
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Lyapunov Arguments in Optimization

Permalink
https://escholarship.org/uc/item/1116c975

Author
Wilson, Ashia

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1116c975
https://escholarship.org
http://www.cdlib.org/

Lyapunov Arguments in
Optimization

by

Ashia Wilson

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael Jordan, Co-chair
Professor Benjamin Recht, Co-chair

Professor Martin Wainwright
Professor Craig Evans

Spring 2018

Lyapunov Arguments in
Optimization

Copyright 2018
by

Ashia Wilson

1

Abstract

Lyapunov Arguments in
Optimization

by

Ashia Wilson

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Michael Jordan, Co-chair

Professor Benjamin Recht, Co-chair

Optimization is among the richest modeling languages in science. In statistics and ma-
chine learning, for instance, inference is typically posed as an optimization problem. While
there are many algorithms designed to solve optimization problems, and a seemingly greater
number of convergence proofs, essentially all proofs follow a classical approach from dynam-
ical systems theory: they present a Lyapunov function and show it decreases. The primary
goal of this thesis is to demonstrate that making the Lyapunov argument explicit greatly
simplifies, clarifies, and to a certain extent, unifies, convergence theory for optimization.

The central contributions of this thesis are the following results: we

• present several variational principles whereby we obtain continuous-time dynamical
systems useful for optimization;

• introduce Lyapunov functions for both the continuous-time dynamical systems and
discrete-time algorithms and demonstrate how to move between these Lyapunov func-
tions;

• utilize the Lyapunov framework as well as numerical analysis and integration techniques
to obtain upper bounds for several novel discrete-time methods for optimization, a few
of which have matching lower bounds.

i

For my family

ii

Contents

Contents ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Preliminary Concepts . 1

1.1.1 Optimization . 1
1.1.2 Algorithms and Upper Bounds . 2
1.1.3 Role of Convergence Theorems . 2
1.1.4 Dynamical Systems . 3
1.1.5 Lyapunov’s Method . 4

1.2 Goals and Organization . 6

2 Deterministic Dynamical Systems 7
2.1 Lyapunov Analysis of First-Order Dynamics 7

2.1.1 Gradient Descent Dynamic . 7
2.1.1.1 Nonconvex Differentiable Functions 9

2.1.2 Convex Functions . 10
2.1.3 Mirror Descent Dynamic . 12

2.1.3.1 Convex Functions . 12
2.1.4 Subgradients and Time Reparameterization 16

2.1.4.1 Convex Functions . 18
2.1.5 Dual Averaging Dynamic . 20
2.1.6 Conditional Gradient Dynamic . 22

2.2 Lyapunov Analysis of Second-Order Dynamics 24
2.2.1 A Lyapunov Analysis of Momentum Methods in Optimization 25

2.2.1.1 The Bregman Lagrangian 26
2.2.1.2 Methods arising from the first Euler-Lagrange equation . . . 28
2.2.1.3 Methods arising from the second Euler-Lagrange equation . 32

2.2.2 Quasi-monotone methods . 35

iii

2.2.3 Equivalence between estimate sequences and Lyapunov functions . . . 38
2.2.4 Dual averaging with momentum . 41
2.2.5 Accelerated Proximal Gradient Dynamics 44

2.3 Summary . 49
2.3.1 Additional Lyapunov Arguments . 49

3 Stochastic Differential Equations 53
3.1 First-order Stochastic Differential Equations 53

3.1.1 Stochastic Mirror Descent . 56
3.1.2 Strongly convex functions . 57

3.2 Second-order Stochastic Differential Equations 59
3.2.1 Strongly convex functions . 61

3.3 Lyapunov arguments for coordinate methods 64
3.4 Breaking Locality Accelerates Block Gauss-Seidel 66

3.4.1 Introduction . 66
3.4.2 Background . 68

3.4.2.1 Existing rates for randomized block Gauss-Seidel 68
3.4.2.2 Accelerated rates for fixed partition Gauss-Seidel 69

3.4.3 Results . 70
3.4.3.1 Fixed partition vs random coordinate sampling 70
3.4.3.2 A Lyapunov analysis of accelerated Gauss-Seidel and Kaczmarz 71
3.4.3.3 Specializing accelerated Gauss-Seidel to random coordinate

sampling . 74
3.4.4 Related Work . 75
3.4.5 Experiments . 76

3.4.5.1 Fixed partitioning vs random coordinate sampling 76
3.4.5.2 Kernel ridge regression . 77
3.4.5.3 Comparing Gauss-Seidel to Conjugate-Gradient 78
3.4.5.4 Kernel ridge regression on smaller datasets 79
3.4.5.5 Effect of block size . 79
3.4.5.6 Computing the µ and ν constants 80

3.4.6 Conclusion . 81
3.5 Summary . 81

A Chapter One 82
A.1 Examples of Optimization Problems . 82
A.2 Glossary of Definitions . 83

B Chapter Two 89
B.1 Gradient Descent . 89

B.1.1 Polyak-Löjasiewicz Condition . 89
B.1.2 Strongly Convex Functions . 90

iv

B.1.3 Summary . 93
B.1.4 Tighter Bound . 95

B.2 Mirror Desent . 95
B.2.1 Differentiable Function . 95
B.2.2 Convex Functions . 96
B.2.3 Strongly Convex Functions . 97
B.2.4 Summary . 98

B.3 Subgradients and Time Reparameterization 101
B.3.1 Strongly Convex Functions . 101

B.4 Accelerated Mirror Prox . 103
B.5 Dynamics . 104

B.5.1 Proof of Proposition . 104
B.5.2 Hamiltonian Systems . 105

B.6 Algorithms derived from (2.38) . 108
B.6.1 Proof of Proposition B.6.1 . 109
B.6.2 Proof of Lemma B.6.2 . 112
B.6.3 Proof of Proposition 2.2.4 . 113
B.6.4 Proof of Theorem 2.2.6 . 114

B.7 Estimate Sequences . 116
B.7.1 The Quasi-Montone Subgradient Method 116
B.7.2 Frank-Wolfe . 117
B.7.3 Accelerated Gradient Descent (Strong Convexity) 117
B.7.4 Adagrad with momentum . 118

C Chapter Three 120
C.1 Preliminaries . 120
C.2 Proofs for Separation Results (Section 3.4.3.1) 121

C.2.1 Expectation calculations (Propositions 3.4.1 and 3.4.2) 121
C.2.2 Proof of Proposition 3.4.3 . 124

C.3 Proofs for Convergence Results (Section 3.4.3.2) 124
C.3.1 Proof of Theorem 3.4.5 . 129
C.3.2 Proof of Proposition 3.4.6 . 130

C.4 Recovering the ACDM Result from Nesterov and Stich [48] 133
C.4.1 Proof of convergence of a simplified accelerated coordinate descent

method . 133
C.4.2 Relating Algorithm 2 to ACDM . 135
C.4.3 Accelerated Gauss-Seidel for fixed partitions from ACDM 137

C.5 A Result for Randomized Block Kaczmarz 138
C.5.1 Computing ν and µ in the setting of [33] 139

C.6 Proofs for Random Coordinate Sampling (Section 3.4.3.3) 140

Bibliography 143

v

List of Figures

3.1 Experiments comparing fixed partitions versus random coordinate sampling for
the example from Section 3.4.3.1 with n = 5000 coordinates, block size p = 500. 77

3.2 The effect of block size on the accelerated Gauss-Seidel method. For the MNIST
dataset (pre-processed using random features) we see that block size of p = 500
works best. 77

3.3 Experiments comparing fixed partitions versus uniform random sampling for
CIFAR-10 augmented matrix while running kernel ridge regression. The matrix
has n = 250000 coordinates and we set block size to p = 10000. 77

3.4 Comparing conjugate gradient with accelerated and un-accelerated Gauss-Seidel
methods for CIFAR-10 augmented matrix while running kernel ridge regression.
The matrix has n = 250000 coordinates and we set block size to p = 10000. . . . 77

3.5 Experiments comparing fixed partitions versus uniform random sampling for
MNIST while running kernel ridge regression. MNIST has n = 60000 coordi-
nates and we set block size to p = 4000. 79

3.6 Comparison of the computed ν constant (solid lines) and ν bound from Theo-
rem 3.4.5 (dotted lines) on random matrices with linearly spaced eigenvalues and
random Wishart matrices. 80

B.1 The mirror map represents the duality relationship between MF and NGF. . . . 99

vi

List of Tables

2.1 Lyapunov functions for gradient flow (GF), gradient descent (GD), and the prox-
imal method (PM); with discrete-time identification t = δk, the results in con-
tinuous time and discrete time match up to a constant factor of 2. 8

2.2 Lyapunov functions for mirror flow (MF), mirror descent (MD), the Bregman
proximal minimization (BPM), mirror prox method (MPM), natural gradient
flow (NGF) and natural gradient descent (NGD); with discrete-time identification
t = δk, in the limit δ → 0, the results in continuous time match the results in
discrete time within a factor of 2. The smoothness condition for NGD is that
Df (x, y) ≤ 1

δ
‖x− y‖2

x, ∀x, y ∈ X , where ‖v‖x = 〈v,∇2h(x)v〉. 13
2.3 Lyapunov functions for the mirror descent dynamic with directional subgradients

(MS Dynamic), mirror descent with subgradients (MS Method), and the proximal
Bregman minimization with subgradients (PS Method). When moving to discrete
time, there is a discretization error, and we choose parameters accordingly. When
f is convex, τt = Ak, so that τ̇t ≈ (Ak+1 − Ak)/δ = αk. When f is µ-strongly
convex, eµτt = Ak, so that we have the approximation τ̇t = d

dt
eµτt/µeµτt ≈ (Ak+1−

Ak)/δµAk+1 := αk. With these choices, the errors scale as ε1
k = δα2

kG
2/2σ and

ε2
k = δ 1

2σµ2
α2
k

Ak+1
G2, where ‖∂f(x)‖2

∗ ≤ G2. In the limit δ → 0, the discrete-time

and continuous-time statements match. 17
2.4 Lyapunov functions for the dual averaging (DA) dynamic, dual averaging (DA)

algorithm , and the backward-Euler approximation of the dual averaging dynam-

ics (proximal DA); for the dual averaging algorithm, αk = Ak+1−Ak
δ

, ε1
k = δ 1

2σ

α2
k

γk
G2

where ‖∂f(x)‖2
∗ ≤ G2. In the limit δ → 0, the discrete-time and continuous-time

statements match. 21
2.5 Lyapunov functions for conditional gradient descent (CGD) dynamic and the

conditional gradient descent (CGD) algorithm. Here,
d
dt
eβt

eβt
≈ Ak+1−Ak

δAk+1
:= τk,

εk+1 = δ
Ak+1τ

2
k

2ε
‖zk − xk‖2 . In the limit δ → 0, discrete-time and continuous-time

statements match. 23

vii

2.6 Lyapunov functions for accelerated mirror descent (AMD) dynamic, accelerated
mirror descent (AMD), accelerated mirror prox (AMP), and the backward Eu-

ler discretization. For AMD1 and AMP, we take Ak+1 = σε(k+1)(k+2)
4

, αk =
Ak+1−Ak

δ
=
√
σε(k+2)

2
, δ =

√
εσ and for AMD2, we take Ak+1 = (1 − √µδ)−(k+1),

τk = Ak+1−Ak
δAk+1

=
√
µ, δ =

√
ε. 27

2.7 Lyapunov functions for the quasi-monotone (QM) subgradient dynamics and
quasi-monotone (QM) subgradient methods. There is a discretization error as
we move to discrete time, and we choose parameters accordingly. Here, eβt = Ak,
so that d

dt
eβt ≈ (Ak+1−Ak)/δ = αk and τk = (Ak+1−Ak)/δAk. The errors scales

as ε1
k = δ

α2
k

2σ
G2 and ε2

k = δ 1
2σµ

α2
k

Ak
G2. In the limit δ → 0, the discrete-time and

continuous-time statements match. 36
2.8 Choices of estimate sequences for various algorithms 40
2.9 Lyapunov functions for the dual averaging dynamic with momentum, dual aver-

aging algorithm with momentum, and the backward-Euler approximation of the
dual averaging dynamics with momentum; Here, g(x) ∈ ∂f(x), αk = Ak+1−Ak

δ
,

and ε1
k = δ 1

2σ

α2
k

γk
G2, where ‖∂f(x)‖2

∗ ≤ G2. In the limit δ → 0, the discrete-time
and continuous-time statements match. 42

2.10 Lyapunov functions for proximal accelerated mirror descent (AMD) dynamics,
proximal accelerated mirror descent (AMD) algorithms . For proximal AMD

algorithm 1 we take Ak+1 = σε(k+1)(k+2)
4

, αk = Ak+1−Ak
δ

=
√
σε(k+2)

2
, δ =

√
εσ and

for proximal AMD algorithm 2, we take τk = Ak+1−Ak
δAk+1

=
√
µ, δ =

√
ε. 44

2.11 List of Lyapunov Arguments in Optimization presented in this thesis (so far). . 50

3.1 Lyapunov functions for stochastic mirror descent dynamics and algorithm and
stochastic dual averaging dynamics and algorithm. Assume σ � ∇2h and E[σt] ≤
G, E[‖g(x)‖∗] ≤ G ∀x ∈ X and t ∈ R+. When f is convex, αk = Ak+1−Ak

δ
and

when f is strongly convex αk = Ak+1−Ak
δµAk+1

. Here, ε1
s = 1

2σ
G2τ̇ 2

s , ε2
s = 1

2σ
G2 (d

dt
eµτt |t=s)2

2µ2eµτs
,

ε3
s = δ 1

2σ
G2 (As−1−As)2

δ2
, ε4

s = δ 1
2σ
G2 (As+1−As)2

δ22µ2As+1
, ε5

s = 1
2σ
G2 τ̇

2
s

γs
and ε6

s = δ 1
2σ
G2 (As+1−As)2

δ2γs
.

The scalings on the error and Ito correction terms match. 54
3.2 Lyapunov functions for the stochastic accelerated mirror descent (SAMD) dy-

namics and stochastic mirror descent (SAMD) algorithms. The error in contin-
uous time comes from the Ito correction term. Assume σ � ∇2h and E[σt] ≤
G, E[‖g(x)‖∗] ≤ G ∀x ∈ X and t ∈ R+. Here, ε1

s = 1
2σ
G2 τ̇

2
s

γs
, ε2

s = 1
2σ
G2 (As+1−As)2

δ2γs
δ,

ε3
s = 1

2σ
G2 (d

dt
eβt |t=s)

2

2µeβs
, and ε4

s = 1
2σ
G2 (As+1−As)2

2δ2µAs
δ. The scalings on the error and

Ito correction terms match. 59

viii

Acknowledgments

Mom, Dad, Ayana and Jay, thank you for your unwavering love and support. You have been
in the trenches with me and I certainly would not have made it to this point without you.
You have my eternal gratitude and love. We did it!

To my advisors, Mike and Ben, thank you, thank you, thank you for providing me with
invaluable encouragement, guidance, and support throughout the course of my PhD. Other
academic mentors to whom I owe special thanks are Cynthia Rudin, Eric Tchetgen Tchetgen,
Pamela Abshire, and Michael Brenner. Thank you for your kindness.

Thank you to my collaborators, Andre, Nick, Tamara, Becca, Shivaram, Mitchell, Stephen,
Micheal B., Alex and Nati Srebro. I am so fortunate to have worked with and learned from
such brilliant and kind people. I must single out Andre – you are a soulmate – and Nick –
thank you for being such a patient and loving friend. Becca, girl, so grateful for your energy.

I am honored and grateful to have many truly amazing and supportive relationships in
my life. While there are far too many to provide an exhaustive list, I would be remiss if I
did not mention some key friends. Henry, Brett, Velencia, Robert, Meron, Kene, Christine,
Marianna, Nina, Dawn, Po-Ling, and Nick A. Velencia and Meron, you are sisters. Thank
you for showing up, and showing up, and showing up. Henry (and Lucy), Brett, and Robert,
thank you for always being there. And to some new close friends, Jee, Elliot, Rocky, Jamal,
Mike. You inspire me and grow me. I hope to know you for a long time.

I am also very grateful for the The Berkeley Chancellor’s Postdoctoral Fellowship Pro-
gram and the National Science Foundation for providing me with financial support.

1

Chapter 1

Introduction

The ubiquity of optimization problems in science and engineering has led to great interest
in the design of algorithms meant to solve them. This thesis discusses the connection be-
tween continuous-time dynamical systems and discrete-time algorithms for machine learning
and optimization. Examples of the algorithms we discuss include the stochastic, proximal,
coordinate, and deterministic variants of gradient descent, mirror descent, dual averaging,
accelerated gradient descent, the conditional gradient method, dual averaging with momen-
tum, and adaptive gradient methods. For each algorithm, we show that a single, simple
Lyapunov argument proves convergence. In this chapter, we present background material.

1.1 Preliminary Concepts

We begin by defining what an optimizatin problem is, what an algorithm is, and what it
means to have an upper-bound for an algorithm. We also define continuous-time dynamical
systems and discuss Lyapunov’s method. We end by describing our strategy for moving
between the Lyapunov arguments presented in continuous time and in discrete time; this
will provide a framework for obtaining upper bounds on the rate of convergence for most
algorithms in optimization.

1.1.1 Optimization

The field of optimization studies the following problem,

min
x∈X

f(x). (1.1)

Here, x is the decision variable, X is the set of possible decisions, and f : X → R is the
objective function. Throughout, we refer to x∗ ∈ arg minx∈X f(x) as a solution to (1.1).
Most decision and inference problems in engineering and science are modeled as (1.1). In
Appendix A, we list several motivating examples.

CHAPTER 1. INTRODUCTION 2

1.1.2 Algorithms and Upper Bounds

An optimization algorithm is a recipe for generating a sequence of points (xs)
k
s=0 to solve

problem (1.1). To generate the next point in the sequence, the algorithm uses the local
information it receives from an oracle along with all the previous information it has received.
An oracle is a black-box function that provides the algorithm with information about (f ,X)
at a point x. As a specific example, if f is differentiable and X = Rd, a gradient oracle
provides the algorithm with the function value and the gradient (f(x),∇f(x)) at any queried
point x; algorithms which have access to this oracle function use the information (xs)

k
s=0,

(f(xs))
k−1
s=0 , (∇f(xs))

k−1
s=0 , and the pair (f(x),∇f(x)) computed at any point x, to construct

the next point xk+1.
Suppose two algorithms A1 and A2 are proposed to solve an instance of problem (1.1).

Which algorithm should we choose? Is there another algorithm A3 which finds x∗ faster than
A1 and A2? The goal of complexity theory for optimization is to address these questions.
Ideally, we could partition the space of problems (f ,X) according to which algorithms are
fastest for solving them (or vice versa). In addition, we might search for a framework that
takes into account potential computational constraints. Unfortunately, given the size of the
space of possible problems, creating such a comprehensive framework is probably impossible.

Instead, the standard adopted widely in the theory community is to treat classes of prob-
lems, and evaluate algorithms according to the minimum number of oracle queries required
to produce an approximate solution for any problem instance in the class. An approximate
solution is an iterate xk such that f(xk)−f(x∗) ≤ ε, d(xk,x

∗) ≤ ε, or d∗(∇f(xk),∇f(x∗)) ≤ ε
for some distance measure d : X ×X → R+ or d∗ : X ∗×X ∗ → R+ and error threshold ε > 0.

The minimum number of oracle queries required to find an approximate solution for
any function in a prespecified class of functions is called a lower bound for the oracle. For
example, consider f ∈ F , where F is the class of convex functions with smooth gradients
over Rd. Any algorithm which has access to the gradient oracle for this class of functions
requires a minimum Ω(1/

√
ε) queries to find a solution such that f(xk)− f(x∗) ≤ ε.

Let xk be the output of the algorithm on the k-th iteration. An upper bound for
an algorithm is a sequence ε(k), such that f(xk) − f(x∗) ≤ ε(k), d(xk,x

∗) ≤ ε(k), or
d∗(∇f(xk),∇f(x∗)) ≤ ε(k). Generally speaking, upper bounds quantify how fast a solu-
tion to (1.1) is being found by the algorithm. An algorithm A is called provably optimal
if there is an upper bound which matches the lower bound for the oracle function it has
access to. While this thesis does not discuss lower bounds or techniques for deriving them,
we mention when it has been established in the literature that an algorithm is provably
optimal.

1.1.3 Role of Convergence Theorems

Our goal in discussing how to obtain upper bounds for algorithms is to make explicit the
connection between continuous-time dynamical systems and discrete-time algorithms for
optimization as well as the Lyapunov arguments used to analyze both. The observation that

CHAPTER 1. INTRODUCTION 3

Lyapunov arguments are important to convergence theory in optimization is not new; in his
book, Introduction to Optimization, for instance, Polyak makes this specific point [54]. A
main contribution of this thesis is to discuss the Lyapunov analysis of several methods that
are not covered in Polyak’s early book, and to make the connection between continuous-time
dynamical systems and discrete-time dynamical systems more concrete.

In the same book, Polyak encourages his reader to proceed with caution when studying
convergence theory for optimization. From the perspective of practitioners, he acknowledges,
the conditions under which the bound can be obtained are often hard to verify, unknown,
or frequently violated. Furthermore, it is unclear whether worst-case performance over a
function class is the criterion by which we should measure the performance of algorithms.

Nevertheless, convergence proofs provide useful information about the algorithm. Conver-
gence guarantees determine a class of problems for which one can count on the applicability
of the algorithm, as well as provide information on the qualitative behavior of convergence:
whether we should expect convergence for any initial approximation or only for a sufficiently
good one, and in what sense we should expect the converges to happen (the function con-
verges, or the argument, non-asymptotic vs asymptotic, and so on).

1.1.4 Dynamical Systems

A dynamical system is a time varying vector field v : R × Rd → Rd. From an initial point
X0, a dynamical system generates a curve, called a trajectory, via the equation

Xt = X0 +

∫ t

0

vs(Xs)ds, (1.2)

where we adopt the shorthand vt(x) := v(t,x). We can interpret vt(x) as a velocity at
position x,

d

dt
Xt = vt(Xt). (1.3)

In this thesis, we study how dynamical systems defined by ordinary differential equations (1.3)
can be used to generate discrete sequences of points. Notably, most algorithms in optimiza-
tion are obtained from applying either the forward or backward Euler method to (1.3). We
provide a short explanation of these two techniques.

Suppose we are given a dynamical system (1.3) and a starting position Xt ∈ Rd. The
goal is to use Xt and its velocity vt(Xt) to tell us where to move next in time. To do so,
we adopt a scaling of time, δ > 0, (i.e. our notion of next) and approximate Xt+δ from Xt.
Using the integral curve formulation (1.2), we have,

Xt+δ −Xt =

∫ t+δ

t

vs(Xs)ds. (1.4)

We can form a discrete sequence of points as follows. For any initial point Xt, approx-
imation of the integral (1.4) by its upper-limit, vt+δ(Xt+δ)δ, defines an operator called the

CHAPTER 1. INTRODUCTION 4

Backward-Euler (BE) method. In particular, if we write xk+1 := Xδ(k+1) = Xt+δ and xk :=
Xδk = Xt and make the same identifications for the vector field, vk(xk) := vk(Xδk) = vt(Xt)
and vk+1(xk+1) := vk+1(Xδ(k+1)) = vt+δ(Xt+δ), we can write the BE method as,

xk+1 − xk
δ

= vk+1(xk+1). (1.5)

Approximation of the integral by its lower-limit, vt(Xt)δ, defines another operator called the
Forward-Euler (FE) method. Using the same identiifcations, we can write the FE method
as,

xk+1 − xk
δ

= vk(xk). (1.6)

Both the BE method (1.5),

xk+1 = (I− δvk+1)−1(xk) := ABE
δ,v (xk),

and FE method (1.6),

xk+1 = (I + δvk)(xk) := AFE
δ,v(xk),

applied to dynamics (1.3) form discrete-time dynamical systems parameterized by the vector
field v and discretization scaling δ. These discrete-time dynamical systems are equivalent to
algorithms for oracle functions that allow the algorithm to compute ABE

δ,v or AFE
δ,v evaluated

at any point x ∈ X each time it is queried. As an example, suppose vk ≡ ∇f . The FE
operator, is a popular algorithm called gradient descent, xk+1 = xk − δ∇f(xk), and the BE
operator is another algorithm called the proximal method. We elaborate on this example,
as well as provide many more examples in Chapter 2.

1.1.5 Lyapunov’s Method

A popular way to describe dynamical systems is via conserved and dissipated quantities.
The general technique prescribes identifying a quantity E : X → R which is either constant
(conserved),

d

dt
E(Xt) = 〈∇E(Xt), vt(Xt)〉 = 0, (1.7a)

decreasing (dissipated),
d

dt
E(Xt) = 〈∇E(Xt), vt(Xt)〉 ≤ 0, (1.7b)

or strictly decreasing,
d

dt
E(Xt) = 〈∇E(Xt), vt(Xt)〉 < 0, (1.7c)

along the trajectories of the dynamical system (1.3).

CHAPTER 1. INTRODUCTION 5

This thesis is primarily concerned with dissipated quantities for dynamical systems (1.7b)
that have explicit dependencies on time, which we refer to as Lyapunov functions. The idea of
providing the trajectories of dynamical systems with qualitative descriptions was formulated
by Lyapunov in his fundamental work [36]; there exist many textbooks and monographs
expanding on this idea (see [27, 19] for example).

From Lyapunov Functions to Convergence Theorems We demonstrte more explic-
itly how Lyapunov functions will be used to obtain upper bounds for most algorithms in
optimization. Suppose we have generated a trajectory of the dynamical system Xt from an
arbritrary starting position X0. To provide bounds for the rate at which E1 = f(Xt)−f(x∗),
E2 = d(Xt,x

∗), or E3 = d∗(∇f(Xt),∇f(x∗)), converge to zero, we will consider E1, E2, and/or
E3, as well as combinations of them, scaled by some function of time. For example, if we
show the time-dependent function

Et = eβt(f(Xt)− f(x∗)), (1.8)

is a Lyapunov function, where βt : R→ R is an arbitrary smooth, continuously differentiable,
increasing function of time, d

dt
βt > 0, then we will be able to conclude a non-asymptotic rate

of convergence. Specifically, if (1.8) is decreasing, then d
dt
Et ≤ 0 (i.e (1.7b) holds); by

integrating we can conclude the property, Et ≤ E0, which will allow us to obtain the upper
bound,

f(Xt)− f(x∗) ≤ E0

eβt
=
eβ0(f(X0)− f(x∗))

eβt
,

and subsequently, an O(e−βt) convergence rate.
In discrete time, we start by mapping the dynamical system to an algorithm, which

generates a discrete sequence of points from any given starting point x0. To provide bounds
for the rate at which E1 = f(xk)− f(x∗), E2 = d(xk,x

∗), and/or E3 = d∗(∇f(xk),∇f(x∗)),
converge to zero, the strategy will be same. Following the above example, we consider the
Lyapunov function,

Ek = Ak(f(xk)− f(x∗)),

where Ak : R→ R+ is an increasing sequence in k. If we make the identifications eβt+δ = Ak+1

and eβt = Ak, then the requirement d
dt
βt > 0 translates to the requirement d

dt
βt = d

dt
eβt/eβt ≈

(Ak+1 − Ak)/δAk > 0. This, of course, is based on adopting an exponential scaling of
time eβt . If, instead, we choose to scale time linearly, Et = τt(f(Xt) − f(x∗)), so that
τt = Ak and τt+δ = Ak+1, then the requirment d

dt
τt > 0 translates to the requirement

d
dt
τt ≈ (Ak+1−Ak)/δ > 0. These two ways of scaling time appear throughout this framework.

For either approximation, we check whether the Lyapunov property, Ek+1−Ek
δ

≤ 0, can be
shown for various discretizations of the dynamical system. If so, by summing we can show,
Ek ≤ E0, which will allow us to obtain the upper bound,

f(xk)− f(x∗) ≤ E0

Ak
=
A0(f(X0)− f(x∗))

Ak
,

CHAPTER 1. INTRODUCTION 6

for the algorithm, and subsequently, a matching O(1/Ak) convergence rate.
We provide several specific examples of this technique in Chapters 2 and 3.

1.2 Goals and Organization

The primary contribution of this thesis is to present and discuss Lyapunov arguments com-
monly used in optimization. The Lyapunov framework we present demonstrates the central-
ity of dynamical systems to the field of optimization and machine learning. We organize this
thesis as follows:

• Chapter 2 summarizes several families of ordinary differential equations used in opti-
mization. Section 2.1 focuses on algorithms in optimization that discretize first-order
differential equations (i.e. ODEs with one time derivative). This includes gradient
descent, mirror descent, subgradient methods, dual averaging, and the condiitional
gradient algorithms. For all these algorithms, we demonstrate how to move between
the Lyapunov arguments presented in continuous and discrete-time. This material
will mostly be presented in tables with more complete descriptions provided in the
Appendices.

• Section 2.2 focuses on algorithms in opimization that discretize second-order differ-
ential equations (i.e. ODEs with two time derivatives). This includes accelerated
gradient descent, the accelerated proximal gradient method and the quasi-monotone
subgradient methods. Techniques for obtaining upper-bounds for these algorithms
have been famously considered esoteric. We demonstrate how many of these tech-
niques, including the technique of estimate sequences, are equivalent to a Lyapunov
argument. In addition, we introduce two Lagrangian/Hamiltonian functionals, we call
Bregman Lagrangians/Hamiltonians, which generate two large classes of accelerated
methods in continuous time. We then provide a systematic methodology for converting
the continuous-time dynamical systems obtained from these variational principles to
discrete-time algorithms with matching convergence rates.

• Chapter 3 extends the Lyapunov framework to stochastic differential equations and
stochastic algorithms. This includes stochastic gradient descent, stochastic mirror
descent, stochastic dual averaging, stochastic accelerated gradient descent. We also
present an analogous description for coordinate-based methods. In particular, we show
the same Lyapunov functions presented in the previous chapter provide upper bounds
for the rate at which these algorithms find a solution to (1.1) in expectation.

How to read this thesis A good strategy for gleaming the content of this thesis is to
review the tables at the beginning of each subsection and to skim the summary section
presented at the end of both chapters.

7

Chapter 2

Deterministic Dynamical Systems

In this chapter, we summarize several families of dynamics (1.3) which can be said to find
a solution to (1.1). For each dynamic, we exhibit a Lyapunov function which will ensure
convergence to a stationary point that is either a solution to (1.1) or a critical point of the
objective function. We also show how to move between the continuous and discrete-time
analyses using two standard discretization methods.

2.1 Lyapunov Analysis of First-Order Dynamics

2.1.1 Gradient Descent Dynamic

Let X = Rd. The dynamic that gives rise to gradient descent can be analyzed in (at least)
four different settings:

1. f is differentiable, but not necessarily convex;

2. f is convex, so that Df (x, y) ≥ 0 ∀x, y ∈ X (see (A.2) for definition) ;

3. f satisfies the Polyak-Löjasiewicz (PL) condition with parameter µ, so that

−1

2
‖∇f(x)‖2 ≤ −µ(f(x)− f(x∗)), ∀x ∈ X . (2.1)

4. f is µ-strongly convex, so that Df (y,x) ≥ µ
2
‖y − x‖2.

We summarize the Lyapunov functions in Table 2.1 and provide a description of the first and
second bullet points in the main text. The rest of the results can be found in Appendix B.1.

The gradient descent dynamic (GF),

d

dt
Xt = arg min

v∈Rd

{
〈∇f(x), v〉+

1

2
‖v‖2

}
= −∇f(Xt), (2.2)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 8

Gradient Flow: Ẋt = −∇f(Xt)

Function Class Lyapunov Function Convergence Rate

Differentiable Et = f(Xt)− f(x∗) min
0≤s≤t

‖∇f(Xs)‖ ≤ O(1/t
1
2)

Convex Et = 1
2
‖x∗ −Xt‖2 + t(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/t)

PL Condition w.p µ Et = e2µt(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(e−2µt)

µ-Strong Convexity Et = eµt 1
2
‖x∗ −Xt‖2 1

2
‖x∗ −Xt‖2 ≤ O(e−µt)

f is L-smooth Et = e
2µL
µ+L

t 1
2
‖x∗ −Xt‖2 1

2
‖x∗ −Xt‖2 ≤ O(e−

2µL
µ+L

t)

f(Xt)− f(x∗) ≤ O(L
2
e−

2µL
µ+L

t)

Gradient Descent: xk+1−xk
δ

= −∇f(xk)

Function Class Lyapunov Function Convergence Rate

Differentiable
f is (1/δ)-smooth

Ek = f(xk)− f(x∗) min
0≤s≤k

1
2
‖∇f(xs)‖ ≤ O(1/(δk)

1
2)

Convex
f is (1/δ)-smooth

Ek = 1
2
‖x∗ − xk‖2 + δk(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(1/δk)

PL Condition w.p µ
f is (1/δ)-smooth

Ek = (1− µδ)−k(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(e−µδk)

µ-Strong Convexity
f is (1/δ)-smooth

Ek = (1− µδ)−k 1
2
‖x∗ − xk‖2 1

2
‖x∗ − xk‖2 ≤ O(e−µδk)

f is (L = 2−µδ
δ

)-smooth Ek =
(

1− 2µL
µ+L

δ
)−k

1
2
‖x∗ − xk‖2 1

2
‖x∗ − xk‖2 ≤ O(e−

2µL
µ+L

δk)

f(xk)− f(x∗) ≤ O(L
2
e−

2µL
µ+L

δk)

Proximal Method: xk+1−xk
δ

= −∇f(xk+1)

Function Class Lyapunov Function Convergence Rate

Differentiable
δ > 0

Ek = f(xk)− f(x∗) min
0≤s≤t

1
2
‖∇f(xs)‖ ≤ O(1/(δk)

1
2)

Convex
δ > 0

Ek = 1
2
‖x∗ − xk‖2 + δk(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(1/δk)

PL Condition w.p µ
δ > 0

Ek = (1 + µδ)k(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(e−µδk)

µ-Strong Convexity
δ > 0

Ek = (1 + µδ)k 1
2
‖x∗ − xk‖2 1

2
‖x∗ − xk‖2 ≤ O(e−µδk)

f is L-smooth Ek =
(

1 + 2µL
µ+L

δ
)k

1
2
‖x∗ − xk‖2 1

2
‖x∗ − xk‖2 ≤ O(e−

2µL
µ+L

δk)

f(xk)− f(x∗) ≤ O(L
2
e−

2µL
µ+L

δk)

Table 2.1: Lyapunov functions for gradient flow (GF), gradient descent (GD), and the prox-
imal method (PM); with discrete-time identification t = δk, the results in continuous time
and discrete time match up to a constant factor of 2.

is a steepest descent flow. For any initial starting point X0, GF moves with velocity vt(Xt) =

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 9

−∇f(Xt), and stops only at a critical point of the function (d
dt
Xt = 0 if and only if ∇f(Xt) =

0). Gradient descent (GD),

xk+1 − xk
δ

= arg min
v∈Rd

{
〈∇f(x), v〉+

1

2
‖v‖2

}
= −∇f(xk), (2.3)

is the result of applying the forward-Euler method (1.6) to GF (2.2). GD similarly adds to
its current position x, the gradient ∇f(x) computed at x, and stops only at a critical point
of the function (xk+1−xk

δ
= 0 if and only if ∇f(xk) = 0). The backward-Euler method (1.5)

applied to (2.2),

xk+1 − xk
δ

= −∇f(xk+1), (2.4)

is called the proximal method (PM). It is a stationary point of the following optimization
problem,

xk+1 ∈ arg min
x∈X

{
f(x) +

1

2δ
‖x− xk‖2

}
:= Proxδf (xk). (2.5)

Given the nature of the update (2.5), the PM is used primarily when f is easy to optimize
over (such as when f(x) = ‖x‖1 is the `1 norm). See [53] for an excellent monograph on the
proximal methods and the various ways to interpret them. Lyapunov analyses for all these
methods follow a similar structure.

2.1.1.1 Nonconvex Differentiable Functions

The optimality gap,
Et = f(Xt)− f(x∗)

is a Lyapunov function for (2.2). We check,

d

dt
Et =

d

dt
f(Xt) = 〈∇f(Xt), Ẋt〉

(2.2)
= −‖∇f(Xt)‖2. (2.6)

Here, the first equality follows because x∗ is constant with respect to time, and the second
equality uses the chain rule. By rearranging and integrating (2.6), tmin0≤s≤t ‖∇f(Xs)‖2 ≤∫ t

0
‖∇f(Xs)‖2ds ≤ E0 − Et ≤ E0, we conclude a O(1/t) convergence to a critical point of the

function,

min
0≤s≤t

‖∇f(Xs)‖2 ≤ f(X0)− f(x∗)

t
.

Given the description above, this result is intuitive – if we go down hill, we will only stop at
a critical point of the function, i.e. point x where ∇f(x) = 0. This corresponds to saddle
points and local/global minimizers of the function, if they exist. Similar statements can be
made for gradient descent and the proximal method.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 10

Gradient Descent As long as the function is L-smooth (A.13) , where 0 ≤ δ < 2/L, the
optimality gap,

Ek = f(xk)− f(x∗), (2.7)

remains a Lyapunov function for GD. We check,

Ek+1 − Ek
δ

=
f(xk+1)− f(xk)

δ
≤ 2− δL

2

〈
∇f(xk),

xk+1 − xk
δ

〉
(2.3)
= −2− δL

2
‖∇f(xk)‖2.

(2.8)

Here, the inequality follows from the smoothness condition (A.13). Take L = 1/δ. We can
similarly rearrange this statement to conclude, δkmin0≤s≤t

1
2
‖∇f(xs)‖2 ≤ δ

∑k
s=0

1
2
‖∇f(xs)‖2 ≤

E0−Et ≤ E0. Therefore, as long as f is a (1/δ)-smooth function, we can guarantee O(1/δk)
convergence to a stationary point,

min
0≤s≤k

1

2
‖∇f(xs)‖2 ≤ f(x0)− f(x∗)

δk
.

Proximal Method The discrete optimality gap (2.7) is a Lyapunov function for (2.5) as
well. We check,

Ek+1 − Ek
δ

=
f(xk+1)− f(xk)

δ
≤ 1

2

〈
∇f(xk+1),

xk+1 − xk
δ

〉
(2.4)
= −1

2
‖∇f(xk+1)‖2. (2.9)

The inequality follows from the optimality condition (2.5), which implies f(xk+1)+ 1
2δ
‖xk+1−

xk‖2 ≤ f(xk)+ 1
2δ
‖xk−xk‖2. By rearranging and summing, we obtain the analogous discrete-

time statement,

min
0≤s≤k

1

2
‖∇f(xs)‖2 ≤ f(x0)− f(x∗)

δk
.

When moving between upper bounds in continuous and discrete time, we lose a factor of
two and an additional assumption (smoothness for GD) is needed.

2.1.2 Convex Functions

When the objective function is convex, the Lyapunov function,

Et =
1

2
‖x∗ −Xt‖2 + t(f(Xt)− f(x∗)),

allows us to conclude convergence to the minimizer. We check,

d

dt
Et = −

〈
d

dt
Xt,x

∗ −Xt

〉
+ f(Xt)− f(x∗) + t

d

dt
f(Xt)

(2.2)
= −Df (x

∗,Xt)− t‖∇f(Xt)‖2 ≤ 0.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 11

Here, the inequality follows from convexity of f , which ensures the Bregman divergence (A.2)
is non-negative. By integrating, we obtain the statement Et−E0 =

∫ t
0
d
ds
Esds ≤ 0, from which

we can conclude at O(1/t) convergence rate of the function value,

f(Xt)− f(x∗) ≤ E0

t
.

Similar statements can be made about GF (2.2) and the PM (2.4).

Gradient Descent For GD, as long as the function is L-smooth, where δ ≤ 1/L, the
following function,

Ek =
1

2
‖x∗ − xk‖2 + δk(f(xk)− f(x∗)), (2.10)

is a Lyapunov function. For simplicity, take δ = 1/L. We check,

Ek+1 − Ek
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk

〉
+ f(xk)− f(x∗) + δk

f(xk+1)− f(xk)

δ
+ ε1

k

(2.3)
(2.8)

≤ −Df (x
∗,xk)−

δk

2
‖∇f(xk)‖2 + ε2

k ≤ 0,

where ε1
k = f(xk+1) − f(xk) − 〈xk+1−xk

δ
,xk − xk+1〉 − δ

2
‖xk+1−xk

δ
‖2 and ε2

k = Df (xk+1,xk) −
δ
2
‖∇f(xk)‖2 ≤ −(δ

2
− δ2L

2
)‖∇f(xk)‖2 ≤ 0; the upper bound on the error follows from the

smoothness assumption and the identification δ = 1/L. The first inequality plugs in the
algorithm (2.3) and the descent property (2.8). By summing, we obtain the statement
Ek − E0 =

∑k
i=1

Ei+1−Ei
δ

δ ≤ 0, from which we can conclude a O(1/δk) convergence rate of
the function value,

f(xk)− f(x∗) ≤ E0

δk
.

Proximal Method The function (2.10) is a Lyapunov function for the PM algorithm as
well. We check,

Ek+1 − Ek
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk+1

〉
+ f(xk+1)− f(x∗) + δ(k + 1)

f(xk+1)− f(xk)

δ
+ ε1

k

(2.4)

≤ −Df (x
∗,xk+1)− δ(k + 1)

2
‖∇f(xk+1)‖2 ≤ 0,

where ε1
k = − δ

2
‖xk+1−xk

δ
‖2. The first inequality uses (2.9) and the last inequality follows from

the convexity of f . By summing, we obtain the statement Ek − E0 =
∑k

i=1
Ei+1−Ei

δ
δ ≤ 0,

from which we can conclude a O(1/δk) convergence rate of the function value,

f(xk)− f(x∗) ≤ E0

δk
.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 12

2.1.3 Mirror Descent Dynamic

We analyze the dynamic that gives rise to mirror descent/natural gradient descent in four
different settings:

1. f is differentiable, but not necessarily convex;

2. f is convex, so that Df (x, y) ≥ 0 ∀x, y ∈ X ;

3. f satisfies the Polyak-Löjasiewicz (PL) condition with parameter µ, so that

−‖∇f(x)‖2
x∗ ≤ −2µ(f(x)− f(x∗)),∀x ∈ X . (2.11)

Here, ‖v‖x∗ = 〈v,∇2h(x)−1v〉. When h = 1
2
‖x‖2, this is equivalent to condition (2.1)

4. f is µ-strongly convex with respect to a strictly convex function h (A.7), so that
Df (y,x) ≥ µDh(y,x) ∀x, y ∈ X .

We summarize the Lyapunov functions presented in this subsection in Table 2.2. The mir-
ror descent dynamic is a natural generalization of the steepest descent dynamic to smooth
manifolds X̃ , where the metric on X̃ is given by the Hessian of a strictly convex function
h : X̃ → R, and the objective function f : X → R, is defined on X ⊆ cl(X̃), where X∩X̃ 6= ∅.
For the remainder of this subsection, we will take X = X̃ = Rd and provide a description
of the second bullet point only; a presenentation of the more general setting as well as the
other bullet points are described in Appendix B.2.

2.1.3.1 Convex Functions

Let f : Rd → R be a Lipschitz, continuously differentiable convex function. The mirror
descent dynamic (MF),

d

dt
∇h(Xt) = −∇f(Xt), (2.12)

is a steepest descent flow on with respect to the metric ‖v‖2
x (see definition (B.9) for more

details). Furthermore, the function

Et = Dh(x
∗,Xt) +

∫ t

0

(f(Xs)− f(x∗))ds, (2.13)

is a Lypaunov function for MF (2.12). We check,

d

dt
Et = −

〈
d

dt
∇h(Xt),x

∗ −Xt

〉
+ f(Xt)− f(x∗)

(2.12)
= −Df (x

∗,Xt). (2.14)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 13

Mirror Descent Dynamic: d
dt
∇h(Xt) = −∇f(Xt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh(x
∗,Xt) +

∫ t
0
f(Xs)− f(x∗)ds f(X̂t)− f(x∗) ≤ O(1/t)

Et = Dh(x
∗,Xt) + t((Xs)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/t)

µ-Strong Convexity Et = eµtDh(x
∗,Xt) Dh(x

∗,Xt) ≤ O(e−µt)

Mirror Descent: ∇h(xk+1)−∇h(xk)

δ
= −∇f(xk)

Function Class Lyapunov Function Convergence Rate

Convex
f is (1/δ)-smooth

Ek = Dh(x
∗,xk) +

∑k
s=0(f(xs)− f(x∗))δ f(x̂k)− f(x∗) ≤ O(1/δk)

µ-Strong Convexity
f is (1/δ)-smooth

Ek = (1− µδ)−kDh(x
∗,xk) Dh(x

∗,xk) ≤ O(e−µδk)

Breg Prox Minimization: ∇h(xk+1)−∇h(xk)

δ
= −∇f(xk+1)

Function Class Lyapunov Function Convergence Rate

Convex
δ > 0

Ek = Dh(x
∗,xk) +

∑k
s=0(f(xs)− f(x∗))δ f(x̂k)− f(x∗) ≤ O(1/δk)

Ek = Dh(x
∗,xk) + δk(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(1/δk)

µ-Strong Convexity
δ > 0

Ek = (1 + µδ)kDh(x
∗,xk) Dh(x

∗,xk) ≤ O(e−µδk)

Mirror Prox:
∇h(x′k+1)−∇h(xk)

δ
= −∇f(xk),

∇h(xk+1)−∇h(xk)

δ
= −∇f(x′k+1) ‖xk − x′k‖ = Θ(δ/σ)

Function Class Lyapunov Function Convergence Rate

Convex
f is (σ/δ)-smooth, h is σ-strongly convex

Ek = Dh(x
∗,xk) +

∑k−1
s=0(f(x′s)− f(x∗))δ f(x̂k)− f(x∗) ≤ O(1/δk)

Natural Gradient Dynamic: d
dt
Xt = −∇2h(Xt)

−1∇f(Xt)

Function Class Lyapunov Function Convergence Rate

Differentiable Et = f(Xt)− f(x∗) ‖∇f(Xt)‖2
X∗t
≤ O(1/t)

PL condition w.p µ Et = e2µtf(Xt)− f(x∗) f(Xt)− f(x∗) ≤ O(e−2µt)

Natural Gradient Descent: xk+1−xk
δ

= −∇2h(xk)
−1∇f(xk)

Function Class Lyapunov Function Convergence Rate

Differentiable
f is (1/δ)-smooth

Ek = f(xk)− f(x∗) ‖∇f(xk)‖2
x∗k
≤ O(1/δk)

PL condition w.p µ
f is (1/δ)-smooth

Ek = (1− µδ)−k(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ O(e−µδk)

Table 2.2: Lyapunov functions for mirror flow (MF), mirror descent (MD), the Bregman
proximal minimization (BPM), mirror prox method (MPM), natural gradient flow (NGF)
and natural gradient descent (NGD); with discrete-time identification t = δk, in the limit
δ → 0, the results in continuous time match the results in discrete time within a factor
of 2. The smoothness condition for NGD is that Df (x, y) ≤ 1

δ
‖x − y‖2

x, ∀x, y ∈ X , where
‖v‖x = 〈v,∇2h(x)v〉.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 14

Denote X̂t =
∫ t

0
Xsds/t as the time-average iterate. Using Jensen’s inequality (A.4), we

conclude tf(X̂t) ≤
∫ t

0
f(Xs)ds. By integrating (2.14) we obtain the statement, t(f(X̂t) −

f(x∗)) ≤ Et ≤ E0, from which we conclude an O(1/t) convergence rate,

f(X̂t)− f(x∗) ≤ E0

t
,

for the optimality gap measured at the time-averaged iterate. Similar statements can be
made about mirror descent and the proximal Bregman method, which are the forward and
backward-Euler methods applied to (2.12), respectively.

Mirror Descent The forward-Euler method applied to MF,

∇h(xk+1)−∇h(xk)

δ
= −∇f(xk),

is a stationary point of the following optimization problem,

xk+1 = arg min
x∈X

{
〈∇f(xk),x〉+

1

δ
Dh(x,xk)

}
. (2.15)

As long as f is L-smooth with respect to h (A.14), where δ < 1/L, then

Ek = Dh(x
∗,xk) +

k∑
s=0

(f(xs)− f(x∗))δ (2.16)

is a Lyapunov function for mirror descent (2.15). We check,

Ek+1 − Ek
δ

= −
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ f(xk)− f(x∗) + ε1

k

(2.15)

≤ −Df (x
∗,xk),

where the error term is ε1
k = f(xk+1)−f(xk)−

〈
∇h(xk+1)−∇h(xk)

δ
,xk − xk+1

〉
− 1

δ
Dh(xk+1,xk) =

Df (xk+1,xk) − 1
δ
Dh(xk+1,xk). Take L = 1/δ. We ensure the non-negativity of the error,

and subsequently the upper bound, by using the (1/δ)-smoothness condition with respect
to h (A.14). Denote x̂k = δ

∑k
s=0 xs/δk =

∑k
s=0 xs/k. Using Jensen’s inequality (A.4), we

conclude δkf(x̂k) ≤ δ
∑k

s=0 f(xs). By summing we obtain the statement δk(f(x̂k)−f(x∗)) ≤
Ek ≤ E0, from which we conclude an O(1/δk) convergence rate,

f(x̂k)− f(x∗) ≤ E0

δk
,

for the optimality gap measured at the time-averaged iterate.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 15

Bregman proximal minimization The Bregman proximal minimization (BPM),

xk+1 = arg min
x∈X

{
f(x) +

1

δ
Dh(x,xk)

}
:= Proxhδf (xk), (2.17)

satisfies the variational condition

∇h(xk+1)−∇h(xk)

δ
= −∇f(xk+1). (2.18)

Furthermore, (2.16) is a Lyapunov function for the BPM. We check,

Ek+1 − Ek
δ

= −
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk+1

〉
+ f(xk+1)− f(x∗) + ε1

k

(2.18)

≤ −Df (x
∗,xk+1),

where the error term ε1
k = −1

δ
Dh(xk+1,xk) is negative. Denote x̂k = δ

∑k
s=0 xs/δk =∑k

s=0 xs/k. By Jensen’s inequality (A.4), δkf(x̂k) ≤ δ
∑k

s=0 f(xs). By summing we ob-
tain the statement δk(f(x̂k) − f(x∗)) ≤ Ek ≤ E0, from which we conclude an O(1/δk)
convergence rate,

f(x̂k)− f(x∗) ≤ E0

δk
,

for the optimality gap measured at the time-averaged iterate.

Mirror Prox Method The update equations for the mirror prox method (MPM) algo-
rithm can be written,

x′k+1 ∈ arg min
x∈X

{
〈∇f(xk),x〉+

1

δ
Dh(x,xk)

}
, (2.19a)

xk+1 ∈ arg min
x∈X

{
〈∇f(x′k+1),x〉+

1

δ
Dh(x,xk)

}
; (2.19b)

the variational conditions satisfy,

∇h(x′k+1)−∇h(xk)

δ
= −∇f(xk)

∇h(xk+1)−∇h(xk)

δ
= −∇f(x′k+1).

We discuss how to solve the updates (2.19) using the projection operator in Appendix B.2.
We can think of this algorithm as mirror descent, where the update xk+1 has been replaced

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 16

with a sequence x′k+1, which we use to take an additional step. To analyze MPM, we use
the following Lyapunov function,

Ek = Dh(x
∗,xk) +

k∑
s=0

(f(x′s)− f(x∗))δ. (2.20)

We check,

Ek+1 − Ek
δ

= −
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk+1

〉
+ f(x′k+1)− f(x∗) + ε1

k

(2.19b)
(2.19a)

≤ −Df (x
∗,x′k+1) + ε2

k ≤ −Df (x
∗,x′k+1).

Here, ε1
k = −1

δ
Dh(xk+1,xk) =

〈
(∇h(x′k+1)−∇h(xk))/δ,x

′
k+1 − xk+1

〉
− 1

δ
Dh(xk+1,x′k+1) −

1
δ
Dh(x

′
k+1,xk) and the second error, ε2

k = 〈∇f(x′k+1)−∇f(xk),x
′
k+1−xk+1〉−1

δ
Dh(xk+1,x′k+1)−

1
δ
Dh(x

′
k+1,xk). The last inequality, which upper bounds ε2

k, assumes h is σ-strongly con-
vex and f is (σ/δ)-smooth; in which case, we can use Cauchy-Schwartz (A.26), smooth-
ness (A.13), and Young’s inequality (A.25) to upper bound the inner product in ε2

k as follows,
〈∇f(x′k+1) −∇f(xk),x

′
k+1 − xk+1〉 ≤ σ

2δ
‖x′k+1 − xk‖2 + σ

2δ
‖x′k+1 − xk+1‖2; the σ-strong con-

vexity of h ensures this upper bound plus the remainder of the error is nonpositive. Similar
to the analysis of MF, we can use Jensen’s (A.4) to conclude δk(f(x̂′k)− f(x∗)) ≤ Ek ≤ E0,

where x̂′k = δ
∑k

s=0 x
′
s/δk =

∑k
s=0 x

′
s/k, and subsequently, an O(1/δk) convergence rate,

f(x̂′k)− f(x∗) ≤ E0

δk
,

on the time-averaged iterate.
The introduction of an additional iterate might seem strange, but using the σ-strong

convexity of h, we can reason that ‖xk+1 − x′k+1‖ ≤ (1/σ)‖∇h(xk+1) − ∇h(x′k+1)‖ ≤
(δ/σ)‖∇f(xk) + ∇f(x′k+1)‖ = Θ(δ/σ), where the second inequality uses (2.19); therefore
in the limit δ → 0, the sequences xk+1 and x′k+1 are equivalent and we recover the mirror
descent dynamic (2.12).

2.1.4 Subgradients and Time Reparameterization

We analyze the dynamic that gives rise to mirror descent algorithm, where subgradients are
used instead of full gradients, in three different settings:

1. f is convex, so that Dg
f (x, y) ≥ 0 ∀x, y ∈ X (see (A.17) for notation);

2. f is µ-strongly convex with respect h (A.7), and h is σ-strongly convex function, so
that Dg

f (y,x) ≥ µDh(y,x) ≥ µσ
2
‖y − x‖2 ∀x, y ∈ X .

3. f is differentiable but has (ν,L) Hölder-continuous gradients (A.15).

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 17

MS Dynamics: d
dt
∇h(Yt) = −τ̇tGf (Yt, Ẏt) Gf (Yt, Ẏt) ∈ ∂f(Yt)

Function Class Lyapunov Function Convergence Rate

Convex Eτt = Dh(x
∗,Yt) +

∫ t
0
(f(Ys)− f(x∗))τ̇sds f(Ŷt)− f(x∗) ≤ Eτ0

τt

µ-Strong Convexity Eτt = eµτtDh(x
∗,Yt) Dh(x

∗,Yt) ≤
Eτ0
eµτt

Eτt = eµτtDh(x
∗,Yt) + 1

µ

∫ t
0
(f(Ys)− f(x∗))deµτs f(Ŷt)− f(x∗) ≤ E0

eµτt

MS Method: ∇h(yk+1)−∇h(yk)

δ
= −αkg(yk) g(yk) ∈ ∂f(yk)

Function Class Lyapunov Function Convergence Rate

Convex
f is Lipschitz; h σ-strongly convex

EAk = Dh(x
∗, yk) +

∑k−1
s=0(f(ys)− f(x∗))As+1−As

δ
δ f(ŷk)− f(x∗) ≤ EA0

+δ
∑k
s=0 ε

1
s

Ak

µ-Strong Convexity
f is Lipschitz; h σ-strongly convex

EAk = AkDh(x
∗, yk) Dh(x

∗, yk) ≤
EA0

+δ
∑k
s=0 ε

2
s

Ak

EAk = AkDh(x
∗, yk) + 1

µ

∑k−1
s=0(f(ys)− f(x∗))As+1−As

δ
δ f(ŷk)− f(x∗) ≤ EA0

+δ
∑k
s=0 ε

2
s

Ak

PS Method ∇h(yk+1)−∇h(yk)

δ
= −αkg(yk+1) g(yk+1) ∈ ∂f(yk+1)

Function Class Lyapunov Function Convergence Rate

Convex
δ > 0

EAk = Dh(x
∗, yk) +

∑k
s=0(f(ys)− f(x∗))As+1−As

δ
δ f(ŷk)− f(x∗) ≤ EA0

Ak

EAk = Dh(x
∗, yk) + Ak(f(yk)− f(x∗)) f(yk)− f(x∗) ≤ EA0

Ak

µ-Strong Convexity
δ > 0

EAk = AkDh(x
∗, yk) Dh(x

∗, yk) ≤
EA0

Ak

EAk = AkDh(x
∗, yk) + 1

µ

∑k
s=0(f(ys)− f(x∗))As+1−As

δ
δ f(ŷk)− f(x∗) ≤ EA0

Ak

Table 2.3: Lyapunov functions for the mirror descent dynamic with directional subgradients
(MS Dynamic), mirror descent with subgradients (MS Method), and the proximal Bregman
minimization with subgradients (PS Method). When moving to discrete time, there is a
discretization error, and we choose parameters accordingly. When f is convex, τt = Ak, so
that τ̇t ≈ (Ak+1 − Ak)/δ = αk. When f is µ-strongly convex, eµτt = Ak, so that we have
the approximation τ̇t = d

dt
eµτt/µeµτt ≈ (Ak+1 − Ak)/δµAk+1 := αk. With these choices, the

errors scale as ε1
k = δα2

kG
2/2σ and ε2

k = δ 1
2σµ2

α2
k

Ak+1
G2, where ‖∂f(x)‖2

∗ ≤ G2. In the limit

δ → 0, the discrete-time and continuous-time statements match.

When f is not smooth, the function no longer necessarily has a uniquely defined gradient
at each point. One natural way around this difficulty is to use the proximal update (2.4).
However, for some non-smooth functions, the update (2.4) might be too expensive to solve
every iteration.

Assume f is finite, convex, and absolutely continuous on X . Recall that the subdifferen-
tial of f at x, ∂f(x), contains the subgradient of f at x, and that the directional subgradient

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 18

of f is a Borel measurable function Gf (x, v) : Rd × Rd → Rd. The subdifferential and
directional derivative of a function share the following relationship in this setting [64],

f ′(x; v) = lim
δ→0

f(x+ δv)− f(x)

δ
= sup

g(x)∈∂f(x)

〈g(x), v〉.

Given f is convex, the subdifferential is nonempty, convex and compact for any x.
Similar to Su, Boyd and Candes [70], we will consider dynamical systems defined by the

directional subgradient of f , when f is not smooth, with the goal of implementing this curve
as an algorithm.

Before doing so, however, we discuss how to choose an appropriate scaling of time. Con-
cretely, let τ : R → R be a smooth (twice-continuously differentiable) increasing function
τ̇ : R → R+. Given a curve X : R → X , we consider a reparameterized curve Y = R → X
defined by,

Yt = Xτt . (2.21)

where we adopt the shorthand, τt = τ(t). That is, the new curve Y is obtained by traversing
the original curve X at a new speed of time determined by τ . If τt < t, we say that Y
is the slowed-down version of X, because the curve Y at time t has the same value as the
original curve X at the past time τt. We might expect that if the original curve obtained a
convergence rate f(Xt)− f(x∗) ≤ O(1/t), the new curve Y might obtain a convergence rate
f(Yt)− f(x∗) ≤ O(1/τt).

We study the family of curves,

d

dt
∇h(Yt) = −τ̇tGf (Yt, Ẏt), (2.22)

obtained by an arbitrary reparameterization of the curve, d
dt
∇h(Xt) = −Gf (Xt, Ẋt), by the

scaling (2.21), where Gf (Xt, Ẋt) ∈ ∂f(Xt). If Gf (Xt, Ẋt) = ∇f(Xt) and τt = t, then (2.22)
is equivalent to the mirror descent dynamic (2.15). Let X = Rn. We provide a description
of the first bullet point in the main text and provide details on the other bullet points in
Appendix B.3.

2.1.4.1 Convex Functions

We analyze the family of curves (2.22) when f is convex. To do so, we apply the same
time-reparameterization to the Lyapunov function (2.13),

Eτt = Dh(x
∗,Yt) +

∫ t

0

(f(Ys)− f(x∗))dτs, (2.23)

where dτs = τ̇sds. The absolute continuity of f ensures Eτt is differentiable. We check,

d

dt
Eτt = −

〈
d

dt
∇h(Yt),x

∗ − Yt
〉

+ (f(Yt)− f(x∗))τ̇t
(2.22)
= −DG

f (x∗,Yt)τ̇t ≤ 0.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 19

Denote Ŷt =
∫ t

0
Ysdτs/τt as the time-average point. The inequality τtf(Ŷt) ≤

∫
f(Ys)dτs

follows from applying Jensen’s inequality (A.4). By integrating the Lyapunov function, we
obtain the statement τt(f(Ŷt)− f(x∗)) ≤ Eτt ≤ Eτ0 for the curve. Therefore we can conclude
a O(1/τt) convergence rate for (2.22) on the time-averaged iterate:

f(Ŷt)− f(x∗) ≤ Eτ0
τt

.

We apply a similar argument to the discretizations of (2.22) using a discretization of the
Lyapunov function (2.23). Make the identifications Ak := τt and αk = Ak−1−Ak

δ
:= τ̇t.

Different scalings produce errors with differing scales in discrete time. At the end of the
discrete-time analysis, the scaling which maximizes the upper-bound is chosen.

Mirror subgradient method The forward-Euler discretization of (2.22),

yk+1 = arg min
x∈Rd

{
αk〈g(yk),x〉+

1

δ
Dh(x, yk)

}
, (2.24)

chooses an element of the subdifferential at every iteration g(yk) ∈ ∂f(yk). It satisfies the

variational condition ∇h(yk+1)−∇h(yk)

δ
= −αkg(yk). We analyze (2.24) using the Lyapunov

function,

EAk = Dh(x
∗, yk) +

k−1∑
s=0

(f(ys)− f(x∗))
As+1 − As

δ
δ. (2.25)

We check,

EAk+1
− EAk
δ

= −
〈
∇h(yk+1)−∇h(yk)

δ
,x∗ − yk

〉
+ (f(yk)− f(x∗))αk + ε1

k

(2.24)
= −Dg

f (x
∗, yk)αk + ε1

k

where the error scales as ε1
k = αk〈g(yk), yk−yk+1〉− 1

δ
Dh(yk+1, yk). Define the time-averaged

iterate ŷk = δ
∑k

s=0 ysαs/Ak. By summing, we obtain the statement Ak(f(ŷk) − f(x∗)) ≤
EAk ≤ EA0 + δ

∑k
s=0 ε

1
s, as well as the bound,

f(ŷk)− f(x∗) ≤ EA0 + δ
∑k

s=0 ε
1
s

Ak
. (2.26)

The bound provides us with a rate of convergence as long as
∑k

s=0 ε
1
s/Ak → 0 as k →∞. To

obtain an upper bound on the error, we typically assume that h is σ-strongly convex (A.6);
with this assumption, Young’s inequality (A.25) can be used to obtain the following upper

bound ε1
k ≤ δ

α2
k

2σ
‖g(yk)‖2

∗. Assume f is Lipschitz on X , so that for all y ∈ X , ‖∂f(y)‖2
∗ ≤ G2,

for some finite constantG2 (see (A.17) for notation). Maximizing the bound, δ
∑k

s=0
α2
s

2σ
G2/Ak

over the sequence Ak leads to the choice αK = Dh(x
∗,X0)/G2

√
K, and convergence rate

O(1/
√
K). There is a matching lower bound for the subgradient oracle function.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 20

Proximal Bregman method The backward-Euler discretization of (2.22)

yk+1 = arg min
x∈Rd

{
αkf(x) +

1

δ
Dh(x, yk)

}
, (2.27)

satisfies variational inequality we can write as ∇h(yk+1)−∇h(yk)

δ
= −αkg(yk+1), where g(yk+1) ∈

∂f(yk+1). We can similarly be analyzed using Lyapunov function (2.25), as well as the
Lyapunov function

EAk = Dh(x
∗, yk) + Ak(f(yk)− f(x∗)). (2.28)

We check,

EAk+1
− EAk
δ

= −
〈
∇h(yk+1)−∇h(yk)

δ
,x∗ − yk+1

〉
+ αkf(yk+1)− f(x∗)

+ Ak
f(yk+1)− f(yk)

δ
+ ε1

k ≤ −D
g
f (x
∗, yk+1)αk + ε2

k

where the errors ε1
k = −1

δ
Dh(yk+1, yk) and ε2

k = ε1
k + Ak

f(yk+1)−f(yk)

δ
are negative. The non-

negativity of the second error follows from the descent property of the proximal method (2.27),

i.e. Ak
f(yk+1)−f(yk)

δ
≤ −Ak

αk

1
δ2
Dh(yk+1, yk).

2.1.5 Dual Averaging Dynamic

We analyze the dynamic that gives rise to the dual averaging algorithm in the setting when
f is convex.

Let X = Rd and f : Rd → R be an absolutely continuous convex function. Take
γ̇t, γt, τ̇t, τt > 0. The dual averaging dynamic is given by the system of equations,

d

dt
Yt = −τ̇tG(Xt, Ẋt) (2.29a)

Yt = γt∇h(Xt). (2.29b)

Here, Gf (Xt, Ẋt) ∈ ∂f(Xt) is a directional subgradient of f at Xt and we choose h : X → R
to be a σ-storngly convex function with a well-defined prox-center [44]; specifically, the
prox-center y is defined as the solution to the optimization problem,

y = arg min
x∈X

h(x). (2.30)

It is usually taken without loss of generality that h(y) = 0 so that h(x) = Dh(x, y) ≥ 0, ∀x ∈
X . In particular, when h(x) = 1

2
‖x‖2, then the point y = 0 is the prox-center. If we choose

our initial position X0 to be the prox-center (2.30), the function,

Et = γtDh(x
∗,Xt) +

∫ t

0

(f(Xs)− f(x∗))dτs,

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 21

DA Dynamic: d
dt
Yt = −τ̇tGf (Xt, Ẋt), Yt = γt∇h(Xt) Gf (Xt, Ẋt) ∈ ∂f(Xt)

Function Class Lyapunov Function Convergence Rate

Convex Eτt = γtDh(x
∗,Xt) +

∫ t
0
(f(Xs)− f(x∗))τ̇sds f(X̂t)− f(x∗) ≤ γtDh(x∗,X0)

τt

DA Algorithm: yk+1−yk
δ

= −αkg(xk), yk = γk∇h(xk) g(xk) ∈ ∂f(xk)

Function Class Lyapunov Function Convergence Rate

Convex
f is Lipschitz; h σ-strongly convex

Ek = γkDh(x
∗,xk) +

∑k−1
s=0(f(xs)− f(x∗))αsδ f(x̂k)− f(x∗) ≤ γkDh(x∗,x0)+δ

∑k
s=0 ε

1
s

Ak

Proximal DA: yk+1−yk
δ

= −αkg(xk+1), yk = γk∇h(xk) g(xk+1) ∈ ∂f(xk+1)

Function Class Lyapunov Function Convergence Rate

Convex
δ > 0

Ek = γkDh(x
∗,xk) +

∑k
s=0(f(xs)− f(x∗))αsδ f(x̂k)− f(x∗) ≤ γkDh(x∗,x0)

Ak

Table 2.4: Lyapunov functions for the dual averaging (DA) dynamic, dual averaging (DA)
algorithm , and the backward-Euler approximation of the dual averaging dynamics (proximal

DA); for the dual averaging algorithm, αk = Ak+1−Ak
δ

, ε1
k = δ 1

2σ

α2
k

γk
G2 where ‖∂f(x)‖2

∗ ≤ G2.
In the limit δ → 0, the discrete-time and continuous-time statements match.

provides a rate of convergence for (2.29). We check,

d

dt
Et = Dh(x

∗,Xt)
d

dt
γt − γt

〈
d

dt
∇h(Xt),x

∗ −Xt

〉
+ τ̇t(f(Xt)− f(x∗))

(2.29b)
= (h(x∗)− h(Xt))

d

dt
γt −

〈
d

dt
Yt,x

∗ −Xt

〉
+ τ̇t(f(Xt)− f(x∗))

(2.29a)
= −τ̇tDG

f (x∗,Xt) + γ̇t(h(x∗)− h(Xt)) ≤ γ̇tDh(x
∗,X0).

The last inequality uses the fact that h(x) = Dh(x,X0) ≥ 0, ∀x ∈ X as well as the defi-
nition of a prox-center h(x∗) = Dh(x

∗,X0). Denote X̂t =
∫ t

0
Xsdτs/τt as the time-average

iterate and note that the inequality τtf(X̂t) ≤
∫ t

0
f(Xs)dτs follows from Jensen’s (A.4).

By integrating the Lyapunov argument d
dt
Et ≤ γ̇tDh(x

∗,X0), we obtain the statement,

τt(f(X̂t) − f(x∗)) ≤ Et ≤ E0 + γtDh(x
∗,X0) − γ0Dh(x

∗,X0), from which we conclude an
O(γt/τt) convergence rate,

f(X̂t)− f(x∗) ≤ E0 + γtDh(x
∗,X0)

τt
.

Dual Averaging The dual averaging algorithm,

xk+1 = arg min
x∈X

{
δ

k∑
s=0

αs〈g(xs),x〉+ γkDh(x,x0)

}
, (2.31)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 22

satisfies the variational condition γk+1∇h(xk+1)−γk∇h(xk)

δ
= −αkg(xk), where x0 is the prox-

center (2.30), αk = Ak+1−Ak
δ

and g(xk) ∈ ∂f(xk). Denote yk = γk∇h(xk). The variational

condition can be written, yk+1−yk
δ

= −αkg(xk). Using the discrete-time function,

Ek = γkDh(x
∗,xk) +

k−1∑
s=0

(f(xs)− f(x∗))
As+1 − As

δ
δ,

we check,

Ek+1 − Ek
δ

= Dh(x
∗,xk+1)

γk+1 − γk
δ

− γk
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ αk(f(xk)− f(x∗)) + ε1

k

= (h(x∗)− h(xk+1))
γk+1 − γk

δ
−
〈
yk+1 − yk

δ
,x∗ − xk

〉
+ αk(f(xk)− f(x∗)) + ε1

k

(2.31)
= −αkDg

f (x
∗,xk) +

γk+1 − γk
δ

(h(x∗)− h(xk+1)) + ε2
k ≤

γk+1 − γk
δ

Dh(x∗,x0) + ε1
k.

Here, the error scales as ε1
k = αk〈g(xk),xk − xk+1〉 − γk

δ
Dh(xk+1,xk). The final upper bound

follows from noting −Dg
f (x
∗,xk) ≤ 0 and using the definition of the prox-center. Assume

‖∂f(yk)‖2
∗ ≤ G2 for all yk ∈ X and some constant G. Using the σ-strong convexity of

h, we can use Young’s inequality to upper bound the error ε2
k ≤

α2
kδ

2σγk
G := ε3

k. Denote

x̂k = δ
∑k

s=0 xsαs/Ak as the time-average iterate and note that the inequality Akf(x̂k) ≤
δ
∑k

s=0 f(xs)αs follows from Jensen’s (A.4). By summing the Lyapunov function we obtain

the statement, Ak(f(x̂k)−f(x∗)) ≤ Ek ≤ E0 +γkDh(x
∗,x0)−γ0Dh(x

∗,x0)+δ
∑k

s=0 ε
3
i , from

which we obtain the convergence bound,

f(x̂k)− f(x∗) ≤
E0 + γkDh(x

∗,x0) + δ2 1
2σ

∑k
s=0

α2
s

γs
G2

Ak
.

If we assume with out loss of generality σ = 1, and choose Ak = k, δ = 1 and γk =
G2

Dh(x∗,x0)

√
k + 1, we obtain O(1/

√
k) convergence rate [44]. This bound matches the oracle

function lower bound for algorithms designed using only subgradients of convex functions
(i.e. is provably optimal). Furthermore, as δ → 0, the error ε3

k → 0 and we recover the result
for the continuous time dynamics.

2.1.6 Conditional Gradient Dynamic

We analyze the dynamical systems that gives rise to the conditional gradient method (Frank-
Wolfe algorithm) in two different settings:

1. X is a convex, compact set, f is Lipschitz on X and has (1/ε)-smooth gradients (A.13).

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 23

2. X is a convex, compact set, f is Lipschitz on X and has (ν, 1/ε) Hölder-continuous
gradients (A.15).

Conditional Gradient Dynamic: 〈∇f(Xt),x− Zt〉, ∀x ∈ X , Ẋt =
d
dt
eβt

eβt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

Convex
X is compact and convex, f is Lipschitz on X

Et = eβt(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ E0
eβt

Conditional Gradient Algorithm 〈∇f(xk),x− zk〉, ∀x ∈ X , xk+1−xk
δ

= τk(zk − xk)

Function Class Lyapunov Function Convergence Rate

Convex
X is compact and convex, f is (1/δ)-smooth

Ek = Ak(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ E0+δ
∑k
s=0 ε

1
s

Ak

Table 2.5: Lyapunov functions for conditional gradient descent (CGD) dynamic and the

conditional gradient descent (CGD) algorithm. Here,
d
dt
eβt

eβt
≈ Ak+1−Ak

δAk+1
:= τk, εk+1 =

δ
Ak+1τ

2
k

2ε
‖zk − xk‖2 . In the limit δ → 0, discrete-time and continuous-time statements match.

The conditional gradient dynamic,

d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt), (2.32a)

Zt ∈ arg min
v∈X
〈∇f(Xt), v〉 (2.32b)

is defined on convex, compact sets X . The update (2.32b) satisfies the variational condition
0 ≤ 〈∇f(Xt),x−Zt〉, ∀x ∈ X . This dynamical system is remarkably similar to the dynamical
system (2.38), where instead of using the Bregman divergence to ensure nonnegativity of the
variational inequality 0 ≤ 〈∇f(Xt),x − Zt〉 ddte

βt , we simply assume (2.32b) holds on the
domain X . The following function,

Et = eβt(f(Xt)− f(x)), (2.33)

is a Lyapunov function for (2.32). We check,

d

dt
Et = eβt

d

dt
f(Xt) + (f(Xt)− f(x∗))

d

dt
eβt

≤ eβt〈∇f(Xt), Ẋt〉+ 〈∇f(Xt),x
∗ −Xt〉

d

dt
eβt

(2.32a)
= 〈∇f(Xt),x

∗ − Zt〉
d

dt
eβt

(2.32b)

≤ 0

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 24

Applying the backward-Euler scheme to (2.32a) and (2.32b), with the same approximations,
d
dt
Xt = xk+1−xk

δ
, d
dt
eβt = Ak+1−Ak

δ
, and denoting τk = Ak+1−Ak

δAk+1
, we obtain the variational

conditions for the following algorithm:

zk = arg min
z∈X
〈∇f(xk), z〉, (2.34a)

xk+1 − xk
δ

= τk(zk − xk). (2.34b)

We can write update (2.34b) as xk+1 = δτkzk + (1 − δτk)xkUpdate (2.34a) requires the
assumptions that X be convex and compact; under this assumption, (2.34a) satisfies

0 ≤ 〈∇f(xk),x− zk〉,∀x ∈ X ,

consistent with (2.32b). The following proposition describes how a discretization of (2.33)
can be used to analyze the behavior of algorithm (2.34). Assume f is convex and X is convex
and compact. If f is (1/ε)-smooth, using the Lyapunov function,

Ek = Ak(f(xk)− f(x∗)), (2.35)

we obtain the error bound,

Ek+1 − Ek
δ

= Ak+1
f(xk+1)− f(xk)

δ
+ (f(xk)− f(x∗))

Ak+1 − Ak
δ

≤ Ak+1

〈
∇f(xk),

xk+1 − xk
δ

〉
+ 〈∇f(xk),x

∗ − xk)
Ak+1 − Ak

δ
+ εk+1

(2.34b)
= 〈∇f(xk),x

∗ − zk〉
Ak+1 − Ak

δ
+ εk+1

(2.34a)

≤ ε1
k.

The second inequality uses the convexity and (1/ε)-smoothness of f . The error scales as

εk+1 = δAk+1

2ε
‖xk+1−xk

δ
‖2 = δ

Ak+1τ
2
k

2ε
‖zk − xk‖2 . If instead we assume f has (ε, ν)-Hölder-

continuous gradients (A.15), the error in algorithm (2.34) now scales as εk+1 = δAk+1

2ε
‖xk+1−xk

δ
‖1+ν

= δν
Ak+1τ

1+ν
k

(1+ν)ε
‖zk − xk‖1+ν . Taking Ak = (k+1)(k+2)

2
we infer the convergence rates O(1/εk)

and O(1/εkν), respectively.

2.2 Lyapunov Analysis of Second-Order Dynamics

This section is based on the work A Lyapunov analysis of momentum methods in optimiza-
tion. A. Wilson, B. Recht and M. I. Jordan. Submitted to Mathematics of Operations
Research (MOOR), 2016.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 25

2.2.1 A Lyapunov Analysis of Momentum Methods in
Optimization

Momentum is a powerful heuristic for accelerating the convergence of optimization methods.
One can intuitively “add momentum” to a method by adding to the current step a weighted
version of the previous step, encouraging the method to move along search directions that had
been previously seen to be fruitful. Such methods were first studied formally by Polyak [54],
and have been employed in many practical optimization solvers. As an example, since the
1980s, momentum methods have been popular in neural networks as a way to accelerate the
backpropagation algorithm. The conventional intuition is that momentum allows local search
to avoid “long ravines” and “sharp curvatures” in the sublevel sets of cost functions [66].

Polyak motivated momentum methods by an analogy to a “heavy ball” moving in a
potential well defined by the cost function. However, Polyak’s physical intuition was dif-
ficult to make rigorous mathematically. For quadratic costs, Polyak was able to provide
an eigenvalue argument that showed that his Heavy Ball Method required no more itera-
tions than the method of conjugate gradients [54].1 Despite its intuitive elegance, however,
Polyak’s eigenvalue analysis does not apply globally for general convex cost functions. In
fact, Lessard et al. derived a simple one-dimensional counterexample where the standard
Heavy Ball Method does not converge [30].

In order to make momentum methods rigorous, a different approach was required. In
celebrated work, Nesterov devised a general scheme to accelerate convex optimization meth-
ods, achieving optimal running times under oracle models in convex programming [43]. To
achieve such general applicability, Nesterov’s proof techniques abandoned the physical intu-
ition of Polyak [43]; in lieu of differential equations and Lyapunov functions, Nesterov devised
the method of estimate sequences to verify the correctness of these momentum-based meth-
ods. Researchers have struggled to understand the foundations and scope of the estimate
sequence methodology since Nesterov’s initial papers. The associated proof techniques are
often viewed as an “algebraic trick.”

To overcome the lack of fundamental understanding of the estimate sequence technique,
several authors have recently proposed schemes to achieve acceleration without appealing to
it [15, 9, 30, 14]. One promising general approach to the analysis of acceleration has been
to analyze the continuous-time limit of accelerated methods [70, 76, 25], or to derive these
limiting ODEs directly via an underlying Lagrangian [76], and to prove that the ODEs are
stable via a Lyapunov function argument. However, these methods stop short of providing
principles for deriving a discrete-time optimization algorithm from a continuous-time ODE.
There are many ways to discretize ODEs, but not all of them give rise to convergent meth-
ods or to acceleration. Indeed, for unconstrained optimization on Euclidean spaces in the
setting where the objective is strongly convex, Polyak’s Heavy Ball method and Nesterov’s
accelerated gradient descent have the same continuous-time limit. One recent line of attack
on the discretization problem is via the use of a time-varying Hamiltonian and symplectic

1Indeed, when applied to positive-definite quadratic cost functions, Polyak’s Heavy Ball Method is equiv-
alent to Chebyshev’s Iterative Method [10].

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 26

integrators [52]. In this chapter, we present a different approach, one based on a fuller de-
velopment of Lyapunov theory. In particular, we present Lyapunov functions for both the
continuous and discrete settings, and we show how to move between these Lyapunov func-
tions. Our Lyapunov functions are time-varying and they thus allow us to establish rates
of convergence. They allow us to dispense with estimate sequences altogether, in favor of a
dynamical-systems perspective that encompasses both continuous time and discrete time.

2.2.1.1 The Bregman Lagrangian

We [4] introduced the following function on curves,

L(x, v, t) = eαt+γt
(
Dh

(
x,x+ e−αtv

)
− eβtf(x)

)
, (2.36)

where x ∈ X , v ∈ Rd, and t ∈ R represent position, velocity and time, respectively [76]. They
called (2.36) the Bregman Lagrangian. The functions α, β, γ : R → R are arbitrary smooth
increasing functions of time that determine the overall damping of the Lagrangian functional,
as well as the weighting on the velocity and potential function. We also introduced the
following “ideal scaling conditions,” which are needed to obtain optimal rates of convergence:

γ̇t = eαt (2.37a)

β̇t ≤ eαt . (2.37b)

Given L(x, v, t), we can define a functional on curves {Xt : t ∈ R} called the action via
integration of the Lagrangian: A(X) =

∫
R L(Xt, Ẋt, t)dt. Calculation of the Euler-Lagrange

equation, ∂L
∂x

(Xt, Ẋt, t) = d
dt
∂L
∂v

(Xt, Ẋt, t), allows us to obtain a stationary point for the
problem of finding the curve which minimizes the action. We showed [76, (2.7)] that under
the first scaling condition (2.37a), the Euler-Lagrange equation for the Bregman Lagrangian
reduces to the following ODE:

d

dt
∇h(Xt + e−αtẊt) = −eαt+βt∇f(Xt). (2.38)

Second Bregman Lagrangian. We [4] introduced a second function on curves,

L(x, v, t) = eαt+γt+βt
(
µDh

(
x,x+ e−αtv

)
− f(x)

)
, (2.39)

using the same definitions and scaling conditions. The Lagrangian (2.39) places a different
damping on the kinetic energy than in the original Bregman Lagrangian (2.36).

Proposition 2.2.1. Under the same scaling condition (2.37a), the Euler-Lagrange equation
for the second Bregman Lagrangian (2.39) reduces to:

d

dt
∇h(Xt + e−αtẊt) = β̇t∇h(Xt)− β̇t∇h(Xt + e−αtẊt)−

eαt

µ
∇f(Xt). (2.40)

We provide a proof of Proposition 2.2.1 in Appendix B.5.1.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 27

Summary We summarize the results presented in this subsection in Table 2.6.

Accelerated Dynamic 1 d
dt
∇h(Zt) = −

(
d
dt
eβt
)
∇f(Xt)

d
dt
Xt =

d
dt
eβt

eβt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh(x
∗,Zt) + eβt(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/eβt)

Accelerated Algorithm 1 ∇h(zk+1)−∇h(zk)

δ
= −αk∇f(xk+1) xk+1−yk

δ
= τk(zk − yk)

‖yk − xk‖ = O(δ), δ =
√
εσ yk = xk − δ∇f(xk)

Function Class Lyapunov Function Convergence Rate

Convex
f is (1/ε)-smooth, h is σ-strongly convex

Ek = Dh(x
∗, zk) + Ak(f(yk)− f(x∗)) f(yk)− f(x∗) ≤ O(1/Ak)

Accelerated Mirror Prox
∇h(z′k+1)−∇h(zk)

δ
= −αk∇f(x′k+1), δ =

√
εσ xk+1−xk

δ
= τk(z

′
k+1 − xk)

∇h(zk+1)−∇h(zk)

δ
= −αk∇f(xk+1), ‖x′k − xk‖ = O(δ), xk+1−xk

δ
= τk(zk − xk)

Function Class Lyapunov Function Convergence Rate

Convex
f is (1/ε)-smooth, h is σ-strongly convex

Ek = Dh(x
∗, zk) + Ak(f(yk)− f(x∗)) f(yk)− f(x∗) ≤ O(1/Ak)

Accelerated Dynamic 2 d
dt
∇h(Zt) =

d
dt
eβt

eβt

(
∇h(Xt)−∇h(Zt)− 1

µ
∇f(Xt)

)
Ẋt =

d
dt
eβt

eβt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

f is µ-uniformly convex w.r.t h Et = eβt (µDh(x
∗,Zt) + f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/eβt)

Accelerated Algorithm 2 ∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk)−∇h(zk)− 1

µ
∇f(xk)

)
xk+1−yk+1

δ
= τk(zk+1 − xk+1)

‖yk+1 − xk‖ = O(δ) , δ =
√
ε yk+1 = xk − δ∇f(xk)

Function Class Lyapunov Function Convergence Rate

µ-Strongly Convex
f is (1/ε)-smooth, h is Euclidean

Ek = Ak(Dh(x
∗, zk) + f(yk)− f(x∗)) f(yk)− f(x∗) ≤ O(1/Ak)

Table 2.6: Lyapunov functions for accelerated mirror descent (AMD) dynamic, accelerated
mirror descent (AMD), accelerated mirror prox (AMP), and the backward Euler discretiza-

tion. For AMD1 and AMP, we take Ak+1 = σε(k+1)(k+2)
4

, αk = Ak+1−Ak
δ

=
√
σε(k+2)

2
, δ =

√
εσ

and for AMD2, we take Ak+1 = (1−√µδ)−(k+1), τk = Ak+1−Ak
δAk+1

=
√
µ, δ =

√
ε.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 28

2.2.1.2 Methods arising from the first Euler-Lagrange equation

Assume f is convex, h is strictly convex, and the second ideal scaling condition (2.37b) holds
with equality. We write the Euler Lagrange equation (2.38) as,

d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt), (2.41a)

d

dt
∇h(Zt) = −∇f(Xt)

d

dt
eβt . (2.41b)

For this continuous-time dynamical system,

Et = Dh(x
∗,Zt) + eβt(f(Xt)− f(x∗)) (2.42)

is a Lyapunov function. We check,

d

dt
Et = −

〈
d

dt
∇h(Zt),x

∗ − Zt
〉

+ eβt
d

dt
f(Xt) + (f(Xt)− f(x∗))

d

dt
eβt .

(2.41b)
= (〈∇f(Xt),x

∗ − Zt〉+ f(Xt)− f(x∗))
d

dt
eβt + eβt

d

dt
f(Xt)

(2.41a)
= −Df (x

∗,Xt)
d

dt
eβt ≤ 0 (2.43)

This argument allows us to conclude a O(e−βt) convergence rate.

Backward-Backward-Euler. Written as an algorithm, the backward Euler method ap-
plied to (2.41a) and (2.41b) has the following update equations:

zk+1 = arg min
z∈X

x=
δτk

1+δτk
z+ 1

1+δτk
xk

{
Akf(x) +

1

δτk
Dh (z, zk)

}
, (2.44a)

xk+1 =
δτk

1 + δτk
zk+1 +

1

1 + δτk
xk; (2.44b)

these updates satisfy the variational conditions ∇h(zk+1)−∇h(zk)

δ
= −∇f(xk+1)Ak+1−Ak

δ
and

xk+1−xk
δ

= τk(zk+1 − xk+1) where τk = Ak+1−Ak
δAk

, respectively. Let αk = Ak+1−Ak
δ

. We now
state our main proposition for the discrete-time dynamics.

Proposition 2.2.2. Using the discrete-time Lyapunov function,

Ek = Dh(x
∗, zk) + Ak(f(xk)− f(x∗)), (2.45)

the bound Ek+1−Ek
δ

≤ 0 holds for algorithm (2.44).

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 29

This allows us to conclude a generalO(1/Ak) convergence rate for the implicit method (2.44).
Using these identities, we have the following derivation:

Ek+1 − Ek
δ

= −
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ Ak

f(xk+1)− f(xk)

δ

+ (f(xk+1)− f(x∗))αk + ε1
k

(2.44a)
= (〈∇f(xk+1),x∗ − zk+1〉+ f(xk+1)− f(x∗))αk + Ak

f(xk+1)− f(xk)

δ
+ ε1

k

(2.44b)
= −Df (x

∗,xk+1)αk + ε2
k

The inequality on the last line follows from the convexity of f and the strict convexity of h.
Both errors, ε1

k = −1
δ
Dh(zk+1, zk) and ε2

k = −Ak
δ
Df (xk,xk+1) − 1

δ
Dh(zk+1, zk) are negative.

This argument allows us to conclude a O(1/Ak) convergence rate.

Accelerated gradient family. We study families of algorithms which give rise to a family
of accelerated methods. These methods can be thought of variations of the explicit Euler
scheme applied to (2.41a) and the implicit Euler scheme applied to (2.41b). Take, τk =
(Ak+1 − Ak)/δAk+1 := αk/Ak+1. The variational conditions for the first family of methods
can be written as the following:

xk+1 − yk
δ

= τk(zk − yk) (2.46a)

∇h(zk+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
∇f(xk+1) (2.46b)

yk+1 = G(x), (2.46c)

where G : X → X is an arbitrary map whose domain is the previous state, x = (xk+1, zk+1, yk).
The variational conditions for second family can be written:

xk+1 − yk
δ

= τk(zk − yk) (2.47a)

yk+1 = G(x) (2.47b)

∇h(zk+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
∇f(yk+1), (2.47c)

where G : X → X is an arbitrary map whose domain is the previous state, x = (xk+1, zk, yk).
When G(x) = xk+1 for either algorithm, we recover a classical explicit discretization applied
to (2.41a) and implicit discretization applied to (2.41b). We will show that the additional
sequence yk allows us to obtain better error bounds in our Lyapunov analysis. Indeed,
accelerated gradient descent [43, 45], accelerated mirror prox [13] accelerated higher-order
methods [40, 6], accelerated universal methods [21], all involve particular choices for the
map G and for the smoothness assumptions on f and h. We demonstrate how the anal-
yses contained in all of these papers implicitly show the following discrete-time Lyapunov

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 30

function,

Ek = Dh(x
∗, zk) + Ak(f(yk)− f(x∗)), (2.48)

is decreasing for each iteration k. We present the proposition for gradient descent in the
main text, and leave the fully general case to the appendix.

Proposition 2.2.3. Assume that the distance-generating function h is σ-strongly convex
and the objective function f is convex. Using only the updates (2.46a) and (2.46b), and
using the Lyapunov function (2.48), we have the following bound:

Ek+1 − Ek
δ

≤ −Df (x
∗,xk+1)αk + εk+1, (2.49)

where the error term scales as

εk+1 = δ
α2
k

2σ
‖∇f(yk+1)‖2 + Ak+1

f(yk+1)− f(xk+1)

δ
. (2.50a)

If we use the updates (2.47a) and (2.47c) instead, the error term scales as

εk+1 = δ
α2
k

2σ
‖∇f(yk+1)‖2 + Ak+1

〈
∇f(yk+1),

yk+1 − xk+1

δ

〉
. (2.50b)

In particular, accelerated mirror decent uses the following family of operators G ≡ Gε,
parameterized by a scaling constant ε > 0:

Gε(x) = arg min
y∈X

{
f(x) + 〈∇f(x), y − x〉+

1

2ε
‖y − x‖2

}
. (2.51)

Nesterov assumed the use of full gradients∇f which are (1/ε)-smooth; thus, the gradient map
is scaled according to the Lipschitz parameter. Using the gradient update, yk+1 = Gε(xk+1),
for updates (2.46c) and (2.47b), where Gε is defined in (2.51), the error for algorithm (2.46)
can be written as follows:

εk+1 = δ
α2
k

2σ
‖∇f(xk+1)‖2 − Ak+1ε

2δ
‖∇f(xk+1)‖2, (2.52a)

and for algorithm (2.47), we have:

εk+1 = δ
α2
k

2σ
‖∇f(yk+1)‖2 − Ak+1ε

2δ
‖∇f(yk+1)‖2. (2.52b)

In particular, observe that the optimality condition for the gradient update (2.51) is

∇f(x) =
1

ε
(x− Gε(x)). (2.53)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 31

The bound (2.52a) follows from smoothness of the objective function f ,

f(Gε(x)) ≤ f(x) + 〈∇f(x),Gε(x)− x〉+
ε

2
‖Gε(x)− x‖2 (2.53)

= f(x)− ε

2
‖∇f(x)‖2.

For the second bound (2.52b), we use the L-smoothness of the gradient,

‖∇f(Gε(x))−∇f(x)‖ ≤ 1

ε
‖Gε(x)− x‖; (2.54)

substituting (2.53) into (2.54), squaring both sides, and expanding the square on the left-
hand side, yields the desired bound:

〈∇f(Gε(x)),x− Gε(x))〉 ≤ − ε
2
‖∇f(Gε(x))‖2.

The error bounds we have just obtained depend explicitly on the scaling ε. This restricts

our choice of sequences Ak; they must satisfy the following inequality,
α2
k

Ak+1
≤ 1, for the error

to be bounded. For example, Ak+1 = σε(k+1)(k+2)
4

and αk =
√
σε(k+1)

2
satisfies the bound;

from this we can conclude f(yk) − f(x∗) ≤ O(1/εσk2), which matches the lower bound
for algorithms which only use full gradients of the objective function. Furthermore, if we
take the discretization step to scale according to the smoothness as δ =

√
εσ, then both

‖xk−yk√
ε
‖ = O(

√
ε) and εk = O(

√
ε); therefore, as δ =

√
εσ → 0, for a fixed σ, we recover the

dynamics (2.41) and the statement d
dt
Et ≤ 0 for Lyapunov function (2.38) in the limit.

Accelerated Mirror Prox Accelerated mirror-prox, which was introduced by Diakoniko-
las and Orecchia [13], also fits into the Lyapunov framework. Let f be (1/ε)-smooth. Take,
τk = (Ak+1 − Ak)/δAk+1 := αk/Ak+1. The variational conditions for the first family of
methods can be written as the following:

x′k+1 − xk
δ

= τk(zk − xk) (2.55a)

∇h(z′k+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
∇f(x′k+1) (2.55b)

xk+1 − xk
δ

= τk(z
′
k+1 − xk) (2.55c)

∇h(zk+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
∇f(xk+1) (2.55d)

As an algorithm, we can write it as, x′k+1 = δτkzk + (1− δτk)xk ((2.55a)); yk+1 = ∇h(zk)−
αk∇f(x′k+1), z′k+1 = ΠX∩X ′(∇h∗(yk+1)) ((2.55b)); xk+1 = δτkz

′
k+1 + (1 − δτk)xk ((2.55c));

y′k+1 = ∇h(zk)−αk∇f(xk+1), zk+1 = ΠX∩X ′(∇h∗(y′k+1)), where Π is the Bregman projection
operator (B.18) . The function (2.45) is a Lyapunov function for (2.55). In particular, the
following upper bound,

Ek+1 − Ek
δ

≤ −Df (x
∗,xk+1)αk + εk+1,

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 32

follows using a few simple arguments, where the error scales as,

εk+1 = δ
α2
k

Ak+1ε
‖z′k+1 − zk‖‖z′k+1 − zk+1‖ −

σ

2δ
‖z′k+1 − zk‖2 − σ

2δ
‖z′k+1 − zk+1‖2. (2.56)

The proof of this result can be found in Appendix B.4. Taking δ =
√
εσ, the error is

nonpositive if
α2
k

Ak+1
≤ 1. The same choices, Ak+1 = σε(k+1)(k+2)

4
and αk =

√
σε(k+1)

2
en-

sures the error is nonpositive; from this we can conclude f(xk)− f(x∗) ≤ O(1/εσk2), which
matches the lower bound for algorithms which only use full gradients of the objective func-
tion. Similar to the mirror prox algorithm, ‖z′k+1 − z′k+1‖ ≤ σ−1‖∇h(z′k+1) − ∇h(zk+1)‖ =
δσ−1‖αk(∇f(x′k+1) − ∇f(xk+1))‖ = O(δ/σ), so that in the limit δ → 0, we recover the
continuous-time dynamic (2.41).

2.2.1.3 Methods arising from the second Euler-Lagrange equation

Assume f is µ-strongly convex with respect to h (A.7), h is strictly convex, and the second
ideal scaling condition (2.37b) holds with equality. We write the Euler Lagrange equa-
tion (2.40) as,

d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt), (2.57a)

d

dt
∇h(Zt) =

d
dt
eβt

eβt

(
∇h(Xt)−∇h(Zt)−

1

µ
∇f(Xt)

)
. (2.57b)

For this dynamical system,

Et = eβt (µDh(x
∗,Zt) + f(Xt)− f(x∗)) (2.58)

is a Lyapunov function. We check,

d

dt
Et = (µDh(x

∗,Zt) + f(Xt)− f(x∗))
d

dt
eβt + eβt

d

dt
f(Xt)− eβtµ

〈
d

dt
∇h(Zt),x

∗ − Zt
〉

(2.57b)
= (µDh(x

∗,Zt) + f(Xt)− f(x∗) + 〈∇f(Xt),x
∗ − Zt))

d

dt
eβt

+ eβt
d

dt
f(Xt) + µ 〈∇h(Xt)−∇h(Zt),x

∗ − Zt〉
d

dt
eβt

(2.57a)

≤ (−Df (x
∗,Xt) + µDh(x

∗,Xt))
d

dt
eβt ≤ 0. (2.59)

In third line, we use the Bregman three point identity (A.27) and the inequality follows from
the µ-strong convexity of f with respect to h (A.7).

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 33

Backward-Backward-Euler Written as an algorithm, the implicit Euler scheme applied
to (2.57a) and (2.57b) results in the following updates:

zk+1 = arg min
z∈X

x=
δτk

1+δτk
z+ 1

1+δτk
xk

{
f(x) + µDh(z,x) +

µ

δτk
Dh (z, zk)

}
, (2.60a)

xk+1 =
δτk

1 + δτk
zk+1 +

1

1 + δτk
xk. (2.60b)

Using the following discrete-time Lyapunov function:

Ek = Ak(µDh(x
∗, zk) + f(xk)− f(x∗)), (2.61)

we obtain the bound Ek+1−Ek
δ

≤ 0 for algorithm (2.44). This allows us to conclude a general
O(1/Ak) convergence rate for the implicit scheme (2.44). Indeed, the backward-Euler (1.5)
discretization applied to dynamics (2.60) satisfies the variational conditions

∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk+1)−∇h(zk+1)− 1

µ
∇f(xk+1)

)
,

and
xk+1 − xk

δ
= τk(zk+1 − xk+1),

where τk = Ak+1−Ak
δAk

. Using these variational inequalities, we have the following argument:

Ek+1 − Ek
δ

= (µDh(x
∗, zk+1) + f(xk+1)− f(x∗))αk + Ak

f(xk+1)− f(xk)

δ

− Akµ
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ ε1

k

(2.60a)
= (µDh(x

∗, zk+1) + f(xk+1)− f(x∗) + 〈∇f(xk+1),x∗ − zk+1〉)αk

+ Ak
f(xk+1)− f(xk)

δ
+ µ

〈
∇h(xk+1)−∇h(zk+1)

δ
,x∗ − zk+1

〉
αk + ε1

k

(2.60b)
= (−Df (x

∗,xk+1) + µDh(x
∗,xk+1))αk + ε2

k ≤ 0.

The third line follows from the Bregman three-point identity (A.27) and the last line fol-
lows from the µ-strong convexity of f with respect to h (A.7). The first error scales as
ε1
k = −Akµ

δ
Dh(zk+1, zk) and ε2

k = −Ak
δ
Df (xk,xk+1)− αkµDh(xk+1, zk+1) + ε1

k. We now focus
on analyzing the accelerated gradient family, which can be viewed as a discretization that
contains easier subproblems.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 34

Accelerated gradient descent We study a family of algorithms which can be thought
of as slight variations of the implicit Euler scheme applied to (2.57a) and the explicit Euler
scheme applied to (2.57b)

xk − yk
δ

= τk(zk − yk) (2.62a)

∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk)−∇h(zk)−

1

µ
∇f(xk)

)
(2.62b)

yk+1 = G(x), (2.62c)

where x = (xk, zk+1, yk) is the previous state and τk = Ak+1−Ak
δAk+1

:= αk
Ak+1

. (2.62a) written as

an update, is simply, xk = δτk
1+δτk

zk + 1
1+δτk

yk. Note that when G(x) = xk, we recover classical

discretizations. The additional sequence yk+1 = G(x), however, allows us to obtain better
error bounds using the Lyapunov analysis. To analyze the general algorithm (2.62), we use
the following Lyapunov function:

Ek = Ak(µDh(x
∗, zk) + f(yk)− f(x∗)). (2.63)

We begin with the following proposition, which provides an initial error bound for algo-
rithm (2.62) using the general update (2.62c).

Proposition 2.2.4. Assume the objective function f is µ-uniformly convex with respect
to h (A.5) and h is σ-strongly convex. In addition, assume f is (1/ε)-smooth. Using the
sequences (2.62a) and (2.62b), the following bound holds:

Ek+1 − Ek
δ

≤ (−Df (x
∗,xk) + µDh(x

∗,xk))αk + εk, (2.64)

where the error term has the following form:

εk = Ak+1
f(yk+1)− f(xk)

δ
+ Ak+1

σµ

2δ
‖∇h(zk+1)−∇h(zk)‖2 − Ak+1

σµ

2δ
‖xk − yk‖2

αk (〈∇f(xk), yk − xk〉+ (1/ε)Dh(yk,xk)− µDh(xk, zk))

When h is Euclidean, the error simplifies to the following form

εk+1 = Ak+1

(
f(yk+1)− f(xk)

δ
+ δ

τ2
k

2µ
‖∇f(xk)‖2 + δ

(
τk
2ε
− µ

2τk

)∥∥∥∥xk − ykδ

∥∥∥∥2
)

.

We present a proof of Proposition 2.2.4 in Appendix B.6.3. The result for accelerated
gradient descent can be summed up in the following corollary, which is a consequence of
Proposition 2.2.4.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 35

Corollary 2.2.5. Using the gradient step,

G(x) = xk − ε∇f(xk),

for update (2.62c) results in an error which scales as

εk+1 = Ak+1

(
δτ 2
k

2µ
− ε

2δ

)
‖∇f(xk)‖2 + δAk+1

(
τk
2ε
− µ

2τk

)∥∥∥∥xk − ykδ

∥∥∥∥2

,

when h is Euclidean.

The parameter choice τk =
√
µ, δ =

√
ε so that δτk = 1/

√
κ ensures the error is non-

positive. With this choice, we obtain a linear O(e−
√
µδk) = O(e−k/

√
κ) convergence rate. In

addition, ‖xk−yk√
δ
‖ = O(

√
δ) and εk = O(

√
δ), so we recover the dynamical system (2.57) in

the Euclidean setting and the continuous Lyapunov argument Ėt ≤ 0 in the limit
√
ε = δ → 0.

In Appendix B.6, we provide an analysis of the algorithms that arise from dynamics (2.38)
and (2.40) for the following additional two settings:

• f has (ε, ν)-Hölder continuous gradients (A.15)

• accelerated higher order gradient methods, such as the accelerated cubic-regularized
Newton method [40].

2.2.2 Quasi-monotone methods

For both dynamics (2.41) and (2.57), the full gradients∇f(Xt) can be replaced by directional
subgradients Gf (Xt, Ẋt), and the same functions (2.42) and (2.58) are Lyapunov functions.
However, these Lyapunov functions are not necessarily differentiable in this setting. To adapt
the analysis, we follow the technique of Su, Boyd and Candes [70] and summarize with the
following theorem:

Theorem 2.2.6. Take X(0) = x0, Ẋ(0) = 0 and βt = p log t for p > 0. Given a convex
function f with directional subgradient Gf (x, v), assume that

Ẋt =
d
dt
eβt

eβt
(Zt −Xt) (2.65a)

d

dt
∇h(Zt) = Gf (Xt, Ẋt)

d

dt
eβt , (2.65b)

admits a solution X(t) on [0,α) for some α > 0. Then for any 0 < t < α, Et given by (2.42)
is a Lyapunov function on [0,α). Given a µ-strongly convex function f with directional
subgradients, assume that

Ẋt =
d
dt
eβt

eβt
(Zt −Xt) (2.66a)

d

dt
∇h(Zt) =

d
dt
eβt

eβt

(
∇h(Xt)−∇h(Zt)−

1

µ
Gf (Xt, Ẋt)

)
(2.66b)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 36

QM Dynamics 1: d
dt
∇h(Zt) = −Gf (Xt, Ẋt)

d
dt
eβt , d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt)

Gf (Xt, Ẋt) ∈ ∂f(Xt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh(x
∗,Xt) + eβt(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ Et0

eβt

QM Method 1: ∇h(zk+1)−∇h(zk)

δ
= −αkg(xk+1), xk+1−xk

δ
= τk(zk − xk+1)

g(xk+1) ∈ ∂f(xk+1)

Function Class Lyapunov Function Convergence Rate

Convex
f is Lipschitz; h σ-strongly convex

Ek = Dh(x
∗, zk) + Ak(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ E0+δ

∑k
s=0 ε

1
s

Ak

QM Dynamics 2: d
dt
∇h(Zt) = (∇h(Xt)−∇h(Zt)− 1

µ
Gf (Xt, Ẋt))

d
dt
eβt

eβt
, d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt)

Gf (Xt, Ẋt) ∈ ∂f(Xt)

Function Class Lyapunov Function Convergence Rate

f is µ-uniformly convex w.r.t h Et = eβt (µDh(x
∗,Zt) + f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/eβt)

QM Method 2: ∇h(zk+1)−∇h(zk)

δ
= −τk(∇h(xk+1)−∇h(zk+1)− 1

µ
g(xk+1)) xk+1−xk

δ
= τk(zk − xk+1)

g(xk+1) ∈ ∂f(xk+1)

Function Class Lyapunov Function Convergence Rate

µ-Strongly Convex
f is Lipschitz;, h σ-strongly convex

Ek = Ak(Dh(x
∗, zk) + f(xk)− f(x∗)) f(xk)− f(x∗) ≤ E0+δ

∑k
s=0 ε

2
s

Ak

Table 2.7: Lyapunov functions for the quasi-monotone (QM) subgradient dynamics and
quasi-monotone (QM) subgradient methods. There is a discretization error as we move
to discrete time, and we choose parameters accordingly. Here, eβt = Ak, so that d

dt
eβt ≈

(Ak+1 − Ak)/δ = αk and τk = (Ak+1 − Ak)/δAk. The errors scales as ε1
k = δ

α2
k

2σ
G2 and

ε2
k = δ 1

2σµ

α2
k

Ak
G2. In the limit δ → 0, the discrete-time and continuous-time statements

match.

admits a solution X(t) on [0,α) for some α > 0. Then for any 0 < t < α, Et given by (2.58)
is a Lyapunov function on [0,α).

The proof can be found in Appendix B.6.4. Notice, this theorem does not guarantee the
existence of solutions for (2.65) and (2.66). Let τk = Ak+1−Ak

δAk
:= αk

Ak
and g(x) ∈ ∂f(x). We

analyze the following discretizations

xk+1 − xk
δ

= τk(zk − xk+1) (2.67a)

∇h(zk+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
g(xk+1), (2.67b)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 37

and,

xk+1 − xk
δ

= τk(zk − xk+1) (2.68a)

∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk+1)−∇h(zk+1)− 1

µ
g(xk+1)

)
, (2.68b)

using Lyapunov functions (2.45) and (2.61), respectively. When h is Euclidean, we can
write (2.68b) as the following update:

zk+1 = arg min
z∈X

{
〈g(xk+1), z〉+

µ

2δτk
‖z − z̃k+1‖2

}
.

where z̃k+1 = zk+δτkxk+1

1+δτk
. The update (2.68b) involves optimizing a linear approximation

to the function regularized by a weighted combination of Bregman divergences. The Lya-
punov arguments resemble the continuous-time arguments (2.43) and (2.59), respectively.
For algorithm (2.67), we use Lyapunov function (2.45) to check,

Ek+1 − Ek
δ

=

〈
∇h(zk+1)−∇h(zk)

δ
, zk − x∗

〉
+ (f(xk+1)− f(x∗))αk + Ak

f(xk+1)− f(xk)

δ
+ ε1

k

(2.67b)
= (〈g(xk+1),x∗ − zk〉+ f(xk+1)− f(x∗))αk + Ak

f(xk+1)− f(xk)

δ
+ ε1

k

(2.67a)
= −Dg

f (x
∗,xk+1)αk + ε2

k.

Here, the first error scales as ε1
k = αk〈g(xk+1), zk − zk+1〉 − 1

δ
Dh(zk+1, zk), and the second

as ε2
k = ε1

k − Ak/δD
g
f (xk,xk+1). The σ-strong convexity of h, Young’s inequality, and the

Lipschitz property of f ensures the upper bound ε2
k ≤ δ

α2
k

2σ
‖g(xk)‖2 ≤ δ

α2
k

2σ
G2 := εk+1. This

allows us to conclude the upper bound

f(xk)− f(x∗) ≤
E0 + δ2

∑k
s=0

α2
s

2σ
G2

Ak
;

this bound is the same as the bound obtained for subgradient descent (2.26), but it is
on the iterate xk, and not the time-averaged iterate x̂k. It is maximized with the choice
αK = Dh(x

∗,X0)/G2/
√
K which results in an O(1/

√
K) rate of convergence.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 38

For algorithm (2.68), we check

Ek+1 − Ek
δ

= αk(µDh(x
∗, zk+1) + f(xk+1)− f(x∗)) + Ak

f(xk+1)− f(xk)

δ

− Akµ
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ ε1

k

(2.60a)
= (µDh(x

∗, zk+1) + f(xk+1)− f(x∗) + 〈g(xk+1),x∗ − zk〉)αk

+ Ak
f(xk+1)− f(xk)

δ
+ µ 〈∇h(xk+1)−∇h(zk+1),x∗ − zk+1〉αk + ε2

k

(A.27)
(2.60b)

= (−Dg
f (x
∗,xk+1) + µDh(x

∗,xk+1))αk + ε3
k ≤ 0.

Here, the first error scales as ε1
k = −Akµ

δ
Dh(zk+1, zk), the second scales as ε2

k = αk〈g(xk+1), zk−
zk+1〉 + ε1

k and the third as ε3
k = ε2

k −
Ak
δ
Dg
f (xk,xk+1) ≤ ε2

k. The σ-strong convexity
of h, Young’s inequality, and the Lipschitz property of f ensures the upper bound ε2

k ≤
δ

α2
k

2µAkσ
‖g(xk)‖2 ≤ δ

α2
k

2µAkσ
G2. This allows us to conclude the upper bound

f(xk)− f(x∗) ≤
E0 + δ2

∑k
s=0

α2
s

2µσAs
G2

Ak
;

this bound is the same as the bound obtained for the mirror subgradient method (2.24) (it
is optimal), but here the convergence rate is on the iterate xk, and not the time-averaged
iterate x̂k. It is maximized by the sequence Ak = (k + 1)k, which results in the convergence
rate O(1/k) convergence rate.

2.2.3 Equivalence between estimate sequences and Lyapunov
functions

In this section, we connect our Lyapunov framework directly to estimate sequences. We
derive continuous-time estimate sequences directly from our Lyapunov function and demon-
strate how these two techniques are equivalent.

Estimate sequences We provide a brief review of the technique of estimate sequences [43].
We begin with the following definition.

Definition 2.2.7. [43, p. 2.2.1] A pair of sequences {φk(x)}∞k=1 and {Ak}∞k=0 Ak ≥ 1 is
called an estimate sequence of function f(x) if

A−1
k → 0,

and, for any x ∈ Rn and for all k ≥ 0, we have

φk(x) ≤
(

1− A−1
k

)
f(x) + A−1

k φ0(x). (2.69)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 39

The following lemma, due to Nesterov, explains why estimate sequences are useful.

Lemma 2.2.8. [43, p. 2.2.1] If for some sequence {xk}k≥0 we have

f(xk) ≤ φ∗k ≡ min
x∈X

φk(x), (2.70)

then f(xk)− f(x∗) ≤ A−1
k [φ0(x∗)− f(x∗)].

The proof is straightforward:

f(xk)
(2.70)

≤ φ∗k ≡ min
x∈X

φk(x)
(2.69)

≤ min
x∈X

[(
1−A−1k

)
f(x) +A−1k φ0(x)

]
≤
(

1−A−1k
)
f(x∗) +A−1k φ0(x

∗).

Rearranging gives the desired inequality. Notice that this definition is not constructive.
Finding sequences which satisfy these conditions is a non-trivial task. The next proposition,
formalized by Baes in [6] as an extension of Nesterov’s Lemma 2.2.2 [43], provides guidance
for constructing estimate sequences. This construction is used in [43, 45, 40, 6, 47, 41],
and is, to the best of our knowledge, the only known formal way to construct an estimate
sequence. We will see below that this particular class of estimate sequences can be turned
into our Lyapunov functions with a few algebraic manipulations (and vice versa).

Proposition 2.2.9. [6, p. 2.2] Let φ0 : X → R be a convex function such that minx∈X φ0(x) ≥
f ∗. Suppose also that we have a sequence {fk}k≥0 of functions from X to R that underesti-
mates f :

fk(x) ≤ f(x) for all x ∈ X and all k ≥ 0. (2.71)

Define recursively A0 = 1, τk = Ak+1−Ak
Ak+1

:= αk
Ak

, and

φk+1(x) := (1− τk)φk(x) + τkfk(x) = A−1
k+1

(
A0φ0(x) +

k∑
s=0

asfs(x)

)
, (2.72)

for all k ≥ 0. Then ({φk}k≥0, {Ak}k≥0) is an estimate sequence.

From (2.70) and (2.72), we observe that the following invariant:

Ak+1f(xk+1) ≤ min
x
Ak+1φk+1(x) = min

x

k∑
s=0

αsfs(x) + A0φ0(x), (2.73)

is maintained. In [47, 41], this technique was extended to incorporate an error term {ε̃k}∞k=1,

φk+1(x)−A−1k+1ε̃k+1 := (1− τk)
(
φk(x)−A−1k ε̃k

)
+ τkfk(x) = A−1k+1

(
A0(φ0(x)− ε̃0) +

k∑
s=0

asfs(x)
)

,

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 40

where εk ≥ 0,∀k. Rearranging, we have the following bound:

Ak+1f(xk+1) ≤ min
x
Ak+1φk+1(x) = min

x

k∑
s=0

αsfs(x) + A0

(
φ0(x)− A−1

0 ε̃0

)
+ ε̃k+1.

Notice that an argument analogous to that of Lemma 2.2.8 holds:

Ak+1f(xk+1) ≤
k∑
s=0

αsfs(x
∗) + A0(φ0(x∗)− ε̃0) + ε̃k+1

(2.71)

≤
k∑
s=0

αsf(x∗) + A0φ0(x∗) + ε̃k+1

= Ak+1f(x∗) + A0φ0(x∗) + ε̃k+1.

Rearranging, we obtain the desired bound,

f(xk+1)− f(x∗) ≤ A0φ0(x∗) + ε̃k+1

Ak+1

.

Thus, we simply need to choose our sequences {Ak,φk, ε̃k}∞k=1 to ensure ε̃k+1/Ak+1 → 0. The
following table illustrates the choices of φk(x) and ε̃k for the four methods discussed earlier.

Algorithm fs(x) φk(x) ε̃k+1

Quasi-Monotone Subgradient Method linear 1
Ak
Dh(x, zk) + f(xk)

1
2

∑k
s=0

(As+1−As)2
2

G2

Accelerated Gradient Method
(Weakly Convex) linear 1

Ak
Dh(x, zk) + f(xk) 0

Accelerated Gradient Method
(Strongly Convex) quadratic f(xk) + µ

2
‖x− zk‖2 0

Conditional Gradient Method linear f(xk)
1
2ε

∑k
s=0

(As+1−As)2
As+1

diam(X)2

Table 2.8: Choices of estimate sequences for various algorithms

In Table 2.8 “linear” is defined as fs(x) = f(xs) + 〈∇f(xs),x − xs〉, and “quadratic” is
defined as fs(x) = f(xs)+ 〈∇f(xs),x−xs〉+ µ

2
‖x−xs‖2. The estimate-sequence argument is

inductive; one must know the three sequences {εk,Ak,φk(x)} a priori in order to check the
invariants hold. This aspect of the estimate-sequence technique has made it hard to discern
its structure and scope.

Equivalence to Lyapunov functions We now demonstrate an equivalence between these
two frameworks. The continuous-time view shows that the errors in both the Lyapunov
function and estimate sequences are due to discretization errors. We demonstrate how this
works for accelerated methods, and defer the proofs for the other algorithms discussed earlier
in the chapter to Appendix B.7.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 41

Equivalence in discrete time. The discrete-time estimate sequence (2.72) for accelerated
gradient descent can be written:

φk+1(x) := f(xk+1) + A−1
k+1Dh(x, zk+1)

(2.72)
= (1− τk)φk(x) + τkfk(x)

Table 2.8
=

(
1− A−1

k+1αk

)(
f(xk) + A−1

k Dh(x, zk)
)

+ A−1
k+1αkfk(x).

Multiplying through by Ak+1, we have the following argument, which follows directly from
our definitions:

Ak+1f(xk+1) +Dh(x, zk+1) = (Ak+1 − αk)
(
f(xk) + A−1

k Dh(x, zk)
)

+ αkfk(x)

= Ak

(
f(xk) + A−1

k Dh(x, zk)
)

+ (Ak+1 − Ak)fk(x)

≤ Akf(xk) +Dh(x, zk) + (Ak+1 − Ak)f(x).

The last inequality follows from definition (2.71). Rearranging, we obtain the inequality
Ek+1 ≤ Ek for our Lyapunov function (2.48). Going the other direction, from our Lyapunov
analysis we can derive the following bound:

Ek ≤ E0

Ak(f(xk)− f(x)) +Dh(x, zk) ≤ A0(f(x0)− f(x)) +Dh(x, z0)

Ak

(
f(xk)− A−1

k Dh(x, zk)
)
≤ (Ak − A0)f(x) + A0

(
f(x0) + A−1

0 Dh(x
∗, z0)

)
Akφk(x) ≤ (Ak − A0)f(x) + A0φ0(x). (2.74)

Rearranging, we obtain the estimate sequence (2.69), with A0 = 1:

φk(x) ≤
(

1− A−1
k A0

)
f(x) + A−1

k A0φ0(x) =
(

1− A−1
k

)
f(x) + A−1

k φ0(x).

Writing Et ≤ E0, one can simply rearrange terms to extract an estimate sequence:

f(Xt) + e−βtDh (x,Zt) ≤
(

1− e−βteβ0
)
f(x∗) + e−βteβ0

(
f(X0) + e−β0Dh (x,Z0)

)
.

Comparing this to (2.74), matching terms allows us to extract the continuous-time estimate
sequence {φt(x), eβt}, where φt(x) = f(Xt) + e−βtDh(x,Zt).

2.2.4 Dual averaging with momentum

We summarize the results presented in this section in Table 2.9;

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 42

DA Dynamic with momentum: d
dt
Yt = −τ̇t∇f(Xt), Yt = γt∇h(Zt)

d
dt
Xt = τ̇t

τt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

Convex Et = γtDh(x
∗,Zt) + τt(f(Xs)− f(x∗)) f(Xt)− f(x∗) ≤ γtDh(x∗,X0)

τt

DA Algorithm with momentum: yk+1−yk
δ

= −αkg(xk), yk = γk∇h(zk)
xk+1−xk

δ
= Ak+1−Ak

Akδ
(zk − xk+1)

Function Class Lyapunov Function Convergence Rate

Convex
f is Lipschitz

Ek = γkDh(x
∗, zk) + Ak(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ γkDh(x∗,z0)+δ

∑k
s=0 ε

1
s

Ak

Proximal DA Algorithm: yk+1−yk
δ

= −αkg(xk+1), yk = γk∇h(zk)
xk+1−xk

δ
= Ak+1−Ak

Akδ
(zk+1 − xk+1)

Function Class Lyapunov Function Convergence Rate

Convex
δ > 0

Ek = γkDh(x
∗,xk) + Ak(f(xk)− f(x∗)) f(xk)− f(x∗) ≤ γkDh(x∗,x0)

Ak

Table 2.9: Lyapunov functions for the dual averaging dynamic with momentum, dual averag-
ing algorithm with momentum, and the backward-Euler approximation of the dual averaging

dynamics with momentum; Here, g(x) ∈ ∂f(x), αk = Ak+1−Ak
δ

, and ε1
k = δ 1

2σ

α2
k

γk
G2, where

‖∂f(x)‖2
∗ ≤ G2. In the limit δ → 0, the discrete-time and continuous-time statements match.

We adopt the setting of dual averaging, where we have a pre-establish prox function h
with prox-center X0. When momentum is added to the dual averaging dynamic,

d

dt
Yt = −∇f(Xt)

d

dt
τt (2.75a)

Yt = γt∇h (Zt) (2.75b)

d

dt
Xt =

τ̇t
τt

(Zt −Xt), (2.75c)

the following function,

Et = γtDh(x
∗,Zt) + τt(f(Xt) + f(x∗)), (2.76)

is a natural candidate for a Lyapunov function. We check,

d

dt
Et = Dh(x

∗,Zt)
d

dt
γt − γt

〈
d

dt
∇h(Zt),x

∗ − Zt
〉

+ τ̇t(f(Xt)− f(x∗)) + τt
d

dt
f(Xt)

(2.75a)
= (h(x∗)− h(Zt))

d

dt
γt −

〈
d

dt
Yt,x

∗ − Zt
〉

+ τ̇t(f(Xt)− f(x∗)) + τt

〈
∇f(Xt),

d

dt
Xt

〉
(2.75b)
(2.75c)

= −τ̇tDf (x
∗,Xt) + γ̇t(h(x∗)− h(Zt)) ≤ γ̇tDh(x

∗,Z0).

The last inequality uses the fact that h(x) = Dh(x,Z0) ≥ 0, ∀x ∈ X as well as the definition
of a prox-center h(x∗) = Dh(x

∗,Z0). From the bound Et ≤ E0 + γtDh(x
∗,Z0)− γ0Dh(x

∗,Z0),

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 43

we obtain the convergence rate2

f(Xt)− f(x∗) ≤ E0 + γtDh(x
∗,Z0)

τt

A similar guarantee can be obtained by the algorithm obtained from discretizing the dynam-
ics (2.75).

Dual Averaging subgradient method with momentum Make the identifications τt =
Ak, τ̇t = αk = Ak+1−Ak

δ
and let τk = Ak+1−Ak

Akδ
. The forward-Euler method (1.6) applied to

the updates (2.75a) and the backward-Euler method (1.5) to (2.75c) results in the quasi-
monotone method,

xk+1 − xk
δ

= τk(zk − xk+1) (2.77a)

zk+1 ∈ arg min
z∈X

{
k∑
s=0

αs〈g(xs+1), z〉+
1

γkδ
Dh(z, zk)

}
, (2.77b)

where g(xk+1) ∈ ∂f(xk+1). The variational condition for (2.77b) is given by

γk+1∇h(zk+1)− γk∇h(zk)

δ
= −αkg(xk+1).

The following function,

Ek = γkDh(x
∗, zk) + Ak(f(xk)− f(x∗)),

is a Lyapunov function. We check,

Ek+1 − Ek
δ

= Dh(x
∗,xk)

γk+1 − γk
δ

− γk
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ αk(f(xk+1)− f(x∗)) + Ak

f(xk+1)− f(xk)

δ
+ ε1

k

(2.77b)
= −αkDg

f (x
∗,xk) +

γk+1 − γk
δ

(h(x∗)− h(xk+1)) + ε3
k ≤

γk+1 − γk
δ

Dh(x∗, z0) + ε3
k.

where the first error scales as ε1
k = −γk

δ
Dh(zk+1, zk), the second as ε2

k = αk〈g(xk+1),xk+1 −
zk+1〉 + ε1

k and ε2
k = Ak

f(xk+1)−f(xk)

δ
+ ε3

k. Using the convexity of f , we can bound the error

as follows ε3
k ≤ Ak〈g(xk+1), xk+1−xk

δ
〉 + ε1

k = αk〈g(xk+1), zk − zk+1〉 − γk
δ
Dh(zk+1, zk). Using

the σ-strong convexity of h and Young’s inequality and the assumption that f is Lipschitz,

‖∂f(x)‖2
∗ ≤ G2, we obtain the upper bounds ε3

k ≤
α2
kδ

2σγk
G2. By summing the Lyapunov

2we can also write the numerator of the convergence bound as the smaller quantity, τ0(f(X0)− f(x∗)) +
γtDh(x∗,Z0)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 44

function we obtain the statement, Ek ≤ E0 + (γk− γ0)Dh(x
∗, z0) + δ

∑k
s=0 ε

3
s, from which we

obtain the convergence bound,

f(xk)− f(x∗) ≤
E0 + γkDh(x

∗, z0) + δ2 1
2σ

∑k
s=0

α2
s

γs
G2

Ak
.

If we assume with out loss of generality σ = 1, and choose Ak = k, δ = 1 and γk =
G2

Dh(x∗,x0)

√
k + 1, we obtain O(1/

√
k) convergence rate [47]. This bound matches the oracle

function lower bound for algorithms designed using only subgradients of convex functions
(i.e. is provably optimal). Furthermore, as δ → 0, the error ε2

k → 0 and we recover the result
for the continuous time dynamics.

2.2.5 Accelerated Proximal Gradient Dynamics

We summarize several of the results presented in this section in Table 2.10.

Prox AMD Dynamic 1 d
dt
∇h(Zt) = −(∇f2(Xt) +∇f1(Zt))

d
dt
eβt d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh(x
∗,Zt) + eβt(f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/eβt)

Prox AMD Algorithm 1 ∇h(zk+1)−∇h(zk)

δ
= −(∇f2(xk+1)− g(zk+1))αk

xk+1−yk
δ

= τk(zk − yk)

g(z) ∈ ∂f1(z), ‖yk − xk‖ = O(δ), δ =
√
εσ yk+1 = yk + δτk(zk+1 − yk)

Function Class Lyapunov Function Convergence Rate

Convex
f is (1/ε)-smooth, h is σ-strongly convex

Ek = Dh(x
∗, zk) + Ak(f(yk)− f(x∗)) f(yk)− f(x∗) ≤ O(1/Ak)

Prox AMD Dynamic 2 d
dt
∇h(Zt) =

d
dt
eβt

eβt

(
∇h(Xt)−∇h(Zt)− 1

µ
(∇f2(Xt) +∇f1(Zt))

)
d
dt
Xt =

d
dt
eβt

eβt
(Zt −Xt)

Function Class Lyapunov Function Convergence Rate

f is µ-uniformly convex w.r.t h Et = eβt (µDh(x
∗,Zt) + f(Xt)− f(x∗)) f(Xt)− f(x∗) ≤ O(1/eβt)

Prox AMD Algorithm 2 ∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk)−∇h(zk)− 1

µ
(∇f(xk) + g(zk+1))

)
xk−yk
δ

= τk(zk − xk)

g(z) ∈ ∂f1(z), ‖yk+1 − xk‖ = O(δ) , δ =
√
ε yk+1 = yk + δτk(zk+1 − yk)

Function Class Lyapunov Function Convergence Rate

f is µ-uniformly convex w.r.t h
f is (1/ε)-smooth, h is Euclidean

Ek = Ak(Dh(x
∗, zk) + f(yk)− f(x∗)) f(yk)− f(x∗) ≤ O(1/Ak)

Table 2.10: Lyapunov functions for proximal accelerated mirror descent (AMD) dynamics,
proximal accelerated mirror descent (AMD) algorithms . For proximal AMD algorithm 1

we take Ak+1 = σε(k+1)(k+2)
4

, αk = Ak+1−Ak
δ

=
√
σε(k+2)

2
, δ =

√
εσ and for proximal AMD

algorithm 2, we take τk = Ak+1−Ak
δAk+1

=
√
µ, δ =

√
ε.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 45

Convex Functions Define f = f1 + f2 and assume f1, f2 are convex. For the following
dynamics,

d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt) (2.78a)

d

dt
∇h(Zt) = −(∇f2(Xt) +∇f1(Zt))

d

dt
eβt , (2.78b)

the same function (2.42),

Et = Dh(x
∗,Zt) + eβt(f(Xt)− f(x∗)),

is a Lyapunov function for (2.78).
We check,

d

dt
Et = −

〈
d

dt
∇h (Zt) ,x∗ − Zt

〉
+ (f(Xt)− f(x∗))

d

dt
eβt + eβt

d

dt
f(Xt)

(2.78b)
= (−Df2(x

∗,Xt)−Df1(x
∗,Zt) + f1(Xt)− f1(Zt) + 〈∇f2(Xt),Xt − Zt〉)

d

dt
eβt

+ eβt
d

dt
f(Xt)

(2.78a)

≤ −(Df2(x
∗,Xt) +Df1(x

∗,Zt))
d

dt
eβt ≤ 0

where the second line follows from the dynamical system (2.78a) and (2.78b), and the

inequalities follows from the convexity of f1 and f2, where we plug in eβt d
dt
f(Xt)

(2.78a)
=

〈∇f(Xt),Zt − Xt〉 ddte
βt . This allows us to conclude an O(e−βt) convergence rate for the

function value

f(Xt)− f(x∗) ≤ E0

eβt
.

Proximal AGD The backward-Euler discretization of (2.78b) provides us with a forward-
backward mapping (B.8)

zk+1 = arg min
z∈X

{
f1(z) + 〈∇f2(xk+1), z〉+

1

αk
Dh(z, zk)

}
. (2.79)

Its variational condition is given by

∇h(zk+1)−∇h(zk)

δ
= −Ak+1 − Ak

δ
(g(zk+1) +∇f2(xk+1)),

where g(zk+1) ∈ ∂f1(zk+1) is an element of the subgradient. We combine this with the
forward-Euler method applied to (2.78a), where we have replaced the xk with an iterate yk,
where yk+1 = G(x), just as in the general AGD setting,

xk+1 − yk
δ

= τk(zk − yk). (2.80)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 46

Here, τk = Ak+1−Ak
δAk+1

= αk
Ak+1

. We consider maps such that ‖xk − yk‖ = O(δ) and x =

(xk+1, zk+1, yk) is the previous state. In particular, we choose

yk+1 − yk
δ

= τk(zk+1 − yk). (2.81)

For this analysis we will need to assume ϕ is (1/ε)-smooth. Using the same Lyapunov
function (2.48) as the one used for AGD,

Ek = Dh(x
∗, zk) + Ak(f(yk)− f(x∗)),

we check,

Ek+1 − Ek
δ

= −
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+
Ak+1 − Ak

δ
(f(yk+1)− f(x∗))

+ Ak
f(yk+1)− f(yk)

δ
+ ε1

k

= (−Df1(x
∗,xk+1)−Dg

f2
(x∗, zk+1) + f1(yk)− f1(zk+1) + 〈∇f2(xk+1),xk+1 − zk〉)αk

+ Ak
f(yk+1)− f(yk)

δ
+ ε2

k

= −(Df1(x
∗,xk+1) +Dg

f2
(x∗, zk+1))αk + ε3

k ≤ ε3
k.

We can combine (2.81) and (2.80) to obtain the identity xk+1−yk+1

δ
= τk(zk − zk+1) and

αk(xk+1 − zk) = Ak
yk−xk+1

δ
. These identities will be used to simplify the discretization

errors.
Here, the error ε1

k = 1
δ
Dh(zk+1, zk), and εk2 = εk1 +αk〈∇f2(xk+1), zk−zk+1〉+αk(f2(yk+1)−

f2(xk+1)) = εk1 +Ak+1〈∇f2(xk+1), xk+1−yk+1

δ
〉+αk(f2(yk+1)−f2(xk+1)) using the identity. For

the last error, we have ε3
k = ε2

k +Ak
〈
∇f2(xk+1), yk−xk+1

δ

〉
+Ak

f2(yk+1)−f2(yk)

δ
+Ak+1f1(yk+1)−

Akf1(yk) − αkf1(zk+1) ≤ ε2
k + Ak

f2(yk+1)−f2(xk+1)

δ
+ Ak+1f1(yk+1) − Akf1(yk) − αkf1(zk+1),

where the upper bounded follows using convexity. First, we notice the convexity of f1 gives
the identity Ak+1f1((1 − δτk)yk + δτkzk+1) ≤ Ak+1(1 − δτk)f1(yk) + Ak+1τkf1(zk+1) using

Jensen’s (A.4). Therefore ε3
k ≤ ε2

k + Ak
f2(yk+1)−f2(xk+1)

δ
. Next, we use the σ-strong convexity

to upper bound the error as follows, ε3
k ≤ Ak

f2(yk+1)−f2(xk+1)

δ
+ αk(f2(yk+1) − f2(xk+1)) −

σ
2δ
‖zk+1−zk‖2 +Ak+1〈∇f2(xk+1), xk+1−yk+1

δ
〉. Using the (1/ε)-smoothness of f2, we obtain the

upper bound ε3
k ≤ − σ

2δ
‖zk+1−zk‖2 +δAk+1

1
2ε
‖yk+1−xk+1

δ
‖2 = −

(
σ
2δ
− δAk+1τ

2
k

1
2ε

)
‖zk+1−zk‖2.

Making the same parameter as AGD δ =
√
σε and Ak = σε(k+1)(k+2)

4
αk =

√
σε(k+2)

2
, we can

ensure the error ε3
k is nonpositive.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 47

Strongly Convex Functions Define f = f1 + f2 and assume f2 is µ-strongly convex and
f1 is convex. For the dynamics

d

dt
Xt =

d
dt
eβt

eβt
(Zt −Xt) (2.82a)

d

dt
∇h(Zt) =

d
dt
eβt

eβt
(∇h(Xt)−∇h(Zt)− (1/µ)(∇f2(Xt) +∇f1(Zt))) , (2.82b)

the same function (2.16),

Et = eβt(µDh(x
∗,Zt) + f(Xt)− f(x∗)),

is a Lyapunov function.
We check,

d

dt
Et = (µDh(x

∗,Zt) + f(Xt)− f(x∗))
d

dt
eβt − µeβt

〈
d

dt
∇h(Zt),x

∗ − Zt
〉

+ eβt
d

dt
f(Xt)

(2.82b)
= (−Df1(x

∗,Zt)−Df2(x
∗,Xt) + µDh(x

∗,Zt)− µ〈∇h(Xt)−∇h(Zt),x
∗ − Zt〉)

d

dt
eβt

+ (〈∇f2(Xt),Xt − Zt〉+ f1(Xt)− f1(Zt))
d

dt
eβt + eβt〈∇f(Xt), Ẋ〉

(A.27)
= (−Df1(x

∗,Zt)−Df2(x
∗,Xt) + µDh(x

∗,Xt)− µDh(Zt,Xt))
d

dt
eβt

(〈∇f2(Xt),Xt − Zt〉+ f1(Xt)− f1(Zt))
d

dt
eβt + eβt〈∇f(Xt), Ẋ〉

(2.82a)

≤ (−Df2(x
∗,Zt)−Df1(x

∗,Xt) + µDh(x
∗,Xt))

d

dt
eβt ≤ 0.

Here, the first equality uses the Bregman three-point identity (A.27). The first inequality
follows from the convexity of f1. The last inequality follows from using the strong convexity
of f2.

Accelerated Proximal Gradient Descent We analyze the setting h(x) = 1
2
‖x‖2. To

discretize the dynamics (2.82b), we split the vector field (2.82b) into two components –

v1(x, z, t) =
d
dt
eβt

eβt
(∇h(Xt) − ∇h(Zt) − (1/µ)∇f2(Xt)) and v2(x, z, t) = −

d
dt
eβt

µeβt
∇f1(Zt) and

apply the forward-Euler scheme to v2(x, z, t) and the backward-Euler scheme to v1(x, z, t),

with the same identification,
d
dt
eβt

eβt
= Ak+1−Ak

δAk+1
= τk for both vector fields.3 This results in the

3While using the same identification of β̇t for both vector fields is problematic – since one is being
evaluated forward in time and the other backward in time – the error bounds only scale sensibly in the
setting where β̇t ≤

√
µ is a constant.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 48

algorithm,

zk+1 = arg min
z

{
f1(z) + 〈∇f2(xk), z〉+

µ

2δτk
‖z − (1− δτk)zk − δτkxk‖2

}
(2.83a)

yk+1 = G(x) (2.83b)

xk+1 − yk+1

δ
= τk+1(zk+1 − xk+1), (2.83c)

which satisfies the variational condition zk+1−zk
δ

= τk

(
xk − zk − 1

µ
∇f2(xk)− 1

µ
g(zk+1)

)
, where

g(x) ∈ ∂f1(x). We can combine this update with the backward-Euler method applied
to (2.82a), where we have replaced the iterate xk with an iterate yk+1, just as in the AGD
setting. Using the Lyapunov function

Ek+1 = Ak

(µ
2
‖x∗ − zk‖2 + f(yk)− f(x∗)

)
we check,

Ek+1 − Ek
δ

=
(µ

2
‖x∗ − zk‖2 + f(xk)− f(x∗)

) Ak+1 − Ak
δ

− µAk+1

〈
zk+1 − zk

δ
,x∗ − zk+1

〉
+ Ak+1

f(yk+1)− f(yk)

δ
+ ε1

k

= (−DG
f1

(x∗, zk+1)−Df2(x
∗,xk) +

µ

2
‖x∗ − zk‖2 − µ〈xk − zk,x∗ − zk〉)

Ak+1 − Ak
δ

+ (〈∇f2(xk),xk − zk+1〉+ f1(yk)− f1(zk+1)) + f2(yk)− f2(xk))
Ak+1 − Ak

δ

+ Ak+1
f(yk+1)− f(yk)

δ
+ ε2

k

(A.27)
=

(
−DG

f1
(x∗, zk+1)−Df2(x

∗,xk) +
µ

2
‖x∗ − xk‖2 − µ

2
‖xk − zk‖2

) Ak+1 − Ak
δ

+ (〈∇f2(xk),xk − zk〉+ f1(yk)− f1(zk+1)) + f2(yk)− f2(xk))
Ak+1 − Ak

δ

+ Ak+1
f(yk+1)− f(yk)

δ
+ ε2

k

= (−Df2(x
∗, zk+1)−Df1(x

∗,xk) +
µ

2
‖x∗ − xk‖2)

Ak+1 − Ak
δ

+ ε3
k.

Here, the errors scale as ε1
k = −δAk+1

µ
2
‖ zk+1−zk

δ
‖2, ε2

k = ε1
k+µαk〈xk−zk, zk−zk+1〉, and ε3

k =

ε2
k+αk(〈∇f2(xk),xk−zk+1〉+f1(yk)−f1(zk+1)+f2(yk)−f2(xk))+Ak+1

f(yk+1)−f(yk)

δ
. Using the

convexity of f1, we conclude Ak+1f1(yk+1)−Akf1(yk)+αkf1(zk+1) ≤ 0. Using the strong con-
vexity and smoothness of f2, we upper-bound the error by ε3

k ≤ ε2
k+αk(〈∇f2(xk),xk−zk+1〉+

f2(yk)−f2(xk))+Ak+1〈∇f2(xk),
yk−yk+1

δ
〉+ Ak+1

2ε
1
δ
‖xk−yk+1‖2− Ak+1µ

2δ
‖xk−yk‖2. Take yk+1 =

G(x) = δτkzk+1 +(1−δτk)yk. With this choice, Ak+1〈∇f2(xk),
yk−yk+1

δ
〉 = αk〈∇f2(xk), zk+1−

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 49

yk〉. Plugging this in the error, we have ε3
k ≤ ε2

k +αk(f2(yk)− f2(xk) + 〈∇f2(xk),xk − yk〉) +
δAk+1

2ε
‖xk−yk+1

δ
‖2 − δAk+1µ

2
‖xk−yk

δ
‖2. Using convexity, of f2, we have the final error bound

ε3
k ≤ −δAk+1

µ
2
‖ zk+1−zk

δ
‖2 +µαk〈xk − zk, zk − zk+1〉+ δAk+1

2ε
‖xk−yk+1

δ
‖2− δAk+1µ

2
‖xk−yk

δ
‖2. The

final step involves using the identity xk − yk+1 = δτk(τk(xk − zk) − (zk−zk+1

δ
)). This allows

us to upper bound the error by ε3
k ≤ −δ(Ak+1

µ
2
‖ zk+1−zk

δ
‖2 + µAk+1〈τk(xk − zk), zk−zk+1

δ
〉 +

Ak+1τ
2
kδ

2

2ε
‖τk(xk − zk) − (zk − zk+1)‖2 − Ak+1µ

2
‖τk(xk − zk)‖2). Taking δ =

√
ε and τk =

√
µ,

we can check the error ε3
k is non-positive by completing the square.

2.3 Summary

The connection between algorithms and dynamical systems bring immense structure to the
techniques used to obtain upper bound in optimization; indeed, it has been the primary
inspiration to a growing number of works in optimization [13, 74, 52] which propose new
techniques. We provide a few examples of other places where we think it can be used below,
as well as summarize the Lyapunov functions we have presented in Table 2.11.

2.3.1 Additional Lyapunov Arguments

There are several other methods which fit into this framework that we did not discuss. We
provide a high-level summary of some examples, leaving details to the Appendix, or as future
work.

• Conjugate Gradient Method: In [24], Karimi and Vavasis showed that the Lya-
punov function (2.63) can be used to analyze the conjugate gradient method (CG). In
future work, if possible, it would be interesting to develop a dynamcial perspective for
CG.

• Adagrad with Momentum: The Lyapunov framework described in this thesis can
be applied to obtain new analyses of adaptive methods, such as Adagrad [16]. Let
αk = Ak+1−Ak

δ
and g(x) ∈ ∂f(x) be an element of the subdifferential of f at x. Adagrad,

xk+1 − xk
δ

= −αkH−1
k g(xk),

can be analyzed using the Lyapunov function,

Ek =
1

2
‖x∗ − xk‖2

Hk
+

k−1∑
s=0

(f(xs)− f(x∗))
As+1 − As

δ
δ.

Here, ‖x‖2
Hk

= 〈x,Hkx〉, 0 ≺ H0, and 0 � Hk+1−Hk
δ

.4 From the Lyapunov property, we

obtain the upper bound f(x̂k)− f(x∗) ≤ O(1/
√
k). A natural way to add momentum

4Typically, we choose Hk =
(∑k

i=1 g(xi) ◦ g(xi)
)1/2

or Hk = diag

((∑k
i=1 g(xi) ◦ g(xi)

)1/2)
, where “◦”

denotes the entrywise Hadamard product.

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 50

Et = τt(f(Xt)− f(x∗)) Ek = Ak(f(xk)− f(x∗))

Dynamic Algorithm Problem Class

Gradient Flow Gradient Descent f is differentiable, (1/δ)-smooth, τt = e2µt

f satisfies PL condition with parameter µ

Frank Wolfe Frank Wolfe f is (1/δ)-smooth

X ⊆ Rd is a convex and compact

Et = τtDh(x
∗,Xt) Ek = AkDh(x

∗,xk)

Dynamic Algorithm Problem Class

Mirror Descent Dynamic Mirror Descent f is (1/δ)-smooth

Gradient Descent Dynamic Gradient Descent f is (1/δ)-smooth

Et = Dh(x
∗,Xt) + τt(f(Xk)− f(x∗)) Ek = Dh(x

∗,xk) + Ak(f(xk)− f(x∗))

Dynamic Algorithm Problem Class

Mirror Descent Dynamic Mirror Descent f is (1/δ)-smooth
τt = t, Ak = δk

Et = γtDh(x
∗,Xt) + c

∫ t
0
(f(Xs)− f(x∗))dτs Ek = γkDh(x

∗,xk) + c
∑k−1

s=0(f(xs)− f(x∗))As+1−As
δ

δ

Dynamic Algorithm Problem Class

Mirror Descent Dynamic Mirror Descent ,Mirror Prox f is Lipschitz, γt ≡ γk ≡ 1, c = 1

Mirror Descent Dynamic Mirror Descent
f is Lipschitz, µ-strongly convex

γt ≡ τt, γk = Ak, c = 1
µ

Dual Averaging Dynamic Dual Averaging Algorithm f is Lipschitz, c = 1

Et = γtDh(x
∗,Zt) + τt(f(Xt)− f(x∗)) Ek = γkDh(x

∗, zk) + Ak(f(xk)− f(x∗))

Dynamic Algorithm Problem Class

Accelerated Gradient Descent Dynamic Accelerated Gradient descent/Mirror Prox f is (1/δ)-smooth, γt ≡ γk ≡ 1

Quasi-monotone Subgradient Dynamic Quasi-monotone subgradient descent f is Lipschitz, γt ≡ γk ≡ 1

Dual Averaging with Momentum Dynamic Dual Averaging with Momentum Dynamic f is Lipschitz

Et = τt(µDh(x
∗,Zt) + f(Xt)− f(x∗)) Ek = Ak(µDh(x

∗, zk) + f(xk)− f(x∗))

Dynamic Algorithm Problem Class

Accelerated Gradient Descent Dynamic Accelerated Gradient descent f is (1/δ)-smooth
f is µ-strongly convex

Accelerated Proximal Dynamic Accelerated Proximal descent f is (1/δ)-smooth
f is µ-strongly convex

Table 2.11: List of Lyapunov Arguments in Optimization presented in this thesis (so far).

to Adagrad is via the following averaging step

xk+1 − xk
δ

= τk(zk − xk+1) (2.84a)

zk+1 − zk
δ

= −αkH−1
k g(xk+1), (2.84b)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 51

where τk = αk
Ak

= Ak+1−Ak
δAk

. Using the Lyapunov framework, we can analyze algo-

rithm (2.84) using the function

Ek =
1

2
‖x∗ − zk‖2

Hk
+ Ak(f(xk)− f(x∗)). (2.85)

A demonstration of this result can be found Appendix B.7.4. This analysis allows us to
conclude the bound f(xk)− f(x∗) ≤ O(1/

√
k) for (2.84), which has a matching lower

bound. Such a algorithm might be useful if we do not care about the regret, but the.

• Geodesically Convex Functions Geodesic spaces are metric spaces (X , d) where
there is a path, called a geodesic, connecting every two points x, y ∈ X . Geodesic
(strong) convexity generalizes the idea of (strong) convexity to functions defined on
these more general spaces. The length of the paths between two points x, y is equivalent
to the geodesic distance between them d(x, y) up to a small precision parameter ε.
Zhang and Sra [79] showed that if X is an Alexandrov space (has sectional curvature
bounded from below), then there is a natural generalization of the Bregman three-point
identity (A.27) to geodesic spaces. In particular, for any xk+1,xk,x ∈ X , we have

d(x,xk+1)− d(x,xk)

δ
=

〈
1

δ
logxk(xk+1), logxs(x)

〉
+
ζ(κ, d(xk,x))

2δ
‖ logxk(xk+1)‖2

where log = exp−1 : X → TxX is the inverse of the exponential map and ζ(κ, d(xk,x)) >
0 is a curvature dependent quantity [79, Cor. 8]. Subsequently, it is easy to check that

Ek = d(x∗,xk) + δk(f(xk)− f(x∗))

is a Lyapunov function for gradient descent 1
δ

logxk(xk+1) = −gk when f is a (1/δ)-
geodesically smooth function and gk is the gradient of f at xk. In fact, the results
contained in Tables 2.1 and 2.3 can be adapted to this more general setting. Recently,
there has been some work extending the idea of averaging to geodesic spaces [34]. We
believe the Lyapunov framework provides a systematic way to extend several families
of second-order algorithms to this more general setting.

• Higher-order gradient methods In [76], a Lyapunov analysis of higher-order gra-
dient methods,

xk+1 = Gε,p,ν,N(xk) = arg min
y∈X

{
fp−1(xk; y) +

N

εp̃
‖xk − y‖p̃

}
, (2.86)

was also presented, where p̃ = p− 1 + ν, N > 1, p ≥ 3 and fp−1(x; y) is given by (A.1).

If the p-th order derivatives of (2.86) are ((p−1)
δ

, ν)-Hölder smooth (A.15), the function

Ek = (f(xk)− f(x∗))−
1
p̃−1 provides a O(1/δkp̃−1). Its continuous time limit,

Ẋt = arg min
v

{
〈∇f(Xt), v〉+

1

p̃
‖v‖p̃

}
= − ∇f(Xt)

‖∇f(Xt)‖
p̃−2
p̃−1
∗

(2.87)

CHAPTER 2. DETERMINISTIC DYNAMICAL SYSTEMS 52

can be analyzed using the same function Et = (f(Xt)−f(x∗))−
1
p̃−1 , to obtain a matching

convergence rate O(tp̃−1). It would be interesting to analyze the rescaled gradient
flow (2.87) in other settings as well.

• Newton’s method Newton’s method is one of the most widely used and studied
algorithms in optimization. It would be interesting , if possible, to develop a dynamical
perspective on the analysis of this family of algorithms as well. For example, it is well-
known that the function

Et =
1

2
‖∇f(Xt)‖2

is a Lypaunov function for the Newton dynamics Ẋt = −∇2f(Xt)
−1∇f(Xt). Develop-

ing a dynamical perspective of the analysis of Newton’s method, if possible, would be
a potentially interesting avenue of future work.

Next, we demonstrate how this Lyapunov framework for dynamical perspective can be ex-
tended to stochastic differential equations and stochastic algorithms, including stochastic
gradient descent, stochastic gradient descent with momentum, stochastic dual averaging,
and stochastic dual averaging with momentum.

53

Chapter 3

Stochastic Differential Equations

In this chapter, we focus on optimization problems (1.1) where the objective function is of
the form, f(x)+σ(x). Here σ(x) ∼ P represents some zero mean noise process EP [σ(x)] = 0.
Many machine learning and statistical problems are posed as stochastic optimization prob-
lems. The algorithms we discuss to solve these problems have access to oracle functions that
provide it with stochastic gradients or stochastic subgradients. All of them are simple, and
scale well, requiring little memory. In Section 3.1 we focus on algorithms that discretize first-
order stochastic differential equations. In Section 3.2, we turn our attention to algorithms
that discretize second-order stochastic differential equations. We end the chapter with a dis-
cussion of coordinate methods, demonstrating in the work Breaking locality accelerates Block
Gauss-Seidal [73] how the Lyapunov framework can be helpful for deriving novel algorithms.

3.1 First-order Stochastic Differential Equations

The first-order stochastic differential equations that model mirror descent have been studied
by many [59] and [37]. In this section we summarize and add to these works. In particular,
we emphasize the Lyapunov analysis of several families of stochastic differential equations
and several stochastic discrete time algorithms, and demonstrate how to move between these
arguments.

Stochastic Dual Averaging Dynamics The stochastic dual averaging dynamics (2.29)
is given by the following Ito stochastic differential equations (SDE) [51]

dYt = −(∇f(Xt)dt+ σtdBt)τ̇t, (3.1a)

Xt = ∇h∗(Yt/γt), (3.1b)

where the diffusion term σt := σ(x, t) is bounded, ‖σt‖2
F ≤ G2, ∀x ∈ X , t ≥ 0, and Bt ∈ Rd

is a standard Brownian motion. In particular, [37, Lemma A.4] implicitly showed that (2.23)

Et = γtDh∗(Yt/γt,∇h(x∗)) +

∫ t

0

(f(Xs)− f(x∗))dτs. (3.2)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 54

Stochastic MD Dynamics: dYt = −τ̇t(∇f(Xt)dt+ σ(Xt, t)dBt) Xt = ∇h∗(Yt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh(x
∗,Xt) +

∫ t
0
(f(Xs)− f(x∗))dτs E[f(X̂t)]− f(x∗) ≤ E0+

∫ t
0 ε

1
sds

τt

µ-Strong Convexity Et = eµτtDh(x
∗,Xt) E[Dh(x

∗,Xt)] ≤
E0+

∫ t
0 ε

2
sds

eµτt

Et = eµτtDh(x
∗,Xt) + 1

µ

∫ t
0
(f(Xs)− f(x∗))deµτs E[f(X̂t)]− f(x∗) ≤ µE0+µ

∫ t
0 ε

2
s

eµτt

Mirror Subgradient Method: yk+1−yk
δ

= −αk(∇f(xk) + σ(xk)) xk = ∇h∗(yk), g(xk) ∈ ∂f(xk)

Function Class Lyapunov Function Convergence Rate

Convex
f is Lipschitz; h σ-strongly convex

Ek = Dh(x
∗,xk) +

∑k−1
s=0(f(xs)− f(x∗))As+1−As

δ
δ E[f(x̂k)]− f(x∗) ≤ E0+δ

∑k
s=0 ε

3
s

Ak

µ-Strong Convexity
f is Lipschitz; h σ-strongly convex

Ek = AkDh(x
∗,xk) E[Dh(x

∗,xk)] ≤ E0+δ
∑k
s=0 ε

4
s

Ak

Ek = AkDh(x
∗xk) + 1

µ

∑k−1
s=0(f(xs)− f(x∗))As+1−As

δ
δ E[f(x̂k)]− f(x∗) ≤ µE0+µδ

∑k
s=0 ε

4
s

Ak

Stochastic DA Dynamics: dYt = −τ̇t(∇f(Xt)dt+ σ(Xt, t)dBt) Xt = ∇h∗(Yt/γt)

Function Class Lyapunov Function Convergence Rate

Convex Et = γtDh(x
∗,Xt) +

∫ t
0
(f(Xs)− f(x∗))dτs E[f(X̂t)]− f(x∗) ≤ E0+γtDh(x∗,X0)+

∫ t
0 ε

5
sds

τt

Stochastic DA Algorithm: yk+1−yk
δ

= −Ak+1−Ak
δ

(∇f(xk) + σ(xk)) xk = ∇h∗(yk/γk)

Function Class Lyapunov Function Convergence Rate

Convex Ek = γkDh(x
∗,xk) +

∑k−1
s=0(f(xs)− f(x∗))As+1−As

δ
δ E[f(X̂t)]− f(x∗) ≤ E0+γkDh(x∗,x0)+δ

∑k−1
s=0 ε

6
s

Ak

Table 3.1: Lyapunov functions for stochastic mirror descent dynamics and algorithm
and stochastic dual averaging dynamics and algorithm. Assume σ � ∇2h and E[σt] ≤
G, E[‖g(x)‖∗] ≤ G ∀x ∈ X and t ∈ R+. When f is convex, αk = Ak+1−Ak

δ
and

when f is strongly convex αk = Ak+1−Ak
δµAk+1

. Here, ε1
s = 1

2σ
G2τ̇ 2

s , ε2
s = 1

2σ
G2 (d

dt
eµτt |t=s)2

2µ2eµτs
,

ε3
s = δ 1

2σ
G2 (As−1−As)2

δ2
, ε4

s = δ 1
2σ
G2 (As+1−As)2

δ22µ2As+1
, ε5

s = 1
2σ
G2 τ̇

2
s

γs
and ε6

s = δ 1
2σ
G2 (As+1−As)2

δ2γs
. The

scalings on the error and Ito correction terms match.

is a Lyapunov function, where dτt = τ̇tdt. Take X0 to be the prox center of h. De-
note Z̃t = Yt/γt so that Xt = ∇h∗(Z̃t). Using Ito’s formula, on the first component
Ẽt = γtDh∗(Z̃t,∇h(x∗)) we check,

dẼt =
∂Ẽt
∂t
dt+

∂Ẽt
∂Z̃t

dZ̃t +
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt,

= γ̇tDh∗(Z̃t,∇h(x∗)) + γt〈∇h∗(Z̃t)− x∗, dZ̃t〉+
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt

= γ̇tDh(x
∗,∇h∗(Z̃t)) + γt〈∇h∗(Z̃t)− x∗, dZ̃t〉+

τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 55

With the identity γtdZ̃t = dYt − γ̇tZ̃tdt, we proceed,

dẼt = γ̇t(h(x∗)− h(∇h∗(Z̃t)))dt+ 〈∇h∗(Z̃t)− x∗, dYt〉+
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt,

(3.1b)
(3.1a)
= γ̇t(h(x∗)− h(∇h∗(Z̃t))dt+ τ̇t〈x∗ −Xt,∇f(Xt)dt+ σtdBt〉

+
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt,

≤ −τ̇t(f(Xt)− f(x∗))dt+ τ̇t〈σtdBt,x
∗ −Xt〉+ γ̇tDh(x

∗,X0)dt+
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Z̃t)σt)dt.

Here, the inequality follows using the convexity of f and non-negativity of h. The last
line uses the prox-center identity γ̇th(x∗) = γ̇tDh(x

∗,X0). Integrating, we obtain the bound,
Define the time averaged iterate X̂t =

∫ s
0
Xsdτs/τt. Applying Jensen’s τtf(X̂t) ≤

∫ t
0
f(Xs)dτs

Taking the expectation and integrating the last line, we obtain the following convergence
bound,

E[f(X̂t)]− f(x∗) ≤
Ẽ0 + γtDh(x

∗,X0) + E[
∫ t

0
τ̇2s
2γs

tr(σ>s ∇2h∗(Z̃t)σs)ds]

τt
, (3.3)

on the time averaged iterate. Assume ∇2h∗ � σ−1I, or equivalently σI � ∇h2 and ‖σt‖F ≤
Gtq ∀x ∈ X , t ∈ R. Take γt =

√
t and τt = t. Then the bound (3.3) implies an O(t−

1
2

+2q)

convergence rate. In particular, if q = 0 (i.e. the noise is not growing), we obtain a O(t−
1
2)

convergence rate.

Stochastic Dual Averaging The variational condition for the stochastic variant of the
dual averaging algorithm (2.31) is given by,

yk+1 − yk
δ

= −Ak+1 − Ak
δ

(∇f(xk) + σ(xk)), (3.4a)

yk = γk∇h(xk), (3.4b)

where E[σ(x)] = 0. Typically, we write g(x) = ∇f(x) + σ(x), so that E[g(x)] = ∇f(x). We
can analyze this algorithm using the Lyapunov function

Ek = γkDh(x
∗,xk) +

k−1∑
s=0

(f(xs)− f(x∗))
As+1 − As

δ
δ.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 56

Note the identity Dh(x
∗,xk) = Dh∗(∇h(xk),∇h(x∗)), which follows from (A.29). We check,

Ek+1 − Ek
δ

= Dh(x
∗,xk+1)

γk+1 − γk
δ

− γk
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ αk(f(xk)− f(x∗)) + ε1

k

= (h(x∗)− h(xk+1))
γk+1 − γk

δ
−
〈
yk+1 − yk

δ
,x∗ − xk

〉
+ αk(f(xk)− f(x∗)) + ε2

k

(3.4a)
= −αkDf (x

∗,xk) +
γk+1 − γk

δ
(h(x∗)− h(xk+1)) + αk〈σ(xk),x

∗ − xk〉+ ε2
k

≤ γk+1 − γk
δ

Dh(x∗,x0) + αk〈σ(xk),x
∗ − xk〉+ ε2

k.

Here, the errors scale as ε1
k = −γk

δ
Dh(xk+1,xk), and ε2

k = αk〈∇f(xk) + σ(xk),xk − xk+1〉 −
γk
δ
Dh(xk+1,xk). The final upper bound follows from noting −Df (x

∗,xk) ≤ 0 and using the
definition of the prox-center. Denote g(x) = ∇f(x) + σ(x) and assume E[‖g(x)‖2

∗] ≤ G2 for
all x ∈ X and some constant G. Using the σ-strong convexity of h, we can use Young’s

inequality to upper bound the error E[ε2
k] ≤

α2
kδ

2σγk
G := ε3

k. Denote x̂k = δ
∑k

s=0 xsαs/Ak

as the time-average iterate and note that the inequality Akf(x̂k) ≤ δ
∑k

s=0 f(xs)αs follows
from Jensen’s (A.4). By summing the Lyapunov function and taking the expectation, we
obtain the statement, Ak(E[f(x̂k)] − f(x∗)) ≤ E[Ek] ≤ E0 + γkDh(x

∗,x0) − γ0Dh(x
∗,x0) +

δ
∑k

s=0 E[ε3
i], from which we obtain the convergence bound,

E[f(x̂k)]− f(x∗) ≤
E0 + γkDh(x

∗,x0) + δ2 1
2σ

∑k
s=0

α2
s

γs
G2

Ak
.

If we take If we assume with out loss of generality σ = δ = 1, and choose Ak = k and
γk = G2

Dh(x∗,x0)

√
k + 1, we obtain O(1/

√
k) convergence rate [44, (2.15)].

3.1.1 Stochastic Mirror Descent

The mirror descent dynamics is given by the following Ito stochastic differential equations
(SDE) [51] ,

dYt = −τ̇t(∇f(Xt)dt+ σtdBt), (3.5a)

Xt = ∇h∗(Yt). (3.5b)

We recognize it as the dual averaging dynamics with γt ≡ 1. In the bound (3.3), if we take

τt =
√
t, we obtain a matching O(t

1
2
−2q) convergence rate in the setting when f is convex.

Now, we will study the dynamics (3.5) in the setting when f is µ-strongly convex.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 57

3.1.2 Strongly convex functions

When f is µ-strongly convex with respect to h (A.7), [37] implicitly showed that the Lya-
punov function,

Et = eµτtDh∗(Yt,∇h(x∗)),

can be used to provide a convergence rate for (3.5). Using Ito’s formula, we check,

dEt =
∂Et
∂t
dt+

∂Et
∂Yt

dYt +
τ̇ 2
t e

µτt

2
tr(σ>t ∇2h∗(Yt)σt)dt,

= τ̇te
µτt (µDh∗(Yt,∇h(x∗))dt− 〈∇h∗(Yt)− x∗,∇f(Xt)dt+ σtdBt〉)

+
τ̇ 2
t e

µτt

2
tr(σ>t ∇2h∗(Yt)σt)dt

= τ̇te
µτt (µDh(x

∗,Xt)dt+ 〈∇f(Xt),x
∗ −Xt〉dt+ 〈σtdBt,x

∗ −Xt〉)

+
τ̇ 2
t e

µτt

2
tr(σ>t ∇2h∗(Yt)σt)dt

≤ −τ̇teµτt((f(Xt)− f(x∗))dt+ 〈σtdBt,x
∗ −Xt〉) +

τ̇ 2
t e

µτt

2
tr(σ>t ∇2h∗(Yt)σt)dt.

The last line follows from the strong convexity assumption. By integrating and taking the
expectation, we have the bound,

E[Dh∗(Yt,∇h(x∗))] ≤
E0 + E[

∫ t
0
τ̇2s e

µτs

2
tr(σ>s ∇2h∗(Ys)σs)ds]

eµτt

We can also infer the inequality,

1

µ
E
[∫ t

0

(f(Xs)− f(x∗))deµτs
]

+ E[Et]− E0 − E
[∫ t

0

τ̇ 2
s e

µτs

2
tr(σ>s ∇2h∗(Ys)σs)ds

]
≤ 0, (3.6)

from the argument. Define the average iterate X̂t =
∫ t

0
Xsde

µτs/eµτt . Using Jensen’s, we

have the inequality eµτtf(X̂t) ≤
∫ t

0
f(Xs)de

µτs . Taking the expectation of (3.6), we obtain a
convergence bound on the expectation of the optimality gap,

E[f(X̂t)]− f(x∗) ≤
µE0 +

∫ t
0

(d
dt
eµτt |t=s)

2

2eµτtµ
tr(σ>s ∇2h∗(Ys)σs)ds

eµτt
, (3.7)

evaluated at the time averaged iterate. Assume ∇2h∗ � σ−1I (i.e that h is σ-strongly
convex), and E[‖σt‖2

F] ≤ Gt2q. Take τt = tp. Then the bound (3.7) implies an O(tp−3+2q)
rate of convergence. In particular, if p = 2, and q = 0, we obtain a O(t−1) rate of convergence.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 58

Stochastic Mirror Descent Algorithm Let τ̇t ≈ αk = Ak+1−Ak
δµAk+1

≈
d
dt
eµτt

µeµτt
. The variational

condition for the stochastic mirror descent algorithm given by

∇h(xk+1)−∇h(xk)

δ
= −αk(∇f(xk) + σ(xk)), (3.8)

where E[σ(x)] = 0. We can analyze (3.8) using the Lyapunov function,

Ek = AkDh(x
∗,xk).

We check,

Ek+1 − Ek
δ

= Dh(x
∗,xk)

Ak+1 − Ak
δ

+ Ak+1
Dh(x

∗,xk+1)−Dh(x
∗,xk)

δ

= Ak+1αkµDh(x
∗,xk)− Ak+1

〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ ε1

k

(3.8)
= Ak+1αk(µDh(x

∗,xk) + 〈∇f(xk) + σ(xk),x
∗ − xk〉) + ε1

k

≤ −Ak+1αk(f(xk)− f(x∗)) + Ak+1αk〈x∗ − xk,σ(xk)〉+ ε1
k ≤ ε1

k

where the first error scales as εk = Ak+1(αk〈∇f(xk) + σ(xk),xk − xk+1〉 − 1
δ
Dh(xk+1,xk).

The upper bound follows from using the strong convexity of f with respect to h. Denote
g(x) = ∇f(x).− σ(x). We can upper bound the final error using the σ strong convexity of

h as well as Young’s inequality (A.25): εk ≤ (Ak+1−Ak)2

2µ2σδAk+1
‖g(x)‖2

∗. If we assume E[‖g(x)‖2
∗] ≤

G2 ∀x ∈ X , then by summing and taking the expectation, we obtain the convergence bound

E[Dh(x
∗,xk)] ≤

E0 + δ 1
2σ

∑k
s=0

(As+1−As)2
µ2δAs+1

G2

Ak
.

We can also infer,

1

µ
E

[
k−1∑
s=0

(f(xs)− f(x∗))
As+1 − As

δ
δ

]
+ E[Ek]− E0 − δ

1

2σ
E

[
k∑
s=0

(As+1 − As)2

µ2δAk+1

G2

]
≤ 0.

(3.9)

Define the time-average iterate xk = δ
∑k

s=0 xs(As+1 − As)/Akδ. Using Jensen’s we have

the inequality Akf(x̂k) ≤
∑t

s=0 f(xs)
As+1−As

δ
δ. Taking the expectation of (3.9), we obtain a

convergence bound on the expectation of the optimality gap,

E[f(x̂k)]− f(x∗) ≤
µE0 + δ 1

2σ

∑k
s=0

(As+1−As)2
µδAs+1

G2

Ak
,

evaluated at the time aver iterate. The same parameter choices, Ak = (k + 1)k so that
αk = 2

δµ(k+2)
results in an O(1/k) convergence rate.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 59

SAMD Dynamic 1: dYt = −τ̇t(∇f(Xt)dt+ σ(Xt, t)dBt) dXt = τ̇t
τt

(∇h∗(Yt/γt)−Xt)dt

Yt/γt = ∇h(Zt)

Function Class Lyapunov Function Convergence Rate

Convex Et = Dh∗(Yt/γt,∇h(x∗)) + τt(f(Xt)− f(x∗)) E[f(X̂t)]− f(x∗) ≤ E0+γtDh(x∗,Z0)
∫ t
0 ε

1
sds

τt

SAMD Algorithm 1: yk+1−yk
δ

= −αk(∇f(xk) + σ(xk))
xk+1−xk

δ
= Ak+1−Ak

δAk
(∇h∗(yk/γk)− xk)

yk/γk = ∇h(zk)

Function Class Lyapunov Function Convergence Rate

Convex Ek = Dh∗(yk/γk,∇h(x∗)) + Ak(f(xk)− f(x∗)) E[f(x̂k)]− f(x∗) ≤ E0+γkDh(x∗,z0)+δ
∑k
s=0 ε

3
s

Ak

SAMD Dynamic 2: dYt =
d
dt
eβt

eβt
((∇h(Xt)− Yt)dt− 1

µ
(∇f(Xt)dt+ σ(Xt, t)dBt)) dXt =

d
dt
eβt

eβt
(∇h∗(Yt)−Xt)dt

Yt = ∇h(Zt)

Function Class Lyapunov Function Convergence Rate

µ-Strongly Convex Et = eβt(µDh∗(Yt,∇h(x∗)) + f(Xt)− f(x∗)) E[f(X̂t)]− f(x∗) ≤ E0+
∫ t
0 ε

2
sds

eβt

SAMD Algorithm 2: yk+1−yk
δ

= Ak+1−Ak
δAk

((∇h(xk)− yk)− 1
µ
(∇f(xk) + σ(xk)))

xk+1−xk
δ

= Ak+1−Ak
δAk

(∇h∗(yk)− xk)

yk = ∇h(zk)

Function Class Lyapunov Function Convergence Rate

µ-Strongly Convex Ek = Ak(µDh∗(yk,∇h(x∗)) + f(xk)− f(x∗)) E[f(x̂k)]− f(x∗) ≤ E0+δ
∑k
s=0 ε

4
sds

Ak

Table 3.2: Lyapunov functions for the stochastic accelerated mirror descent (SAMD) dy-
namics and stochastic mirror descent (SAMD) algorithms. The error in continuous time
comes from the Ito correction term. Assume σ � ∇2h and E[σt] ≤ G, E[‖g(x)‖∗] ≤ G

∀x ∈ X and t ∈ R+. Here, ε1
s = 1

2σ
G2 τ̇

2
s

γs
, ε2

s = 1
2σ
G2 (As+1−As)2

δ2γs
δ, ε3

s = 1
2σ
G2 (d

dt
eβt |t=s)

2

2µeβs
, and

ε4
s = 1

2σ
G2 (As+1−As)2

2δ2µAs
δ. The scalings on the error and Ito correction terms match.

3.2 Second-order Stochastic Differential Equations

Krichene and Bartlett [26] showed the stochastic dual averaging dynamic with momen-
tum (2.75),

dYt = −τ̇t(∇f(Xt)dt+ σ(Xt, t)dBt) (3.10a)

dXt =
τ̇t
τt

(∇h∗(Yt/γt)−Xt)dt (3.10b)

can be analyzed using the same Lyapunov function (2.76)

Et = γtDh∗(Yt/γt,∇h(x∗)) + τt(f(Xt)− f(x∗)). (3.11)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 60

Here, we take γ̇t, γt, τ̇t, τt > 0, Yt/γt = ∇h(Zt) and using (A.29), we note Dh(x
∗,Zt) =

Dh∗(Yt/γt,∇h(x∗)). Krichene and Bartlett use Ito’s formula

dEt =
∂Et
∂t
dt+

∂Et
∂Xt

dXt +
∂Et
∂Yt

dYt +
τ̇ 2
t

2γt
tr(σ>t ∇2h∗(Zs)σt)dt,

to show the bound [26, Thm 2],

E[Et] =
E0 + γtDh(x

∗,Z0) + E[
∫ t

0
τ̇2s
2γs

tr(σ>s ∇2h∗(Zs)σt)ds]

τt

In particular, if we assume ∇2h∗ � σ−1I (i.e that h is σ-strongly convex), and E‖σt‖F ≤ G,
then obtain the convergence bound

E[f(Xt)]− f(x∗) ≤
E0 + γtDh(x

∗,Z0) + 1
2σ
G2
∫ t

0
τ̇2s
γs
ds

τt
(3.12)

More generally, [26] note that if ‖σt‖F ≤ Gtq and τt = tp, then we can infer the upper bound
O(tp−1+2q) from convergence rate bound (3.12). If we take p = 1/2, then q < 1/4 for the
bound (3.12) to provide a rate of convergence. If q = 0, this bound is also optimized by the
choices γt =

√
t and τt = t, which results in an O(t−1/2) convergence rate.

Stochastic Dual Averaging with Momentum We can analyze dual averaging with
momentum (2.31) where we replace gradients ∇f(x) with stochastic estimates of the gradi-
ents ∇f(x) + σ(x) = g(x), where E[σ(x)] = 0. The variational condition for this algorithm
can be written,

xk+1 − xk
δ

= τk(zk − xk+1) (3.13a)

yk+1 − yk
δ

= −Ak+1 − Ak
δ

(∇f(xk+1) + σ(xk+1)), (3.13b)

where yk = γk∇h(zk) and τk = Ak+1−Ak
δAk

. Using the Lyapunov function

Ek = γkDh(x
∗, zk) + Ak(f(xk)− f(x∗)),

which we can also write as

Ek = γkDh∗(yk/γk,∇h(x∗)) + Ak(f(xk)− f(x∗)),

similar to (3.11).

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 61

We check,

Ek+1 − Ek
δ

= Dh(x
∗,xk)

γk+1 − γk
δ

− γk
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ αk(f(xk+1)− f(x∗)) + Ak

f(xk+1)− f(xk)

δ
+ ε1

k

(3.13b)
= (h(x∗)− h(xk+1))

γk+1 − γk
δ

+ αk 〈∇f(xk+1) + σ(xk+1),x∗ − xk+1〉

+ αk(f(xk+1)− f(x∗)) + Ak
f(xk+1)− f(xk)

δ
+ ε2

k

= −αkDf (x
∗,xk) +

γk+1 − γk
δ

(h(x∗)− h(xk+1)) + 〈σ(xk+1),x∗ − zk〉+ ε3
k

≤ γk+1 − γk
δ

Dh(x
∗,x0) + 〈σ(xk+1),x∗ − zk〉+ ε3

k.

where the first error scales as ε1
k = −γk

δ
Dh(zk+1, zk), the second as ε2

k = αk〈∇f(xk+1) +

σ(xk+1),xk+1 − zk+1〉 + ε1
k and ε2

k = Ak
f(xk+1)−f(xk)

δ
+ ε3

k. Denote g(x) = ∇f(x) + σ(x).
Using the convexity of f , we can bound the error as follows ε3

k ≤ αk〈g(xk+1), zk − zk+1〉 −
γk
δ
Dh(zk+1, zk). Using the σ-strong convexity of h and Young’s inequality and the assumption,

E[‖g(x)‖2
∗ ≤ G2 ∀x ∈ X , we obtain the upper bounds ε3

k ≤
α2
kδ

2σγk
G2. By summing the

Lyapunov function we obtain the statement, EAk ≤ EA0 + (γk − γ0)Dh(x
∗, z0) + δ

∑k
s=0 ε

3
s +

δ〈(σ(xs+1),x∗ − zs〉. Taking the expectation, we obtain the convergence bound,

E[f(xk)]− f(x∗) ≤
E0 + γkDh(x

∗, z0) + δ2 1
2σ

∑k
s=0

α2
s

γs
G2

Ak
.

If we assume with out loss of generality σ = 1, and choose Ak = k, δ = 1 and γk =
G2

Dh(x∗,x0)

√
k + 1, we obtain O(1/

√
k) convergence rate.

3.2.1 Strongly convex functions

In [4], we proposed the dynamics,

dXt = β̇t(∇h∗(Yt)−Xt)dt (3.14a)

dYt = β̇t

(
(∇h(Xt)− Yt)dt−

1

µ
(∇f(Xt)dt+ σtdBt)

)
(3.14b)

We recognize (3.14) as (2.57) with the addition of a stochastic term, using the identification
∇h∗(Yt) = Zt. To analyze the dynamics (3.14), we use the Lyapunov function (2.58)

Et = eβt (µDh∗(Yt,∇h(x∗)) + f(Xt)− f(x∗)) (3.15)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 62

We use Ito’s formula

dEt =
∂Et
∂t
dt+

∂Et
∂Xt

dXt +
∂Et
∂Yt

dYt +
eβt τ̇ 2

t

2µ
tr(σ>t ∇2h∗(Ys)σt)dt,

where we compute the components,

∂Et
∂t
dt = β̇te

βt (µDh∗(Yt,∇h(x∗)) + f(Xt)− f(x∗)) dt〈
∂Et
∂Xt

, dXt

〉
= β̇te

βt〈∇f(Xt),∇h∗(Yt)−Xt〉dt〈
∂Et
∂Yt

, dYt

〉
= µβ̇te

βt〈∇h∗(Yt)− x∗, (∇h(Xt)− Yt)dt−
1

µ
(∇f(Xt)dt+ σtdBt)〉.

Subsequently,

dEt = β̇te
βt (−Df (x

∗,Xt)dt+ µ (Dh∗(Yt,∇h(x∗))dt+ 〈∇h∗(Yt)− x∗,∇h(Xt)− Yt〉) dt)

− β̇teβt〈∇h∗(Yt)− x∗,σtdBt〉+
eβt β̇2

t

2µ
tr(σ>t ∇2h∗(Ys)σt)dt

(A.29)
(B.15)

= β̇te
βt (−Df (x

∗,Xt)dt+ µ (Dh(x
∗,∇h∗(Yt))dt+ 〈∇h(∇h∗(Yt))−∇h(Xt),x

∗ −∇h∗(Yt)〉)dt))

− β̇teβt〈∇h∗(Yt)− x∗,σtdBt〉+
eβt β̇2

t

2µ
tr(σ>t ∇2h∗(Ys)σt)dt

= β̇te
βt (−Df (x

∗,Xt)dt+ µDh(x
∗,Xt)dt−Dh(∇h∗(Yt),Xt)dt− 〈∇h∗(Yt)− x∗,σtdBt〉)

+
eβt β̇2

t

2µ
tr(σ>t ∇2h∗(Ys)σt)dt

≤ β̇te
βt〈∇h∗(Yt)− x∗,σtdBt〉+

eβt β̇2
t

2µ
tr(σ>t ∇2h∗(Ys)σt)dt.

The inequality follows from teh strong conveixy to f with respect to h and non-negativity
of the bregman divergence for convex functions. Taking the integral of both sides, we have

Et ≤ E0 +

∫ t

0

β̇se
βsµ〈∇h∗(Ys)− x∗,σsdBs〉+

eβs β̇2
s

2µ
tr(σ>s ∇2h∗(Ys)σs)ds.

Finally, taking the expectation, we have

E[Et] ≤ E0 + E

[∫ t

0

(
d
dt
eβt |t=s

)2

2µeβs
tr(σ>s ∇2h∗(Ys)σs)ds

]
,

from which we can conclude the convergence bound

E[f(Xt)]− f(x∗) ≤
E0 + E

[∫ t
0
eβs β̇2

s

2µ
tr(σ>s ∇2h∗(Ys)σs)ds

]
eβt

. (3.16)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 63

Assume ∇2h∗ = [∇2h]−1 � σ−1I and ‖σt‖F ≤ Gtq. Take βt = p log t or eβt = tp. Then we
can infer the upper bound O(tp−3+2q) from (3.16). Take p = 2. Then q < 1/2 for the upper
bound to provide a rate of convergence, otherwise, if q = 0, we can infer a O(t−1) rate of
convergence.

Stochastic Gradient Descent with Momentum When f is µ-strongly convex with re-
spect to h, and h is σ-strongly convex, the algorithm which satisfies the variational condition

xk+1 − xk
δ

= τk(zk − xk+1) (3.17a)

∇h(zk+1)−∇h(zk)

δ
= τk

(
∇h(xk+1)− zk −

1

µ
(∇f(xk+1) + σ(xk+1))

)
(3.17b)

can be analyzed using the following Lyapunov function.

Ek = Ak(µDh(x
∗, zk) + f(xk)− f(x∗)).

Here, σ(x) = g(x) −∇f(x), E[σ(x)] = 0 and τk = Ak+1−Ak
δAk

:= αk
Ak

. Update (3.17b) involves
optimizing a linear approximation to the function regularized by a weighted combination of
Bregman divergences. When h is Euclidean, we can write (3.17b) as,

zk+1 = arg min
z∈X

{
〈g(xk+1), z〉+

µ

2τk
‖z − z̃k+1‖2

}
.

With the identification ∇h(Yt) = Zt, is similar to the analysis of the SDE (3.14). We check,

Ek+1 − Ek
δ

=
Ak+1 − Ak

δ
(µDh(x

∗, zk+1) + f(xk+1)− f(x∗)) + Ak
f(xk+1)− f(xk)

δ

− Akµ
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − zk+1

〉
+ ε1

k

(3.17a)
= (µDh(x

∗, zk+1) + f(xk+1)− f(x∗) + 〈∇f(xk+1) + σ(xk+1),x∗ − zk〉)αk

+ Ak
f(xk+1)− f(xk)

δ
+ µ 〈∇h(xk+1)−∇h(zk+1),x∗ − zk+1〉αk + ε2

k

(A.27)
(3.17b)

= (−Dg
f (x
∗,xk+1) + µDh(x

∗,xk+1) + 〈σ(xk+1),x∗ − zk〉)αk + ε3
k ≤ 0.

Here, the first error scales as ε1
k = −Akµ

δ
Dh(zk+1, zk), the second scales as ε2

k = αk〈∇f(xk+1)+

σ(xk+1), zk−zk+1〉+ε1
k and the third as ε3

k = ε2
k−

Ak
δ
Df (xk,xk+1) ≤ ε2

k. The σ-strong convexity

of h, Young’s inequality, and the assumption E[‖g(x)‖] ≤ G, ensures ε2
k ≤ δ

α2
k

2µAkσ
‖g(xk)‖2 ≤

δ
α2
k

2µAkσ
G2. This allows us to conclude the upper bound

E[f(xk)]− f(x∗) ≤
E0 + δ2

∑k
s=0

α2
s

2µσAs
G2

Ak
.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 64

Notice, for all the methods analyzed in this section, the Ito correction term scales in the
same way as the term we refer to as the discrete-time error.

3.3 Lyapunov arguments for coordinate methods

Coordinate methods are another class of iterative methods in which only a few components
of the state x are updated at any given time. For example, the coordinate version of gradient
descent has as its update,

xk+1 − xk
δ

= −∇if(xk)

where ∇i is the gradient of f along its i-th coordinate, which is sampled randomly i ∈ [d], so
that E[∇if(x)] = ∇f(x). The Lyapunov framework can be extended to analyze coordinate
version of the algorithms discussed in the previous chapter. As a preview, we a present
a Lyapunov argument for the coordinate version of accelerated mirror prox (2.55), as that
does not have appeared to be done yet. We end by presenting our work Breaking Locality
Accelerates Block Gauss Seidel, where we demonstrate how the Lyapunov framework can be
used to analyze coordinate algorithms with very general sampling schemes.

Coordinate Accelerated Mirror Prox Sample coordinate i ∈ [d] at random. We
assume f is convex along its i-th coordinate (A.20) and (1/εi) smooth along its i-th coor-
dinate (A.21). The block coordinate mirror prox method can be written as the sequence of
updates,

x′k+1 − xk
δ

= τk(zk − xk) (3.18a)

z
′(i)
k+1 = arg min

x∈X

{
〈∇if(x′k+1),x〉+Dh(x, zk)

}
(3.18b)

x
(i)
k+1 − xk
δ

= τk(z
′(i)
k+1 − xk) (3.18c)

z
(i)
k+1 = arg min

x∈X

{
〈∇if(x

(i)
k+1),x〉+Dh(x, zk)

}
(3.18d)

We use the superscript (i) on z
′(i)
k+1,x

(i)
k+1 and z

(i)
k+1 to denote that its value depends on the choice

of coordinate i. That is, we perform the update x′k+1 and treat x′k+1, zk and xk as fixed. We
then sample the i-th coordinate along which we compute the relevant gradients and update

z′k+1,xk+1 and zk+1. Update (3.18b) satisfies the variational condition,
∇h(z

′(i)
k+1)−∇h(zk)

δ
=

−Ak+1−Ak
δ
∇if(x′k+1) , and update (3.18b) satisfies the variational condition,

∇h(z
(i)
k+1)−∇h(zk)

δ
=

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 65

−Ak+1−Ak
δ
∇if(x

(i)
k+1). We use the Lyapunov function (2.45) to analyze (3.18). We check,

Ek+1 − Ek
δ

= −

〈
∇h(z

(i)
k+1)−∇h(zk)

δ
,x∗ − xk+1

〉
+ αk(f(x

(i)
k+1)− f(x∗)) + ε1

k

(2.55d)
= −Df i(x

∗,x
(i)
k+1)αk + ε1

k

where we use the notation Df i(x, y) is given by (A.19). Here, the error scales as,

ε1
k = Ak

f(x
(i)
k+1)− f(xk)

δ
−

〈
∇h(z

(i)
k+1)−∇h(zk)

δ
,x

(i)
k+1 − zk+1

〉
− 1

δ
Dh(z

(i)
k+1, zk)

(3.18d)
(A.27)

= Ak
f(x

(i)
k+1)− f(xk)

δ
+ αk〈∇if(x

(i)
k+1),x

(i)
k+1 − z

(i)
k+1〉 −

1

δ
Dh(z

(i)
k+1, z

′(i)
k+1)

− 1

δ
Dh(z

′(i)
k+1, zk)−

〈
∇h(z

′(i)
k+1)−∇h(zk)

δ
, z

(i)
k+1 − z

′(i)
k+1

〉
Using convexity along the i-th coordinate, we can further upper-bound the error as follows,

ε1
k

(3.18b)

≤ Ak+1

〈
∇if(x

(i)
k+1),

x
(i)
k+1 − xk
δ

〉
+ αk〈∇if(x

(i)
k+1),xk − z(i)

k+1〉 −
1

δ
Dh(z

(i)
k+1, z

′(i)
k+1)

− 1

δ
Dh(z

′(i)
k+1, zk) + αk〈∇if(x

′(i)
k+1), z

(i)
k+1 − z

′(i)
k+1〉

(3.18c)
= αk〈∇if(x

(i)
k+1)−∇if(x′k+1), z

′(i)
k+1 − z

(i)
k+1〉 −

1

δ
Dh(z

(i)
k+1, z

′(i)
k+1)− 1

δ
Dh(z

′
k+1, zk)

Using the (1/εi)-smoothness of ∇if , Cauchy-Schwartz (A.26) and the identity
x
(i)
k+1−x

′
k+1

δ
=

τk(z
′(i)
k+1 − zk), the inequality αk〈∇if(x

(i)
k+1) − ∇if(x′k+1), z

′(i)
k+1 − z

(i)
k+1〉 ≤ αk‖∇if(x

(i)
k+1) −

∇if(x′k+1)‖‖z′(i)k+1 − z
(i)
k+1‖

(3.18a)
(3.18c)

= δ
α2
k

Ak+1εi
‖z′(i)k+1 − z

(i)
k+1‖‖z

′(i)
k+1 − zk‖ and the σ-strong convexity

of h gives the upper bound

Ek+1 − Ek
δ

≤ −Df i(x
∗,x

(i)
k+1) + ε1

k

where

ε1
k = δ

α2
k

Ak+1εi
‖z′(i)k+1 − zk‖‖z

′(i)
k+1 − z

(i)
k+1‖ −

σ

2δ
‖z′(i)k+1 − zk‖

2 − σ

2δ
‖z′(i)k+1 − z

(i)
k+1‖

2.

Taking the expectation of of both sides ensures E[Ek+1]−Ek
δ

≤ E[ε1
k]. Taking δ =

√
εσ, the

expected error is nonpositive if
α2
k

Ak+1
≤ 1. The same choices as mirror prox/agd, Ak+1 =

σε(k+1)(k+2)
4

and αk =
√
σε(k+1)

2
ensures the error is nonpositive; from this we can conclude

E[f(xk)]− f(x∗) ≤ O(1/εσk2).

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 66

Summary From this example, it is clear that how the aforementioned Lyapunov framework
can be applied to the coordinate versions of all the methods previously discussed. We now
show how we can use this framework can be extended to analyze coordinate methods which
perform random coordinate block updates at every iteration.

3.4 Breaking Locality Accelerates Block Gauss-Seidel

This section is based on the work Breaking locality accelerates block Gauss-Seidel. S. Tu, S.
Venkataraman, A. Wilson, A. Gittens, M. I. Jordan, and B. Recht. In D. Precup and Y. W.
Teh (Eds), Proceedings of the 34th International Conference on Machine Learning (ICML),
Sydney, Australia, NY, 2017.

Recent work by Nesterov and Stich [48] showed that momentum can be used to accelerate
the rate of convergence for block Gauss-Seidel in the setting where a fixed partitioning
of the coordinates is chosen ahead of time. We show that this setting is too restrictive,
constructing instances where breaking locality by running non-accelerated Gauss-Seidel with
randomly sampled coordinates substantially outperforms accelerated Gauss-Seidel with any
fixed partitioning. Motivated by this finding, we analyze the accelerated block Gauss-Seidel
algorithm in the random coordinate sampling setting. Our Lyapunov framework captures
the benefit of acceleration with a new data-dependent parameter which is well behaved when
the matrix sub-blocks are well-conditioned. Empirically, we show that accelerated Gauss-
Seidel with random coordinate sampling provides speedups for large scale machine learning
tasks when compared to non-accelerated Gauss-Seidel and the classical conjugate-gradient

3.4.1 Introduction

The randomized Gauss-Seidel method is a commonly used iterative algorithm to compute
the solution of an n× n linear system Ax = b by updating a single coordinate at a time in
a randomized order. While this approach is known to converge linearly to the true solution
when A is positive definite (see e.g. [31]), in practice it is often more efficient to update a
small block of coordinates at a time due to the effects of cache locality.

In extending randomized Gauss-Seidel to the block setting, a natural question that arises
is how one should sample the next block. At one extreme a fixed partition of the coordinates
is chosen ahead of time. The algorithm is restricted to randomly selecting blocks from this
fixed partitioning, thus favoring data locality. At the other extreme we break locality by
sampling a new set of random coordinates to form a block at every iteration.

Theoretically, the fixed partition case is well understood both for Gauss-Seidel [58, 20] and
its Nesterov accelerated variant [48]. More specifically, at most O(µ−1

part log(1/ε)) iterations
of Gauss-Seidel are sufficient to reach a solution with at most ε error, where µpart is a
quantity which measures how well the A matrix is preconditioned by the block diagonal
matrix containing the sub-blocks corresponding to the fixed partitioning. When acceleration

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 67

is used, Nesterov and Stich [48] show that the rate improves to O
(√

n
p
µ−1

part log(1/ε)
)

, where

p is the partition size.
For the random coordinate selection model, the existing literature is less complete.

While it is known [58, 20] that the iteration complexity with random coordinate section
is O(µ−1

rand log(1/ε)) for an ε error solution, µrand is another instance dependent quantity
which is not directly comparable to µpart. Hence it is not obvious how much better, if at all,
one expects random coordinate selection to perform compared to fixed partitioning.

Our first contribution in this paper is to show that, when compared to the random
coordinate selection model, the fixed partition model can perform very poorly in terms
of iteration complexity to reach a pre-specified error. Specifically, we present a family of
instances (similar to the matrices recently studied by Lee and Wright [28]) where non-
accelerated Gauss-Seidel with random coordinate selection performs arbitrarily faster than
both non-accelerated and even accelerated Gauss-Seidel, using any fixed partition. Our
result thus shows the importance of the sampling strategy and that acceleration cannot
make up for a poor choice of sampling distribution.

This finding motivates us to further study the benefits of acceleration under the random
coordinate selection model. Interestingly, the benefits are more nuanced under this model.

We show that acceleration improves the rate fromO(µ−1
rand log(1/ε)) toO

(√
νµ−1

rand log(1/ε)

)
,

where ν is a new instance dependent quantity that satisfies ν ≤ µ−1
rand. We derive a bound

on ν which suggests that if the sub-blocks of A are all well conditioned, then acceleration
can provide substantial speedups. We note that this is merely a sufficient condition, and our
experiments suggest that our bound is conservative.

In the process of deriving our results, we also develop a general proof framework for
randomized accelerated methods based on Wilson et al. [77] which avoids the use of estimate
sequences in favor of an explicit Lyapunov function. Using our proof framework we are
able to recover recent results [48, 1] on accelerated coordinate descent. Furthermore, our
proof framework allows us to immediately transfer our results on Gauss-Seidel over to the
randomized accelerated Kaczmarz algorithm, extending a recent result by Liu and Wright [33]
on updating a single constraint at a time to the block case.

Finally, we empirically demonstrate that despite its theoretical nuances, accelerated
Gauss-Seidel using random coordinate selection can provide significant speedups in prac-
tical applications over Gauss-Seidel with fixed partition sampling, as well as the classical
conjugate-gradient (CG) algorithm. As an example, for a kernel ridge regression (KRR)
task in machine learning on the augmented CIFAR-10 dataset (n = 250, 000), acceleration
with random coordinate sampling performs up to 1.5× faster than acceleration with a fixed
partitioning to reach an error tolerance of 10−2, with the gap substantially widening for
smaller error tolerances. Furthermore, it performs over 3.5× faster than conjugate-gradient
on the same task.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 68

3.4.2 Background

We assume that we are given an n × n matrix A which is positive definite, and an n di-
mensional response vector b. We also fix an integer p which denotes a block size. Under
the assumption of A being positive definite, the function f(x) = 1

2
x>Ax − x>b is strongly

convex and smooth. Recent analysis of Gauss-Seidel [20] proceeds by noting the connection
between Gauss-Seidel and (block) coordinate descent on f . This is the point of view we will
take in this paper.

3.4.2.1 Existing rates for randomized block Gauss-Seidel

We first describe the sketching framework of [58, 20] and show how it yields rates on Gauss-
Seidel when blocks are chosen via a fixed partition or randomly at every iteration. While we
will only focus on the special case when the sketch matrix represents column sampling, the
sketching framework allows us to provide a unified analysis of both cases.

To be more precise, let D be a distribution over Rn×p, and let Sk ∼ D be drawn iid from
D. If we perform block coordinate descent by minimizing f along the range of Sk, then the
randomized block Gauss-Seidel update is given by

xk+1 = xk − Sk(ST
kASk)

†ST
k (Axk − b) . (3.19)

Column sampling. Every index set J ⊆ 2[n] with |J | = p induces a sketching ma-
trix S(J) = (eJ(1), ..., eJ(p)) where ei denotes the i-th standard basis vector in Rn, and
J(1), ..., J(p) is any ordering of the elements of J . By equipping different probability mea-
sures on 2[n], one can easily describe fixed partition sampling as well as random coordinate
sampling (and many other sampling schemes). The former puts uniform mass on the index
sets J1, ..., Jn/p, whereas the latter puts uniform mass on all

(
n
p

)
index sets of size p. Fur-

thermore, in the sketching framework there is no limitation to use a uniform distribution,
nor is there any limitation to use a fixed p for every iteration. For this paper, however, we
will restrict our attention to these cases.

Existing rates. Under the assumptions stated above, [58, 20] show that for every k ≥ 0,
the sequence (3.19) satisfies

E[‖xk − x∗‖A] ≤ (1− µ)k/2‖x0 − x∗‖A , (3.20)

where µ = λmin(E[PA1/2S]). The expectation in (3.20) is taken with respect to the randomness
of S0,S1, ..., and the expectation in the definition of µ is taken with respect to S ∼ D. Under
both fixed partitioning and random coordinate selection, µ > 0 is guaranteed (see e.g. [20],
Lemma 4.3). Thus, (3.19) achieves a linear rate of convergence to the true solution, with
the rate governed by the µ quantity shown above.

We now specialize (3.20) to fixed partitioning and random coordinate sampling, and
provide some intuition for why we expect the latter to outperform the former in terms of

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 69

iteration complexity. We first consider the case when the sampling distribution corresponds
to fixed partitioning. Assume for notational convenience that the fixed partitioning corre-
sponds to placing the first p coordinates in the first partition J1, the next p coordinates in
the second partition J2, and so on. Here, µ = µpart corresponds to a measure of how close
the product of A with the inverse of the block diagonal is to the identity matrix, defined as

µpart =
p

n
λmin

(
A · blkdiag

(
A−1
J1

, ...,A−1
Jn/p

))
. (3.21)

Above, AJi denotes the p × p matrix corresponding to the sub-matrix of A indexed by the
i-th partition. A loose lower bound on µpart is

µpart ≥
p

n

λmin(A)

max1≤i≤n/p λmax(AJi)
. (3.22)

On the other hand, in the random coordinate case, Qu et al. [58] derive a lower bound on
µ = µrand as

µrand ≥
p

n

(
β + (1− β)

max1≤i≤nAii
λmin(A)

)−1

, (3.23)

where β = (p− 1)/(n− 1). Using the lower bounds (3.22) and (3.23), we can upper bound

the iteration complexity of fixed partition Gauss-SeidelNpart byO
(
n
p

max1≤i≤n/p λmax(AJi)

λmin(A)
log(1/ε)

)
and random coordinate Gauss-Seidel Nrand as O

(
n
p

max1≤i≤n Aii
λmin(A)

log(1/ε)
)

. Comparing the

bound on Npart to the bound on Nrand, it is not unreasonable to expect that random coordi-
nate sampling has better iteration complexity than fixed partition sampling in certain cases.
In Section 3.4.3, we verify this by constructing instances A such that fixed partition Gauss-
Seidel takes arbitrarily more iterations to reach a pre-specified error tolerance compared with
random coordinate Gauss-Seidel.

3.4.2.2 Accelerated rates for fixed partition Gauss-Seidel

Based on the interpretation of Gauss-Seidel as block coordinate descent on the function f ,
we can use Theorem 1 of Nesterov and Stich [48] to recover a procedure and a rate for accel-
erating (3.19) in the fixed partition case; the specific details are discussed in Section C.4.2
of the appendix. We will refer to this procedure as ACDM.

The convergence guarantee of the ACDM procedure is that for all k ≥ 0,

E[‖xk − x∗‖A] ≤ O

((
1−

√
p

n
µpart

)k/2
‖x0 − x∗‖A

)
. (3.24)

Above, µpart is the same quantity defined in (3.21). Comparing (3.24) to the non-accelerated
Gauss-Seidel rate given in (3.20), we see that acceleration improves the iteration complexity

to reach a solution with ε error from O(µ−1
part log(1/ε)) to O

(√
n
p
µ−1

part log(1/ε)
)

, as discussed

in Section 3.4.1.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 70

3.4.3 Results

We now present the main results. All proofs are deferred to the appendix.

3.4.3.1 Fixed partition vs random coordinate sampling

Our first result is to construct instances where Gauss-Seidel with fixed partition sampling
runs arbitrarily slower than random coordinate sampling, even if acceleration is used.

Consider the family of n×n positive definite matrices A given by A = {Aα,β : α > 0,α+
β > 0} with Aα,β defined as Aα,β = αI + β

n
1n1T

n . The family A exhibits a crucial property
that ΠTAα,βΠ = Aα,β for every n × n permutation matrix Π. Lee and Wright [28] recently
exploited this invariance to illustrate the behavior of cyclic versus randomized permutations
in coordinate descent.

We explore the behavior of Gauss-Seidel as the matrices Aα,β become ill-conditioned.
To do this, we consider a particular parameterization which holds the minimum eigenvalue
equal to one and sends the maximum eigenvalue to infinity via the sub-family {A1,β}β>0.
Our first proposition characterizes the behavior of Gauss-Seidel with fixed partitions on this
sub-family.

Proposition 3.4.1. Fix β > 0 and positive integers n, p, k such that n = pk. Let {Ji}ki=1

be any partition of {1, ...,n} with |Ji| = p, and denote Si ∈ Rn×p as the column selector for
partition Ji. Suppose S ∈ Rn×p takes on value Si with probability 1/k. For every A1,β ∈ A
we have that

µpart =
p

n+ βp
. (3.25)

Next, we perform a similar calculation under the random column sampling model.

Proposition 3.4.2. Fix β > 0 and integers n, p such that 1 < p < n. Suppose each column
of S ∈ Rn×p is chosen uniformly at random from {e1, ..., en} without replacement. For every
A1,β ∈ A we have that

µrand =
p

n+ βp
+

(p− 1)βp

(n− 1)(n+ βp)
. (3.26)

The differences between (3.25) and (3.26) are striking. Let us assume that β is much
larger than n. Then, we have that µpart ≈ 1/β for (3.25), whereas µrand ≈ p−1

n−1
for (3.26).

That is, µpart can be made arbitrarily smaller than µrand as β grows.
Our next proposition states that the rate of Gauss-Seidel from (3.20) is tight order-wise

in that for any instance there always exists a starting point which saturates the bound.

Proposition 3.4.3. Let A be an n×n positive definite matrix, and let S be a random matrix
such that µ = λmin(E[PA1/2S]) > 0. Let x∗ denote the solution to Ax = b. There exists a
starting point x0 ∈ Rn such that the sequence (3.19) satisfies for all k ≥ 0,

E[‖xk − x∗‖A] ≥ (1− µ)k‖x0 − x∗‖A . (3.27)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 71

From (3.20) we see that Gauss-Seidel using random coordinates computes a solution
xk satisfying E[‖xk − x∗‖A1,β

] ≤ ε in at most k = O(n
p

log(1/ε)) iterations. On the other
hand, Proposition 3.4.3 states that for any fixed partition, there exists an input x0 such that
k = Ω(β log(1/ε)) iterations are required to reach the same ε error tolerance. Furthermore,
the situation does not improve even if use ACDM from [48]. Proposition 3.4.6, which we
describe later, implies that for any fixed partition there exists an input x0 such that k =

Ω
(√

n
p
β log(1/ε)

)
iterations are required for ACDM to reach ε error. Hence as β −→ ∞,

the gap between random coordinate and fixed partitioning can be made arbitrarily large.
These findings are numerically verified in Section 3.4.5.1.

3.4.3.2 A Lyapunov analysis of accelerated Gauss-Seidel and Kaczmarz

Motivated by our findings, our goal is to understand the behavior of accelerated Gauss-
Seidel under random coordinate sampling. In order to do this, we establish a general frame-
work from which the behavior of accelerated Gauss-Seidel with random coordinate sampling
follows immediately, along with rates for accelerated randomized Kaczmarz [33] and the
accelerated coordinate descent methods of [48] and [1].

For conciseness, we describe a simpler version of our framework which is still able to
capture both the Gauss-Seidel and Kaczmarz results, deferring the general version to the
full version of the paper. Our general result requires a bit more notation, but follows the
same line of reasoning.

Let H be a random n × n positive semi-definite matrix. Put G = E[H], and suppose
that G exists and is positive definite. Furthermore, let f : Rn −→ R be strongly convex and
smooth, and let µ denote the strong convexity constant of f w.r.t. the ‖·‖G−1 norm.

Consider the following sequence {(xk, yk, zk)}k≥0 defined by the recurrence

xk+1 =
1

1 + τ
yk +

τ

1 + τ
zk , (3.28a)

yk+1 = xk+1 −Hk∇f(xk+1) , (3.28b)

zk+1 = zk + τ(xk+1 − zk)−
τ

µ
Hk∇f(xk+1) , (3.28c)

where H0,H1, ... are independent realizations of H and τ is a parameter to be chosen. Fol-
lowing [77], we construct a candidate Lyapunov function Ek for the sequence (3.28) defined
as

Ek = f(yk)− f∗ +
µ

2
‖zk − x∗‖2

G−1 . (3.29)

The following theorem demonstrates that Ek is indeed a Lyapunov function for (xk, yk, zk).

Theorem 3.4.4. Let f ,G,H be as defined above. Suppose further that f has 1-Lipschitz
gradients w.r.t. the ‖·‖G−1 norm, and for every fixed x ∈ Rn,

f(Φ(x;H)) ≤ f(x)− 1

2
‖∇f(x)‖2

H , (3.30)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 72

holds for a.e. H, where Φ(x;H) = x−H∇f(x). Set τ in (3.28) as τ =
√
µ/ν, with

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
.

Then for every k ≥ 0, we have

E[Ek] ≤ (1− τ)kE0 .

We now proceed to specialize Theorem 3.4.4 to both the Gauss-Seidel and Kaczmarz
settings.

Accelerated Gauss-Seidel Let S ∈ Rn×p denote a random sketching matrix. As sug-
gested in Section 3.4.2, we set f(x) = 1

2
xTAx − xTb and put H = S(STAS)†ST. Note that

G = E[S(STAS)†ST] is positive definite iff λmin(E[PA1/2S]) > 0, and is hence satisfied for
both fixed partition and random coordinate sampling (c.f. Section 3.4.2). Next, the fact that
f is 1-Lipschitz w.r.t. the ‖·‖G−1 norm and the condition (3.30) are standard calculations.
All the hypotheses of Theorem 3.4.4 are thus satisfied, and the conclusion is Theorem 3.4.5,
which characterizes the rate of convergence for accelerated Gauss-Seidel (Algorithm 1).

Algorithm 1 Accelerated randomized block Gauss-Seidel.

Require: A ∈ Rn×n, A � 0, b ∈ Rn, sketching matrices {Sk}T−1
k=0 ⊆ Rn×p, x0 ∈ Rn,

µ ∈ (0, 1), ν ≥ 1.
1: Set τ =

√
µ/ν.

2: Set y0 = z0 = x0.
3: for k = 0, ...,T − 1 do
4: xk+1 = 1

1+τ
yk + τ

1+τ
zk.

5: Hk = Sk(S
T
kASk)

†ST
k .

6: yk+1 = xk+1 −Hk(Axk+1 − b).
7: zk+1 = zk + τ(xk+1 − zk)− τ

µ
Hk(Axk+1 − b).

8: end for
9: Return yT .

Theorem 3.4.5. Let A be an n×n positive definite matrix and b ∈ Rn. Let x∗ ∈ Rn denote
the unique vector satisfying Ax∗ = b. Suppose each Sk, k = 0, 1, 2, ... is an independent copy
of a random matrix S ∈ Rn×p. Put µ = λmin(E[PA1/2S]), and suppose the distribution of S
satisfies µ > 0. Invoke Algorithm 1 with µ and ν, where

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
, (3.31)

with H = S(STAS)†ST and G = E[H]. Then with τ =
√
µ/ν, for all k ≥ 0,

E[‖yk − x∗‖A] ≤
√

2(1− τ)k/2‖x0 − x∗‖A . (3.32)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 73

Note that in the setting of Theorem 3.4.5, by the definition of ν and µ, it is always the
case that ν ≤ 1/µ. Therefore, the iteration complexity of acceleration is at least as good as
the iteration complexity without acceleration.

We conclude our discussion of Gauss-Seidel by describing the analogue of Proposition 3.4.3
for Algorithm 1, which shows that our analysis in Theorem 3.4.5 is tight order-wise. The
following proposition applies to ACDM as well; we show in the full version of the paper how
ACDM can be viewed as a special case of Algorithm 1.

Proposition 3.4.6. Under the setting of Theorem 3.4.5, there exists starting positions
y0, z0 ∈ Rn such that the iterates {(yk, zk)}k≥0 produced by Algorithm 1 satisfy

E[‖yk − x∗‖A + ‖zk − x∗‖A] ≥ (1− τ)k‖y0 − x∗‖A .

Accelerated Kaczmarz The argument for Theorem 3.4.5 can be slightly modified to
yield a result for randomized accelerated Kaczmarz in the sketching framework, for the case
of a consistent overdetermined linear system.

Specifically, suppose we are given an m × n matrix A which has full column rank, and
b ∈ R(A). Our goal is to recover the unique x∗ satisfying Ax∗ = b. To do this, we apply a
similar line of reasoning as [29]. We set f(x) = 1

2
‖x−x∗‖2

2 andH = PATS, where S again is our
random sketching matrix. At first, it appears our choice of f is problematic since we do not
have access to f and ∇f , but a quick calculation shows that H∇f(x) = (STA)†ST(Ax− b).
Hence, with rk = Axk − b, the sequence (3.28) simplifies to

xk+1 =
1

1 + τ
yk +

τ

1 + τ
zk , (3.33a)

yk+1 = xk+1 − (ST
kA)†ST

k rk+1 , (3.33b)

zk+1 = zk + τ(xk+1 − zk)−
τ

µ
(ST

kA)†ST
k rk+1 . (3.33c)

The remainder of the argument proceeds nearly identically, and leads to the following theo-
rem.

Theorem 3.4.7. Let A be an m × n matrix with full column rank, and b = Ax∗. Sup-
pose each Sk, k = 0, 1, 2, ... is an independent copy of a random sketching matrix S ∈
Rm×p. Put H = PATS and G = E[H]. The sequence (3.33) with µ = λmin(E[PATS]),
ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
, and τ =

√
µ/ν satisfies for all k ≥ 0,

E[‖yk − x∗‖2] ≤
√

2(1− τ)k/2‖x0 − x∗‖2 . (3.34)

Specialized to the setting of [33] where each row of A has unit norm and is sam-
pled uniformly at every iteration, it can be shown (Section C.5.1) that ν ≤ m and µ =
1
m
λmin(ATA). Hence, the above theorem states that the iteration complexity to reach ε

error is O

(
m√

λmin(ATA)
log(1/ε)

)
, which matches Theorem 5.1 of [33] order-wise. However,

Theorem 3.4.7 applies in general for any sketching matrix.

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 74

3.4.3.3 Specializing accelerated Gauss-Seidel to random coordinate sampling

We now instantiate Theorem 3.4.5 to random coordinate sampling. The µ quantity which
appears in Theorem 3.4.5 is identical to the quantity appearing in the rate (3.20) of non-
accelerated Gauss-Seidel. That is, the iteration complexity to reach tolerance ε is

O

(√
νµ−1

rand log(1/ε)

)
,

and the only new term here is ν. In order to provide a more intuitive interpretation of the
ν quantity, we present an upper bound on ν in terms of an effective block condition number
defined as follows. Given an index set J ⊆ 2[n], define the effective block condition number
of a matrix A as κeff,J(A) = maxi∈J Aii

λmin(AJ)
. Note that κeff,J(A) ≤ κ(AJ) always. The following

lemma gives upper and lower bounds on the ν quantity.

Lemma 3.4.8. Let A be an n× n positive definite matrix and let p satisfy 1 < p < n. We
have that

n

p
≤ ν ≤ n

p

(
p− 1

n− 1
+

(
1− p− 1

n− 1

)
κeff,p(A)

)
,

where κeff,p(A) = maxJ⊆2[n]:|J |=p κeff,J(A), ν is defined in (3.31), and the distribution of S
corresponds to uniformly selecting p coordinates without replacement.

Lemma 3.4.8 states that if the p×p sub-blocks of A are well-conditioned as defined by the
effective block condition number κeff,J(A), then the speed-up of accelerated Gauss-Seidel with
random coordinate selection over its non-accelerate counterpart parallels the case of fixed
partitioning sampling (i.e. the rate described in (3.24) versus the rate in (3.20)). This is a
reasonable condition, since very ill-conditioned sub-blocks will lead to numerical instabilities
in solving the sub-problems when implementing Gauss-Seidel. On the other hand, we note
that Lemma 3.4.8 provides merely a sufficient condition for speed-ups from acceleration, and
is conservative. Our numerically experiments in Section 3.4.5.6 suggest that in many cases
the ν parameter behaves closer to the lower bound n/p than Lemma 3.4.8 suggests. We
leave a more thorough theoretical analysis of this parameter to future work.

We can now combine Theorem 3.4.5 with (3.23) to derive the following upper bound on
the iteration complexity of accelerated Gauss-Seidel with random coordinates as

Nrand,acc ≤ O

(
n

p

√
max1≤i≤nAii
λmin(A)

κeff,p(A) log(1/ε)

)
.

Illustrative example. We conclude our results by illustrating our bounds on a simple
example. Consider the sub-family {Aδ}δ>0 ⊆ A , with

Aδ = An+δ,−n , δ > 0 . (3.35)

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 75

A simple calculation yields that κeff,p(Aδ) = n−1+δ
n−p+δ , and hence Lemma 3.4.8 states that

ν(Aδ) ≤ n
p

(
1 + p−1

n−1

)
. Furthermore, by a similar calculation to Proposition 3.4.2, µrand =

pδ
n(n−p+δ) . Assuming for simplicity that p = o(n) and δ ∈ (0, 1), Theorem 3.4.5 states that

at most O(n
3/2

p
√
δ

log(1/ε)) iterations are sufficient for an ε-accurate solution. On the other

hand, without acceleration (3.20) states that O(n
2

pδ
log(1/ε)) iterations are sufficient and

Proposition 3.4.3 shows there exists a starting position for which it is necessary. Hence, as
either n grows large or δ tends to zero, the benefits of acceleration become more pronounced.

3.4.4 Related Work

We split the related work into two broad categories of interest: (a) work related to coordinate
descent (CD) methods on convex functions and (b) randomized solvers designed for solving
consistent linear systems.

When A is positive definite, Gauss-Seidel can be interpreted as an instance of coordi-
nate descent on a strongly convex quadratic function. We therefore review related work
on both non-accelerated and accelerated coordinate descent, focusing on the randomized
setting instead of the more classical cyclic order or Gauss-Southwell rule for selecting the
next coordinate. See [71] for a discussion on non-random selection rules, [49] for a compar-
ison of random selection versus Gauss-Southwell, and [50] for efficient implementations of
Gauss-Southwell.

Nesterov’s original paper in [42] first considered randomized CD on convex functions,
assuming a partitioning of coordinates fixed ahead of time. The analysis included both non-
accelerated and accelerated variants for convex functions. This work sparked a resurgence of
interest in CD methods for large problems. Most relevant to our paper are extensions to the
block setting [63], handling arbitrary sampling distributions [55, 56, 18], and second order
updates for quadratic functions [57].

For accelerated CD, Lee and Sidford [29] generalize the analysis of Nesterov [42]. While
the analysis of [29] was limited to selecting a single coordinate at a time, several follow on
works [55, 32, 35, 17] generalize to block and non-smooth settings. More recently, both
Allen-Zhu et al. [1] and Nesterov and Stich [48] independently improve the results of [29]
by using a different non-uniform sampling distribution. One of the most notable aspects of
the analysis in [1] is a departure from the (probabilistic) estimate sequence framework of
Nesterov. Instead, the authors construct a valid Lyapunov function for coordinate descent,
although they do not explicitly mention this. In our work, we make this Lyapunov point of
view explicit. The constants in our acceleration updates arise from a particular discretization
and Lyapunov function outlined from Wilson et al. [77]. Using this framework makes our
proof particularly transparent, and allows us to recover results for strongly convex functions
from [1] and [48] as a special case.

From the numerical analysis side both the Gauss-Seidel and Kaczmarz algorithm are
classical methods. Strohmer and Vershynin [69] were the first to prove a linear rate of
convergence for randomized Kaczmarz, and Leventhal and Lewis [31] provide a similar kind of

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 76

analysis for randomized Gauss-Seidel. Both of these were in the single constraint/coordinate
setting. The block setting was later analyzed by Needell and Tropp [38]. More recently,
Gower and Richtárik [20] provide a unified analysis for both randomized block Gauss-Seidel
and Kaczmarz in the sketching framework. We adopt this framework in this paper. Finally,
Liu and Wright [33] provide an accelerated analysis of randomized Kaczmarz once again in
the single constraint setting and we extend this to the block setting.

3.4.5 Experiments

In this section we experimentally validate our theoretical results on how our accelerated
algorithms can improve convergence rates. Our experiments use a combination of synthetic
matrices and matrices from large scale machine learning tasks.

Setup. We run all our experiments on a 4 socket Intel Xeon CPU E7-8870 machine with
18 cores per socket and 1TB of DRAM. We implement all our algorithms in Python using
numpy, and use the Intel MKL library with 72 OpenMP threads for numerical operations.
We report errors as relative errors, i.e. ‖xk − x∗‖2

A/‖x∗‖2
A. Finally, we use the best values of

µ and ν found by tuning each experiment.
We implement fixed partitioning by creating random blocks of coordinates at the begin-

ning of the experiment and cache the corresponding matrix blocks to improve performance.
For random coordinate sampling, we select a new block of coordinates at each iteration.

For our fixed partition experiments, we restrict our attention to uniform sampling. While
Gower and Richtárik [20] propose a non-uniform scheme based on Tr(STAS), for translation-
invariant kernels this reduces to uniform sampling. Furthermore, as the kernel block Lipschitz
constants were also roughly the same, other non-uniform schemes [1] also reduce to nearly
uniform sampling.

3.4.5.1 Fixed partitioning vs random coordinate sampling

Our first set of experiments numerically verify the separation between fixed partitioning
sampling versus random coordinate sampling.

Figure 3.1 shows the progress per iteration on solving A1,βx = b, with the A1,β defined in
Section 3.4.3.1. Here we set n = 5000, p = 500, β = 1000, and b ∼ N(0, I). Figure 3.1 verifies
our analytical findings in Section 3.4.3.1, that the fixed partition scheme is substantially
worse than uniform sampling on this instance. It also shows that in this case, acceleration
provides little benefit in the case of random coordinate sampling. This is because both µ and
1/ν are order-wise p/n, and hence the rate for accelerated and non-accelerated coordinate
descent coincide. However we note that this only applies for matrices where µ is as large
as it can be (i.e. p/n), that is instances for which Gauss-Seidel is already converging at the
optimal rate (see [20], Lemma 4.2).

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 77

0 100 200 300 400 500
Iteration

10−30

10−27

10−24

10−21

10−18

10−15

10−12

10−9

10−6

10−3

100

‖x
k
−

x ∗
‖2 A
/‖

x ∗
‖2 A

Id+RankOne, n=5000, p=500

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 3.1: Experiments comparing fixed
partitions versus random coordinate sam-
pling for the example from Section 3.4.3.1
with n = 5000 coordinates, block size
p = 500.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Time (s) to 10−5 error

p = 50

p = 100

p = 200

p = 500

p = 800

p = 1000

B
lo

ck
Si

ze

MNIST Random Features, n=5000

Figure 3.2: The effect of block size on the
accelerated Gauss-Seidel method. For the
MNIST dataset (pre-processed using ran-
dom features) we see that block size of
p = 500 works best.

0 100 200 300 400 500
Iteration

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/
‖x
∗‖

2 A

CIFAR-10 KRR, n=250k, p=10k

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 3.3: Experiments comparing fixed
partitions versus uniform random sam-
pling for CIFAR-10 augmented matrix
while running kernel ridge regression.
The matrix has n = 250000 coordinates
and we set block size to p = 10000.

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

10−6

10−5

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/‖

x ∗
‖2 A

CIFAR-10 KRR, n=250k, p=10k

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates
Conjugate Gradient

Figure 3.4: Comparing conjugate gradi-
ent with accelerated and un-accelerated
Gauss-Seidel methods for CIFAR-10 aug-
mented matrix while running kernel ridge
regression. The matrix has n = 250000
coordinates and we set block size to p =
10000.

3.4.5.2 Kernel ridge regression

We next evaluate how fixed partitioning and random coordinate sampling affects the per-
formance of Gauss-Seidel on large scale machine learning tasks. We use the popular image

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 78

classification dataset CIFAR-10 and evaluate a kernel ridge regression (KRR) task with a
Gaussian kernel. Specifically, given a labeled dataset {(xi, yi)}ni=1, we solve the linear system
(K + λI)α = Y with Kij = exp(−γ‖xi − xj‖2

2), where λ, γ > 0 are tunable parameters (see
e.g. [67] for background on KRR). The key property of KRR is that the kernel matrix K is
positive semi-definite, and hence Algorithm 1 applies.

For the CIFAR-10 dataset, we augment the dataset1 to include five reflections, transla-
tions per-image and then apply standard pre-processing steps used in image classification [12,
68]. We finally apply a Gaussian kernel on our pre-processed images and the resulting kernel
matrix has n = 250000 coordinates.

Results from running 500 iterations of random coordinate sampling and fixed partitioning
algorithms are shown in Figure 3.3. Comparing convergence across iterations, similar to
previous section, we see that un-accelerated Gauss-Seidel with random coordinate sampling is
better than accelerated Gauss-Seidel with fixed partitioning. However we also see that using
acceleration with random sampling can further improve the convergence rates, especially to
achieve errors of 10−3 or lower.

We also compare the convergence with respect to running time in Figure 3.4. Fixed
partitioning has better performance in practice random access is expensive in multi-core
systems. However, we see that this speedup in implementation comes at a substantial cost
in terms of convergence rate. For example in the case of CIFAR-10, using fixed partitions
leads to an error of 1.2×10−2 after around 7000 seconds. In comparison we see that random
coordinate sampling achieves a similar error in around 4500 seconds and is thus 1.5× faster.
We also note that this speedup increases for lower error tolerances.

3.4.5.3 Comparing Gauss-Seidel to Conjugate-Gradient

We also compared Gauss-Seidel with random coordinate sampling to the classical conjugate-
gradient (CG) algorithm. CG is an important baseline to compare with, as it is the de-facto
standard iterative algorithm for solving linear systems in the numerical analysis community.
While we report the results of CG without preconditioning, we remark that the performance
using a standard banded preconditioner was not any better. However, for KRR specifically,
there have been recent efforts [5, 65] to develop better preconditioners, and we leave a
more thorough comparison for future work. The results of our experiment are shown in
Figure 3.4. We note that Gauss-Seidel both with and without acceleration outperform CG.
As an example, we note that to reach error 10−1 on CIFAR-10, CG takes roughly 7000
seconds, compared to less than 2000 seconds for accelerated Gauss-Seidel, which is a 3.5×
improvement.

To understand this performance difference, we recall that our matrices A are fully dense,
and hence each iteration of CG takes O(n2). On the other hand, each iteration of both
non-accelerated and accelerated Gauss-Seidel takes O(np2 + p3). Hence, as long as p =
O(n2/3), the time per iteration of Gauss-Seidel is order-wise no worse than CG. In terms of

1Similar to https://github.com/akrizhevsky/cuda-convnet2.

https://github.com/akrizhevsky/cuda-convnet2

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 79

iteration complexity, standard results state that CG takes at most O(
√
κ log(1/ε)) iterations

to reach an ε error solution, where κ denotes the condition number of A. On the other
hand, Gauss-Seidel takes at most O(n

p
κeff log(1/ε)), where κeff =

max1≤i≤n Aii
λmin(A)

. In the case

of any (normalized) kernel matrix associated with a translation-invariant kernel such as the
Gaussian kernel, we have max1≤i≤nAii = 1, and hence generally speaking κeff is much lower
than κ.

3.4.5.4 Kernel ridge regression on smaller datasets

In addition to using the large CIFAR-10 augmented dataset, we also tested our algorithms
on the smaller MNIST2 dataset. To generate a kernel matrix, we applied the Gaussian kernel
on the raw MNIST pixels to generate a matrix K with n = 60000 rows and columns.

Results from running 500 iterations of random coordinate sampling and fixed partitioning
algorithms are shown in Figure 3.5. We plot the convergence rates both across time and
across iterations. Comparing convergence across iterations we see that random coordinate
sampling is essential to achieve errors of 10−4 or lower. In terms of running time, similar
to the CIFAR-10 experiment, we see that the benefits in fixed partitioning of accessing
coordinates faster comes at a cost in terms of convergence rate, especially to achieve errors
of 10−4 or lower.

0 100 200 300 400 500
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/‖

x ∗
‖2 A

MNIST KRR, n=60000, p=4000

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

0 200 400 600 800 1000 1200
Time (s)

10−6

10−5

10−4

10−3

10−2

10−1

100

‖x
k
−

x ∗
‖2 A
/‖

x ∗
‖2 A

MNIST KRR, n=60000, p=4000

GS Fixed Partition
GS-Acc Fixed Partition
GS Random Coordinates
GS-Acc Random Coordinates

Figure 3.5: Experiments comparing fixed partitions versus uniform random sampling for
MNIST while running kernel ridge regression. MNIST has n = 60000 coordinates and we
set block size to p = 4000.

3.4.5.5 Effect of block size

We next analyze the importance of the block size p for the accelerated Gauss-Seidel method.
As the values of µ and ν change for each setting of p, we use a smaller MNIST matrix for
this experiment. We apply a random feature transformation [60] to generate an n×d matrix

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 80

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

ν

Linearly Spaced Eigenvalues

κ = 10
κ = 100
κ = 1000

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

ν

Random Wishart

m = 18
m = 20
m = 22

0 2 4 6 8 10 12 14 16
Block size (p)

100

101

102

103

ν

Deterministic Structured Matrices
Sobolev
Circulant
Tridiag

Figure 3.6: Comparison of the computed ν constant (solid lines) and ν bound from Theo-
rem 3.4.5 (dotted lines) on random matrices with linearly spaced eigenvalues and random
Wishart matrices.

F with d = 5000 features. We then use A = FTF and b = FTY as inputs to the algorithm.
Figure 3.2 shows the wall clock time to converge to 10−5 error as we vary the block size from
p = 50 to p = 1000.

Increasing the block-size improves the amount of progress that is made per iteration
but the time taken per iteration increases as O(p3) (Line 5, Algorithm 1). However, using
efficient BLAS-3 primitives usually affords a speedup from systems techniques like cache
blocking. We see the effects of this in Figure 3.2 where using p = 500 performs better than
using p = 50. We also see that these benefits reduce for much larger block sizes and thus
p = 1000 is slower.

3.4.5.6 Computing the µ and ν constants

In our last experiment, we explicitly compute the µ and ν constants from Theorem 3.4.5 for
a few 16× 16 positive definite matrices constructed as follows.
Linearly spaced eigenvalues. We first draw Q uniformly at random from n×n orthogonal
matrices. We then construct Ai = QΣiQ

T for i = 1, 2, 3, where Σ1 is diag(linspace(1,

10, 16)), Σ2 is diag(linspace(1, 100, 16)), and Σ3 is diag(linspace(1, 1000, 16)).
Random Wishart. We first draw Bi with iid N(0, 1) entries, where Bi ∈ Rmi×16 with
m1 = 18, m2 = 20, and m3 = 22. We then set Ai = BT

i Bi.
Sobolev kernel. We form the matrix Aij = min(i, j) with 1 ≤ i, j ≤ n. This corresponds
to the gram matrix for the set of points x1, ...,xn ∈ R with xi = i under the Sobolev kernel
min(x, y).
Circulant matrix. We let A be a 16 × 16 instance of the family of circulant matrices
An = Fndiag(cn)F ∗n where Fn is the n×n unitary DFT matrix and cn = (1, 1/2, ..., 1/(n/2 +
1), ..., 1/2, 1). By construction this yields a real valued circulant matrix which is positive
definite.
Tridiagonal matrix. We let A be a tridiagonal matrix with the diagonal value equal to
one, and the off diagonal value equal to (δ−a)/(2 cos(πn/(n+1))) for δ = 1/10. The matrix

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS 81

has a minimum eigenvalue of δ.

Figure 3.6 shows the results of our computation for the linearly spaced eigenvalues ensem-
ble, the random Wishart ensemble and the other deterministic structured matrices. Along-
side with the actual ν values, we plot the bound given for each instance by Lemma 3.4.8.
From the figures we see that our bound is quite close to the computed value of ν for circulant
matrices and for random matrices with linearly spaced eigenvalues with small κ. We plan to
extend our analysis to derive a tighter bound in the future.

3.4.6 Conclusion

In this paper, we extended the accelerated block Gauss-Seidel algorithm beyond fixed par-
tition sampling. Our analysis introduced a new data-dependent parameter ν which governs
the speed-up of acceleration. Specializing our theory to random coordinate sampling, we
derived an upper bound on ν which shows that well conditioned blocks are a sufficient con-
dition to ensure speedup. Experimentally, we showed that random coordinate sampling is
readily accelerated beyond what our bound suggests.

The most obvious question remains to derive a sharper bound on the ν constant from
Theorem 3.4.5. Another interesting question is whether or not the iteration complexity of
random coordinate sampling is always bounded above by the iteration complexity with fixed
coordinate sampling.

We also plan to study an implementation of accelerated Gauss-Seidel in a distributed
setting [72]. The main challenges here are in determining how to sample coordinates without
significant communication overheads, and to efficiently estimate µ and ν. To do this, we
wish to explore other sampling schemes such as shuffling the coordinates at the end of every
epoch [62].

3.5 Summary

The Lyapunov framework we have discussed in this thesis is an especially nice way of viewing
convergence theory in optimization. Many algorithms in optimization are significantly less
mysterious when viewed through the lens of dynamical systems. The Lyapunov framework
also makes the introduction of new analyses seamless. As a simple example, most of the non-
asymptotic results for coordinate methods can be extended to geodesic spaces, for geodesic
(smooth/strong)-convex functions, using the Lyapunov framework. There are many other
examples as well.

82

Appendix A

Chapter One

A.1 Examples of Optimization Problems

Example A.1.1 (Planning). The decision variable is an action, the set X represents all the
actions under consideration, and the objective function f : X → R assigns a cost to each
action. The optimization problem is to find an action with minimal cost.

As a specific example, consider the problem of reasoning about choosing a path to reach
a destination. In this instance, X is the set of easible paths from our starting position to
the desired location and the functions f(x) measures the cost to travel on path x. Solving
the optimization problem finds the path with minimal cost. Another example is choosing
a project from a set of proposals X . In this example, the function maps each proposal to
an estimate of its negative profit. Solving the optimization problem finds the project that
maximizes the profit, x∗ ∈ arg minx∈X f(x).

Example A.1.2 (Empricial Risk Minimization). The decision variable x is a function, the
set X imposes assumptions on the function class, and the objective function is the prediction
error when evaluated on an observe dataset. The optimization problem is to find the function
x with minimal prediction error on the observed data.

As a specific example, consider the goal of providing images with short descriptions, or
labels. In machine learning, the task is posed as finding a function x∗ ∈ arg minx∈X f(x) that
minimizes a functional, where each function x ∈ X maps images to labels. The functional
to be minimized, called the empirical risk, measures the error of each function x ∈ X when
evaluated on some observed data z. Thus, the problem is posed as finding the function which
performs best on the observed dataset, with the hope that the classifier will perform well
more generally.

Example A.1.3 (Maximum likelihood). The decision variable x is a vector of parameters
of a probabilistic model, the X is the set of possible parameters, and the objective function
f is the negative log-likelihood of the observed data. The optimization problem is to find the
parameters x which maximizes the likelihood of the observed data

APPENDIX A. CHAPTER ONE 83

As a specific example, consider the inverse problem in scientific measurement. In this
example, the negative log-likelihood f(x) = − log p(z;x) encodes the probability of observing
the noisy measurement z when the ground-truth object is x. The maximum likelihood
problem is to find the ground-truth object x, from some restricted set X , that maximizes
the likelihood of observing z.

Example A.1.4 (Robust/worst-case Planning). The decision variable x is an action being
taken by some adversarial entity, the set X are the actions the adversary can make, and
the objective function f is the gain or loss received due to the adversary’s actions. The
optimization problem is to find the worst-case loss due to an adversary’s actions.

A.2 Glossary of Definitions

In this section we discuss several basic concepts from calculus and geometry that will be
used repeatedly in proofs of convergence. For many readers, most of this material will be
familiar and can be referred to only when necessary.

Calculus In this section we take X = Rd, but many of the definitions we discuss can
extended to convex, compact sets X ⊆ Rd in a natural way. Let f : Rd → R be continuously
differentiable as many times as necessary. Recall that the Taylor series is a representation of
a function as an infinite sum of terms, calculated from the values of the function’s derivatives
at a single point. In particular, for an integer p ≥ 2, the (p−1)-st order Taylor approximation
of f centered at x ∈ Rd is the (p− 1)-st degree polynomial

fp−1(y;x) =

p−1∑
i=0

1

i!
∇if(x)(y − x)i = f(x) + 〈∇f(x), y − x〉+ · · ·+ 1

(p− 1)!
∇p−1f(x)(y − x)p−1.

(A.1)

The Taylor series provides a way to approximate any function using a finite number of
polynomial terms. We call the difference between the function f at a point y and its first-
order Taylor series approximation at a point x the Bregman divergence of f ,

Df (y,x) = f(y)− f(x)− 〈∇f(x), y − x〉. (A.2)

Note, Df (y,x) ≈ 〈y − x,∇2f(x)(y − x)〉. If f is convex its Bregman divergence (A.2) is
non-negative,

Df (y,x) ≥ 0. (A.3)

(A.3) is equivalent to the condition that ∀x, y ∈ X , any intermediate value is at most the
average value (Jensen’s inequality)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (A.4)

APPENDIX A. CHAPTER ONE 84

To elaborate, when X = Rd, convexity is the condition that the first-order Taylor ap-
proximation, f(x) + 〈∇f(x), y− x〉, is a global underestimator of the function. If ∇f(x) = 0
in (A.2), this implies the property f(x) ≤ f(y), ∀x ∈ Rd, and subsequently that x is a global
minimizer of the function. Therefore, if f is convex, the local condition ∇f(x) = 0, implies
that x is a solution to (1.1). A function f is strictly convex if the inequality in (A.4) and
(A.3) is strict (> and not ≥) ∀x 6= y. For strictly convex functions, the local condition,
∇f(x) = 0, implies the global property, x is the unique solution to (1.1).

We say f is µ-uniformly convex (p ≥ 2) if

Df (y,x) ≥ µ

p
‖y − x‖p. (A.5)

When p = 2, the condition (A.5) is called strong convexity,

Df (y,x) ≥ µ

2
‖y − x‖2. (A.6)

Let h : Rd → R be a strictly convex, differentiable function. We say f is µ-strongly convex
with respect to a strictly convex function h, if for ∀x, y ∈ X it satisfies,

Df (y,x) ≥ µDh(y,x). (A.7)

If h(x) = 1
2
‖x‖2 then (A.6) and (A.7) are equivalent. Furthermore, if h(x) = 1

p
‖x‖p, h

satisfies (A.5) with µ = 2−p+2. Therefore if f is strongly convex with respect to the Bregman
divergence generated by h(x) = 1

p
‖x‖p (A.7), it is satisfies (A.5).

Definition A.2.1 (Geodesic). We can think of a geodesic as a generalization of the straight-
line distance to curved metric spaces X . More precisely, we define the length of a path
γ : [0, 1]→ X as

Definition A.2.2 (Geodesic Space). If for every pair points x, y ∈ X there is a geodesic in
X connecting them, X is called a geodesic space.

Definition A.2.3 (Geodesic Convexity). A function is geodesically convex if for any x, y ∈
X , a geodesic γ such that γ(0) = x and γ(1) = y, and t ∈ [0, 1], it holds that

f(y)− f(x) ≥ 〈∇f(x), logx(y)〉x, (A.8)

where ∇f(x) is the gradient of f at x. It is geodesically convex along its i-th component if
it satisfies

Di
f (y,x) := f(y)− f(x)− 〈∇if(x), logx(y)〉x ≤ 0, (A.9)

Definition A.2.4 (Geodesically Smooth). A function is geodesically L-smooth if for any
x, y ∈ X , a geodesic γ such that γ(0) = x and γ(1) = y, and t ∈ [0, 1], it holds that,

f(y)− f(x) ≤ 〈∇f(x), logx(y)〉x +
L

2
d2(x, y) (A.10)

APPENDIX A. CHAPTER ONE 85

where ∇f(x) is the gradient of f at x. It is geodesically Li- smooth along its i-th component
if it satisfies

f(y)− f(x) ≤ 〈∇if(x), logx(y)〉x +
Li
2
d2(x, y) (A.11)

Smoothness Smoothness is a property which measures the number of continuous deriva-
tives a function has. In particular, we say say that f is L-smooth of order p, where p is
a positive integer, if f is p-times continuously differentiable and ∇pf is L-Lipschitz, which
means for all x, y ∈ Rd,

‖∇pf(y)−∇pf(x)‖∗ ≤ L‖y − x‖. (A.12)

Notable cases are when p = 0, in which case the function is Lipschitz, and when p = 1, in
which case the function has Lipschitz gradients. If f satisfies (A.12) with p = 1, we call the
function smooth. If f is smooth we can also write,

Df (y,x) ≤ L

2
‖y − x‖2. (A.13)

A natural generalization of (A.13) is the condition that f be L-smooth with respect to a
strictly convex function h,

Df (y,x) ≤ LDh(y,x). (A.14)

A natural generalization of (A.12), is that f have (ν,L)-Hölder continuous gradients of order
p,

‖∇pf(y)−∇pf(x)‖∗ ≤ L‖y − x‖ν . (A.15)

where ν ∈ [0, 1]. If f has (ν,L)-Hölder continuous gradients of order p = 2, we can write

Df (x, y) ≤ L

1 + ν
‖x− y‖1+ν (A.16)

For convex functions on a vector space, the subgradient generalizes the notion of a
derivative to functions which are not differentiable. The subdifferential of f at a point x is
the set of subgradients,

∂f(x) := {g(x) ∈ Rd : f(y) ≥ f(x) + 〈g(x), y − x〉 ∀y ∈ Rd}. (A.17)

We also write ‖∂f(x)‖∗ := supg(x)∈∂f(x) ‖g(x)‖∗. For any element of the subdifferential
g(x) ∈ ∂f(x), we define the short-hand,

Dg
f (y,x) := f(y)− f(x)− 〈g(x), y − x〉. (A.18)

APPENDIX A. CHAPTER ONE 86

If f is convex, then (A.18) is non-negative Dg
f (y,x) ≥ 0, ∀g ∈ ∂f(x). Given convex

functions are locally Lipschitz, ∂f(x) is compact for any x. Therefore, there always exists a
directional subgradient for a convex function.

We use an analogous notation to (A.18) to define the Bregman divergence defined for the
gradient along the i-th coordinate of x ∈ X :

Di
f (y,x) := f(y)− f(x)− 〈∇if(x), y − x〉. (A.19)

We say that a function f is convex along its ith-coordinate if,

Di
f (y,x) ≥ 0. (A.20)

We say a function f is Li-smooth along its i-th coordinate if,

Di
f (y,x) ≤ Li

2
‖y − x‖2. (A.21)

Notation We denote a discrete-time sequence in lower case, e.g., xk with k ≥ 0 an integer.
We denote a continuous-time curve in upper case, e.g., Xt with t ∈ R. An over-dot means
derivative with respect to time, i.e., Ẋt = d

dt
Xt.

Riemannian Manifolds For many applications, it is important to be able to optimize
over spaces that are more general than Rn. One family of spaces we consider in this thesis
are spaces that locally look like Rn, but not globally. A typical example is the sphere, which
only locally looks flat. In order to define the notion of continuity of the functions on X , it
is important that X be topological space; this way a notion of “nearby” can be well-defined
using open sets. We also require X have enough structure so that it is easy to tell when
f : X → R is smooth. Technically speaking, we assume there exists smooth charts covering
X (i.e. an atlas) in addition to the collection of open sets. Such spaces are called smooth
manifolds.

The last requirement involves the existence of what is called a vector field, which is a space
of vectors tangent to each x ∈ X ; this requirement provides us with the notion of a directional
derivative for any f : X → R, which will be a requirement for the existence of various families
of dynamical systems that find a solution to (1.1). We call the subspace of vectors tangent to
x the tangent space, TxX . Finally, we require the existence of a symmetric, positive definite,
bilinear form, gx : TxX × TxX → R, which measures the distance between any two vectors
in TxX , and which varies smoothly as a function of x. Together, (X , gX) is called a smooth
Riemannian manifold.

Finally, we mention the cotangent space T∗xX , which is the dual vector space to TxX
(i.e. the space of linear functionals on TxX). The gradient, for example, is an element of
the cotangent space, which defines the directional derivative of f :

〈∇f(x), v〉 ≡ f ′(x, v) := lim
δ→0

f(x+ δv)− f(x)

δ
(A.22)

APPENDIX A. CHAPTER ONE 87

The metric gx can be viewed as a mapping between the dual spaces TxX and TxX ∗,

gx : TxX → TxX ∗

v 7→ gx(v, ·).

Given gx is positive definite ∀x ∈ X and dim(TxX) = dim(TxX ∗), it has a well-defined
inverse g−1 : TxX ∗ → TxX . The inverse metric will be useful for defining vector fields in
TxX using elements of the cotangent space TxX ∗.

We can extend the notion of directional derivatives to non-differentiable functions as well.
In particular, the directional subgradient of f , for ∀x, v ∈ Rd is a Borel measurable function
∂f(x; v) given by,

〈∂f(x), v〉 ≡ ∂f(x; v) := lim
δ→0

f(x+ δv)− f(x)

δ
= sup

g∈∂f(x)

〈g, v〉 (A.23)

If f : X → R and X ⊂ Rn is convex, then the subgradient is guaranteed to exist, ∂f(x) 6= ∅,
for every x ∈ int(X) [64].

Duality As suggested by the previous paragraph, the dual correspondence between a func-
tion f and its convex dual (or conjugate) function f ∗, given by the Legendre-Fenchel trans-
form, plays an important role in mathematics and optimization. Formally, if X is a vector
space, its dual vector space X ∗ is the space of linear functionals, which itself forms a vector
space under point-wise addition and scalar multiplication.

Let f : X → R. The Legendre-Fenchel transform of f is the function f ∗ : X → R given
by,

f ∗(g) = sup
x∈X
{〈g,x〉 − f(x)}. (A.24)

As f ∗ is the supremum of linear functions, it is convex and (f ∗)∗ = f . If g ∈ X ∗ is of the
form g = ∇f(x) for some x ∈ X , then the supremum in (A.24) is achieved, and we obtain
the identity, f ∗(∇f(x)) = 〈∇f(x),x〉 − f(x). By differentiating this identity, we are able to
conclude that ∇f : X ∗ → X is the inverse of ∇f : X → X ∗, i.e. that ∇f ∗(∇f(x)) = x. As
a specific example of duality, consider the standard inner product 〈·, ·〉 on Rd which defines
a norm ‖ · ‖ on Rd. Its dual ‖ · ‖∗ is defined as, ‖g‖∗ = supx∈Rd{〈x, g〉 : ‖x‖ ≤ 1}. More
generally, Young’s inequality,

〈g,x〉+
1

p
‖x‖p ≥ −p− 1

p
‖g‖

p
p−1
∗ , (A.25)

demonstrates another special case of the duality relation 〈g,x〉 ≤ f ∗(g) + f(x), where f(x) =
xp/p, f ∗(g) = gq/q and 1/p + 1/q = 1. A final dual relationship that will be used in several
proofs is Cauchy-Schwartz’s inequality on a Hilbert space X ,

|〈x, y〉| ≤ ‖x‖2‖y‖2,∀x, y ∈ X (A.26)

APPENDIX A. CHAPTER ONE 88

Properties of Bregman Divergences The Bregman three-point identity,

〈∇h(z)−∇h(x),x∗ − z〉+Dh(x
∗, z) = Dh(x

∗,x)−Dh(z,x), (A.27)

which holds for all x∗, z,x ∈ X , will be used many times througout the text. We also need
to make use of the Bregman projection onto a set X . Formally, let X ⊆ Rn and Xt =
arg minx∈X Dh(x,Yt) be the Bregman projection of Yt onto X . For all x ∈ X , it follows

Dh(x,Xt) ≤ Dh(x,Yt)−Dh(Xt,Yt) (A.28)

Furthermore, the Bregman projection is unique.
Another property of Bregman divergence that will make use of is the following dual rela-

tionship

Dh∗(x, y) = Dh(∇h∗(y),∇h∗(x)) (A.29)

for all x, y ∈ X , where h∗ is the fenchel conjugate (A.24) to h.

89

Appendix B

Chapter Two

B.1 Gradient Descent

B.1.1 Polyak-Löjasiewicz Condition

If the objective function satisfies the Polyak-Löjasiewicz (PL) condition with parameter µ,
we can conclude the following for the optimality gap Ẽt = f(Xt)− f(x∗),

d

dt
Ẽt

(2.6)
= −‖∇f(Xt)‖2

(2.1)

≤ −2µ(f(Xt)− f(x∗)) ≤ −2µẼt. (B.1)

Therefore

Et = e2µt(f(Xt)− f(x∗)), (B.2)

is a Lyapunov function for any function which satisfies the PL-condition with parameter µ.

One can check, d
dt
Et = 2µe2µtẼt + e2µt d

dt
Ẽt = e2µt(2µẼt + d

dt
Ẽt

(B.1)

≤ 0. Integrating
∫ t

0
d
ds
Esds =

Et − E0 ≤ 0 allows us to conclude a O(e−µt) convergence rate,

f(Xt)− f(x∗) ≤ e−2µtE0.

We can obtain similar statement for GD and PM.

Gradient Descent For GD, as long as the function is L-smooth, where 1/δ ≤ L, and the
PL inequality holds, we can conclude the following for the optimality gap, Ẽk = f(xk)−f(x∗).
We check,

Ẽk+1 − Ẽk
δ

(2.8)

≤ −2− δL
2
‖∇f(xk)‖2

(2.1)

≤ −µ(2− δL)(f(xk)− f(x∗)) ≤ −µ(2− δL)Ẽk

Taking 1/δ = L and denoting the inverse coniditon number, κ−1 = µ/L = µδ, we obtain the

bound Ẽk+1−Ẽk
δ

≤ −µẼk from which we can conclude

Ek = (1− (µδ))−k(f(xk)− f(x∗)),

APPENDIX B. CHAPTER TWO 90

is a Lyapunov function.1 Summing allows us to conclude an O(e−µδk) ≈ O((e−µδ)k) ≈
O((1− µδ)k) convergence rate,

f(xk)− f(x∗) ≤ (1− κ−1)kE0.

Proximal Method For the PM, similar arguments can be made assuming the Polyak-
Löjasiewicz condition by using the discrete optimality gap Ẽk = f(xk)− f(x∗),

Ẽk+1 − Ẽk
δ

(2.9)

≤ −1

2
‖∇f(xk+1)‖2

(2.1)

≤ −µ(f(xk+1)− f(x∗)) = −µẼk+1.

Thus, the recurrence, Ẽk+1 − Ẽk ≤ −κ−1Ẽk+1 shows that

Ek = (1 + κ−1)k(f(xk)− f(x∗)),

is a Lyapunov function, where κ−1 = µδ.2 By summing, we can conclude a O(e−µδk) ≈
O((eµδ)−k) ≈ O((1 + µδ)−k) convergence rate

f(xk)− f(x∗) ≤ (1 + κ−1)−kE0.

In moving from continuous to discrete-time, we lose a factor of two on the bound.

B.1.2 Strongly Convex Functions

When the objective function is µ-strongly convex (A.6), it satisfies the PL inequality; thus,
the analysis from the previous section applies. Another Lyapunov function is the scaled
distance function on Euclidean space,

Et = eµt
1

2
‖x∗ −Xt‖2. (B.3)

To see this, we define Ẽt = 1
2
‖x∗ −Xt‖2, and note

d

dt
Ẽt = −〈Ẋt,x

∗ −Xt〉
(2.2)
= 〈∇f(Xt),x

∗ −Xt〉
(A.6)

≤ −µ1

2
‖x∗ −Xt‖2 = −µẼt;

therefore the Lyapunov property is easy to check: d
dt
Et = eµt(d

dt
Ẽt + µẼt) ≤ 0. The Lyapunov

property, Et ≤ E0, for (B.3) allows us to conclude

1

2
‖x∗ −Xt‖2 ≤ e−µtE0.

We can obtain a similar statement for GD and GF.

1One can check, Ek+1−Ek

δ = (1−µδ)−(k+1)Ẽk+1/δ−(1−µδ)−kẼk/δ = (1−µδ)−(k+1)(µẼk+ Ẽk+1−Ẽk

δ) ≤ 0
2One can check, Ek+1−Ek

δ = (1 + µδ)(k+1)Ẽk+1 − (1 + µδ)kẼk/δ = (1 + µδ)k(µẼk+1 + Ẽk+1−Ẽk

δ) ≤ 0

APPENDIX B. CHAPTER TWO 91

Gradient Descent For GD, a similarly scaled distance function,

Ek = (1− µδ)−k 1

2
‖x∗ − xk‖2,

is a Lyapunov function when f is (1/δ)-smooth and µ strongly convex. We similarly use
Ẽk = 1

2
‖x∗ − xk‖2, and check,

Ẽk+1 − Ẽk
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk

〉
+ ε1

k

(2.3)
= 〈∇f(xk),x

∗ − xk〉+ ε1
k

(A.6)

≤ −µ1

2
‖x∗ − xk‖2 + ε2

k ≤ −µẼk,

where ε1
k = 〈∇f(xk),xk − xk+1〉 − 1

2δ
‖xk+1 − xk‖2 and ε2

k = f(x∗) − f(xk) + ε1
k. The last

upper bound ε2
k ≤ 0 follows from the (1/δ)-smoothness assumption on f (A.13). Therefore,

the recurrence Ẽk+1 − Ẽk = −δµẼk allows us to conclude a O(e−µδk) ≈ O((1 − (µδ))k) =
O((1− κ−1)k) convergence rate,

1

2
‖x∗ − xk‖2 ≤ (1− κ−1)kE0.

Proximal Method For PM, the scaled distance function,

Ek = (1 + µδ)k
1

2
‖x∗ − xk‖2,

is a Lyapunov function. We check,

Ẽk+1 − Ẽk
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk+1

〉
+ ε1

k

(2.4)
= 〈∇f(xk+1),x∗ − xk+1〉+ ε1

k

(A.6)

≤ −µ1

2
‖x∗ − xk+1‖2 = −µẼk+1,

where ε1
k = − 1

2δ
‖xk+1 − xk‖2 is negative. Therefore, the recurrence Ẽk+1 − Ẽk ≤ −µδẼk+1

allows us to conclude a O(e−µδk) ≈ O((1 + µδ)−k) convergence rate,

f(xk)− f(x∗) ≤ (1 + µδ)−kE0.

Tighter Bound: If we assume the f is L-smooth in continuous time, we obtain a tighter
bound for GF when f is µ-strongly convex using the bound (µ ≤ L),

〈∇f(Xt),x
∗ −Xt〉 ≤ −

µL

µ+ L
‖x∗ −Xt‖2 − 1

µ+ L
‖∇f(Xt)‖2. (B.4)

APPENDIX B. CHAPTER TWO 92

We provide a proof of this bound in the Appendix B.1.4. Using (B.4), it follows that,

d

dt
Ẽt = −〈Ẋt,x

∗ −Xt〉
(2.2)
= 〈∇f(Xt),x

∗ −Xt〉
(B.4)

≤ − 2µL

µ+ L
Ẽt

for Ẽt = 1
2
‖x∗ −Xt‖2. Thus,

Et = e
2µL
µ+L

t1

2
‖x∗ −Xt‖2,

is a Lyapunov function; we can subsequently conclude the upper bound,

1

2
‖x∗ −Xt‖2 ≤ e−

2µL
µ+L

tE0,

and an O(e−
2µL
µ+L

t) convergence rate. In addition, smoothness can be used to conclude a tighter
bound on the convergence of the optimality gap using this tighter bound,

f(Xt)− f(x∗) ≤ L

2
‖x∗ −Xt‖2 ≤ e−

2µL
µ+L

tL

2
‖x∗ −X0‖2.

Similar improved bounds can be obtained for GD and PM under the same conditions.

Gradient Descent Define Ẽk = 1
2
‖x∗ − xk‖2. The following bound holds for GD,

Ẽk+1 − Ẽk
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk

〉
+ ε1

k

(2.3)
= 〈∇f(xk),x

∗ − xk〉+ ε1
k

(B.4)
= − 2µL

µ+ L
Ẽk + ε2

k,

where ε1
k = δ

2
‖∇f(xk)‖2 and ε2

k = −
(

1
µ+L
− δ

2

)
‖∇f(xk)‖2. If we take 0 < δ < 2

µ+L
, then

ε2
k ≤ 0, and we obtain the recursion Ẽk+1 ≤

(
1− 2µL

µ+L
δ
)
Ẽk. Let δ = 2/(µ+ L). Then,

Ek =

(
1− 2µL

µ+ L
δ

)−k
1

2
‖x∗ − xk‖2 =

(
κ− 1

κ+ 1

)−2k
1

2
‖x∗ − xk‖2

is a Lyapunov function, from which we conclude,

1

2
‖x∗ − xk‖2 ≤

(
κ− 1

κ+ 1

)2k

E0.

Using the Lyapunov argument as well as the smoothness condition (A.13), we can also con-
clude a stronger bound on the optimality gap,

f(xk)− f(x∗) ≤ L

2
‖x∗ − xk‖2 ≤ e−

2µL
µ+L

δkL

2
‖x∗ − x0‖2.

APPENDIX B. CHAPTER TWO 93

Proximal Method Define Ẽk = 1
2
‖x∗ − xk‖2. The following bound holds for the PM,

Ẽk+1 − Ẽk
δ

= −
〈
xk+1 − xk

δ
,x∗ − xk+1

〉
+ ε1

k

(2.4)
= 〈∇f(xk+1),x∗ − xk+1〉+ ε1

k

(B.4)
= − 2µL

µ+ L
Ẽk+1 + ε2

k

where both of the errors ε1
k = − δ

2
‖∇f(xk+1)‖2 and ε2

k = −
(
δ
2

+ 1
µ+L

)
‖∇f(xk+1)‖2 are neg-

ative. This allows us to obtain the recursion Ẽk+1 ≤
(

1 + 2µL
µ+L

δ
)−1

Ẽk for any δ > 0, and

that

Ek =

(
1 +

2µL

µ+ L
δ

)k
1

2
‖x∗ − xk‖2,

is a Lyapunov function. Smoothness gives an improved upper bound on the function,

f(xk)− f(x∗) ≤ L

2
‖x∗ − xk‖2 ≤ e−

2µL
µ+L

δkL

2
‖x∗ − x0‖2,

for the proximal method.

B.1.3 Summary

To summarize, we have presented several Lyapunov functions for the gradient flow equa-
tion (2.2), which provides a tool to conclude a non-asymptotic rate of convergence. When
the objective function is differentiable, Lipschitz and X = Rd, we can expect the function to
converge to a critical point at the rate O(1/t). If in addition f is convex, so that all local
minima are global minimum and there are no saddle points, we can guarantee convergence of
the optimality gap defined by a minimizer of f . If f is µ-strongly convex, i.e. the optimality
gap is bounded below by O(− 1

2µ
‖∇f(Xt)‖2), we can expect a much faster convergence rate of

O(e−µt). However, in discrete-time if µδ := κ−1 is too small, δ is the discretization set and
a measure of the smoothness of f (f is (1/δ)-smooth), then the difference between these two
settings diminishes.

For the proximal method we can think of the step-size δ as a regularizer, which determines
the trade off between minimizing the function f(x) and keeping the point close to the current
iterate 1

2δ
‖x−xk‖2. The larger the step-size, the smaller the distance function, and the more

we prioritize minimizing the function. This intuitively leads to a faster rate of convergence.
However, unless f is somehow simple, it may be hard to solve the subproblem, and so using
this method is often impractical. This accounts for why gradient descent is one of the most
widely used algorithms in optimization.

We now end by giving a brief description of what changes when X is a compact, convex
set, how to analyze proximal gradient descent, and the Lyapunov property is used to pick the
step-size.

APPENDIX B. CHAPTER TWO 94

Projections Suppose X ⊆ Rd is a convex, compact set. We can instead write the GF
update (2.2) as

d

dt
Yt = −∇f(Xt)

Xt = ΠX (Yt) (B.5)

where ΠX (x) = arg miny∈X
1
2
‖y − x‖2 is the projection operator onto the set X .

We can similarly write the GD update (2.3) as

yk+1 = xk − δ∇f(xk)

xk+1 = ΠX (yk+1) (B.6)

using the same projection operator. Furthermore, nearly the same arguments presented in
this section follow from using the same Lyapunov functions; the only modification in each
analysis involves using the property

−
〈
xk+1 − x

δ
,
xk+1 − yk+1

δ

〉
≤ 0,∀x ∈ X (B.7)

for the Lyapunov arguments which entail showing the descent property, and the property

‖x∗ − xk+1‖2 ≤ ‖x∗ − yk+1‖2,

for Lyapunov arguments involving the metric, at the beginning of each analysis. Both inequal-
ities follow from properties of the projection operator (A.28). Each analysis then proceeds
accordingly with the same Lyapunov arguments. To provide an explicit example, for argu-
ment (2.8), we have the simple modification,

f(xk+1)− f(xk)

δ
≤ f(yk+1)− f(xk)

δ
≤ 2− δL

2

〈
∇f(xk),

yk+1 − xk
δ

〉
= −2− δL

2
‖∇f(xk)‖2

where the first inequality uses the convexity of f and property (B.7) with x = yk+2 to upper-

bound f(xk+1)−f(yk+1)

δ
≤ 0.

Proximal gradient descent Suppose we can decompose the objective function into two
components, f = f1 + f2, where one of them is easy to optimize over. The forward-backward
splitting method (also called the proximal gradient method), is obtained by applying the
forward-Euler (1.6) discretization to f1 and the backward-Euler (1.5) discretization to f2,
the part that is easy to optimize,

yk+1 = xk − δ∇f2(xk) (B.8a)

xk+1 = Proxf1(yk+1). (B.8b)

APPENDIX B. CHAPTER TWO 95

Recall, Proxδf1(x) = arg minx∈X
{
f1(x) + 1

2δ
‖x− y‖2

}
. We can write the variational condi-

tion for the combined update (B.8) as,

xk+1 − xk
δ

= −∇f1(xk+1)−∇f2(xk).

Lyapunov arguments for the FB-splitting method can be obtained by combining Lyapunov
functions for the proximal method and gradient descent appropriately. This follows from the
fact that (1) the two vector fields are additive, and (2) both discretizations use the same
Lyapunov functions. For an excellent monograph on proximal algorithms, see [53]

Choosing δ using Lypaunov functions We showed that choosing the optimal step-size
δ for gradient descent required knowing the smoothness of the function, and sometimes the
strong convexity parameter µ. Often we know neither of these. Most ways of searching
for good step-sizes for GD are constructed around the idea of making the function value
Et = f(Xt) (i.e. the Lyapunov function Et = f(Xt) − f(x∗) shifted by a constant f(x∗)) go
down, given we know that it should be decreasing as function of time for any smooth function.
For instance, exact line search is a technique which solves the subproblem,

min
δ>0

f(xk+1)− f(xk)

δ
= min

δ>0

1

δ
(f(xk − δ∇f(xk))− f(xk))

or more simply,

min
δ>0

f(xk+1)− f(xk) = min
δ>0

f(xk − δ∇f(xk)).

Often, however, this subproblem is too expensive to solve for practical applications. Other
techniques for choosing step-sizes, such as the weak Wolfe conditions and backtracking line
search also use criterion formulated around the idea of making the function value go down.

B.1.4 Tighter Bound

This proof follows [43, p. 2.1.12]. Define φ(x) = f(x)− µ
2
‖x‖2 and note ∇xφ(x) = ∇f(x)−

µx. The smoothness of f , i.e. 〈∇f(x) − ∇f(y),x − y〉 ≤ L‖x − y‖2 implies 〈φ(x) −
φ(y),x − y〉 ≤ (L − µ)‖x − y‖2 (i.e. that φ is L − µ-smooth.) This, in turn, implies
〈∇f(x)−∇f(y),x−y〉〉 ≤ 1

L−µ‖∇φ(x)−φ(y)‖2, which when expanded, is our condition (B.4)

B.2 Mirror Desent

B.2.1 Differentiable Function

The steepest descent dynamic is called natural gradient flow (NGF),

Ẋt = arg min
v∈Rd

{
〈∇f(Xt), v〉+

1

2
‖v‖2

∇2h(Xt)

}
= −∇2h(Xt)

−1∇f(Xt). (B.9a)

APPENDIX B. CHAPTER TWO 96

The optimality gap, Et = f(Xt)− f(x∗) is a Lyapunov function for (B.9),

d

dt
Et = 〈∇f(Xt), Ẋt〉

(B.9)
= −‖∇f(Xt)‖2

X∗t
≤ 0. (B.10)

If in addition, f satisfies the PL condition (2.11),

d

dt
Et = 〈∇f(Xt), Ẋt〉

(B.9)
= −‖∇f(Xt)‖2

X∗t

(2.11)

≤ −2µ(f(Xt)− f(x∗)),

we conclude

Et = e2µt(f(Xt)− f(x∗))

is a Lyapunov function and an O(e−µt) convergence rate. A similar statement can be made
for natural gradient descent (NGD), the forward-Euler (1.6) discretization of natural gradient
flow.

Natural Gradient Descent Natural gradient descent [3],

xk+1 − xk
δ

= −∇2h(xk)
−1∇f(xk),

is also a steepest descent flow as long as f is L = (1/δ)-smooth with respect the Hessian
metric: Df (x, y) ≤ 1

δ
‖x − y‖x. If so, the discrete optimality gap, Ek = f(xk) − f(x∗), is a

Lyapunov function for NGD:

Ek+1 − Ek
δ

≤ 2− δL
2

〈
∇f(xk),

xk+1 − xk
δ

〉
= −2− δL

2
‖∇f(xk)‖2

x∗k
≤ 0. (B.11)

If in addition, f satisfies the PL-condition (2.11),

Ek+1 − Ek
δ

(B.11)

≤ −1

2
‖∇f(xk)‖2

x∗k

(2.11)

≤ −µ(f(xk)− f(x∗)),

then Ek = (1−µδ)−k(f(xk)−f(x∗) is a Lyapunov function, and we can conclude a matching
O(e−µδk) convergence rate.

B.2.2 Convex Functions

Descent Property MF and NGF are equivalent dynamics. Therefore, we can combine
the descent property (B.10) and Lyapunov function (2.16) to conclude

Et = Dh(x
∗,Xt) + t(f(Xt)− f(x∗)) (B.12)

APPENDIX B. CHAPTER TWO 97

is a Lyapunov function for MF/NGF. We check,

d

dt
E (B.12)
t =

d

dt
E (2.13)
t + t

d

dt
(f(Xt)− f(x∗))

(B.10)

≤ −t‖Ẋt‖2
Xt ≤ 0.

Here, E (2.13)
t represents the Lyapunov function defined by (2.13) and the second inequality uses

the fact that we have shown this Lyapunov function is decreasing for MF (2.12). Therefore, if
in addition, we can show our discretizations are descent methods, we can conclude a slightly
stronger result. We now remark that the descent property can be shown for the BPM (2.17);
subsequently, we can establish

Ek = Dh(x
∗,xk) + δk(f(xk)− f(x∗)) (B.13)

is a Lyapunov function. We check,

E
(B.13)
k+1 − E(B.13)

k

δ
≤
E

(2.16)
k+1 − E

(2.16)
k

δ
+ δk

f(xk+1)− f(xk)

δ
≤ −δk 1

δ2
Dh(xk+1,xk) ≤ 0,

where the second inequality follows because xk+1 satisfies f(xk+1) + 1
δ
Dh(xk+1,xk) ≤ f(xk) +

1
δ
Dh(xk,xk); we can therefore obtain the tighter convergence bound f(xk)− f(x∗) ≤ E0/δk.

Unfortunately, it is unclear whether the descent property holds for mirror descent without
stronger conditions on the geometry h.

B.2.3 Strongly Convex Functions

The distance function, Ẽt = Dh(x
∗,Xt), is a Lyapunov function for NGF/MF, when f is

µ-strongly convex with respect to h (A.7), Df (x
∗,Xt) ≤ −µDh(x

∗,Xt). We check,

d

dt
Ẽt = −

〈
d

dt
∇h(Xt),x

∗ −Xt

〉
(2.12)
= 〈∇f(Xt),x

∗ −Xt〉

(A.7)

≤ −µDh(x
∗,Xt) = −µẼt.

Notice that if f is just convex, the distance function Ẽt = Dh(x
∗,Xt) is a Lyapunov function.

The addition of the strong convexity condition allows us to conclude a rate of convergence;
in particular, from the recurrence d

dt
Ẽt ≤ −µẼt, we can conclude

Et = eµtDh(x
∗,Xt) (B.14)

is also a Lyapunov function, as well as the convergence bound Dh(x
∗,Xt) ≤ O(e−µt).

A similar statement can be made for mirror descent and the BPM.

APPENDIX B. CHAPTER TWO 98

Mirror Descent When f is µ-strongly convex and (1/δ)-smooth with respect to h (A.7),
Ẽk = Dh(x

∗,xk), is a Lyapunov function for mirror descent,

Ẽk+1 − Ẽk
δ

= −
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ ε1

k

(2.12)
= −〈∇f(xk),x

∗ − xk〉+ ε1
k

≤ −µDh(x
∗,xk) + ε2

k ≤ −µẼk.

Here, ε1
k = 〈∇f(xk),xk − xk+1〉 − 1

δ
Dh(xk+1,xk) and ε2

k = f(x∗)− f(xk+1) +Df (xk+1,xk)−
1
δ
Dh(xk+1,xk). The first inequality uses strong convexity and the second uses smoothness to

upper bound the final error. From the recursion Ẽk+1 ≤ (1 − µδ)Ẽk ≤ (1 − µδ)kẼ0, we can
conclude

Ek = (1− µδ)−kDh(x
∗,xk),

is a Lyapunov function, as well as the convergence bound, Dh(x
∗,xk) ≤ O(e−µδk).

Bregman Proximal Minimization When f is µ-strongly convex with respect to h (A.7),
Ẽk = Dh(x

∗,xk), is a Lyapunov function for BPM,

Ẽk+1 − Ẽk
δ

= −
〈
∇h(xk+1)−∇h(xk)

δ
,x∗ − xk+1

〉
+ ε1

k

(2.17)
= −〈∇f(xk+1),x∗ − xk+1〉+ ε1

k

≤ −µDh(x
∗,xk+1) ≤ −µEk+1.

where the error ε1
k = −1

δ
Dh(xk+1,xk). From the recursion Ẽk+1 ≤ (1 + µδ)−1Ẽk ≤ (1 +

µδ)−kẼ0, we can conclude

Ek = (1 + µδ)kDh(x
∗,xk),

is a Lyapunov function, as well as the convergence bound, Dh(x
∗,xk) ≤ O(e−µδk).

B.2.4 Summary

We end this section by giving brief descriptions of the relationship between NGF and MF,
what changes when X is a compact, convex set, how to analyze proximal mirror descent, and
connections between mirror descent and information geometry.

Mirror Maps To summarize, on a Hessian Riemannian manifold, MF is the push-forward
of natural gradient flow NGF under the mapping φ = ∇h, and both are gradient flows. Fur-
thermore, this property, that flows on both spaces are gradient flows, is unique to Riemannian
manifolds with a Hessian metric structure (see Theorem 3.1 of [2]). To illustrate this prop-
erty, we demonstrate how the gradient flow changes as we map between these two spaces.

Consider a function f : X̃ → R defined on the set X̃ and a smooth bijective map φ : X̃ →
Ỹ. The push-forward of f function under the map leads to a new objective function f̃ : Ỹ → R

APPENDIX B. CHAPTER TWO 99

defined on Ỹ, given by f̃ = f ◦ φ−1. We compute the gradient of f̃ at a point y = φ(x) as
∇f̃(y) = ∂zf̃(z)|z=y = ∂z(f ◦ φ−1)(z)|z=y = Jφ−1(y)∂zf(φ−1(z))|z=y = Jφ−1(y)∇f(φ−1(y)),
where Jφ−1(y) is the Jacobian (partial derivatives) of φ−1(z) at z = y, represented as a matrix.
We compute how the general metric g(x) on X changes at a point, where we eventually make
the choice g = ∇2h. The pullback metric of g, which we denote g̃ = φ−1g at a point y = φ(x),
is given by g̃(y) = Jφ−1(y)>(g ◦ φ−1)(y)Jφ−1(y). Putting the pieces together, we can calculate

natural gradient flow on Ỹ as Ẏt = −g̃(Yt)
−1∇f̃(Yt) = −Jφ−1(Yt)

−1g(φ−1(Yt))
−1∇f(φ−1(Yt)).

X̃

Hessian Metric ∇2h(x)

Function f(x)

Gradient Flow d
dtXt = −[∇2h(Xt)]

−1∇f(Xt)

Ỹ

Hessian Metric ∇2h∗(y) = [∇h2(x)]−1

Function f(∇h∗(y)) = f̃(y)

Gradient Flow d
dtYt = −[∇2h∗(Yt)]

−1∇f̃(Yt)

= −∇f(Xt)

“Mirror Map”
y = ∇h(x)

Figure B.1: The mirror map represents the duality relationship between MF and NGF.

If we take g = ∇2h and φ−1 = ∇h∗, where h∗ : X̃ ∗ → X̃ → is the Legendre dual function
defined on a the dual space X̃ ∗, then we obtain the identities,

∇h(∇h∗(y)) = y (B.15)

and

∇2h∗(y)∇2h(∇h∗(y)) = I. (B.16)

Using these identities, we can write the gradient flow on Ỹ = X̃ ∗ as d
dt
Yt = −∇f(∇h∗(Yt)) =

−∇f(Xt).

Projections We adopt the setting described at the beginning of the subsection, where X ⊆
Rd is a convex, compact set. We can write the MF (2.12) as the system of differential
equations,

d

dt
Yt = −∇f(Xt) (B.17a)

Xt ∈ ΠX∩X̃ (∇h∗(Yt)). (B.17b)

APPENDIX B. CHAPTER TWO 100

Here,

ΠX∩X̃ (x) := arg min
y∈X∩X̃

Dh(y,x) (B.18)

is a Bregman projection operator.
We can similarly write MD as,

yk+1 = ∇h(xk)− δ∇f(xk) (B.19a)

xk+1 ∈ ΠX∩X̃ (∇h∗(yk+1)) (B.19b)

where we use the same Bregman projection operator ΠX (x) = arg miny∈X∩X̃ Dh(y,x). A
similar variational condition ∇h(xk) = yk is implied using the mirror map. For this modified
algorithm, nearly all of the same Lyapunov arguments presented in this section follow using
the same Lyapunov functions; the only modification in each analysis involves recognizing the
following property of projection operator (A.28),

Dh(x
∗,xk+1) ≤ Dh(x

∗, yk+1)

As a specific example, the following argument can be made for mirror descent where f is
µ-strongly convex with respect to h (A.7), using Ẽk = Dh(x

∗,xk):

Ẽk+1 − Ẽk
δ

≤ −
〈
∇h(yk+1)−∇h(xk)

δ
,x∗ − xk

〉
+ ε1

k

(B.19a)
= 〈∇f(xk),x

∗ − xk〉+ ε1
k

≤ −µDh(x
∗,xk) + ε2

k ≤ −µẼk

Here, the first line uses the inequality Ẽk+1−Ẽk
δ

≤ 1
δ
Dh(x

∗, yk+1)− 1
δ
Dh(x

∗,xk). The first error
scales as ε1

k = −〈(∇h(yk+1)−∇h(xk))/δ,xk−yk+1〉+ 1
δ
Dh(yk+1,xk) = 〈∇f(xk),xk−yk+1〉−

1
δ
Dh(yk+1,xk). The second error scales as ε2

k = f(x∗)−f(yk+1)−Df (yk+1,xk)− 1
δ
Dh(yk+1,xk),

which we can upper bound using the (1/δ)- smoothness of f with respect to h (A.14). In other
words, its the same argument as the unconstrated case, where we replace xk+1 with yk+1.

A projection step can be similarly added to each update of the MP algorithm (2.19) and
the same Lyapunov functions used, similar to what we have just shown.

Proximal Mirror Descent Suppose we can decompose the objective function into two
components, f = f1 + f2 where one of them is easy to optimize over. The forward-backward
splitting method, i.e. proximal mirror descent, is obtained by applying the forward-Euler (1.6)
discretization to f1 and backward-Euler (1.5) discretization to f2:

yk+1 = ∇h(xk)− δ∇f2(xk) (B.20a)

xk+1 ∈ Proxh,X̃∩X
δf1

(∇h∗(yk+1)). (B.20b)

APPENDIX B. CHAPTER TWO 101

Here, Proxh,X̃∩X
δf1

= arg minx∈X̃∩X{f1(x) + 1
δ
Dh(x, y)} is the Bregman proximal function. The

update (B.20) satisfies the variational condition,

∇h(xk+1)−∇h(xk)

δ
= −∇f2(xk)−∇f1(xk+1).

Lyapunov arguments for this FB-splitting method can be obtained by combing the Lyapunov
functions for the Bregman method and mirror descent, given the vector field is additive and
the same Lyapunov functions can be used in both settings. We relax the differentiability of
f1 in the next subsection.

Relevant Citations The Bregman Proximal Minimization has a long established his-
tory [11]. Mirror descent has also been discussed by many [39, 8]. The continuous time
Lyapunov function (2.13) have been remarked on many times [39, 2, 75]; so too, has the dual
relationship between MF and NGF [8, 61]. The connection between MF/MD and informa-
tion geometry, game theory and theormodynamics has been extensively studied by many [23,
7, 22]. For a particularly nice survey on the connection between the replicator equation,
evolutionary game theory, Nash equilibria and biology, see [7]

B.3 Subgradients and Time Reparameterization

B.3.1 Strongly Convex Functions

We analyze dynamics (2.22) in the setting where f is µ-strongly convex with respect to h (A.7)
using the parameterized Lyapunov function (B.14),

Eτt = eµτtDh(x
∗,Yt). (B.21)

Observe that,

d

dt
Eτt = Dh(x

∗,Yt)
d

dt
eµτt + eµτt

d

dt
Dh(x

∗,Yt)

= µτ̇te
µτtDh(x

∗,Yt)− eµτt
〈
d

dt
∇h(Yt),x

∗ − Yt
〉

= eµτt τ̇t

(
µDh(x

∗,Yt) +
〈
G(Yt, Ẏt),x

∗ − Yt
〉)

(A.6)

≤ − 1

µ
(f(Xt)− f(x∗))

d

dt
eµτt (B.22)

From this argument, we obtain the upper bound,

Dh(x
∗,Yt) ≤

eµτ0Dh(x
∗,Y0)

eµτt

APPENDIX B. CHAPTER TWO 102

and an O(eµτt) convergence rate. Define X̂t =
∫ t

0
Xsde

µτs/eµτt. By Jensen’s f(X̂t) ≤∫ t
0
f(Xs)de

µτs. From (B.22) we can also conclude the upper bound,

f(X̂t)− f(x∗) ≤ µEτ0
eµτt

,

as well as the fact that

Eτt = eµτtDh(x
∗,Yt) +

1

µ

∫ t

0

f(Ys)− f(x∗)deµτs

is a Lyapunov function.
Notice the difference between these two settings. In the convex case, the two scalings of

time which appear explicitly in the dynamics and Lyapunov function are the tuple (τt, τ̇t).
The two scalings of time that appear in the dynamic and Lyapunov function in the strongly
convex setting is (eµτt , τ̇t). Therefore, when we identify the first element in the tuple with the
discrete sequence Ak, the approximation of the time derivative will differ as (Ak,

Ak+1−Ak
δ

) and

(Ak,
Ak+1−Ak
µδAk+1

), respectively. In the latter case, we made the approximation τ̇t = d
dt
eµτt/µeµτt ≈

(Ak+1 − Ak)/µδAk+1 := αk. With this approximation, the same argument can be made for
the scaled MD (2.24) and PM (2.27).

Mirror descent for non-smooth functions To analyze mirror descent (2.24) when f
is µ-strongly convex with respect to h (A.7) we use the scale-free Lyapunov function

EAk = AkDh(x
∗, yk).

Observe that,

EAk+1
− EAk
δ

= Dh(x
∗, yk)

Ak+1 − Ak
δ

+ Ak+1
Dh(x

∗, yk+1)−Dh(x
∗, yk)

δ

= Ak+1αkµDh(x
∗, yk)− Ak+1

〈
∇h(yk+1)−∇h(yk)

δ
,x∗ − yk

〉
+ ε1

k

= Ak+1αk(µDh(x
∗, yk)− 〈g(yk),x

∗ − yk〉) + ε1
k ≤ ε2

k (B.23)

where the first error scales as ε1
k = Ak+1(αk〈g(yk), yk−yk+1〉− 1

δ
Dh(yk+1, yk)) and the second

as, ε2
k = Ak+1(αk〈g(yk), yk − yk+1〉 − 1

δ
Dh(yk+1, yk)− αk(f(yk)− f(x∗)) ≤ ε1

k. We can upper
bound ε2

k using the same argument as in the convex case. We assume h is σ-strongly convex

and apply Young’s inequality (A.25) to obtain the bound ε2
k ≤ ε1

k ≤
(Ak+1−Ak)2

2µ2σδAk+1
‖g(yk)‖2

∗ −
Ak+1−Ak

δµ
(f(yk) − f(x∗)) := ε3

k. Assume ‖∂f(y)‖2
∗ ≤ G2 for all y ∈ X and some finite

constant G. Choosing Ak = (k + 1)k and δ = 1 so that αk = 2
δµ(k+2)

and α̃k = αkAk+1 =
Ak+1−Ak

δµ
= 2(k + 1)/δµ, we obtain the upper bound

Dh(x
∗, yk) ≤

A0Dh(x
∗, y0) + δ 1

2σ

∑k
s=0

α̃2
k

Ak+1
G2

Ak
(B.24)

APPENDIX B. CHAPTER TWO 103

and an O(1/k) convergence rate. Define ŷk =
∑k

s=0 ysαs/Ak. By Jensen’s f(x̂k) ≤
∑k

s=0 f(ys)αs.
From (B.23) we can also conclude the upper bound

f(ŷk)− f(x∗) ≤
µE0 + δ 1

2σ

∑k
s=0

α̃2
k

Ak+1
G2

Ak

as well as the fact that

EAk = AkDh(x
∗, yk) +

1

µ

k−1∑
s=0

(f(xs)− f(x∗))
As+1 − As

δ
δ,

is a Lyapunov function.

Holder Continuous Gradients If f is Holder-smooth (A.15), the following Lyapunov
function,

EAk = Dh(x
∗, yk) +

k∑
s=0

(f(ys)− f(x∗))
As+1 − As

δ
.

for mirror descent (2.22) will full gradients. Using the analysis in the unsmooth case, it is
to check

EAk+1
− EAk
δ

= −Df (x
∗, yk)αk + ε1

k

where the error scales as ε1
k = αk(f(yk+1)−f(yk)+〈∇f(yk), yk−yk+1〉)− 1

δ
Dh(yk+1, yk). Using

the Holder continuity of the gradients, along with the σ-strong convexity of f , we obtain the
upper bound ε1

k = L
1+ν

αk‖yk+1 − yk‖1+ν − σ
δ
‖yk+1 − yk‖2. We upper bound the error using

Young’s inequality (A.25) 1
1+ν

t1+ν ≤ 1
2s
t2 + 1−ν

1+ν
s

1+ν
1−ν , with t = ‖yk+1 − yk‖ and s = δαkL/σ

provides the upper bound ε1
k ≤ 1−ν

1+ν
1
2
α

2
1−ν
k L(σL/σ)

1+ν
1−ν . The choice αk = Dh(x

∗,x0)/k
1+ν
2 leads

to an O(k−
1+ν
2) convergence rate.

B.4 Accelerated Mirror Prox

Ek+1 − Ek
δ

= −
〈
∇h(zk+1)−∇h(zk)

δ
,x∗ − xk+1

〉
+ αk(f(xk+1)− f(x∗)) + ε1

k

(2.55d)
= Df (xk+1,x∗)αk + ε1

k

APPENDIX B. CHAPTER TWO 104

where the error scales as,

ε1
k = Ak

f(xk+1)− f(xk)

δ
−
〈
∇h(zk+1)−∇h(zk)

δ
,xk+1 − zk+1

〉
− 1

δ
Dh(zk+1, zk)

(2.55d)
(A.27)

= Ak
f(xk+1)− f(xk)

δ
+ αk〈∇f(xk+1),xk+1 − zk+1〉 −

1

δ
Dh(zk+1, z′k+1)

− 1

δ
Dh(z

′
k+1, zk)−

〈
∇h(z′k+1)−∇h(zk)

δ
, zk+1 − z′k+1

〉
Using convexity, we can further upper-bound the error as folows,

ε1
k

(2.55b)

≤ Ak+1

〈
∇f(xk+1),

xk+1 − xk
δ

〉
+ αk〈∇f(xk+1),xk − zk+1〉 −

1

δ
Dh(zk+1, z′k+1)

− 1

δ
Dh(z

′
k+1, zk) + αk〈∇f(x′k+1), zk+1 − z′k+1〉

(2.55c)
= αk〈∇f(xk+1)−∇f(x′k+1), z′k+1 − zk+1〉 −

1

δ
Dh(zk+1, z′k+1)− 1

δ
Dh(z

′
k+1, zk)

Using the (1/ε)-smoothness of f , Cauchy-Schwartz (A.26) and the identity
xk+1−x′k+1

δ
=

τk(z
′
k+1−zk), the inequality αk〈∇f(xk+1)−∇f(x′k+1), z′k+1−zk+1〉 ≤ δ

α2
k

Ak+1ε
‖z′k+1−zk+1‖‖z′k+1−

zk‖ and the σ-strong convexity of h gives the remaining upper bound (2.56).

B.5 Dynamics

B.5.1 Proof of Proposition 2.2.1

We compute the Euler-Lagrange equation for the second Bregman Lagrangian (2.39). Denote
z = x+ e−αtẋ. The partial derivatives of the Bregman Lagrangian can be written,

∂L
∂v

(Xt, Ẋt, t) = µeβt+γt (∇h(Zt)−∇h(Xt))

∂L
∂x

(Xt, Ẋt, t) = µeαt
∂L
∂v

(Xt, Ẋt, t)− µeβt+γt
d

dt
∇h(Xt)− eαt+βt+γt∇f(Xt).

We also compute the time derivative of the momentum p = ∂L
∂v

(Xt, Ẋt, t),

d

dt

∂L
∂v

(Xt, Ẋt, t) = (β̇t + γ̇t)
∂L
∂v

(Xt, Ẋt, t) + µeβt+γt
d

dt
∇h(Zt)− µeβt+γt

d

dt
∇h(Xt).

The terms involving d
dt
∇h(X) cancel and the terms involving the momentum will simplify un-

der the scaling condition (2.37a) when computing the Euler-Lagrange equation ∂L
∂x

(Xt, Ẋt, t) =
d
dt
∂L
∂v

(Xt, Ẋt, t). Compactly, the Euler-Lagrange equation can be written

d

dt
µ∇h(Zt) = −β̇tµ (∇h(Zt)−∇h(Xt))− eαt∇f(x).

APPENDIX B. CHAPTER TWO 105

Remark It interesting to compare with the partial derivatives of the first Bregman La-
grangian (A.2),

∂L
∂v

(Xt, Ẋt, t) = eγt (∇h(Zt)−∇h(Xt))

∂L
∂x

(Xt, Ẋt, t) = eαt
∂L
∂v

(Xt, Ẋt, t)− eγt
d

dt
∇h(Xt)− eαt+βt+γt∇f(Xt),

as well as the derivative of the momentum,

d

dt

∂L
∂v

(Xt, Ẋt, t) = γ̇t
∂L
∂v

(Xt, Ẋt, t) + eγt
d

dt
∇h(Zt)− eγt

d

dt
∇h(Xt).

For Lagrangian (A.2), not only do the terms involving d
dt
∇h(X) cancel when computing

the Euler-Lagrange equation, but the ideal scaling will also force the terms involving the
momentum to cancel as well.

B.5.2 Hamiltonian Systems

Bregman Hamiltonian. One way to understand a Lagrangian is to study its Hamilto-
nian, which is the Legendre conjugate (dual function) of the Lagrangian. Typically, when the
Lagrangian takes the form of the difference between kinetic and potential energy, the Hamilto-
nian is the sum of the kinetic and potential energy. The Hamiltonian is often easier to study
than the Lagrangian, since its second-order Euler-Lagrangian equation is transformed into
a pair of first-order equations. In our case, the Hamiltonian corresponding to the Bregman
Lagrangians (2.36) and are the following Bregman Hamiltonians,

H(x, p, t) = eαt+γt
(
Dh∗

(
∇h(x) + e−γtp, ∇h(x)

)
+ eβtf(x)

)
, (B.26)

and

H(x, p, t) = eαt+β+γt

(
µDh∗

(
∇h(x) +

1

µ
e−(βt+γt)p, ∇h(x)

)
+ f(x)

)
, (B.27)

respectively. These, indeed, have the form of the sum of the kinetic and potential energy.
Here the kinetic energy is measured using the Bregman divergence of h∗, which is the convex
dual function of h.

Calculating the Hamiltonian In this section we define and compute the Bregman Hamil-
tonian corresponding to the Bregman Lagrangian. In general, given a Lagrangian L(x, v, t),
its Hamiltonian is defined by

H(x, p, t) = 〈p, v〉 − L(x, v, t) (B.28)

APPENDIX B. CHAPTER TWO 106

where p = ∂L
∂v

is the momentum variable conjugate to position. For the Bregman La-
grangian (2.36), the momentum variable is given by

p =
∂L
∂v

= eγt
(
∇h(x+ e−αtv)−∇h(x)

)
. (B.29)

We can invert this equation to solve for the velocity v,

v = eαt
(
∇h∗(∇h(x) + e−γtp)− x

)
, (B.30)

where h∗ is the conjugate function to h (recall the definition in (A.24)), and we have used
the property that ∇h∗ = [∇h]−1. So for the first term in the definition (B.28) we have

〈p, v〉 = eαt
〈
p, ∇h∗(∇h(x) + e−γtp)− x

〉
.

Next, we write the Bregman Lagrangian L(x, v, t) in terms of (x, p, t). We can directly
substitute (B.30) to the definition (2.36) and calculate the result. Alternatively, we can use
the property that the Bregman divergences of h and h∗ satisfy Dh(y,x) = Dh∗(∇h(x),∇h(y)).
Therefore, we can write the Bregman Lagrangian (2.36) as

L(x, v, t) = eαt+γt
(
Dh∗

(
∇h(x), ∇h(x+ e−αtv)

)
− eβtf(x)

)
= eαt+γt

(
Dh∗

(
∇h(x), ∇h(x) + e−γtp

)
− eβtf(x)

)
= eαt+γt

(
h∗(∇h(x))− h∗(∇h(x) + e−γtp) + e−γt〈∇h∗(∇h(x) + e−γtp), p〉 − eβtf(x)

)
,

where in the second step we have used the relation ∇h(x+e−αtv) = ∇h(x)+e−γtp from (B.29),
and in the last step we have expanded the Bregman divergence.

Substituting these calculations into (B.28) and simplifying, we get

H(x, p, t) = eαt+γt
(
h∗(∇h(x) + e−γtp)− h∗(∇h(x))− 〈x, e−γtp〉+ eβtf(x)

)
.

For the Bregman Langrangian (2.39), we can invert the equation for its momentum vari-
able

v = eαt
(
∇h∗(∇h(x) +

1

µ
e−(γt+βt)p)− x

)
. (B.31)

Now we can solve for the Hamiltonian

H(x, p, t) = 〈p, v〉 − L(x, v, t)

= eαt
〈
p,∇h∗

(
1

µ
e−(γt+βt)p+∇h(x)

)
− x
〉

− eαt+γt+βt
(
µDh(∇h∗(∇h(x) +

1

µ
e−γt+βtp),x)− f(x)

)

APPENDIX B. CHAPTER TWO 107

Expanding, we have

H(x, p, t) = eαt
〈
p,∇h∗

(
1

µ
e−(γt+βt)p+∇h(x)

)
− x
〉

− eαt+γt+βt
(
µ(h∗(∇h(x))− h∗

(
∇h(x) +

1

µ
e−γt+βtp

))
− eαt

〈
∇h∗

(
1

µ
e−(γt+βt)p+∇h(x)

)
, p

〉
− eαt+γt+βtf(x)

= eαt+γt+βtµ

(
h∗
(
∇h(x) +

1

µ
e−(γt+βt)p

)
− h∗(∇h(x)) +

1

µ
e−(γt+βt) 〈p,∇h∗(∇h(x))〉

)
+ eαt+βt+γtf(x)

= eαt+γt+βt
(
µDh∗

(
∇h(x) +

1

µ
e−(γt+βt)p,∇h(x)

)
− f(x)

)
Thus, our generalized Hamiltonian has the form

H(x, p, t) = eαt+γt+βt
(
µDh∗

(
∇h(x) +

1

µ
e−(γt+βt)p,∇h(x)

)
− f(x)

)
Hamiltonian equations of motion. The second-order Euler-Lagrange equation of a La-
grangian can be equivalently written as a pair of first-order equations

d

dt
Xt =

∂H
∂p

(Xt,Pt, t),
d

dt
Pt = −∂H

∂x
(Xt,Pt, t). (B.32)

For the Bregman Hamiltonian (B.26), the equations of motion are given by

d

dt
Xt = eαt

(
∇h∗(∇h(Xt) + e−γtPt)−Xt

)
(B.33a)

d

dt
Pt = −eαt+γt∇2h(Xt)

(
∇h∗(∇h(Xt) + e−γtPt)−Xt

)
+ eαtPt − eαt+βt+γt∇f(Xt).

(B.33b)

Notice that the first equation (B.34a) recovers the definition of momentum (B.29). Further-
more, when γ̇t = eαt, by substituting (B.34a) to (B.34b) we can write (B.34) as

d

dt

{
∇h(Xt) + e−γtPt

}
= ∇2h(Xt) Ẋt − γ̇te−γtPt + e−γtṖt = −eαt+βt∇f(Xt).

Since ∇h(Xt)+e
−γtPt = ∇h(Xt+e

−αtẊt) by (B.34a), this indeed recovers the Euler-Lagrange
equation (2.38).

A Lyapunov function for the Hamiltonian equations of motion (B.34) is the following,
which is simply the Lyapunov function (2.48) written in terms of (Xt,Pt, t),

Et = Dh∗
(
∇h(Xt) + e−γtPt, ∇h(x∗)

)
+ eβt(f(Xt)− f(x∗)).

APPENDIX B. CHAPTER TWO 108

For the Bregman Hamiltonian (B.27), the equations of motion are given by

d

dt
Xt = eαt

(
∇h∗(∇h(Xt) +

1

µ
e−(βt+γt)Pt)−Xt

)
(B.34a)

d

dt
Pt = −eαt+βtγt

(
µ∇2h(Xt)

(
∇h∗(∇h(Xt) +

1

µ
e−(βt+γt)Pt)−Xt

)
− e−(βt+γt)Pt +∇f(Xt)

)
.

(B.34b)

A Lyapunov function for the Hamiltonian equations of motion (B.34) is the following,
which is simply the Lyapunov function (2.48) written in terms of (Xt,Pt, t),

Et = µDh∗

(
∇h(Xt) +

1

µ
e−(βt+γt)Pt, ∇h(x∗)

)
+ eβt(f(Xt)− f(x∗)).

The Hamiltonian formulation of the dynamics has appealing properties that seem wor-
thy of further exploration. For example, Hamiltonian flow preserves volume in phase space
(Liouville’s theorem); this property has been used in the context of sampling to develop the
technique of Hamiltonian Markov chain Monte-Carlo, and may also be useful to help us de-
sign better algorithms for optimization. Furthermore, the Hamilton-Jacobi-Bellman equation
(which is a reformulation of the Hamiltonian dynamics) is a central object of study in the
field of optimal control theory, and it would be interesting to study the Bregman Hamiltonian
framework from that perspective.

B.6 Algorithms derived from (2.38)

We prove the following proposition, which is more general than proposition 2.2.3

Proposition B.6.1. Assume that the distance-generating function h is σ-uniformly convex
with respect to the p-th power of the norm (p ≥ 2) (A.5) and the objective function is convex.
Using only the updates (2.46a) and (2.46b), and using the Lyapunov function (2.48), we
have the following bound:

Ek+1 − Ek
δ

≤ −Ak+1 − Ak
δ

Df (xk,x
∗) + εk+1 ≤ εk+1

where the error term scales as,

εk+1 =
p− 1

p
σ−

1
p−1 δ

1
p−1α

p
p−1

k ‖∇f (yk+1) ‖
p
p−1 + Ak+1

f (yk+1)− f (xk+1)

δ
(B.35a)

If we use the updates (2.47a) and (2.47c) instead, the error term scales as,

εk+1 =
p− 1

p
σ−

1
p−1 δ

1
p−1α

p
p−1

k ‖∇f (yk+1) ‖
p
p−1 + Ak+1

〈
∇f (yk+1) ,

yk+1 − xk+1

δ

〉
(B.35b)

APPENDIX B. CHAPTER TWO 109

The error bounds (2.50) were obtained using no smoothness assumption on f and h;
they also hold when full gradients of f are replaced with elements in the subgraident of f .
The bounds was also obtained without using the arbitrary update yk+1 = G(x). In particular,
accelerated methods are obtained by picking a map G that results in a better bound on the error
than the straight forward discretization yk+1 = xk+1. We immediately see that any algorithm

for which the map G satisfies the progress condition f(yk+1)−f(xk+1) ∝ −‖∇f(xk+1)‖
p
p−1 or

〈∇f(yk+1), yk+1 − xk+1〉 ∝ −‖∇f(yk+1)‖
p
p−1 will obtain a O(1/εσkp) convergence rate. We

now present short descriptions of the main results for the aforementioned five papers.

B.6.1 Proof of Proposition B.6.1

We show the initial bounds (B.35a) and (B.35b). We begin with algorithm (2.46):

Ek+1 − Ek
δ

= −
〈
∇h (zk+1)−∇h (zk)

δ
,x∗ − zk+1

〉
− 1

δ
Dh (zk+1, zk) + Ak+1

f (yk+1)− f (xk+1)

δ

+
Ak+1 − Ak

δ
(f (xk+1)− f (x∗)) + Ak

f (xk+1)− f (yk)

δ
(2.46b)

= αk 〈∇f (xk+1) ,x∗ − zk+1〉 −
1

δ
Dh (zk+1, zk) + Ak+1

f (yk+1)− f (xk+1)

δ

≤ αk 〈∇f (xk+1) ,x∗ − zk〉+ αk 〈∇f (xk+1) , zk − zk+1〉 −
σ

δp
‖zk+1 − zk‖p

+ Ak+1
f (yk+1)− f (xk+1)

δ
+
Ak+1 − Ak

δ
(f (xk+1)− f (x∗)) + Ak

f (xk+1)− f (yk)

δ

≤ αk 〈∇f (xk+1) ,x∗ − zk〉Ak
f (xk+1)− f (yk)

δ
+
Ak+1 − Ak

δ
(f (xk+1)− f (x∗))

+
p− 1

p
σ−

1
p−1 δ−1 (Ak+1 − Ak)

p
p−1 ‖∇f (xk+1) ‖

p
p−1 + Ak+1

f (yk+1)− f (xk+1)

δ

The first inequality follows from the σ-uniform convexity of h with respect to the p-th power
of the norm and the last inequality follows from Young’s inequality (A.25). If we continue
with our argument, and plug in the identity (B.35a), it simply remains to use our second
update (2.46a):

Ek+1 − Ek
δ

≤ αk 〈∇f (xk+1) ,x∗ − zk〉+ Ak
f (xk+1)− f (yk)

δ
+
Ak+1 − Ak

δ
(f (xk+1)− f (x∗))

+
p− 1

p
σ−

1
p−1 δ−1 (Ak+1 − Ak)

p
p−1 ‖∇f (xk+1) ‖

p
p−1 + Ak+1

f (yk+1)− f (xk+1)

δ

≤ αk 〈∇f (xk+1) ,x∗ − yk〉+ Ak+1

〈
∇f (xk+1) ,

yk − xk+1

δ

〉
+ Ak

f (xk+1)− f (yk)

δ

+
Ak+1 − Ak

δ
(f (xk+1)− f (x∗)) + εk+1

= −Ak+1 − Ak
δ

Df (x∗,xk+1)− Ak+1/δDf (xk+1, yk) + εk+1

APPENDIX B. CHAPTER TWO 110

From here, we can conclude Ek+1−Ek
δ

≤ εk using the convexity of f .
We now show the bound (B.35b) for algorithm (2.47)

Ek+1 − Ek
δ

=
Dh (x∗, zk+1)−Dh (x∗, zk)

δ
+ Ak+1 (f (yk+1)− f(x))− Ak (f(yk)− f(x∗))

(2.47c)
= αk 〈∇f(yk+1),x∗ − zk+1〉 −

1

δ
Dh (zk+1, zk) +

Ak+1 − Ak
δ

(f (yk+1)− f (x∗))

+ Ak
f (yk+1)− f (yk)

δ

≤ αk 〈∇f (yk+1) ,x∗ − zk〉+ αk 〈∇f (yk+1) , zk − zk+1〉 −
σ

δp
‖zk+1 − zk‖p

+
Ak+1 − Ak

δ
(f (yk+1)− f (x∗)) + Ak

f (yk+1)− f (yk)

δ

≤ αk 〈∇f(yk+1),x∗ − zk〉+ Ak
f (yk+1)− f (yk)

δ
+
Ak+1 − Ak

δ
(f (yk+1)− f(x∗))

− Ak+1〈∇f(yk+1),
yk+1 − xk+1

δ
〉+ εk+1

The first inequality follows from the uniform convexity of h and the second uses Young’s
inequality (A.25) and definition (B.35b). Using the second update (2.47a), we obtain our
initial error bound:

Ek+1 − Ek
δ

≤ αk 〈∇f (yk+1) ,x∗ − yk〉+ Ak
f (yk+1)− f (yk)

δ
+
Ak+1 − Ak

δ
f (yk+1)− f (x∗)

+ Ak+1

〈
∇f (yk+1) ,

yk − xk+1

δ

)
− Ak+1

〈
∇f (yk+1) ,

yk+1 − xk+1

δ

)
+ εk+1

= αkDf (x
∗, yk+1)− Ak/δDf (yk+1, yk) + εk+1

Accelerated universal methods [40, 6, 46, 21] The term “universal methods” refers to
the algorithms designed for the class of functions with (ε, ν)-Holder-continuous higher-order
gradients (2 ≤ p ∈ N, ν ∈ (0, 1], ε > 0),

‖∇p−1f(x)−∇p−1f(y)‖ ≤ 1

ε
‖x− y‖ν . (B.36)

Typically, practitioners care about the setting where we have Holder continuous gradients
(p = 2) or Holder-continuous Hessians (p = 3), since methods which use higher-order infor-
mation are often too computationally expensive. In the case p ≥ 3, the gradient update

Gε,p,ν,N(x) = arg min
y∈X

{
fp−1(x; y) +

N

εp̃
‖x− y‖p̃

}
, p̃ = p− 1 + ν, N > 1 (B.37)

can be used to simplify the error (2.50b) obtained by algorithm (2.47). Notice, the gradi-
ent update is regularized by the smoothness parameter p̃. We summarize this result in the
following proposition.

APPENDIX B. CHAPTER TWO 111

Lemma B.6.2. Assume f has Holder continuous higher-order gradients. Using the map
yk+1 = Gε,p,ν,N(xk+1) defined by (B.37) in update (2.47b), results in the following progress
condition,

〈∇f(yk+1), yk+1 − xk+1〉 ≤ −
(N2 − 1)

p̃−1
2p̃−2

2N
ε

1
p̃−1 ‖∇f(yk+1)‖

p̃
p̃−1 , (B.38)

where p̃ = p− 1 + ν and p ≥ 3.

Lemma B.6.2 demonstrates that if the Taylor approximation is regularized according to
the smoothness of the function, the progress condition scales as a function of the smooth-
ness in a particularly nice way. Using this inequality, we can simplify the error (2.50b) in
algorithm (2.47) to the following,

εk+1 =
p̃− 1

p̃
σ−

1
p̃−1

(Ak+1 − Ak)
p̃
p̃−1

δ
‖∇f(yk+1)‖

p̃
p̃−1

− Ak+1

δ

(N2 − 1)
p̃−1
2p̃−2

2N
ε

1
p̃−1‖∇f(yk+1)‖

p̃
p̃−1 ,

where we have assumed that the geometry scales nicely with the smoothness condition: Dh(x, y) ≥
σ
p̃
‖x − y‖p̃. This requires the condition p ≥ 3. To ensure a non-positive error we choose a

sequence which satisfies the bound,

(Ak+1 − Ak)
p̃
p̃−1

Ak+1

≤ (εσ)
1
p̃−1

p̃

p̃− 1

(N2 − 1)
p̃−1
2p̃−2

2N
:= Cε,σ,p̃,N .

This bound is maximized by polynomials in k of degree p̃ with leading coefficient propor-
tional to C p̃−1

ε,σ,p̃,N ; this results in the convergence rate bound f(yk) − f(x∗) ≤ O(1/εσkp̃) =
O(1/εσkp−1+ν). We can compare this convergence rate, to that obtained by using just gradi-
ent map yk+1 = Gε,p,p̃,N(yk); this algorithm obtains a slower f(yk)− f(x∗) ≤ O(1/εσkp̃−1) =
O(1/εσkp−2+ν) convergence rate under the same smoothness assumptions. This result unifies
and extends the analyses of the accelerated (universal) cubic regularized Newton’s method [40,
21] and accelerated higher-order methods [6]. Wibisono et. al. [76] show that ‖xk − yk‖ =
O(ε1/p̃) and εk = O(ε1/p̃) so that as ε1/p̃ → 0 we recover the dynamics (2.41) and the state-
ment Ėt ≤ 0 for Lyapunov function (2.38).

We end by mentioning that in the special case p = 2, Nesterov [46] showed that a slightly
modified gradient map,

Gε̃(x) = x− ε̃∇f(x), (B.39)

has the following property when applied to functions with Holder continuous gradients.

APPENDIX B. CHAPTER TWO 112

Lemma B.6.3. ([46, Lemma 1]) Assume f has (ε, ν)-Holder continuous gradients, where

ν ∈ (0, 1]. Then for 1/ε̃ ≥ (1/2δ̃)
1−ν
1+ν (1/ε)

2
1+ν the following bound,

f(yk+1)− f(xk+1) ≤ − ε̃
2
‖∇f(xk+1)‖2 + δ̃,

holds for yk+1 = Gε̃(xk+1) given by (B.39).

That is, if we take a gradient descent step with increased regularization and assume h is
σ-strongly convex, the error for algorithm (2.46) when f is (ε, ν)-Holder continuous can be
written as,

εk+1 =
(Ak+1 − Ak)2

2σδ
‖∇f(xk+1)‖2 − ε̃Ak+1

2δ
‖∇f(xk+1)‖2 + δ̃. (B.40)

This allows us to conclude O(1/ε̃σk2) convergence rate of the function to within δ̃, which is
controlled by the amount of regularization ε̃ we apply in the gradient update.

B.6.2 Proof of Lemma B.6.2

A similar progress bound was proved in Wibisono, Wilson and Jordan [76, Lem 3.2]. Note,
y = G(x) satisfies the optimality condition

p−1∑
i=1

1

(i− 1)!
∇if(x) (y − x)i−1 +

N

ε
‖y − x‖p̃−2 (y − x) = 0. (B.41)

Furthermore, since ∇p−1f is Holder-continuous (B.36), we have the following error bound
on the (p− 2)-nd order Taylor expansion of ∇f ,∥∥∥∥∥∇f(y)−

p−1∑
i=0

1

(i− 1)!
∇if(x)(y − x)i−1

∥∥∥∥∥ =

∥∥∥∥∫ 1

0

[∇p−1f(ty + (1− t)x)−∇p−1f(x)](y − x)p−2dt

∥∥∥∥
≤ 1

ε
‖y − x‖p−2+ν

∫ 1

0

tν =
1

ε
‖y − x‖p̃−1 (B.42)

Substituting (B.41) to (B.42) and writing r = ‖y − x‖, we obtain∥∥∥∥∇f(y) +
Nrp̃−2

ε
(y − x)

∥∥∥∥
∗
≤ rp̃−1

ε
. (B.43)

Now the argument proceeds as in [76]. Squaring both sides, expanding, and rearranging the
terms, we get the inequality

〈∇f(y),x− y〉 ≥ ε

2Nrp̃−2
‖∇f(y)‖2

∗ +
(N2 − 1)rp̃

2Nε
. (B.44)

APPENDIX B. CHAPTER TWO 113

Note that if p̃ = 2, then the first term in (B.44) already implies the desired bound (B.38).
Now assume p̃ ≥ 3. The right-hand side of (B.44) is of the form A/rp̃−2 + Brp̃, which is a

convex function of r > 0 and minimized by r∗ =
{

(p̃−2)
p̃

A
B

} 1
2p̃−2

, yielding a minimum value of

A

(r∗)p̃−2
+B(r∗)p = A

p̃
2p̃−2B

p̃−2
2p̃−2

[(
p̃

p̃− 2

) p̃−2
2p̃−2

+

(
p̃− 2

p̃

) p̃
p̃−2

]
≥ A

p̃
2p̃−2B

p̃−2
2p̃−2 .

Substituting the values A = ε
2N
‖∇f(y)‖2

∗ and B = 1
2Nε

(N2 − 1) from (B.44), we obtain

〈∇f(y),x−y〉 ≥
(ε

2N
‖∇f(y)‖2

∗

) p̃
2p̃−2

(
1

2Nε
(N2 − 1)

) p̃−2
2p̃−2

=
(N2 − 1)

p̃−2
2p̃−2

2N
ε

1
p̃−1‖∇f(y)‖

p̃
p̃−1
∗ ,

which proves the progress bound (B.38).

B.6.3 Proof of Proposition 2.2.4

We show the initial error bound (2.64). We check,

Ek+1 − Ek
δ

=
Ak+1 − Ak

δ
(f (yk)− f (x∗)− µDh (x∗, zk)) + Ak+1

f (yk+1)− f (yk)

δ

− Ak+1µ

〈
∇h (zk+1)−∇h (zk)

δ
,x∗ − zk

〉
+ ε1

k

≤ Ak+1 − Ak
δ

(f (yk)− f (x∗)− µDh (x∗, zk)) + Ak+1

〈
∇f(xk),

xk − yk
δ

〉
− µ

δ
Ak+1Dh (xk, yk)− Ak+1µ

〈
∇h (zk+1)−∇h (zk)

δ
,x∗ − zk

〉
+ ε2

k

(2.62b)
=

Ak+1 − Ak
δ

(f(yk)− f(x∗)− µDh (x∗, zk)) + Ak+1

〈
∇f(xk),

xk − yk
δ

〉
− µ

δ
Ak+1Dh (xk, yk) + Ak+1τk 〈∇f(xk),x

∗ − xk〉+ Ak+1τk 〈∇f (xk) ,xk − zk〉

− µAk+1τk 〈∇h (xk)−∇h (zk) ,x∗ − zk〉+ ε2
k

=
Ak+1 − Ak

δ
(f(yk)− f(x∗)− µDh (x∗, zk))−

µ

δ
Ak+1Dh (xk, yk)

+ Ak+1τk 〈∇f(xk),x
∗ − xk〉 − µAk+1τk 〈∇h (xk)−∇h (zk) ,x∗ − zk〉+ ε2

k

≤ Ak+1 − Ak
δ

(f (yk)− f (x∗)− µDh (x∗, zk))− Ak+1τk (f (xk)− f (x∗) + µDh (x∗,xk))

− Ak+1
σµ

2δ
‖xk − yk‖2 − Ak+1τkµ 〈∇h (xk)−∇h (zk) ,x∗ − zk〉+ ε2

k

APPENDIX B. CHAPTER TWO 114

Here, ε1
k = Ak+1µ ((〈∇h (zk+1)−∇h (zk)) /δ, zk − zk+1〉+1

δ
Dh (zk+1, zk)) ≤ Ak+1

σµ
2δ
‖∇h (zk+1)−

∇h(zk)‖2, where the upper bound follows from the σ-strong convexity of h and Young’s in-

equality. ε2
k = Ak+1

f(yk+1)−f(xk)

δ
+Ak+1

σµ
2δ
‖∇h (zk+1)−∇h (zk) ‖2. The first inequality uses the

µ-strong convexity of f with respect to h. The second inequality uses the strong convexity of
f and σ-strong convexity of h. We continue by using the Bregman three point identity (A.27)

Ek+1 − Ek
δ

=
Ak+1 − Ak

δ
(f (yk)− f (xk) + µDh (xk, zk))− Ak+1

σµ

2δ
‖xk − yk‖2 + ε2

k

≤ Ak+1 − Ak
δ

(〈∇f (xk) , yk − xk〉+ (1/ε)Dh (yk,xk)− µDh (xk, zk))

− Ak+1
σµ

2δ
‖xk − yk‖2 + ε2

k

The last line follows from using the (1/ε)-smoothness of f . Now we turn to the case where
h = 1

2
‖x‖2 (so σ = 1)

Ek+1 − Ek
δ

≤ Ak+1 − Ak
δ

(
〈∇f (xk) , yk − xk〉+

1

2ε
‖yk − xk‖2 − µ

2
‖xk − zk‖2

)
− δAk+1

µ

2

∥∥∥∥xk − ykδ

∥∥∥∥2

+ ε2
k + Ak+1

f (yk+1)− f (xk)

δ
+ δAk+1

µ

2

∥∥∥∥zk+1 − zk
δ

∥∥∥∥2

=
Ak+1 − Ak

δ

(
〈∇f (xk) , yk − xk〉+

1

2ε
‖yk − xk‖2 − µ

2τ 2
k δ

2
‖xk − yk‖2

)
− δAk+1τ

2
k

µ

2
‖zk − xk‖2 + ε2

k + Ak+1
f (yk + 1)− f (xk)

δ

+ δAk+1
µ

2
‖τk (xk − zk − (1/µ)∇f (xk)) ‖2

= −δAk+1

(
Ak+1µ

2αkδ
− αkδ

2Ak+1ε

)∥∥∥∥yk − xkδ

∥∥∥∥2

+ Ak+1

(
f (yk+1)− f (xk)

δ
+ δτ 2

k

1

2µ
‖∇f (xk) ‖2

)

B.6.4 Proof of Theorem 2.2.6

We follow the framework of Su, Boyd and Candes [70, pg. 36]. It suffices to established that
our Lyapunov function is monotonically decreasing. Although Et may not be differentiable,
we can study E(t+ ∆t)− E(t))/∆t for small ∆t > 0. For the first term in (2.65), note that

(t+ ∆t)p(f(Xt+∆t)− f(x))− tp(f(Xt)− f(x)) = tp(f(Xt+∆t)− f(Xt))

+ ptp−1(f(Xt+∆t)− f(x))∆t+ o(∆t)

= tp〈Gf (Xt, Ẋt), Ẋt〉∆t
+ ptp−1(f(Xt+∆t)− f(x))∆t+ o(∆t)

APPENDIX B. CHAPTER TWO 115

where the second line follows since we assume f is locally Lipschitz, the o(∆t) does not affect
the function in the limit:

f(Xt+∆t) = f(X + ∆tẊt + o(∆t)) = f(X + ∆tẊt) + o(∆t)

= f(Xt) + 〈Gf (Xt, Ẋt), Ẋt〉∆t+ o(∆t) (B.45)

The second term Dh(x,Xt + t
p
Ẋt) is differentiable, with derivative −

〈
d
dt
∇h(Zt),x− Zt

〉
.

Hence,

Dh

(
x,Xt+∆t +

t+ ∆t

p
Ẋt+∆t

)
−Dh

(
x,Xt +

t

p
Ẋt

)
= −

〈
d

dt
∇h(Zt),x− Zt

〉
∆t+ o(∆t)

= ptp−1〈Gϕ(Xt, Ẋt),x− Zt〉∆t+ o(∆t)

= ptp−1〈Gϕ(Xt, Ẋt),x−Xt〉∆t+ tp〈Gϕ(Xt, Ẋt), Ẋt〉∆t+ o(∆t)

≤ −ptp−1(f(Xt)− f(x))∆t+ tp〈Gϕ(Xt, Ẋt), Ẋt〉∆t+ o(∆t)

= −ptp−1(f(Xt)− f(x))∆t+ tp〈Gf (Xt, Ẋt), Ẋt〉∆t

The inequality follows from the convexity of f .Combining everything we have shown

lim sup
∆t→0+

Et+∆t − Et
∆t

≤ 0,

which along with the continuity of Et, ensures Et is a non-increasing of time. We can make a
similar argument for dynamic (2.66). Notice the first term in the approximation E(t+∆t)−
E(t))/∆t, is the same as in the previous setting. Therefore we calculate the second term,

(tp + ∆t)

(
Dh

(
x,Xt+∆t +

t+ ∆t

p
Ẋt+∆t

)
−Dh

(
x,Xt +

t

p
Ẋt

))
− ptp−1Dh

(
x,Xt +

t

p
Ẋt

)
∆t

= (tp + ∆t)

(
−
〈
d

dt
∇h(Zt),x− Zt

〉
∆t+ o(∆t)

)
− ptp−1Dh

(
x,Xt +

t

p
Ẋt

)
∆t

(2.66)
= ptp−1

(
−〈∇h(Xt)−∇h(Zt),x− Zt〉∆t+

〈
G(Xt, Ẋt),x− Zt

〉
∆t−Dh(x,Zt)∆t+ ∆t

)
(A.27)

= ptp−1
(
Dh(x

∗,Xt)∆t+
〈
G(Xt, Ẋt),x− Zt

〉
∆t
)

≤ −ptp−1(f(Xt)− f(x))∆t+ tp〈Gf (Xt, Ẋt), Ẋt〉∆t

where the last line follows from convexity. Combining everything we have shown

lim sup
∆t→0+

Et+∆t − Et
∆t

≤ 0,

which along with the continuity of Et, ensures Et is a non-increasing of time.

APPENDIX B. CHAPTER TWO 116

B.7 Estimate Sequences

In this section we formalize the connection between estimate sequences and Lyapunov func-
tions.

B.7.1 The Quasi-Montone Subgradient Method

The discrete-time estimate sequence (2.72) for quasi-monotone subgradient method can be
written:

φk+1(x)− A−1
k+1ε̃k+1 := f(xk+1) + A−1

k+1Dh(x, zk+1)− A−1
k+1ε̃k+1

(2.72)
= (1− τk)

(
φk(x)− A−1

k ε̃k
)

+ τkfk(x)

=

(
1− αk

Ak+1

)(
f(xk) +

1

Ak
Dh(x, zk)−

ε̃k
Ak

)
+

αk
Ak+1

fk(x).

Multiplying through by Ak+1, we have

Ak+1f(xk+1) +Dh(x, zk+1)− ε̃k+1 = (Ak+1 − αk)(f(xk) + A−1
k Dh(x, zk)− A−1

k ε̃k)

− (Ak+1 − αk)A−1
k ε̃k + αkfk(x)

= Ak
(
f(xk) + A−1

k Dh(x, zk)− A−1
k ε̃k

)
+ αkfk(x)

(2.71)

≤ Akf(xk) +Dh(x, zk)− ε̃k + αkf(x).

Rearranging, we obtain our Lyapunov argument Ek+1 ≤ Ek + εk+1 for (2.48):

Ak+1(f(xk+1)− f(x)) +Dh(x, zk+1) ≤ Ak(f(xk)− f(x)) +Dh(x, zk) + εk+1.

Going the other direction, from our Lyapunov analysis we can derive the following bound:

Ek ≤ E0 + ε̃k (B.46)

Ak(f(xk)− f(x)) +Dh(x, zk) ≤ A0(f(x0)− f(x)) +Dh(x, z0) + ε̃k

Ak

(
f(xk)−

1

Ak
Dh(x, zk)

)
≤ (Ak − A0)f(x) + A0

(
f(x0) +

1

A0

Dh(x
∗, z0)

)
+ ε̃k

Akφk(x) ≤ (Ak − A0)f(x) + A0φ0(x) + ε̃k. (B.47)

Rearranging, we obtain our estimate sequence (2.69) (A0 = 1) with an additional error term:

φk(x) ≤
(

1− A0

Ak

)
f(x) +

A0

Ak
φ0(x) +

ε̃k
Ak

=
(

1− 1

Ak

)
f(x) +

1

Ak
φ0(x) +

ε̃k
Ak

. (B.48a)

APPENDIX B. CHAPTER TWO 117

B.7.2 Frank-Wolfe

The discrete-time estimate sequence (2.72) for conditional gradient method can be written:

φk+1(x)− ε̃k+1

Ak+1

:= f(xk+1)− ε̃k+1

Ak+1

(2.72)
= (1− τk)

(
φk(x)− ε̃k

Ak

)
+ τkfk(x)

Table 2.8
=

(
1− αk

Ak+1

)(
f(xk)−

ε̃k
Ak

)
+

αk
Ak+1

fk(x).

Multiplying through by Ak+1, we have

Ak+1

(
f(xk+1)− ε̃k+1

Ak+1

)
= (Ak+1 − (Ak+1 − Ak))

(
f(xk)−

ε̃k
Ak

)
+ αkfk(x)

= Ak
(
f(xk)− A−1

k ε̃k
)

+ (Ak+1 − Ak)fk(x)

(2.71)

≤ Akf(xk)− ε̃k + (Ak+1 − Ak)f(x).

Rearranging, we obtain our Lyapunov argument Ek+1 − Ek ≤ εk+1 for (2.35) :

Ak+1(f(xk+1)− f(x)) ≤ Ak(f(xk)− f(x)) + εk+1.

Going the other direction, from our Lyapunov analysis we can derive the following bound:

Ek ≤ E0 + ε̃k

Akf(xk) ≤ (Ak − A0)f(x) + A0f(x0) + ε̃k

Akφk(x) ≤ (Ak − A0)f(x) + A0φ0(x) + ε̃k

Rearranging, we obtain our estimate sequence (2.69) (A0 = 1) with an additional error term:

φk(x) ≤
(

1− A0

Ak

)
f(x) +

A0

Ak
φ0(x) +

ε̃k
Ak

=
(

1− 1

Ak

)
f(x) +

1

Ak
φ0(x) +

ε̃k
Ak

.

Since the Lyapunov function property allows us to write

eβtf(Xt) ≤ (eβt − eβ0)f(x) + eβ0f(X0),

we can extract {f(Xt), e
βt} as the continuous-time estimate sequence for Frank-Wolfe.

B.7.3 Accelerated Gradient Descent (Strong Convexity)

The discrete-time estimate sequence (2.72) for accelerated gradient descent can be written:

φk+1(x) := f(xk+1) +
µ

2
‖x− zk+1‖2 (2.72)

= (1− τk)φk(x) + τkfk(x)
(2.71)

≤ (1− τk)φk(x) + τkf(x).

APPENDIX B. CHAPTER TWO 118

Therefore, we obtain the inequality Ẽk+1 − Ẽk ≤ −τkẼk for our Lyapunov function Ẽk =
f(xk)−f(xast)+ µ

2
‖x∗−xk‖2 by simply writing φk+1(x)−f(x)+f(x)−φk(x) ≤ −τk(φk(x)−

f(x)):

f(xk+1)− f(x) +
µ

2
‖x− zk+1‖2 −

(
f(xk)− f(x) +

µ

2
‖x− zk+1‖2

)
Table 2.8

≤ −τk
(
f(xk)− f(x) +

µ

2
‖x− zk+1‖2

)
.

Going the other direction, we have,

Ek+1 − Ek ≤ −τkEk
φk+1 ≤ (1− τk)φk(x) + τkf(x)

Ak+1φk+1 ≤ Akφk + (Ak+1 − Ak)f(x).

Summing over the right-hand side, we obtain the estimate sequence (2.69):

φk+1 ≤
(

1− A0

Ak+1

)
f(x) +

A0

Ak+1

φ0(x) =
(

1− 1

Ak+1

)
f(x) +

1

Ak+1

φ0(x).

Since the Lyapunov function property allows us to write

eβt
(
f(Xt) +

µ

2
‖x− Zt‖2

)
≤ (eβt − eβ0)f(x) + eβ0

(
f(X0) +

µ

2
‖x− Z0‖2

)
,

we can extract {f(Xt) + µ
2
‖x−Zt‖2, eβt} as the continuous-time estimate sequence for accel-

erated gradient descent in the strongly convex setting.

B.7.4 Adagrad with momentum

We analyze Adagrad with momentum (2.84) using the Lyapunov function (2.85). Denote
We check,

Ek+1 − Ek
δ

=
1

2
‖x∗ − zk+1‖2

Hk
− 1

2
‖x∗ − zk‖2

Hk
+
Ak+1 − Ak

δ
(f(xk+1)− f(x∗))

Ak
f(xk+1)− f(xk)

δ
+ ε1

k

= −
〈
Hk

zk+1 − zk
δ

,x∗ − zk+1

〉
+
Ak+1 − Ak

δ
(f(xk+1)− f(x∗))

Ak
f(xk+1)− f(xk)

δ
+ ε1

k

(2.84b)
= −αkDg

f (x
∗,xk+1)− αk 〈g(xk+1),xk+1 − zk+1〉+ Ak(f(xk+1)− f(xk)) + ε1

k

(2.84b)
= −αkDg

f (x
∗,xk+1)− Ak/δDg

f (xk,xk+1) + ε2
k

APPENDIX B. CHAPTER TWO 119

where the errors scale as ε1
k = 1

2
‖x∗ − zk+1‖2

Hk+1
− 1

2
‖x∗ − zk+1‖2

Hk
− 1

δ
‖zk+1 − zk‖2

Hk
and

ε2
k = ε1

k + αk〈∇f(xk+1), zk − zk+1〉. We use Young’s inequality to obtain the upper bound

ε2
k ≤

α2
k

2σ
‖g(xk+1)‖2

H∗k
+ 1

2
‖x∗−zk+1‖2

Hk+1
− 1

2
‖x∗−zk+1‖2

Hk
. Using Theorem 7 and Lemma 4 in

Duchi et al [16], we conclude the bounds 1
2
‖x∗−zk+1‖2

Hk+1
− 1

2
‖x∗−zk+1‖2

Hk
≤ maxk≤K ‖x∗−

zk‖2
2tr(H

1/2
K) = D2tr(H

1/2
K) where D is the diameter of the set and

∑K
s=1 ‖g(xs)‖2

H∗s
≤

2tr(H
1/2
K). From these upper bounds, we can conclude the an optimal f(xk) − f(x∗) ≤

O(1/
√
k) convergence rate. In particular, this method has a matching lower bound [16].

120

Appendix C

Chapter Three

C.1 Preliminaries

Notation. The notation is standard. [n] = {1, 2, ...,n} refers to the set of integers from
1 to n, and 2[n] refers to the set of all subsets of [n]. We let 1n ∈ Rn denote the vector of
all ones. Given a square matrix M with real eigenvalues, we let λmax(M) (resp. λmin(M))
denote the maximum (resp. minimum) eigenvalue of M . For two symmetric matrices M ,N ,
the notation M < N (resp. M � N) means that the matrix M −N is positive semi-definite
(resp. positive definite). Every such M � 0 defines a real inner product space via the
inner product 〈x, y〉M = xTMy. We refer to its induced norm as ‖x‖M =

√
〈x,x〉M . The

standard Euclidean inner product and norm will be denoted as 〈·, ·〉 and ‖·‖2, respectively.
For an arbitrary matrix M , we let M † denote its Moore-Penrose pseudo-inverse and PM the
orthogonal projector onto the range of M , which we denote as R(M). When M < 0, we
let M1/2 denote its unique Hermitian square root. Finally, for a square n × n matrix M ,
diag(M) is the n× n diagonal matrix which contains the diagonal elements of M .

Partitions on [n]. In what follows, unless stated otherwise, whenever we discuss a partition

of [n] we assume that the partition is given by
⋃n/p
i=1 Ji, where

J1 = {1, 2, ..., p} , J2 = {p+ 1, p+ 2, ..., 2p},

This is without loss of generality because for any arbitrary equal sized partition of [n], there
exists a permutation matrix Π such that all our results apply by the change of variables
A← ΠTAΠ and b← ΠTb.

APPENDIX C. CHAPTER THREE 121

C.2 Proofs for Separation Results (Section 3.4.3.1)

C.2.1 Expectation calculations (Propositions 3.4.1 and 3.4.2)

Recall the family of n× n positive definite matrices A defined in (3.35) as

Aα,β = αI +
β

n
1n1T

n , α > 0,α + β > 0 . (C.1)

We first gather some elementary formulas. By the matrix inversion lemma,

A−1
α,β =

(
αI +

β

n
1n1T

n

)−1

= α−1I − β/n

α(α + β)
1n1T

n . (C.2)

Furthermore, let S ∈ Rn×p be any column selector matrix with no duplicate columns. We
have again by the matrix inversion lemma

(STAα,βS)−1 =

(
αI +

β

n
1p1

T
p

)−1

= α−1I − β/n

α(α + βp/n)
1p1

T
p . (C.3)

The fact that the right hand side is independent of S is the key property which makes our
calculations possible. Indeed, we have that

S(STAα,βS)−1ST = α−1SST − β/n

α(α + βp/n)
S1p1

T
pS

T . (C.4)

With these formulas in hand, our next proposition gathers calculations for the case when S
represents uniformly choosing p columns without replacement.

Proposition C.2.1. Consider the family of n × n positive definite matrices {Aα,β} from
(C.1). Fix any integer p such that 1 < p < n. Let S ∈ Rn×p denote a random column
selector matrix where each column of S is chosen uniformly at random without replacement
from {e1, ..., en}. For any Aα,β,

E[S(STAα,βS)−1STAα,β] = p
(n− 1)α + (p− 1)β

(n− 1)(nα + pβ)
I +

(n− p)pβ
n(n− 1)(nα + pβ)

1n1T
n ,

(C.5)

E[S(STAα,βS)−1STG−1
α,βS(STAα,βS)−1ST] =

(
1

α
− (n− p)2β

(n− 1)((n− 1)α + (p− 1)β)(nα + pβ)

)
I

+
(p− 1)β(nα(1− 2n) + np(α− β) + pβ)

(n− 1)nα((n− 1)α + (p− 1)β)(nα + pβ)
1n1T

n .

(C.6)

Above, Gα,β = E[S(STAα,βS)−1ST].

APPENDIX C. CHAPTER THREE 122

Proof: First, we have the following elementary expectation calculations,

E[SST] =
p

n
I , (C.7)

E[S1p1
T
pS

T] =
p

n

(
1− p− 1

n− 1

)
I +

p

n

(
p− 1

n− 1

)
1n1T

n , (C.8)

E[SST1n1T
pS

T] = E[S1p1
T
nSS

T] = E[SST1n1T
nSS

T] = E[S1p1
T
pS

T] , (C.9)

E[S1p1
T
pS

T1n1T
nS1p1

T
pS

T] =
p3

n

(
1− p− 1

n− 1

)
I +

p3

n

(
p− 1

n− 1

)
1n1T

n . (C.10)

To compute Gα,β, we simply plug (C.7) and (C.8) into (C.4). After simplification,

Gα,β = E[S(STAα,βS)−1ST] =
p

αn

(
1− β/n

α + βp/n

(
1− p− 1

n− 1

))
I − p

n

p− 1

n− 1

β/n

α(α + βp/n)
1n1T

n .

From this formula for Gα,β, (C.5) follows immediately.
Our next goal is to compute E[S(STAα,βS)−1STG−1

α,βS(STAα,βS)−1ST]. To do this, we
first invert Gα,β. Applying the matrix inversion lemma, we can write down a formula for the
inverse of Gα,β,

G−1
α,β =

(n− 1)α(nα + pβ)

(n− 1)pα + (p− 1)pβ︸ ︷︷ ︸
γ

I +
(p− 1)β(nα + pβ)

np((n− 1)α + (p− 1)β)︸ ︷︷ ︸
η

1n1T
n . (C.11)

Next, we note for any r, q, using the properties that STS = I, 1T
nS1p = p, and 1T

p 1p = p, we
have that

(rSST + qS1p1
T
pS

T)(γI + η1n1T
n)(rSST + qS1p1

T
pS

T)

= γr2SST + 2rγqS1p1
T
pS

T + ηr2SST1n1T
nSS

T

+ prηq(SST1n1T
pS

T + S1p1
T
nSS

T) + pq2γS1p1
T
pS

T

+ ηq2S1p1
T
pS

T1n1T
nS1p1

T
pS

T .

Taking expectations of both sides of the above equation and using the formulas in (C.7),
(C.8), (C.9), and (C.10),

E[(rSST + qS1p1
T
pS

T)(γI + η1n1T
n)(rSST + qS1p1

T
pS

T)]

=
p(p(n− p)q2 + 2(n− p)qr + (n− 1)r2)γ + p(n− p)(pq + r)2η

n(n− 1)
I

+
p(p− 1)(q(pq + 2r)γ + (pq + r)2η)

n(n− 1)
1n1T

n .

We now set r = α−1, q = − β/n
α(α+βp/n)

, and γ, η from (C.11) to reach the desired formula for

(C.6). Proposition 3.4.2 follows immediately from Proposition C.2.1 by plugging in α = 1

APPENDIX C. CHAPTER THREE 123

into (C.5). We next consider how (C.4) behaves under a fixed partition of {1, ...,n}. Recall
our assumption on partitions: n = pk for some integer k ≥ 1, and we sequentially partition
{1, ...,n} into k partitions of size p, i.e. J1 = {1, ..., p}, J2 = {p + 1, ..., 2p}, and so on.
Define S1, ...,Sk ∈ Rn×p such that Si is the column selector matrix for the partition Ji, and
S uniformly chooses Si with probability 1/k.

Proposition C.2.2. Consider the family of n × n positive definite matrices {Aα,β} from
(C.1), and let n, p, and S be described as in the preceding paragraph. We have that

E[S(STAα,βS)−1STAα,β] =
p

n
I +

pβ

n2α + npβ
1n1T

n −
pβ

n2α + npβ
blkdiag(1p1

T
p , ..., 1p1

T
p︸ ︷︷ ︸

k times

) .

(C.12)

Proof: Once again, the expectation calculations are

E[SST] =
p

n
I, E[S1p1

T
pS

T] =
p

n
blkdiag(1p1

T
p , ..., 1p1

T
p︸ ︷︷ ︸

k times

) .

Therefore,

E[S(STAα,βS)−1ST] =
p

αn
I − p

n

β/n

α(α + βp/n)
blkdiag(1p1

T
p , ..., 1p1

T
p) .

Furthermore,

blkdiag(1p1
T
p , ..., 1p1

T
p)1n1T

n = 1n1T
nblkdiag(1p1

T
p , ..., 1p1

T
p) = p1n1T

n ,

Hence, the formula for E[S(STAα,βS)−1STAα,β] follows.
We now make the following observation. Let Q1, ...,Qk be any partition of {1, ...,n} into

k partitions of size p. Let ES∼Qi denote expectation with respect to S uniformly chosen as
column selectors among Q1, ...,Qk, and let ES∼Ji denote expectation with respect to the S in
the setting of Proposition C.2.2. It is not hard to see there exists a permutation matrix Π
such that

ΠTES∼Qi [S(STAα,βS)−1ST]Π = ES∼Ji [S(STAα,βS)−1ST] .

Using this permutation matrix Π,

λmin(ES∼Qi [PA1/2
α,βS

]) = λmin(ES∼Qi [S(STAα,βS)−1ST]Aα,β)

= λmin(ES∼Qi [S(STAα,βS)−1ST]ΠAα,βΠT)

= λmin(ΠTES∼Qi [S(STAα,βS)−1ST]ΠAα,β)

= λmin(ES∼Ji [S(STAα,βS)−1ST]Aα,β)

= λmin(ES∼Ji [PA1/2
α,βS

]) .

Above, the second equality holds because Aα,β is invariant under a similarity transform by any
permutation matrix. Therefore, Proposition C.2.2 yields the µpart value for every partition
Q1, ...,Qk. The claim of Proposition 3.4.1 now follows by substituting α = 1 into (C.12).

APPENDIX C. CHAPTER THREE 124

C.2.2 Proof of Proposition 3.4.3

Define ek = xk − x∗, Hk = Sk(S
T
kASk)

†ST
k and G = E[Hk]. From the update rule (3.19),

ek+1 = (I −HkA)ek =⇒ A1/2ek+1 = (I − A1/2HkA
1/2)A1/2ek .

Taking and iterating expectations,

E[A1/2ek+1] = (I − A1/2GA1/2)E[A1/2ek] .

Unrolling this recursion yields for all k ≥ 0,

E[A1/2ek] = (I − A1/2GA1/2)kA1/2e0 .

Choose A1/2e0 = v, where v is an eigenvector of I − A1/2GA1/2 with eigenvalue λmax(I −
A1/2GA1/2) = 1− λmin(GA) = 1− µ. Now by Jensen’s inequality,

E[‖ek‖A] = E[‖A1/2ek‖2] ≥ ‖E[A1/2ek]‖2 = (1− µ)k‖e0‖A .

This establishes the claim.

C.3 Proofs for Convergence Results (Section 3.4.3.2)

We now state our main structural result for accelerated coordinate descent. Let P be a
probability measure on Ω = Sn×n×R+×R+, with Sn×n denoting n×n positive semi-definite
matrices and R+ denoting positive reals. Write ω ∈ Ω as the tuple ω = (H, Γ, γ), and let E
denote expectation with respect to P. Suppose that G = E[1

γ
H] exists and is positive definite.

Now suppose that f : Rn −→ R is a differentiable and strongly convex function, and put
f∗ = minx f(x), with x∗ attaining the minimum value. Suppose that f is both µ-strongly
convex and has L-Lipschitz gradients with respect to the G−1 norm. This means that for all
x, y ∈ Rn, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

G−1 , (C.13a)

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

G−1 . (C.13b)

We now define a random sequence as follows. Let ω0 = (H0, Γ0, γ0),ω1 = (H1, Γ1, γ1), ...
be independent realizations from P. Starting from y0 = z0 = x0 with x0 fixed, consider the
sequence {(xk, yk, zk)}k≥0 defined by the recurrence

τ(xk+1 − zk) = yk − xk+1 , (C.14a)

yk+1 = xk+1 −
1

Γk
Hk∇f(xk+1) , (C.14b)

zk+1 − zk = τ

(
xk+1 − zk −

1

µγk
Hk∇f(xk+1)

)
. (C.14c)

APPENDIX C. CHAPTER THREE 125

It is easily verified that (x, y, z) = (x∗,x∗,x∗) is a fixed point of the aforementioned dynamical
system. Our goal for now is to describe conditions on f , µ, and τ such that the sequence of
updates (C.14a), (C.14b), and (C.14c) converges to this fixed point. As described in Wilson et
al. [77], our main strategy for proving convergence will be to introduce the following Lyapunov
function

Ek = f(yk)− f∗ +
µ

2
‖zk − x∗‖2

G−1 , (C.15)

and show that Ek decreases along every trajectory. We let Ek denote the expectation condi-
tioned on Fk = σ(ω0,ω1, ...,ωk−1). Observe that xk+1 is Fk-measurable, a fact we will use
repeatedly throughout our calculations. With the preceding definitions in place, we state and
prove our main structural theorem.

Theorem C.3.1. (Generalization of Theorem 3.4.4.) Let f and G be as defined above, with
f satisfying µ-strongly convexity and L-Lipschitz gradients with respect to the ‖·‖G−1 norm,
as defined in (C.13a) and (C.13b). Suppose that for all fixed x ∈ Rn, we have that the
following holds for almost every ω ∈ Ω,

f(Φ(x;ω)) ≤ f(x)− 1

2Γ
‖∇f(x)‖2

H , Φ(x;ω) = x− 1

Γ
H∇f(x) . (C.16)

Furthermore, suppose that ν > 0 satisfies

E
[

1

γ2
HG−1H

]
4 νE

[
1

γ2
H

]
. (C.17)

Then as long as we set τ > 0 such that τ satisfies for almost every ω ∈ Ω,

τ ≤ γ√
Γ

√
µ

ν
, τ ≤

√
µ

L
, (C.18)

we have that Ek defined in (C.15) satisfies for all k ≥ 0,

Ek[Ek+1] ≤ (1− τ)Ek . (C.19)

Proof. First, recall the following two point equality valid for any vectors a, b, c ∈ V in a real
inner product space V ,

‖a− b‖2
V − ‖c− b‖2

V = ‖a− c‖2
V + 2〈a− c, c− b〉V . (C.20)

APPENDIX C. CHAPTER THREE 126

Now we can proceed with our analysis,

Ek+1 − Ek
(C.20)

= f(yk+1)− f(yk)− µ〈zk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2

G−1

= f(yk+1)− f(xk+1) + f(xk+1)− f(yk)− µ〈zk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2

G−1

(C.13a)

≤ f(yk+1)− f(xk+1) + 〈∇f(xk+1),xk+1 − yk〉 −
µ

2
‖xk+1 − yk‖2

G−1

− µ〈zk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2

G−1 (C.21a)

(C.14c)
= f(yk+1)− f(xk+1) + 〈∇f(xk+1),xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2

G−1

+ τ〈 1

γk
Hk∇f(xk+1)− µ(xk+1 − zk),x∗ − zk〉G−1 +

µ

2
‖zk+1 − zk‖2

G−1

(C.21b)

= f(yk+1)− f(xk+1) + 〈∇f(xk+1),xk+1 − yk〉 −
µ

2
‖xk+1 − yk‖2

G−1

+ τ〈 1

γk
Hk∇f(xk+1),x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1),xk+1 − zk〉G−1

− τµ〈xk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖zk+1 − zk‖2

G−1

(C.14c)
= f(yk+1)− f(xk+1) + 〈∇f(xk+1),xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2

G−1

+ τ〈 1

γk
Hk∇f(xk+1),x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1),xk+1 − zk〉G−1

− τµ〈xk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖τ(xk+1 − zk)‖2

G−1 +
τ 2

2µγ2
k

‖Hk∇f(xk+1)‖2
G−1

− τ〈xk+1 − zk, τ
1

γk
Hk∇f(xk+1)〉G−1 (C.21c)

(C.16)

≤ − 1

2Γk
‖∇f(xk+1)‖2

Hk
+ 〈∇f(xk+1),xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2

G−1

+ τ〈 1

γk
Hk∇f(xk+1),x∗ − xk+1〉G−1 + τ〈 1

γk
Hk∇f(xk+1),xk+1 − zk〉G−1

− τµ〈xk+1 − zk,x∗ − zk〉G−1 +
µ

2
‖τ(xk+1 − zk)‖2

G−1 +
τ 2

2µγ2
k

‖Hk∇f(xk+1)‖2
G−1

− τ〈xk+1 − zk, τ
1

γk
Hk∇f(xk+1)〉G−1 . (C.21d)

Above, (C.21a) follows from µ-strong convexity, (C.21b) and (C.21c) both use the definition
of the update sequence given in (C.14), and (C.21d) follows using the gradient inequality

APPENDIX C. CHAPTER THREE 127

assumption (C.16). Now letting x ∈ Rn be fixed, we observe that

E
[
τ 2

2µγ2
∇f(x)THG−1H∇f(x)− 1

2Γ
‖∇f(x)‖2

H

]
(C.17)

≤ E
[(

τ 2ν

2µγ2
− 1

2Γ

)
‖∇f(x)‖2

H

]
(C.18)

≤ 0 . (C.22)

The first inequality uses the assumption on ν, and the second inequality uses the requirement

APPENDIX C. CHAPTER THREE 128

that τ ≤ γ√
Γ

√
µ
ν
. Now taking expectations with respect to Ek,

Ek[Ek+1]− Ek ≤ Ek
[
τ 2

2µγ2
k

∇f(xk+1)THkG
−1Hk∇f(xk+1)− 1

2Γk
‖∇f(xk+1)‖2

Hk

]
+ 〈∇f(xk+1),xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2

G−1

+ τ〈∇f(xk+1),x∗ − xk+1〉+ τ〈∇f(xk+1),xk+1 − zk〉 − τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉
(C.22)

≤ 〈∇f(xk+1),xk+1 − yk〉 −
µ

2
‖xk+1 − yk‖2

G−1 + τ〈∇f(xk+1),x∗ − xk+1〉

+ τ〈∇f(xk+1),xk+1 − zk〉 − τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉
(C.13a)

≤ −τ
(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2

G−1

)
+ 〈∇f(xk+1),xk+1 − yk〉 −

µ

2
‖xk+1 − yk‖2

G−1

+ τ〈∇f(xk+1),xk+1 − zk〉 − τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 − τ〈xk+1 − zk, τ∇f(xk+1)〉 (C.23a)

(C.14a)
= −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2

G−1

)
− µ

2
‖xk+1 − yk‖2

G−1

− τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 − τ〈yk − xk+1,∇f(xk+1)〉 (C.23b)

(C.13b)

≤ −τ
(
f(xk+1)− f∗ +

µ

2
‖xk+1 − x∗‖2

G−1

)
− µ

2
‖xk+1 − yk‖2

G−1

− τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 + τ(f(xk+1)− f(yk)) +
τL

2
‖yk − xk+1‖2

G−1

(C.23c)

(C.20)
= −τ

(
f(xk+1)− f∗ +

µ

2
‖xk+1 − zk‖2

G−1 +
µ

2
‖zk − x∗‖2

G−1 + µ〈xk+1 − zk, zk − x∗〉G−1

)
− µ

2
‖xk+1 − yk‖2

G−1 − τµ〈xk+1 − zk,x∗ − zk〉G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 + τ(f(xk+1)− f(yk)) +
τL

2
‖yk − xk+1‖2

G−1

(C.23d)

(C.15)
= −τEk −

µ

2
‖xk+1 − yk‖2

G−1 −
τµ

2
‖xk+1 − zk‖2

G−1

+
µ

2
‖τ(xk+1 − zk)‖2

G−1 +
τL

2
‖yk − xk+1‖2

G−1

(C.14a)
= −τEk +

(
τL

2
− µ

2τ

)
‖yk − xk+1‖2

G−1 (C.23e)

(C.18)

≤ −τEk .

APPENDIX C. CHAPTER THREE 129

Above, (C.23a) follows from µ-strong convexity, (C.23b) and (C.23e) both use the definition
of the sequence (C.14), (C.23c) follows from L-Lipschitz gradients, (C.23d) uses the two-
point inequality (C.20), and the last inequality follows from the assumption of τ ≤

√
µ
L

.
The claim (C.19) now follows by re-arrangement.

C.3.1 Proof of Theorem 3.4.5

Next, we describe how to recover Theorem 3.4.5 from Theorem C.3.1. We do this by applying
Theorem C.3.1 to the function f(x) = 1

2
xTAx− xTb.

The first step in applying Theorem C.3.1 is to construct a probability measure on Sn×n×
R+×R+ for which the randomness of the updates is drawn from. We already have a distribu-
tion on Sn×n from setting of Theorem 3.4.5 via the random matrix H. We trivially augment
this distribution by considering the random variable (H, 1, 1) ∈ Ω. By setting Γ = γ = 1,
the sequence (C.14a), (C.14b), (C.14c) reduces to that of Algorithm 1. Furthermore, the
requirement on the ν parameter from (C.17) simplifies to the requirement listed in (3.31).
This holds by the following equivalences which are valid since conjugation by G (which is
assumed to be positive definite) preserves the semi-definite ordering,

λmax

(
E
[
(G−1/2HG−1/2)2

])
≤ ν ⇐⇒ E

[
(G−1/2HG−1/2)2

]
4 νI

⇐⇒ E
[
G−1/2HG−1HG−1/2

]
4 νI

⇐⇒ E
[
HG−1H

]
4 νG . (C.24)

It remains to check the gradient inequality (C.16) and compute the strong convexity and
Lipschitz parameters. These computations fall directly from the calculations made in Theo-
rem 1 of [58], but we replicate them here for completeness.

To check the gradient inequality (C.16), because f is a quadratic function, its second
order Taylor expansion is exact. Hence for almost every ω ∈ Ω,

f(Φ(x;ω)) = f(x)− 〈∇f(x),H∇f(x)〉+
1

2
∇f(x)THAH∇f(x)

= f(x)− 〈∇f(x),H∇f(x)〉+
1

2
∇f(x)TS(STAS)†STAS(STAS)†ST∇f(x)

= f(x)− 〈∇f(x),H∇f(x)〉+
1

2
∇f(x)TS(STAS)†ST∇f(x)

= f(x)− 1

2
∇f(x)TH∇f(x) .

Hence the inequality (C.16) holds with equality.
We next compute the strong convexity and Lipschitz gradient parameters. We first show

that f is λmin(E[PA1/2S])-strongly convex with respect to the ‖·‖G−1 norm. This follows since

APPENDIX C. CHAPTER THREE 130

for any x, y ∈ Rn, using the assumption that G is positive definite,

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)TA(y − x)

= f(x) + 〈∇f(x), y − x〉+
1

2
(y − x)TG−1/2G1/2AG1/2G−1/2(y − x)

≥ f(x) + 〈∇f(x), y − x〉+
λmin(A1/2GA1/2)

2
‖y − x‖2

G−1 .

The strong convexity bound now follows since

A1/2GA1/2 = A1/2E[H]A1/2 = E[A1/2S(STAS)†STA1/2] = E[PA1/2S] .

An nearly identical argument shows that f is λmax(E[PA1/2S])-strongly convex with respect to
the ‖·‖G−1 norm. Since the eigenvalues of projector matrices are bounded by 1, we have that
f is 1-Lipschitz with respect to the ‖·‖G−1 norm. This calculation shows that the requirement
on τ from (C.18) simplifies to τ ≤

√
µ
ν

, since L = 1 and ν ≥ 1 by Proposition C.6.1 which
we state and prove later.

At this point, Theorem C.3.1 yields that E[Ek] ≤ (1− τ)kE0. To recover the final claim
(3.32), recall that f(yk)− f∗ = 1

2
‖yk − x∗‖2

A. Furthermore, µG−1 4 A, since

µ ≤ λmin(A1/2GA1/2)⇐⇒ µ ≤ λmin(G1/2AG1/2)

⇐⇒ µI 4 G1/2AG1/2

⇐⇒ µG−1 4 A .

Hence, we can upper bound E0 as follows

E0 = f(y0)− f∗ +
µ

2
‖z0 − x∗‖2

G−1 =
1

2
‖y0 − x∗‖2

A +
µ

2
‖z0 − x∗‖2

G−1

≤ 1

2
‖y0 − x∗‖2

A +
1

2
‖z0 − x∗‖2

A = ‖x0 − x∗‖2
A .

On the other hand, we have that 1
2
‖yk − x∗‖2

A ≤ Ek. Putting the inequalities together,

1√
2
E[‖yk − x∗‖A] ≤

√
E[

1

2
‖yk − x∗‖2

A] ≤
√

E[Ek] ≤
√

(1− τ)kE0 ≤ (1− τ)k/2‖x0 − x∗‖2
A ,

where the first inequality holds by Jensen’s inequality. The claimed inequality (3.32) now
follows.

C.3.2 Proof of Proposition 3.4.6

We first state and prove an elementary linear algebra fact which we will use below in our
calculations.

APPENDIX C. CHAPTER THREE 131

Proposition C.3.2. Let A,B,C,D be n × n diagonal matrices, and define M =

[
A B
C D

]
.

The eigenvalues of M are given by the union of the eigenvalues of the 2× 2 matrices[
Ai Bi

Ci Di

]
, i = 1, ...,n ,

where Ai,Bi,Ci,Di denote the i-th diagonal entry of A,B,C,D respectively.

Proof. For every s ∈ C we have that the matrices −C and sI −D are diagonal and hence
commute. Applying the corresponding formula for a block matrix determinant under this
assumption,

0 = det

[
sI − A −B
−C sI −D

]
= det((sI − A)(sI −D)−BC)

=
n∏
i=1

((s− Ai)(s−Di)−BiCi) =
n∏
i=1

det

[
s− Ai −Bi

−Ci s−Di

]
.

Now we proceed with the proof of Proposition 3.4.6. Define ek =

[
yk − x∗
zk − x∗

]
. It is easy to

see from the definition of Algorithm 1 that {ek} satisfies the recurrence

ek+1 =
1

1 + τ

[
I −HkA τ(I −HkA)

τ(I − 1
µ
HkA) I − τ2

µ
HkA

]
ek .

Hence,[
A1/2 0

0 µ1/2G−1/2

]
ek+1

=
1

1 + τ

[
A1/2 0

0 µ1/2G−1/2

] [
I −HkA τ(I −HkA)

τ(I − 1
µ
HkA) I − τ2

µ
HkA

]
ek

=
1

1 + τ

[
A1/2 − A1/2HkA τ(A1/2 − A1/2HkA)

µ1/2τG−1/2(I − 1
µ
HkA) µ1/2G−1/2(I − τ2

µ
HkA)

]
ek

=
1

1 + τ

[
I − A1/2HkA

1/2 µ−1/2τ(A1/2 − A1/2HkA)G1/2

µ1/2τG−1/2(I − 1
µ
HkA)A−1/2 G−1/2(I − τ2

µ
HkA)G1/2

] [
A1/2 0

0 µ1/2G−1/2

]
ek .

Define P =

[
A 0
0 µG−1

]
. By taking and iterating expectations,

E[P 1/2ek+1] =
1

1 + τ

[
I − A1/2GA1/2 µ−1/2τ(A1/2G1/2 − A1/2GAG1/2)

µ1/2τ(G−1/2A−1/2 − 1
µ
G1/2A1/2) I − τ2

µ
G1/2AG1/2

]
E[P 1/2ek] .

APPENDIX C. CHAPTER THREE 132

Denote the matrix Q = A1/2G1/2. Unrolling the recurrence above yields that

E[P 1/2ek] = RkP 1/2e0 , R =
1

1 + τ

[
I −QQT µ−1/2τ(Q−QQTQ)

µ1/2τ(Q−1 − 1
µ
QT) I − τ2

µ
QTQ

]
.

Write the SVD of Q as Q = UΣV T. Both U and V are n × n orthonormal matrices. It is
easy to see that Rk is given by

Rk =
1

(1 + τ)k

[
U 0
0 V

] [
I − Σ2 µ−1/2τ(Σ− Σ3)

µ1/2τ(Σ−1 − 1
µ
Σ) I − τ2

µ
Σ2

]k [
UT 0
0 V T

]
. (C.25)

Suppose we choose P 1/2e0 to be a right singular vector of Rk corresponding to the maximum
singular value σmax(Rk). Then we have that

E[‖P 1/2ek‖2] ≥ ‖E[P 1/2ek]‖2 = ‖RkP 1/2e0‖2 = σmax(Rk)‖P 1/2e0‖2 ≥ ρ(Rk)‖P 1/2e0‖2 ,

where ρ(·) denotes the spectral radius. The first inequality is Jensen’s inequality, and the
second inequality uses the fact that the spectral radius is bounded above by any matrix norm.
The eigenvalues of Rk are the k-th power of the eigenvalues of R which, using the similarity
transform (C.25) along with Proposition C.3.2, are given by the eigenvalues of the 2 × 2
matrices Ri defined as

Ri =
1

1 + τ

[
1− σ2

i µ−1/2τ(σi − σ3
i)

µ1/2τ(σ−1
i − 1

µ
σi) 1− τ2

µ
σ2
i

]
, σi = Σii , i = 1, ...,n .

On the other hand, since the entries in Σ are given by the eigenvalues of A1/2G1/2G1/2A1/2 =
E[PA1/2S], there exists an i such that σi =

√
µ. This Ri is upper triangular, and hence its

eigenvalues can be read off the diagonal. This shows that 1−τ2
1+τ

= 1 − τ is an eigenvalue of

R, and hence (1− τ)k is an eigenvalue of Rk. But this means that (1− τ)k ≤ ρ(Rk). Hence,
we have shown that

E[‖P 1/2ek‖2] ≥ (1− τ)k‖P 1/2e0‖2 .

The desired claim now follows from

‖P 1/2ek‖2 =
√
‖yk − x∗‖2

A + µ‖zk − x∗‖2
G−1

≤
√
‖yk − x∗‖2

A + ‖zk − x∗‖2
A ≤ ‖yk − x∗‖A + ‖zk − x∗‖A ,

where the first inequality holds since µG−1 4 A and the second inequality holds since√
a+ b ≤

√
a+
√
b for non-negative a, b.

APPENDIX C. CHAPTER THREE 133

C.4 Recovering the ACDM Result from Nesterov and

Stich [48]

We next show how to recover Theorem 1 of Nesterov and Stich [48] using Theorem C.3.1, in
the case of α = 1. A nearly identical argument can also be used to recover the result of Allen-
Zhu et al. [1] under the strongly convex setting in the case of β = 0. Our argument proceeds
in two steps. First, we prove a convergence result for a simplified accelerated coordinate
descent method which we introduce in Algorithm 2. Then, we describe how a minor tweak to
ACDM shows the equivalence between ACDM and Algorithm 2.

Before we proceed, we first describe the setting of Theorem 1. Let f : Rn −→ R be a
twice differentiable strongly convex function with Lipschitz gradients. Let J1, ..., Jm denote
a partition of {1, ...,n} into m partitions. Without loss of generality, we can assume that
the partitions are in order, i.e. J1 = {1, ...,n1}, J2 = {n1 + 1, ...,n2}, and so on. This
is without loss of generality since we can always consider the function g(x) = f(Πx) for
a suitable permutation matrix Π. Let B1, ...,Bm be fixed positive definite matrices such
that Bi ∈ R|Ji|×|Ji|. Set Hi = SiB

−1
i ST

i , where Si ∈ Rn×|Ji| is the column selector matrix

associated to partition Ji, and define Li = supx∈Rn λmax(B
−1/2
i ST

i ∇2f(x)SiB
−1/2
i) for i =

1, ...,m. Furthermore, define pi =
√
Li∑m

j=1

√
Lj

.

C.4.1 Proof of convergence of a simplified accelerated coordinate
descent method

Now consider the following accelerated randomized coordinate descent algorithm in Algo-
rithm 2.

Theorem C.3.1 is readily applied to Algorithm 2 to give a convergence guarantee which
matches the bound of Theorem 1 of Nesterov and Stich. We sketch the argument below.

Algorithm 2 instantiates (C.14) with the definitions above and particular choices Γk = Lik
and γk = pik . We will specify the choice of µ at a later point. To see that this setting is valid,
we construct a discrete probability measure on Sn×n × R+ × R+ by setting ωi = (Hi,Li, pi)
and P(ω = ωi) = pi for i = 1, ...,m. Hence, in the context of Theorem C.3.1, G = E[1

γ
H] =∑m

i=1Hi = blkdiag(B−1
1 ,B−1

2 , ...,B−1
m). We first verify the gradient inequality (C.16). For

APPENDIX C. CHAPTER THREE 134

Algorithm 2 Accelerated randomized coordinate descent.

Require: µ > 0, partition {Ji}mi=1, positive definite {Bi}mi=1, Lipschitz constants {Li}mi=1,
x0 ∈ Rn.

1: Set τ =
√
µ∑m

i=1

√
Li

.

2: Set Hi = SiB
−1
i ST

i for i = 1, ...,m. // Si denotes the column selector for

partition Ji.

3: Set pi =
√
Li∑m

j=1

√
Lj

for i = 1, ...,m.

4: Set y0 = z0 = x0.
5: for k = 0, ...,T − 1 do
6: ik ← random sample from {1, ...,m} with P(ik = i) = pi.
7: xk+1 = 1

1+τ
yk + τ

1+τ
zk.

8: yk+1 = xk+1 − 1
Lik
Hik∇f(xk+1).

9: zk+1 = zk + τ(xk+1 − zk)− τ
µpik

Hik∇f(xk+1).

10: end for
11: Return yT .

every fixed x ∈ Rn, for every i = 1, ...,m there exists a ci ∈ Rn such that

f(Φ(x;ωi)) = f(x)− 1

Li
〈∇f(x),Hi∇f(x)〉+

1

2L2
i

∇f(x)THi∇2f(ci)Hi∇f(x)

= f(x)− 1

Li
〈∇f(x),Hi∇f(x)〉

+
1

2L2
i

∇f(x)TSiB
−1/2
i B

−1/2
i ST

i ∇2f(ci)SiB
−1/2
i B

−1/2
i ST

i ∇f(x)

≤ f(x)− 1

Li
〈∇f(x),Hi∇f(x)〉+

1

2Li
∇f(x)TSiB

−1
i ST

i ∇f(x)

= f(x)− 1

2Li
‖∇f(x)‖2

Hi
.

We next compute the ν constant defined in (C.17). We do this by checking the sufficient
condition that HiG

−1Hi 4 νHi for i = 1, ...,m. Doing so yields that ν = 1, since

HiG
−1Hi = SiB

−1
i ST

i blkdiag(B1,B2, ...,Bm)SiB
−1
i ST

i = SiB
−1
i BiB

−1
i ST

i = SiB
−1
i ST

i = Hi .

To complete the argument, we set µ as the strong convexity constant and L as the Lipschitz
gradient constant of f with respect to the ‖·‖G−1 norm. It is straightforward to check that

µ = inf
x∈Rn

λmax(G1/2∇2f(x)G1/2) , L = sup
x∈Rn

λmax(G1/2∇2f(x)G1/2) .

APPENDIX C. CHAPTER THREE 135

We now argue that
√
L ≤

∑m
i=1

√
Li. Let x ∈ Rn achieve the supremum in the definition of

L (if no such x exists, then let x be arbitrarily close and take limits). Then,

L = λmax(G1/2∇2f(x)G1/2) = λmax((∇2f(x))1/2G(∇2f(x))1/2)

= λmax

(
(∇2f(x))1/2

(
m∑
i=1

SiB
−1
i ST

i

)
(∇2f(x))1/2

)
(a)

≤
m∑
i=1

λmax((∇2f(x))1/2SiB
−1
i ST

i (∇2f(x))1/2)

(b)
=

m∑
i=1

λmax(SiS
T
i ∇2f(x)SiS

T
i SiB

−1
i ST

i)

=
m∑
i=1

λmax((SiB
−1
i ST

i)1/2SiS
T
i ∇2f(x)SiS

T
i (SiB

−1
i ST

i)1/2)

(c)
=

m∑
i=1

λmax(SiB
−1/2
i ST

i SiS
T
i ∇2f(x)SiS

T
i SiB

−1/2
i ST

i)

(d)
=

m∑
i=1

λmax(B
−1/2
i ST

i ∇2f(x)SiB
−1/2
i) ≤

m∑
i=1

Li .

Above, (a) follows by the convexity of the maximum eigenvalue, (b) holds since ST
i Si = I,

(c) uses the fact that for any matrix Q satisfying QTQ = I and M positive semi-definite,
we have (QMQT)1/2 = QM1/2QT, and (d) follows since λmax(SiMST

i) = λmax(M) for any
p × p symmetric matrix M . Using the fact that

√
a+ b ≤

√
a +
√
b for any non-negative

a, b, the inequality
√
L ≤

∑m
i=1

√
Li immediately follows. To conclude the proof, it remains

to calculate the requirement on τ via (C.18). Since γi√
Γi

= pi√
Li

= 1∑m
i=1

√
Li

, we have that
γi√
Γi
≤ 1√

L
, and hence the requirement is that τ ≤

√
µ∑m

i=1

√
Li

.

C.4.2 Relating Algorithm 2 to ACDM

For completeness, we replicate the description of the ACDM algorithm from Nesterov and
Stich in Algorithm 3. We make one minor tweak in the initialization of the Ak,Bk sequence
which greatly simplifies the exposition of what follows.

We first write the sequence produced by Algorithm 3 as

yk =
(1− αk)xk + αk(1− βk)zk

1− αkβk
, (C.26a)

xk+1 = yk −
1

Lik
Hik∇f(yk) , (C.26b)

zk+1 − zk = βk

(
yk − zk −

ak+1

Bk+1pikβk
Hik∇f(yk)

)
. (C.26c)

APPENDIX C. CHAPTER THREE 136

Algorithm 3 ACDM from Nesterov and Stich [48], α = 1, β = 1/2 case.

Require: µ > 0, partition {Ji}mi=1, positive definite {Bi}mi=1, Lipschitz constants {Li}mi=1,
x0 ∈ Rn.

1: Set Hi = SiB
−1
i ST

i for i = 1, ...,m. // Si denotes the column selector for

partition Ji.

2: Set pi =
√
Li∑m

j=1

√
Lj

for i = 1, ...,m.

3: Set A0 = 1,B0 = µ. // Modified from A0 = 0,B0 = 1.
4: Set S1/2 =

∑m
i=1

√
Li.

5: Set y0 = z0 = x0.
6: for k = 0, ...,T − 1 do
7: ik ← random sample from {1, ...,m} with P(ik = i) = pi.
8: ak+1 ← positive solution to a2

k+1S
2
1/2 = (Ak + ak+1)(Bk + µak+1).

9: Ak+1 = Ak + ak+1,Bk+1 = Bk + µak+1.
10: αk = ak+1

Ak+1
, βk = µ ak+1

Bk+1
.

11: yk = (1−αk)xk+αk(1−βk)zk
1−αkβk

.

12: xk+1 = yk − 1
Lik
Hik∇f(yk).

13: zk+1 = (1− βk)zk + βkyk − ak+1

Bk+1pik
Hik∇f(yk).

14: end for
15: Return xT .

Since βkBk+1 = µak+1, the zk+1 update simplifies to

zk+1 − zk = βk

(
yk − zk −

1

µpik
Hik∇f(yk)

)
.

A simple calculation shows that

(1− αkβk)yk = (1− αk)xk + αk(1− βk)zk ,

from which we conclude that

αk(1− βk)
1− αk

(yk − zk) = xk − yk . (C.27)

Observe that

Ak+1 =
k+1∑
i=1

ai + A0 , Bk+1 = µ

k+1∑
i=1

ai +B0 .

Hence as long as µA0 = B0 (which is satisfied by our modification), we have that µAk+1 =
Bk+1 for all k ≥ 0. With this identity, we have that αk = βk for all k ≥ 0. Therefore, (C.27)
simplifies to

βk(yk − zk) = xk − yk .

APPENDIX C. CHAPTER THREE 137

We now calculate the value of βk. At every iteration, we have that

a2
k+1S

2
1/2 = Ak+1Bk+1 =

1

µ
B2
k+1 =⇒ ak+1

Bk+1

=
1

√
µS1/2

.

By the definition of βk,

βk = µ
ak+1

Bk+1

=

√
µ

S1/2

=

√
µ∑m

i=1

√
Li

= τ .

Combining these identities, we have shown that (C.26a), (C.26b), and (C.26c) simplifies to

yk =
1

1 + τ
xk +

τ

1 + τ
zk , (C.28a)

xk+1 = yk −
1

Lik
Hik∇f(yk) , (C.28b)

zk+1 − zk = τ

(
yk − zk −

1

µpik
Hik∇f(yk)

)
. (C.28c)

This sequence directly coincides with the sequence generated by Algorithm 2 after a simple
relabeling.

C.4.3 Accelerated Gauss-Seidel for fixed partitions from ACDM

Algorithm 4 Accelerated randomized block Gauss-Seidel for fixed partitions [48].

Require: A ∈ Rn×n, A � 0, b ∈ Rn, x0 ∈ Rn, block size p, µpart defined in (3.21).
1: Set A0 = 0,B0 = 1.
2: Set σ = n

p
µpart.

3: Set y0 = z0 = x0.
4: for k = 0, ...,T − 1 do
5: ik ← uniform from {1, 2, ...,n/p}.
6: Sk ← column selector associated with partition Jik .
7: ak+1 ← positive solution to a2

k+1(n/p)2 = (Ak + ak+1)(Bk + σak+1).
8: Ak+1 = Ak + ak+1,Bk+1 = Bk + σak+1.
9: αk = ak+1

Ak+1
, βk = σ ak+1

Bk+1
.

10: yk = (1−αk)xk+αk(1−βk)zk
1−αkβk

.

11: xk+1 = yk − Sk(ST
kASk)

−1ST
k (Ayk − b).

12: zk+1 = (1− βk)zk + βkyk − nak+1

pBk+1
Sk(S

T
kASk)

−1ST
k (Ayk − b).

13: end for
14: Return xT .

We now describe Algorithm 4, which is the specialization of ACDM (Algorithm 3) to
accelerated Gauss-Seidel in the fixed partition setting.

APPENDIX C. CHAPTER THREE 138

As mentioned previously, we set the function f(x) = 1
2
xTAx − xTb. Given a partition

{Ji}n/pi=1, we let Bi = ST
i ASi, where Si ∈ Rn×p is the column selector matrix associated to

the partition Ji. With this setting, we have that L1 = L2 = ... = Ln/p = 1, and hence
we have pi = p/n for all i (i.e. the sampling distribution is uniform over all partitions).
We now need to compute the strong convexity constant µ. With the simplifying assumption
that the partitions are ordered, µ is simply the strong convexity constant with respect to the
norm induced by the matrix blkdiag(B1,B2, ...,Bn/p). Hence, using the definition of µpart

from (3.21), we have that µ = n
p
µpart. Algorithm 4 now follows from plugging our particular

choices of f and the constants into Algorithm 3.

C.5 A Result for Randomized Block Kaczmarz

We now use Theorem C.3.1 to derive a result similar to Theorem 3.4.5 for the randomized
accelerated Kaczmarz algorithm. In this setting, we let A ∈ Rm×n, m ≥ n be a matrix with
full column rank, and b ∈ Rm such that b ∈ R(A). That is, there exists a unique x∗ ∈ Rn

such that Ax∗ = b. We note that this section generalizes the result of [33] to the block case
(although the proof strategy is quite different).

We first describe the randomized accelerated block Kaczmarz algorithm in Algorithm 5.
Our main convergence result concerning Algorithm 5 is presented in Theorem C.5.1.

Algorithm 5 Accelerated randomized block Kaczmarz.

Require: A ∈ Rm×n, A full column rank, b ∈ R(A), sketching matrices {Sk}T−1
k=0 ⊆ Rm×p,

x0 ∈ Rn, µ ∈ (0, 1), ν ≥ 1.
1: Set τ =

√
µ/ν.

2: Set y0 = z0 = x0.
3: for k = 0, ...,T − 1 do
4: xk+1 = 1

1+τ
yk + τ

1+τ
zk.

5: yk+1 = xk+1 − (ST
kA)†ST

k (Axk+1 − b).
6: zk+1 = zk + τ(xk+1 − zk)− τ

µ
(ST

kA)†ST
k (Axk+1 − b).

7: end for
8: Return yT .

Theorem C.5.1. (Theorem 3.4.7 restated.) Let A be an m × n matrix with full column
rank, and b ∈ R(A). Let x∗ ∈ Rn denote the unique vector satisfying Ax∗ = b. Suppose
each Sk, k = 0, 1, 2, ... is an independent copy of a random sketching matrix S ∈ Rm×p. Let
µ = λmin(E[PATS]). Suppose the distribution of S satisfies µ > 0. Invoke Algorithm 5 with µ
and ν, where ν is defined as

ν = λmax

(
E
[
(G−1/2HG−1/2)2

])
, G = E[H] , H = PATS . (C.29)

APPENDIX C. CHAPTER THREE 139

Then for all k ≥ 0 we have

E[‖yk − x∗‖2] ≤
√

2

(
1−

√
µ

ν

)k/2
‖x0 − x∗‖2 . (C.30)

Proof. The proof is very similar to that of Theorem 3.4.5, so we only sketch the main
argument. The key idea is to use the correspondence between randomized Kaczmarz and
coordinate descent (see e.g. Section 5.2 of [29]). To do this, we apply Theorem C.3.1 to
f(x) = 1

2
‖x − x∗‖2

2. As in the proof of Theorem 3.4.5, we construct a probability measure
on Sn×n × R+ × R+ from the given random matrix H by considering the random variable
(H, 1, 1). To see that the sequence (C.14a), (C.14b), and (C.14c) induces the same update
sequence as Algorithm 5, the crucial step is to notice that

Hk∇f(xk+1) = PATSk∇f(xk+1) = ATSk(S
T
kAA

TSk)
†ST

kA(xk+1 − x∗)
= ATSk(S

T
kAA

TSk)
†ST

k (Axk+1 − b) = (ST
kA)†ST

k (Axk+1 − b) .

Next, the fact that f is λmin(E[PATS])-strongly convex and 1-Lipschitz with respect to the
‖·‖G−1 norm, where G = E[PATS], follows immediately by a nearly identical argument used in
the proof of Theorem 3.4.5. It remains to check the gradient inequality (C.16). Let x ∈ Rn

be fixed. Then using the fact that f is quadratic, for almost every ω ∈ Ω,

f(Φ(x;ω)) = f(x)− 〈∇f(x),H(x− x∗)〉+
1

2
‖H(x− x∗)‖2

2

= f(x)− 〈x− x∗,PATS(x− x∗)〉+
1

2
‖PATS(x− x∗)‖2

2

= f(x)− 1

2
〈x− x∗,PATS(x− x∗)〉 .

Hence the gradient inequality (C.16) holds with equality.

C.5.1 Computing ν and µ in the setting of [33]

We first state a proposition which will be useful in our analysis of ν.

Proposition C.5.2. Let M1, ...,Ms ⊆ Rn denote subspaces of Rn such that M1 + ... +Ms =
Rn. Then we have

s∑
i=1

PMi

(
s∑
i=1

PMi

)−1

PMi
4

s∑
i=1

PMi
.

Proof. We will prove that for every 1 ≤ i ≤ s,

PMi

(
s∑
i=1

PMi

)−1

PMi
4 PMi

, (C.31)

APPENDIX C. CHAPTER THREE 140

from which the claim immediately follows. By Schur complements, (C.31) holds iff

0 4

[
PMi

PMi

PMi

∑s
i=1 PMi

]
=

[
PMi

PMi

PMi
PMi

]
+

[
0 0
0
∑s

j 6=i PMj

]
=

[
1 1
1 1

]
⊗ PMi

+

[
0 0
0
∑s

j 6=i PMj

]
.

Since the eigenvalues of a Kronecker product are given by the Cartesian product of the
individual eigenvalues, (C.31) holds.

Now we can estimate the ν and µ values. Let ai ∈ Rn denote each row of A, with
‖ai‖2 = 1 for all i = 1, ...,m. In this setting, H = Pai = aia

T
i with probability 1/m. Hence,

G = E[H] =
∑m

i=1
1
m
aia

T
i = 1

m
ATA. Furthermore,

E[HG−1H] =
m∑
i=1

aia
T
i m(ATA)−1aia

T
i

1

m

=
m∑
i=1

aia
T
i (ATA)−1aia

T
i

(a)

4
m∑
i=1

aia
T
i = ATA = mG ,

where (a) follows from Proposition C.5.2. Hence, ν 6= m. On the other hand,

µ = λmin(E[PATS]) = λmin(G) =
1

m
λmin(ATA) .

C.6 Proofs for Random Coordinate Sampling

(Section 3.4.3.3)

Our primary goal in this section is to provide a proof of Lemma 3.4.8. Along the way, we
prove a few other results which are of independent interest. We first provide a proof of the
lower bound claim in Lemma 3.4.8.

Proposition C.6.1. Let A be an n× n matrix and let S ∈ Rn×p be a random matrix. Put
G = E[PA1/2S] and suppose that G is positive definite. Let ν > 0 be any positive number such
that

E[PA1/2SG
−1PA1/2S] 4 νG , G = E[PA1/2S] . (C.32)

Then ν ≥ n/p.

APPENDIX C. CHAPTER THREE 141

Proof. Since trace commutes with expectation and respects the positive semi-definite order-
ing, taking trace of both sides of (C.32) yields that

n = Tr(GG−1) = Tr(E[PA1/2SG
−1]) = E[Tr(PA1/2SG

−1)] = E[Tr(PA1/2SG
−1PA1/2S)]

= Tr(E[PA1/2SG
−1PA1/2S])

(C.32)

≤ νTr(E[PA1/2S])

= νE[Tr(PA1/2S)] = νE[rank(A1/2S)] ≤ νp .

Next, the upper bound relies on the following lemma, which generalizes Lemma 2 of [57].

Lemma C.6.2. Let M be a random matrix. We have that

E[PM] < E[M](E[MTM])†E[MT] . (C.33)

Proof. Our proof follows the strategy in the proof of Theorem 3.2 from [78]. First, write
PB = B(BTB)†BT. Since R(BT) = R(BTB), we have by generalized Schur complements
(see e.g. Theorem 1.20 from [78]) and the fact that expectation preserves the semi-definite
order, [

BTB BT

B PB

]
< 0 =⇒

[
E[BTB] E[BT]
E[B] E[PB]

]
< 0 .

To finish the proof, we need to argue that R(E[BT]) ⊆ R(E[BTB]), which would allow us to
apply the generalized Schur complement again to the right hand side. Fix a z ∈ R(E[BT]);
we can write z = E[BT]y for some y. Now let q ∈ Kern(E[BTB]). We have that E[BTB]q =
0, which implies 0 = qTE[BTB]q = E[‖Bq‖2

2]. Therefore, Bq = 0 a.s. But this means
that zTq = E[yTBq] = 0. Hence, z ∈ Kern(E[BTB])⊥ = R(E[BTB]). Now applying the
generalized Schur complement one more time yields the claim.

We are now in a position to prove the upper bound of Lemma 3.4.8. We apply Lemma C.6.2
to M = A1/2SSTA1/2 to conclude, using the fact that R(M) = R(MMT), that

E[PA1/2S] = E[PA1/2SSTA1/2] < E[A1/2SSTA1/2](E[A1/2SSTASSTA1/2])†E[A1/2SSTA1/2] .
(C.34)

Elementary calculations now yield that for any fixed symmetric matrix A ∈ Rn×n,

E[SST] =
p

n
I, E[SSTASST] =

p

n

(
p− 1

n− 1
A+

(
1− p− 1

n− 1

)
diag(A)

)
. (C.35)

Hence plugging (C.35) into (C.34),

E[PA1/2S] <
p

n

(
p− 1

n− 1
I +

(
1− p− 1

n− 1

)
A−1/2diag(A)A−1/2

)−1

. (C.36)

APPENDIX C. CHAPTER THREE 142

We note that the lower bound (3.23) for µrand presented in Section 3.4.2 follows immediately
from (C.36).

We next manipulate (3.31) in order to use (C.36). Recall that G = E[H] and H =
S(STAS)†ST. From (C.24), we have

λmax

(
E
[
(G−1/2HG−1/2)2

])
≤ ν ⇐⇒ E

[
HG−1H

]
4 νG .

Next, a simple computation yields

E[HG−1H] = E[S(STAS)−1STG−1S(STAS)−1ST] = A−1/2E[PA1/2S(E[PA1/2S])−1PA1/2S]A−1/2 .

Again, since conjugation by A1/2 preserves semi-definite ordering, we have that

E[HG−1H] 4 νG⇐⇒ E[PA1/2S(E[PA1/2S])−1PA1/2S] 4 νE[PA1/2S] .

Using the fact that for positive definite matrices X,Y we have X 4 Y iff Y −1 4 X−1, (C.36)
is equivalent to

(E[PA1/2S])−1 � n

p

(
p− 1

n− 1
I +

(
1− p− 1

n− 1

)
A−1/2diag(A)A−1/2

)
.

Conjugating both sides by PA1/2S and taking expectations,

E[PA1/2S(E[PA1/2S])−1PA1/2S] � n

p

(
p− 1

n− 1
E[PA1/2S] +

(
1− p− 1

n− 1

)
E[PA1/2SA

−1/2diag(A)A−1/2PA1/2S]

)
.

(C.37)

Next, letting J ⊆ 2[n] denote the index set associated to S, for every S we have

PA1/2SA
−1/2diag(A)A−1/2PA1/2S

= A1/2S(STAS)−1STA1/2A−1/2diag(A)A−1/2A1/2S(STAS)−1STA1/2

= A1/2S(STAS)−1/2(STAS)−1/2(STdiag(A)S)(STAS)−1/2(STAS)−1/2STA1/2

4 λmax((STdiag(A)S)(STAS)−1)A1/2S(STAS)−1STA1/2

4
maxi∈J Aii
λmin(AJ)

PA1/2S

4 max
J∈2[n]:|J |=p

κeff,J(A)PA1/2S .

Plugging this calculation back into (C.37) yields the desired upper bound of Lemma 3.4.8.

143

Bibliography

[1] Zeyuan Allen-Zhu, Peter Richtárik, Zheng Qu, and Yang Yuan. “Even Faster Acceler-
ated Coordinate Descent Using Non-Uniform Sampling”. In: ICML. 2016.

[2] Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. In: SIAM Journal on Control and
Optimization 43.2 (2004), pp. 477–501.

[3] Shun-Ichi Amari. “Natural Gradient Works Efficiently in Learning”. In: Neural Com-
putation (1998), pp. 251–276.

[4] Michael Jordan Ashia Wilson Benjamin Recht. A Lyapunov Analysis of Momentum
Methods in Optimization. Arxiv preprint arXiv1611.02635. 2016.

[5] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. “Faster Kernel Ridge
Regression Using Sketching and Preconditioning”. In: arXiv 1611.03220 (2017).

[6] Michel Baes. Estimate sequence methods: Extensions and approximations. Aug. 2009.

[7] John C. Baez and Blake S. Pollard. “Relative Entropy in Biological Systems”. In:
Entropy 18.2 (2016), p. 46.

[8] Amir Beck and Marc Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–
202.

[9] Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. “A geometric alternative to Nes-
terov’s accelerated gradient descent”. In: ArXiv preprint arXiv:1506.08187 (2015).

[10] P. L Chebyshev. “Théorie des mécanismes connus sous le nom de parallélogrammes”.
In: Mémoires Présentés á l’Académie Impériale des Sciences de St-Pétersbourg VII.539-
568 (1854).

[11] Gong Chen and Marc Teboulle. “Convergence Analysis of a Proximal-Like Minimiza-
tion Algorithm Using Bregman Functions”. In: 3 (Aug. 1993).

[12] Adam Coates and Andrew Y. Ng. “Learning Feature Representations with K-Means”.
In: Neural Networks: Tricks of the Trade. Springer, 2012.

[13] Jelena Diakonikolas and Lorenzo Orecchia. “Accelerated Extra-Gradient Descent: A
Novel Accelerated First-Order Method”. In: 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA. 2018,
23:1–23:19.

BIBLIOGRAPHY 144

[14] Yoel Drori and Marc Teboulle. “Performance of first-order methods for smooth convex
minimization: a novel approach”. In: Math. Program. 145.1-2 (2014), pp. 451–482.

[15] Dmitry Drusvyatskiy, Maryam Fazel, and Scott Roy. “An optimal first order method
based on optimal quadratic averaging”. In: ArXiv preprint arXiv:1604.06543 (2016).

[16] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Tech. rep. EECS Department, University of
California, Berkeley, 2010.

[17] Olivier Fercoq and Peter Richtárik. “Accelerated, Parallel, and Proximal Coordinate
Descent”. In: SIAM J. Optim. 25.4 (2015).

[18] Kimon Fountoulakis and Rachael Tappenden. “A Flexible Coordinate Descent Method”.
In: arXiv 1507.03713 (2016).

[19] Peter Giesl and Sigurdur F. Hafstein. “Construction of Lyapunov functions for nonlin-
ear planar systems by linear programming”. In: 2011.

[20] Robert M. Gower and Peter Richtárik. “Randomized Iterative Methods for Linear
Systems”. In: SIAM Journal on Matrix Analysis and Applications 36 (4 2015).

[21] Geovani Nunes Grapiglia and Yurii Nesterov. “Regularized Newton Methods for Min-
imizing Functions with Hölder Continuous Hessians”. In: SIAM Journal on Optimiza-
tion 27.1 (2017), pp. 478–506.

[22] Marc Harper. “The Replicator Equation as an Inference Dynamic”. In: (Nov. 2009).

[23] “Information Theory and Statistical Mechanics”. In: Phys. Rev. 106.620-630 (1957).

[24] Sahar Karimi and Stephen Vavasis. “A unified convergence bound for conjugate gra-
dient and accelerated gradient”. In: (May 2016).

[25] Walid Krichene, Alexandre Bayen, and Peter Bartlett. “Accelerated Mirror Descent
in Continuous and Discrete Time”. In: Advances in Neural Information Processing
Systems (NIPS) 29. 2015.

[26] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. “Accelerated Mirror Descent
in Continuous and Discrete Time”. In: Advances in Neural Information Processing
Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett. Curran Associates, Inc., 2015, pp. 2845–2853.

[27] Joseph P LaSalle and Solomon Lefschetz. Stability by Liapunov’s Direct Method, with
Applications. Academic Press, 1961.

[28] Ching-Pei Lee and Stephen J. Wright. “Random Permutations Fix a Worst Case for
Cyclic Coordinate Descent”. In: arXiv 1607.08320 (2016).

[29] Yin Tat Lee and Aaron Sidford. “Efficient Accelerated Coordinate Descent Methods
and Faster Algorithms for Solving Linear Systems”. In: FOCS. 2013.

BIBLIOGRAPHY 145

[30] Laurent Lessard, Benjamin Recht, and Andrew Packard. “Analysis and Design of Op-
timization Algorithms via Integral Quadratic Constraints”. In: SIAM Journal on Op-
timization 26.1 (), pp. 57–95.

[31] Dennis Leventhal and Adrian S. Lewis. “Randomized Methods for Linear Constraints:
Convergence Rates and Conditioning”. In: Mathematics of Operations Research 35.3
(2010).

[32] Qihang Lin, Zhaosong Lu, and Lin Xiao. “An Accelerated Proximal Coordinate Gra-
dient Method”. In: NIPS. 2014.

[33] Ji Liu and Stephen J. Wright. “An Accelerated Randomized Kaczmarz Algorithm”.
In: Mathematics of Computation 85.297 (2016).

[34] Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. “Acceler-
ated First-order Methods for Geodesically Convex Optimization on Riemannian Man-
ifolds”. In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon
et al. 2017, pp. 4868–4877.

[35] Zhaosong Lu and Lin Xiao. “On the Complexity Analysis of Randomized Block-
Coordinate Descent Methods”. In: Mathematical Programming 152.1–2 (2015).

[36] A. M. Lyapunov and A. T. Fuller. General Problem of the Stability Of Motion. 1992.

[37] Panayotis Mertikopoulos and Mathias Staudigl. Stochastic mirror descent dynamics
and their convergence in monotone variational inequalities. Arxiv preprint arXiv. 2017.

[38] Deanna Needell and Joel A. Tropp. “Paved with Good Intentions: Analysis of a Ran-
domized Block Kaczmarz Method”. In: Linear Algebra and its Applications 441 (2014).

[39] Arkadi Nemirovskii and David Yudin. Problem Complexity and Method Efficiency in
Optimization. John Wiley & Sons, 1983.

[40] Yurii Nesterov. “Accelerating the cubic regularization of Newton’s method on convex
problems”. In: Mathematical Programming 112.1 (2008), pp. 159–181.

[41] Yurii Nesterov. Complexity bounds for primal-dual methods minimizing the model of
objective function. Tech. rep. Université Catholique de Louvain, Center for Operations
Research and Econometrics (CORE), 2015.

[42] Yurii Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale Optimiza-
tion Problems”. In: SIAM J. Optim. 22.2 (2012).

[43] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Ap-
plied Optimization. Boston: Kluwer, 2004.

[44] Yurii Nesterov. “Primal-dual subgradient methods for convex problems”. In: Mathe-
matical Programming 120.1 (2009), pp. 221–259.

[45] Yurii Nesterov. “Smooth Minimization of Non-smooth Functions”. In: Mathematical
Programming 103.1 (2005), pp. 127–152.

BIBLIOGRAPHY 146

[46] Yurii Nesterov. “Universal gradient methods for convex optimization problems”. In:
Mathematical Programming (2014), pp. 1–24.

[47] Yurii Nesterov and Vladimir Shikhman. “Quasi-monotone Subgradient Methods for
Nonsmooth Convex Minimization”. In: Journal of Optimization Theory and Applica-
tions 165.3 (2015), pp. 917–940.

[48] Yurii Nesterov and Sebastian Stich. Efficiency of Accelerated Coordinate Descent Method
on Structured Optimization Problems. Tech. rep. Université catholique de Louvain,
CORE Discussion Papers, 2016.

[49] Julie Nutini, Mark Schmidt, Issam H. Laradji, Michael Friedlander, and Hoyt Koepke.
“Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random
Selection”. In: ICML. 2015.

[50] Julie Nutini et al. “Convergence Rates for Greedy Kaczmarz Algorithms, and Faster
Randomized Kaczmarz Rules Using the Orthogonality Graph”. In: UAI. 2016.

[51] Bernt Oksendal. Stochastic Differential Equations (3rd Ed.): An Introduction with Ap-
plications. New York, NY, USA: Springer-Verlag New York, Inc., 1992.

[52] On Symplectic Optimization. Arxiv preprint arXiv1802.03653. 2018.

[53] Neal Parikh and Stephen P. Boyd. “Proximal Algorithms”. In: Foundations and Trends
in Optimization 1.3 (2014), pp. 127–239.

[54] Boris T. Polyak. “Some methods of speeding up the convergence of iteration methods”.
In: USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17.

[55] Zheng Qu and Peter Richtárik. “Coordinate Descent with Arbitrary Sampling I: Al-
gorithms and Complexity”. In: arXiv 1412.8060 (2014).

[56] Zheng Qu and Peter Richtárik. “Coordinate Descent with Arbitrary Sampling II: Ex-
pected Separable Overapproximation”. In: arXiv 1412.8063 (2014).

[57] Zheng Qu, Peter Richtárik, Martin Takác̆, and Olivier Fercoq. “SDNA: Stochastic Dual
Newton Ascent for Empirical Risk Minimization”. In: ICML. 2016.

[58] Zheng Qu, Peter Richtárik, and Tong Zhang. “Randomized Dual Coordinate Ascent
with Arbitrary Sampling”. In: NIPS. 2015.

[59] Maxim Raginsky and Jake V. Bouvrie. “Continuous-time stochastic Mirror Descent
on a network: Variance reduction, consensus, convergence”. In: Proceedings of the 51th
IEEE Conference on Decision and Control, CDC 2012, December 10-13, 2012, Maui,
HI, USA. 2012, pp. 6793–6800.

[60] Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”.
In: NIPS. 2007.

[61] Garvesh Raskutti and Sayan Mukherjee. “The Information Geometry of Mirror De-
scent”. In: IEEE Transactions on Information Theory 61.3 (2015), pp. 1451–1457.

BIBLIOGRAPHY 147

[62] Benjamin Recht and Christopher Ré. “Parallel Stochastic Gradient Algorithms for
Large-Scale Matrix Completion”. In: Mathematical Programming Computation 5.2
(2013), pp. 201–226.

[63] Peter Richtárik and Martin Takác̆. “Iteration Complexity of Randomized Block-Coordinate
Descent Methods for Minimizing a Composite Function”. In: Mathematical Program-
ming 114 (1 2014).

[64] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series. Princeton Uni-
versity Press, 1970.

[65] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. “FALKON: An Optimal Large
Scale Kernel Method”. In: arXiv 1705.10958 (2017).

[66] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning repre-
sentations by back-propagating errors”. In: Nature 323.6088 (9, 1986), pp. 533–536.

[67] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, 2001.

[68] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael Franklin, and Ben-
jamin Recht. “KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analyt-
ics”. In: ICDE. 2017.

[69] Thomas Strohmer and Roman Vershynin. “A Randomized Kaczmarz Algorithm with
Exponential Convergence”. In: Journal of Fourier Analysis and Applications 15.1
(2009).

[70] Weijie Su, Stephen Boyd, and Emmanuel J. Candès. “A Differential Equation for
Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights”. In: Advances
in Neural Information Processing Systems (NIPS) 27. 2014.

[71] Paul Tseng and Sangwoon Yun. “A Coordinate Gradient Descent Method for Nons-
mooth Separable Minimization”. In: Mathematical Programming 117.1 (2009).

[72] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. “Large
Scale Kernel Learning using Block Coordinate Descent”. In: arXiv 1602.05310 (2016).

[73] Stephen Tu et al. “Breaking Locality Accelerates Block Gauss-Seidel”. In: Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 2017, pp. 3482–3491.

[74] Andre Wibisono. Sampling as optimization in the space of measures: The Langevin
dynamics as a composite optimization problem. Arxiv preprint arXiv1802.08089.

[75] Andre Wibisono and Ashia Wilson. On Accelerated Methods in Optimization. Arxiv
preprint arXiv1509.03616.

[76] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. “A variational perspective
on accelerated methods in optimization”. In: Proceedings of the National Academy of
Sciences 113.47 (2016), E7351–E7358.

BIBLIOGRAPHY 148

[77] Ashia C. Wilson, Benjamin Recht, and Michael I. Jordan. “A Lyapunov Analysis of
Momentum Methods in Optimization”. In: arXiv 1611.02635 (2016).

[78] Fuzhen Zhang. The Schur Complement and its Applications. Vol. 4. Numerical Methods
and Algorithms. Springer, 2005.

[79] Hongyi Zhang and Suvrit Sra. “First-order Methods for Geodescially Convex Opti-
mization”. In: Conference on Learning Theory (COLT) (2016).

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminary Concepts
	Optimization
	Algorithms and Upper Bounds
	Role of Convergence Theorems
	Dynamical Systems
	Lyapunov's Method

	Goals and Organization

	Deterministic Dynamical Systems
	Lyapunov Analysis of First-Order Dynamics
	Gradient Descent Dynamic
	Nonconvex Differentiable Functions

	Convex Functions
	Mirror Descent Dynamic
	Convex Functions

	Subgradients and Time Reparameterization
	Convex Functions

	Dual Averaging Dynamic
	Conditional Gradient Dynamic

	Lyapunov Analysis of Second-Order Dynamics
	A Lyapunov Analysis of Momentum Methods in Optimization
	The Bregman Lagrangian
	Methods arising from the first Euler-Lagrange equation
	Methods arising from the second Euler-Lagrange equation

	 Quasi-monotone methods
	Equivalence between estimate sequences and Lyapunov functions
	Dual averaging with momentum
	Accelerated Proximal Gradient Dynamics

	Summary
	Additional Lyapunov Arguments

	Stochastic Differential Equations
	First-order Stochastic Differential Equations
	Stochastic Mirror Descent
	Strongly convex functions

	Second-order Stochastic Differential Equations
	Strongly convex functions

	Lyapunov arguments for coordinate methods
	Breaking Locality Accelerates Block Gauss-Seidel
	Introduction
	Background
	Existing rates for randomized block Gauss-Seidel
	Accelerated rates for fixed partition Gauss-Seidel

	Results
	Fixed partition vs random coordinate sampling
	A Lyapunov analysis of accelerated Gauss-Seidel and Kaczmarz
	Specializing accelerated Gauss-Seidel to random coordinate sampling

	Related Work
	Experiments
	Fixed partitioning vs random coordinate sampling
	Kernel ridge regression
	Comparing Gauss-Seidel to Conjugate-Gradient
	Kernel ridge regression on smaller datasets
	Effect of block size
	Computing the and constants

	Conclusion

	Summary

	Chapter One
	Examples of Optimization Problems
	Glossary of Definitions

	Chapter Two
	Gradient Descent
	Polyak-Löjasiewicz Condition
	Strongly Convex Functions
	Summary
	Tighter Bound

	Mirror Desent
	Differentiable Function
	Convex Functions
	Strongly Convex Functions
	Summary

	Subgradients and Time Reparameterization
	Strongly Convex Functions

	Accelerated Mirror Prox
	Dynamics
	Proof of Proposition
	Hamiltonian Systems

	Algorithms derived from (2.38)
	Proof of Proposition B.6.1
	Proof of Lemma B.6.2
	Proof of Proposition 2.2.4
	Proof of Theorem 2.2.6

	Estimate Sequences
	The Quasi-Montone Subgradient Method
	Frank-Wolfe
	Accelerated Gradient Descent (Strong Convexity)
	Adagrad with momentum

	Chapter Three
	Preliminaries
	Proofs for Separation Results (Section 3.4.3.1)
	Expectation calculations (Propositions 3.4.1 and 3.4.2)
	Proof of Proposition 3.4.3

	Proofs for Convergence Results (Section 3.4.3.2)
	Proof of Theorem 3.4.5
	Proof of Proposition 3.4.6

	Recovering the ACDM Result from Nesterov and Stich nesterov16
	Proof of convergence of a simplified accelerated coordinate descent method
	Relating Algorithm 2 to ACDM
	Accelerated Gauss-Seidel for fixed partitions from ACDM

	A Result for Randomized Block Kaczmarz
	Computing and in the setting of liu16

	Proofs for Random Coordinate Sampling (Section 3.4.3.3)

	Bibliography

