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Abstract  9 

Microgrid resource sizing problems typically include the analysis of a combination of value streams such 10 

as peak shaving, load shifting, or load scheduling, which support the economic feasibility of the microgrid 11 

deployment. However, microgrid benefits can go beyond these, and the ability to provide ancillary grid 12 

services such as frequency regulation or spinning and non-spinning reserves is well known, despite 13 

typically not being considered in resource sizing problems. This paper proposes the expansion of the 14 

Distributed Energy Resources Customer Adoption Model (DER-CAM), a state-of-the-art microgrid 15 

resource sizing model, to include revenue streams resulting from the participation in ancillary service 16 

markets. Results suggest that participation in such markets may not only influence the optimum resource 17 

sizing, but also the operational dispatch, with results being strongly influenced by the exact market 18 

requirements and clearing prices. 19 

Keywords 20 

Microgrid, ancillary services, decision support tool, optimization, distributed energy resources, mixed 21 

integer linear programming 22 

1. Introduction 23 

Microgrids, defined as clusters of small sources, storage systems, and loads, which presents themselves 24 

to the main grid as single, flexible, and controllable entities [1,2], have recently been attracted 25 

considerable attention from both academia and industry due to their potential benefits. These include 26 

the ability to reduce costs of energy delivery as well as alleviate environmental burdens due to increased 27 

efficiency in supply, but also to increase system resiliency and reliability, particularly in the event of 28 

natural disasters and prolonged outages. By introducing dispatchable generation and storage assets, 29 

microgrids can be a valuable resource to the main grid and potentially contribute to issues such as hosting 30 

capacity or upgrade deferrals, while also being naturally more independent from it. While this creates 31 

settings for added flexibility in grid operation, microgrids are complex systems that require specific 32 

infrastructure, resource coordination, and information flows, as well as added layers of protection and 33 

power quality assurance. The added costs resulting form the need to meet these conditions can 34 



potentially jeopardize the economic viability of microgrids, and therefore it is fundamental to take into 35 

account all different revenue streams, both direct and indirect, that result from microgrid deployment [3]. 36 

Several methods are proposed in the literature to address the problem of sizing DER assets in microgrids. 37 

Simulation-based models are commonly found [4–8], but mathematical programing or optimization 38 

algorithms are equally available. In this domain, the most commonly used approaches are mixed integer 39 

linear programming (MILP) models [9–13], and mixed integer non-linear programming (MINLP) models 40 

[14,15]. 41 

Analyzing the fundamental differences between these approaches, simulation models generally have the 42 

advantage of being straightforward to develop, solve extremely fast, and allow non-linear behaviors can 43 

be easily modeled. Their main drawback is that they tend to rely heavily on user input and prior knowledge 44 

to build candidate solutions, and considering different objectives (e.g. changing from cost minimization, 45 

to CO2 minimization) typically requires developing separate algorithms. In addition, simulation models do 46 

not guarantee that an optimal solution is found, which can be a key limitation in large problems where 47 

multiple technology options are available and defining candidate solutions can be extremely complex. 48 

Popular examples of commercial software belonging to this category includes HOMER [5,6] or RETSCREEN 49 

[7]. 50 

In contrast, optimization algorithms have the main advantage of guaranteeing optimality provided a 51 

convex feasible region is created, and typically do not require user intervention to define a feasible 52 

solution space. However, optimization models can become extremely large and require very significant 53 

computational power, potentially leading to intractable cases. Different approaches exist within the 54 

domain of optimization algorithms, with the main distinction regarding the nature of the objective 55 

function and constrains, particularly on linearity. Linear and mixed-integer linear models tend to have fast 56 

solution times, albeit at the cost of potentially losing accuracy in the representation of non-linear effects. 57 

An example of a publicly available MILP model used for microgrid resource sizing is the Distributed Energy 58 

Resources – Customer Adoption Model (DER-CAM) [9–11], although other similar models may be found 59 

in literature [16–18], with key differences being the number and type of technologies considered, the data 60 

granularity and time horizon, the exact definition of the objective function, and the number of energy 61 

carriers and end-uses being considered. Nonlinear and mixed-integer nonlinear (MINLP) models, on the 62 

other hand, add complexity and detail that MILP models may fail to capture, by explicitly including non-63 

linearity in their formulation. While this may more accurately model the behavior of different 64 

technologies, it is often followed by the downside that finding a solution may not be possible due to the 65 

non-convexities occurring in the search space. Examples of such models can be found in [14,15,19]. 66 

More in-depth reviews of the different methodologies used for optimal microgrid resource sizing can be 67 

found in [20–22]. 68 

While microgrid resource sizing tools typically consider key revenue streams such as peak shaving, load 69 

shifting, or power exports, very little emphasis is given to revenues resulting from the participation in 70 

ancillary service (AS) markets, although their potential is known and has been widely identified [23–26].  71 

The most common ancillary service markets include spinning and non-spinning reserve, as well as 72 

frequency up- and down-regulation, although other markets such as black start, reactive supply and 73 



voltage regulation also exist. These markets often operate using a bidding structure, where awarded bids 74 

are required to guarantee the service they have bid for, and while the exact rules depend on the different 75 

markets operated within each ISO, each market is typically characterized by different requirements 76 

including the time to react to a utility signal, the minimum asset size, or bid duration [27]. A detailed 77 

analysis of different AS markets currently operating in the United States can be found in [28]. 78 

Different studies have addressed operational strategies to use microgrid resources for AS provision, 79 

although they do not take into account potential revenues in the process of microgrid design. Namely, in 80 

[29] and [30] the participation of microgrids in ancillary service markets as an alternative to conventional 81 

generation and storage is discussed, covering both participation frequency regulation markets and voltage 82 

control. Specifically, the work presented in [29] introduces an adaptive hill climbing strategy to develop a 83 

central demand response (DR) algorithm, which the authors refer to as “Central Direct Load Control”. The 84 

results presented in this work suggest that microgrid generation and storage assets can successfully be 85 

leveraged to regulate the system frequency and voltage while minimizing the amount of manipulated 86 

responsive loads needed to keep the frequency within the desired range. In a more recent work, authors 87 

[30] present a new framework for the coordination of distributed energy resources (DER) and DR, in order 88 

to support voltage and frequency in islanded microgrids. In this work that is formulated as a multi-89 

objective problem and is solved by particle swarm optimization, the loads are classified into controllable 90 

and non-controllable categories. The results demonstrate that the proposed control strategy works 91 

effectively for different generation and consumption patterns. Another method that aims to improve a 92 

microgrid resilience following an unplanned islanding is presented in [31], where the microgrid is 93 

equipped with DERs, energy storage, and electric vehicles. A DR strategy is deployed that curtails pre-94 

defined low-priority loads. The objective is to minimize the amount of load curtailed, while ensuring the 95 

microgrid stability in terms of energy balance and frequency control. This method was proven effective 96 

for short periods of islanding. 97 

While surveying the existing literature suggests that both microgrid resource sizing problems and the 98 

potential benefits from ancillary service market participation are well-known, little work has been done 99 

regarding the inclusion of AS revenue streams in the process of finding optimal DER capacity for 100 

microgrids. This paper contributes to bridging this gap and builds on the state-of-the-art by introducing 101 

revenue streams from AS market participation in DER and microgrid sizing problems. Particularly, this is 102 

done by leveraging on DER-CAM, a state-of-the-art MILP optimization model used for microgrid sizing, 103 

and implementing support for the most common AS market products. 104 

The remaining of this paper is organized as follows: In section 2, the mathematical formulation of DER-105 

CAM is presented, along with changes introduced during this work.  In section 3 a case study is introduced 106 

to demonstrate the inclusion of AS market revenues in microgrid sizing problems, including all key data 107 

used. Section 4 discusses the results obtained, and in Section 5 the key conclusions are presented. 108 



2. DER-CAM 109 

2.1. Overview, Objective, and Applications 110 

The Distributed Energy Resources – Customer Adoption Model (DER-CAM) is a state-of-the-art decision 111 

support tool for decentralized energy systems, including buildings and microgrids, and has been 112 

developed by the Lawrence Berkeley National Laboratory. DER-CAM determines the optimal mix and 113 

capacity of the DERs, as well as the optimal dispatch of these resources, for a microgrid under different 114 

settings. DER-CAM is formulated as a Mixed Integer Linear Program (MILP), where the key inputs include 115 

customer loads broken into several end-uses; cost and performance characteristics of generation and 116 

storage technologies (e.g., investment cost, operation and maintenance costs, efficiency, heat-to-power 117 

ratio maximum operating hours, etc.); and electric and natural gas tariffs. The tool outputs optimal 118 

investment and operation decisions, including annual energy costs; optimal DER capacities; optimal 119 

dispatch of DERs; and load management measures. The objective of the model is to find the optimal 120 

combination of technology adoption and operation to supply all energy services required by the site under 121 

consideration, while optimizing the energy flows to minimize costs and / or CO2 emissions. 122 

The targeted user-groups of DER-CAM include microgrid owners and site operators, industry stakeholders 123 

including equipment manufacturers, and policy makers. Key applications for microgrid owners and site 124 

operators include optimized investment recommendations based on site-specific loads, tariffs, and 125 

objectives. Applications for Industry stakeholders include identifying cost and performance characteristics 126 

that will lead to adoption of their technologies in diverse segments of the market. For policy makers, key 127 

DER-CAM applications include determining high-level impacts on distributed energy resource penetration 128 

levels, and anticipating customer adoption behaviors given changes in electricity rates, demand-response 129 

programs, and different regulations. 130 

In previous iterations of DER-CAM, the most relevant revenue streams included in the process of microgrid 131 

sizing consisted of savings due to avoided utility purchase, peak shaving, load shifting, and power exports. 132 

Specifically, DER-CAM considers exporting power through the application of feed-in tariffs, and different 133 

demand-response programs are supported, including time-of-use rates, power demand charges, and 134 

direct load control, all of which are considered in the objective function. 135 

2.2. DER-CAM formulation  136 

A simplified version of the original DER-CAM formulation, i.e. the formulation prior to the modifications 137 

proposed in this paper is presented in this section, as introduced in [11,32,33]. In this deterministic model, 138 

customer loads are modeled with 3 typical day-types (week, peak, and weekend) per month with hourly 139 

time-steps. The objective is to minimize operational and investment costs over a typical year, where the 140 

investment costs are being annualized using an annuity rate that depends on the interest rate and 141 

technology lifetime. We model capacity of DER technologies using a continuous or discrete variable: If a 142 

technology is available in small enough modules (e.g. photovoltaic and storage), the optimal capacity is 143 

modeled as a continuous variable, significantly lowering the computation time. Discrete variables are used 144 

otherwise (e.g. micro-turbines).  145 

Indices 146 



c  continuous generation technologies: photovoltaic panels (PV), and absorption chillers (AC) 147 

g  discrete generation technologies: internal combustion engines (ICE), micro-turbines (MT), gas 148 

turbines (GT), and fuel cells (FC) 149 

i  set of all technologies (j ∪ k) 150 

j  set of all generation technologies (g ∪ c) 151 

k  storage technologies: stationary storage (ES), and thermal storage (TH) 152 

p  tariff period {on-peak, mid-peak, off-peak} 153 

s  season {winter, summer} 154 

u  end-use: electricity only (eo), cooling (cl), refrigeration (rf), space heating (sh), water heating (wh), 155 

and natural gas only (ng) 156 

m, d, h  month {1, 2, ..., 12}, day type {1, 2, 3}, hour {1, 2, ..., 24} 157 

Customer loads 158 

Loadm,d,h,u  customer load at time m, d, h for end-use u [kW] 159 

Market data 160 

TPs,p  regulated demand (power) charges under the default tariff for season s and period p [$/kW] 161 

TEm,d,h regulated tariff for electricity at time m, d, h [$/kWh] 162 

TFm regulated tariff fixed charge for electricity in month m [$] 163 

TExm,d,h  regulated tariff for electricity export at time m, d, h [$/kWh] 164 

NGFm regulated tariff fixed charge for natural gas in month m [$] 165 

NGPm regulated tariff for natural gas in month m [$/kWh] 166 

Technology data 167 

MaxPg rated capacity of generation tech. g [kW] 168 

MinLg minimum acceptable load for generation tech. g [kW] 169 

Lti expected lifetime of technology i [a] 170 

CCDg turnkey capital cost of generation technology g [$/kW] 171 

FCC(c,k) fixed capital cost of generation technology c or storage technology k [$] 172 

VCC(c,k) variable capital cost of generation tech. c or storage technology k [$/kW] 173 

VCSCk variable capital cost of storage technology k [$/kWh] 174 

OMFi fixed annual operation and maintenance costs of technology i [$/kW] 175 

OMVi variable operation and maintenance costs of technology i [$/kWh] 176 



MaxHj maximum number of hours technology j can operate during the year, [h] 177 

VCj,m generation cost of technology j during month m [$/kWh] 178 

S(j) set of end-uses that can be met by technology j [-] 179 

αj heat to power ratio: units of useful heat that can be recovered from a unit of electricity generated 180 

by technology j [1] 181 

SCEk charging efficiency of storage technology k [%] 182 

SDEk discharging efficiency of storage technology k [%] 183 

φk  losses due to decay/self-discharge in storage technology k [%] 184 

MSCk  minimum state of charge of storage technology k, [%] 185 

COPu  central microgrid chillers coefficient of performance [1] 186 

COPa  absorption chillers coefficient of performance [1] 187 

SPEc  theoretical peak solar conversion efficiency of generation technology c [%] 188 

SREc,m,h  solar radiation conversion efficiency of generation technology c, in month m, and hour h 189 

[%] 190 

Other parameters 191 

IR interest rate on DER investments [%] 192 

Ani annuity factor for investments in technologies i [1] 193 

SIm,d,h solar insolation at time m, d, h [kW/m²] 194 

SA available area for solar technologies [m2] 195 

βu units of heat energy generated from a unit of natural gas energy purchased for end-use u [1] 196 

BAU total energy costs in the business-as-usual case, obtained by running the model with investments 197 

disabled [$] 198 

PBP maximum payback period allowed on the integrated DER investment decision [a] 199 

Decision Variables 200 

𝐼𝐺g number of units of generation technology g installed [1] 201 

𝑅𝐺g,m,d,h number of units of generation technology g operating at time m, d, h [1] 202 

𝐺𝑈j,m,d,h,u power generated by technology j, at time m, d, h for end-use u [kW] 203 

𝐺𝑆j,m,d,h power generated to export by technology j, at time m, d, h [kW] 204 

𝑅𝐻j,m,d,h useful heat recovered from technology j, at time m, d, h [kW] 205 

𝐴𝐿m,d,h heat used to drive absorption chillers at time m, d, h [kW] 206 



𝐶𝑎𝑝(c,k)  rated output of generation technology c or storage technology k [kW] 207 

𝐸𝐶𝑎𝑝k energy capacity of storage tech. k [kWh] 208 

𝑆𝑂𝐶k,m,d,h state of charge of storage technology k at time m, d, h [kWh] 209 

𝑆𝐼𝑛k,m,d,h  energy input to storage technology k, at time m, d, h [kW] 210 

𝑆𝑂𝑢𝑡k,m,d,h,u  energy output from storage technology k, at time m, d, h for end use u [kW] 211 

𝑠𝑏k,m,d,h  binary charge/discharge decision of storage technology k at time m, d, h [b] 212 

𝑝𝑠𝑏m,d,h binary decision of purchasing or selling electricity at time m, d, h [b] 213 

𝑁𝐺𝑈m,d,h,u natural gas purchase at time m, d, h for end-use u [kWh] 214 

𝑈𝐿m,d,h,u electricity purchased from power utility at time m, d, h for end-use u [kW] 215 

𝑃𝑢𝑟(c,k) customer purchase binary decision of technology c or k [b] 216 

Economic objective function 217 

min C = ∑ TFmm   

+ ∑ ∑ ∑ ∑ 𝑈𝐿m,d,h,u ∙uhdm TEm,d,h  

+ ∑ ∑ ∑ TPs,p ∙ max(∑ 𝑈𝐿m,(d,h)∈p,uu∈eo,cl,rf )pm∈ss   

+ ∑ ∑ ∑ ∑ (𝐺𝑆j,m,d,h + ∑ 𝐺𝑈j,m,d,h,uu ) ∙ (VCj,m + OMVj)hdmj   

+ ∑ 𝐼𝐺g ∙ MaxPg ∙ (CCDg ∙ Ang + OMFg)g   

+ ∑ ((FCCi ∙ 𝑃𝑢𝑟i + VCCi ∙ 𝐶𝑎𝑝i + VCSCk ∙ 𝐸𝐶𝑎𝑝k) ∙ Ani + 𝐶𝑎𝑝i ∙ OMFi)i∈c,k   

+ ∑ NGFmm   

+ ∑ ∑ ∑ ∑ 𝑁𝐺𝑈m,d,h,u ∙uhdm NGPm  

− ∑ ∑ ∑ ∑ 𝐺𝑆j,m,d,h ∙ TExm,d,hhdmj   

[$] (1) 

Microgrid constraints 218 

Loadm,d,h,u +
𝑆𝐼𝑛k,m,d,h

SCEk
 = 𝑆𝑂𝑢𝑡k,m,d,h,u ∙ SDEk  + ∑ 𝐺𝑈j,m,d,h,uj +

𝑈𝐿m,d,h,u ∀ m, d, h: k = {ES} ∧ u = {eo}   

[kW] (2) 

Loadm,d,h,u +
𝑆𝐼𝑛k,m,d,h

SCEk
+ 𝐴𝐿m,d,h = 𝑆𝑂𝑢𝑡k,m,d,h,u ∙ SDEk + βu ∙ 𝑁𝐺𝑈m,d,h,u +

∑ 𝑅𝐻g,m,d,h,ug  ∀ m, d, h: k = {TH} ∧  u ∈ {sh, wh}   

[kW] (3) 

Loadm,d,h,u = ∑ 𝐺𝑈j,m,d,h,uj +  𝑈𝐿m,d,h,u ∙ COPu    ∀m, d, h ∶ u ∈ {cl, rf}  [kW] (4) 

Loadm,d,h,u =  𝑁𝐺𝑈m,d,h,u   ∀ m, d, h ∶ u = {ng}  [kW] (5) 

𝑅𝐺g,m,d,h ∙ MinLg ≤ ∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h ≤ 𝑅𝐺g,m,d,h ∙

MaxPg   ∀ g, m, d, h  

[kW] (6) 



∑ ∑ ∑ (∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h)hdm ≤ 𝐼𝐺g ∙ MaxPg ∙ MaxHg   ∀ g, m, d, h  [kW] (7) 

∑ 𝑅𝐻g,m,d,h,uu ≤ αg ∙ (∑ 𝐺𝑈g,m,d,h,uu + 𝐺𝑆g,m,d,h)   ∀ g, m, d, h  [kW] (8) 

𝐶𝑎𝑝i ≤ 𝑃𝑢𝑟i ∙ 𝐌   ∀ i ∈ {c, k}  [kW] (9) 

∑ 𝐺𝑈c,m,d,h,uu + 𝐺𝑆c,m,d,h ≤ 𝐶𝑎𝑝c ∙
SREc,m,h

SPEc
∙ SIm,d,h   ∀m, d, h ∶ c ∈ {PV}  [kW] (10) 

∑
𝐶𝑎𝑝c

SPEc
c ≤ SA ∶ c ∈ {PV}  [m2] (11) 

𝑆𝑂𝐶k,m,d,h = 𝑆𝐼𝑛k,m,d,h − ∑ 𝑆𝑂𝑢𝑡k,m,d,h,u 𝑢 + 𝑆𝑂𝐶k,m,d,h−1 ∙ (1 −

φk)   ∀ k, m, d, h ≠ 1   

[kWh] (12) 

𝑆𝑂𝐶k,m,d,1 = 𝑆𝑂𝐶k,m,d,24   ∀ k, m, d  [kWh] (13) 

𝑆𝑂𝐶k,m,d,h ≥ 𝐸𝐶𝑎𝑝k ∙ MSCk   ∀ k, m, d, h  [kWh] (14) 

𝑆𝑂𝐶k,m,d,h ≤ 𝐸𝐶𝑎𝑝k   ∀ k, m, d, h  [kWh] (15) 

𝑆𝐼𝑛k,m,d,h ≤ 𝐶𝑎𝑝k   ∀ k, m, d, h  [kW] (16) 

∑ 𝑆𝑂𝑢𝑡k,m,d,h,uu ≤ 𝐶𝑎𝑝k   ∀ k, m, d, h  [kW] (17) 

𝑆𝐼𝑛k,m,d,h ≤ 𝑠𝑏k,m,d,h ∙ 𝐌   ∀ k, m, d, h  [kW] (18) 

∑ 𝑆𝑂𝑢𝑡k,m,d,h,uu ≤ (1 − 𝑠𝑏k,m,d,h) ∙ 𝐌   ∀ k, m, d, h  [kW] (19) 

𝐺𝑈j,m,d,h,u = 𝐴𝐿m,d,h ∙ COPa   ∀ m, d, h ∶ j = {AC} ∧  u = {cl, rf}   [kW] (20) 

∑ 𝑈𝐿m,d,h,uu ≤ 𝑝𝑠𝑏m,d,h ∙ 𝐌   ∀ m, d, h ∶ u = {eo, cl, rf}  [kW] (21) 

𝐺𝑆j,m,d,h ≤ (1 − 𝑝𝑠𝑏m,d,h) ∙ 𝐌   ∀ j, m, d, h  [kW] (22) 

Ani =
IR

(1−
1

(1+IR)Lti
)
 ∀ i  [1] (23) 

C ≤ BAU +  ∑ 𝐼𝐺g ∙ MaxPg ∙ CCDg ∙ Angg + ∑ (FCCi ∙ 𝑃𝑢𝑟i + VCCi ∙ 𝐶𝑎𝑝i +i∈c,k

VCSCk ∙ 𝐸𝐶𝑎𝑝k) ∙ Ani −
∑ 𝐼𝐺g∙MaxPg∙CCg+ ∑ (FCCi∙𝑃𝑢𝑟i+VCCi∙𝐶𝑎𝑝i+VCSCk∙𝐸𝐶𝑎𝑝k)i∈c,kg

PBP
  

[$] (24) 

𝑅𝐻j,m,d,h,u = 0   ∀ j, m, d, h ∶ u ∉ S(j) [kW] (25) 

𝑈𝐿m,d,h,u = 0   ∀ m, d, h ∶ u ∈ {sh, wh, ng}  [kW] (26) 

 219 

The objective function (1) consists of all key cost components, including utility charges, annualized capital 220 

costs of DER investments, and operation and maintenance costs. The main optimization constraints are 221 

expressed in (2) - (26): 222 

 Eq. (2) - (5) force the energy balances for the different end-uses.  223 

 The boundaries for the operation of distributed generation and storage technologies are set in 224 

(6) - (11) and (12) - (19), respectively, where M is an arbitrarily large number.  225 



 The absorption chiller operation is described in (20). 226 

 Simultaneous import and export of power are prevented in (21) and (22).  227 

 The annuity factors are calculated in (23). 228 

 Eq. (24) presents the payback constraint, in which investments must be repaid in a period shorter 229 

than the payback period.  230 

 Eq. (25) and (26) show the boundary conditions that ensure the proper links between different 231 

technologies and loads.  232 

2.3. Changes to the formulation of DER-CAM 233 

2.3.1. Overview 234 

The following section describes the changes made to the mathematical formulation of DER-CAM to 235 

implement Ancillary Services (AS) market participation. It is important to keep in mind that AS markets 236 

are currently available in distinct ISO service territories, and each market may have specific requirements 237 

that differ from one another. Therefore, the formulation to support AS markets does not follow the rules 238 

of any specific market, but instead is designed in a flexible way to support all the relevant features. 239 

As discussed in [28], the key AS markets can be grouped in three categories, including Frequency 240 

Regulation (Up and Down), Spinning Reserve, and Non-Spinning Reserve, all of which are considered in 241 

the enhanced DER-CAM formulation. These markets may have different requirements throughout 242 

different ISO territories, including how fast a unit must be able to respond to a service request upon a 243 

successful bid, the minimum size of the resource in order to participate in the market, or the minimum 244 

length of the bid duration. Typically, bids must hold for at least one hour in all AS markets, and response 245 

to requests may be required within seconds (or automatic) for frequency regulation markets, or within a 246 

few minutes, in the case of spinning and non-spinning reserve markets. For example, Non-Spinning 247 

Reserves in the CAISO territory, in California, must be able to respond within 10 minutes of being called, 248 

and must run for at least two hours, while the same service in the ERCOT territory, Texas, must respond 249 

within 30 min and run for at least one hour. All changes made to DER-CAM take such requirements into 250 

account. 251 

2.3.2. Key Assumptions 252 

Given the investment planning nature of DER-CAM, adding support to AS markets uses a deterministic 253 

approach. Historic information on market clearing prices for different AS markets is used as reference, 254 

under the general assumption that the microgrid under analysis is a price taker and the market clearing 255 

price is a good indicator for a successful bid. Under this premise, the capacity allocation determined by 256 

DER-CAM for participation in AS markets is always considered to be awarded. 257 

The revenue resulting from each AS market bid is calculated based on the market clearing price and the 258 

bid duration as selected by the model, provided all market requirements are met. It should be noted that 259 

when successful, all bids in ISO markets are fully awarded, regardless of service requests. 260 

Providing AS also creates an additional cost to the microgrid, as both additional fuel and O&M costs will 261 

be incurred whenever a service is requested. Additionally, costs due to increases in demand charges may 262 



also occur in the event of down-regulation requests, which can be severe if occurring during peak hours 263 

with high time-of-use rates. Other costs incurred by the microgrid as a result of AS provision include 264 

different opportunity costs, as the capacity allocation of a specific resource prevents its use for any other 265 

purpose. All of these are taken into account in the optimization. 266 

Calculating the additional microgrid costs or benefits relies on the use of user-defined expectations on 267 

service provision. This is expressed in the formulation by an effective utilization ratio, 𝛼. In this initial 268 

implementation of AS products in DER-CAM all effective utilization ratios are assumed constant 269 

throughout the optimization window, although they can easily be expanded in future developments to 270 

model time-dependency of the service request expectation. 271 

The addition of support to Spinning, Non-Spinning, and Regulation markets in DER-CAM led to several 272 

modifications to the existing formulation, including changes to operational constrains, and high-level 273 

balance equations. These changes are explained in detail below. 274 

2.3.3. Operational constrains 275 

Adding support for different AS markets requires, first and foremost, modifying the possible capacity 276 

allocations of each relevant resource. In prior formulations, all generation technologies could only provide 277 

power for either on-site consumption or export, and storage technologies could be used only for on-site 278 

arbitrage. After the modifications made to support Ancillary Services, both generator units and stationary 279 

storage can also provide spinning, non-spinning, up-regulation and down-regulation services. 280 

In general, all dispatch equations for generators have been updated to include these services, as 281 

expressed below: 282 

𝐺𝑈g,m,d,h,u + 𝐺𝑆g,m,d,h,u + 𝐺𝑅𝑆g,m,d,h + 𝐺𝑅𝑆𝑁𝑆g,m,d,h + 𝐺𝑅𝑁𝑆g,m,d,h

+ 𝐺𝑅𝑈g,m,d,h ≤ MaxPg 

[kW] (27) 

Where: 283 

𝐺𝑅𝑆g,m,d,h capacity allocated for spinning reserve by online technology g, at time m, d, h [kW] 284 

𝐺𝑅𝑁𝑆g,m,d,h capacity allocated for non-spinning reserve by offline technology g, at time m, d, h [kW] 285 

𝐺𝑅𝑆𝑁𝑆g,m,d,h capacity allocated for non-spinning reserve by online technology g, at time m, d, h [kW] 286 

𝐺𝑅𝑈g,m,d,h capacity allocated for up-regulation by online technology g, at time m, d, h [kW] 287 

It should be noted that spinning units may typically also be used for non-spinning reserves, and for that 288 

reason the total reserve provided by spinning units was sub-divided into a component for spinning reserve 289 

and non-spinning reserve markets, as shown in Eq. (27). The resulting operational constraint now states 290 

that the overall capacity allocation, including on-site generation, power exports for traditional feed-in 291 

markets, and capacity allocated to ancillary service markets must not exceed the rated nameplate capacity 292 

of a given generation unit. Down-regulation is not included in this equation to prevent instances where 293 

call requests would lead to exceeding the unit capacity (for example symmetric up- and down-regulation 294 

hourly bids could keep the unit within operational boundaries, but requests occurring only to up-295 

regulation would lead to an operational violation). Instead, the following additional constraints are added: 296 



𝐺𝑈g,m,d,h + 𝐺𝑆g,m,d,h −  𝐺𝑅𝐷g,m,d,h ≥ MinLg [kW] (28) 

𝐺𝑅𝐷g,m,d,h ≤ MaxPg ∙ (1 − MinLg) [kW] (29) 

Where: 297 

𝐺𝑅𝐷g,m,d,h capacity allocated for down-regulation by online technology g, at time m, d, h [kW] 298 

Additionally, the following equations were added to ensure that Non-Spinning reserve bids respect 299 

minimum part-load requirements: 300 

𝐺𝑅𝑁𝑆g,m,d,h ≥ MinLg ∙ 𝑏𝐴𝑢𝑥g,m,d,h, 𝑏𝐴𝑢𝑥g,m,d,h ∈ {0,1} [kW] (30) 

𝐺𝑅𝑁𝑆b,m,d,h ≤ 𝑏𝐴𝑢𝑥g,m,d,h ∙ 𝑴 [kW] (31) 

Other key elements relevant for determining market participation of DG units include the time 301 

requirements they must comply with in order to be eligible for bidding, either in its ability to start, TTSR, 302 

or to ramp, TTRR. For this purpose, additional parameters were introduced in the description of DG units, 303 

TTSg and TTRg, where users can specify how fast each unit can go online or ramp from the minimum 304 

operating part-load to the rated nameplate capacity, respectively.  305 

To understand this last parameter, it is important to keep in mind that DER-CAM is a mixed-integer linear 306 

program, where all variable relations are described using linear functions. This implies the use of several 307 

linearization procedures, which include fuel efficiency curves. In this particular case one of two methods 308 

can be applied – a linear step-wise approximation [34], or a constant efficiency associated with a minimum 309 

part-load requirement (MinLg in equation 7). For most standard DG units this minimum part-load 310 

requirement is greater than or equal to 70% of the nameplate capacity, meaning that the TTRg parameter 311 

is used to describe the time to ramp from this minimum part-load value up to the nameplate capacity. 312 

The parameters described above are used to exclude DG units that do not meet market requirements, 313 

along with backup generators, which are equally excluded from bidding into AS markets, as shown in the 314 

operational constraints below. 315 

𝐺𝑅𝑆g,m,d,h = 0 ∶ TTRg > TTRR ∪ BackUpOnlyg = 1 [kW] (32) 

𝐺𝑅𝑁𝑆𝑔,m,d,h = 0 ∶ TTSg > TTSR ∪ BackUpOnlyg = 1 [kW] (33) 

Further to these requirements, AS markets often define minimum length for bid durations, as well as 316 

minimum bid capacity. This is specific to each market, and requires the new set of operational constrains 317 

introduced below. To achieve this purpose while preserving linearity additional binary variables were 318 

added to track the change of status in the provision of ancillary services (enabled or disabled), and to force 319 

service duration for a minimum number of 𝜃 time steps. These equations were implemented separately 320 

for all four AS products. 321 

Spinning Reserve 322 

𝑆m,d,h ≤ 𝑏𝑆m,d,h ∙ 𝚳, 𝑏𝑆m,d,h ∈ {0,1} [kW] (34) 

𝑆𝑤𝑆m,d,h = 𝑏𝑆m,d,h − 𝑏𝑆m,d,h−1 [1] (35) 



∑ 𝑏𝑆
m,d,ḣ̂

ḣ̂
≥ 𝑆𝑤𝑆m,d,h ∙ θ, ḣ̂ = {h, h + 1, . . , h + θ} [1] (36) 

𝑆m,d,h ≥ 𝑏𝑆m,d,h ∙ SMinBid [kW] (37) 

Non-Spinning Reserve 323 

𝑁𝑆m,d,h ≤ 𝑏𝑁𝑆m,d,h ∙ 𝚳, 𝑏𝑁𝑆j,m,d,h ∈ {0,1} [kW] (38) 

𝑆𝑤𝑁𝑆m,d,h = 𝑏𝑁𝑆j,m,d,h − 𝑏𝑁𝑆j,m,d,h−1 [1] (39) 

∑ 𝑏𝑁𝑆
m,d,ḣ̂

ḣ̂
≥ 𝑆𝑤𝑁𝑆m,d,h ∙ θ, ḣ̂ = {h, h + 1, . . , h + θ} [1] (40) 

𝑁𝑆m,d,h ≥ 𝑏𝑁𝑆j,m,d,h ∙ NSMinBid [kW] (41) 

Up-Regulation 324 

𝑅𝑈𝑝m,d,h ≤ 𝑏𝑅𝑈𝑝m,d,h ∙ 𝚳, 𝑏𝑅𝑈𝑝m,d,h ∈ {0,1} [kW] (42) 

𝑆𝑤𝑅𝑈𝑝m,d,h = 𝑏𝑅𝑈𝑝m,d,h − 𝑏𝑅𝑈𝑝m,d,h−1 [1] (43) 

∑ 𝑏𝑅𝑈𝑝
𝑚,𝑑,ℎ̇̂

ℎ̇̂
≥ 𝑆𝑤𝑅𝑈𝑝𝑚,𝑑,ℎ ∙ 𝜃, ℎ̇̂ = {ℎ, ℎ + 1, . . , ℎ + 𝜃} [1] (44) 

𝑅𝑈𝑝𝑚,𝑑,ℎ ≥ 𝑏𝑅𝑈𝑝𝑚,𝑑,ℎ ∙ RUpMinBid [kW] (45) 

Down Regulation 325 

𝑅𝐷𝑛𝑚,𝑑,ℎ ≤ 𝑏𝑅𝐷𝑛𝑚,𝑑,ℎ ∙ 𝚳, 𝑏𝑅𝐷𝑛𝑚,𝑑,ℎ ∈ {0,1} [kW] (46) 

𝑆𝑤𝑅𝐷𝑛𝑚,𝑑,ℎ = 𝑏𝑅𝐷𝑛𝑚,𝑑,ℎ − 𝑏𝑅𝐷𝑛𝑚,𝑑,ℎ−1 [1] (47) 

∑ 𝑏𝑅𝐷𝑛
𝑚,𝑑,ℎ̇̂

ℎ̇̂
≥ 𝑆𝑤𝑅𝐷𝑛𝑚,𝑑,ℎ ∙ 𝜃, ℎ̇̂ = {ℎ, ℎ + 1, . . , ℎ + 𝜃} [1] (48) 

𝑅𝐷𝑛𝑚,𝑑,ℎ ≥ 𝑏𝑅𝐷𝑛𝑚,𝑑,ℎ ∙ RDnMinBid [kW] (49) 

 326 

Where: 327 

𝑆m,d,h total spinning reserve bid, including generation and storage components, in time m, d, h [kW] 328 

𝑏𝑆m,d,h binary spinning market participation decision [b] 329 

𝑆𝑤𝑆m,d,h change on the spinning reserve market participation decision [1] 330 

SMinBid minimum bid for spinning reserve market [kW] 331 

𝑁𝑆m,d,h total non-spinning reserve bid, including generation and storage components, in time m, d, h [kW] 332 

𝑏𝑁𝑆m,d,h binary non-spinning market participation decision [b] 333 

𝑆𝑤𝑁𝑆m,d,h change on the non-spinning reserve market participation decision [1] 334 

NSMinBid minimum bid for non-spinning reserve market [kW] 335 



𝑅𝑈𝑝m,d,h total up-regulation bid, including generation and storage components, in time m, d, h 336 

[kW] 337 

𝑏𝑅𝑈𝑝m,d,h binary up-regulation market participation decision [b] 338 

𝑆𝑤𝑅𝑈𝑝m,d,h change on the up-regulation market participation decision [1] 339 

RUpMinBid minimum bid for up-regulation market [kW] 340 

𝑅𝐷𝑛m,d,h total up-regulation bid, including generation and storage components, in time m, d, h 341 

[kW] 342 

𝑏𝑅𝐷𝑛m,d,h binary up-regulation market participation decision [b] 343 

𝑆𝑤𝑅𝐷𝑛m,d,h change on the up-regulation market participation decision [1] 344 

RDnMinBid minimum bid for up-regulation market [kW] 345 

Regarding storage, the power input and output from conventional technologies has also been divided into 346 

multiple components, including power for onsite consumption, but also for spinning and non-spinning 347 

reserve, as well as up and down frequency regulation, as shown below. 348 

𝑆𝑂𝑢𝑡k,m,d,h = ∑ 𝑆𝑂𝑢𝑡𝑆𝑖𝑡𝑒k,m,d,h,u 

𝑢

+ 𝑆𝑂𝑢𝑡𝑅𝑈𝑝k,m,d,h + 𝑆𝑂𝑢𝑡𝑆k,m,d,h

+ 𝑆𝑂𝑢𝑡𝑁𝑆k,m,d,h, 𝑘 = {𝐸𝑆} 

[kW] (50) 

𝑆𝐼𝑛𝑘,𝑚,𝑑,ℎ = 𝑆𝐼𝑛𝑆𝑖𝑡𝑒𝑘,𝑚,𝑑,ℎ + 𝑆𝐼𝑛𝑅𝐷𝑛𝑘.𝑚,𝑑,ℎ, 𝑘 = {𝐸𝑆} [kW] (51) 

 349 

𝑆𝑂𝑢𝑡k,m,d,h total output of storage technology k, at time m, d, h [kW] 350 

𝑆𝑂𝑢𝑡𝑆𝑖𝑡𝑒k,m,d,h output of storage technology k, at time m, d, h, for end-use u [kW] 351 

𝑆𝑂𝑢𝑡𝑆k,m,d,h capacity allocated for spinning reserve by storage technology k, at time m, d, h [kW] 352 

𝑆𝑂𝑢𝑡𝑁𝑆k,m,d,h capacity allocated for non-spinning reserve by storage technology k, at time m, d, h [kW] 353 

𝑆𝐼𝑛𝑆𝑖𝑡𝑒k,m,d,h input from on-site to storage technology k, at time m, d, h [kW] 354 

𝑆𝐼𝑛𝑅𝐷𝑛k,m,d,h input to storage technology k, at time m, d, h, due to down-regulation [kW] 355 

2.3.4. High level balance equations 356 

The extension of DER-CAM to support AS products requires high-level power balance equations to 357 

guarantee each service is provided by the adequate technologies. Namely, spinning reserves can be 358 

provided by any spinning on-site generator and stationary batteries, non-spinning reserve can be provided 359 

both by spinning and non-spinning on-site generators and stationary batteries, and both up and down 360 

regulation can be provided by spinning on-site generators and stationary batteries, as shown in the 361 

equations below. 362 

𝑆m,d,h = ∑ 𝐺𝑅𝑆g,m,d,h

g

+ 𝑆𝑂𝑢𝑡𝑆m,d,h [kW] (52) 



𝑁𝑆m,d,h = ∑(𝐺𝑅𝑁𝑆g,m,d,h + 𝐺𝑅𝑆𝑁𝑆g,m,d,h)

g

+ 𝑆𝑂𝑢𝑡𝑁𝑆m,d,h [kW] (53) 

𝑅𝑈𝑝m,d,h = ∑ 𝐺𝑅𝑈𝑝g,m,d,h

g

+ 𝑆𝑂𝑢𝑡𝑅𝑈𝑝m,d,h [kW] (54) 

𝑅𝐷𝑛m,d,h = ∑ 𝐺𝑅𝐷𝑛g,m,d,h

𝑔

+ 𝑆𝐼𝑛𝑅𝐷𝑛m,d,h [kW] (55) 

It should be noted that in this first implementation all discrete generation technologies are allowed to 363 

provide ancillary services, as well as stationary storage. Renewable technologies are currently not directly 364 

included, due to the greater uncertainty in their output. However, renewable generation technologies can 365 

still be used to charge stationary storage, and in that way participate indirectly in AS markets. 366 

2.3.5. AS Market revenues 367 

The expected revenue from spinning reserve provision is calculated assuming the market clearing price is 368 

applicable. 369 

𝑆𝑅𝑒𝑣 =  ∑ 𝑆m,d,h ∙ SMktPm,d,h

m,d,h

 [$] (56) 

𝑁𝑆𝑅𝑒𝑣 =  ∑ 𝑁𝑆𝑛m,d,h ∙ NSMktPm,d,h

m,d,h

 [$] (57) 

𝑅𝑈𝑝𝑅𝑒𝑣 =  𝑅𝑈𝑝m,d,h ∙ RUpMktPm,d,h [$] (58) 

𝑅𝐷𝑛𝑅𝑒𝑣 =  𝑅𝐷𝑛m,d,h ∙ RDnMktPm,d,h [$] (59) 

 370 

SMktPm,d,h market clearing price for spinning reserve ancillary service in time m, d, h [$/kW] 371 

NSMktPm,d,h market clearing price for non-spinning reserve ancillary service in time m, d, h [$/kW] 372 

RUpMktPm,d,h market clearing price for up-regulation ancillary service in time m, d, h [$/kW] 373 

RDnMktPm,d,h market clearing price for down-regulation ancillary service in time m, d, h [$/kW] 374 

2.3.6. Added Costs 375 

The additional costs incurred by the microgrid include four different components: added capital cost from 376 

additional DER investment, added fuel consumption for generator units, added O&M costs for generator 377 

units, and opportunity costs due to capacity allocation for AS provision. 378 

The added capital costs resulting from additional investments are taken into account by the existing 379 

formulation without requiring any changes, as the current objective function already considers all 380 

investments and the financial constrains ensure that any additional investments are only made if proven 381 

to be cost-effective. 382 



Similarly, all opportunity costs are considered in the existing formulation. By finding the cost-optimal 383 

solution, the trade-off between on-site resource utilization and allocation for AS markets is determined 384 

endogenously, and no additional changes are necessary. 385 

Additional fuel costs and O&M costs require updating the formulation, to reflect both the added fuel and 386 

use of the generation resource. These are then used to replace the fuel and O&M components of the 387 

objective function. 388 

𝐹𝐶𝑛m,d,h =  ∑(𝐺𝑈g,m,d,h + 𝐺𝑆g,m,d,h + 𝐺𝑅𝑆g,m,d,h ∙ 𝛼𝑆

g

+ (𝐺𝑅𝑆𝑁𝑆g,m,d,h + 𝐺𝑅𝑁𝑆g,m,d,h) ∙ 𝛼𝑁𝑆 + 𝐺𝑅𝑈𝑝g,m,d,h ∙ 𝛼𝑅𝑈𝑝

− 𝐺𝑅𝐷𝑛g,m,d,h ∙ 𝛼𝑅𝐷𝑛) /𝜂𝑔 

[$] (60) 

𝑂𝑀𝑉𝐶g,m =  ∑(𝐺𝑈g,m,d,h + 𝐺𝑆g,m,d,h + 𝐺𝑅𝑆g,m,d,h ∙ 𝛼𝑆

d,h

+ (𝐺𝑅𝑆𝑁𝑆g,m,d,h + 𝐺𝑅𝑁𝑆g,m,d,h) ∙ 𝛼𝑁𝑆 + 𝐺𝑅𝑈𝑝g,m,d,h ∙ 𝛼𝑅𝑈𝑝

− 𝐺𝑅𝐷𝑛g,m,d,h ∙ 𝛼𝑅𝐷𝑛) ∙ 𝑂𝑀𝑉𝑔 

[$] (61) 
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3. Case Study 390 

3.1. General Remarks 391 

The following section presents an analysis of selected cases to illustrate the potential impact of 392 

considering the revenue of AS market participation in the optimal sizing of DER. These cases focus on 393 

sample microgrid configurations, including both single-building and multi-building microgrids.  394 

The selected cases include residential buildings, office buildings, hospitals, and hypothetical microgrids 395 

where residential, office, and hospital buildings are aggregated. Two separate models were created for 396 

each of these cases, so that two distinct ISO territories could be analyzed. The selected territories include 397 

the California Independent System Operator (CAISO) and PJM (East Coast), as both these locations depict 398 

distinct weather conditions, energy loads, tariffs, and AS market prices. 399 

The procedure consisted of conducting three sets of runs per model, creating a total of 24 cases: 400 

 Set one, base case: The initial set consists of reference runs to establish the business as usual 401 

scenario, i.e., determining the site-wide energy costs prior to any investment analysis. 402 

 Set two, investment analysis without AS market: The second set consists of an investment 403 

optimization run, however, it does not consider participation in the AS market. 404 

 Set three, investment analysis with AS market: The third set consists of an investment 405 

optimization run with the consideration of participation in the AS market. 406 



3.2. Data collection 407 

3.2.1. Energy Loads 408 

The building energy load data used to create the DER-CAM models consisted of information found in 409 

building load databases made available by the U.S. Department of Energy (DOE). These datasets contain 410 

load profiles for commercial and residential buildings and are based on the DOE’s commercial reference 411 

building model and the Residential Energy Consumption Survey (RECS) [35]. 412 

The load profiles are based on meteorological data using the Typical Meteorological Year (TMY3) dataset, 413 

and the buildings selected include two commercial buildings (a hospital and a medium sized office 414 

building) and one standard residential building. Load data was collected for two locations in the United 415 

States, namely San Francisco and Washington/Baltimore, as they are located in the CAISO and PJM 416 

territory, respectively.  417 

The summary of the electric loads (electricity-only plus cooling plus refrigeration) used in the DER-CAM 418 

models created is presented below. 419 

Table 1 - Summary of the electric loads used in the DER-CAM runs 420 

3.2.2. Market Information 421 

Utility Tariffs 422 

The tariff information used in the creation of DER-CAM models relied on the built-in tariff database 423 

available in DER-CAM. This database contains tariffs for multiple locations across the U.S, and in this case 424 

study, two tariffs were selected from both Pacific Gas & Electric (PG&E) and Baltimore Gas & Electric 425 

(BG&E), as presented below. 426 

Table 2- Summary of the PG&E tariff information used in the DER-CAM runs, less than 200kW peak 427 

 428 

Table 3- Summary of the PG&E tariff information used in the DER-CAM runs, more than 500kW peak 429 

 430 

Table 4- Summary of the BG&E tariff information used in the DER-CAM runs, less than 2 GWh consumption 431 

 432 

Table 5- Summary of the BG&E tariff information used in the DER-CAM runs, large commercial customers 433 

 434 

AS Market Information 435 

All Ancillary Service market prices used in the case study were based on hourly historic data from 2014, 436 

and summarized below.  437 

Figure 1- CAISO average weekday spinning reserve market clearing prices [28] 438 

Figure 2- CAISO average weekday non-spinning reserve market clearing prices [28] 439 

Figure 3- CAISO average Up-Regulation market clearing prices [28] 440 

Figure 4- CAISO average Down-Regulation market clearing prices [28] 441 



 442 

Figure 5- PJM average weekday spinning reserve market clearing prices [28] 443 

Figure 6- PJM average weekday non-spinning reserve market clearing prices [28] 444 

Figure 7- PJM average weekday regulation market clearing prices [28] 445 

Analyzing the data presented in these figures, AS market clearing prices tend to be highly volatile, with 446 

large variability being observed not only from hour to hour, but also throughout different months of the 447 

year. Nonetheless, it can be observed that non-spinning reserve is consistently the lowest priced product, 448 

and that PJM clearing prices tend to be higher than those observed in the same product for CAISO 449 

markets. Additionally, prices found in CAISO tend to observe peak values around 16:00, suggesting system 450 

wide peaks occur around that period.  451 

3.2.3. DER Information 452 

The set of DER technologies considered in the case study includes both conventional and renewable 453 

generation technologies, as well as stationary storage. 454 

Provided below are the techno-economic data used to describe all DER options considered in the DER-455 

CAM runs. 456 

Table 6 - Photovoltaic modules 457 

Table 7- Stationary Storage Characteristics 458 

Table 8 - Conventional generation units 459 

 460 

3.3. Key Results 461 

3.3.1. Results in the CAISO territory 462 

The key results obtained in the CAISO territory are summarized in Table  and Table , where San Francisco 463 

data was used. Table  summarizes the results for both residential and office building models. 464 

Analyzing the results shows that investments in PV generation is advised, with a small 19 kW PV system 465 

being suggested in the residential building and a larger 157 kW system being advised in the Office building. 466 

Each of these cases leads to a reduction in both costs and CO2 emissions, with a cost reduction of roughly 467 

15% in the residential building case and a more significant reduction of roughly 33% in the office building 468 

case. However, it should be noted that the investment suggestions do not include any technology with 469 

the ability to provide AS.  470 

When analyzing the runs where AS was enabled, it is observed that the optimal solution did not change. 471 

In other words, given the problem size and economics, adding DG units and / or storage with the ability 472 

to provide AS was not economically feasible, resulting in no impact from the expansion of the DER-CAM 473 

capabilities.Table  summarizes the results obtained for both a hospital microgrid, and the hypothetical 474 

microgrid resulting from the aggregation of the residential, office and hospital buildings. 475 

In this case, both models show once again cost reductions when analyzing potential DER investments prior 476 

to the introduction of potential revenue from AS markets. Results obtained for the Hospital building 477 



suggest a 1075 kW PV system as well as a combined 900 kW generation capacity, of which 750 kW consist 478 

of CHP-enabled generation, leading to an overall cost reduction of approximately 16% in total energy 479 

costs. In the aggregate case, the cost-optimal system configuration is similar, although 1343 kW of PV are 480 

suggested, and conventional generation capacity is slightly higher, with a combined 1MW installed 481 

capacity, of which 750 consist of CHP. In this case, the cost reduction is roughly 17%. 482 

Table 9 – CAISO: Costs, emissions and investments for a residential building and a medium sized office 483 

Table 10 – CAISO: Costs, emissions and investments for a hospital and aggregated for all buildings. 484 

 485 

When analyzing the results obtained in the expanded DER-CAM model it can be observed that introducing 486 

the ability to participate in AS markets had an impact on optimal results both for the Hospital and 487 

Aggregated model. In this case, cost reductions were of roughly 17% in the hospital case and 18% in the 488 

aggregated model, suggesting a slightly better economic performance due to the participation in AS 489 

markets. Specifically, AS market participation led to annual revenues of roughly $3,600 in the hospital 490 

model and of $4,500 in the aggregated model. While these revenues have little impact in the overall 491 

energy cost, it should be noted that the optimal DER capacity portfolio is changed due to the possibility 492 

to participate in AS markets. Namely, both cases see a reduction in total installed capacity, with the 493 

Hospital case showing an optimal PV capacity of roughly 1MW and 750 kW of CHP, and the Aggregated 494 

model showing a suggested PV capacity of roughly 1.1MW and an identical 750 kW CHP system. 495 

While the ability to participate in AS markets could lead to the belief that additional capacity would be 496 

installed, it must be noted that the ability to participate in AS markets has an influence on capacity factors. 497 

Specifically, and given the minimum load constrains, the results obtained with prior DER-CAM 498 

formulations suggest that larger generation units are often not used as it is not economically feasible to 499 

run them below the minimum load requirement, potentially leading to the investment in smaller and 500 

more flexible units. By adding the ability to participate in AS markets, cases where running generation at 501 

load levels above the minimum requirements where not cost effective may now become attractive, as 502 

this is a requirement to participate in Spinning markets, i.e., the additional revenue obtained from 503 

successful AS bids makes it economically viable to run larger units at load levels that were previously not 504 

economic, resulting in a lower need to install additional capacity for load following. This can be observed 505 

when analyzing Figure  and Figure , where the same dispatch period is shown both for the simple 506 

investment case and the investment case where AS are considered. The comparison of these dispatch 507 

profiles indicates a higher utilization and capacity factor for DG units when participation in AS markets is 508 

enabled. 509 

Figure 8 – CAISO Aggregate Model, Simple Investment Case 510 

Figure 9 – CAISO Aggregate Model, Investment Case with AS 511 

3.3.2. Results for the PJM territory 512 

The key results obtained for the PJM territory are summarized in Table  and Table 1, where Baltimore data 513 

has been used. Table  summarizes the results in the residential building microgrid model, and the office 514 

building model. Unlike the results obtained in the CAISO runs, no DER investments were suggested in 515 

either the simple investment or AS-enabled investment runs. These results are justified by the different 516 



utility tariffs in these different territories, which make DER investments for smaller sized systems not cost-517 

effective. 518 

Table 1 summarizes the results obtained for both the hospital microgrid model, and the hypothetical 519 

microgrid resulting from the aggregation of the residential, office and hospital buildings. 520 

Table 11 - Costs, emissions and investments for a residential building and a medium sized office. 521 

 522 

In this case, both models show cost reductions when analyzing potential DER investments prior to the 523 

introduction of potential revenue from AS markets. Results obtained for the Hospital building suggest a 524 

combined 1250 kW generation capacity from conventional units, of which 750 kW consist of CHP-enabled 525 

generation, leading to an overall cost reduction of approximately 16% in total energy costs. In the 526 

aggregate case, the cost-optimal system configuration is similar, although a very small amount of PV is 527 

suggested, and conventional generation capacity is slightly higher, with a combined 1325 kW installed 528 

capacity, of which 750 consist of CHP. In this case, the cost reduction is roughly 32%. 529 

Table 1 - Costs, emissions and investments for a hospital and aggregated for all buildings.  530 

 531 

When analyzing the results obtained in the expanded DER-CAM model it can be observed that introducing 532 

the ability to participate in AS markets had a significant impact in optimal results both for the Hospital and 533 

Aggregated model. In this case, cost reductions were of roughly 22% in the hospital case and 36% in the 534 

aggregated model, suggesting a more significant increase in the economic performance due to the 535 

participation in AS markets when compared with the results obtained in CAISO. Specifically, AS market 536 

participation led to an annual revenue of roughly $108,000 in the Hospital model and of $102,000 in the 537 

aggregated model, two orders of magnitude above the revenues estimated in CAISO.  538 

Figure 10 – PJM Hospital Model, Simple Investment Case 539 

Similarly to the results obtained in the CA region, these revenues also had an impact in the optimal DER 540 

capacity portfolio. In this case, however, the Hospital model showed the same overall installed capacity 541 

but lower CHP. This result is a direct reflection of the participation in AS markets, as part of the testing 542 

setup included disabling participation of CHP units in AS markets. As results show, the additional revenue 543 

from AS justifies replacing a CHP unit with a conventional generator, even considering the additional utility 544 

purchase to meet on-site heating requirements. 545 

In the Aggregate model, a similar occurrence was observed, although the overall installed capacity was 546 

increased to 1565 kW, suggesting that in this case the economic returns have improved following the 547 

participation in AS markets.  548 

It should be noted that the PJM regulation market requires up- and down- regulation markets to be made 549 

symmetrically, i.e., both bids must be of equal magnitude in opposite directions.  550 

Figure 11 – PJM Hospital Model, Investment Case with AS 551 



3.4. Final Remarks 552 

The analysis of overall results indicates that participation in AS markets has little impact on the optimal 553 

DER portfolio, i.e., in all runs performed with AS the set of technologies was unchanged when compared 554 

to the results obtained without AS participation. 555 

It was further observed that participation in AS markets may influence the overall installed capacity, 556 

although the exact behavior is dependent on the market economics. In the runs performed in the CAISO 557 

territory the added revenue from AS markets led to a slightly lower installed capacity as a result of 558 

increased capacity factor, while in the PJM territory the opposite behavior was observed, highlighting the 559 

strong differences in utility tariffs in both territories. 560 

4. Conclusion 561 

This paper contributes to the state-of-the-art in DER sizing models by expanding upon DER-CAM and 562 

implementing support for different ancillary service products. This includes Spinning, Non-Spinning, Up-563 

Regulation, and Down-Regulation AS products, and all changes to the formulation were implemented in 564 

a flexible way and allow support to different AS markets throughout different ISO territories. 565 

Further to the description of the revised mathematical formulation, a case study was conducted 566 

highlighting the impact of potential revenues from AS market participation in optimal DER selection for 567 

microgrids. The demonstration case consisted of four potential microgrid configurations, including a 568 

residential building, an office building, a hospital, and a hypothetical microgrid consisting of the 569 

aggregation of a residential building, and office building, and a hospital. The analysis was made assuming 570 

these microgrids were located both in San Francisco and Baltimore, and PG&E and BG&E tariffs were used, 571 

as well as CAISO and PJM market clearing prices for all four AS products introduced. 572 

Results suggest that revenues from AS markets have a variable impact in the overall site-wide energy 573 

costs, with results depending widely on the site-specific tariffs and AS market prices, although even in 574 

cases where little overall cost impact was observed results suggest that the optimal investment portfolio 575 

may change in a disproportional way, as a result of higher capacity factors being observed in DER where 576 

market participation is enabled. In such cases as the added revenue from AS participation enables 577 

operation in load levels that would otherwise not be cost-effective. 578 

From a broader perspective, the results obtained in this work suggest that, provided the appropriate 579 

regulatory conditions are created, DER participation in AS markets may be a viable revenue stream to 580 

influence both microgrid sizing and dispatch, and more importantly provide valuable services to support 581 

grid operations. Some initial policy efforts to enable DER participation in AS markets are already 582 

underway, namely in the CAISO territory, through the establishment of DER Providers (owner or operator 583 

of a DER aggregation) as new market participants [36]. 584 
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Table 2- Summary of the electric loads used in the DER-CAM runs 687 

Case 

San Francisco Baltimore 

Peak load (kW) 

Total annual load 

(MWh) Peak load (kW) 

Total annual load 

(MWh) 

Residential 45 180 30 120 

Office 125 548 123 547 

Hospital 1027 5646 986 5270 

Aggregated 1147 6374 1101 5937 

 688 

Table 3- Summary of the PG&E tariff information used in the DER-CAM runs, less than 200kW peak 689 

PG&E - less than 

200kW peak 

Summer (June-September) Winter (October-May) 

electricity demand electricity demand 

(US$/kWh) (US$/kW) (US$/kWh) (US$/kW) 

non-coincident - - - - 

on-peak 0.60974 - - - 

mid-peak 0.28352 - 0.17883 - 

off-peak 0.15605 - 0.14605 - 

fixed (US$/month) 9.8 

summer on-peak: 11:00 to 18:00 on weekdays  

summer mid-peak: 08:00 to 11:00 and 18:00 to 22:00 on weekdays 

summer off-peak: 00:00 to 08:00 and 22:00 to 24:00 on weekdays, 00:00 to 24:00 on weekends 

winter on-peak: N/A 

winter mid-peak: 08:00 to 22:00 on weekdays 

winter off-peak: 00:00 to 08:00 and 22:00 to 24:00 on weekdays and 00:00 to 24:00 on weekends 

 690 

 691 

 692 

 693 

 694 

Table 4- Summary of the PG&E tariff information used in the DER-CAM runs, more than 500kW peak 695 



PG&E - greater than 

500kW peak Summer (June-September) Winter (October-May) 

 electricity demand electricity demand 

(US$/kWh) (US$/kW) (US$/kWh) (US$/kW) 

non-coincident - 14.38 - 14.38 

on-peak 0.16233 19.04   - 

mid-peak 0.10893 4.42 0.10185 0.24 

off-peak 0.07397 - 0.07797 - 

fixed (US$/month) 591.45 

summer on-peak: 11:00 to 18:00 on weekdays  

summer mid-peak: 08:00 to 11:00 and 18:00 to 22:00 on weekdays 

summer off-peak: 00:00 to 08:00 and 22:00 to 24:00 on weekdays, 00:00 to 24:00 on weekends 

winter on-peak: N/A 

winter mid-peak: 08:00 to 22:00 on weekdays 

winter off-peak: 00:00 to 08:00 and 22:00 to 24:00 on weekdays and 00:00 to 24:00 on weekends 

 696 

Table 5- Summary of the BG&E tariff information used in the DER-CAM runs, less than 2 GWh consumption 697 

BG&E - Less than 

2GWh 

Summer (June-September) Winter (October-May) 

electricity demand electricity demand 

(US$/kWh) (US$/kW) (US$/kWh) (US$/kW) 

non-coincident  - - -  - 

on-peak 0.13546 - 0.13546 - 

mid-peak 0.11874 - 0.11874 - 

off-peak 0.09859 - 0.09859 - 

fixed (US$/month) 17.5 

summer on-peak: 09:00 to 22:00 on weekdays  

summer mid-peak: 06:00 to 10:00 and 21:00 to 23:00 on weekdays 

summer off-peak: 00:00 to 06:00 and 23:00 to 24:00 on weekdays, 00:00 to 24:00 on weekends 

winter on-peak: 07:00 to 12:00 and 16:00 to 21:00 on weekdays 

winter mid-peak: 12:00 to 16:00 on weekdays 



winter off-peak: 00:00 to 06:00 and 21:00 to 24:00 on weekdays and 00:00 to 24:00 on weekends 

 698 

Table 6- Summary of the BG&E tariff information used in the DER-CAM runs, large commercial customers 699 

BG&E – Large 

Commercial  

Summer (June-September) Winter (October-May) 

electricity demand electricity demand 

(US$/kWh) (US$/kW) (US$/kWh) (US$/kW) 

non-coincident - 3.54 - 3.54 

on-peak 0.12170 2.46 0.08149 2.46 

mid-peak 0.08696 - - - 

off-peak 0.08149 - 0.08149 - 

fixed (US$/month) 88 

summer on-peak: 09:00 to 22:00 on weekdays  

summer mid-peak: 06:00 to 10:00 and 21:00 to 23:00 on weekdays 

summer off-peak: 00:00 to 06:00 and 23:00 to 24:00 on weekdays, 00:00 to 24:00 on weekends 

winter on-peak: 07:00 to 12:00 and 16:00 to 21:00 on weekdays 

winter mid-peak: 12:00 to 16:00 on weekdays 

winter off-peak: 00:00 to 06:00 and 21:00 to 24:00 on weekdays and 00:00 to 24:00 on weekends 

 700 

 701 

Table 7 - Photovoltaic modules 702 

PV technology Bifacial HIT-Si 

Installation cost ($/kW) 3237 

Lifetime (years) 30 

Peak efficiency 15.29% 

 703 

 704 

Table 8- Stationary Storage Characteristics 705 

Battery technology Li-ion 

Battery cost ($/kWh) 560 



Lifetime (years) 5 

Maximum charge rate C/4 

Maximum discharge rate C/4 

Charging efficiency 0.95 

Discharging efficiency 0.95 

Max. depth of discharge 80% 

 706 

Table 9 - Conventional generation units 707 

DG Units maxp lifetime capcost OMVar 

electr. 

eff. HPR NoX UpTime MinLoad 

kW yr $/kW $/kWh - - g/kWh - - 

ICE_RB_75 75 15 2230 0.024 0.26 0 0.0068 93% 70% 

ICE_RB_250 250 15 2073 0.024 0.27 0 0.0068 93% 70% 

ICE_LB_500 500 15 1814 0.021 0.33 0 0.0008 93% 70% 

MT_65 65 15 2737 0.013 0.24 0 0.0001 95% 75% 

MT_200 200 15 2678 0.016 0.27 0 0.0001 95% 75% 

MT_250 250 15 2311 0.011 0.26 0 0.0001 95% 75% 

MCFC_300 300 20 10000 0.045 0.43 0 0.0000 98% 100% 

PAFC_400 400 20 7000 0.036 0.38 0 0.0000 98% 100% 

ICE_RB_CHP-

HW_75 75 15 2881 0.0255 0.26 2.00 0.0068 93% 70% 

ICE_RB_CHP-

HW_250 250 15 2614 0.025 0.27 1.83 0.0068 93% 70% 

ICE_LB_CHP-

HW_500 500 15 2309 0.0215 0.33 1.22 0.0008 93% 70% 

ICE_LB_CHP-

HW_750 750 20 2200 0.0215 0.35 1.16 0.0008 93% 70% 

MT_CHP-

HW_65 65 15 3220 0.0145 0.24 1.57 0.0001 95% 75% 

MT_CHP-

HW_200 200 15 3150 0.017 0.27 1.10 0.0001 95% 75% 



DG Units maxp lifetime capcost OMVar 

electr. 

eff. HPR NoX UpTime MinLoad 

kW yr $/kW $/kWh - - g/kWh - - 

MT_CHP-

HW_250 250 15 2719 0.012 0.26 1.20 0.0001 95% 75% 

MCFC_CHP-

HW_300 300 20 10300 0.046 0.43 0.47 0.0000 98% 100% 

PAFC _HP-

HW_400 400 20 7300 0.037 0.38 0.57 0.0000 98% 100% 

ICE - Internal Combustion Engine, MT - Micro Turbine, MCFC - Molten Carbonate Fuel Cell 

PAFC - Phosphoric Acid Fuel Cell 

RB - Rich Burn, LB – Lean Burn, CHP - Combined Heat and Power, HW - Hot Water Applications 

HPR – Heat-Power Ratio 

 708 

Table 10 – CAISO: Costs, emissions and investments for a residential building and a medium sized office 709 

Costs in US$ 

Residential building Medium sized office 

Base case Simple 

investment 

With AS Base 

case 

Simple 

investment 

With AS 

Total Costs 37,429 32,320 32,320 143,679 96,724 96,724 

Electricity Costs 27,322 18,200 18,200 139,013 58,536 58,536 

Fuel costs 10,107 10,107 10,107 4,666 4,666 4,666 

Ann. Cap. cost 0 3,956 3,956 0 33,050 33,050 

O&M cost 0 56 56 0 471 471 

AS Revenue - - 0 - - 0 

CO2 (kg) 115,614 98,656 98,656 324,263 175,606 175,606 

PV (kW) - 19 19 - 157 157 

Total DG (kW) - - - - - - 

CHP (kW) - - - - - - 

 710 

Table 11 – CAISO: Costs, emissions and investments for a hospital and aggregated for all buildings. 711 

Costs in US$ Hospital Aggregated system 



Base case Simple 

investment 

With AS Base case Simple 

investment 

With AS 

Total Costs 1,385,310 1,164,147 1,157,303 1,517,047 1,264,577 1,249,716 

Electricity Costs 1,239,299 255,314 323,248 1,360,328 264,103 278,942 

Fuel costs 146,011 379,486 363,445 156,719 391,958 410,706 

Ann. Cap. cost 0 424,787 374,744 0 502,786 450,362 

O&M cost 0 104,560 100,325 0 105,729 113,324 

AS Revenue - - 3,618 - - 4460 

CO2 (kg) 5,533,957 3,668,595 3,712,145 5,973,834 2,175,789 3,986,516 

PV (kW) - 1075 999 - 1343 1111 

Total DG (kW) - 900 750 - 1000 1000 

CHP (kW) - 750 750 - 750 750 
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Table 12 - Costs, emissions and investments for a residential building and a medium sized office. 713 

Costs in US$ 

Residential building Medium sized office 

Base case Simple 

investment 

With AS Base 

case 

Simple 

investment 

With AS 

Total Costs 31,357 31,357 31,357 73,215 73,215 73,215 

Electricity Costs 25,451 25,451 25,451 69,573 69,573 69,573 

Fuel costs 5,906 5,906 5,906 3,642 3,642 3,642 

Ann. Cap. cost 0 0 0 0 0 0 

O&M cost 0 0 0 0 0 0 

AS Revenue - - 0 - - - 

CO2 (kg) 223,946 223,946 223,946 534,395 534,395 534,395 

PV - - - - - - 

Total DG - - - - - - 

CHP - - - - - - 
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Table 13 - Costs, emissions and investments for a hospital and aggregated for all buildings.  715 



Costs in US$ 

Hospital Aggregated system 

Base case Simple 

investment 

With AS Base case Simple 

investment 

With AS 

Total Costs 1,001,780 837,859 782,605 1,343,417 919,607 856,020 

Electricity Costs 9,45,984 73,175 130,433 1,281,700 23,308 34,380 

Fuel costs 55,795 328,331 329,119 61,716 385,584 432,678 

Ann. Cap. cost 0 275,645 301,883 0 331,310 370,779 

O&M cost 0 159,433 129,760 0 170,051 120,892 

AS Revenue - - 108,381 - - 102,350 

CO2 (kg) 8,492,950 6,199,267 6,703,209 9,251,291 6,876,192 7,768,291 

PV - - - - 9 - 

Total DG - 1250 1250 - 1325 1565 

CHP - 750 500 - 750 500 
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Figure 1- CAISO average weekday spinning reserve market clearing prices [28] 719 

 720 

Figure 2- CAISO average weekday non-spinning reserve market clearing prices [28] 721 
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Figure 3- CAISO average Up-Regulation market clearing prices [28] 723 
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Figure 4- CAISO average Down-Regulation market clearing prices [28] 725 
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Figure 5- PJM average weekday spinning reserve market clearing prices [28] 728 
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Figure 6- PJM average weekday non-spinning reserve market clearing prices [28] 730 
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Figure 7- PJM average weekday regulation market clearing prices [28] 732 
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Figure 8 – CAISO Aggregate Model, Simple Investment Case 735 
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Figure 9 – CAISO Aggregate Model, Investment Case with AS 737 
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Figure 10 – PJM Hospital Model, Simple Investment Case 741 
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Figure 11 – PJM Hospital Model, Investment Case with AS 743 
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