to outpace reductions in the costs of production of other fuels to bias our
results against investment in ethanol.

We also do not account for income associated with the sale of electricity from burning
bagasse, which could add around 43% to revenues in optimized refineries.26 This, potentially
significant, omission likely biases our results away from investment in ethanol but is difficult
to model as we can’t separately observe the construction costs of the electricity production
infrastructure in the refineries, and a full analysis would need to account for the potentially
large transmission costs to bring the electricity to population centers. More detailed modeling
of the use of bagasse in this context will also be a fruitful area for future research.

Finally, restricting refinery size to be fixed removes a dimension of optimization, also
biasing the model against ethanol investment. We also do not allow for any second generation
ethanol production, so if this technology becomes economic, our model would underestimate
refinery values.

4.5 Conclusion

This chapter develops a supply model for ethanol production intending to assess the eco-
nomic potential of biofuel in Brazil under a variety of future scenarios. We show that, with
free capital markets, constant prices, and a GHG price, a non-trivial amount of future global
liquid fossil fuel can be profitably displaced by ethanol production using existing pasture
land. Because the GHG price increases profitability by so much, our model predicts that
incorporating high yield increases and a large capacity for constructing refineries would in-
crease production further so that 11% of global liquids production would come from Brazilian
ethanol, using 1.8% of global agricultural land.

26This is calculated using the ratio of surplus electricity to ethanol produced per tonne of cane in figure
16 of Bonomi et al. (2012, pp. 69) in kWh/L, multiplied by 1000/1000 to “change” the units to MWh/m3,
multiplied by R$200, which is a reasonable average wholesale spot price in Brazil, and divided by 1031,
which is our oil-equivalent price.
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Figure A1: Process model and empirical model precipitation response functions
using flexible temperature
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This figure plots Equations (2.10) and (2.11) for a single day of precipitation, using Equation (2.16) for
temperature. Each plot is vertically centered so that change in log(yield) takes a value of zero when precipi-
tation is 0mm. The first column plots the results for the statistically emulated process crop models; the light
gray lines represent each individual model and the red line is the median of the plotted points for each value
of precipitation. The second column plots the results for the empirical model with 95% confidence bands
calculated assuming error clustering by state and year. Subplot titles describe which control variables are
included. Below each plot is a histogram of daily precipitation.
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Figure A2: Process model and empirical model flexible temperature response
functions in the long differences model
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This figure plots Equation (2.16) for a single day of temperature. Each plot is vertically centered so that
change in log(yield) takes a value of zero when temperature is 27◦C. The first column plots the results for
the statistically emulated process crop models; the light gray lines represent each individual model and the red
line is the median of the plotted points for each value of temperature. The second column plots the results
for the empirical model with 95% confidence bands calculated assuming error clustering by state and year.
Subplot titles describe which control variables are included. Below each plot is a histogram of the full time
series of temperature using single sine interpolation.
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Figure A3: Process model and empirical model precipitation response functions
using flexible temperature in the long differences model
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This figure plots Equations (2.10) and (2.11) for a single day of precipitation, using Equation (2.16) for
temperature. Each plot is vertically centered so that change in log(yield) takes a value of zero when precipi-
tation is 0mm. The first column plots the results for the statistically emulated process crop models; the light
gray lines represent each individual model and the red line is the median of the plotted points for each value
of precipitation. The second column plots the results for the empirical model with 95% confidence bands
calculated assuming error clustering by state and year. Subplot titles describe which control variables are
included. Below each plot is a histogram of daily precipitation.
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B.1 Calculation of the contribution of pasture to

global caloric production

Table 3.3 ranks land uses by their contribution to global caloric production; this section fully
describes the calculations for this table. The FAO food balance data includes:

1. “Food supply”: the quantity of food available for human consumption net of food-
system waste, feed utilization, and changes in storage.

2. “Feed”: the quantity of the food product utilized as animal feed.

3. “Production”: the quantity of new production of the food product.

The data reports each of these items by “food type”; food types include items such as “Wheat
and products”, and “Poultry Meat”. All values are for the most recent year, 2011. The FAO
food balance data allows me to calculate the contribution of each land use to the food supply
via plant-based foods directly, as these are simply the “food supply” values. Assuming a
feed conversion ratio for each feed product also allows me to calculate the contribution of
each plant-based land use that is measured in the food balance data to the food supply via
animals. However, the contributions from both pasture and crop residues are not directly
measured in the food balance data, as these are not also food products.

I am, however, able to measure the total contribution to the food supply for each animal
product. With an assumed feed conversion ratio, along with the feed quantities, I can calcu-
late the total quantity of animal calories that can be attributed to those feed products. I then
calculate the contribution of pasture and crop residues as the residual of this relationship.
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Table A1: Typical feed conversion ratios for land animal food products

Food Item Feed conversion ratio
Poultry Meat 0.11
Pigmeat 0.10
Butter, Ghee 0.07
Milk - Excluding Butter 0.07
Cream 0.07
Bovine Meat 0.01
Eggs 0.13
Mutton & Goat Meat 0.01

Explicitly, my calculation is as follows. Suppose QF
i is the “food supply” of food type

i, QA
i is the feed utilized of food type i, both measured in kcal/capita/day. Total “plated”

food supply, both directly through plant-based products, and indirectly through animals, for
food type i, is then:

QH
i = QF

i + αiQ
A
i (B.1)

where i indexes plant-based food/feed types (e.g. Maize and Products), αi is the average
feed conversion ratio for food/feed type i. I calculate the total contribution of plant food
products that are measured in the FAO food balance data to animal calories as:∑

i∈I

αiQ
A
i , (B.2)

for I = {Apples and products; Bananas; Barley and products; Beans; Bovine Meat; Butter,
Ghee; Cassava and products; Cereals, Other; Cocoa Beans and products; Coconuts - Incl Co-
pra; Dates; Eggs; Fruits, Other; Groundnuts (Shelled Eq); Maize and products; Meat, Other;
Milk - Excluding Butter; Millet and products; Mutton & Goat Meat; Oats; Offals; Offals,
Edible; Oilcrops Oil, Other; Oilcrops, Other; Onions; Oranges, Mandarines; Peas; Plantains;
Potatoes and products; Pulses, Other and products; Rape and Mustard Oil; Rape and Mus-
tardseed; Rice (Milled Equivalent); Roots, Other; Rye and products; Sesame seed; Sorghum
and products; Soyabean Oil; Soyabeans; Stimulants; Sugar (Raw Equivalent); Sugar cane;
Sugar non-centrifugal; Sunflower seed; Sweet potatoes; Sweeteners, Other; Tomatoes and
products; Vegetables, Other; Wheat and products; Yams}. Note that this excludes fish feed
types, as these are primarily used to produce other fish food products.

As I can not determine which animals are fed which feeds, I assume αi = α ∀i. To
calculate the average feed conversion ratio, I collect typical feed conversion ratios by animal
from Searchinger et al. (2013, p. 37), which I show in Table A1. Next, I calculate the animal
feed consumed for each land-based animal food product j using:

QA,j = QP
j /α

j (B.3)
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where αj is the feed conversion ratio for animal product j and QP,j is the production of
animal product j. QA,j then represents the total quantity of feed across all feed types, for
animal product j. Finally, to obtain α, the average conversion ratio, I use:

α =

∑
j∈J Q

P,j∑
j∈J Q

A,j
(B.4)

To obtain the contribution from pasture and crop residues, I use the identity:∑
j∈J

QA,j =
∑
i∈I

(QA
i ) +QA

Pasture (B.5)

which says that the total amount of feed consumed by land animals is equal to the total
amount of feed consumed from plant food products,

∑
i∈I(Q

A
i ), plus the total amount of feed

consumed as pasture and crop residues, QA
Pasture. Finally, I calculate the total contribution

to the food supply from pasture and crop residues as QH
Pasture = QA

Pasture∗α. I then calculate
the final proportions by dividing each QH

i by the “Grand Total” food supply value in the
FAO data.

The relative contribution of pasture and crop residues is approximately 70% and 30%
respectively (Wirsenius 2003).

B.2 Climate change projections

In order to obtain indicative changes in production under climate change, I follow Houser
et al. (2015) by simulating future daily weather by randomly sampling historical weather
and adding differences generated by a climate model. In the current version of this project,
I use a single climate model, HadGEM2-ES.

The following method for computing downscaled future climate projections differs from
that in Houser et al. (2015) Secondly, instead of computing weather changes over fixed finite
periods (e.g. 1981-2000 to 2040-2059), I compute weather changes and sum the projected
impacts for all years.

Other than using a single climate model, my method differs from that in Houser et al.
(2015) in two ways. Firstly, I compute projections for all years out to 2100. Secondly, I filter
the climate model output using a LOWESS smoother, so that only the first-order trends and
decadal variation from the climate model are used.

The full process is as follows: For climate model/emissions scenario/realization i:

1. Extract monthly data for i for all grid cells that overlap with the weather grid cells
used in the analysis, from 30 years before the start of the analysis to 2100. Weather
grid cells that do not overlap any cell in i are matched to the nearest cell in i. Index
the grid cells in i by j.
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2. For i, month-of-year, variable, and grid cell j, compute lowess-smoothed monthly data
with a smoother span of 0.31. This generates a smoothed path of each variable that
preserves decadal variation.

3. For each future year t available in i, randomly select a year s from the weather data
available (for NZ, this is 1972-2015). Then for every weather grid cell k in climate
model grid cell j, and month in t, add the monthly difference from s to t using the
lowess smoothed data.2

Soil moisture projections

In CMIP5, soil moisture variables available include total soil moisture across all layers in
kg/m2 and soil moisture in the top 0.1m in kg/m2. However, neither of these soil moisture
units exactly match those in the VCSN. In addition, some climate models do not reproduce
the timing of seasonality of soil moisture as in reality. Thus, to obtain the mapping between
the soil moisture units in the VCSN and the climate models, I make the assumption that the
magnitude, but not necessarily the timing of the seasonality in soil moisture in the climate
models is correct. This exploits the largest source of variation in soil moisture that is common
between the weather data and the climate model data, the seasons. To operationalize this,
I employ the following relationship in constructing the future soil moisture data:

ŜM
W

it = min(SM
W

) +
max(SM

W
)−min(SM

W
)

max(SM
C

i )−min(SM
C

i )
∗
(
SMC

it −min(SM
C

i )
)

(B.6)

where i indexes climate models, t indexes future days, W indicates the weather data, C
indicates the climate model data, and averages are computed over all historical years which
exist in both the weather data and the climate model data.

1In R, this is computed as lowess(x = month, y = value, f = 0.3)$y.
2In the New Zealand data, years are defined to run from June 1 to May 31. 366-day future years which

are matched with 365 day past years use day 365 twice.
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Appendix C

Appendix to “The potential for
renewable fuels under greenhouse gas
pricing: The case of sugarcane”

C.1 Parameter values

Table A1 presents all parameter inputs into the refinery-level NPV calculation. “*” denotes
variables that, within reasonable bounds, materially affect the final results.

Table A1: Sugarcane investment model parameter values

Parameter Value Source
Refinery capacity (m3/year) 250,000 Assumed.
Construction costs per refinery
($R million)

680.9 Bloomberg New Energy Finance.
Predicted value for 2014 from a
regression of construction cost on
capacity and a linear trend using 22
ethanol-only refineries built in
Brazil from 2005-2014.

Real discount rate (%) 6.1%* Petrobras’ WACC from
wikiwealth.com, less expected
inflation from tradingeconomics.com

Sugarcane cycle length (years) 6 Assumed.
Lifespan of each refinery (years) 30* Assumed.
Additional maintenance costs as a
proportion of initial construction
costs (%)

0* Assumed. Note that maintenance
costs are explicitly accounted for in
the refinery operating costs.

Construction period (year) 1 Assumed.
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Ethanol price R$1840/m3* Nearest upcoming hydrous ethanol
futures price on BM&F Bovespa
(Collected October 25, 2016)
(Brazilian Securities, Commodities
and Futures Exchange 2014)).

Oil price US$48.8-
US$53.3
(2015-
2088)

Nymex futures prices, averaged for
each year. Unobserved years take
the latest value. (Collected October
25, 2016 (CME Group 2015)).

Refinery operating costs R$278/m3 PECEGE expansion region costs of
refinery production less capital
costs, depreciation, and rent (2012)

Feedstock costs R$3189/ha PECEGE expansion region costs of
cane production less capital costs,
depreciation, rent, and
transportation costs (2012).

Feedstock transport costs R$8.2/Mg
Cane

Sugarcane transportation costs from
Bonomi et al. (2012).

Pasture to sugarcane conversion
cost

R$181/ha Conversion cost used in IBGE
(2013).

Annual yield increases 0.32Mg/ha Projected from historical trend
using Brazilian Sugarcane Industry
Association (2014).

Ethanol yield per Mg sugarcane
stalk

0.086m3/Mg
Cane

Calculated from Somerville et al.
(2010).

Table A2 presents all parameter inputs into refinery and pasture allocation optimization
model.

Table A2: Optimization model constraint values

Parameter Value Source
Maximum number of
refineries built per year

36 Assumed to be equivalent to 50%
more than on a production
capacity basis.

First year in the model 2014 Assumed.
Final potential build start
year

2038 Assumed.

Proportion of total pasture
available for conversion.

0.5 Assumed.
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Table A3: GDP deflators for USD and BRL

USD BRL
2000 89.02 2000 100.00
2001 91.05 2001 108.09
2002 92.45 2002 118.80
2003 94.29 2003 135.38
2004 96.88 2004 145.91
2005 100.00 2005 156.84
2006 103.07 2006 167.34
2007 105.82 2007 178.05
2008 107.89 2008 193.83
2009 108.71 2009 208.09
2010 110.04 2010 225.91
2011 112.31 2011 244.69
2012 114.33 2012 259.04
2013 116.03 2013 275.90
2014 117.72 2014 294.93

Note: Collected from the World Bank Development Indicators.

Table A4: Miscellaneous parameter values

Parameter Value Source
Soil carbon change when
converting from pasture to
sugarcane (Mg/ha)

31.8 Mello et al. (2014)

C.2 Oil and ethanol market equilibrium

In this subsection, we describe the simple energy market equilibrium model we use to gener-
ate the effect of a global GHG price, or equivalent policy, on the producer prices for oil and
ethanol. Because we use these equations exactly, we also provide our particular parametriza-
tion.

The key assumptions we employ are: oil supply, ethanol supply, and energy demand are
constant elasticity functions of price, oil and ethanol are perfect substitutes in the energy
market, BTUs are the only valued component of either fuel, and oil BTUs are penalized
using a scalar multiplier to equate the initial prices of the two fuels on a per-BTU basis.

The equilibrium equations are given below. We use subscript t’s to denote variables that
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potentially change over time in our later simulation.

P s
ot = P d

BTU,tBTU
∗
o − PGHG,tGHGo (C.1)

P s
et = P d

BTU,tBTUe − PGHG,tGHGe (C.2)

QBTU,t = Ad(P
d
BTU,t)

−r (C.3)

QBTU,t = QotBTU
∗
o +QetBTUe (C.4)

Qot = Ao(P
s
ot)

ηo (C.5)

Qet = Ae(P
s
et)

ηe (C.6)

In the above, P s
ot is the price per barrel of oil to suppliers, P s

et is the price of ethanol per m3

to suppliers, P d
BTU,t is the price of world energy demanded in ethanol-equivalent quadrillion

BTUs,1 BTU∗o is the energy content of oil per barrel, scaled to equate the initial prices of the
fuels on a per-BTU basis, BTUe is the energy content of ethanol per m3, PGHG,t is the price
of GHGs emitted, GHGo is the GHGs emitted per-unit oil, GHGe is the GHGs emitted per
unit ethanol, QBTU,t is the world supply of ethanol-equivalent BTUs supplied across both
fuels, P d

BTU,t is the price of an ethanol-equivalent BTU, Qot is the world supply of oil in
barrels, Qet is the world supply of ethanol in m3. Prices and quantities are the endogenous
variables in this system; the calculation of the remaining parameters is summarized in table
A5:

Table A5: Oil and ethanol market parameter calculations

Parameter Formula Value Explanation

PGHG,t
$38.94–$96.79
(2014–2068)

US federal social cost of
carbon, linearly interpo-
lated/extrapolated (US EPA
Climate Change Division
2013).

GHGo 0.657
Lifecycle GHG content of a

barrel of crude oil (Chavez-
Rodriguez and Nebra 2010).

GHGe 0.256
Lifecycle GHG content of an m3

of ethanol.2

1The units in this model are chosen both for computational and expositional purposes.
2http://www.arb.ca.gov/fuels/lcfs/CleanFinalRegOrder112612.pdf

http://www.arb.ca.gov/fuels/lcfs/CleanFinalRegOrder112612.pdf
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Ad
Q0
eBTUe +Q0

oBTU
∗
o

(P 0
e /BTUe)

−r
2.24 + 203 ∗BTU∗o

(26.2)−0.072

Equation (C.3) rearranged using
2014 values. World oil sup-
ply in 2013Q4-2014Q3 (Inter-
national Energy Administra-
tion 2015), Brent oil futures
price in 2014 dollars for year t
(CME Group 2015) (unavail-
able years are taken to be the
final price in this list), r is the
central value from (Holland,
Hughes, and Knittel 2009).

Aot
Q0
o

(P t
o)
ηo

33.9

(P t
o)

0.5
;

P t
o ∈ {$48.8–$53.3}

World oil supply in 2013Q4-
2014Q3 (International Energy
Administration 2015), Brent
oil futures price in 2014 dol-
lars for year t (CME Group
2015) (unavailable years are
taken to be the final price
in this list), ηo is the central
value from (Holland, Hughes,
and Knittel 2009).

Ae
Q0
e

(P 0
e )ηe

99.9

(1840)1

World ethanol supply in 2013
(Renewable Fuels Association
2014), Ethanol futures for
February 2015 delivery to SP
(BM&F Bovespa 2015), ηe is
the central value from (Hol-
land, Hughes, and Knittel
2009).

BTU∗ot BTUo
P 0
ot/BTUo
P 0
e /BTUe

49.8

1840/22391726

Scales the BTU content of a
barrel of oil in the model to
equate the initial prices of the
(scaled) oil BTUs and ethanol
BTUs. P 0

o (Energy Infor-
mation Administration 2014;
CME Group 2015; Brazilian
Securities, Commodities and
Futures Exchange 2014).
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BTUe
BTUe
boee

∗bbl/m3 ∗ 106 3.560 ∗ 6.29 ∗ 106

BTUs per m3 ethanol. Standard
measure from (Energy Infor-
mation Administration 2014).

The results using GHG prices from US EPA Climate Change Division (2013), oil prices
from CME Group (2015), and a recent ethanol price are presented in Figure A1.



APPENDIX C. APPENDIX TO “THE POTENTIAL FOR RENEWABLE FUELS
UNDER GREENHOUSE GAS PRICING: THE CASE OF SUGARCANE” 90

Figure A1: Greenhouse gas and ethanol prices produced using energy market
equilibrium model
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