
Soil Science Society of America Journal
  

Soil Sci. Soc. Am. J. 80:341–354 
doi:10.2136/sssaj2015.07.0251 
Supplemental material is available online. 
Received 2 July 2015. 
Accepted 4 Jan. 2016. 
*Corresponding author (debeaudette@ucdavis.edu).  
© Soil Science Society of America, 5585 Guilford Rd., Madison WI 53711 USA. All Rights reserved.

Topographic and geologic Controls on Soil Variability in 
California’s Sierra Nevada Foothill Region

Pedology

We evaluated the feasibility of quantitative soil mapping in two catenas 
established on different lithologies (metavolcanic and granitic) in the Sierra 
Foothill Region of California. Indices of landform and microclimate were 
extracted from a 1-m elevation model. Variation in soil “character” (clay con-
tent, pH, color, cation-exchange capacity [CEC], and Feo/Fed) was partitioned 
across variables associated with terrain shape and microclimate, lithologic 
variability, and sampling depth. The potential for using digital elevation mod-
els (DEM)-derived indices of terrain shape to predict spatial patterns in soil 
properties varied greatly between our two experimental catenas. Terrain 
shape accounted for 4% (metavolcanic site) to 30% (granitic site) of variance 
in soil properties, while lithology accounted for 14% (metavolcanic site) to 
22% (granitic site) of variance in soil properties. Sample depth accounted for 
3% (metavolcanic site) to 12% (granitic site) of variance in soil properties. At 
the metavolcanic site, variability in lithology contributed more to soil varia-
tion than terrain shape, which makes digital soil modeling efforts a challenge 
in these regions. Up to 66% of the variance in soil properties was explained 
at the granitic site when considering terrain, lithology, sample depth, and 
associated interactions of these variables. Variance proportions can provide 
insight into the relative importance of soil-forming factors and is a useful tool 
when evaluating the efficacy of digital soil mapping projects.

Abbreviations: CEC, cation-exchange capacity; CS, conditional simulation; CTI, 
compound topographic index; DEM, digital elevation models; OK, ordinary kriging; pRDA, 
partial redundancy analysis; PCA, principal components analysis; QSM, quantitative soil 
mapping; RDA, redundancy analysis; RCS, restricted cubic splines; RST, regularized 
splines in tension; RTK, real-time kinematice; SFR, Sierra Nevada Foothill Region; SFREC, 
Sierra Foothill Research and Extension Center; SJER, San Joaquin Experimental Station; 
TCI, terrain characterization index; XRF, x-ray fluorescence.

The development and application of the soil–landscape paradigm has 
played a significant role in how soil scientists conduct research, interpret 
and communicate their findings, and apply the resulting knowledge to 

solve real-world problems (Hudson, 1992). Within this framework, repeating 
patterns in soil properties or classes are correlated with factors that drive redis-
tribution of sediment (slope angle), effective precipitation (surface curvature), 
and microclimate (slope aspect); and are stratified according to differences in par-
ent material, biota, and time. Traditionally, this approach has been implemented 
through qualitative evaluation (i.e., mental models) of Hans Jenny’s ( Jenny, 1941) 
state-factor model of soil genesis. Modern extensions to this framework for map-
ping soils commonly termed digital soil mapping are based on a numerical integra-
tion of soil property or class data with quantitative proxies of soil-forming factors 
(Moore et al., 1991; Scull et al., 2003; Brown et al., 2004; Grunwald, 2009). In 
an era where nearly all scientific work is performed “digitally”, the authors of this 
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study chose an alternative label, quantitative soil mapping, for 
the suite of techniques commonly described as “digital soil map-
ping” (McBratney et al., 2003). After all, these techniques are 
extensions to the basic concepts Jenny presented as “a system of 
quantitative pedology”, enabled by recent advances in analytical 
and computational resources.

Some of the approaches commonly used for quantitative 
soil mapping (QSM) include: 1. Statistical models linking soil 
properties to environmental and terrain parameters (regression; 
McKenzie and Ryan, 1999; Gessler et al., 2000; Thompson et al., 
2006; Indorante et al., 2014); 2. interpolation based on a model 
of spatial structure (geostatistics; Goovaerts, 1999); and, 3. mul-
tivariate techniques such as cluster analysis, discriminant analysis, 
or dimension reduction strategies (principal component analy-
sis [PCA], multidimensional scaling, or ordination techniques; 
Verheyen et al., 2001; Young and Hammer, 2000; Hengl and 
Rossiter, 2003; Odeh et al., 1991). It is also possible to integrate 
elements of these different approaches into hybrid techniques 
such as regression kriging (Hengl et al., 2004), interpolation of 
taxonomic distances (Carre and McBratney, 2005), or supervised 
classification constrained by taxonomic distance (Minasny and 
McBratney, 2007). An observed lack of consistency among QSM 
approaches in the published literature (Grunwald, 2009) suggests 
that certain landscapes are more amenable to QSM than others.

Quantifiable relationships between soil properties and soil 
forming factors are often complicated by the vertical anisotropy 
within soil profiles. Models based on soil properties sampled 
by genetic horizons must further account for variable horizon 
depths. Various parametric (Myers et al., 2011) and spline func-
tions (Bishop et al., 1999; McBratney et al., 2000; Malone et al., 
2009) have been used to accommodate vertical anisotropy and 
variable horizon thickness. An alternative approach based on the 
evaluation of percentiles along 1-cm depth slices, or larger “slabs” 
(e.g., 10-cm sections), was suggested by Beaudette et al. (2013b). 
Explicitly accounting for these complexities has the potential to 
create a more robust model that incorporates three-dimensional 
soil property data.

The development, application, and predictive capacity of 
QSM methods ultimately depends on the relative intensity of 
individual soil forming factors and the degree to which adequate 
proxies for these factors can be identified. Our goal was to evalu-
ate the predictive capacity for QSM in the Sierra Nevada Foothill 
Region (SFR), within two contrasting landscapes underlain by 
granite in the south (San Joaquin Experimental Station [SJER]) 
and metavolcanic rocks in the north (Sierra Foothill Research 
and Extension Center [SFREC]). We were interested in de-
termining the strength of relationships between measured soil 
properties and several terrain-based proxies for microclimate 
and redistribution processes (e.g., sediment and water), in the 
presence of complex lithologic variability, using a “variance par-
titioning” framework. Covariates describing vertical anisotropy 
were included in the variance partitioning framework for two 
reasons: (i) as a benchmark to compare against, for example, does 
topography contribute to more variation than processes occur-

ring within the soil profile? and, (ii) as a covariate to support 
spatial analysis of three-dimensional data. We hypothesized that 
terrain-based proxies for near surface processes would account 
for a larger proportion of (horizon-scale) soil property variabil-
ity than variability with depth. In addition, we hypothesized that 
QSM techniques would perform better in the weakly developed 
(less vertical anisotropy) soils of the rolling granitic landscapes 
as compared with the well-developed (more vertical anisot-
ropy) soils in metavolcanic landscapes because of the complex 
feedback mechanisms associated with lateral water movement, 
perched water tables, and pedogenic processes in well-developed 
soils (Swarowsky et al., 2012).

MATERIALS AND METHODS
Soils were sampled from two representative lithologies from 

the SFR, granitoid rocks in the south at the SJER, and metavol-
canic rocks in the north at the SFREC. Details about the envi-
ronmental settings of these sites are described in previous work 
(Swarowsky et al., 2012; Beaudette et al., 2013a).

A 30-ha collection of interconnected catenas was selected to 
represent the rolling terrain at SJER. Here, local geology is domi-
nated by Mesozoic granodiorite with patches of granite, tonalite, 
and diorite. Soils at SJER are typical of those mapped within this 
region: Ahwahnee (coarse-loamy, mixed, active, thermic Mollic 
Haploxeralfs) on summit positions, and Vista (coarse-loamy, 
mixed, superactive, thermic Typic Haploxerepts) on the back-
slope positions (Soil Survey Staff, 1999). Elevation within the 
SJER catena extends from 330 to 370 m, mean annual precipita-
tion (MAP) is 500 mm, and mean annual average temperature 
(MAAT) is 16.0°C.

A single 30-ha headwater catchment was selected to rep-
resent the steep, complex sequence of landforms at SFREC. 
Here the geology is dominated by Mesozoic metavolcanic 
rocks (greenstone) of the Smartville complex. Dominant soils 
included: Sobrante (Fine-loamy, mixed, active, thermic Mollic 
Haploxeralfs) and Timbuctoo (Fine, parasesquic, thermic Typic 
Rhodoxeralfs), both occurring on backslope and summit posi-
tions. Elevation within the SFREC catena extends from 160 to 
410 m, MAP is 705 mm, and MAAT is 16.6°C.

Soil Profile Sampling and  
Laboratory Characterization

Sampling locations were selected according to a random-
stratified design (de Gruijter et al., 2006) within expert-delineated 
landscape positions. At each location, morphological characteris-
tics were described, and soil samples were collected by genetic ho-
rizon for laboratory analysis. A total of 15 soil profiles from SJER 
were described and sampled, with an additional 26 supplemental 
auger observations where abbreviated descriptions of morphology, 
soil depth, and paralithic materials were recorded (Fig. 1). A total 
of 106 soil profiles from SFREC were described (Soil Survey Staff, 
2012) and sampled, with laboratory characterization performed 
on approximately two-thirds of the profiles (Fig. 1). All analyses 
(except elemental analysis) were performed on air-dried soil mate-



www.soils.org/publications/sssaj 343

rial that had been gently crushed and passed through a 2-mm sieve. 
A subset of this soil material was powdered and homogenized in a 
ball mill for 24 h. Ball-milled soil samples were packed into sample 
cups and sealed with polypropylene film (Premier Lab Supply) for 
elemental analysis.

Laboratory characterization of the <2-mm fraction includ-
ed particle-size analysis [pipette method (Gee and Orr, 2002)], 
CEC [NH4OCH3O2H at pH 7 (Soil Survey Staff, 2004)], se-
lective dissolution of Fe and Mn [citrate–bicarbonate–dithion-
ite and acid-oxalate (McKeague and Day, 1966)], pH [1:1 soil/
water (Soil Survey Staff, 2004)], and total carbon (combustion-
gas chromatography).

Elemental analysis was performed using two portable X-ray 
fluorescence (XRF) devices within a shielded enclosure and con-
trolled sample presentation system. A 3 min run-time on the 
Thermo-Fisher XL3T-800 in “soil mode” was used to measure 
elements with expected concentrations <1%, and a 3 min run-
time on the Thermo-Fisher XL3T-900 GOLDD in “mining 
mode” was used to measure elements with expected concentra-
tions >1%. The use of polypropylene film and combination of 
detection modes was suggested by a Thermo-Fisher application 
scientist to maximize detection accuracy of elements lighter than 
Ti (Laura Stupi, personal communication, 2010).

Total soil Fe, Ca, and Zr (measured by XRF) were used as 
indices of lithologic variability within both catenas. Total Ca 
and Fe were used to describe gradation from granodiorite (lower 
occurrence of Ca and Fe-bearing minerals) to diorite (higher 
relative occurrence of Ca and Fe-bearing minerals) at SJER, and 
gradation from intermediate (high Ca, moderate Fe) to mafic 
(low Ca, high Fe) rocks at SFREC. Zirconium was included in 
this suite of indicator elements because minerals that contain 
Zr in the soil are typically resistant to weathering and transloca-

tion processes, and therefore useful indicators of parent material 
provenance (Fitzpatrick and Chittleborough, 2002).

Soil color was measured using a Konica-Minolta CR-410 
colorimeter (Liles et al., 2013). The CIELAB colorspace was 
used (Viscarra Rossel et al., 2006). The positive A-axis was used 
to represent soil sample redness.

Iron and Mn crystallinity indices were computed as the 
ratio of acid-oxalate extracted element to citrate–bicarbonate–
dithionite extracted element. An iron oxide accumulation index 
was computed as the ratio of citrate–bicarbonate–dithionite ex-
tracted Fe to total Fe content as measured by XRF (Fed/Fetotal). 
This index was used to describe soil development in the presence 
of lithologic variability.

Rock samples were collected from outcroppings in each cat-
ena; 2 sites at SJER, and 10 sites at SFREC (Fig. 1). Rock sam-
ples were crushed and digested in concentrated acid (HNO3–
HClO4–HF- HCL). Total elemental analysis was performed via 
inductively coupled plasma emission spectrometry (ICP-ES).

Characterization of Lithologic Variability
Interpolated maps of horizon thickness-weighted mean Fe 

(total soil Fe as measured by XRF) were generated for each cat-
ena, using conditional simulation at SJER and ordinary kriging 
at SFREC (Issaks and Srivastava, 1989). Spatial auto-correlation 
was parameterized using a spherical variogram model within each 
catena, having: partial sills of 2.8 Fe %2 (SJER) and  4.1Fe%2 

(SFREC), ranges of 100 m (SJER) and 650 m (SFREC), and 
nugget variances of 0.1Fe %2 (SJER) and 0.2Fe %2 (SFREC). 
Conditional simulation (CS) was used in favor of ordinary 
kriging (OK) due to the small number of sampling locations at 
SJER. Total soil Fe values at SJER were computed by taking the 
pixel-wise mean of 100 conditional simulations. These values 
were converted into classes using a set of rules based on mean Fe-

Fig. 1. Sampling locations (point symbols), elevation contours (solid black lines—2-m interval at SJER, 5-m interval at SFREC), and estimated paths 
of flow-line convergence (solid blue lines) within each catena. Filled symbols represent locations where laboratory characterization was performed 
on soil samples, open symbols represent points where only morphological data were collected. Black ’x’ symbols (San Joaquin Experimental Station, 
SJER) represent auger sampling locations.
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contents of granite, granodiorite, and diorite (Le Maitre, 1976): 
“granite” (1% < Fe £ 2.5%), “granodiorite” (2.5% < Fe £ 4.5%), 
and “diorite” (4.5% < Fe). Principal component analysis was 
used to investigate the relationship between total soil Fe, Ca, and 
Zr concentrations within each catena.

Digital Terrain Modeling
A detailed elevation survey was conducted at both catenas 

(approximately 1000 measurements each) with a Trimble R7 re-
al-time kinematic (RTK) GPS. Primary topographic parameters 
(slope angle, aspect angle, profile curvature, tangential curvature, 
and mean curvature) were generated from partial first and second 
derivatives of the elevation surface fit by regularized splines in ten-
sion (RST) interpolation (Mitasova and Mitas, 1993). Secondary 
topographic parameters including the compound topographic 
index (CTI; Wilson and Gallant, 2000), Llobera’s topograph-
ic prominence index (Llobera, 2001), annual beam radiance 
(Rigollier et al., 2000), flowline density (Mitasova and Hofierka, 
1993; GRASS Development Team, 2009), distance from flowline, 
upslope contributing area (GRASS Development Team, 2009), 
and terrain characterization index (TCI; Park et al., 2001) were 
computed within GRASS GIS (GRASS Development Team, 
2009). Details on the topographic survey and calculation of ter-
rain attributes are described in Beaudette et al. (2013a).

Statistical Analysis
Variation in horizon depths, thickness, and the presence or 

absence of major horizon types makes it difficult to investigate 
relationships between (horizon scale) soil properties associated 
with genetic horizons and corresponding (pedon scale) terrain 
attributes. Two approaches were used to overcome this problem: 
1. Horizon-scale soil property data were aggregated to the pro-
file scale using horizon thickness-weighted averages, and 2. Soil 
property data were aligned to a regular sequence of 10 cm-thick 
depth “slabs” using thickness-weighted averages when slabs in-
cluded more than one genetic horizon (Beaudette et al., 2013b).

Characterization of Vertical Anisotropy
We used restricted cubic splines (RCS) to describe collec-

tions of soil property depth-functions because these functions 
require few assumptions (e.g., no smoothing parameters) and are 
linear in the tails (Harrell, 2001). Four RCS basis functions were 
generated using a natural spline basis matrix (four degrees of 
freedom) constrained at three interior knot locations (Hastie et 
al., 2009). Interior knots at equal depth intervals (37.5, 75.0, and 
112.5 cm) were used instead of horizon midpoints, as horizona-
tion varied greatly within and between each catena. Additive 
combinations of the RCS basis functions can be used within 
the context of regression and ordination methods to describe 
smooth, nonlinear soil property depth-functions (Supplemental 
Figure A). As with any regression model, the use of RCS basis 
functions requires sufficient sample size to accommodate addi-
tional predictor variables. Resampling horizons (e.g., via “slab” 
approach outlined in Statistical Analysis section above) to a com-

mon depth-interval ensures that horizon-level properties are 
equally weighted within a regression model that includes RCS 
basis functions.

Univariate Soil-Landscape Relationships
The relationships between profile-scale aggregate soil prop-

erty data and terrain attributes were determined using Spearman’s 
rank correlation coefficient (Verzani, 2004). Tied ranks within 
either data series were averaged. The Spearman rank correlation 
coefficient (rs) ranges from -1 to 1, and is useful for determining 
the strength of a relationship when nonlinear, but monotonic, 
patterns are hypothesized.

Multivariate Soil-Landscape Relationships
A more comprehensive evaluation of soil-landscape rela-

tionships was based on the magnitude of variance in several soil 
properties explained by a collection of terrain shape and litho-
logic indices. We used redundancy analysis (RDA) to investi-
gate multivariate soil-landscape relationships, based on horizon 
thickness-weighted mean soil properties. Redundancy analysis is 
an extension of multiple linear regression (single response variable, 
multiple predictor variables) to systems involving several response 
variables (Legendre and Legendre, 1998). Analogous to PCA, an 
RDA solution is an ordination of predictor variables; however, the 
RDA-based ordination is constrained such that the RDA “scores” 
are linear combinations of both predictor and response variables.

The RDA “triplot” (Supplemental Figure B) is a standard 
method used to display results from RDA, where observations 
are plotted onto a coordinate system defined by two RDA axes. 
On these new axes, inter-point proximity is approximately pro-
portional to numerical similarity (RDA scaling Type II). Vectors 
representing predictor and response variables are added to the 
plot, such that: 1. Angles between (X and Y) variables repre-
sent correlation (maximum positive correlation at 0 degrees, 
maximum negative correlation at 180 degrees, and minimum 
correlation at 90 or 270 degrees); 2. Right-angle projections of 
an observation along either response or predictor vectors ap-
proximates the value of the variable for that observation. Vector 
length and direction with respect to RDA axes denote relative 
contribution to—(in the case of predictor variables) or degree of 
associated with—(in the case of response variables) RDA axes.

Variance Partitioning
We used partial RDA (pRDA) to evaluate what proportion 

of variance in a suite of measured soil properties (“soil charac-
ter”) was explained by geographically associated measurements 
of “terrain character” and “lithologic character” (Legendre and 
Legendre, 1998). The association between a multivariate re-
sponse and several predictor variables was modeled as:

1 2 3 1 2 3 4 5 6 7 8 9   ~      y y y x x x x x x x x x+ + + + + + + +

1 2 3 1 2 3 1 2 3 1 2 3   ~        y y y a a a b b b c c c+ +  [1]

 ~      + +Y A B C
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where |y1y2y3| represent a multivariate response, and x1 though 
x9 represent predictor variables. Partial RDA partitions variance 
in the multivariate response across sets of predictor variables (e.g., 
|a1a2a3| vs. |b1b2b3| vs. |c1c2c3|). Soil properties used to define “soil 
character” (Y from Eq. [1]), included: clay content, CEC, pH, 
redness, and Fe crystallinity (Feo/Fed). Terrain attributes used to 
define “terrain character” (A from Eq. [1]) included CTI, annual 
beam radiance, slope angle, profile curvature, and mean curvature. 
Elemental concentrations used to define “lithologic variability” (B 
from Eq. [1]) included total soil Ca, Fe, and Zr. Restricted cubic 
spline basis functions (4) used to describe vertical anisotropy (C 
from Eq. [1]) were also included (Supplemental Figure A, left 
panel). This analytical framework made it possible to partition 
variance in “soil character” across terrain metrics, indices of litho-
logic variability, and depth. All variables were centered (subtrac-
tion of mean) and scaled (division by standard deviation) before 
RDA and pRDA analysis, to accommodate multiple units of mea-
sure (Legendre and Legendre, 1998). All statistical analyses were 
performed with R (R Core Team, 2014) version 3.1.1. RDA and 
pRDA analyses were performed using the “vegan” package for R 
(Oksanen et al., 2015).

RESULTS AND DISCUSSION
Soil Morphology and Properties

The residual and colluvial soils formed on granite at SJER 
were moderately deep (»80% were ³75 cm) to deep (»33% 
were ³100 cm). A small fraction were shallow (»10% were 
<50 cm). Of the moderately deep or deeper soils at SJER, A 
horizons most commonly occurred within the upper 15 cm, AB 
horizons at 15 to 30 cm, Bw or Bt horizons at 30 to 80 cm, and 
C horizons or the Cr contact were present from 80 to 120+ cm 
(Fig. 2).

The residual and colluvial soils formed on metavolcanic 
rock at SFREC varied greatly in depth ranging 20 to over 150 
cm, however, most were moderately deep (»72% ³ 80 cm) to 
deep (»44% ³ 100 cm), with a small fraction of shallow soils 
(»5% < 50 cm; Fig. 2). The larger number of described profiles 
at SFREC resulted in smoother horizon probability estimates 
(Fig. 2), with A horizons common in the upper 8 cm, BA ho-
rizons at 8 to 20 cm, Bt horizons from 20 to 80+ cm. Contact 
with Cr material or bedrock was highly variable, but typically 
near 60 cm (shallower soils) or near 90 cm (deeper soils). Clay-
rich horizons, usually > 40% clay by weight, locally referred to as 
“claypans”, were present in some (24%) SFREC soils, from 30 to 
100 cm (Fig. 2).

Soils derived from metavolcanic rock at SFREC were finer 
textured, and had higher CEC, total carbon, redness, and total 
soil Fe compared with SJER. Soils derived from granite at SJER 
had slightly higher pH, a greater proportion of poorly crystal-
line Fe and Mn, and greater total soil Ca, Zr, and Si concentra-
tions (Fig. 3). Strong vertical differentiation at SJER was present 
in a few measured soil properties: 1. Iron crystallinity generally 
increased with depth as indicated by a decrease in Feo/Fed val-
ues. 2. Deep soils had higher pH values below 80 to 100 cm. At 
SFREC, two major vertical trends were apparent: clay content 
and CEC (Fig. 3). The large increase in clay with depth from 
20 to 80 cm coincided with the range of described Bt horizons. 
Abrupt increase in CEC variability from 60 to 100 cm corre-
sponded to the range of described claypan features, which con-
tained a larger proportion of smectite group minerals compared 
with overlying horizons. Total carbon content in the top 40 cm 
was typically 0.25 to 1.5% (absolute) greater at SFREC due to 
higher precipitation (705 mm at SFREC vs. 500 mm at SJER) 
and greater overall primary production. Total carbon values 

Fig. 2. Probability depth-functions for major horizon types, at the San Joaquin Experimental Range (SJER) and Sierra Foothill Research and 
Extension Center (SFREC). Percentages printed along the right-hand side of the depth axis describe the percentage of profiles contributing to 
probability calculations. “Claypan” features at SFREC were described as 2Bt horizons, and generally contained > 40% clay by weight.
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from 15 to 30 cm (SJER) and from 10 to 40 cm (SFREC) devi-
ated from the typical exponential decay-shaped depth-function 
(Mishra et al., 2009) and were likely related to the heavily biotur-
bated AB (SJER) and BA (SFREC) horizons described within 
these depth intervals.

Terrain Attribute Selection

Terrain attribute summaries illustrate differences between 
landscapes at each catena (Table 1). Landforms at SFREC were 
characterized by steeper and longer slope lengths compared with 
SJER. Range in modeled annual beam radiance was greater at 

SFREC, due to increased local shading by 
adjacent terrain units. It was not possible 
to sample soils with CTI values greater 
than 10.5 at SFREC as these portions of 
the landscape had been scoured of all soil 
material. In contrast, landscape positions 
at SJER with CTI values as high as 12 
were common, and associated with deep 
soils in swale positions.

With the exception of modeled an-
nual beam radiance, most of the terrain 
attributes evaluated in this study were 
moderately to strongly correlated, with a 
pronounced grouping of attributes relat-
ed to flow convergence (Fig. 4). Stronger 
correlation between slope and annual 
beam radiance at SFREC (rs = 0.15 vs. rs 
= 0.01 at SJER) was likely related to the 
greater influence of localized shadowing 
characteristic of the steep terrain. The 
strong correlation between mean curva-
ture and TCI was not surprising given its 

Fig. 3. Soil properties and total elemental concentration depth-functions, grouped by catena. Median values are plotted as lines, bounded by 25th 
percentile and 75th percentile (gray region). CIE Redness values are positive values from the A-axis of the CIELAB color-space, where larger values 
correspond to redder hues. Fe and Mn crystallinity values are based on the ratios of Feo/Fed and Mno/Mnd, respectively. Data were aggregated 
over 1-cm depth slices.

Table 1. Summary statistics for select terrain attributes, sampled from digital elevation 
model (DEM)-derived surfaces at soil pit locations. A graphical comparison of mean 
curvature, annual beam radiance, and compound topographic index (CTI) is presented 
in Beaudette et al. (2013a).

Site Statistic Slope
Tang. 
curv.†

Profile 
curv.‡

Mean 
curv.§

Top. 
prom.¶

Ann. beam 
radiance

CTI TCI

% ————–m-1————– –MJ m2–
SJER Min 2 -8.5E-03 -6.8E-03 -4.7E-03 -0.97 59300 4.1 -1.6E-02

Q25 4 -3.3E-03 -4.0E-03 -3.6E-03 -0.53 66500 4.6 -6.4E-03

Median 11 -6.9E-05 -8.8E-04 -1.8E-03 -0.09 68800 5.6 -2.4E-03

Mean 9 -4.3E-04 -4.9E-04 -4.6E-04 -0.08 67800 6.4 -3.8E-03

Q75 13 4.0E-03 9.6E-04 1.9E-03 0.35 71200 6.6 10E-04

Max 19 6.6E-03 1.1E-02 7.7E-03 0.98 72100 11.9 5.3E-03

SFREC Min 5 -8.5E-03 -7.5E-03 -5.2E-03 -0.93 37500 4.4 -1.6E-02

Q25 21 -8.1E-04 -1.4E-03 -1.1E-03 -0.37 57600 5.7 -2.7E-03

Median 27 4.2E-04 -3.4E-04 -9.5E-05 -0.08 63500 6.1 -2.1E-04

Mean 27 2.3E-04 -2.4E-04 -2.9E-06 -0.001 61200 6.3 -6.3E-04

Q75 32 1.6E-03 6.9E-04 9.1E-04 0.37 65800 6.7 1.8E-03
Max 61 9.1E-03 5.1E-03 5.8E-03 0.99 71700 10.4 9.0E-03

† Tangential Curvature.
‡ Profile curvature.
§ Mean curvature.
¶  Topographic prominence; CTI-compound topographic index (unitless); TCI-terrain 

characterization index (unitless).
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derivation. However, correlation between CTI and TCI (rs = 
0.65 at SJER and rs = 0.40 at SFREC) was lower than expected, 
as both indices estimate flow convergence. The high degree of 
correlation within the suite of DEM-derived terrain attributes 
suggests that a subset was sufficient for modeling soil–landscape 
relationships. Thus, five of the least-correlated terrain attributes 
were selected to represent major landscape processes: annual 
beam radiance (microclimate), slope (localized mass-wasting po-
tential), profile curvature (two-dimensional localized shedding 
vs. collecting), mean curvature (three-dimensional localized 
shedding vs. collecting), and CTI (catchment-scale focusing of 
moisture and sediment).

Correlation between Terrain Attributes and 
Aggregated Soil Properties

Mean curvature and CTI had the largest correlation with soil 
properties in granitic terrain at SJER, followed by profile curva-
ture, annual beam radiance, and slope angle (Table 2). Statistically 
significant (p < 0.05) Spearman correlation coefficients were lim-
ited to the range of about {0.5 £ |rs| £ 1.0} due to the small sample 
size at SJER. At this level of significance, the absolute value of the 
mean correlation between all pairs of aggregate soil properties and 
terrain attributes was 0.61. Mean curvature, profile curvature, and 
CTI accounted for major differences in soil properties as strati-
fied by “upland” (summit and shoulder/lower CTI and positive 
curvatures) vs. “lowland” (footslope and swale/higher CTI and 
negative curvatures) positions at SJER. These patterns largely fol-
low what the standard soil-landscape model predicts transport of 
sediment and weathering products from divergent landscape posi-
tions (e.g., shallower soils, lower relative pH, lower relative CEC, 
more intense reddening) to convergent landscape positions (e.g., 
deeper soils, higher relative pH, higher relative CEC, presence of 
redoximorphic features; Table 2; Ruhe, 1956; King et al., 1983). 
Modeled annual beam radiance correlated moderately with Fe 

crystallinity (stronger crystallinity on slopes with higher radiance) 
and soil redness (redder soils on slopes with higher radiance). 
These patterns are typical manifestations of higher soil tempera-
tures, longer dry periods, and lower vegetation density observed 
on predominately south-facing slopes (e.g., higher annual beam ra-
diance) in the northern hemisphere (Reid, 1973; Birkeland, 1999; 
Rech et al., 2001). The positive correlation between slope angle 
and rock fragment content is in agreement with the process of col-
luviation (Table 2).

Slope angle had the largest correlation with soil properties 
within the metavolcanic terrain at SFREC, followed by CTI, an-
nual beam radiance and mean curvature, and profile curvature 
(Table 2). Due to the larger sample size at SFREC, statistically 
significant (p < 0.05) Spearman correlation coefficients ranged 
from {0.19 £ rs £ 1.0}. Despite the larger number of statistically 
significant correlations, the absolute value of the mean correla-
tion between all pairs of aggregate soil properties and terrain 
attributes was 0.32, much lower than at SJER. Although corre-
lation was low, two major pedogenic processes appeared to be 
captured by the correlation structure: (i) the aspect effect, influ-
encing vegetation density, soil temperature, and soil moisture; 
and, (ii) terrain-induced re-distribution of soil moisture. Annual 
beam radiance was inversely correlated with thicker A horizons 
(greater organic inputs) and deeper soils (protection from ero-
sion) on more shaded slopes (Table 2). Slope angle, CTI, and 
surface curvature were moderately correlated with soil properties 
that are typically affected by degree and duration of saturation. 
Convergent landscape positions (low slope angles and larger 
CTI) were correlated with higher CEC values, while divergent 
landscape positions (larger slope and smaller CTI) were corre-
lated with stronger Fe crystallinity, Fed/Fetotal, and soil redness 
(Table 2). Contrary to these patterns, deeper soils and thicker 
Bt horizons (expected in convergent positions) were positively 
correlated with divergent positions. These two deviations from 

Fig. 4. Terrain variable correlation structure, based on Spearman rank correlation coefficients. Branching level and y-axis labels describe the 
magnitude of the squared Spearman rank correlation between variables: that is, branching at lower positions in the figure denotes higher 
correlation within groups of variables.
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the standard soil-landscape interpretation are likely related to 
the occurrence of deep soils with thick argillic horizons on topo-
graphic benches (convex profile curvature and moderate CTI) 
at SFREC. Perched water tables and lateral flow processes have 
been identified in the soils found on these landscape positions 
(Swarowsky et al., 2012). These unexpected patterns resemble 
the complex soil landscape relationships associated with old 
landscapes in the Rio Negro basin in southern Venezuela, where 
patches of well-developed, clay-rich soils were common in up-
lands and less developed sandy soils were found in low relief areas 
(Dubroeucq and Volkoff, 1998).

Evidence of Lithologic Variation
Spatial patterns in profile-weighted mean (total soil) Fe con-

tent were characterized by high spatial auto-correlation, span-
ning multiple landscape positions (Fig. 5). Total Fe measured 
on rock samples were generally in agreement (r= 0.81) with that 
of corresponding soil samples (Table 3). With the exception of 
rock samples “SJER-011” and “SFREC-n14”, the ratio of soil-Fe 
to rock-Fe was within the range of 1.3 to 1.7.

Iron concentrations at SJER were 
correlated over distances up to ap-
proximately 100 m, and were gener-
ally within the expected levels of granite 
(2.14%), granodiorite (3.12%), and dio-
rite (5.66%; Le Maitre, 1976). Dioritic 
patches were considerably smaller (~ 
16% of the area) than the regions of 
granodiorite (~ 47% of the area), and 
granite (~37% of the area; Fig. 5). In 
contrast to observations by Pye (1986), 
terrain shape or rock outcrop abundance 
did not correspond to changes in lithol-
ogy. Lithologic variability at SJER was 
predominately aligned with an apparent 
Ca–Fe gradient (PCA Axis 1) explain-
ing 70% of total variance (Fig. 6). A 
secondary gradient primarily associated 
with total soil Zr, and largely orthogonal 
to Fe, explained an additional 22% of the 
variance (PCA Axis 2).

Total soil Fe concentrations at 
SFREC were correlated over larger dis-
tances as compared with SJER (up to ap-
proximately 650 m), and were generally 
close to the expected Fe content of ba-
salt (8.30%; Le Maitre, 1976). Highest 
Fe concentrations (11–13%) were found 
in the upper portions of the catchment, 
especially along the eastern watershed 
boundary between sites “n29” and “n33” 
(Fig. 5). Variation in total soil Fe concen-
tration was (spatially) associated with 
the two main drainages; however, this 
pattern was limited to middle elevations 

of the watershed. The largest variability in Fe concentration fol-
lowed a SW–NE axis, and the lowest measured Fe value occurred 
on the knoll near soil profile “n09” (Fig. 5). The spatial patterns 
in rock composition at SFREC are likely related to the complex 
metamorphic setting of this region (Hacker, 1993). Lithologic 
variability at SFREC was predominately aligned with a gradi-
ent spanning low-Ca to high-Fe values (PCA Axis 1) explaining 
65% of total variance (Fig. 6). A secondary, more complex, gra-
dient associated with Ca and Zr concentrations (PCA Axis 2), 
explained an additional 22% of the variance.

Estimated Lithologic Influence on Soil Properties
Within each catena, there were strong correlations between 

horizon thickness-weighted mean soil properties and total soil 
Ca, Fe, and Zr. At SJER, variation in soil depth, abundance of 
clay films, clay content, CEC, and pH tracked weathering tra-
jectories of granodiorite (less weatherable) and diorite (more 
weatherable; Table 4; Pye, 1986). However, Fed/Fetotal values 
and soil redness were negatively correlated with total soil Ca, and 

Table 2. Spearman Rank Correlation coefficients (rs) computed between select terrain 
and aggregate soil properties. The number of soil profiles used within each comparison is 
denoted in the “n” column. Coefficients are shown for correlations that were significant 
at the p < 0.05 level.

Site Property n
Annual beam 

radiance
Slope

Profile 
curvature

Mean 
curvature

CTI‡

SJER A HZ† thickness, cm 15 – – – – –
B HZ† thickness, cm 12 – – – – –

Depth, cm 15 – – – -0.74 0.66

Rock fragments, % 15 – 0.53 – – –

Redox features, % 15 – – – -0.69 0.62

Clay films, % 15 – – -0.54 – –

Clay, % 15 – – – – –

CEC, cmol kg-1 15 – – -0.74 -0.70 –

Fed/Fetot 15 – – – – –

Fed/Feo 15 -0.63 – – – –

Total C, % 15 – – – – –

pH 15 – – – -0.57 0.63

Redness 15 0.55 – – 0.56 -0.58

SFREC A HZ† thickness, cm 106 -0.30 – – – –

B HZ† thickness, cm 106 – 0.35 0.29 0.19 -0.33

Depth, cm 106 -0.27 0.29 – – -0.23

Rock fragments, % 106 – 0.24 – – –

Redox features, % 106 – – – – –

Clay films, % 106 – – – – –

Clay, % 65 – – – – –

CEC, cmol kg-1 45 – -0.36 – – 0.48

Fed/Fetot 64 – 0.48 – – -0.25

Fed/Feo 64 – -0.30 – – 0.27

Total C, % 76 – – – – –

pH 48 – 0.29 – – –
Redness 74 – 0.64 – 0.29 -0.57

† Horizon.
‡  CTI-compound topographic index; Fed citrate–bicarbonate–dithionite extractable iron; Mnd 

citrate–bicarbonate–dithionite manganese; Feo oxalate extractable iron; Mno oxalate extractable 
manganese; Fetot total iron measured by portable XRF.
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not significantly correlated with total soil Fe. These results are 
in conflict with the expected differences between soils formed 
on granodiorite vs. diorite, and may have been related to varia-
tion in soil age. Older, more stable summit positions may have 
had redder hues and greater iron oxide production, irrespec-
tive of total soil Fe content of the underlying rock. At SFREC, 
variation in Bt horizon thickness, soil depth, clay content, Fed/
Fetotal values, and redness were correlated with total soil Fe, and 
to a lesser extent with total soil Zr (Table 4). Cation-exchange 
capacity was negatively correlated with total soil Fe, and posi-
tively correlated with total soil Ca suggesting that the formation 
of higher activity clays (e.g., smectite) was possibly favored in the 
presence of higher Ca concentration. Deeper soils, finer textures, 
and redder hues are commonly associated with soils formed from 
increasingly more mafic parent material (Graham and 
O’Geen, 2010).

Elemental concentrations measured on soil sam-
ples cannot always be interpreted as unbiased descrip-
tors of lithologic variability. For example, Ca is mobile 
and actively biocycled once weathered from primary 
minerals; Fe and Zr can be enriched when other more 
mobile elements have been lost from or translocated 
within the soil profile (Birkeland, 1999; Fitzpatrick 
and Chittleborough, 2002). Manifestations of these 
processes are typically strongest in older, stable land-
scapes, and should result in a negative correlation 
between mobile elements and less mobile elements. 
At SJER, total soil Ca was positively correlated with 
total soil Fe, and at SFREC total soil Ca was nearly or-
thogonal (i.e., not correlated) to total soil Zr (Fig. 6). 
While these findings do not prove that these elements 

are unbiased descriptors of lithologic variability, it supports the 
interpretation that effective enrichment of Fe and Zr (relative to 
Ca) was not a major process within these catenas.

Interpretation of Soil-Landscape Correlations in 
the Presence of Lithologic Variability

Despite the large number of statistically significant corre-
lations between terrain attributes and aggregate soil properties, 
causal relationships cannot be directly inferred when correlations 
with a third set of variables (elemental concentrations associ-
ated with parent material variability) are present (Legendre and 
Legendre, 1998). In other words, observed correlation between a 
given terrain attribute and soil property may be misleading when 
mutual correlation exists with an index of lithologic variability. 

Fig. 5. Maps of lithologic variability at San Joaquin Experimental Range (SJER; CS, conditional simulation) and Sierra Foothill Research and Extension 
Center (SFREC; OK, ordinary kriging) based on horizon thickness-weighted mean, soil Fe concentrations (%) measured by xRF. Locations where 
elemental concentrations were measured on both rock and soil samples are labeled. Cross symbols correspond with locations where elemental 
concentrations were measured on soil samples, and solid lines correspond to elevation contours (2-m interval at SJER, 5-m interval at SFREC).

Table 3. Aggregate soil property and elemental concentration values from 
sites where elemental analysis was performed on rock samples. Clay con-
tent, pH, redness, citrate–bicarbonate–dithionite extractable iron (Fed) and 
total Fe (Fetot), are profile-weighted mean values.†

Sample Soil depth Clay pH Redness Fed/Fetot Fetot Ferock Fetot/Ferock

cm % % %
SJER-01 85 8 6.0 8.3 0.11 2.3 1.8 1.3

SJER-11 130 16 6.2 9.0 0.10 6.1 6.8 0.9

SFREC-n02 80 20 5.6 10.0 0.33 9.3 7.4 1.3

SFREC-n09 57 14 5.8 8.8 0.32 4.2 2.5 1.7

SFREC-n14 84 27 5.7 12.9 0.35 9.6 3.1 3.1

SFREC-n24 170 30 5.6 10.8 0.36 9.63 7.44 1.3

SFREC-n27 71 31 5.9 15.2 0.44 10.3 6.1 1.7

SFREC-n29 120 34 5.9 15.1 0.48 11.9 8.9 1.4

SFREC-n30 134 51 6.2 14.5 0.65 12.6 8.8 1.4

SFREC-n32 80 26 6.0 15.4 0.42 10.7 6.3 1.7
SFREC-n33 135 41 6.4 15.5 0.55 12.4 8.8 1.4
†  Fetot total iron measured by portable XRF; Ferock total Fe in rock samples measured 

by acid dissolution.
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At SJER, CEC was correlated with both convergent landscape 
positions (rs = −0.70; Table 2) and higher total soil Fe (rs = 0.87; 
Table 4), which was also strongly correlated with convergent 
landscape positions (rs = −0.73; Table 5). Within the SFREC 
catena, Bt horizon thickness was correlated with steeper slopes 
(rs = 0.35; Table 2) and higher total soil Fe (rs = 0.54;Table 4), 
which was also positively correlated with steeper slope positions 
(rs = 0.44; Table 5). In addition, total soil Ca was positively cor-
related with flatter and more convergent landscape positions, 
while total soil Fe and Zr followed the opposite pattern (Table 
5). These findings complicate interpretation of soil–landscape 
relationships due to the presence of multiple, active soil-forming 
factors (relief and parent material), and the correlation between 
these factors.

Further investigation of the complex terrain-lithology cor-
relation structure at each site was performed via RDA, using a 
subset of horizon thickness-weighted mean soil properties (Fig. 
7). Redundancy analysis seeks to find a reduced set of new axes 
that describe variance in response variables: clay, CEC, redness 
(labeled as “A” in Fig. 7), pH, and Fe crystallinity (labeled as 
“feo_to_fed” in Fig. 7)—as constrained by explanatory vari-
ables: terrain shape indices (mean curvature, profile curvature, 
slope, annual beam radiance, and CTI) and indices of lithologic 
variability (total soil Ca, Fe, and Zr). These soil properties were 
selected because they reflect key sources of variability in soil clas-
sification and development within the SFR. Angular relation-
ships between response (blue labels) and explanatory vectors 
(red arrows) are similar to correlations listed in Tables 2, 4, and 
5. Correlation between explanatory variables, and their contri-
bution to the RDA axes (RDA1 and RDA2 in Fig. 7) can be 
used to determine groups of explanatory variables that “share” 
information on variance in the response variables (soil proper-

Fig. 6. Principle component analysis (PCA) biplots describing major axes of variation with respect to horizon thickness-weighted mean Ca, Fe, and 
Zr concentrations. Interpretation of the PCA biplot is analogous to interpretation of the RDA triplot (Supplemental Figure B).

Table 4. Spearman Rank Correlation coefficients (rs) com-
puted between select geochemical and aggregate soil proper-
ties. The number of soil profiles used within each comparison 
is denoted in the “n” column. Coefficients are only shown for 
correlations that were significant at the p < 0.05 level.

Site Property n Ca Fe Zr

SJER A HZ† thickness, cm 15 – – –
B HZ† thickness, cm 12 – – –

Depth, cm 15 0.53 0.66 -0.53

Rock fragments, % 15 – – –

Redox features, % 15 – – –

Clay films, % 15 – 0.67 –

Clay, % 15 – 0.74 –

CEC, cmol kg-1 15 – 0.87 –

Fed/Fetot 15 -0.61 – –

Fed/Feo 15 – – –

Total C, % 15 – 0.62 –

pH 15 0.66 0.60 –

Redness 15 -0.54 – –

SFREC A HZ† thickness, cm 106 -0.33 – –

B HZ† thickness, cm 106 -0.42 0.54 0.41

Depth, cm 106 -0.35 0.48 0.36

Rock fragments, % 106 -0.31 0.31 –

Redox features, % 106 – – –

Clay films, % 106 – – –

Clay, % 65 -0.35 0.47 –

CEC, cmol kg-1 45 0.46 -0.61 -0.35

Fed/Fetot 64 -0.54 0.78 0.56

Fed/Feo 64 0.43 -0.73 -0.41

Total C, % 76 – 0.27 –

pH 48 – – –
Redness 74 -0.43 0.78 0.55

†  Horizon; Fed citrate–bicarbonate–dithionite extractable iron; Mnd 
citrate–bicarbonate–dithionite manganese; Feo oxalate extractable 
iron; Mno oxalate extractable manganese; Fetot total iron measured 
by portable x-ray fluorescence.
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ties). Within the SJER catena, RDA Axis 1 roughly corre-
sponded to divergent vs. convergent landscape positions, 
and accounted for about 50% of the variance in select soil 
properties (Fig. 7). Total soil Ca contributed primarily to 
RDA Axis 1 and was highly correlated with convergent 
landscape positions, which complicates its utility as an 
index of lithologic variability (Fig. 7). The correlation be-
tween total soil Ca and indices of terrain shape at SJER is 
not surprising given the high potential rate of leaching due 
to coarse soil textures (loamy coarse sands and coarse san-
dy loams). Downslope movement of Ca weathered from 
primary minerals (anorthite and hornblende) result in net 
loss of Ca from divergent positions and net gain of Ca in 
convergent positions where cation exchange and neoformation 
retain Ca. Redundancy analysis Axis 2 at SJER roughly corre-
sponds to the gradation in parent material from predominately 
dioritic sources (low total soil Zr, high total soil Fe) to predomi-
nately granodioritic/granitic sources (lower total soil Fe, high 
total soil Zr), and accounts for 26% of the variance in soil prop-
erties (Fig. 7). However, total soil Fe and Zr also contribute to 
RDA Axis 1, suggesting that these variables share information 
with terrain shape indices. Modeled annual beam radiance con-
tributes nearly equally to RDA Axes 1 and 2, and is more or less 
orthogonal to total soil Ca, Fe and Zr. Additional details on the 
interpretation of RDA triplots are given in Supplemental Figure 
B. A more detailed description of the theory behind RDA from 
a soil survey perspective is given in Odeh et al. (1991).

In contrast with SJER, there was considerable overlap 
in information shared by terrain shape indices and elemental 
concentration within the SFREC catena (Fig. 7). Redundancy 

analysis Axis 1 at SFREC described 37% of the variance in soil 
properties, and was aligned with a gradient in total soil Fe. Slope 
angle, profile curvature, mean curvature, CTI, and total soil Zr 
all contributed to RDA Axis 1. Total soil Ca and Zr, along with 
annual beam radiance all contributed to RDA Axis 2, which de-
scribed 5% of the variance in soil properties (Fig. 7). It is clear 
that considerable information is shared between terrain shape in-
dices and elemental concentrations within this catena—severely 
impairing any causal interpretation of terrain-induced variation 
in soil properties.

Whole-Profile Variance Partitioning
Partial RDA was used to determine the approximate amount 

of partial variance in soil properties (clay content, redness, CEC, 
pH, and Fe crystallinity) explained by the terrain shape indices, 
lithologic indices, and depth (RCS basis functions). The amount 
of variance accounted for by the combination of terrain, litho-

Table 5. Spearman Rank Correlation coefficients (rs) computed between 
select terrain and profile-weighted mean Ca, Fe, and Zr concentrations. 
The number of soil profiles used within each comparison is denoted in 
the “n” column. Coefficients are only shown for correlations that were 
significant at the p < 0.05 level.

Site Element n
Annual beam 

radiance
Slope

Profile 
curvature

Mean 
curvature

CTI†

SJER Ca 15 – – – -0.54 0.70
Fe 15 – – -0.81 -0.73 0.54

Zr 15 – – – – –

SFREC Ca 64 – -0.47 – -0.28 0.37

Fe 64 – 0.44 0.37 0.39 -0.47
Zr 64 0.23 0.24 – – –

† CTI-compound topographic index.

Fig. 7. Redundancy analysis (RDA) triplots of horizon thickness-weighted mean soil properties (blue labels) vs. soil elemental concentrations 
and terrain shape indices (red labels). Redundancy analysis Axis 1 corresponds to the x axis, and RDA Axis 2 corresponds to the y axis. Site 
identifications are included for the 15 soils sampled at San Joaquin Experimental Range (SJER), and select soils sampled at Sierra Foothill Research 
and Extension Center (SFREC). Interpretation of the RDA triplot is described in Supplemental Figure B.
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logic, and depth variable suites varied from 66% (SJER) to 36% 
(SFREC; Fig. 8). Terrain variables alone accounted for 30% of 
the variance in soil properties at SJER, but only 4% at SFREC. 
This finding follows field-based observations: the classically de-
fined hillslope sequences (e.g., summit →  shoulder →  back-
slope →  footslope →  swale, etc.) at SJER gives rise to consistent 
relationships between terrain shape and soil properties (Ruhe, 
1956). While at SFREC the presence of highly weathered soils 
on complex, non-repeating hillslope sequences (e.g., summit →  
backslope →  bench →  incised channel →  knoll →  shoulder, 
etc.) results in less systematic soil-landscape relationships. Due to 
the larger characteristic size of landforms at SFREC (400–700 
m from summit to corresponding footslope) as compared with 
SJER (80–120 m from summit to corresponding footslope), rep-
licated sampling within classically defined landscape positions 
was limited at SFREC. A future study involving an expanded 
study area in the metamorphic belt of the SFR could result in 
better estimates of how variance in soil properties is partitioned 
between terrain and lithology.

Elemental variables, used to describe lithologic variability, 
accounted for 22% of the variance in soil properties at SJER, and 
14% at SFREC. Lithologic variability at SJER was largely related 
to the presence of diorite inclusions within a granite-granodio-
rite matrix. At SFREC lithologic variability was mostly associ-
ated with variable Ca and Fe content of the bedrock (meta-basalt 
grading into meta-andesite).

Depth basis functions accounted for 12% of the variance 
in “soil character” at SJER, but only 3% at SFREC (Fig. 8). 
Overlapping regions of Fig. 8 represent proportions of variance 
in response variables accounted for by the combination of two 
or more suites of predictor variables. The 10% of variance in soil 

properties (SFREC) explained by the combination of terrain 
and lithologic variables further suggests concurrent soil-forming 
factors: (i) a parent material influence on weathering trajecto-
ries within the profile; and, (ii) a topographic influence on the 
redistribution of sediment and weathering products throughout 
the catena.

Application of Redundancy Analysis and Other 
Ordination Methods in Soil Survey

There are few cases where soil formation has not been af-
fected by several (likely concurrent) soil forming processes. 
Redundancy analysis and related ordination methods provide a 
useful framework for initial investigation of complex soil-land-
scape relationships (Odeh et al., 1991). In particular, RDA and 
pRDA can help determine the relative importance of superposed 
soil-forming processes or ecological gradients (Peres-Neto et al., 
2006). Once an optimal subset of pedologically plausible covari-
ates have been identified (via RDA), other methods such as re-
gression or classification are typically more successful at generat-
ing predictions for single soil properties or classes (Legendre and 
Legendre, 1998). Identification of regionally important sets of 
covariates is perhaps one of the most important requirements to 
successful downscaling (or disaggregation) of existing soil survey 
data (Nauman and Thompson, 2014; Subburayalu et al., 2014).

Options for Detailed Mapping of  
Lithologic Variability

Within the large body of literature on the topic of “digital soil 
mapping”, parent material co-variates are not frequently incorpo-
rated (relative to terrain shape co-variates or other soil properties) 
into predictive models of soil variation (McBratney et al., 2003; 

Fig. 8. Variance partitioning performed via pRDA, on 10-cm depth slices. Variance in clay content, redness, cation-exchange capacity (CEC), pH, 
and Fe crystallinity was partitioned across terrain shape indices, lithologic indices, and restricted cubic splines (RCS) basis functions. Values < 
0.01 omitted.
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Scull et al., 2003; Grunwald, 2009). The use of field-portable XRF 
devices offer an exiting, albeit expensive, approach to rapidly identi-
fying and quantifying local variation in lithology (Zhu et al., 2011; 
Weindorf et al., 2012; McLaren et al., 2012). In arid environments, 
multispectral (Landsat TM), and hyperspectral (AVIRIS) remote 
sensing has been used to delineate variation in surface mineral-
ogy and sediment source (Scull et al., 2003; Levi and Rasmussen, 
2014). However, band ratios and spectral signatures used to dif-
ferentiate mineral assemblages are not likely to generalize well to 
temperate or humid regions unless patterns in vegetation density 
and species composition consistently track patterns in lithology. 
Aside from traditional geologic maps, the only widely used (but 
not necessarily widely available) proxy for lithologic variability is 
g-ray spectroscopy (Cook et al., 1996; McKenzie and Ryan, 1999; 
Wilford, 2012). The combination of airborne g-ray and magnetic 
anomaly (McCafferty and Gosen, 2009) measurements may sup-
port rapid assessment of key lithologic variables at spatial scales 
relevant to soil-landscape modeling.

CONCLUSIONS
The potential for using DEM-derived indices of terrain 

shape to predict spatial patterns in soil properties varied greatly 
between our two experimental catenas. A QSM approach is best 
suited for granitic landscapes of the SFR where the degree of 
soil development is closely linked with topographic focusing of 
water. Our findings suggest that to be effective, any quantitative 
soil mapping effort must account for multiple superposed soil-
forming processes that likely vary in both space and time. This 
study supports the widely stated shortcoming of QSM that bet-
ter digital proxies are needed to describe the effects of organisms, 
time, and parent material on soil development.
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