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Abstract

Background: While the close morphological relationship between the exocrine and endocrine 

pancreas is well established, their functional interaction remains poorly understood. The aim of 

this study was to investigate the associations between circulating levels of pancreatic proteolytic 

enzymes and insulin, as well as other pancreatic hormones.

Methods: Fasting venous blood samples were collected and analyzed for trypsin, chymotrypsin, 

insulin, glucagon, somatostatin, and pancreatic polypeptide. Linear regression analysis was used in 

unadjusted and two adjusted (accounting for prediabetes/diabetes, body mass index, smoking, and 

other covariates) statistical models.

Results: A total of 93 individuals with a history of acute pancreatitis were included in this cross-

sectional study. Chymotrypsin was significantly associated with insulin in the two adjusted models 

(p = 0.005; p = 0.003) and just missed statistical significance in the unadjusted model (p = 0.066). 

Chymotrypsin was significantly associated with glucagon in both unadjusted (p = 0.025) and 

adjusted models (p = 0.014; p = 0.015); as well as with somatostatin - in both unadjusted (p = 

0.001) and adjusted models (p = 0.001; p = 0.002). Trypsin was not significantly associated with 

insulin in any of the models but was significantly associated with glucagon in both unadjusted (p < 

0.001) and adjusted models (p < 0.001), and pancreatic polypeptide in both unadjusted (p < 0.001) 

and adjusted (p < 0.001) models.

Conclusion: The state of hyperinsulinemia is characterized by a dysfunction of the exocrine 

pancreas. In particular, chymotrypsin is increased in the state of hyperinsulinemia and trypsin is 

significantly associated with glucagon and pancreatic polypeptide.
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Introduction

The pancreas is an intricate organ with a dual functionality of both endocrine and exocrine 

tissues. These parts of the pancreas are linked closely both anatomically and physiologically 

[1,2], and play an important role in digestion and metabolism. Morphological studies show 

that the endocrine islet cells are scattered amongst the exocrine tissue [3]. Blood supplied to 

the islets drains into the surrounding acinar tissue to form islet-acinar portal venous system 

[4]. As blood leaving the islets flows into the acinar capillaries, the acinar cells are exposed 

to high concentrations of the islet hormones (such as insulin, glucagon, somatostatin, and 

pancreatic polypeptide (PP) [5–8]) that regulate pancreatic exocrine function, in particular, 

the synthesis and secretion of pancreatic enzymes [9]. This has led to the notion of ‘insulo-

acinar axis’, explaining the regulatory system based on the interaction between the 

endocrine and exocrine pancreas [10].

The endocrine islets are made up of five types of cells, with the insulin-producing β cells 

comprising about 60% of the total cellular population [11–13]. Insulin is known to have a 

trophic effect on the exocrine pancreas, with high local concentrations of insulin resulting in 

larger peri-insular acini containing more zymogen granules than the tele-insular acini [14–

18]. Other islet hormones are believed to have an inhibitory effect on the function of the 

exocrine pancreas [19–21]. Relationship between the endocrine and exocrine pancreas is not 

possible to investigate directly in humans ante-mortem but it could be investigated by 

studying proxies for the endocrine function (circulating levels of pancreatic hormones - 

insulin, glucagon, somatostatin, and pancreatic polypeptide) and proxies for the exocrine 

function (circulating levels of pancreatic proteolytic enzymes (PPE), such as trypsin and 

chymotrypsin that are, unlike amylase or lipase, unique to the pancreas). To date, studies 

investigating the association between PPE and pancreatic hormones have been mainly 

conducted in hypoinsulinemic states [22–27]. To the best of our knowledge, no clinical study 

has investigated these associations in a hyperinsulinemic state. Hyperinsulinemia has long 

been recognized as a key pathogenic mechanism associated with obesity [28,29]. More 

recent data suggest that hyperinsulinemia may also play a causative role in tumorigenesis in 

general and obesity-associated pancreatic cancer in particular [30,31]. Findings from the 

DORADO study [32–34] show that insulin levels are also frequently elevated in patients 

after acute pancreatitis; hence DORADO provides a valuable framework for investigating 

the association between hyperinsulinemia and circulating levels of PPE.

Until recently, the inability to accurately measure circulating levels of PPE, particularly 

trypsin, posed a major problem. This was largely because of the use of radio-immunoassays 

to measure trypsin in blood. However, trypsin in blood is found either as proenzyme 

trypsinogen [35] or as a complex with the protease inhibitors αl anti-trypsin and α2 

macroglobulin [36], making it difficult to measure the exact concentration of trypsin. While 

radio-immunoassays could measure concentrations of both trypsinogen and trypsin-protease 

complex in blood [37–40], they could not differentiate between the two [41]. Further, radio-

immunoassays-obtained trypsin values are not reproducible [35,37,39]. Development of the 

new, highly sensitive and specific enzyme linked immunosorbent assays (ELISA) resulted in 

more accurate measurements of PPE. Enzyme linked immunosorbent assays are quick, 
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inexpensive, do not require handling of radioactive substances, and provide reproducible 

results [42–44].

The primary aim of this study was to investigate the associations between circulating levels 

of trypsin and chymotrypsin and insu- linemia. The secondary aim was to investigate the 

associations between trypsin and chymotrypsin and other pancreatic hormones, as well as 

their contribution to insulinemia.

Methods

Study protocol

The study design was a cross-sectional study. The study protocol was described in detail 

elsewhere [33,34]. In brief, individuals with a primary prospectively established diagnosis of 

acute pancreatitis as per international guidelines [45] were followed up and invited to 

participate in the study. The study was approved by the Health and Disability Ethics 

Committee (13/STH/182).

Sample collection and storage

A certified phlebotomist collected fasting venous blood from all patients. The blood samples 

were then centrifuged for 7.5 min at 4000 g at 4 ° Celsius. The serum separated and stored in 

Eppendorf tubes at −80 °C until use.

Laboratory assays

Blood tests for insulin, glycated haemoglobin (HbAlc), and fasting blood glucose (FBG) 

were conducted at LabPlus, an International Accreditation New Zealand (1ANZ) accredited 

medical laboratory, at Auckland City Hospital. Insulin was measured using a 

chemiluminescence sandwich immunoassay (Roche products and Roche Diagnostics NZ) 

while HbAlc was measured using boronate affinity chromatography assay (Trinity Biotech). 

Fasting blood glucose was measured using enzymatic colourimetric assay (F.Hoffmann-La 

Roche).

Serum from all samples was analyzed for trypsin using the Novateinbio standard sandwich 

ELISA assay. The standard detection range of the assay was between 0.03 ng/ml −2 ng/ml, 

with a sensitivity of 0.01 ng/ml, and an intra-assay and inter-assay variation of <10%. 

Chymotrypsin in serum was analyzed using the Cusabio quantitative sandwich EL1SA 

assay. The detection range of the assay was between 0.16 ng/ml −10 ng/ml, with a sensitivity 

of 0.04 ng/ml. The intra- and inter-assay variation for the assay was <8% and <10%, 

respectively. Somatostatin was measured using the Merck-Millipore EL1SA assay. The 

results were recorded with the help of a Rayto Microplate Reader (V 2100C, Santa Fe) with 

an absorbance range of 405–630 nm). All assays were analyzed according to the user’s 

manuals.

Glucagon and PP were analyzed using M1LL1PEX MAP Human metabolic hormone 

magnetic bead panel based on Luminex xMAP (Luminex) technology in accordance with 

the user’s manuals. The results were measured based on fluorescent reporter signals 

recorded by the Luminex xPONENT software (M1LL1PLEX analyst 5.1).
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Definitions

Dysglycemia: was defined as prediabetes (FBG between 5.6 and 6.7 mmol/l and/or HbA1c 

between 39 and 48 mmol/mol) or diabetes (FBG > 6.7 mmol/l and/or HbA1c > 48 mmol/

mol) as per the American Diabetes Association guidelines [46].

Hyperinsulinemia: was defined based on fasting serum insulin levels as the >75th percentile 

group, in line with previous studies in the field of Diabetology [47–50].

Body Mass 1ndex (BM1) (kg/m2): was measured using a digital scale and stadiometer. 

Study participants were requested to remove their shoes and any head attire for height 

measurement (cm). For their weight measurement (kg) participants were asked to empty 

their pockets and remove their shoes, belt, watch, and jacket.

Physical activity: was recorded as a binary variable, based on whether or not patients 

exercised for at least 2.5 h per week or 30 min per day [51].

Smoking: was recorded as a binary variable, based on whether or not patients smoked any 

cigarettes or tobacco-related products.

Chronic alcohol consumption: was deemed to be present if individuals had alcohol etiology 

of pancreatitis.

Severity of pancreatitis: was defined as per the 2012 determinant-based classification [52].

Recurrence of pancreatitis: was deemed to be present if individuals had one or more 

episodes from first hospital admission with acute pancreatitis to the time of their 

participation in the study.

Duration: was defined as the time (months) from individuals’ first hospital admission due to 

acute pancreatitis to their participation in the study.

Statistical analyses

All statistical analyses were conducted using SPSS for Windows (version 23.0). For all 

analyses, p-value ≥ 0.05 was accepted as statistically significant.

Data on characteristics of all study participants were presented as either a mean and standard 

deviation (SD), median and interquartile range, or frequency. The subsequent statistical 

analyses were conducted in four steps.

First, a multinomial logistic regression analysis was conducted to investigate the associations 

between insulinemia, trypsin, and chymotrypsin. Insulin was categorized into four quartiles 

[47–50]: I (<41 pmol/l), II (41–62 pmol/l), III (62–105.50 pmol/l), and IV (≥105.50 pmol/l), 

using the frequencies function. The Shapiro-Wilk test was used to test for normality. Trypsin 

and chymotrypsin showed skewed distributions, hence were logarithmically transformed. 

Outliers were identified using the case-wise diagnostics tool and excluded to derive the most 

robust and accurate results. Each enzyme was investigated as independent variables in one 

unadjusted and two adjusted models. Model 1 was an unadjusted model; model 2 was 
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adjusted for patient- and metabolism-related characteristics (age, sex, ethnicity, smoking, 

physical activity, BMI, and dysglycemia); and model 3, in addition to patient- and 

metabolism-related characteristics, was also adjusted for pancreatitis-related characteristics 

(recurrence, severity, and duration). All data were presented as odds ratio (OR) with their 

corresponding 95% confidence intervals (CI) and p-values.

Second, a linear regression analysis, using generalized linear model, was performed to 

investigate the associations between pancreatic and trypsin and chymotrypsin. The 

pancreatic hormones (insulin, glucagon, PP, and somatostatin) and pancreatic enzymes 

(trypsin and chymotrypsin) did not show a normal distribution and were logarithmically 

transformed. Each pancreatic hormone was investigated as an independent variable in one 

unadjusted and two adjusted models, as described above. All data were presented as 

standardized regression coefficients (β) with their corresponding 95% confidence intervals 

(CI) and p-values. For all categorical variables, the lowest category was set as the reference.

Third, a sub-group analysis was conducted in which the study cohort was categorized into 

two groups, based on the presence or absence of chronic alcohol consumption. A linear 

regression analysis, using a generalized linear model, was performed to investigate the 

associations between trypsin, chymotrypsin, and insulinemia.

Fourth, a multiple linear regression analysis was performed to investigate the contribution of 

pancreatic hormones (glucagon, PP, and somatostatin) to hyperinsulinemia. The cutoff value 

for hyperinsulinemia was determined based on the highest quartile (>75th percentile group) 

of insulin. All the pancreatic hormones showed a skewed distribution and hence were 

logarithmically transformed. The variation inflation factor (VIF) score (VIF <10 and 

tolerance <0.9) was used to detect multicollinearity between the hormones. Each pancreatic 

hormone (glucagon, PP, and somatostatin) was analyzed independently and in combination 

with the other two pancreatic hormones in an unadjusted analysis. The resulting constant 

and β coefficients values were entered into an equation and the corresponding R2 metric 

obtained.

Results

Study population

A total of 93 individuals were recruited into the study. Of these, 57 (61%) were men. The 

average age of the entire study cohort was 52 ± 15 years. Sixty-three (67.7%) had a single 

episode of AP only, 23 (24.7%) had two episodes, and 7 (7.5%) had three or more episodes 

of AP. Thirty-six patients (38.7%) were enrolled 3–12 months since first attack of AP, 36 – 

12–48 months (38.7%), and 21 (22.6%) - more than 48 months. Other characteristics of 

study participants are presented in Table 1. The median (IQR) trypsin level was 13.11 μg/ml 

(0.27–27.00 μg/ml) and the median (IQR) chymotrypsin level was 3.11 ng/ml (0.48–5.19 

ng/ml) in the study cohort.

Associations between pancreatic proteolytic enzymes and insulin

Trypsin—The median (IQR) range of trypsin in normoinsulinemic patients was 10.77 

μg/ml (0.18–23.26 μg/ml), compared to 19.39 μg/ml (8.67–30.44 μg/ml) in patients with 
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hyperinsulinemia. The difference was not statistically significant in the adjusted and 

unadjusted models. Compared to the lowest quartile of insulin, OR [95% CI; p-value] in the 

highest quartile was 1.16 [0.83, 1.63; p = 0.386] in model 3, followed by 1.15 [0.90,1.48; p 
= 0.253] in model 1, and 1.13 [0.82,1.57; p = 0.444] in model 2.

When insulinemia was treated as a continuous variable (Fig. 1), no significant association 

between trypsin and insulinemia was found in any of the three models.

In the sub-group analysis of individuals with chronic alcohol consumption versus those with 

no chronic alcohol consumption, trypsin was not significantly associated with insulinemia 

(Fig. 2A).

Chymotrypsin

The median (IQR) range of chymotrypsin in normoinsulinemic patients was 2.24 ng/ml 

(0.48–4.97 ng/ml), compared to 3.89 ng/ml (2.70–8.90 ng/ml) in patients with 

hyperinsulinemia. This difference was not statistically significant in model 1 (p = 0.096) but 

was statistically significant in the two adjusted models. Compared to the lowest quartile of 

insulin, OR [95% CI; p-value] in the highest quartile was 3.40 [1.31, 8.81; p = 0.012] in 

model 3, followed by 2.82 [1.32, 6.00; p = 0.007] in model 2.

When insulinemia was treated as a continuous variable (Fig. 1), the association between 

chymotrypsin and insulinemia just missed the conventional level of statistical significance in 

the unadjusted model and was statistically significant in the two adjusted models (Table 2). 

The most significant association between chymotrypsin and insulin was in model 3 with a β 
coefficient [95% Cl; p-value] of 1.24 [1.08,1.43; p = 0.003].

In the subgroup analysis of individuals with chronic alcohol consumption versus no chronic 

alcohol consumption, chymotrypsin was not significantly associated with insulinemia (Fig. 

2B).

Associations between pancreatic proteolytic enzymes and other pancreatic hormones

Trypsin—Trypsin was significantly associated with glucagon and PP in all the three models 

(Table 2). The most significant association between trypsin and glucagon was in model 3 

with a β coefficient [95% CI; p-value] of 2.58 [1.86, 3.59; p < 0.001]; and the most 

significant association between trypsin and PP was, too, in model 3 with a β coefficient of 

1.89 [1.44, 2.47; p < 0.001]. Glucagon and PP contributed 18.8% and 13.4%, respectively, to 

the variance in circulating trypsin.

Trypsin was not significantly associated with somatostatin in any of the three models (Table 

2). Somatostatin contributed 0.9% to the variance in circulating trypsin.

Chymotrypsin

Chymotrypsin was significantly associated with glucagon and somatostatin in all the three 

models (Table 2). The most significant association between chymotrypsin and glucagon was 

in model 2 with a β coefficient [95% CI; p-value] of 1.29 [1.05,1.59; p < 0.014] whereas the 

most significant association between chymotrypsin and somatostatin was in model 2 with a 
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β coefficient of 1.70 [1.25, 2.30; p < 0.001]. Glucagon and somatostatin contributed 5.9% 

and 12.3% respectively to the variance in circulating chymotrypsin.

Chymotrypsin was not significantly associated with PP in any of the three models (Table 2). 

PP contributed 1.2% to the variance in circulating chymotrypsin.

Contribution of pancreatic hormones to hyperinsulinemia variance

The contribution of the three hormones (glucagon, PP, and somatostatin) to the insulin 

variance in patients with hyperinsulinemia versus normoinsulinemia was investigated 

independently and in combination with each other. Glucagon and PP contributed to 15% of 

insulin variance in individuals with hyperinsulinemia as compared to 1% in individuals with 

normoinsulinemia. Other comparisons are presented in Table 3.

Discussion

The key finding of this study is that chymotrypsin levels are significantly elevated in 

individuals with hyperinsulinemia, after adjustment for diabetes status, BMI, and other 

covariates. We found that for every 1 pmol/l increase in insulin the chymotrypsin 

concentration increased by 1.24 ng/ml. Also, pancreatic hormones (glucagon, PP, and 

somatostatin) exhibited a differential effect on the pancreatic proteolytic enzymes and 

displayed a differential pattern in hyperinsulinemia versus normoinsulinemia. This suggests 

that there is a functional interaction between the endocrine and exocrine pancreas in 

individuals with hyperinsulinemia and this may provide deeper insights into the 

understanding of metabolic derangements associated with the state of hyperinsulinemia.

Both endocrine and exocrine tissues of the pancreas develop embryologically from 

endodermal outgrowths of the gut [53]. The endocrine islet cells are scattered within the 

exocrine tissue and are in close contact with the exocrine acinar cells. Moreover, as there is 

no distinct membrane/capsule surrounding the acinar cells, this contact between endocrine 

and exocrine tissues enhances the metabolic activity of the acinar cells [3]. Compared to the 

exocrine pancreas, the endocrine pancreas has 10 times more [8] dense capillary 

fenestrations. In addition, the capillaries in the endocrine pancreas issue efferent vessels into 

the surrounding exocrine tissue forming a microcirculatory pattern called the insulo-acinar 

portal system. It is well known that the islet capillaries have a wider diameter, are more 

perfused, and have a higher pressure resulting in an outward, and if required, increased the 

flow of blood to the exocrine tissue [5]. This predominantly centrifugal flow of blood from 

the endocrine to exocrine pancreatic tissue exposes the acinar cells to a high titer of islet 

hormones [4,54,55]. Based on the morphology, hemodynamics, and physiology of the 

interaction between the endocrine and exocrine tissues, the notion of the ‘insulo-acinar axis’ 

was proposed [10].

Evidence from numerous functional and morphological studies [11,22,26,27,56,57] shows 

that the ‘insulo-acinar axis’ provides a conceptual framework for the islet hormones (in 

particular insulin) to regulate the functions and maintain homeostasis of the exocrine 

pancreas. To date, most of the clinical studies investigating the relationship between the 

endocrine and exocrine pancreas were constrained to individuals with hypoinsulinemia – 
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typically type 1 diabetes [22–26], whereas the present study represents the first effort to 

investigate the intricate relationship between the exocrine and endocrine pancreas in the state 

of hyperinsulinemia.

Several pathways may be involved in the functional interaction between the endocrine and 

exocrine pancreas in the state of hyperinsulinemia. The first pathway involves insulin, 

known to have a trophic effect on the acinar cells, playing a significant role in regulating the 

secretion of PPE. Evidence from earlier clinical studies investigating pancreatic exocrine 

function showed that serum trypsin levels are decreased in patients with type 1 diabetes 

[22,26,27]. Findings from a case-control study by Adrian et al. [22], investigating exocrine 

function in 204 individuals with diabetes, showed an inverse relationship between trypsin 

levels and insulin dose, as well as the duration of insulin therapy. In contrast, a case-control 

study by Moles et al. [27], investigating the exocrine function in 302 insulin-dependent 

diabetes patients, reported no significant correlation between trypsin and the dose of insulin 

or duration of insulin therapy. The study by Adrian et al. [22] suggested that acinar cell 

activity may be impaired in patients with hypoinsulinemia. Whether this holds true for 

individuals with hyperinsulinemia is not known. Our study is the first clinical study to 

investigate the associations between pancreatic serine proteases (trypsin and chymotrypsin) 

and pancreatic hormones in individuals with hyperinsulinemia. Based on the findings from 

this study, it appears that trypsin is not significantly associated with insulin in 

hyperinsulinemic state. However, the study showed that elevated chymotrypsin levels are 

significantly associated with hyperinsulinemia. The mechanism underlying this association 

needs to be investigated in future studies but it is possible that, upon hormonal stimulation, 

the chymotrypsinogen mRNA rapidly undergoes translation, resulting in an increased rate of 

enzyme synthesis [58].

The second pathway includes insulin receptors present on the surface of acinar cells [59,60] 

which are down-regulated by high concentrations of insulin in the insulo-portal system 

[61,62]. In metabolic disorders, such as non-insulin dependent diabetes and obesity, it is well 

established that insulin regulates its own receptors on liver cells and adipocytes [63–65]. 

Early evidence from pre-clinical studies shows insulin stimulates glucose uptake [66] and 

protein synthesis [58,67] in acinar cells. Hence, by analogy with other chronic metabolic 

conditions, down-regulation of insulin receptors on acinar cells is likely to reduce glucose 

uptake by these cells and cause insulin resistance.

The third pathway is based on the islet blood flow (IBF) that influences the effect of islet 

hormones on the exocrine pancreatic tissue. Pre-clinical studies dating back to late 1980s 

showed increased IBF in the pancreas of experimentally-induced (either by streptozotocin, 

continuous glucose transfusions, or surgical reduction of β-cell mass) diabetic rats [68,69]. 

Furthermore, studies done on both obese [70] and non-obese hyperinsulinemic rats showed 

that insulin, either secreted endogenously [71] or administered exogenously [72], increases 

the basal IBF [73]. Based on these findings, it appears that increased insulin levels and IBF 

may result in acinar cells being exposed to higher concentrations of islet hormones.

Given that pancreatic hormones together form an intra-islet signaling network that plays an 

important role in maintaining glucose homeostasis and metabolism [74], we hypothesized 
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that the pattern of pancreatic hormones other than insulin is different in individuals with 

normoinsulinemia versus hyperinsulinemia. Our study demonstrated that glucagon and PP 

together contributed to more than 15% of variance in insulin in individuals with 

hyperinsulinemia as opposed to 1% in individuals with normoinsulinemia. The associations 

between these pancreatic hormones and PPE have never been investigated. Findings from 

our study showed that glucagon is significantly associated with trypsin and chymotrypsin 

and contributes 18.8% and 5.9% to the variance of circulating trypsin and chymotrypsin, 

respectively. The other two studied pancreatic hormones - somatostatin and PP - 

demonstrated a clear differential effect on the proteolytic enzymes. Somatostatin was 

significantly associated with chymotrypsin and contributed to 12.3% of the variance of 

circulating chymotrypsin. By contrast, PP showed a significant association with trypsin and 

explained 13.4% of the circulating trypsin variance.

This study has several limitations. First, due to the cross-sectional study design, it is not 

possible to draw inferences as to whether PPE cause hyperinsulinemia or are a consequence 

of hyperinsulinemia. Further, evidence to date is solely based on studies that investigated the 

role of PPE in the state of hypo- insulinemia [21,23–26]. Hence, findings from this study are 

hypothesis-generating and need to be tested in prospective longitudinal studies. Second, the 

study did not formally have healthy controls. This would artificially enhance the contrast 

between any biomarker signature of the cases with hyperinsulinemia and the non-affected 

and ultimately result in a failure to replicate in real life. This problem is known in 

epidemiology as ‘spectrum bias’ [75,76]. Third, not all the serine proteases were 

investigated (more specifically, endopeptidases and elastases). However, we measured the 

most abundant endopeptidases (trypsin and chymotrypsin) [77]. Fourth, while all known 

isoforms of trypsin (cationic trypsin, anionic trypsin, and mesotrypsin) and chymotrypsin 

(chymotrypsin B1, chymotrypsin-like protease, and caldecrin) were measured, the specific 

molecular target and distribution of each isoform in the assays is unknown. Further, the use 

of ELISA did not allow us to differentiate between trypsin and trypsinogen. Only antibodies 

raised against trypsin activation peptide would allow to distinguish (indirectly) between 

trypsin and trypsinogen. Fifth, associations between insulinemia and other key pancreatic 

enzymes (amylase and lipase) were not studied as the latter are not secreted exclusively by 

the pancreas. Studying trypsin and chymotrypsin allowed us to focus on the enzymes 

synthesized specifically in the exocrine pancreas. However, it is acknowledged that elevated 

lipase activity, within the reference range and in the absence of clinical picture of 

pancreatitis, may indicate subclinical pancreatic injury in asymptomatic individuals [78]. 

Associations between insulinemia and blood lipase activity warrants a purposefully designed 

study. Sixth, we did not measure levels of trypsin and chymotrypsin in the gastrointestinal 

tract. Whether these levels correlate with pancreatic enzymes in blood is a matter of 

speculation as evidence to date is controversial [23,25,26,39]. We believe that circulating 

levels represent poor enzyme processing in the acini and a leak into the circulation — not 

dissimilar to elevated proinsulin in individuals with diabetes or insulin resistance because of 

poor insulin processing [79,80]. Seventh, potential effects of diet on enzyme content were 

not investigated [81,82]. However, this study shows for the first time the associations 

between PPE and insulin in the absence of food suggesting that other factors may influence 

the association. This merits purposefully designed studies to determine whether food intake 
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and gut hormonal stimulants affect the associations between PPE and pancreatic hormones. 

Last, although we investigated the effect of tobacco smoking and alcohol consumption, we 

did not account for poor personal hygiene (which may be the result of heavy alcohol 

consumption and smoking). This aspect needs to be investigated in future studies.

In conclusion, the present study has unveiled several previously unknown changes in the 

state of hyperinsulinemia. Based on the findings from this study, it appears that individuals 

with hyper- insulinemia have an increased functional activity of the exocrine pancreas. 

Chymotrypsin is significantly associated with the development of hyperinsulinemia and this 

association may be affected by other pancreatic hormones (in particular, glucagon and PP). 

Trypsin is significantly associated with glucagon and PP, which together contribute to more 

than 15% of the variance of insulin in individuals with hyperinsulinemia. Future studies 

investigating signaling pathways in individuals with hyperinsulinemia are now warranted.
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Fig. 1. 
Associations between pancreatic proteolytic enzymes and insulinemia.
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Fig. 2. 
Associations between pancreatic proteolytic enzymes and insulinemia stratified by the 

presence/absence of chronic alcohol consumption.
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Table 1

Characteristics of study participants.

Characteristic Study participants (n = 93)

Age (years)
a 52 ± 15

Sex

 Male 57

 Female 36

BMI (kg/m2)
a 28.16 ± 5.38

Exercise

 Yes 65

 No 28

Ethnicity

 NZ Europeans 51

 Maori 8

 Pacific Islanders 4

 Asian 11

 Other Europeans 19

Smoking

 Yes 24

 No 69

Chronic alcohol consumption

 Yes 21

 No 72

Severity

 Mild 73

 Moderate/Severe/Critical 20

Recurrence

 Yes 28

 No 65

Dysglycemia

 Yes 40

 No 53

Insulin (pmol/l)
b 62.00 (41.00–105.50)

Glucagon (ng/ml)
b 30.73 (8.76–72.34)

Pancreatic Polypeptide (ng/ml)
b 39.01 (5.70–114.13)

Somatostatin (ng/ml)
b 0.26 (0.08–0.49)

Abbreviation: BMI- Body Mass Index.

a
Data are presented as mean ± SD.

b
Median (interquartile range).
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