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Abstract of the Dissertation

Ion Channeling in Direct Dark Matter Detection

by

Nassim Bozorgnia

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor Graciela B. Gelmini, Chair

The channeling of the ion recoiling after a collision with a WIMP changes the ionization

signal in direct detection experiments, producing a larger signal than otherwise expected.

We give estimates of the fraction of channeled recoiling ions in NaI (Tl), Si, Ge, CsI, and solid

Xe, Ar and Ne crystals using analytic models produced since the 1960’s and 70’s to describe

channeling and blocking effects. We find that the channeling fraction of recoiling lattice

nuclei is smaller than that of ions that are injected into the crystal and that it is strongly

temperature dependent. Channeling is a directional effect which depends on the velocity

distribution of WIMPs in the dark halo of our Galaxy and could lead to a daily modulation

of the signal. We compute upper bounds to the expected amplitude of daily modulation due

to channeling using our estimates of the channeling fractions. After developing the general

formalism, we examine the possibility of finding a daily modulation due to channeling in

the data already collected by the DAMA experiment. We find that even the largest daily

modulation amplitudes would not be observable for WIMPs in the standard halo in the 13

years of data taken by the DAMA collaboration. For these to be observable the DAMA total

rate should be 1/40 of what it is or the total DAMA exposure should be 40 times larger.

The daily modulation due to channeling will be difficult to measure in future experiments.
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CHAPTER 1

Introduction

The nature of dark matter is still one of the fundamental problems of cosmology and astro-

physics today. One of the well-motivated candidates for dark matter is the Weakly Inter-

acting Massive Particle (WIMP), with interaction cross sections at the weak scale and large

masses in the GeV-TeV range. Several experiments such as DAMA [14], XENON100 [15],

CDMS [16], CoGeNT [2, 17], CRESST [3] and EDELWEISS [18] aim at directly detecting

WIMPs.

Direct dark matter experiments search for energy deposited by the scattering of WIMPs in

the dark halo of our galaxy. The recoil energy goes into phonons, scintillation, or ionization.

If a signal is observed, it is desirable to have unmistakable signatures that it is due to dark

matter. Two such signatures are the annual modulation of the signal due to the motion of

the Earth around the Sun, extensively studied since [19, 20], and the daily modulation due

to the spinning of the Earth around its axis.

Data from three direct dark matter experiments point to the region of low mass (∼ 10

GeV) WIMPs: DAMA, CoGeNT and CRESST-II. The DAMA experiment uses NaI (Tl)

crystals to detect the scintillation signal. In the 13 years of data, the DAMA collaboration

has found a 8.9σ annual modulation signal compatible with the signal expected from dark

matter particles bound to our Galactic halo. Recently, a possible dark matter signal for 7-12

GeV WIMPs has been found by the CoGeNT collaboration which is using ultra low-noise

germanium detectors. CRESST-II observes an excess of events above their background,

which may be interpreted as due to dark matter WIMPs.

Fig. 1.1.a (reproduced from Ref. [3]) shows the regions in cross section versus mass com-

patible with the CRESST results as well as the exclusion limits from CDMS-II, XENON100,
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Figure 1.1: Parameter space of spin-independent elastic WIMP-nucleon cross section as a

function of WIMP mass. (a) The region compatible with the CRESST results together with

the exclusion limits from CDMS-II, XENON100, and EDELWEISS-II, as well as the CRESST

limit obtained in an earlier run. The 90% confidence regions favored by CoGeNT and DAMA

(without and with ion channeling) are also shown. (b) Upper limit from XENON100 at 90%

CL shown in thick (black) line, as well as the sensitivity for the data set analyzed shown as

light and dark (blue) shaded areas at 1σ and 2σ CL, respectively. Two limits from the same

data set, derived for two assumptions of the behavior of the scintillation efficiency factor are

shown as dotted lines, and a limit from CDMS is shown as thin (orange) line. Expectations

from a theoretical model [1], and the areas (at 90% CL) favored by CoGeNT (green) [2] and

DAMA (red, without channeling) are also shown. Figs. 1.1.a and 1.1.b are reproduced from

Ref. [3], and Ref. [4], respectively.

EDELWEISS-II, and CRESST (obtained in an earlier run). The 90% confidence regions

favored by CoGeNT and DAMA is also shown. Fig. 1.1.b (reproduced from Ref. [4]) shows

the upper limits from XENON100 at 90% confidence level (CL) and the sensitivity as the

one sigma and two sigma bands. Limits from XENON100 derived for two assumptions of the

behavior of the scintillation efficiency, limits from CDMS, expectations from a theoretical

model [1], and the regions (at 90% CL) favored by CoGeNT and DAMA are also shown.

Ion channeling in crystals has received a large amount of attention in the interpretation

of experiments designed to search for dark matter WIMPs through their scattering in a low-
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Figure 1.2: (a) Fraction of channeled recoils as a function of the recoil energy in NaI (Tl)

crystals, and (b) experimental constraints as well as the DAMA best fit parameters for

spin-independent only scattering. The DAMA best fit regions are determined using a likeli-

hood ratio method with (green) and without (orange) the channeling effect as evaluated by

the DAMA collaboration. Figs. 1.2.a and 1.2.b are reproduced from Ref. [5], and Ref. [6],

respectively.

background detector. Channeling would occur when the nucleus that recoils after being hit

by a dark matter particle moves off in a direction close to a symmetry axis or symmetry

plane of the crystal. Channeled ions loose their energy predominantly to electrons, while

non-channeled ions transfer their energy to lattice nuclei. In scintillators like NaI (Tl), which

are sensitive to the electronic energy losses, channeling increases the fraction of recoil energy

that is observed as scintillation light. The DAMA collaboration [5] evaluated the fraction of

channeled recoils and found it to be large for low recoiling energies in the keV range. This

effect shifts the regions in cross section versus mass of acceptable WIMP models in agreement

with the DAMA data towards lower WIMP masses [6]. Fig. 1.2.a (reproduced from Ref. [5])

shows the channeling fraction of Na and I recoils evaluated by the DAMA collaboration as

a function of the recoil energy. Fig. 1.2.b (reproduced from Ref. [6]) shows the experimental

constraints and DAMA best fit parameters determined using a likelihood ratio method with

and without the channeling effect as evaluated by the DAMA collaboration.

Another aspect of channeling is that it could give rise to a daily modulation due to the
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preferred direction of the dark matter flux arriving on the Earth (“WIMP wind”). Earth’s

daily rotation naturally changes the direction of the WIMP wind with respect to the crystal

axes and planes, thus changing the amount of recoiling ions that are channeled vs. non-

channeled. This amounts to a daily modulation of the dark matter signal detectable via

scintillation or ionization. If this daily modulation could be measured, it would be a signature

of dark matter without background. This was pointed out by Avignone, Creswick, and

Nussinov [21, 22] for NaI (Tl) crystals, although their estimates of the amplitude of the

daily modulation were simplistic.

Given the importance of channeling in the interpretation of direct detection experiments,

and the need to refine the previous calculations of a possible daily modulation due to chan-

neling, it has been worthwhile to take a deeper look at channeling in the context of dark

matter detection. We evaluate the upper bounds on the channeling fractions for different

crystalline detectors used in dark matter experiments through analytical means. Our calcu-

lations are based on classical analytic models developed since the 1960’s and 70’s (e.g. by

Lindhard [23]). We find that the channeling fractions for all the crystals we study would never

be larger than a few percent, and the result of our work has had important consequences on

the compatibility of the DAMA results with other experiments. We also compute the daily

modulation amplitudes expected in the data already collected by the DAMA experiment and

find large modulation amplitudes of the signal rate, of the order of 10% in some instances,

which are not observable at the 3σ level.

This dissertation is based on [9, 10, 11, 12, 13] (see also [24, 25, 26, 27, 28, 29]). In

Chapter 2 we give the definitions and a brief history of ion channeling and blocking. In

Chapter 3 we present our analytic calculations of the channeling fraction in NaI (Tl). We

present our results for Si and Ge crystals in Chapter 4, CsI in Chapter 5, and solid Xe,

Ar, and Ne in Chapter 6. Our calculations of the daily modulation due to channeling is

presented in Chapter 7, and the conclusions are given in Chapter 8.
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CHAPTER 2

Ion channeling and blocking

Channeling and blocking effects in crystals refer to the orientation dependence of charged

ion penetration in crystals. In the “channeling effect” ions incident upon a crystal along

symmetry axes and planes suffer a series of small-angle scatterings that maintain them

in the open “channels” between the rows or planes of lattice atoms and thus penetrate

much further into the crystal than in other directions. Channeled incoming ions do not get

close to lattice sites, where they would be deflected at large angles. The “blocking effect”

consists in a reduction of the flux of ions originating in lattice sites along symmetry axes

and planes, creating what is called a “blocking dip” in the flux of ions exiting from a thin

enough crystal as a function of the exit angle with respect to a particular symmetry axis

or plane. Directional effects in ion penetration in crystals was first observed in 1960 [30]

in the sputtering ratio for ions bombarding a single crystal and its explanation in terms of

channeling was first done in 1962 [31], although the effect had been predicted to exist in

1912 [32]. Strongly anisotropic effects for positive particle trajectories originating at lattice

sites were discovered in 1965, with particles emitted from radioactive atoms and wide-angle

scattering of positive ions in several experiments. Immediately the relation between these

blocking effects and the channeling effect was explained by Lindhard [23] in 1965. In the

1960’s and 70’s the experimental and theoretical work on channeling proceeded at a very

fast pace (see for example the review by D. Gemmell [33] and references therein).

Channeling and blocking effects in crystals are used in crystallography, in the study

of lattice disorder, ion implantation, and the location of dopant and impurity atoms in

crystals, in studies of surfaces, interfaces and epitaxial layers, in measurements of short

nuclear lifetimes, in the production of polarized beams etc (see for example [34, 35, 36]).

5



Channeling and blocking effects are related because the non-channeled incident ions are

those which suffer a close-encounter process with an atomic nucleus in the crystal, namely

those which pass sufficiently close to a lattice nucleus to be deflected at a large angle. After

a close-encounter collision the deflected ion acts as if it was “emitted” from a lattice site.

Channeling is many times observed as a lack of large angle deflections for ions incident at a

small angle ψ with respect to a particular symmetry axis or plane. This forms a “channeling

dip” in the outgoing flux as a function of the incident beam angle ψ. As first pointed

out by Lindhard [23], when no slowing-down processes are involved, the “channeling” and

“blocking” dips should be identical, when compared for the same particles, energies, crystals

and crystal directions.

Ion channeling in NaI (Tl) was first observed in 1973 by Altman, Dietrich, Murray and

Rock [37]. They observed that the scintillation output of a monochromatic 10 MeV 16O

beam through an NaI (Tl) scintillator shows two peaks: one at low energy due to non-

channeled ions, and one at high energy due to channeled ions. The channeled ions produce

more scintillation light because they lose most of their energy via electronic stopping rather

than nuclear stopping.

This may be an important effect in direct dark matter detection experiments in which

a scintillation signal due to the recoil of ions as a result of WIMP collisions is searched for.

The potential importance of the channeling effect for direct dark matter detection was first

pointed out for NaI (Tl) by Drobyshevski [38] and by the DAMA collaboration [5]. When

Na or I ions recoiling after a collision with a dark matter WIMP move along crystal axes and

planes, their quenching factor is approximately Q = 1 instead of QNa = 0.3 and QI = 0.09,

since they give their energy to electrons. The DAMA collaboration [5] found that the fraction

of channeled recoils is large for low recoiling energies in the keV range.

Most of the applications of channeling and blocking are at energies of MeV and higher,

however some use much lower energies, up to the keV range. In particular, avoiding channel-

ing is essential in the manufacturing of semiconductor devices, since ion implantation at a

controlled depth is the primary technique. Boron, arsenic and phosphorus ions are implanted
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in silicon, for example, to produce integrated circuits, at energies from 100’s of eV to several

MeV (see for example [39]).
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CHAPTER 3

Channeling fraction in NaI (Tl) crystals

3.1 Models of Channeling

3.1.1 Continuum models

There are different approaches to calculate the deflections of ions traveling in a crystal. In

the “binary collision model” the ion path is computed by a computer program (see Ref. [40]

for one of the first ones) in terms of a succession of individual interactions, each with one

of the atoms in the crystal. Crystal imperfections and lattice vibrations are thus easily and

correctly taken into account. In “continuum models”, reasonable approximations are made

which allow to replace the discrete series of binary collisions with atoms by a continuous

interaction between a projectile and uniformly charged strings or planes. These models

allow to replace the numerical calculations by an analytic description of channeling, and

provide good quantitative predictions of the behavior of projectiles in the crystal in terms

of simple physical quantities. This is the approach we use here. This analytical description

was initially developed mostly by J. Lindhard [23] and collaborators for ions of energy MeV

and higher, and its use was later extended to lower energies, i.e. hundreds of eV and above,

mostly to apply it to ion implantation in Si. This approach must be complemented by

determination of parameters through data fitting or simulations. Moreover, lattice vibrations

are more difficult to include in continuum models. Since we use a continuum model, our

results should in last instance be checked by using some of the many sophisticated simulation

programs that implement the binary collision approach or mixed approaches (e.g. [41, 42,

43, 44, 45, 46, 47, 48]).
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Although the analytical description works better at higher energies (where it has been

very well tested experimentally), at low and intermediate energies the critical angles for

channeling predicted by analytic models have also been found to be in good agreement

with experimental results. For the low energy range we found most useful the work of G.

Hobler, who in 1996 [7, 49] perfected and checked experimentally previous continuum model

predictions [50] for axial and planar channeling at energies in the keV to a few 100 keV range,

to avoid channeling in the implantation of B, P and As atoms in Si crystals. Measurements of

axial critical angles obtained in the late 1960’s for light (H+, D+ and He+) and intermediate

mass (B and Ar) ions propagating in various crystals (gold, tungsten, silicon) with energies

between 1 and 100 keV were found to be in good agreement with the predictions of Lindhard

models [51, 52, 53]. In 1999 K. M. Lui [54] and collaborators compared experimental results

of 5 keV Ne+ ions on platinum and predictions of the trajectory simulation code SARIC [47],

based on the binary collision model, with the predictions of Lindhard’s analytical model and

the observed angular half-width of the blocking dips for axial channels were found to be in

good qualitative agreement with Lindhard’s critical angle (both are similar as can be seen

in Table I of Ref [54]). In 2002, S. M. Hogg et al. [55] studied channeled implantation of

80 keV Er ions into Si and concluded that the axial measured critical angle was in excellent

agreement with both computer simulations (made with the MDRANGE program [48]) and

experimental results. In 2005 Lindhard’s critical angle prediction was used to understand

qualitative features of computational results of the SARIC program for 4 keV Ne+ ions

impinging on a Pt surface [56].

Our calculation is based on the classical analytic models developed in the 1960’s and 70’s,

in particular by Lindhard [23, 57, 58, 59, 60, 61, 62, 63, 64]. The fact that the de Broglie

wavelengths of ions in the keV-MeV range are of the order of ∼ 0.01 pm (and smaller at

higher energies), which is much less than the lattice constant of a crystal (∼ 10 pm), justifies

using a classical treatment. We use the continuum string and plane model, in which the

screened Thomas-Fermi potential is averaged over a direction parallel to a row or a plane.

This averaged potential U is considered to be uniformly smeared along the row or plane of

atoms, which is a good approximation if the propagating ion interacts with many lattice
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atoms in the row or plane by a correlated series of many consecutive glancing collisions with

lattice atoms. We are going to consider just one row, which simplifies the calculations and

is correct except at the lowest energies we consider, as we explain below.

There are several good analytic approximations of the screened potential. In this chapter

we use Lindhard’s expression, because it is the simplest and allows to find analytical expres-

sions for the quantities we need. The transverse averaged continuum potential of a string

as a function of the transverse distance r to the string, relevant for axial channeling, was

approximated by Lindhard [23] as

U(r) = Eψ2
1

1

2
ln

(
C2a2

r2
+ 1

)
, (3.1)

where C is a constant, which was found experimentally to be C ≃
√
3, and

ψ2
1 =

2Z1Z2e
2

Ed
. (3.2)

Z1, Z2 are the atomic numbers of the recoiling and lattice nuclei respectively, d is the spacing

between atoms in the row, a is the Thomas-Fermi screening distance, a = 0.4685Å(Z
1/2
1 +

Z
1/2
2 )−2/3 [40, 33] and E =Mv2/2 is the kinetic energy of the propagating ion. In our case,

E is the recoil energy imparted to the ion after a collision with a WIMP,

E =
|q⃗|2

2M
, (3.3)

where q⃗ is the recoil momentum. The string of crystal atoms is at r = 0.

The transverse averaged continuum potential of a plane of atoms, relevant for planar

channeling, given by Lindhard [23] as a function of the distance x perpendicular to the plane

is

Up(x) = Eψ2
a

[(
x2

a2
+ C2

) 1
2

− x

a

]
, (3.4)

where ψa is

ψa =

(
2πnZ1Z2e

2a

E

) 1
2

(3.5)

and n = Ndpch is the average number of atoms per unit area, where N is the atomic density

and dpch is the width of the planar channel, i.e. the interplanar spacing (thus the average
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Figure 3.1: Continuum axial (black) and planar (green/gray) potentials for (a) Na and (b)

I ions, propagating in the <100> axial and {100} planar channels of an NaI crystal. The

screening radii shown as vertical lines are āNa = 0.00878 nm and āI = 0.0115 nm (see

Appendix A.1).

distance of atoms within a plane is dp = 1/
√
Ndpch). The plane is at x = 0. Examples of

axial and planar continuum potentials are shown in Fig. 3.1.

The continuum model does not imply that the potential energy of an ion moving near

an atomic row is well approximated by the continuum potential U . The actual potential

consists of sharp peaks near the atoms and deep valleys in between. The continuum model

says that the net deflection due to the succession of impulses from the peaks is identical to

the deflection due to a force −U ′. This is only so if the ion never approaches any individual

atom so closely that it suffers a large-angle collision. Lindhard proved that for a string of

atoms this is so only if

U ′′(r) <
8

d2
E, (3.6)

where the double prime denotes the second derivative with respect to r. Replacing the

inequality in Eq. 3.6 by an equality defines an energy dependent critical distance rc such

that r > rc for the continuum model to be valid. Morgan and Van Vliet [59] also derived a

condition for axial channels, similar to Eq. 3.6 (but with the factor 8 replaced by 16).

The condition in Eq. 3.6 for the validity of the continuum model on the axial effective

potential is equivalent (as shown initially by Lindhard and proven below) to insuring that
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the minimum distance of approach to the string remains larger than ≃ d ψ1 for large E

(MeV and above) and ≃ d ψ2 (with ψ2 given in Eq. 3.18) for small E (below 100’s of keV).

Thus, the smaller the atomic interdistance d and the larger the ion velocity (i.e. the smaller

ψ1 or ψ2) the more accurate the continuum model [36].

The appearance of the angle ψ1 in this condition can be easily understood by considering

the “Coulomb shadow” formed by individual atoms behind the direction of arrival of a paral-

lel beam of positive ions. For an unscreened Coulomb potential and small angle deflections,

the trajectories of the projectiles give rise to a shadow cone in which the projectiles do not

enter. A distance z behind the deflecting nucleus in the direction of arrival of the projectiles,

the shadow cone radius is D(z) =
√
2zd ψ1 (here d enters through the definition of ψ1). As

the incident angle of the incoming ions with respect to the row of atoms decreases, there

is a critical value of the incident angle at which the edge of the shadow of an atom passes

through the adjacent atom. This critical angle is approximately D(d)/d =
√
2 ψ1. For angles

of incidence larger than ∼ ψ1, the shadow cones of the atoms in a row are independent of

each other. But for incident angles smaller than ∼ ψ1, the shadow cones interfere with each

other, so that the atoms in a row are effectively shadowed and not exposed to the projec-

tiles [65, 36]. In this case the incident ions do not approach the shadowed atoms closer than a

distance D(d) ≃ d ψ1, as mentioned above. For a more realistic screened Coulomb potential

(as considered in this chapter) the shadow cone radius is smaller than for the unscreened

potential and the difference between the two becomes smaller for higher ion energies.

The breakdown of the continuum theory for planar channeling is more involved than

for axial channeling because the atoms in the plane contributing to the scattering of the

propagating ion are usually displaced laterally within the plane. Thus the moving ion does

not encounter atoms at a fixed separation or at fixed impact parameter as is the case for a

row. Morgan and Van Vliet [59] reduced the problem of scattering from a plane of atoms to

the scattering from an equivalent row of atoms contained in a strip centered on the projection

of the ion path on the plane of atoms. They then applied Eq. 3.6 to the “fictitious string”

defined in this way as the condition for planar channeling (more about this below).

12



3.1.2 The transverse energy

Lindhard proved that for channeled particles the longitudinal component v cosϕ, i.e. the

component along the direction of the row or plane of the velocity, may be treated as constant

(if energy loss processes are neglected). Then, in the continuum model, the trajectory of

the ions can be completely described in terms of the transverse direction, perpendicular to

the row or plane considered. For small angle ϕ between the ion’s trajectory and the atomic

row (or plane) in the direction perpendicular to the row (or plane), the so called “transverse

energy”

E⊥ = E sin2 ϕ+ U ≃ Eϕ2 + U (3.7)

is conserved. In Eq. 3.7 relativistic corrections are neglected.

In each binary collision of the ion with the closest atom, E⊥ changes abruptly, because

the angle ϕ changes in a very short time (i.e. while the potential is practically constant).

Then, between two collisions, the change is compensated because the potential component

of E⊥ changes continuously as the ion propagates while the angle ϕ is constant [36]. A good

way to test to what extent this compensation takes place is to calculate the value of E⊥ far

away from the collision sites, namely half-way between successive collision sites.

The condition in Eq. 3.6 was derived by Lindhard (in Appendix A of Ref. [23]) for axial

channels by defining E⊥ at the planes half-way between string of atoms and asking for E⊥

at contiguous half-way planes to be conserved to first order (this is the so called “half-way

plane” model). Morgan and Van Vliet [59] derived a condition for axial channeling very

similar to Eq. 3.6 by calculating the difference between the scattering angle due to a binary

collision and the deflection angle in the continuum potential when the ion travels the distance

between two contiguous halfway planes (the half-way planes considered by Lindhard).

Let ri be the initial position at which the WIMP nucleus collision occurs, i.e. if ri > 0 the

recoiling nucleus was displaced with respect to its position of equilibrium in the string when

it collided with a WIMP. We call ϕ the angle of the initial recoil momentum with respect to

the row of atoms, and E the initial recoil energy of the propagating ion. Given these initial
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parameters, the issue of where to define E⊥ arises. Namely, we define

E⊥ = E sin2 ϕ+ U(r∗), (3.8)

but there are different possible choices for r∗, the position at which to measure the potential

U . In the “half-way plane model” used by Lindhard, U is measured after the recoiling ion

propagates a distance d/2 along the string, when it is at a distance

r∗ = r∗HP ≡ ri + (d/2) tanϕ (3.9)

perpendicular to the string at the halfway-plane. All angles we are dealing with are small

enough that sinϕ ≃ tanϕ ≃ ϕ. This choice was shown to work better in some respects [61]

(such as the blocking angular distribution in axial channels) than the “continuum approxi-

mation.” In the latter, the transverse energy E⊥ is considered to be conserved all along the

string, not only at the halfway-planes, in which case r∗ is chosen to be just

r∗ = r∗CA ≡ ri. (3.10)

The two choices r∗ = r∗HP and r∗ = r∗CA coincide only if d tanϕ/2ri ≪ 1, a condition that

at energies below 100’s of keV is in general not fulfilled, in which case the “continuum

approximation” is not a good approximation. In fact, assuming the “continuum approxi-

mation”, the angle at the first halfway plane must have a different value, ϕ′ say, such that

sin2 ϕ′ − sin2 ϕ = [U(ri) − U(ri +
1
2
d tanϕ)]/E. Fig. 3.1 shows that the potential U at a

distance a or larger is in the 1-10 keV range. Thus the difference between both definitions

of the transverse energy is very small at large enough values of the energy E ≫ 10 keV,

but for lower values of E, in the keV to the 10’s of keV range, the definitions r∗ = r∗HP

and r∗ = r∗CA give different results unless ϕ is small enough. In Ref. [61] the predictions of

both models for blocking of 400 keV protons in W and 7 MeV protons in Si were compared

with the predictions of the binary-collision model. The “half-way plane model” results were

found to be in agreement with those of the binary-collision model, even when those of the

“continuum approximation” were not.

In all these cases, even when considering blocking, the propagating ion was always dif-

ferent than a lattice ion. In our case, the recoiling ion leaves an empty lattice site, thus it
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moves away from an empty lattice site in the potential generated by its neighboring lattice

atoms. So the potential that the recoiling ion moves through at the moment of collision is

very small, and the recoiling ion conserves its momentum and direction of motion until it

gets very near the nearest neighbor, a distance d away along the string. At this moment, it

is at a distance

r∗ = r∗rec ≡ ri + d tanϕi (3.11)

from its nearest neighbor. Therefore, we will make the approximation of defining the poten-

tial entering into Eq. 3.8 at r∗ = r∗rec.

3.1.3 Minimum distance of approach and critical channeling angle

The conservation of the transverse energy provides a definition of the minimum distance of

approach to the string, rmin (or to the plane of atoms xmin), at which the trajectory of the

ion makes a zero angle with the string (or plane), and also of the angle ψ at which the ion

exits from the string (or plane), i.e. far away from it where U ≃ 0. In reality the furthest

position from a string or plane of atoms is the middle of the channel, whose width we call

dach for an axial channel or dpch for a planar channel, thus

E⊥ = U(rmin) = Eψ2 + U(dach/2). (3.12)

We define the axial channel width dach in terms of the interatomic distance d as dach =

1/
√
Nd, where N is the atomic density.

For axial channeling Lindhard equates the condition for channeling with the condition

in Eq. 3.6 for the validity of the continuum model. For Lindhard’s axial potential, this

condition reads

E >
E1d

2

8

1 + 3( rmin

Ca
)2

r2min

(
1 + ( rmin

Ca
)2
)2 , (3.13)

where E1 = Eψ2
1 (and ψ1 was defined in Eq. 3.2). Since the right-hand side of this inequality

is a monotonically decreasing function of rmin, one just needs to solve the equation obtained

by replacing the inequality with an equality. Solving a cubic equation, the condition in

Eq. 3.13 can be inverted to find rc(E), the minimum value of rmin. We find the following
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decreasing function of E

rc(E) = Ca

√
2

3

[√
1 + z cos

(
1

3
arccos

(1− 3z/2)

(1 + z)3/2

)
− 1

]
, (3.14)

where to simplify the expression we defined

z =
9E1d

2

8EC2a2
. (3.15)

This expression gives the smallest possible minimum distance of approach of the propa-

gating ion with the row for a given energy E, i.e. rmin > rc(E) and, since the potential U(r)

decreases monotonically with increasing r,

U(rmin) < U(rc(E)). (3.16)

Using Eq. 3.12, this can be further translated into an upper bound on E⊥ and on ψ, the

angle the ion makes with the string far away from it,

ψ < ψc(E) =

√
U(rc(E))− U(dach/2)

E
. (3.17)

ψc(E) is the maximum angle the ion can make with the string far away from it (i.e. in

the middle of the channel) if the ion is channeled. When U(dach/2) can be neglected, i.e.

when rc(E) < dach/2, the limiting values of ψc(E) (as already proven by Lindhard [23])

are ψc(E) ≃ ψ1 (see Eq. 3.2) for large E (z ≪ 1, typically close to MeV and larger) and

ψc(E) ≃ ψ2 at low E (z ≫ 1, typically smaller than a few 100 keV), where

ψ2 =

√
Caψ1

d
√
2
. (3.18)

One can easily see that the critical distance rc becomes rc ≃ d ψ1/2
√
2 for large E and

rc ≃ d ψ2 for small E.

The critical distance rc(E) increases as E decreases. At low enough E, rc(E) becomes

close to dach/2, and the critical angle ψc(E), the maximum angle for channeling in the

middle of the channel, goes to zero. This means that there is a minimum energy below

which channeling cannot happen, even for ions moving initially in the middle of the channel.
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This is a reflection of the fact that the range of the interaction between ion and lattice

atoms increases with decreasing energy and at some point there is no position in the crystal

where the ion would not be deflected at large angles. The existence of a minimum energy for

channeling was found by Rozhkov and Dyuldya [66] in 1984 and later by Hobler [7, 49] in

1996. It is clear that to compute rc(E) when it is not small with respect to dach/2, and thus

to compute the actual minimum energy for channeling, we would need to consider the effect

of more than one row or plane (as done in Refs. [7, 49, 66]), thus our results are approximate

in this case.

For planar channeling we will follow the definition of fictitious row in Morgan and Van

Vliet [59, 7]. They reduced the problem of scattering from a plane of atoms to the scattering

of an equivalent row of atoms contained in a strip of width 2R (R is defined below) centered

on the projection of the ion path on the plane of atoms, and took the average area per atom

in the plane to be 2R times the characteristic distance d̄ between atoms along this fictitious

row,

d̄ = 1/(Ndpch2R). (3.19)

Once the width 2R of the fictitious row is specified, one uses the channeling condition for

the continuum string model, Eq. 3.6, with an average atomic composition of the plane. For

R, Morgan and Van Vliet used the impact parameter in an ion-atom collision corresponding

to a deflection of the order of the break-through angle
√
Up(0)/E. This is the deflection

necessary for an ion of energy E approaching the plane from far away (so that the initial

potential can be neglected) to overcome the potential barrier at the center of the plane at

x = 0 (namely so that E⊥ = Up(0)). Using the Moliere approximation for the screened

potential (which we do not use in this chapter), Morgan and Van Vliet found for d̄

d̄MV =

[
A aNdpch ln

(
B Z1Z2e

2/a
√
EUp(0)

)]−1

, (3.20)

with coefficientsA = 1.2 andB = 4. However, Morgan and Van Vliet [59] found discrepancies

with this theoretical formula in simulations of binary collisions of 20 keV protons in a copper

crystal and adjusted the coefficients to A = 3.6 and B = 2.5. Hobler [7] used both sets of

coefficients and compared them with simulations and data of B and P in Si for energies of
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about 1 keV and above. Hobler concluded that the original theoretical formula was better

in his case. In any case, Hobler proposed yet another empirical relation to define d̄.

In the absence of simulations for NaI, we are going to use an upper bound on R, given

by the average interdistance of atoms in the plane, 2R < dp = 1/
√
Ndpch, so that replacing

the maximum value of R in Eq. 3.19 we find that the minimum value of d̄ is the average

interdistance of atoms in the plane, dp

d̄min = dp. (3.21)

Thus, for planar channeling, we use the condition in Eq. 3.6 for a fictitious string, re-

placing the distance d by the distance dp and replacing the composition of the string for

the average composition of the plane. Let us call r̄c(E) the critical distance obtained from

Eq. 3.14 for this fictitious string, then the minimum distance of approach for planar chan-

neling is

xc(E) ≡ r̄c(E). (3.22)

The use of d̄ = dp yields a lower bound on xc, as shown in Fig. 3.2 (and thus an upper bound

on the fraction of channeled recoils as explained later). Fig. 3.2 shows the planar critical

distances of approach xc (Eq. 3.22) using the theoretical (with coefficients A = 1.2 and

B = 4) and adjusted (with coefficients A = 3.6 and B = 2.5) Morgan-Van Vliet expressions

for d̄ in Eq. 3.20. Our choice of xc, with d̄ in Eq. 3.21 is also plotted in Fig. 3.2. We can see

that it is lower than the others.

Writing equations equivalent to Eq. 3.12 and 3.16 for planar channels, namely

E⊥ = U(xmin) = E(ψp)2 + Up(dpch/2), (3.23)

and

Up(xmin) < Up(xc(E)), (3.24)

we obtain an equation similar to Eq. 3.17 but for the maximum planar channeling angle,

ψp
c (E) =

√
Up(xc(E))− Up(dpch/2)

E
. (3.25)
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Figure 3.2: Comparison of planar critical distances of approach as given by the theoretical

(solid line) and adjusted (dashed line) Morgan-Van Vliet (label MV, green/gray) expressions

for d̄ and our choice (black) of xc, which we take as a lower bound, as function of the energy

for Na ions travelling in {100} planar channels. Also shown is the radius of the channel

dpch/2.

For very small energies, for which xc(E) ≥ dpch/2 no channeling is possible (the maximum

distance to any plane cannot be larger than half the width of the channel separating them).

When xc(E) approaches the middle of the channel the effect of other planes should be

considered, so our approximation of using the potential of only one plane is not correct in

this regime.

The static lattice critical distances are presented in left panel of Figs. 3.4 and 3.5 for the

100 and 111 axial and planar channels.

There is an alternative way of treating planar channels presented by Matyukhin [67] in

2008, but we have doubts about the validity of this method, for which we have not found

any comparison with either simulations or data. For completeness we present it in Appendix

C. It predicts larger channeling fractions.
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3.1.4 Temperature dependent critical distances and angles

So far we have been considering static strings and planes, but the atoms in a crystal are

actually vibrating. We use the Debye model in this dissertation to take into account the

zero point energy and thermal vibrations of the atoms in a crystal. The one dimensional

rms vibration amplitude u1 of the atoms in a crystal in this model is [33, 64]

u1(T ) = 12.1 Å

[(
Φ(Θ/T )

Θ/T
+

1

4

)
(MΘ)−1

]1/2
, (3.26)

where the 1/4 term accounts for the zero point energy, M is the atomic mass in amu, Θ

and T are the Debye temperature and the temperature of the crystal in K, respectively, and

Φ(x) is the Debye function,

Φ(x) =
1

x

∫ x

0

tdt

et − 1
. (3.27)

Eq. 3.26 was derived for monoatomic cubic crystals for which M is clearly specified. In the

case of crystals composed of more than one kind of atom, experiments have shown that the

difference of vibration amplitudes of both types is very small for T > Θ [68, 69], even when

the difference of atomic weights of the various kinds of atoms is large, as is the case for NaI.

Using as M the average mass

M = (MNa +MI)/2 (3.28)

produces an error of less than 10% in the actual vibration amplitudes at T > Θ [68, 69]. For

NaI, we take the Debye temperature to be Θ = 165 K [33, 70] (although it changes with T

between 169 K at a few K and 155 K at 300 K [71]). The crystals in the DAMA experiment

are at 20 ◦C, i.e. T = 293.15 K; MNa = 22.9 amu and MI = 126.9 amu, thus M = 74.9 amu.

The vibration amplitude u1 we get using this value of M is plotted in Fig. 3.3 as a function

of the temperature T . At room temperature (20 ◦C) it is u1 = 0.0146 nm which is similar

to the measured value of
√

⟨u21⟩ = 0.0145 nm [72], while measured separate values of
√

⟨u21⟩

for Na and I (always at room temperature) are 0.018 nm and 0.015 nm [73] respectively.

(To use the data in Ref. [73] we must take into account that the Debye-Waller factor B is

B = 8π2⟨u21⟩).

At low temperatures (T ≪ Θ) the individual vibration amplitudes become progressively
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Figure 3.3: Plot of u1(T ) for NaI (Eq. 3.26 with M = (MNa +MI)/2).

different [74, 75]. We are not taking this difference into account in our approach. However,

at these temperatures the channeling fractions become so small (as we show below) that a

better calculation is not important.

In principle there are modifications to the continuum potentials due to thermal effects,

but we are going to take into account thermal effects in the crystal through a modification

of the critical distances which was found originally by Morgan and Van Vliet [59] and later

by Hobler [7] to provide good agreement with simulations and data. For axial channels it

consists of taking the temperature corrected critical distance rc(T ) to be,

rc(T ) =
√
r2c (E) + [c1u1(T )]2, (3.29)

where the dimensionless factor c1 in different references is a number between 1 and 2 (see

e.g. Eq. 2.32 of Ref. [60] and Eq. 4.13 of Ref .[59]).

For planar channels the situation is more complicated, because some references give a

linear and other a quadratic relation between xc(T ) and u1. Following Hobler [7] we use an

equation similar to that for axial channels,

xc(T ) =
√
x2c(E) + [c2u1(T )]2, (3.30)
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Figure 3.6: Static and T corrected critical angles as a function of energy of Na recoil for

T=77.2 K, T=20 ◦C, and T=600 ◦C for (a) <100> axial and (b) {100} planar channels.

where again c2 is a number between 1 and 2 (for example Barret [40] finds c2 = 1.6 at high

energies, and Hobler [7] uses c2 = 2). We will mostly use c1 = c2 = 1 in the following, to try

to produce upper bounds on the channeling fractions.

Using the T -corrected critical distances rc(T ) and xc(T ) instead of the static lattice

critical distances rc and xc in Eqs. 3.14 and 3.22, we obtain the T -corrected critical axial

and planar angles.

The static axial and planar critical distances are presented in Figs. 3.4.a and 3.5.a for the

100 and 111 channels, respectively, together with the amplitude of thermal vibrations u1 at

20 ◦C. Figs. 3.4.b. and 3.5.b show the temperature corrected axial and planar critical angles

at 20 ◦C (with c1 = c2 = 1) for the same channels as functions of energy of the traveling Na

and I ions. We can clearly see in Fig. 3.5 that the critical angles become zero at low enough

energies (for which the critical distance of approach should be larger than the radius of the

channel) indicating the range of energies for which no channeling is possible. Figs. 3.6.a and

3.6.b show the static and T -corrected critical angles at several temperatures for traveling Na

ions in the 100 axial and planar channels respectively.

In Appendix E it is shown that the variation of the lattice size with temperature, charac-

terized by the variation of the lattice constant alat with temperature, has a negligible effect
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on the channeling fractions. This is why we ignore this effect (not only in this chapter but

also in the other chapters).

3.2 Channeling of incident particles

The channeling of ions in a crystal depends not only on the angle their initial trajectory

makes with strings or planes in the crystal, but also on their initial position. Ions which

start their motion close to the center of a channel, far from a string or plane, where they

make an angle ψ or ψp respectively, defined in Eqs. 3.12 and 3.23, are channeled if the angle

is smaller than a critical angle (as explain earlier) and are not channeled otherwise. Particles

which start their motion in the middle of a channel (as opposed to a lattice site) must be

incident upon the crystal (thus the title of this section).

Here we show that to a good approximation we can use analytic calculations and repro-

duce the channeling fraction in NaI presented in Ref. [5]. It must be noticed, however, that

in Ref. [5] the channeling fraction is computed as if the Na or I ions started their motion

already within a channel (in fact close to the middle of the channel, where they assume the

potential to be negligible), instead of starting from crystal lattice sites, as is the case in

direct dark matter detection. Thus these calculations do not apply to direct dark matter

detection experiments.

Ref. [5] considers only a static lattice (i.e. no temperature effects taken into account) and

the condition for axial channeling they use is ψ < ψ2 [23], where ψ2 is defined in Eq. 3.18.

The equivalent condition for planar channeling used in Ref. [5] is

ψp < θpl = a
√
Ndp

(
Z1Z2e

2/Ea
)1/3

. (3.31)

For an incident angle ψ with respect to each of the channels and an ion energy E, the

fraction χinc(E,ψ) of channeled incident ions for axial and planar channels is χinc = 1 if ψ

is smaller than the critical angle for the corresponding channel and zero otherwise. The NaI

structure and all the different channels are explained in Appendix A.1.

To find the total fraction Pinc of channeled incident nuclei, we average χinc over the
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Figure 3.7: Maximum distance xmax(E) traveled by channeled Na (green/gray) or I (black)

ions in mixed channels of a NaI crystal (<100> and <111> axial and {100} and {110}

planar channels).

incident direction q̂,

Pinc(E) =
1

4π

∫
χinc(E, q̂)dΩq. (3.32)

This integral cannot be solved analytically, so we integrated numerically by performing a

Riemann sum once the sphere of directions has been divided using a Hierarchical Equal Area

iso-Latitude Pixelization (HEALPix) [76] (see Appendix B).

A channeled ion can be pushed out of a channel by an interaction with an impurity such

as the atoms of Tl in NaI (Tl). The probability density for an ion to find an impurity after

propagating a distance x within the crystal is

p(x) =
1

λ
exp

(
−x
λ

)
, (3.33)

where λ is the average distance between the Tl atoms. We take for λ the value used by the

DAMA collaboration, i.e. λ = 120 nm [5], which according to Ref. [38] corresponds to a

molar concentration of 0.0013 Tl atoms for every Na atom.

Here we will simply assume that if a channeled ion interacts with a Tl atom it becomes

dechanneled and thus it does not contribute to the fully channeled fraction any longer. We
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thus neglect the possibility that after the interaction the ion may reenter into a channel,

either the same or another, as we also neglect the possibility that initially non-channeled

ions may be scattered into a channel. Both effects would increase somewhat the amount of

channeled ions, but we do not have an analytic method of including them in our calculation.

Thus the channeled fraction is simply reduced by the probability that the ion does not

interact with a Tl atom,

P ch(E) = exp

(
−xmax(E)

λ

)
Pinc(E). (3.34)

Here xmax(E) is the range of the propagating ion, i.e. the maximum distance a channeled ion

with initial energy E can propagate along the channel. Within the channel the ion looses

energy into electrons. We use the Lindhard-Scharff [77, 63] model of electronic energy loss,

valid for energies E < (M1/2)Z
4/3
1 v20, where v0 = e2/h̄ = 2.2 × 108 cm/sec is the Bohr’s

velocity [23]. M1 and Z1 are the mass and charge of the propagating ion. This model is

valid for E < 14.3 MeV for Na and E < 646.4 MeV for I in NaI. In this model the energy

E(x) as a function of the propagated distance x and the initial energy E is the solution of

the following energy loss equation [63]

−dE
dx

= Kv, (3.35)

where v =
√

2E/M1 is the ion velocity and K is the function

K =
ξe8πe

2Na0Z1Z2(
Z

2
3
1 + Z

2
3
2

) 3
2

v0

. (3.36)

Here ξe is a dimensionless constant of the order of Z
1
6
1 [63], N is the number of atomic centers

per unit volume and a0 ≃ 0.53 Å is the Bohr radius of the hydrogen atom. Explicitly, an

ion with initial energy E at x = 0 has energy

E(x) = E

(
1− x

xmax

)2

(3.37)

after traveling a distance x. The range of the propagating ion is

xmax(E) =

√
2M1ER

K
. (3.38)
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Figure 3.8: (a) Channeling fraction for a 50 keV Na ion in different directions plotted on

a sphere using the HEALPix pixelization: probability equal to one in red, and probability

equal to zero in blue. (b) Fraction of channeled incident I (black) and Na (green/gray) ions

as a function of their incident energy E with the static lattice without (dot dashed lines)

and with (solid lines) dechanneling due to interactions with Tl impurities. The results of

DAMA are also included (dashed lines).

Fig. 3.7 shows the maximum distance xmax traveled by channeled Na or I ions in mixed

channels of an NaI crystal (<100> and <111> axial and {100} and {110} planar channels).

The average distance λ between Tl atoms is also shown.

Fig. 3.8.a shows the axial and planar channels of the NaI crystal in the HEALPix pix-

elization of the sphere for incoming Na ions with an energy of 50 keV: red points indicate a

channeling probability of 1 (when the incident angle is smaller than the critical angle with

respect to any axial or planar channel) and blue points indicate a channeling probability

of zero (when the incident angle is larger than the critical angle). We include here only

the channels with lower crystallographic indices, i.e. 100, 110 and 111, which provide the

dominant contribution to the channeling fraction, as is also done in Ref. [5]. Fig. 3.8.b shows

the fraction of incident I (black lines) or Na (green/gray lines) ions as a function of their

incident energy E using the static lattice (solid lines). For comparison, Fig. 3.8.b also shows

the channeling fraction obtained by DAMA (dashed lines). Good agreement with the chan-
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neling fractions of DAMA is achieved only when dechanneling due to the interaction with

Tl impurities is included.

3.3 Channeling of recoiling lattice nuclei

The recoiling nuclei start initially from lattice sites (or very close to them), thus blocking

effects are important. In fact, as argued originally by Lindhard [23], in a perfect lattice

and in the absence of energy-loss processes the probability that a particle starting from a

lattice site is channeled would be zero. The argument uses statistical mechanics in which

the probability of particle paths related by time-reversal is the same. For example, in optics

if a source of radiation and a point of observation are interchanged, the intensity of the light

measured at the new place of observation is the same as the old. Thus the probability of an

incoming ion to have a particular path within the crystal is the same as the probability of

the same ion to move backwards along the same path [33]. This is what Lindhard called the

“Rule of Reversibility.”

Using this rule, since the probability of an incoming channeled ion to get very close to

a lattice site is zero (otherwise it would suffer a large angle scattering and it would not be

channeled), the probability of the same ion to move in the time-reversed path, starting at a

nuclear site and ending inside a channel, is zero too. However, any departure of the actual

lattice from a perfect lattice, for example due to vibrations of the atoms in the lattice, would

violate the conditions of this argument and allow for some of the recoiling lattice nuclei to

be channeled.

The channeling of particles emitted at lattice sites due to lattice vibrations, such as

protons scattered at large angles, was measured and already understood in the 70’s. Komaki

et al. [78] in a 1971 paper titled “Channeling Effects in the Blocking Phenomena” observed

channeling of protons scattered at large angles within thin Si and Ge crystals and explained

it as due to the fact that the scattering or emitting lattice atom is not exactly at the lattice

site because of thermal vibrations.” They fit their data using the model presented by Komaki

and Fujimoto [62] one year earlier.
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We now estimate the channeling fractions in NaI (Tl) using the formalism presented so

far.

3.3.1 Channeling fraction for each channel

We need to know how probable it is for the recoiling nucleus to be at a particular distance r

from its equilibrium position in a crystal row when it collides with a WIMP. The probability

distribution function g(r) of the perpendicular distance to the row of the colliding atom

due to thermal vibrations can be represented by a two-dimensional Gaussian (as done by

Lindhard and many others [33], the relevant vibrations being in the plane orthogonal to the

row),

g(r) =
r

u21
exp (−r2/2u21). (3.39)

The one dimensional vibration amplitude u1 is given in Eq. 3.26.

The channeled fraction χaxial(E, q̂) of nuclei with recoil energy E moving initially in the

direction q̂ making an angle ϕ with respect to the axis is given by the fraction of nuclei

which can be found at a distance r larger than a minimum distance ri,min from the row at

the moment of collision, determined by the critical distance of approach as shown in the

next subsection,

χaxial(E, ϕ) =

∫ ∞

ri,min

drg(r) = exp (−r2i,min/2u
2
1). (3.40)

Note that here we are approximating the upper limit of the integral of g(r) with ∞, instead

of the radius of the axial channel dach/2. This is a good approximation because dach/2 ≃ 10a

or more and the integral is dominated by the values of g(r) close to u1 ≪ 2a.

If ϕ > ψc no channeling can occur and χaxial(E, ϕ) = 0. This can easily be seen from

Eqs. 3.8, 3.11, 3.12 and 3.16, taking into account that U(ri + d tanϕ) ≥ U(rc).

For a planar channel, the Gaussian thermal distribution for the planar potential is one-

dimensional (the relevant vibrations occurring perpendicularly to the plane),

g(x) = (2πu21)
−1/2 exp(−x2/2u21). (3.41)

This is normalized to 1 for −∞ < x < +∞. In our calculations we only consider positive
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values of x for each plane, thus we multiply g(x) by a factor of 2 to find the fraction of

channeled nuclei for a planar channel,

χplanar(E, ϕ) =

∫ ∞

xi,min

2g(x)dx =
2√
π

∫ ∞

xi,min

e(−x2/2u2
1)

√
2u1

dx = erfc

(
xi,min√
2u1

)
. (3.42)

Here ϕ is the angle q̂ makes with the plane, defined as the complementary angle to the angle

between q̂ and the normal to the plane, or as the smallest angle between q̂ and vectors lying

on the plane. Similar to the axial case, we approximate the upper limit of the integral of g(x)

with ∞, instead of the radius of the planar channel dpch/2. This is a good approximation

because dpch/2 ≃ 10u1 or more, and erfc[dpch/(2
√
2u1)] is negligible. Also in this case,

χplanar(E, ϕ) = 0 if ϕ is larger than the critical channeling angle of the particular channel,

i.e. if ϕ > ψp
c .

We conclude this subsection by noticing an important point. In Eq. 3.40, ri,min, which

is a function of rc(T ), enters exponentially. Thus any uncertainty in our modeling of rc(T )

becomes exponentially enhanced in the channeling fraction. The same happens with the

dependence of the channeling fraction in Eq. 3.42 on xi,min, which depends on xc(T ). This

is the major difficulty of the analytical approach we are following.

3.3.2 Minimum initial distance of the recoiling lattice nucleus

For axial channels, using Eqs. 3.8, 3.11, 3.12 and 3.16, we can write the condition for chan-

neling as

E sin2 ϕ+ U(ri + d tanϕ) = U(rmin) < U(rc(E)). (3.43)

Therefore, the minimum initial distance ri,min is the solution of the equation

U(ri,min + d tanϕ) = U(rc(E))− E sin2 ϕ. (3.44)

Inverting the function U(r) we obtain

ri,min(E, ϕ) + d tanϕ = U−1[U(rc(E))− E sin2 ϕ]. (3.45)

The inverse of Lindhard’s potential function U(r) is

U−1(r) =
Ca√

e2r/E1 − 1
, (3.46)
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Figure 3.9: Upper bounds to the channeling fractions of Na recoils for single planar

(green/gray lines) and axial (black lines) channels, as function of the recoil energy E, for

T= 293 K and c1 = c2 = 1, without including dechanneling. Two additional channels not

included in the total channeling fractions are also shown: axial [211] (brown line) and planar

(210) (cyan line).

which together with the expression for rc(E) in Eq. 3.14 yields a fully analytic expression

for ri,min(E, ϕ),

ri,min(E, ϕ) =
Ca√(

1 + C2a2

r2c

)
exp
(
−2 sin2 ϕ/ψ2

1

)
− 1

− d tanϕ. (3.47)

Applying the same arguments to planar channels, we have

U(xi,min + dp tanϕ) = U(xc(E))− E sin2 ϕ. (3.48)

For Lindhard’s potential, the minimum initial distance is given by

xi,min(E, ϕ) =
a

2

C2 −
[√

x2
c

a2
+ C2 − xc

a
− sin2 ϕ/ψ2

a

]2
[√

x2
c

a2
+ C2 − xc

a
− sin2 ϕ/ψ2

a

] − dp tanϕ. (3.49)

Here, xc(E) is found in Eq. 3.22.
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Figure 3.10: Channeling probability χrec(E, q̂) (Eq. 3.51) for a 200 keV recoil of (a) an Na

ion and (b) an I ion at 20 ◦C with c1 = c2 = 1 and neglecting dechannneling. The probability

is computed for each direction and plotted on a sphere using the HEALPix pixelization. The

red, pink, dark blue and light blue colors indicate a channeling probability of 1, 0.625, 0.25

and zero, respectively.

Fig. 3.9 shows upper bounds to the channeling fractions of Na recoils for individual chan-

nels with c1 = c2 = 1 and T= 293 K, without including dechanneling. The black and green

(or gray) lines correspond to single axial and planar channels respectively. Two additional

channels not included in the total channeling fractions are also shown for comparison: the

axial [211] (brown line) and the planar (210) (cyan line) channels. The upper bounds of

channeling fractions for planar channels are more generous than those of axial channels be-

cause of our choice of xc in Eq. 3.22. This does not mean that planar channels are dominant

in the actual channeling fractions.

3.3.3 Total geometric channeling fraction

The geometric channeling fraction is the fraction of recoiling ions that propagate in the 1st,

or 2nd, or . . . or 26th channel. Here “geometric” refers to assuming that the distribution

of recoil directions is isotropic. In reality, in a dark matter direct detection experiment,

the distribution of recoil directions is expected to be peaked in the direction of the average

32



WIMP flow. For comparison with previous work of others, here we examine this geometric

channeling fractions.

We include only the channels with lowest crystallographic indices, i.e. 100, 110 and 111,

which are in total 26 axial and planar channels, as explained in Appendix A.1. We have

also checked other axial and planar channels, such as the [211] and (210) channels shown in

Fig. 3.9, and found that their contribution to the channeling fractions is negligible (additional

planar channels are always less important than the planar channels we keep and the same

happens for axial channels).

The probability χrec(E, q̂) that an ion with initial energy E is channeled in a given

direction q̂ is the probability that the recoiling ion enters any of the available channels. We

compute it using a recursion of the addition rule in probability theory over all axial and

planar channels:

P (A1 or A2) = P (A1) + P (A2)− P (A1)P (A2).

P (A1 or A2 or A3) = P (A1 or A2) + P (A3)− P (A1 or A2)P (A3). (3.50)

We continue this recursive computation until we find the probability with which the recoiling

ion goes into any of the 26 channels

χrec(E, q̂) = P (A1 orA2 or . . . or A26). (3.51)

For each channel Ak (k = 1, . . . , 26), P (Ak) = χaxial−k(E, ϕk) or P (Ak) = χplanar−k(E, ϕk)

for an axial or planar channel, respectively. Notice that P (Ak) ̸= 0 only for the channels for

which ϕk < (ψc)k, i.e. for which the angle that q̂ makes with the axis or plane of the channel,

respectively, is smaller than the critical angle for the channel.

Here we are treating channeling along different channels as independent events, so that

the conditional probabilities coincide with the non-conditional probabilities, e.g. P (A1|A2) =

P (A1). This is correct for different axial channels, which never overlap, and a good approxi-

mation for different planar channels. However, axial channels happen at the crossing of two

or more planar channels, thus channeling into axial and planar channels may not be entirely
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Figure 3.11: Upper bounds to the channeling fraction of Na and I recoils as a function of the

recoil energy E for T=600 ◦C (green/light gray), 293 K (black), and 77.2 K (orange/dark

gray) in the approximation of c1 = c2 = 1, (a) without and (b) with dechanneling as in

Eq. 3.34.

independent. We prove in Appendix D that considering them as independent is, however, a

good approximation.

Fig. 3.10 shows the channeling probability for an E = 200 keV recoil of Na (left panel)

or I (right panel) at 20 ◦C with c1 = c2 = 1 and neglecting dechanneling, computed for

each direction q̂ and plotted on a sphere using the HEALPix pixelization. The red, pink,

dark blue and light blue colors indicate a channeling probability of 1, 0.625, 0.25 and zero,

respectively.

To obtain the geometrical channeling fraction, we average the channeling probability

χrec(E, q̂) over the directions q̂, assuming an isotropic distribution of the initial recoiling

directions q̂,

Prec(E) =
1

4π

∫
χrec(E, q̂)dΩq. (3.52)

This integral is computed using HEALPix [76] (see Appendix B).

The channeling fraction as a function of recoil energy is shown in Figs. 3.11 and 3.12 with

c1 = c2 = 1 and c1 = c2 = 2, respectively. These curves include thermal effects in the lattice

at various crystal temperatures, and are shown without (left panels) and with (right panels)
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Figure 3.12: Same as Fig. 3.11 but for c1 = c2 = 2.
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Figure 3.13: Same as Fig. 3.11 but for c1 = c2 = 0 (static lattice), provided as an upper

bound with respect to any non-zero values of c1 and c2.
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dechanneling according to Eq. 3.34. Note that the dechanneling as included here is possibly

too extreme, since it does not allow for the possibility of an ion reentering a channel (the

original or another one) after a collision with a Tl impurity.

Notice that while the effect of increasing temperatures on the initial position of the

recoiling nucleus makes the channeling fractions larger (the recoiling nucleus can be initially

further out from the string, i.e. u1 in Eqs. 3.40 and 3.42 increases), the effect of increasing

temperatures on the other lattice atoms is to increase the critical distances, which makes the

channeling fractions smaller (ri,min and xi,min in Eqs. 3.40 and 3.42 increase). Figs. 3.11 and

3.12 show that in our calculations for NaI (Tl) the first effect is almost always dominant,

except that for c1 = c2 = 2 at some energies the temperature effects in the lattice are larger

(see the left panel of Fig. 3.12, where some fractions are smaller at higher temperatures).

Neglecting the temperature effects in the lattice, by setting c1 = c2 = 0, but including the

thermal vibrations of the nucleus that is going to recoil, we obtain the largest estimates for

the channeling fractions. Although it is physically inconsistent to take only the temperature

effects on the initial position of the recoiling nuclei but not on the lattice, this was done by

Lindhard [23] and Andersen [57] early on, and we do it here because it provides the most

generous upper bound on the channeling fraction (any non-zero value of c1 or c2 would lead

to smaller fractions).

Fig. 3.14.a shows what we consider to be our main predictions for the range expected as

an upper limit to the channeling fraction in NaI (Tl), if dechanneling is ignored. Fig. 3.14.b

shows the channeling fraction reduced by dechanneling. As we see in Fig. 3.14.a, neglecting

interactions with Tl atoms, the channeling fraction is never larger than 5% and the maximum

happens at 100’s of keV. This maximum occurs because the critical distances decrease with

the ion energy E, making channeling more probable, and the critical angles also decrease

with E, making channeling less probable. With dechanneling, the probability that the

channeled ion does not interact with a Tl atom decreases with energy (since more energetic

ions propagate further within channels). Thus, interactions with Tl atoms decrease the

channeling fraction at high energies. The simple extreme model of dechanneling we use

predicts much smaller fractions, at most in the 0.1% level, with the maximum shifted to
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Figure 3.14: Channeling fractions at T=293 K for Na (solid lines) and I (dashed lines) ions

for c = c1 = c2 = 1 (black) and c = c1 = c2 = 2 (green/gray) cases (a) without and (b) with

dechanneling included as in Eq. 3.34.

small energies, less than 10 keV (see Fig. 3.14.b). This reduction may eventually prove to

be too extreme and at present we do not have a better formalism to model dechanneling.
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CHAPTER 4

Channeling fraction in Si and Ge crystals

Si and Ge crystals are used in several direct dark matter detection experiments, such as

CDMS [16], CoGeNT [2, 17], EDELWEISS [18], TEXONO [79], EURECA [80], HDMS [81]

and IGEX [82]. In Chapter 3 we introduced the general ideas and analytic models [23, 63, 33,

57, 58, 59, 60, 61, 62, 64, 7] that we use to describe these phenomena in the context of dark

matter detection, and applied them to NaI (Tl). Besides the different crystal structure (see

Appendix A.2) for Si and Ge, in this chapter we use a different expression for the continuum

potentials (see Eqs. 4.1 to 4.4), which leads to a different expression for the critical channeling

distance for axial channels (see Eq. 4.8). We also use a different way of deriving the critical

distance for planar channels (see Eqs. 4.10 to 4.13).

4.1 Models of Channeling

4.1.1 Continuum potentials

Except when said otherwise, in this chapter we use Molière’s approximation for the screened

potential, following the work of Hobler [7] and Morgan and Van Vliet [58, 59, 60]. Molière’s

approximations of the continuum potentials are more complicated and also somewhat better

than Lindhard’s expressions, which we used in Chapter 3 devoted to NaI. Lindhard’s expres-

sions are easier to manipulate algebraically to obtain different quantities of interest. Still in

this chapter we use some expressions derived from Lindhard’s form of the potentials.

In Molière’s approximation [33] the axial continuum potential, as a function of the trans-
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verse distance r to the string, is

UMol(r) =
(
2Z1Z2e

2/d
)
f(r/a) = Eψ2

1f(r/a), (4.1)

where E is the energy of the propagating particle and ψ1 is a dimensionless parameter defined

in Eq. 3.2. Molière’s screening function [33] for the continuum potential is

f(ξ) =
3∑

i=1

αiK0(βiξ). (4.2)

Here K0 is the zero-order modified Bessel function of the second kind, and the dimensionless

coefficients αi and βi are αi = {0.1, 0.55, 0.35} and βi = {6.0, 1.2, 0.3} [83], for i = 1, 2, 3.

The string of crystal atoms is at r = 0.

The continuum planar potential in Molière’s approximation [33], as a function of the

distance x perpendicular to the plane, is

UMol,p(x) =
(
2πnZ1Z2e

2a
)
fp(x/a) = Eψ2

afp(x/a). (4.3)

The subscript p denotes “planar”. The dimensionless parameter ψa is defined in Eq. 3.5,

and

fp(ξ) =
3∑

i=1

(αi/βi) exp(−βiξ), (4.4)

where the coefficients αi and βi are the same as above. The plane is at x = 0.

Examples of axial and planar continuum potentials for a Si ion propagating in a Si crystal

and a Ge ion propagating in a Ge crystal are shown in Fig. 4.1.

4.1.2 Minimum distances of approach and critical channeling angles

As explained in Section 3.1.3, we can define the minimum distance of approach to the string,

rmin (or to the plane of atoms xmin), and the angle ψ at which the ion exits from the string

(or plane), i.e. far away from it where U ≃ 0 using the conservation of the transverse energy.

Thus, for an axial channel

E⊥ = UMol(rmin) = Eψ2 + UMol(dach/2). (4.5)
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Figure 4.1: Continuum axial (black) and planar (green/gray) potentials for (a) Si and (b)

Ge ions, propagating in the <100> axial and {100} planar channels of a Si or Ge crys-

tal respectively. The screening radii shown as vertical lines are aSiSi = 0.01225 nm and

aGeGe = 0.009296 nm (see Appendix A.2).

We proceeded in two ways to define the axial channel radius (dach/2) for the axial channels

we included in our calculation. We used the contour plots of the axial continuum potentials

plotted in a plane perpendicular to the channels shown in Fig. 3 of the paper of Hobler [7]

to read off the channel radius dach/2 of the <100>, <110> and <111> axial channels in

terms of the lattice constant alat. They are 0.25 alat, 0.375 alat, and
√
0.22 + 0.122 alat =

0.233 alat, respectively. For the other axial channels we considered, <211> and <311>, we

define the channel width dach in terms of the interatomic distance d in the corresponding

row as dach = 1/
√
Nd. For a planar channel we replace the axial potential at the middle of

the axial channel UMol(dach/2) in Eq. 4.5 by the planar potential at the middle of the planar

channel UMol,p(dpch/2) (the channel width dpch was defined after Eq. 3.5).

For axial channeling Lindhard equates the condition for channeling with the condition

in Eq. 3.6 for the validity of the continuum model. Replacing the inequality in Eq. 3.6 by

an equality defines an energy dependent critical distance rc, so that channeling can happen

only if the propagating ion always keeps a distance r > rc. Morgan and Van Vliet [59] use

5 instead of 8 in Eq. 3.6, because this agrees better with their simulations of channeling in

copper crystals. Following Hobler [7], we use here Morgan and Van Vliet’s equation to define
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Figure 4.2: Comparison of the exact numerical solution (solid black) of Eq. 4.6 for the critical

distance of approach rc(E) and the approximate analytic expression in Eq. 4.8 (dashed green)

as a function of
√
α =

√
Z1Z2e2d/a2E for (a) the high

√
α (low energy) range, and (b) the

low
√
α (high energy) range. The Morgan and Van Vliet approximation to rc(E) in Eq. 4.7

is also shown (solid red- labeled MV).

rc, i.e.

U ′′
Mol(rc) =

5

d2
E. (4.6)

With Molière’s form of the potential it is not possible to solve analytically for rc. Morgan

and Van Vliet [59] gave the following approximate analytical solution for the axial channeling

minimum distance of approach,

rMV
c = (2/3)a

√
α
[
1− (

√
α/19) + (α/700)

]
(4.7)

with α = (Z1Z2e
2d/a2E). This solution is not correct at low energies (high values of α).

As can be seen in Fig. 4.2 (and also in Figs. 8 and 13 of the paper of Hobler [7]) the steep

increase in the approximate Morgan and Van Vliet solution at low energies (see the curve

labeled “MV” in Fig. 4.2.a) is not present in the numerical solution (see the curve labeled

“Exact” in Fig. 4.2.a) of rc. Instead of Eq. 4.7 we use here a better approximate analytic
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solution obtained by fitting a degree nine polynomial to the exact solution of Eq. 4.6,

rMol
c = a [0.57305

√
α− 0.0220301(

√
α)2 + 0.000728889(

√
α)3

−0.0000155189(
√
α)4 + 2.04162× 10−7(

√
α)5 − 1.65057× 10−9(

√
α)6

+7.9749× 10−12(
√
α)7 − 2.11041× 10−14(

√
α)8

+2.35121× 10−17(
√
α)9]. (4.8)

Eq. 4.8 is valid from E of 1 keV to 29 TeV ( which corresponds to values of
√
α between 180

and 0.000158). Fig. 4.2 shows a comparison of the exact numerical solution rc(E) of Eq. 4.6

and the approximate analytic solution Eq. 4.8 as a function of
√
α (divided by the screening

distance a). The high and low
√
α range in Figs. 4.2.a and 4.2.b respectively corresponds to

low and high energies. The maximum percentage error between the exact solution and the

analytic approximation we use is 11.5 %.

Fig. 4.3 shows the critical distance of approach rMol
c (E) in Eq. 4.8 as a function of energy

of the propagating ion for several axial channels, for Si ions propagating in a Si crystal and

Ge ions propagating in a Ge crystal.

As explained in Section 3.1.3 and using Eqs. 4.5 and 4.8, we can find the critical channeling

angle ψMol
c (E) for the particular axial channel,

ψ < ψMol
c (E) =

√
UMol(rMol

c (E))− UMol(dach/2)

E
. (4.9)

The critical distance rMol
c (E) increases as E decreases (see Figs. 4.3, 4.5 and 4.7 to 4.13).

At low enough E, rMol
c (E) becomes close to the radius of the channel dach/2, and the critical

angle ψMol
c (E) goes to zero (see Figs. 4.7 to 4.10 and 4.14, 4.15).

For planar channeling we will follow the procedure of defining a fictitious row introduced

by Morgan and Van Vliet [59, 7] as explained in Section 3.1.3. The characteristic distance

between atoms along the fictitious row is d̄ = 1/(Ndpch2R) (Eq. 3.19), where 2R is the width

of a strip containing the equivalent row of atoms. For R, Morgan and Van Vliet used the

impact parameter in an ion-atom collision corresponding to a deflection angle of the order

of the break-through angle. For small scattering angles, the deflection angle δ is related to
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Figure 4.3: Critical channeling distance of approach rMol
c (E) = rc in Eq. 4.8 as a function of

energy of the propagating ion for several axial channels, for (a) Si ions propagating in a Si

crystal and (b) Ge ions propagating in a Ge crystal.

the impact parameter, in this case R, as (see e.g. Eq. 2.1′ of Lindhard [23])

2Eδ = −d U ′
Mol(R), (4.10)

where U ′
Mol is the derivative of the axial continuum potential, and Morgan and Van Vliet

define R by taking δ =
√
UMol,p(0)/E. Using the Molière’s approximation for the potentials,

Morgan and Van Vliet found the following expressions for R

RMV = a

(
A

2

)
ln

(
B Z1Z2e

2/a
√
EUMol,p(0)

)
, (4.11)

with coefficients A = 1.2 and B = 4. This leads to the d̄MV value given in Eq. 3.20.

While Eq. 4.10 seems to provide a good condition for R, there is a channel dependent

energy upper limit of applicability of its approximate analytical solution in Eq. 3.20, because

the logarithm in d̄MV approaches zero as E approaches (4Z1Z2e
2/a)2/UMol,p(0). Close to this

value of E there is an unphysical fast increase in d̄MV (and consequently in xc(E)) that

indicates the break-down of the approximate solution d̄MV in Eq. 3.20 (and, as shown in

Fig. 13 of Hobler [7], is not found in other expressions of xc).

We decided to keep the Morgan and Van Vliet definition for R in Eq. 4.10 and use the

following approximate analytical solution obtained by fitting a degree five polynomial in ln y
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Figure 4.4: Comparison of the exact solution (solid black) of Eq. 4.10 for R/a and its ana-

lytical approximation in Eq. 4.12 (dashed green) as a function of y = Z1Z2e
2/a
√
EUMol,p(0)

for the (a) high y (low E) range and the (b) low y (high E) range. Also the Morgan and

Van Vliet approximation to R/a in Eq. 4.11 is shown (solid red- labeled MV).

to the exact numerical solution of Eq. 4.10

RMol = a
(
0.716014 + 0.510922 ln y + 0.12047(ln y)2 + 0.0180492(ln y)3

+0.00442459(ln y)4 − 0.000824744(ln y)5
)
, (4.12)

where y = Z1Z2e
2/a
√
EUMol,p(0).

Fig. 4.4 shows a comparison of the exact numerical solution of Eq. 4.10 for R and its

analytical approximation in Eq. 4.12 (divided by a) as a function of y. Also the approximate

expression of Morgan and Van Vliet in Eq. 3.20 is shown in Fig. 4.4 (labeled MV). The high

and low y ranges in Fig. 4.4.a and 4.4.b respectively corresponds to low and high energies.

The approximate solution is not valid at y < 0.15 which corresponds to E > 50 MeV for Si,

and E > 700 MeV for Ge. Within its range of validity, the percentage error of the analytic

approximation in Eq. 4.12 is less than 9%.

Let us call r̄Mol
c (E) the critical distance obtained from Eq. 4.8 for the fictitious row, whose

interatomic distance is d̄ = 1/(Ndpch2R
Mol) in which the distance RMol is given in Eq. 4.12.

Then, the minimum distance of approach for planar channeling is

xMol
c (E) ≡ r̄Mol

c (E). (4.13)
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Figure 4.5: Critical channeling distances xMol
c (E) = xc in Eq. 4.13 as a function of the energy

of the propagating ion for different planar channels, for (a) Si ions propagating in a Si crystal

and (b) Ge ions in Ge.

Fig. 4.5 shows the plot of xMol
c (E) (obtained from using Eq. 4.12 for the fictitious string) as

a function of energy for the most important planar channels, i.e. {100}, {110}, {111}, {210}

and {310}. Fig. 4.5 shows that we can safely extend our approximation to 50 MeV for Si

ions in a Si crystal and to 700 MeV for Ge ions in Ge crystals.

We can obtain an equation similar to Eq. 4.9 but for the critical planar channeling angle,

ψMol,p
c (E) =

√
UMol,p(xMol

c (E))− UMol,p(dpch/2)

E
. (4.14)

For very small energies, for which xMol
c (E) ≥ dpch/2 no channeling is possible and ψMol,p

c = 0

(see Figs. 4.5, 4.7 to 4.10 and 4.14.b, 4.15.b).

The static lattice critical distances presented in Figs 4.3 and 4.5 (also in the left panels

of Figs. 4.7, 4.8, 4.9 and 4.10) do not include thermal effects. These are important and must

be taken into account. They increase the critical channeling distances and consequently

decrease the critical channeling angles as the temperature increases (as clearly shown in

Fig. 4.12 and 4.13).
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Figure 4.6: Temperature dependent Debye model one dimensional rms vibration amplitude

u1(T ) (Eq. 3.26) of the atoms in (a) a Si crystal and (b) a Ge crystal. For comparison

the Thomas-Fermi screening distances for two Si atoms and two Ge atoms, aSiSi and aGeGe

respectively are also indicated (see Appendix A.2).

4.1.3 Temperature dependent critical distances and angles

As done in Section 3.1.4, we use the Debye model (see Eqs. 3.26 and 3.27) to take into

account the zero point energy and thermal vibrations of the atoms in a crystal. The Debye

temperatures of Ge and Si are respectively Θ = 290 ◦K and Θ = 490 ◦ K [33, 7]. The

vibration amplitude u1 as a function of the temperature T is plotted in Fig. 4.6 for Si and

Ge crystals. At room temperature (20 ◦C), u1 = 0.00849 nm for Ge and u1 = 0.00827 nm

for Si.

We take into account thermal effects in the crystal through a modification of the critical

distances (as explained in Section 3.1.4). The temperature corrected critical distances of

approach are

rMol
c (T ) =

√
[rMol

c (E)]2 + [c1u1(T )]2,

xMol
c (T ) =

√
[xMol

c (E)]2 + [c2u1(T )]2. (4.15)

Using rMol
c (T ) and xMol

c (T ) (Eq. 4.15) instead of the static lattice critical distances rMol
c

and xMol
c (Eqs. 4.8 and 4.13), in the definition of critical angles, Eqs. 4.9 and 4.14, we obtain

the temperature corrected critical axial and planar angles, examples of which are shown in
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Figure 4.7: (a) Static critical distances of approach (rMol
c = rc and xMol

c = xc) and Debye

one dimensional rms vibration amplitude u1 of the atoms in the crystal at 20 oC and (b)

critical channeling angles (ψMol
c = ψc) at 20

◦C with temperature effects computed assuming

c1 = c2 = c and c = 1 or c = 2 as indicated, as a function of the energy of propagating Si

ions in the <100> axial (black) and {100} planar (green/light gray) channels of a Si crystal.
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Figure 4.8: Same as in Fig. 4.7 but for the <110> axial and {110} planar channels of a Si

crystal.
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Figure 4.9: Same as in Fig. 4.7 but for Ge ions propagating in the <100> axial (black) and

{100} planar (green/light gray) channels of a Ge crystal.
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Figure 4.10: Same as in Fig. 4.9 but for the <110> axial and {110} planar channels.
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Figure 4.11: Comparison of theoretical (black lines) temperature corrected critical angles

ψMol
c = ψc (with c1 = c2 = 2) and measured critical angles at room temperature extracted

from thermal wave measurements [7] (green dots joined by straight lines to guide the eye)

as a function of the energy of (a) B ions and (b) P ions propagating in a Si crystal at T=20

◦C, for the indicated axial and planar channels.
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c = rc (and u1(T ) in red) and (b) the corresponding critical
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Figure 4.13: Same as Fig. 4.12 but using c1 = c2 = c = 2 in the temperature corrected

critical distances of approach.

the right panels of Figs. 4.7 to 4.10 (c1 = c2 = c and c = 1 or c = 2 at room temperature).

As shown in Fig. 4.11, with this formalism and using c1 = c2 = 2 we fit relatively well

the critical angles measured at room temperature for B and P ions in a Si crystal (shown in

green) in several channels, for energies between 20 keV and 600 keV that Hobler [7] extracted

from thermal wave measurements.

Figs. 4.12 and 4.13 show clearly the temperature effects in the critical distances and angles

for a specific channel, the <100> axial channel of a Si crystal and for a propagating Si ion.

At small energies the static critical distance of approach is much larger than the vibration

amplitude, so temperature corrections are not important. For small enough energies the

critical distance becomes larger than the radius of the channel indicating that nowhere in

the channel an ion can be far enough from the row of lattice atoms for channeling to take

place (thus the critical channeling angle is zero). The exact calculation of the energy at which

this happens would require considering the effect of more than a single row of atoms (which

we do not do here) thus our results at these low energies are only approximate. As the energy

increases, the static critical distance of approach decreases and when it becomes small with

respect to the vibration amplitude u1, the temperature corrected critical distance becomes

equal to (c1u1) which is larger for larger values of c1. When u1(T ) becomes important in

determining the critical distance, this becomes larger, and therefore the critical channeling
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Figure 4.14: Temperature corrected critical channeling angles ψMol
c = ψc for T=40 mK,

T=20 ◦C, T=600 ◦C, and T=900 ◦C as a function of the energy of a Si ion propagating in

the (a) <110> axial channels and (b) {110} planar channels of Si crystal.

angle become smaller, for higher temperatures.

Figs. 4.14 and 4.15 show how the critical channeling angles change with temperature

for four particular channels, the <110> and <100> axial and the {110} and {100} planar

channels, for Si ions in Si and Ge ions in Ge, respectively. In both cases the axial channeling

angles are larger than the planar critical angles. The <110> and {111} critical channeling

angles are the largest among the axial and planar channels respectively. For example, at

E = 200 keV for Si ions in Si, the channels with the largest channeling angles are (in order

of decreasing channeling angles): <110>, <100>, <211>, <111>, {111}, <311>, {110},

{100}, {310}, and {210}. We can clearly see that the critical angles become zero at low

enough energies indicating the range of energies for which no channeling is possible.

4.2 Penetration length of channeled ions

Fig. 4.16 shows the maximum distance, xmax(E) a channeled ion with initial energy E prop-

agates in a crystal channel, according to the Lindhard-Scharff [77, 63] model of electronic

energy loss, for a Si ion channeled in a Si crystal and a Ge ion in a Ge crystal. As explained

51



293 K

40 mK

600 °C

900 °C

1 10 100 1000 104

1.

5.

2.

3.

1.5

E HkeVL

Ψ
c
Hd

eg
L

<100> axial channel, Ge ions, c=1

293 K

40 mK

600 °C

900 °C

1 10 100 1000 104
0.1

1.

0.5

0.2

0.3

0.15

0.7

E HkeVL

Ψ
c
Hd

eg
L

8100< planar channel, Ge ions, c=1

Figure 4.15: Same as Fig. 4.14 but for a Ge ion propagating in the (a) <100> axial channels

and (b) {100} planar channels of a Ge crystal.

in Section 3.2, this model is valid for small enough energies, E < (M1/2)Z
4/3
1 v20 which is

E < 24.3 MeV for a Si ion propagating in a Si crystal and E < 188.7 MeV for a Ge ion

propagating in a Ge crystal. The range of the propagating ion, xmax(E) is given in Eq. 3.38.

Fig. 4.16 shows that even at energies of a few keV a channeled ion interacts with hundreds

of lattice atoms. The characteristic interdistance of atoms along the channels is the lattice

constant, i.e. approximately 0.5 nm for Si and Ge crystals (see Appendix A.2).

4.3 Channeling fractions

We use Eqs. 3.39 to 3.49 in Chapter 3 to compute the channeling fraction for each channel

in Si and Ge. In Section 3.3.2 we derived the analytic expressions for the minimum distances

ri,min and xi,min (given in Eq. 3.47, and 3.49, respectively) from Lindhard’s approximation

to the potential. In this Chapter we also use Eqs. 3.47 and 3.49 because it is not possible to

find similar analytic expressions using Molière’s approximation to the potentials (although

following Hobler we use Molière’s approximation to obtain the critical distances and angles).

We include in our calculation only the most important channels, the same considered by

Hobler [7]. These are the <100>, <110>, <111>, <211> and <311> axial channels and
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Figure 4.16: Maximum distance xmax(E) traveled by channeled Si ions in Si (black) or Ge

ions in Ge (green/gray).

Figure 4.17: Geometric channeling fraction χrec(E, q̂) including 74 channels (Eq. 4.16) for

each direction q̂ plotted using the HEALPix pixelization of a sphere, for (a) a 200 keV Si ion

recoil in a Si crystal, and (b) a 1 MeV Ge ion recoil in a Ge crystal, at 20 oC. Temperature

effects in the lattice were included with c1 = c2 = 1. The light green, light blue, dark blue,

pink, red, and yellow colors indicate a channeling fraction of 0.5, 0.013, 7.5× 10−4, 4× 10−5,

10−5 and zero, respectively.
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the {100}, {110}, {111}, {210} and {310} planar channels. These constitute a total of 74

channels, as explained in Appendix A.2.

The probability χrec(E, q̂) that an ion with initial energy E is channeled in a given

direction q̂ is the probability that the recoiling ion enters any of the available channels, i.e.

χrec(E, q̂) = P (A1 orA2 or . . . or A74). (4.16)

We compute this probability in the same way we did in Section 3.3.3, using a recursion of

the addition rule in probability theory and treating channeling along different channels as

independent (see in Appendix D that this is a good approximation).

Fig. 4.17 shows the channeling probability χrec(E, q̂) for a 200 keV recoiling Si ion in a

Si crystal and a 1 MeV Ge ion recoil in a Ge crystal, at 20 ◦C. Temperature effects were

included with c1 = c2 = 1. The probability is computed for each direction and plotted using

the HEALPix pixelization of a sphere. The light green, light blue, dark blue, pink, red, and

yellow colors indicate a channeling probability of 0.5, 0.013, 7.5× 10−4, 4× 10−5, 10−5 and

zero, respectively.

To obtain the geometric total channeling fraction, we use Eq. 3.52 in which the channeling

probability χrec(E, q̂) is averaged over the directions q̂, assuming an isotropic distribution

of the initial recoiling directions q̂.

Our results for the geometric total channeling fraction for Si ions in a Si crystal and Ge

ions in a Ge crystal are shown in Figs. 4.18, 4.19 and 4.20 for three different assumptions for

the effect of thermal vibrations in the lattice, which depend on the values of the parameters c1

and c2 used in the temperature corrected critical distances of approach rMol
c (T ) and xMol

c (T )

in Eq. 4.15.

We show the c1 = c2 = 1 choice in Fig. 4.19 and the c1 = c2 = 2 in Fig. 4.20. As the values

of c1 and c2 increase, also the minimal distances from row or planes at which propagating

ions must be to be channeled increase, thus the critical channeling angles decrease, which

makes the channeling fractions smaller. If the values of c1 and c2 found by Hobler [7] and by

us (see Fig. 4.11) to fit measured channeling angles for B and P ions propagating in Si apply

also to the propagation of Si ions in Si, then the case of c1 = c2 = 2 in Fig. 4.20 should be
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chosen and the channeling fractions would never be larger than 0.3%. With c1 = c2 = 1 the

channeling fractions reach about 1% and they increase with temperature. The unrealistic

case of c1 = c2 = 0 is shown in Fig 4.18 for different temperatures because it provides an

upper limit to the channeling fractions. In this case the channeling fractions reach a few %

and they increase with temperature.

As explained in Chapter 3, the channeling fraction χaxial, Eq. 3.40, or χplanar, Eq. 3.42

for axial and planar channels respectively, increases as u1(T ) increases. This is the effect

that dominates the temperature dependence in Figs. 4.18 and 4.19, in which the geometric

channeling fractions in Si and Ge increase with increasing temperature. However, ri,min,

Eq. 3.47 or xi,min, Eq. 3.49, increase with increasing critical distances and this decreases

the channeling fraction. The increase of the critical distances with temperature is more

accentuated for large values of c1 and c2. This can be seen in Fig. 4.20, in which c1 = c2 = 2

and some channeling fractions are larger at lower temperatures.

Please note that we have not considered the possibility of dechanneling of initially chan-

neled ions due to imperfections in the crystal. Any mechanism of dechanneling will decrease

the fractions obtained here.
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Figure 4.18: Channeling fractions of (a) Si and (b) Ge recoils in a Si and a Ge crystal

respectively, as a function of the ion energy for temperatures T=900 ◦C (orange or medium

gray), 600 ◦C (green or light gray), 293 K (black), and 44 mK (blue or dark gray) in the

approximation of c1 = c2 = 0 (“static lattice”). This is an upper bound with respect to

any non-zero values of c1 and c2. Temperature effect are included in the vibrations of the

colliding atom.
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Figure 4.19: Same as Fig. 4.18 but with c1 = c2 = 1.
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Figure 4.20: Same as Fig. 4.18 but with c1 = c2 = 2.
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CHAPTER 5

Channeling fraction in CsI crystals

In dark matter searches, CsI (Tl) crystals are used by the KIMS collaboration [84, 85]. In

this chapter we give upper bounds to the geometric channeling fraction of recoiling ions in

CsI crystals. We proceed in a similar manner as we did for NaI, a very similar crystal, in

Chapter 3. We use Lindhard’s expression for the transverse continuum string and plane

potentials, U(r) (given in Eq. 3.1) and Up(x) (given in Eq. 3.4) respectively, because it is

the simplest and allows to find analytical expressions for the quantities we need.

Examples of axial and planar continuum potentials for Cs ions propagating in the <100>

axial and {100} planar channels of a CsI crystal are shown in Fig. 5.1. The potentials for

Cs and I ions are practically identical, because ZCs ≃ ZI (see Appendix A.3).

For a static lattice, the critical distances of approach rc and xc are given in the Eqs. 3.14

and 3.22, expressions that were derived in Chapter 3. For planar channeling, the charac-

teristic distance d̄ between atoms along the fictitious row needs to be estimated using data

or simulations which are not available for a CsI crystal. As explained in Section 3.1.3, the

choice of d̄ equal to the average interdistance of atoms in the plane dp, i.e. d̄ = dp, yields a

lower bound on xc, which translates into an upper bound on the fraction of channeled recoils

into planar channels.

We use the temperature corrected critical distances of approach rc(T ) and xc(T ) (Eqs. 3.29

and 3.30) instead of the static lattice critical distances rc and xc. In the one dimensional

rms vibration amplitude u1 (Eq. 3.26 and 3.27), M for a compound is the average atomic

mass (in amu), i.e. for CsI, M = (MCs +MI)/2. With MCs = 132.9 amu and MI = 126.9

amu, thenM = 129.9 amu. We take the Debye temperature of CsI to be Θ = 125 K [33, 70].

Fig. 5.2 shows the plot of u1 in CsI as a function of the temperature T . The crystals in the

58



0.00 0.05 0.10 0.15 0.20
0

5

10

15

20

Distance HnmL

U
Hk

eV
L

100 Channel, Cs ions

aCs

Planar

Axial

Figure 5.1: Continuum axial (black) and planar (green/gray) potentials for Cs ions, propa-

gating in the <100> axial and {100} planar channels of a CsI crystal. The screening radius

shown as a vertical line is āCs = 0.007785 nm (see Appendix A.3).

KIMS experiment were kept at 0 ◦C in 2007 [86]. Currently the operating temperature of the

crystals is 20 ◦C [87]. The vibration amplitude is u1 = 0.0141 nm at 0 ◦C, and u1 = 0.0146

nm at 20 ◦C.

Using the temperature corrected critical distances of approach rc(T ) and xc(T ) (Eqs. 3.29

and 3.30) or the static lattice critical distances rc and xc (Eqs. 3.14 and 3.22), we obtain

the corresponding critical axial and planar channeling angles ψc (see Chapter 3 for details).

Examples are shown in Figs. 5.3 to 5.5, for c1 = c2 = c and c = 1 or c = 2 as indicated.

Fig. 5.3 clearly shows how the critical distances and angles change with temperature for

a Cs or I ion propagating in the <100> axial and {100} planar channels of a CsI crystal,

with temperature effects computed with c1 = c2 = c = 1. Notice that for the 100 channels,

the widths of axial and planar channels are the same, dach = dpch and rc = xc.

Fig. 5.4 shows the same effects for the <111> axial channel. In this channel, the critical

distance becomes larger than the radius of the channel at energies below a few keV, shown in

the figures, and thus the critical channeling angle is zero. Notice that for the 111 channels,
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Figure 5.2: Plot of u1(T ) for CsI (Eq. 3.26 with M = (MCs +MI)/2).
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Figure 5.3: Static (green) and temperature corrected with c1 = c2 = c = 1 (black) (a) critical

distances of approach (and u1(T ) in red) and (b) the corresponding critical channeling angles,

as a function of the energy of propagating Cs or I ions (they are practically the same for

both) in the < 100 > axial (black) and {100} planar (green) channels. Here dach = dpch.
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Figure 5.4: Same as Fig. 5.3 but for the <111> axial channel.
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Figure 5.5: Same as Fig. 5.3 but with c1 = c2 = c = 2.

the <111> axial and {111} planar channels do not have the same widths, dach ̸= dpch, and

we only show the critical distance and angles for the axial channel.

Figs. 5.5.a and 5.5.b show the static and T -corrected critical distances and angles repec-

tively at several temperatures for traveling Cs or I ions in the 100 axial and planar channels

with c1 = c2 = c = 2.

We use Eqs. 3.39 to 3.49 obtained in Chapter 3 to compute the channeling fraction for

each channel in CsI. In order to obtain the total geometric channeling fraction we need to

sum over all the individual channels we consider. Taking only the channels with lowest

crystallographic indices, 100, 110 and 111, we have a total of 26 axial and planar channels,
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as explained in Appendix A.3 (CsI and NaI have the same crystal structure).

Fig. 5.6 shows upper bounds to the channeling probability computed for each initial

recoil direction direction q̂ and plotted on a sphere using the HEALPix pixelization for (a) a

E = 200 keV and (b) a 1 MeV Cs ion at 20 ◦C with c1 = c2 = 1 assumed for the temperature

effects. The red, pink, dark blue and light blue colors indicate a channeling probability of 1,

0.625, 0.25 and zero, respectively. The results are practically identical for an I ion.

Fig. 5.7 shows upper bounds to the channeling fractions of Cs recoils for individual chan-

nels, for T = 20◦C and assuming c1 = c2 = 1. The black and green (or gray) lines correspond

to single axial and planar channels respectively. The upper bounds of the channeling frac-

tions of planar channels are more generous than those of axial channels because of our choice

of xc in Eq. 3.22. This does not mean that planar channels are dominant in the actual

channeling fractions.

Upper bounds to the geometric channeling fractions of Cs and I ions as function of the

recoil energy are shown in Figs. 5.8 and 5.9 with thermal effects taken into account with

c1 = c2 = 1 and c1 = c2 = 2, respectively.

Notice that we have not included here any dechanneling due to the presence of impurities

in the crystal (such as Tl atoms), which would decrease the channeling fractions presented.

As shown in Fig. 5.8, the channeling fraction for CsI (Tl) is never larger than 5% at 293 K

(with c1 = c2 = 1) and the maximum fraction happens at around 1 MeV. This is comparable

to the channeling fraction of Na (Tl) which is also never larger than 5%, but in the case

of Na (Tl) the maximum happens at 100’s of keV (see Fig. 3.11.a). For Si and Ge (with

c1 = c2 = 1) the channeling fractions reach about 1% and the maximum happens at 100’s of

keV for Si and at around 1 MeV for Ge (see Fig. 4.19). Fig. 5.9, shows that the maximum

channeling fraction for Cs or I recoils at 293 K would be below 0.5% if c1 = c2 = 2 instead.

However, since we do not know which are the correct values of the crucial parameters c1

and c2 for CsI, we could ask ourselves how the upper bounds on channeling fractions would

change if the values of these parameters would be smaller than 1. The values of c1 and c2

cannot be smaller than zero, thus Fig. 5.10 shows our most generous upper bounds on the
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Figure 5.6: Upper bounds on the channeling probability of a Cs ion (for an I ion the figure

would be practically identical ) as function of the initial recoil direction for a (a) 200 keV

and (b) 1 MeV recoil energy at 20 ◦C (with c1 = c2 = 1). The probability is computed

for each direction and plotted on a sphere using the HEALPix pixelization. The red, pink,

dark blue and light blue colors indicate a channeling probability of 1, 0.625, 0.25 and zero,

respectively.

geometric channeling fraction, obtained by setting c1 = c2 = 0 (static lattice). Even in this

physically inconsistent case, the channeling fractions at 293 K cannot be larger than 10%.
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Figure 5.7: Upper bounds on the channeling fractions of Cs recoils as a function of the

recoil energy E when only one channel is open, for T = 293 K with temperature corrections

included in the critical distances with the coefficients c1 = c2 = 1. Black and green/gray

lines correspond to axial and planar channels respectively. Solid, dashed, and dotted lines

are for 100, 110, and 111 channels respectively. The corresponding figure for an I ion would

be practically identical.
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Figure 5.8: Upper bounds on the channeling fraction of Cs (solid lines) and I (dashed lines)

recoils as a function of the recoil energy E for T = 600 ◦C (orange/medium gray), 293

K (green/light gray), 273 K (black), and 77.2 K (blue/dark gray) in the approximation of

c1 = c2 = 1 without dechanneling.
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Figure 5.9: Same as Fig. 5.10 but for c1 = c2 = 2.
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Figure 5.10: Same as Fig. 5.10 but for c1 = c2 = 0 (static lattice), which provides an extreme

upper bound (any larger values of c1 and c2, which can reasonably be as large as 2, yield

smaller factions).
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CHAPTER 6

Channeling fraction in solid Xe, Ar and Ne crystals

The level of background in future experiments is a crucial element to determine if the daily

modulation is observable and the advantage of using solidified noble gas detectors is the

possibility of achieving a low background level for WIMP searches [88]. Xenon and Neon

have no long life radioisotopes and thus contain no intrinsic background source of radiation.

Argon has the drawback that it contains 39Ar beta source which induces electron recoil

signature in the detector. Solid or crystallized Xenon detector can be ideal for dark matter

searches, whereas a crystallized Xenon detector would be necessary to have channeling. At

present, solid Xe crystals are used by the Solid Xenon R&D Project [89].

In this chapter we compute the geometric channeling fractions of recoiling ions in solid

Xe, Ar, and Ne crystals. At room temperature and pressure Xe, Ar and Ne are noble gases.

At temperatures below 161.45 K, 83.80 K and 24.56 K respectively (at room pressure)

they become solids. All of them form monatomic face-centered cubic (f.c.c.) crystals (see

Appendix A.4).

We proceed in a similar manner as we did for Si and Ge in Chapter 4. As in Chapter 4,

here we use Molière’s approximation for the atomic potential, following the work of Hobler [7]

and Morgan and Van Vliet [58, 59, 60]. The axial and planar continuum potentials in

Molière’s approximation, UMol(r) and UMol,p(x) are given in Eqs. 4.1 and 4.3, respectively.

Examples of axial and planar continuum potentials, generically called UMol, for Xe, Ar,

and Ne ions propagating in the <100> axial and {100} planar channels of a Xe, Ar, and Ne

crystal respectively are shown in Fig. 6.1.

As in Chapter 4, we use Morgan and Van Vliet’s [59] equation to define the critical
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Figure 6.1: Continuum axial (black) and planar (green/gray) potentials as function of the

distance from the row or plane of lattice atoms, respectively, for (a) Xe ions, (b) Ar ions,

and (c) Ne ions, propagating in the <100> axial and {100} planar channels of a Xe, Ar, and

Ne crystal respectively. The screening radius shown as a vertical line is aXeXe = 0.007808

nm for Xe, aArAr = 0.01126 nm for Ar and aNeNe = 0.01370 nm for Ne (see Appendix A.4).

distance rc, i.e. U ′′
Mol(rc) = 5E/d2. For a static lattice, we use an approximate analytic

expression for rc (which we call rMol
c ) obtained by fitting a degree nine polynomial in the

parameter
√
α = (Z1Z2e

2d/a2E)1/2 to the exact solution of Eq. 4.6. The expression for rMol
c

obtained in this way (Eq. 4.8) is valid for recoil energies E > 3 keV for Xe, and for E > 1

keV for Ar and Ne.

To find the static critical distance xc of a planar channel, the characteristic distance

between atoms along the fictitious row needs to be estimated using data or simulations

which are not available for Xe, Ar and Ne crystals. As explained in Section 3.1.3, this

characteristic distance depends on the width 2R of the strip considered. As described in
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Figure 6.2: Plot of u1(T ) for Ne (solid line), Ar (dashed line), and Xe (dotted line) as a

function of the crystal temperature. The plots are cut at the respective melting temperatures.

Chapter 4, we decided to keep the Morgan and Van Vliet definition for R, because Hobler [7]

found that it is in quite good agreement with the binary collision simulations and data of B

and P ions propagating in Si for energies of about 1 keV and above. We used an approximate

analytical solution for R (called RMol in Eq. 4.12) obtained by fitting a degree five polynomial

in (ln y) where y = Z1Z2e
2/a
√
EUp(0), to the exact numerical solution of Eq. 4.10. The

planar critical distance xMol
c we obtained (Eq. 4.13) is valid for E < 7 GeV for Xe, E < 160

MeV for Ar, and E < 20 MeV for Ne. These conditions provide the energy ranges for which

our channeling fraction estimates are valid. Within its range of validity, the percentage error

of the analytic approximation we used for xMol
c is less than 9%.

The critical distances of approach in a non-static lattice depend on the temperature,

through the vibration of the atoms in the lattice (thermal expansion effects are negligible, as

shown in Appendix E). The one dimensional rms vibration amplitude u1 of the atoms in a

crystal in the Debye model (see Eqs. 3.26 and 3.27) is plotted in Fig. 6.2 for Xe, Ar, and Ne

crystals as function of the temperature T up to their respective melting points. The crystals

in the Solid Xenon R&D Project experiment will be operating at 77.2 K and higher [90].
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Figure 6.3: Static (green) and temperature corrected with c1 = c2 = c = 1 (black) (a)

critical distances of approach rMol
c = rc (and u1(T ) in red) and (b) the corresponding critical

channeling angles ψMol
c = ψc, for T = 77.2 K, T = 130 K, and T = 160 K as a function of

the energy of propagating Xe ions in the <100> axial channel of a Xe crystal.

Using the temperature corrected critical distances of approach rMol
c (T ) and xMol

c (T )

(Eq. 4.15) or the static lattice critical distances rMol
c and xMol

c (Eqs. 4.8 and 4.13), we obtain

the corresponding temperature corrected critical axial and planar channeling angles, ψMol
c

and ψMol,p
c respectively. Examples of critical distances and angles are shown in Figs. 6.3 to

6.5, for c1 = c2 = c and c = 1 or c = 2 as indicated.

Fig. 6.3 clearly shows how the critical distances and angles change with temperature for

Xe ions propagating in the <100> axial channel of a Xe crystal, with temperature effects

computed with c1 = c2 = 1. Fig. 6.4 shows the same as Fig. 6.3 but for c1 = c2 =

2. Figs. 6.5.a and 6.5.b show the critical distances at several temperatures for Xe ions

propagating in the {100} planar channel with c1 = c2 = 1 and c1 = c2 = 2 respectively.

We use Eqs. 3.39 to 3.49 obtained in Chapter 3 to compute the channeling fraction for

each channel in solid Xe, Ar, and Ne. To obtain the total geometric channeling fraction we

sum over only the channels with lowest crystallographic indices, 100, 110 and 111. We have a

total of 26 axial and planar channels (see Appendix A.4). We treat channeling along different

channels as independent events when computing the probability that an ion enters any of

the available channels. We find that the method explained in Appendix D for obtaining an
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Figure 6.4: Same as Fig. 6.3 but with c1 = c2 = c = 2.
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Figure 6.5: Static (green) and temperature corrected (black) with (a) c1 = c2 = c = 1 and

(b) c1 = c2 = c = 2 critical distances of approach xMol
c = xc for T = 77.2 K, T = 130 K, and

T = 160 K as a function of the energy of propagating Xe ions in the {100} planar channel

of a Xe crystal.
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Figure 6.6: Geometric channeling probabilities as function of the initial recoil direction for

(a) a 1 MeV Xe ion propagating in a Xe crystal at 160 K and (b) a 20 keV Ne ion propagating

in a Ne crystal at 23 K (with c1 = c2 = 1). The probability is computed for each direction

and plotted on a sphere using the HEALPix pixelization. The red, pink, dark blue and light

blue colors indicate a channeling probability of 1, 0.625, 0.25 and zero, respectively.

upper limit to the channeling probability of overlapping channels gives results practically

indistinguishable from those obtained assuming that channeling along different channels are

independent events.

Fig. 6.6 shows the channeling probability computed for each initial recoil direction q̂

plotted on a sphere using the HEALPix pixelization for a 1 MeV Xe ion propagating in a

Xe crystal at 160 K and a 20 keV Ne ion propagating in a Ne crystal at 23 K (c1 = c2 = 1

is assumed for the temperature effects). The red and blue indicate a channeling probability

of 1 and zero, respectively (see the colors in the figure).

Fig. 6.7 shows the channeling fractions for several individual channels of Xe ions propa-

gating in a Xe crystal at T = 77.2 K, Ar ions propagating in an Ar crystal at T = 40 mK,

and Ne ions propagating in a Ne crystal at T = 40 mK (again with c1 = c2 = 1). The

curves correspond to single axial or planar channels. Notice that at low energies channeling

is dominated by axial channels, and at higher energies planar channels dominate.

The geometric total channeling fractions of Xe, Ar, and Ne ions as function of the recoil
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Figure 6.7: Channeling fraction of (a) Xe recoils at T = 77.2 K, (b) Ar recoils at T = 40

mK, and (c) Ne recoils at T = 40 mK for single planar and axial channels, as a function of

the recoil energy E in the approximation of c1 = c2 = 1.

energy are shown in Figs. 6.8, 6.9, and 6.10 respectively. For each crystal, we include three

possibilities for thermal effects: (a) c1 = c2 = 1, a reasonable middle ground, (b) maximum

effects, i.e. c1 = c2 = 2, and (c) c1 = c2 = 0, which corresponds to the unrealistic case of not

having thermal effects in the lattice.

Notice that we have not considered the possibility of dechanneling of initially channeled

ions due to imperfections in the crystal. Any mechanism of dechanneling will decrease the

fractions obtained here.

As we see in Fig. 6.8 to 6.10 the channeling fraction increases with energy, reaches a

maximum at a certain energy, then has a dip and finally raises again. The maximum reflects

the shape of the single channeling fractions, which all have maxima. At the maximum of the
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Figure 6.8: Channeling fraction of Xe recoils as a function of the recoil energy E for T = 160

K (solid line), 130 K (dashed line), and 77.2 K (dotted line) in the approximation of (a)

c1 = c2 = 1, (b) c1 = c2 = 2 and (c) static lattice with c1 = c2 = 0.

channeling fraction the axial channels dominate, in particular the channels [110] and [100]

(as seen in Fig 6.7). The dip and the raise result from having multiple axial and planar

channels contributing to the channeling fraction. At lower E axial channels dominate and

at higher E planar channels dominate. The dip happens at the cross-over between both

types of channels, when as the energy increases the contribution of axial channels dies out

and that of planar channels is increasing. This increase causes the subsequent raise in the

channeling fraction as the energy increases further.

As shown in Figs. 6.8.a, 6.9.a, and 6.10.a, the channeling fractions are never larger than

1% for Xe and Ar and never larger than 2% for Ne (with c1 = c2 = 1). Figs. 6.8.b, 6.9.b, and

6.10.b show that with c1 = c2 = 2, the maximum channeling fraction for Xe ions at 160 K,
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Figure 6.9: Channeling fraction of Ar recoils as a function of the recoil energy E for T = 83

K (solid line), 77.2 K (dashed line), and 40 mK (dotted line) in the approximation of (a)

c1 = c2 = 1, (b) c1 = c2 = 2 and (c) static lattice with c1 = c2 = 0.

Ar ions at 83 K, and Ne ions at 23 K would be below 0.2%. Figs. 6.8.c, 6.9.c, and 6.10.c show

the upper bounds on the geometric channeling fraction, obtained by setting c1 = c2 = 0 for

a static lattice. Even in this physically inconsistent case, the channeling fractions cannot be

larger than 5%.

Increasing the temperature of a crystal usually increases the fraction of channeled recoil-

ing ions, but when the values of c1 and c2 are large (i.e. close to 2) so the critical distances

increase rapidly with the temperature, the opposite may happen (see Fig. 6.9.b).
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Figure 6.10: Channeling fraction of Ne recoils as a function of the recoil energy E for

T = 23 K (solid line) and 40 mK (dashed line) in the approximation of (a) c1 = c2 = 1, (b)

c1 = c2 = 2 and (c) static lattice with c1 = c2 = 0.
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CHAPTER 7

Daily modulation due to channeling

In 2008, Avignone, Creswick, and Nussinov [21] suggested that a daily modulation due

to channeling could occur in NaI crystals, which would be a background free dark matter

signature. Such a modulation of the rate due to channeling is expected to occur at some

level because the “WIMP wind” arrives to Earth on average from a particular direction fixed

to the Galaxy. Assuming that the dark matter halo is on average at rest with respect to

the Galaxy, this is the direction towards which the Earth moves with respect to the Galaxy.

Earth’s daily rotation naturally changes the direction of the “WIMP wind” with respect

to the crystal axes, thus changing the amount of recoiling ions that are channeled vs. non-

channeled. This amounts to a daily modulation of the dark matter signal detectable via

scintillation or ionization.

In the previous chapters, we computed channeling probabilities as function of the recoil

energy E and initial direction q̂ of a recoiling ion in different materials. We also obtained

the “geometric” channeling fraction Pgeometric(E) in the crystals we studied, by averaging

the channeling probability χ(E, q̂) over the initial recoil directions q̂ (assuming an isotropic

distribution in q̂)

Pgeometric(E) =
1

4π

∫
χ(E, q̂)dΩq. (7.1)

This integral was computed using HEALPix [76] of the recoil direction sphere. Here “geo-

metric” refers to assuming that the distribution of recoil directions is isotropic. In reality, in

a dark matter direct detection experiment, the distribution of recoil directions depends on

the momentum distribution of the incoming WIMPs (see Section 7.1).

In this chapter, we use the (upper bounds to the) channeling probability χ(E, q̂) and the

actual differential recoil spectrum to compute the event rate, taking into account channeled
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and non-channeled recoils (see Section 7.2, in particular Eqs. 7.17 and 7.18 and compare

them with Eq. 7.1). We then use this rate to compute upper bounds to the amplitude of

the daily modulation due to channeling expected in NaI crystals. In Section 7.3, we examine

the possibility that such a daily modulation might be observable in the data accumulated

by the DAMA collaboration.

7.1 Angular distribution of recoil directions due to WIMPs

Consider the WIMP-nucleus elastic collision for a WIMP of mass m and a nucleus of mass

M . The 3-dimensional “Radon transform” of the WIMP velocity distribution can be used

to define the differential recoil spectrum as function of the recoil momentum q⃗ [91]

dR

dE dΩq

=
ρσ0S(q)

4πmµ2
f̂lab

(
q

2µ
, q̂

)
, (7.2)

where E is the recoil energy, dΩq = dϕd cos θ denotes an infinitesimal solid angle around the

recoil direction q̂ = q⃗/q, q = |q⃗| is the magnitude of the recoil momentum, µ = mM/(m+M)

is the reduced WIMP-nucleus mass, q/2µ = vq is the minimum velocity a WIMP must have

to impart a recoil momentum q to the nucleus, or equivalently to deposit a recoil energy

E = q2/2M , ρ is the dark matter density in the solar neighborhood, σ0 is the total scattering

cross section of the WIMP with a (fictitious) point-like nucleus, and S(q) is the nuclear form

factor normalized to 1.

We concentrate here on WIMPs with spin-independent interactions, for which σ0 is usu-

ally written in terms of the WIMP-proton cross section σp [92]

σ0 =
µ2

µ2
p

A2σp, (7.3)

where µp = mmp/(m+mp) is the WIMP-proton reduced mass and A is the atomic number

of the nucleus. We use the Helm form factor [93]

S(q) = |FSI(q)|2 =
(
3j1(qR1)

qR1

)2

e−q2s2 , (7.4)

where

j1(x) =
sin x

x2
− cos x

x
(7.5)

78



is the first kind spherical Bessel function, R1 is an effective nuclear radius, and s is the

nuclear skin thickness. Following Duda, Kemper, and Gondolo [94] we set

R1 =

√
c2 +

7

3
π2a2 − 5s2, (7.6)

and take s ≃ 0.9 fm, a ≃ 0.52 fm, and c ≃ (1.23A1/3 − 0.6) fm. These parameters have been

chosen to match the numerical integration of the Two-Parameter Fermi model of nuclear

density [94].

The Maxwellian WIMP velocity distribution with respect to the Galaxy, with dispersion

σv and truncated at the escape speed vesc is given by [91]

fWIMP(v) =
1

Nesc(2πσ2
v)

3/2
exp

[
−(v+Vlab)

2

2σ2
v

]
, (7.7)

for |v+Vlab| < vesc, and zero otherwise, where

Nesc = erf

(
vesc√
2σv

)
−
√

2

π

vesc
σv

exp

[
−v

2
esc

2σ2
v

]
. (7.8)

Here we are assuming the detector has a velocityVlab with respect to the Galaxy (thus −Vlab

is the average velocity of the WIMPs with respect to the detector). Vlab is defined in terms

of the galactic rotation velocity VGalRot at the position of the Sun (or Local Standard of

Rest (LSR) velocity), Sun’s peculiar velocity VSolar in the LSR, Earth’s translational velocity

VEarthRev with respect to the Sun, and the velocity of Earth’s rotation around itself VEarthRot

(see Appendix G),

Vlab = VGalRot +VSolar +VEarthRev +VEarthRot. (7.9)

We take VGalRot either 220 km/s or 280 km/s, as reasonable low and high values (as done

in Ref [95]), which correspond to Vlab either 228.4 km/s or 288.3 km/s, respectively (see

Appendix G for details). Ref. [96] gives 100 km/s as the smallest estimate for the 1D

velocity dispersion, which corresponds to a 3D dispersion
√
3 times larger, i.e. σv = 173

km/s. Thus here we take σv either 173 km/s or 300 km/s [91].

In order to visualize the arrival directions of WIMPs, we will plot fWIMP(v̂, vq), the

number of WIMPs per solid angle in the direction v̂ in several figures. If we limit ourselves
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to the WIMPs with speed higher than vq, then

fWIMP(v̂, vq) =

∫ vmax(v̂)

vq

fWIMP(v)v
2dv. (7.10)

The upper limit of the integral in Eq. 7.10 is such that |v+Vlab| = vesc and depends on the

direction v̂, since (v+Vlab)
2 = v2 + 2v v̂.Vlab + V 2

lab,

vmax(v̂) = −v̂.Vlab +

√
(v̂.Vlab)2 − V2

lab + v2esc , (7.11)

and

fWIMP(v̂, vq) =
exp

(
−V 2

lab

2σ2
v

)
Nesc(2πσ2

v)
3/2

∫ vmax(v̂)

vq

exp

(
−v2

2σ2
v

)
exp

(
−2v v̂. Vlab

2σ2
v

)
v2dv. (7.12)

This integral can be solved analytically and the result is in terms of error functions,

fWIMP(v̂, vq) =
exp

(
−V 2

lab

2σ2
v

)
Nesc(2πσ2

v)
3/2

(σv
2

){√
2π
[
(v̂.Vlab)

2 + σ2
v

]
exp

(
(v̂.Vlab)

2

2σ2
v

)
[
erf

(
v̂.Vlab + vmax( v̂)√

2σv

)
− erf

(
v̂.Vlab + vq√

2σv

)]
+ (2σv)

[
(v̂.Vlab − vmax(v̂)) exp

(
−vmax(v̂)(2v̂.Vlab + vmax( v̂))

2σ2
v

)
+ (−v̂.Vlab + vq) exp

(
−vq(2v̂.Vlab + vq)

2σ2
v

)]}
. (7.13)

The maximum of fWIMP(v̂, vq) happens when v̂.Vlab = −Vlab, i.e. in the direction of the

“WIMP wind” average velocity −Vlab. Dividing fWIMP(v̂, vq) by this maximum we obtain

a re-scaled distribution, a dimensionless number between 0 and 1, which we plot in Fig. 7.1

(see the color scale in the figure) on the sphere of velocity directions v̂ using the HEALPix

pixelization [76] (see also Appendix B) for all WIMPs, which amounts to taking vq = 0. We

took Vlab = 288.3 km/s, and σv = 300 km/s or σv = 173 km/s for Fig. 7.1.a or b respectively.

For a truncated Maxwellian WIMP velocity distribution with respect to the Galaxy,

truncated at the escape speed vesc, the Radon-transform is [91]

f̂lab

(
q

2µ
, q̂

)
=

1

Nesc(2πσ2
v)

1/2

{
exp

[
− [(q/2µ) + q̂. Vlab]

2

2σ2
v

]
− exp

[
−v2esc
2σ2

v

]}
, (7.14)
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Figure 7.1: WIMPs number density per solid angle fWIMP(v̂, vq) (in Eq. 7.13) for all WIMPs

(namely vq = 0) re-scaled to be a number between 0 (black) and 1 (white) plotted on the

sphere of velocity directions v̂ using the HEALPix pixelization for Vlab = 288.3 km/s and

(a) σv = 300 km/s and (b) σv = 173 km/s. The arrow shows the direction of the average

velocity of the WIMP wind, −Vlab. The North and South celestial poles are also indicated.

The color scale shown in the horizontal bar between black and white corresponds to values

between 0 and 1 in increments of 0.05.

if (q/2µ) + q̂.Vlab < vesc, and zero otherwise.

The presence of q̂.Vlab means that in order to compute the differential rate we need to

orient the nuclear recoil direction q̂ with respect to Vlab.

The maximum of f̂lab(
q
2µ
, q̂) in Eq. 7.14 happens when q̂. Vlab = −q/2µ, if vq = q/2µ <

Vlab (or in the direction of −Vlab otherwise). Thus, we can re-scale f̂lab to obtain a dimen-

sionless number between 0 and 1,

f̂ re-scaled
lab =

{
exp

[
− [(q/2µ) + q̂. Vlab]

2

2σ2
v

]
− exp

[
−v2esc
2σ2

v

]}/(
1− exp

[
−v2esc
2σ2

v

])
. (7.15)

In Figs. 7.2 and 7.3 we present side by side the WIMPs velocity distribution, for WIMPs

which can generate a signal of a certain energy E, namely with speed above vq (left panels)

and the Radon transform (right panels) of the recoils of energy E that WIMP collisions

produce.
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Figure 7.2: (a) fWIMP(v̂, vq) (in Eq. 7.13) re-scaled to be between 0 and 1 plotted on the

sphere of velocity directions v̂ and (b) f̂lab (re-scaled as in Eq. 7.15) plotted on the sphere

of recoil directions using the HEALPix pixelization for I recoils with E = 10 keV, m = 30

GeV (thus vq = 304.6 km/s), Vlab = 288.3 km/s and σv = 300 km/s. The arrow shows the

direction of the average velocity of the WIMP wind, −Vlab. The North and South celestial

poles are also indicated. The color scale shown in the horizontal bar corresponds to values

between 0 (black) and 1 (white) in intervals of 0.05.
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Figure 7.3: Same as Fig. 7.2 but for Na recoils and assuming m = 60 GeV (so vq = 196.7

km/s) and σv = 173 km/s (and all other parameters the same).
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In Fig. 7.2.a and b we respectively plot fWIMP(v̂, vq) on the sphere of WIMP velocity

directions v̂ and f̂lab on the sphere of recoil directions (both re-scaled to be a number between

0 and 1) using the HEALPix pixelization [76] for I recoils assuming Vlab = 288.3 km/s, E = 10

keV, σv = 300 km/s and m = 30 GeV. Fig. 7.3.a and b show the same two distributions

but for Na recoils and assuming σv = 173 km/s and m = 60 GeV (other parameters are

the same). The color scale plotted on the spheres indicate different values of the rescaled

distributions: between 0 (black) and 1 (white) in intervals of 0.05. In Fig. 7.2 the minimum

WIMP speed required is vq = 304.6 km/s (I recoils), and since vq > Vlab, the maximum value

of f̂ re-scaled
lab , i.e. the maximum recoil rate, is in the direction of the “WIMP wind” average

velocity, −Vlab, which is shown with an arrow. In Fig. 7.3 instead, vq = 196.7 km/s (Na

recoils) and the maximum value of f̂ re-scaled
lab occurs when −q̂.Vlab = vq, i.e. when q̂ is at an

angle of 47◦ of −Vlab.

7.2 Differential energy spectrum

Let p(EM , E, q̂)dEM be the probability that an energy EM is measured when a nucleus

recoils in the direction q̂ with initial energy E, normalized so that∫
p(EM , E, q̂)dEM = 1. (7.16)

With our analytic approach we cannot estimate the importance of dechanneling mecha-

nisms, such as the presence of lattice imperfections, impurities or dopants. Thus we disregard

dechanneling, and assume that a recoiling nucleus can only either be channeled, in which case

the measured energy is the whole initial recoil energy EM = E (first term in the following

equation) or not channeled, in which case the measured energy is EM = QE (second term),

p(EM , E, q̂) = χ(E, q̂)δ(EM − E) + [1− χ(E, q̂)]δ(EM −QE). (7.17)

The first term accounts for the channeled (unquenched) events and the second term for the

unchanneled (quenched) events, and Q is the quenching factor.
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Using Eq. 7.17 the differential energy spectrum,

dR

dEM

=

∫
dR

dEdΩq

p(EM , E, q̂)dΩqdE, (7.18)

can be written as

dR

dEM

=

∫ (
χ(EM , q̂)

dR

dEdΩq

∣∣∣∣
E=EM

+ [1− χ(EM/Q, q̂)]
1

Q

dR

dEdΩq

∣∣∣∣
E=EM/Q

)
dΩq

=
dR

dEM

∣∣∣∣
U

+

∫
χ(EM , q̂)

dR

dEdΩq

∣∣∣∣
E=EM

dΩq

−
∫
χ(EM/Q, q̂)

1

Q

dR

dEdΩq

∣∣∣∣
E=EM/Q

dΩq, (7.19)

where the differential recoil spectrum with subindex “U”, which stands for “Usual” (i.e.

when channeling is not taken into account) is

dR

dEM

∣∣∣∣
U

=

∫
1

Q

dR

dEdΩq

∣∣∣∣
E=EM/Q

dΩq =
1

Q

dR

dE

∣∣∣∣
E=EM/Q

. (7.20)

Defining q̃ ≡
√
2EMM and using Eq. 7.2, the measured differential rate becomes,

dR

dEM

=
dR

dEM

∣∣∣∣
U

+
ρσ0

4πmµ2

[
S(q̃)

∫
χ(EM , q̂)f̂lab

(
q̃

2µ
, q̂

)
dΩq

−S(q̃/
√
Q)

Q

∫
χ(EM/Q, q̂)f̂lab

(
q̃

2µ
√
Q
, q̂

)
dΩq

]
. (7.21)

Inserting σ0 from Eq. 7.3 in the above equation with the usual value for the mean local halo

density ρ = 0.3 GeV/cm3, we can write the spin-independent detection rate of WIMPs in

general for a crystal that may contain more than one element

dR

dEM

=
dR

dEM

∣∣∣∣
U

+ 1.306× 10−3 events

kg-day-keV
× σ44

4πmµ2
p∑

n

CnA
2
n

[
S(q̃)

∫
χn(EM , q̂)f̂lab

(
q̃

2µn

, q̂

)
dΩq

−S(q̃/
√
Qn)

Qn

∫
χn(EM/Qn, q̂)f̂lab

(
q̃

2µn

√
Qn

, q̂

)
dΩq

]
, (7.22)

where σ44 is the WIMP-proton cross section in units of 10−44 cm2, µp and m are in GeV and∫
f̂labdΩq is in (km/s)−1. The sum is over the nuclear species n in a crystal, and Cn, χn,

Qn and µn are the mass fraction, the channeling probability, the quenching factor and the
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reducedWIMP-nucleus mass for the element n, respectively. For example, for NaI crystals, as

used in the DAMA experiment, we have CNa =MNa/(MNa+MI) and CI =MI/(MNa +MI),

where MNa and MI are the atomic masses of Sodium and Iodine respectively.

The integrals in Eq. 7.22 cannot be computed analytically. We integrate numerically by

performing a Riemann sum once the sphere of directions has been divided using HEALPix [76]

(see also Appendix B).

With the same notation, the usual rate is

dR

dEM

∣∣∣∣
U

= 1.306× 10−3 events

kg-day-keV
× σ44

4πmµ2
p∑

n

CnA
2
n

[
S(q̃/

√
Qn)

Qn

∫
f̂lab

(
q̃

2µn

√
Qn

, q̂

)
dΩq

]
. (7.23)

7.3 Daily Modulation in NaI Crystals

We present here the daily modulation amplitude due to channeling expected in NaI crystals

for several WIMP masses and Na or I recoil energies. We assume that WIMPs have a

truncated Maxwellian velocity distribution as in Eq. 7.7 with vesc = 650 km/s. We use the

upper bounds to channeling fractions for single channels χi(E, q̂) given in Chapter 3. We

take T = 293 K, the temperature of the DAMA experiment.

The spin-independent detection rate of WIMPs given in Eq. 7.22 has a time depen-

dence through the Radon transform f̂lab. Notice that f̂lab (see Eq. 7.14) changes during

a day through the (q̂.Vlab) factor appearing in the exponent and the dependence of Vlab

on VEarthRot (see Eq. 7.9). The expression showing the time dependence of q̂.Vlab is given

in Eq. G.13 (in Appendix G). During a day, VEarthRev which is responsible for the annual

modulation changes too. Thus the rate does not return to exactly the same value after one

day. For the cases we present in this chapter, this difference is less than 10% of the total

modulation amplitude in a day, and we did not correct for this effect.
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7.3.1 Relative Modulation Amplitudes

Here we show the signal rate as function of time during a particular arbitrary Solar day

(September 25, 2010). We define the relative signal modulation amplitude As (taking into

account the signal only) in terms of the maximum and minimum daily signal rate Rs as

As =
Rs-max −Rs-min

Rs-max +Rs-min

. (7.24)

The total relative modulation amplitude AT is defined in terms of the maximum RT -max and

minimum RT -min total daily rates as

AT =
RT -max −RT -min

RT -max +RT -min

. (7.25)

The total rate consists of signal plus background, RT = Rs +Rb. Assuming that there is no

daily modulation in the background, RT -max − RT -min = Rs-max − Rs-min, and AT is related

to As as

AT = As(Rs/RT ), (7.26)

where the average total rate due to signal and background is RT = (RT -max +RT -min)/2 and

the average rate due to the signal alone is Rs = (Rs-max +Rs-min)/2.

Exploring the parameter space of WIMP mass and WIMP-proton cross section for dif-

ferent recoil energies we find that the relative modulation amplitudes As can be large, even

more than 10% for some combination of parameters. We explored the range of WIMP masses

from a few GeV to hundreds of GeV for recoil energies between 2 keV and a few MeV. We

show some examples in Fig. 7.4, where we plot the signal rate (in events/kg/day/keVee) as

function of the Universal Time (UT) during 24 hours. We find that the largest As happen

when the signal is only due to channeling. This happens when there are no WIMPs in the

galactic halo with large enough kinetic energy to provide the observed energy if the recoil is

not channeled. The observed energies for which the rate is only due to channeling depend on

the quenching factors Q, which are not well known. The smaller values of Q make channeling

more important so we take QNa = 0.2 [97] for Na and the usual QI = 0.09 for I.
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Figure 7.4: Signal rate (in events/kg-day-keVee) as function of the Universal Time (UT)

during 24 hours for m = 10 GeV, 12 GeV and 15 GeV for different energies. The parameters

used are σv = 300 km/s, QNa = 0.2, QI = 0.09, σp = 2 × 10−40cm2, c = 1 for temperature

effects, a crystal temperature of T = 293 K and Vlab = 228.4 km/s (top row) or 288.3 km/s

(bottom row).

7.3.2 Statistical Significance

The detectability of a particular amplitude of daily modulation depends on the exposure and

background of a particular experiment. The former DAMA/NaI and the DAMA/LIBRA

experiments (which we refer collectively as the DAMA experiment) have a very large cu-

mulative exposure, 1.17 ton × year. However even with this large exposure, we find that

the daily modulations we predict are not observable. To observe the daily modulation, the

total number of events NT (Ns signal plus Nb background events) over the duration of the

experiment should be divided into two bins, the “high-rate” bin with NT -max events and the

“low-rate” bin with NT -min events, so that NT = NT -max +NT -min. For the daily modulation

to be observable at, say, the 3σ level one should have

NT -max −NT -min = ATNT > 3σ ≃ 3
√
NT/2, (7.27)

where σ2 ≃ NT/2 because, with a small modulation, on average NT -max ≃ NT -min ≃ NT/2.

In principle there are other errors associated with identifying the “high-rate” and “low-rate”

bins which we do not include here. Thus we are underestimating the errors.
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If the detector exposure is MT in kg-day and we take bins of width ∆EM in keVee, then

NT -max = RT -maxMT∆EM/2, NT -min = RT -minMT∆EM/2, NT = RTMT ∆EM and Ns =

RsMT∆EM , where the rates are in events/kg-day-keVee. Thus (Ns/NT ) = (Rs/RT ) and

using Eq. 7.26, AT = As(Ns/NT ). Thus the condition in Eq. 7.27 becomes AsNs > 3
√
NT/2

which implies

N2
s /NT > 9/(2A2

s), (7.28)

or

R2
s/RT > 9/(2A2

sMT ∆EM). (7.29)

The total rate of the DAMA experiment at low energies 4 keVee < EM < 10 keVee is

RT ≃ 1 events/kg/day/keVee [98]. This rate is much larger than the signal rates we predict

and is, therefore, dominated by background. With this value of RT , Eq. 7.29 becomes

R2
sA

2
s >

9

2MT ∆EM kg day keVee
. (7.30)

We choose here a bin ∆EM ≃ 1 keVee, narrow enough to assume the signal rate to be

constant in it and compatible with the energy resolution of DAMA. The energy resolution of

DAMA is σE(EM) = (0.448 keVee)
√
EM/keVee+(0.0091)EM ≃ 1 keVee at low energies [99].

We consider the significance of the highest signal-to-noise energy bin that we found through

inspection. With the cumulative exposure of DAMA, the condition in Eq. 7.30 for relative

daily modulation amplitudes As observable at 3σ is

Rs As > 3.2× 10−3 events/kg/day/keVee, (7.31)

or

Rs-max −Rs-min > 6.4× 10−3 events/kg/day/keVee. (7.32)

For observability at the nσ level we should multiply the right-hand side of Eq. 7.32 by (n/3).

Even the largest relative daily modulations we find, shown in Fig. 7.4, are not observable in

the DAMA data according to Eq. 7.32.

The examples which we show here are for small WIMP masses and recoil energies. For

large masses the value of σp must be chosen in the region of the cross section and mass plane
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where XENON10/100 and CDMS impose σp to be smaller by four orders of magnitude than

for light WIMPs. This amounts to corresponding smaller signal rates and (Rs-max − Rs-min)

differences. For small WIMP masses and large energies, vq is large and there are no WIMPs

with the speed required for Na or I recoils. Thus, only small WIMP masses and recoil

energies result in high modulation amplitudes.

Fig. 7.4 shows the signal rate during 24 hours for three different WIMP masses m = 10

GeV, 12 GeV and 15 GeV and different energies EM between 2 and 15 keVee. The other

relevant parameters are σv = 300 km/s, σp = 2×10−40cm2 (close to the DAMA and CoGeNT

regions [97, 8, 16]), c = 1, T = 293 K and two values of Vlab, 228.4 km/s (top row) and 288.3

km/s (bottom row). Recent bounds, e.g. those from XENON100 [15], impose smaller values

of σp. In any event, changes in σp are easy to take into account because As is independent

of σp and the rate is just proportional to it, Rs ∼ σp.

We found the relative amplitude As to be as large as 12% in the examples shown in

Fig. 7.4, but even those large values are not observable according to Eq. 7.32 (even at the

1σ level). With the choice of Vlab = 228.4 km/s (top row of Fig. 7.4) we get a signal

rate difference Rs-max − Rs-min of 0.56 × 10−3 events/kg/day/keVee for m = 10 GeV and

EM = 10 keVee (in this case vq = 454.8 km/s and 790.5 km/s for channeled Na and I

recoils, respectively), 3.17×10−4 events/kg/day/keVee for m = 12 GeV and EM = 12 keVee

(which corresponds to vq = 441.6 km/s and 732.9 km/s for Na and I channeled recoils,

respectively), and 4.25 × 10−4 events/kg/day/keVee for m = 15 GeV and EM = 15 keVee

(for which vq = 430.6 km/s and 670.6 km/s for Na and I channeled recoils, respectively).

With the choice of Vlab = 288.3 km/s (bottom row of Fig. 7.4), Rs-max−Rs-min is 0.77× 10−3

events/kg/day/keVee for m = 10 GeV and EM = 10 keVee (one of the energies shown),

2.95 × 10−4 events/kg/day/keVee for m = 12 GeV and EM = 12 keVee, and 0.58 × 10−5

events/kg/day/keVee for m = 15 GeV and EM = 15 keVee. Because the minimum WIMP

speeds vq are large in these examples, a smaller velocity dispersion of the WIMP distribution

leads to smaller rates (since a smaller amount of WIMPs have velocities larger than vq). So

the signal rate difference Rs-max −Rs-min is even smaller for smaller values of σv.
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The left-bottom panel of Fig. 7.4 shows the signal rate as function of UT for m = 10 GeV

and Vlab = 288.3 km/s for several energies between 2 keVee and 12 keVee. The rate decreases

but As increases with increasing energy and the best conditions for observability happen at

some energy where neither the rate nor As are very small. The rates for low energies between

2 keVee and 6 keVee are dominated by the usual (i.e. non-channeled) rate and the daily

modulation is due purely to the change in WIMP kinetic energy in the lab frame as the

Earth rotates around itself. The rates for energies above 8 keVee (green/gray lines) are

purely due to channeling, i.e. the usual rate is zero. For intermediate energies, 6 keVee to 8

keVee, the usual and channeled rates both contribute and thus the daily modulation is due

to both the channeling effect and the daily change in the usual rate. For EM = 2, 4, 6, 8, 10

and 12 keVee, the values of Rs-max − Rs-min given in events/kg/day/keVee are respectively

4.3 × 10−4, 0.5 × 10−3, 0.92 × 10−3, 2.8 × 10−4, 0.77 × 10−3 and 0.52 × 10−3. Notice that

for all the energies shown the difference in rate is similar, but the largest As values happen

at energies above 8 keVee, for which the rate is only due to channeling. The channeling

daily modulation amplitude increases as the ratio of the velocity dispersion to the average

speed of the WIMPs that contribute to the signal (i.e. with v > vq) decreases. This ratio is

small and thus As large for large values of vq. Notice that the phase of the modulation due

to channeling depends on the orientation of the crystal with respect to the Galaxy and the

phase of the modulation in the usual rate does not, which would allow to distinguish both

effects, if they were observable. The case of m = 10 GeV and EM = 6 keVee has the largest

rate difference, but is not observable at 3σ according to Eq. 7.32 (not even at the 1σ level).

Choosing σp = 4×10−40cm2 (still within the DAMA allowed region but not compatible with

the recent XENON100 result) results in a rate difference of 1.84×10−3 events/kg/day/keVee

for this case which would not be observable even at the 1σ level.

Finally, we would like to compare our results with those obtained in Ref. [22] by Creswick

et al. They found a relative daily modulation amplitude As =0.85% (their definition of

amplitude differs by a factor of 2 from ours, so they quote 1.7%) for 5 GeV WIMP mass and

3.8 keVee measured energy (in which case vq = 471.2 km/s and 936.6 km/s for channeled Na

and I recoils, respectively. There are no WIMPs with the speed required for I recoils, thus
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Figure 7.5: Signal rate as function of UT during 24 hours for EM = 3.8 keVee and m = 5

GeV, with Vlab = 228.4 km/s, σv = 300 km/s, σp = 2× 10−40cm2, and QNa = 0.2, QI = 0.09

for (a) c = 1 and (b) c = 0. The daily modulation is not observable in both cases.

only Na recoils are possible). In order to compare our calculation with theirs, we compute

the signal event rate as function of time for c = 1, T = 293 K (temperature corrections are

not included in the calculation of Creswick et al.) and choosing all the other parameters very

close to those used in Ref. [22], i.e. Vlab = 228.4 km/s and σv = 300 km/s. A WIMP mass

of 5 GeV is outside the region of parameter space compatible with the annual modulation

reported by DAMA [8]. Since As does not depend on σp, we choose an arbitrary value of

σp = 2 × 10−40cm2 to plot the signal rate as a function of UT (the upper bound given by

TEXONO [100] and CoGeNT [2, 17] is five times larger, σp < 1× 10−39cm2). Our result is

shown in Fig. 7.5.a. We find As =0.16% (Rs-max−Rs-min = 4.4×10−6 events/kg/day/keVee).

Even when we consider the extreme choice of c = 0 to compute temperature effects (an

unrealistic value for which the channeling fractions are larger) with the same parameters, we

get As = 0.14%. This case is shown in Fig. 7.5.b.

7.3.3 Future Prospects for DAMA and other Experiments

The daily modulation might be detectable in other experiments with smaller background

or WIMP halo components with a smaller dispersion such as streams or a thick disk. The

amplitude of the daily modulation increases as the WIMP velocity distribution is narrower

i.e. for larger values of the average velocity and smaller values of the velocity dispersion of
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the detectable WIMPs (which is not σv), i.e. those with velocity larger than vq. This is easy

to understand since as the dispersion increases more channels are available for channeling

of the recoiling ions. In the limit in which the velocity distribution would be isotropic with

respect to the detector, the daily rotation would not introduce any difference in the rate due

to channeling. Having a large relative signal modulation amplitude As is not sufficient for

observability. In Eq. 7.32 what is important is (As Rs) = (Rs-max − Rs-min)/2. However,

the condition in Eq. 7.32 was derived considering the total rate in the DAMA experiment,

which is dominated by background. For an experiment where the background is negligible,

i.e. RT = Rs + Rb ≃ Rs, we can derive a different observability condition (at the 3σ level)

from Eq. 7.29,

Rs A
2
s = As (Rs-max −Rs-min)/2 > 9/(2MT ∆EM). (7.33)

This condition might be easier to satisfy in future experiments.

One could ask which is the maximum level of total rate with the current DAMA exposure

that would be needed to make the signal daily modulation observable. Inserting the current

exposure of DAMA (1.17 ton-yr) in Eq. 7.29, we have

(As Rs)
2/RT > 1.05× 10−5 events/kg/day/keVee, (7.34)

which using AsRs = (Rs-max −Rs-min)/2, becomes

RT <
(Rs-max −Rs-min)

2

4.2× 10−5 events/kg/day/keVee
. (7.35)

Even in the case with the highest rate difference we found, i.e. Rs-max−Rs-min = 0.98× 10−3

events/kg/day/keVee (the m = 10 GeV, EM = 6 keVee, Vlab = 288.3 km/s example shown

in the bottom-left panel of Fig. 7.4) observability would require

RT < 0.023 events/kg/day/keVee, (7.36)

roughly 1/40 of what is now.

We could ask instead what exposure would be needed with the current total rate in the

DAMA experiment to make the daily modulation observable. SettingRT ≃ 1 events/kg/day/keVee
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in Eq. 7.29, we obtain

MT∆EM

(events/kg/day/keVee)
>

9

2 (As Rs)
2 =

18

(Rs-max −Rs-min)
2 . (7.37)

Again, for the case with the highest rate difference we found (m = 10 GeV, EM = 6 keVee

and Vlab = 288.3 km/s) and with ∆EM ≃ 1 keVee we would require an exposure 40 times

larger,

MT > 51.3 ton-yr. (7.38)

We have computed the daily modulation due to channeling in other material such as Ge,

solid Xe and solid Ne, and we find that it will be very difficult to observe. For light WIMPs

the cross section can be larger than for heavier ones without violating experimental bounds,

σp = 10−39cm2 [100] and this favors the detection of the daily modulation. We find that for

a WIMP mass m = 5 GeV the daily modulation due to channeling may be observable in

solid Ne if the signal would be above threshold and assuming no background. The geometric

channeling fraction reaches a maximum at around 10 keV for solid Ne (see Chapter 6),

thus the largest modulation amplitude happens at that energy. For example for a solid Ne

detector operating at 23 K at Gran Sasso, for EM = 10 keV, assuming QNe = 0.25 [101],

c = 1 and with velocity distribution parameters σv = 300 km/s and Vlab = 228.4 km/s we

find RsA
2
s = 3.68 × 10−5 events/kg/day/keVee. Using Eq. 7.33 we find that the exposure

needed to observe this modulation at 3σ is MT = 0.33 ton-yr. For the same parameters but

for m = 7 GeV and σp = 2×10−40cm2 (parameters compatible with the possible dark matter

signal found by CoGeNT and with DAMA according to Ref. [102]), we find RsA
2
s = 7.2×10−7

events/kg/day/keVee, and the exposure needed is MT = 17.1 ton-yr. The usual rate is zero

in both cases, and the modulation is just due to channeling. The signal rate during 24 hours

and the required exposures for the two cases are shown in Fig. 7.6 and Table 7.1, respectively.
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Figure 7.6: Signal rate as function of UT during 24 hours for a solid Ne detector operating

at T = 23 K at Gran Sasso for EM = 10 keVee, Q = 0.25, c = 1, σv = 300 km/s, Vlab = 228.4

km/s and for (a)m = 5 GeV and σp = 10−39cm2, and (b)m = 7 GeV and σp = 2×10−40cm2.

Table 7.1: Observability in solid Ne detector

Case σp (cm2) MT (ton-yr)

m = 5 GeV 10−39 0.33

m = 7 GeV 2× 10−40 17.1
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CHAPTER 8

Conclusions

We have studied the channeling of ions recoiling after collisions with WIMPs in NaI (Tl), Si,

Ge, CsI, and solid Xe, Ar, and Ne crystals. Channeled ions move within the crystal along

symmetry axes and planes and suffer a series of small-angle scatterings that maintain them

in the open “channels” between the rows or planes of lattice atoms and thus penetrate much

further into the crystal than in other directions. In order for the scattering to happen at

small enough angles, the propagating ion must not approach a row or plane closer than a

critical distance rc for axial or xc for planar channels. For a “static lattice” that here means

a perfect lattice in which all vibrations are neglected, rc and xc are given in Eqs. 3.14 and

3.22 for NaI and CsI crystals and in Eqs. 4.8 and 4.13 for Si, Ge, and solid Xe, Ar, and Ne

crystals.

The channeling of ions in a crystal depends not only on the angle their initial trajectory

makes with rows or planes in the crystal, but also on their initial position. Ions which start

their motion close to the center of a channel, far from a row or plane, at an initial angle ψ or

ψp (see Eqs. 3.12 and 3.23), are channeled if the initial angle is smaller than the critical angle

in Eqs. 3.17 and 3.25, respectively for NaI and CsI and in Eqs. 4.9 and 4.14, respectively

for Si, Ge, solid Xe, Ar, and Ne, and are not channeled otherwise. We have found that the

channeling of lattice ions recoiling after a collision with a WIMP is very different from the

channeling of incident ions, and that the fraction of recoiling lattice ions that are channeled

is smaller.

The nuclei ejected from their lattice sites by WIMP collisions are initially part of a

row or plane. They start from lattice sites or very close to them, thus blocking effects are

important. In fact, as argued originally by Lindhard [23], in a perfect lattice and in the
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absence of energy-loss processes, the probability that a particle starting from a lattice site is

channeled would be zero. This is what Lindhard called the “Rule of Reversibility.” However,

any departure of the actual lattice from a perfect lattice due to vibrations of the atom,

which are always present, violate the conditions of this argument and allow for some of the

recoiling lattice nuclei to be channeled. Thus, the channeling fraction of recoiling ions is

very temperature dependent.

The temperature corrected minimum distances of approach (given in Eqs. 3.29 and 3.30

for NaI and CsI and in Eq. 4.15 for Ge, Si, and solid Xe, Ar, and Ne) depend on the one

dimensional rms vibration amplitude u1(T ) (Eq. 3.26), which increases with the temperature,

through the coefficients c1 and c2. These dimensionless coefficients are found in the literature

for different materials and propagating ions to take values between 1 and 2.

Due to vibrations in the crystal, the atom that interacts with a WIMP may be displaced

from its position in a perfect lattice with a probability given in Eqs. 3.39 and 3.41. It is

this displacement which allows for a non-zero probability of channeling, given in Eqs. 3.40

and 3.42. At high temperatures, the atoms vibrate with larger amplitudes, the recoiling ion

can start further away from a row or plane (i.e u1 in Eqs. 3.40 and 3.42 is larger), and the

channeling fractions increase. However, there is a second temperature effect which makes

the channeling fractions smaller as the temperature increases: the lattice vibrations (of all

the other atoms in the crystal, besides the recoiling one) increase the critical distances of

approach and reduce the critical angles for channeling (unless c1 = c2 = 0), which in turn

decreases the channeling fractions as the temperature increases (ri,min and xi,min in Eqs. 3.40

and 3.42 increase). Depending on which of the two competing effects is dominant, the

channeling fraction may either increase or decrease as the temperature increases. Increasing

the temperature of a crystal usually increases the fraction of channeled recoiling ions, but

when the values of c1 and c2 are large (i.e. close to 2) so the critical distances increase rapidly

with the temperature, the opposite may happen.

We are already providing upper limits to the channeling fraction in NaI (Tl) and CsI due

to our choice of xc (see discussion after Eq. 3.22). In Figs. 3.13 and 5.10 we show absolute
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upper bounds to this probability for NaI (Tl) and CsI, respectively in the unrealistic case

in which temperature effects are only taken into account in the vibrations of the atom

interacting with the WIMP, but not on the other atoms in the lattice (so c1 = c2 = 0).

More realistic upper bounds to the channeling fractions for NaI (Tl) and CsI are given in

Figs. 3.11 and 5.8, respectively, in which c1 = c2 = 1. The 20 ◦C curve from Fig. 3.11 is

displayed again in Fig. 3.14, in which we show what we consider to be our best results for

NaI (Tl). If c1 = c2 = 2, the channeling fractions are smaller, as shown in Fig. 3.12 for NaI

(Tl) (from which the 20 ◦C curve is copied in Fig. 3.14), and in Fig. 5.9 for CsI.

Fig. 3.14.a shows what we consider to be our main predictions for the range expected as an

upper limit to the channeling fraction in NaI (Tl), if dechanneling is ignored. Dechanneling

happens when the channeled ion encounters impurities or defects. Fig. 3.14.b shows the

channeling fraction for NaI (Tl) reduced by the probability of the channeling ion to not

interact with a Tl atom (see Eq. 3.34). This way of taking into account dechanneling may

be too extreme, as it neglects the probability that the ion after the collision with a Tl atom

may reenter a channel (either the same channel or another one) and be again channeled.

With dechanneling, the probability that the channeled ion does not interact with a Tl atom

decreases with energy (since more energetic ions propagate further within channels). Thus,

interactions with Tl atoms decrease the channeling fraction at high energies. This reduction

may eventually prove to be too extreme and at present we do not have a better formalism

to model dechanneling.

With the simple model of dechanneling we used for NaI (Tl) we could reproduce the

channeling fractions computed by the DAMA collaboration which, however, apply to ions

which start their motion close to the middle of a channel and not to the case of direct dark

matter detection. Notice that we have not considered any mechanism of dechanneling of the

channeled ions (due to irregularities in the crystals, for example) in Si, Ge, CsI, and solid

Xe, Ar, and Ne which would decrease the channeling fractions.

Fig. 4.18 provides an upper limit to the channeling fractions in Si and Ge for c1 = c2 = 0.

Similarly, Figs. 6.8.c, 6.9.c, and 6.10.c show the static lattice approximation for solid Xe,
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Ar, and Ne, respectively. The c1 = c2 = 1 choice is shown in Fig. 4.19 for Si and Ge, and

in Figs. 6.8.a, 6.9.a, and 6.10.a for solid Xe, Ar, and Ne, respectively. Fig. 4.20 shows the

c1 = c2 = 2 choice in Si and Ge. If the values found by Hobler [7] and by us (see Fig. 4.11)

to fit the measured channeling angles for B and P ions propagating in a Si crystal apply also

to the propagation of Si ions in Si, then the case of c1 = c2 = 2 should be chosen. For Xe,

Ar, and Ne, the c1 = c2 = 2 choice is shown in Figs. 6.8.b, 6.9.b, and 6.10.b, respectively.

The channeling fractions for all the crystals we studied would never be larger than a few

percent at their maximum. This maximum occurs because the critical distances decrease

with the ion energy E, making channeling more probable, and the critical angles also decrease

with E, making channeling less probable.

Notice that a small change in the critical distances rc(T ) or xc(T ) and thus in the initial

minimum distances of approach ri,min or xi,min is exponentially magnified in the channeling

fractions χaxial, Eq. 3.40, or χplanar, Eq. 3.42. This constitutes the most important difficulty

to evaluate channeling fractions in the models we use.

The result of our work has had important consequences on the compatibility of the DAMA

results with other experiments. The effect of channeling on the regions in cross section

versus mass of acceptable WIMP models is negligible, and in the absence of channeling, the

DAMA region could be compatible with the CoGeNT region for light WIMPs [102]. Fig. 8.1

(reproduced from Ref. [8]) shows the regions in spin-independent cross section versus mass

compatible with the DAMA modulation signal at the 7σ, 5σ, 3σ, and 90% level both with

and without channeling included. The largest channeling fractions in Fig. 3.14.a were used

to produce Fig. 8.1 as they provide the largest potential effect on the DAMA constraints.

Even in this case there is negligible difference between the channeling and non-channeling

cases except for regions incompatible with DAMA at greater than the 5σ level, in which the

difference is only at masses below 4 GeV and at relatively high cross-sections.

The analytical approach used here can successfully describe qualitative features of the

channeling and blocking effects, but should be complemented by data fitting of parameters

and by simulations to obtain a good quantitative description too. Thus our results should in
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Figure 8.1: The range of masses and spin-independent cross sections compatible with the

DAMA modulation signal and total number of events, determined with (dashed green) and

without (solid orange) channeling. For the channeling case, the largest channeling fractions

in Fig. 3.14.a are used. There is negligible difference in the DAMA modulation regions with

and without channeling at the 90%, 3σ, and 5σ levels; only the 7σ contours differ and only

for WIMP masses below 4 GeV. This figure is reproduced from Ref. [8].

the last instance be checked by using some of the many sophisticated Monte Carlo simulation

programs implementing the binary collision approach or mixed approaches.

We have also studied the possibility of a daily modulation due to channeling, which

would be a background free signature of dark matter. Channeling is a directional effect

which depends on the velocity distribution of WIMPs in the dark halo of our Galaxy and

could lead to a daily modulation of the signal. We have computed upper bounds to the daily

modulation amplitudes expected in the data already collected by the DAMA experiment and

found large modulation amplitudes of the signal rate, of the order of 10% in some instances,

which are not observable at the 3σ level in the standard halo in the 13 years of data taken by

the DAMA collaboration. For these to be observable the DAMA total rate should be 1/40

of what it is or the total DAMA exposure should be 40 times larger. The daily modulation

due to channeling will be difficult to measure in future experiments. We find it could be

observed for light WIMPs in solid Ne, assuming no background.
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APPENDIX A

Crystal structures and other data

A.1 NaI

NaI is a diatomic compound that has two interpenetrating face-centered cubic (f.c.c.) lattice

structures displaced by half of a lattice constant with 8 atoms per unit cell. The lattice

constant alat of a cubic crystal system refers to the constant distance between unit cells of

one of the f.c.c. lattices in the crystal, and for NaI it is alat =0.6473 nm at room temperature

(Table 3.4 in Appleton and Foti [64]). Fig. A.1 shows one eights of the unit cell of the NaI

crystal. The red and blue spheres represent Na and I ions respectively. The shortest distance

between Na and I ions in Fig. A.1 is half the lattice constant, alat/2.

The atomic mass and atomic number of Na and I are MNa = 22.9 amu, MI = 126.9 amu,

ZNa = 11 and ZI = 53. When computing ψ1 in Eq. 3.2 for Na recoils, we take Z1 = ZNa and

Z2 equal to an effective atomic number of the row or plane in the channel, which depends on

the composition of the row or plane. “Mixed” channels, for example the rows < 100 > and

< 111 >, or the planes {100} and {110}, contain both Na and I ions in alternation; they

have Z2 = Z̄ = (ZNa + ZI)/2. “Pure” channels, for example the row < 110 > or the plane

{111}, contain atoms of a single species, only Na or only I; they have Z2 = ZNa or Z2 = ZI.

Thus, for Na recoils from the row where it originally was, we have

sin2 ψNa
1 =

2ZNaZ2e
2

Ed
. (A.1)

Similarly, for I recoils Z1 = ZI, and for mixed channels Z2 = Z̄ = (ZNa + ZI)/2 while for

pure channels we use Z2 = ZI. We have

sin2 ψI
1 =

2ZIZ2e
2

Ed
. (A.2)
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Figure A.1: One eights of the NaI crystal unit cell with the red and blue spheres representing

Na and I ions respectively. The solid, dashed and dot-dashed lines show the <100>, <110>,

and <111> axes respectively. The {100}, {110} and {111} planes are perpendicular to the

respective axes with equal indices.

With respect to the Thomas-Fermi screening distance, for Na recoils from a mixed row

or plane we use the average

āNa = (aNaNa + aNaI)/2 = 0.01149 nm, (A.3)

where aNaNa = 0.4685(Z
1/2
Na + Z

1/2
Na )

−2/3 = 0.01327 nm and aNaI = 0.4685(Z
1/2
Na + Z

1/2
I )−2/3 =

0.009711 nm correspond to an Na scattering from an Na and an I lattice atom, respectively.

On the other hand, for Na recoils from a pure row or plane we use aNaNa because the row or

plane from which the recoiling Na ion was emitted contains only Na atoms. Similarly, for I

recoils from a mixed row or plane, we use

āI = (aII + aNaI)/2 = 0.008784 nm, (A.4)

where aII = 0.4685(Z
1/2
I +Z

1/2
I )−2/3 = 0.007857 nm and aNaI correspond to an I ion scattering

from an I and an Na lattice atom, respectively. For I recoils from a pure row or plane we

use aII, since the row or plane the recoiling ion is emitted from is made of I ions only.
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Finally, to compute ψa for Na recoils

sinψa =

(
2πnZNaZ2e

2a

E

) 1
2

, (A.5)

where Z2 = Z̄ and a = āNa or Z2 = ZNa and a = aNaNa for mixed or pure rows and planes

respectively. For I recoils

sinψa =

(
2πnZIZ2e

2a

ER

) 1
2

, (A.6)

where Z2 = Z̄ and a = āI or Z2 = ZNa and a = aII for mixed or pure rows and planes

respectively.

We here review the crystallographic notation for directions in the lattice. Once an origin

of the coordinate system is fixed on a lattice point O, any position vector of a point on the

crystal lattice can be written as R = n1a + n2b + n3c with n1, n2, and n3 specific integer

numbers. The vectors a, b, and c are the basis vectors of the crystal lattice, and are three

noncoplanar vectors joining the lattice point O to its near neighbors. For the cubic lattice

of NaI, the three vectors a, b, c form a Cartesian frame and their length is alat/2 (they are

the sides of the cube in Fig. A.1). The integers n1, n2, and n3 can be positive, negative, or

zero. The direction of a crystal axis pointing in the direction R is specified by the triplet

[n1n2n3] written in square brackets, when n1, n2, and n3 are positive or zero. Note that

if there is a common factor in the numbers n1, n2, n3, this factor is removed. Moreover,

negative integers are denoted with a bar over the number, e.g. −1 is denoted as 1̄ and the

−y axis is [01̄0] direction. Fig. A.1 shows the directions of the [100], [110] and [111] axes.

In a cubic crystal, because of the symmetry of the unit cell, the directions [100], [010],

and [001] are equivalent. All directions equivalent to the [n1n2n3] direction are denoted by

<n1n2n3> in angular brackets. For example, <100> indicates all six directions [100], [010],

[001], [1̄00], [01̄0], and [001̄]. The plane perpendicular to the [n1n2n3] axis is denoted by

(n1n2n3). For example, the plane perpendicular to the [100] axis is denoted by (100), and

that perpendicular to [101] by (101). The integers n1, n2, and n3 are called Miller indices.

When the unit cell has cubic symmetry, we can indicate all planes that are equivalent

to the plane (hkl) by curly brackets {hkl}. For example, the indices {100} refer to the six
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planes (100), (010), (001), (1̄00), (01̄0), and (001̄). The negative sign over a number denotes

that the plane cuts the axis on the negative side of the origin.

We will only consider the lower index crystallographic axis and planes. For axial chan-

neling we will consider the <100>, <110> and <111> axes and for planar channeling we

consider the {100},{110} and {111} planes perpendicular to them.

To compute the interatomic spacing d in axial directions and the interplanar spacing dpch

in planar directions, we have to multiply the lattice constant by the following coefficients [33]:

• Axis: < 100 >: 1/2 , < 110 >: 1/
√
2 , < 111 >:

√
3/2

• Plane: {100} : 1/2 , {110} : 1/2
√
2 , {111} : 1/2

√
3

For NaI, the Debye temperature is Θ = 165 K, and the crystals in the DAMA experiment

are at a temperature of 20 ◦C or 293.15 K.

A.2 Si and Ge

Silicon (Si) and Germanium (Ge) crystals have a diamond cubic type lattice structure which

consists of two interpenetrating f.c.c. lattices, displaced along the body diagonal of the cubic

cell by one quarter of the length of the diagonal. The unit cell, shown in Fig. A.2, has 8

atoms. The lattice constant, the side of the cube in Fig. A.2, is alat = 0.5431 nm for Si and

0.5657 nm for Ge (from the Table 3.4 of Ref. [64]).

The atomic mass and atomic number of Si and Ge are MSi = 28.09 amu, MGe = 72.59

amu, ZSi = 14 and ZGe = 32. The Thomas-Fermi screening distances for two Si atoms and

two Ge atoms are aSiSi = 0.4685Å(Z
1/2
Si +Z

1/2
Si )−2/3 = 0.01225 nm and aGeGe = 0.4685Å(Z

1/2
Ge +

Z
1/2
Ge )

−2/3 = 0.009296 nm respectively.

For Si and Ge, the three basis vectors a, b, c form a Cartesian frame and their length is

alat/4.

We only consider the most important channels, which are the <100>, <110>, <111>,

<211> and <311> axial channels and the {100}, {110}, {111}, {210} and {310} planar
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Figure A.2: Unit cell of a Si or Ge crystal (a) in three dimensions, and (b) projected on a

plane. The black spheres represent Si or Ge atoms.

channels. For example <211> and <311> indicate twelve different directions each. Similarly,

{210} and {310} each indicate twelve different planes. Counting all the axes and planes, the

total is 74.

The interatomic spacing d and the interplanar spacing dpch in monatomic diamond crys-

tals, are obtained by multiplying the respective lattice constant by the following coeffi-

cients [33]:

• Rows: < 100 >: 1, < 110 >: 1/
√
2, < 111 >: 3

√
3/4, < 211 >:

√
6/2, < 311 >: 3

√
11/4

• Planes: {100} : 1/4, {110} : 1/2
√
2, {111} :

√
3/4, {210} : 1/(4

√
5), {310} : 1/(2

√
10)

The Debye temperatures for Si and Ge are Θ = 490 K and Θ = 290 K, respectively

[33, 7, 49].

A.3 CsI

CsI is a diatomic compound that has two interpenetrating f.c.c. lattice structures displaced

by half of a lattice constant with 8 atoms per unit cell. The lattice constant of CsI crystal

is alat = 0.45667 nm at room temperature (Table 3.4 in Appleton and Foti [64]). The

temperature dependence of alat is explained in Appendix D.
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The atomic mass and atomic number of Cs and I areMCs = 132.9 amu, MI = 126.9 amu,

ZCs = 55 and ZI = 53.

With respect to the Thomas-Fermi screening distance, for Cs recoils from a mixed row

or plane we use the average

āCs = (aCsCs + aCsI)/2 = 0.007785 nm, (A.7)

where aCsCs = 0.4685(Z
1/2
Cs + Z

1/2
Cs )

−2/3 = 0.007761 nm and aCsI = 0.4685(Z
1/2
Cs + Z

1/2
I )−2/3 =

0.007809 nm correspond to a Cs scattering from a Cs and an I lattice atom, respectively. On

the other hand, for Cs recoils from a pure row or plane we use aCsCs. Similarly, for I recoils

from a mixed row or plane, we use

āI = (aII + aCsI)/2 = 0.007833 nm, (A.8)

where aII = 0.4685(Z
1/2
I +Z

1/2
I )−2/3 = 0.007857 nm and aCsI correspond to an I ion scattering

from an I and a Cs lattice atom, respectively. For I recoils from a pure row or plane we use

aII.

To compute d and dpch, we have to multiply the lattice constant by the following coeffi-

cients [33] which we also use for NaI:

• Axis: < 100 >: 1/2 , < 110 >: 1/
√
2 , < 111 >:

√
3/2

• Plane: {100} : 1/2 , {110} : 1/2
√
2 , {111} : 1/2

√
3

The Debye temperature of CsI is Θ = 125 K, and the crystals in the KIMS experiment

are currently at a temperature of 293 K [87].

A.4 Solid Xe, Ar, and Ne

Solid Xe, Ar and Ne have f.c.c. lattice structures with 4 atoms per unit cell. The lattice

constant of Xe, Ar and Ne crystals are aXe
lat = 0.620 nm at T = 75 K [103], aAr

lat = 0.525 nm

and aNe
lat = 0.442 nm at T = 4.2 K and atmospheric pressure [104].
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The atomic mass and atomic numbers of Xe, Ar, and Ne are MXe = 131.29 amu, MAr =

39.948 amu, MNe = 20.1797 amu, ZXe = 54, ZAr = 18 and ZNe = 10.

The Thomas-Fermi screening distance for an ion expelled from a lattice site in the crystal

scattering on another atom in the same crystal is aXeXe = 0.4685(Z
1/2
Xe +Z

1/2
Xe )

−2/3 = 0.007808

nm for Xe, aArAr = 0.4685(Z
1/2
Ar +Z

1/2
Ar )

−2/3 = 0.01126 nm for Ar and aNeNe = 0.4685(Z
1/2
Ne +

Z
1/2
Ne )

−2/3 = 0.01370 nm for Ne.

To compute d and dpch, we have to multiply the lattice constant by the following coeffi-

cients [33]:

• Axis: <100>: 1 , <110>: 1/
√
2 , <111>:

√
3

• Plane: {100} : 1/2 , {110} : 1/2
√
2 , {111} : 1/

√
3

The Debye temperatures of Xe, Ar and Ne are ΘXe = 55 K, ΘAr = 85 K and ΘNe = 63

K [105, 106], and the crystals in the Solid Xe R&D Project experiment will be operating at

a temperature of 77.2 K or higher [90].
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APPENDIX B

HEALPix Pixelization

The Hierarchical Equal Area iso-Latitude Pixelization (HEALPix) [76] provides a convenient

way of dividing the surface of a sphere into equal area sectors. An integral over directions can

then be performed as a simple Riemann sum. HEALPix has been introduced to pixelize data

on a sphere and has been used by cosmic microwave background experiments like WMAP

and BOOMERANG.

In HEALPix, the base resolution comprises 12 pixels in three rings: one ring around the

north cap, one ring around the south cap, and one ring around the equator. At a higher

resolution, each base pixel in each ring is divided into smaller pixels of equal area. The

resolution parameter of the grid is Nside and it defines the number of divisions along the side

of a base-resolution pixel which is needed to obtain a partition with higher resolution. We

choose the resolution parameter of the grid to be Nside = 50.

A HEALPix map has Npixel = 12N2
side pixels, each with the same area. The angular

resolution of the map can be estimated by computing the solid angle covered by each pixel

Ω = 4π/Npixel, and finding the typical diameter of each pixel as if it were small and of circular

shape, θres = 2
√

Ω/π. This gives θres = 2/(
√
3Nside) = 66.2◦/Nside. By choosing Nside = 50,

we have 30,000 pixels on the sphere, and a resolution of 1.3 degrees. If the HEALPix is

properly aligned with the cubic crystal so that there is a pixel in each <100> direction,

this resolution should be sufficient for computing our integrals accurately. We have tried

different values of Nside, up to Nside = 400 (for which the resolution is θres = 0.166◦), and

we found that the value of the channeling fraction already converges within one percent for

Nside = 20. Thus, we used Nside = 50 as a safe value in out calculations.

The following algorithm [76] was used to generate a list of unit vectors on a sphere, with
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each unit vector in the direction of one of the HEALPix pixels. Let p be the pixel index,

with p = 0, 1, . . . , Npixel − 1. We start with the definitions:

pmax = 12N2
side − 1, pnorthmax =

pmax + 1

2
+ 2Nside − 1. (B.1)

If p > pnorthmax , then q = pmax − p otherwise q = p. Then we define

npolar = Nside − 1, nequatorial = Nside + 1, pequatorialmin = 2Nside(Nside − 1). (B.2)

We proceed to compute the cylindrical coordinates z and φ of the direction of the p-th

HEALPix pixel. If q ≥ p equatorial
min , the pixel belongs to one of the polar rings and we succes-

sively compute

h = p− pequatorialmin , (B.3)

i =

⌊
ph

4Nside

⌋
+Nside, (B.4)

j = [h mod (4Nside)] + 1, (B.5)

z =
4

3
− 2i

3Nside

, (B.6)

s = (i−Nside + 1) mod 2, (B.7)

φ =
π

2Nside

(
j − s

2

)
. (B.8)

Here ⌊x⌋ is the minimum integer less or equal to x, and x mod y is the remainder of the

integer division of x by y. If q < pequatorialmin , the pixel belongs to the equatorial ring and we

successively compute

h =
q + 1

2
, (B.9)

i =

⌊√
h−

√
⌊h⌋
⌋
+ 1, (B.10)

j = q + 1− 2i(i− 1), (B.11)

If p > pnorthmax then j = 4i− j + 1, (B.12)

z = 1− i2

3N2
side

, (B.13)

If p > pnorthmax then z = −z, (B.14)

φ =
π

2i

(
j − 1

2

)
. (B.15)
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Finally, the direction vector of the p-th pixel is given by

n̂p =
(√

1− z2 cosφ,
√
1− z2 sinφ, z

)
. (B.16)
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APPENDIX C

Matyukhin model of planar channeling

Matyukhin in Ref [67] uses a different condition for planar channeling than we used previously

which consists of Eq. 3.6 written in terms of the planar potential, namely U ′′
p (x) < 8E/d2p

(where ′′ denotes the second derivative with respect to x). We have not been able either

to derive this condition for the planar potential or to find the derivation of this condition

anywhere. We have not found the results derived from this condition compared with data

either, but we mention the model for completeness. For Lindhard’s planar potential, the

condition used by Matyukhin becomes

E >
dp

2

8

C2aE2

[x2min + C2a2]3/2
, (C.1)

where xmin is the minimum distance of approach to the plane, dp = 1/
√
Ndpch and

E2 = Eψ2
a = 2πNdpZ1Z2e

2a. (C.2)

From Eq. C.1, the smallest possible value of xmin is now

xMc (E) = Ca

√(
dp

2E2

8Ca2E

)2/3

− 1. (C.3)

For all the energies we consider here (∼ keV and above), xMc is smaller than dpch/2, thus

Up(dpch/2) can be neglected in the definition of the critical planar angle ψp
c , Eq. 3.25. At low

energies E ≤ dp
2E2(8Ca

2)−1 we have xMc (E) ≃ Ca(dp
2E2/8Ca

2E)1/3 = (C2πZ1Z2e
2a2/4E)1/3

and

ψpM
c (E) ≃

(
C2 a E2

dp E

)1/3

=

(
2 C2πZ1Z2e

2(Ndpch)
3/2a2

E

)1/3

, (C.4)

where ψpM
c (E) = (6π)1/3θpl and θpl is the critical angle used by DAMA.
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Figure C.1: Comparison of (a) (top left) critical distances of approach and (b) (top right)

critical angles at 20 ◦C with c1 = c2 = 1 in the {100} planar channel predicted by our main

model (solid lines, see Figs. 3.4, 3.5) and by Matyukhin’s (dashed lines).(c) (bottom left)

and (d) (bottom right), same for the {111} planar channel. Green/gray lines are for Na and

black for I propagating ions.
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Figure C.2: Channeling fractions using Matyukhin’s model for the planar channel as a

function of the energy of recoiling Na and I ions for T=600 ◦C (green/light gray), 293

K (black) and 77.2 K (orange/dark gray) for T-corrections included in the lattice with

c1 = c2 = 1, (a) without and (b) with dechanneling included as in Eq. 3.34. The probabilities

are larger than in our main method, but we do not trust Matyukhin’s approach.

As E approaches the value dp
2E2(8Ca

2)−1, xMc (E) approaches zero. At larger energies,

E > dp
2E2(8Ca

2)−1, xMc (E) in Eq. C.3 becomes imaginary, but xMc (E) is by definition real

and positive thus one could take it to be zero. Matyukhin takes in this case xMc (E) = a

instead. Either way, in this energy range ψpl
c (E) ≃ ψa which is the value given by Lindhard

for the “breakthrough” angle [40] necessary to have E perp = Up(0). We take xMc (E) = a

wherever the prediction of Eq. C.3 is smaller than a. Including temperature corrections due

to the thermal and zero point energy vibrations of the atoms in the lattice, we have xc(T )

as in Eq. 3.30.

The equations of Matyukhin coincide with those presented here if C = 1 (but, following

Lindhard, we take C =
√
3 instead).

A comparison of the static critical distances of approach xc(E) in our method (using

Eq. 3.22 and 3.25) and in Matyukhin’s model, and of the critical angles for c1 = c2 = 1 in

both models is shown in Figs. C.1(a) and C.1(c) and in Figs. C.1(b) and C.1(d) respectively

for the {100} and {111} planar channels respectively. The Matyukhin critical distances of

approach are smaller (and thus the critical angles larger) than those in our main method at
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Figure C.3: Same as Fig. C.2 (for Matyukhin’s model) but for c1 = c2 = 2.

low energies, which leads to higher channeling fractions, as shown in Figs. C.2 and C.3 for

c1 = c2 = 1 and for c1 = c2 = 2 respectively. In these figures the left panels are without and

the right panels with dechanneling as in Eq. 3.34 included. The channeling fractions using

Matyukhin’s model are much higher than the fractions we obtain with our method, but, as

explained above, we do not trust Matyukhin’s model. The critical distances in Matyukhin’s

model (see Figs. C.1(a) and C.1(c)) have a discontinuous slope at the energy where they

become constant and this shows in the channeling fraction curves also as discontinuities in

slope (at the values of E at which different important channels have a sharp change in xMc ).
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APPENDIX D

Probability of correlated channels

In Eq. 3.50 we treat channeling along different channels as independent events. Here we

prove that this procedure is adequate for our purpose of providing upper bounds to the

channeling fractions.

For an axial channel when ϕ < ψc (otherwise χaxial = 0), the integration region in Eq. 3.40

is the exterior of an infinitely long cylinder of radius ri,min(E, ϕ) and axis coincident with

the channel axis. Similarly, for a planar channel when ϕ < ψp
c (otherwise χplanar = 0), the

integration region in Eq. 3.42 is the exterior of an infinite slab of half-thickness xi,min(E, ϕ).

Let us consider the complements of the integration regions, i.e. the regions excluded in the

integrals. These are the regions interior to a cylinder (for an axial channel) or a slab (for a

planar channel).

Note that only channels making angles with the direction q̂ (of the initial momentum)

smaller than their respective critical angles contribute to the union of integration regions.

Therefore the problem of combining channels arises only when a recoil direction belongs to

more than one channel, and this happens if the channels overlap for some directions of q̂.

For the cases we consider (cubic lattices), only axial channels overlap with a subset of planar

channels, or two or more planar channels overlap with each other. Notice that two different

planar channels crossing at an angle, overlap in a parallelepiped of very long length on one

side, thus one can define an inscribed cylinder within the parallelepiped, whose diameter is

equal to the smallest of the two widths of both planar channels.

We can obtain an upper limit to the channeling probability of overlapping channels by

replacing the intersection of the complements of the integration regions with the inscribed

circle of radius rMIN equal to the minimum of the ri,min or xi,min among the overlapping
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Figure D.1: Maximum channeling fractions using Eq. D.1 for c1 = c2 = c and c = 0 (dashed

green), c = 1 (dashed yellow) and c = 2 (dashed cyan) compared with the results of our

method of Section 3.3.3 (solid black lines) for the same models for (a) Na ions and (b) I ions

propagating in NaI crystal at T = 293 K. Notice that the lines overlap.

channels. Then an upper bound to the probability χrec(E, q̂) in Eq. 3.52 is

χrec(E, q̂) ≤
∫ ∞

rMIN

drg(r) = exp (−r2MIN/2u
2
1). (D.1)

When only one channel is open (i.e. ϕ < ψc for only one channel), we still use Eq. 3.40 or

3.42 for the channeling probabilities.

Fig. D.1 shows the comparison of this upper limit with the fractions we computed using

Eq. 3.50 for NaI crystal. The two are practically indistinguishable. This proves that the

method we used (see Section 3.3.3) is adequate for our purpose of providing upper bounds

to the channeling fractions in NaI.

We find that the two methods give practically indistinguishable results for Si and Ge

also, as clearly shown in Fig. D.2 for some particular examples.

Fig. D.3 shows the channeling fractions of Si ions propagating in a Si crystal and Ge ions

propagating in a Ge crystal for individual channels with c1 = c2 = 1 and T= 293 K. The

black and green (or gray) lines correspond to single axial and planar channels respectively.

Fig. D.3 shows that at low energies channeling is dominated by axial channels which do

not overlap, so treating them as independent is strictly correct. However, at the transition
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Figure D.2: Same as Fig. D.1 but for (a) Si ions propagating in a Si crystal and (b) Ge ions

propagating in a Ge crystal at T = 293 K.
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Figure D.3: Channeling fractions of (a) Si ions propagating in a Si crystal and (b) Ge

ions propagating in a Ge crystal for single planar (green/gray lines) and axial (black lines)

channels, as function of the recoil energy E, for T= 293 K and c1 = c2 = 1.
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energy of 1 to 10 MeV at which axial and planar channels are both equally important, and at

higher energies at which planar channels dominate, the overlap of one axial and two or more

planar channels, or the overlap of two or more planar channels among themselves, makes the

channeling along them not necessarily uncorrelated. Still we find that considering channeling

along different channels as independent is a good approximation if we are interested in

providing upper bounds to the channeling fractions.
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APPENDIX E

Temperature dependence of lattice constant

In general the lattice constant, alat is temperature dependent. The change in alat with

temperature depends on the thermal expansion coefficient, β of a crystal. For NaI, βNaI =

47.4 × 10−6 ◦C−1. To find the change in the lattice constant at a temperature T and the

lattice constant at 20 ◦C, we have

[alat(T )− alat(20
◦C)]/alat(20

◦C) = β(T − 20 ◦C), (E.1)

where alat(20
◦C) is the lattice constant at 20 ◦C. When T changes from 20 ◦C to 600 ◦C,

the change in the lattice constant of NaI (using Eq. E.1) is only 2.75%. This change in alat

between 20 ◦C and 600 ◦C results in a negligible change in the channeling fractions. As an

example the Na channeling fractions with c1 = c2 = 1 and c1 = c2 = 2 for the two choices of

alat(20
◦C) and alat(600

◦C) are shown in Fig. E.1.a. As the two curves are very similar, we

use alat(20
◦C) for all three crystal temperatures we considered for NaI in Chapter 3.

We can use Eq. E.1 to find the temperature dependent lattice constant for CsI, Si and

Ge crystals. For these three crystals, the coefficient of thermal expansion is βCsI = 54 ×

10−6 ◦C−1, βSi = 2.6× 10−6 ◦C−1, and βGe = 5.9× 10−6 ◦C−1. When T changes from 20 ◦C

to 600 ◦C, the change in the lattice constant of CsI (Tl) is 3.1%. In Si and Ge, we can go to

higher temperatures, and the maximum temperature that we considered in Chapter 4 was

900 ◦C. When T changes from 20 ◦C to 900 ◦C, the change in the lattice constant of Si and

Ge is 0.23% and 0.52% respectively.

The Cs channeling fractions with c1 = c2 = 1 and c1 = c2 = 2 for the two choices of

alat(20
◦C) and alat(600

◦C) are shown in Fig. E.1.b for a CsI crystal. Fig. E.2 shows the

channeling fractions for Si and Ge for the two choices of alat(20
◦C) and alat(900

◦C). Clearly,
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Figure E.1: Channeling fraction of (a) Na ions propagating in an NaI crystal and (b) Cs

ions propagating in a CsI crystal as a function of the recoil energy E for T = 600 ◦C with

alat(600
◦C) (black) and alat(20

◦C) (green/gray) for the two choices of c1 = c2 = 1 or 2.
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Figure E.2: Channeling fraction of (a) Si ions propagating in a Si crystal and (b) Ge ions

propagating in a Ge crystal as a function of the recoil energy E for T = 900 ◦C with

alat(900
◦C) (black) and alat(20

◦C) (green/gray) for the two choices of c1 = c2 = 1 or 2.
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the change in the curves is negligible. Thus we always used the value of alat measured at 20

◦C for CsI, Si and Ge.
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APPENDIX F

Crystal Orientation

We need to orient the crystal with respect to the laboratory. We define a reference frame

fixed with the laboratory and orient its axes so that the xy plane is horizontal, the x-axis

points North, the y-axis points West, and the z-axis points to the zenith. We denote its

unit coordinate vectors as N̂ , Ŵ and Ẑ, respectively. We also define the crystal frame with

X,Y, Z cartesian axes fixed with the crystal. The unit coordinate vectors of the crystal

frame are X̂, Ŷ and Ẑ.

We now want to connect the laboratory frame to the crystal frame. Let the standard

orientation correspond to the configuration in which X̂ = N̂ , Ŷ = Ŵ , and Ẑ = Ẑ. We start

with the crystal in the standard orientation, and we turn it into any other orientation X̂,

Ŷ, Ẑ. In this new orientation, each of the unit coordinate vectors of the crystal frame can

be written in terms of unit coordinate vectors of the lab frame,

X̂ = αX N̂ + βX Ŵ + γX Ẑ,

Ŷ = αY N̂ + βY Ŵ + γY Ẑ,

Ẑ = αZ N̂ + βZ Ŵ + γZ Ẑ, (F.1)

where αi, βi and γi are the “direction cosines” between the two sets of cartesian coordinates

of the lab and crystal frames, for i = X,Y, Z. For example, the coordinate vector X̂ of

the crystal has a particular angle with each of the lab frame coordinate vectors N̂ , Ŵ , Ẑ.

Let aX be the angle between X̂ and N̂ , bX the angle between X̂ and Ŵ , and cX the angle
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between X̂ and Ẑ. The direction cosines of the unit vector X̂ are given by,

αX ≡ cos aX = X̂ · N̂ ,

βX ≡ cos bX = X̂ · Ŵ ,

γX ≡ cos cX = X̂ · Ẑ. (F.2)

We can find the direction cosines for Ŷ and Ẑ unit vectors in a similar way. From these

definitions it follows that αi αj + βi βj + γi γj = δij where i, j = X,Y, Z. We prefer using

direction cosines over Euler angles because the direction cosines can easily be measured for

any known orientation of a crystal in a laboratory, whereas it may be difficult to specify the

Euler angles.

Eq. F.1 gives the transformation from the lab frame to the crystal frame. We can also

find the lab coordinate vectors in terms of the crystal coordinate vectors,

N̂ = αX X̂+ αY Ŷ+ αZ Ẑ,

Ŵ = βX X̂+ βY Ŷ+ βZ Ẑ,

Ẑ = γX X̂+ γY Ŷ+ γZ Ẑ. (F.3)

In the results we show in Chapter 7, we took αX = βY = γZ = 1 and all the other αi, βi and

γi equal to zero. Choosing a different orientation for the crystal does not change the average

rate, but As may change by a factor of 2 for NaI depending on the orientation of the crystal.

The observability condition is still not satisfied.

F.1 Lab to equatorial transformation

To connect the laboratory frame to the equatorial coordinate frame, we recall the definition

of the geocentric equatorial inertial (GEI) frame: its origin is at the center of the Earth, its

xe-axis points in the direction of the vernal equinox, its ye-axis points to the point on the

celestial equator with right ascension 90◦ (so that the cartesian frame is right-handed), and

its ze-axis points to the north celestial pole. We denote its unit coordinate vectors as x̂e, ŷe,

and ẑe. We want to find the transformation formulas from the laboratory frame to the GEI
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frame.

This transformation can be achieved by two successive rotations. The first rotation is by

an angle of (90◦ − λlab) counterclockwise about the laboratory y-axis to align the new x′y′

plane with the plane of the celestial equator. Here λlab is the latitude of the laboratory in

degrees, with northern latitudes taken as positive and southern latitudes taken as negative.

With this rotation, the new z′-axis points to the north celestial pole. The second rotation is

by an angle (15tlab+180) degrees clockwise about the new z′-axis to bring the x′-axis in the

direction of the vernal equinox. Here tlab is the laboratory Local Apparent Sidereal Time

(LAST) in hours (the LAST is the hour angle of the vernal equinox at the location of the

laboratory). One has

tlab = tGAST + llab/15, (F.4)

where tGAST is the Greenwich Apparent Sidereal Time (GAST) in hours and llab is the

longitude in degrees measured positive in the eastward direction (e.g. llab = +110◦ for 110◦

E and llab = −110◦ for 110◦ W).

The current local apparent sidereal time for any specified longitude llab can be computed

online, for example on the website of the US Naval Observatory at http://tycho.usno.navy.mil/

sidereal.html (accessed Sept 19, 2010). As an alternative, one can use the following formula

[107, 108] for the Greenwich mean sidereal time (which differs from the Greenwich apparent

sidereal time by less than 1.2 seconds, completely negligible for our purposes),

tGAST = (101.0308 + 36000.770T0 + 15.04107UT)/15, (F.5)

where

T0 =
⌊MJD⌋ − 55197.5

36525.0
. (F.6)

Here UT is the Universal Time in hours, ⌊MJD⌋ is the integer part of the modified Julian

date (MJD), which is the time measured in days from 00:00 UT on 17 November 1858 (Julian

date 2400000.5). Note that T0 is the time in Julian centuries (36525 days) from 12:00 UT

on 1 January 2010 to the previous midnight. At 12:00 UT on 1 January 2010, the Julian

date is 2455198, and the MJD is 55197.5. Also the the 15.04107/15 in Eq. F.5 corrects from
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solar time (UT) to sidereal time. Sidereal day is shorter than Solar day by 3.9 minutes. In

Chapter 7, all our results are computed for the particular arbitrary day of 25 September

2010, for which T0 = 0.00729637.

Note also that UT is different from coordinated Universal Time (UTC) which is the time

scale usually used for data recording. UTC is atomic time adjusted by an integral number

of seconds to keep it within 0.6 s of UT. For our purposes the difference between UT and

UTC is negligible.

Taking into account the two rotations explained above, one can find the transformation

equations of the unit vectors,

x̂e = − cos(t◦lab)
[
sin(λlab)N̂ − cos(λlab)Ẑ

]
+ sin(t◦lab)Ŵ ,

ŷe = − sin(t◦lab)
[
sin(λlab)N̂ − cos(λlab)Ẑ

]
− cos(t◦lab)Ŵ ,

ẑe = cos(λlab)N̂ + sin(λlab)Ẑ, (F.7)

where t◦lab = 15tlab is the laboratory LAST converted to degrees.

As a check, for a laboratory on the equator at local sidereal time 0, i.e. λlab = 0◦ and

t◦lab = 0◦, one has x̂e = Ẑ, ŷe = −Ŵ , and ẑe = N̂ ; six sidereal hours later at the same

laboratory, i.e. λlab = 0◦ and t◦lab = 90◦, one has x̂e = Ŵ , ŷe = Ẑ, and ẑe = N̂ ; for a

laboratory at the South Pole (λlab = −90◦), using the direction of the Greenwich meridian

in place of the ”North” axis N̂ so that the local sidereal time at the South Pole by convention

coincides with the Greenwich sidereal time, one has x̂e = N̂ , ŷe = −Ŵ , and ẑe = −Ẑ at

t◦lab = 0◦ and x̂e = Ŵ , ŷe = N̂ , and ẑe = −Ẑ at t◦lab = 90◦ . All of these are correctly given

by Eq. F.7.

The formulas in Eq. F.7 can be inverted, and the transformation from the equatorial

frame to the lab frame is achieved:

N̂ = − sin(λlab) [cos(t
◦
lab)x̂e + sin(t◦lab) ŷe] + cos(λlab)ẑe,

Ŵ = sin(t◦lab)x̂e − cos(t◦lab) ŷe,

Ẑ = cos(λlab) [cos(t
◦
lab)x̂e + sin(t◦lab) ŷe] + sin(λlab)ẑe. (F.8)
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Figure F.1: (Color online) Earth’s sphere in the equatorial frame (x̂e,ŷe,ẑe) specified with

black arrows. The laboratory frame (N,W,Z) specified with blue/dark gray arrows is also

shown.

The latitude and longitude of Gran Sasso are λlab = 42.45◦ and llab = 13.7◦, respectively.

Fig. F.1 shows the laboratory frame (N̂ , Ŵ , Ẑ) and the equatorial coordinate frame

(x̂e,ŷe,ẑe) plotted on the Earth’s sphere at UT = 0 using Eq. F.8.

F.2 Equatorial to galactic transformation

To connect the equatorial frame to the galactic coordinate frame, we recall the definition

of the galactic coordinate system: its origin is at the position of the Sun, its xg-axis points

towards the galactic center, its yg-axis points in the direction of the galactic rotation, and

its zg-axis points to the north galactic pole.

For the epoch of January 1950.0 the transformation from the equatorial frame (x̂e, ŷe, ẑe)
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to the galactic frame (x̂g, ŷg, ẑg) is given by [109]:

x̂g = x̂e (−0.06699) + ŷe (−0.8728) + ẑe (−0.4835),

ŷg = x̂e (0.4927) + ŷe (−0.4503) + ẑe (0.7446),

ẑg = x̂e (−0.8676) + ŷe (−0.1883) + ẑe (0.4602). (F.9)

The transformation from the galactic frame to the equatorial frame is given by

x̂e = x̂g (−0.06699) + ŷg (0.4927) + ẑg (−0.8676),

ŷe = x̂g (−0.8728) + ŷg (−0.4503) + ẑg (−0.1884),

ẑe = x̂g (−0.4835) + ŷg (0.7446) + ẑg (0.4602). (F.10)

The change of Eqs. F.9 and F.10 from the epoch of January 1950.0 to 25 September 2010 is

small and would not affect the final results in Chapter 7.
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APPENDIX G

Laboratory motion

The velocity of the lab with respect to the center of the Galaxy can be divided into four

components (as in Eq. 7.9): V GalRot, VSolar, VEarthRev and VEarthRot.

We take VGalRot = 220 km/s or 280 km/s [95], VSolar = 18 km/s [110], VEarthRev = 29.8

km/s and VEarthRot = (0.465102 km/s) cosλlab, where λlab is the latitude of the lab. Values of

VGalRot = 220 km/s or 280 km/s results in Vlab = 228.4 km/s or 288.3 km/s, respectively (see

Appendix F.5 for the equation of Vlab). Thus, Vlab is dominated by the galactic rotation

velocity.

We need to compute q̂ · Vlab, where q̂ is given in the crystal reference frame (q̂ =

qX X̂+ qY Ŷ+ qZ Ẑ). Therefore, we need to also write Vlab in the crystal frame. We have,

q̂ ·Vlab = q̂ ·VGalRot + q̂ ·VSolar + q̂ ·VEarthRev + q̂ ·VEarthRot. (G.1)

We will compute each term on the right-hand side of Eq. G.1 individually.

G.1 Galactic rotation

The velocity of the galactic rotation VGalRot is defined in the galactic reference frame,

VGalRot = VGalRotŷg, (G.2)

where VGalRot is the galactic rotation speed (i.e. the local circular speed), and ŷg is in the

direction of the galactic rotation. Following Ref. [95] , we take VGalRot = 220 km/s or 280

km/s. Using the conversions in Eq. F.9, we can write ŷg in the equatorial reference frame in

terms of (x̂e, ŷe,ẑe). Then, we use Eq. F.7 to transform from the equatorial frame to the lab
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frame (N̂ , Ŵ , Ẑ), and finally we use Eq. F.3 to transform from the lab frame to the crystal

frame (X̂, Ŷ, Ẑ).

Thus, we can use Eq. F.3 to write VGalRot in terms of the crystal frame coordinates, and

compute q̂ ·VGalRot,

q̂ ·VGalRot = qXVGalRot,X + qY VGalRot,Y + qZVGalRot,Z. (G.3)

We have

q̂ ·VGalRot = VGalRot

{(
[−0.4927 cos(t◦lab) + 0.4503 sin(t◦lab)] sin(λlab)

+ 0.7446 cos(λlab)

)
(αXqX + αY qY + αZqZ) +

(
0.4927 sin(t◦lab)

+ 0.4503 cos(t◦lab)

)
(βXqX + βY qY + βZqZ) +

([
0.4927 cos(t◦lab)

− 0.4503 sin(t◦lab)
]
cos(λlab) + 0.7446 sin(λlab)

)
(γXqX + γY qY + γZqZ)

}
. (G.4)

Eq. G.4 has a time dependence through t◦lab and would be responsible for any daily modula-

tion in the rate.

G.2 Solar motion

The velocity of the Sun’s motion in the galactic rest frame is,

VSolar = U x̂g + V ŷg +W ẑg, (G.5)

where (U, V,W )⊙ = (11.1, 12.2, 7.3) km/s [110]. Using Eq. F.9, we can transform from

the galactic frame to the equatorial frame, and using Eq. F.7 we can transform from the

equatorial frame to the lab frame. Then we can use Eq. F.3 to write VSolar in terms of the

crystal frame coordinates.
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Thus, we can compute q̂ ·VSolar as

q̂ ·VSolar =

([
(1.066 km/s) cos(t◦lab) + (16.56 km/s) sin(t◦lab)

]
sin(λlab)

+ (7.077 km/s) cos(λlab)

)
(αXqX + αY qY + αZqZ)

+

(
− (1.066 km/s) sin(t◦lab) + (16.56 km/s) cos(t◦lab)

)
(βXqX + βY qY + βZqZ) +

(
−
[
(1.066 km/s) cos(t◦lab)

+ (16.56 km/s) sin(t◦lab)
]
cos(λlab) + (7.077 km/s) sin(λlab)

)
(γXqX + γY qY + γZqZ). (G.6)

Clearly, Eq. G.6 has a time dependence through t◦lab and would be responsible of any daily

modulation in the rate.

G.3 Earth’s revolution

The velocity of the Earth’s revolution around the sun is given in terms of the Sun ecliptic

longitude λ as [111]

VEarthRev = V⊕(λ)[cos β(x) sin(λ− λx)x̂g

+ cos β(y) sin(λ− λy)ŷg + cos β(z) sin(λ− λz)ẑg], (G.7)

where V⊕ = 29.8 km/s is the orbital speed of the Earth, V⊕(λ) = V⊕[1 − e sin(λ − λ0)],

e = 0.016722, and λ0 = 13◦ + 1◦ are the ellipticity of the Earth’s orbit and the eclip-

tic longitude of the orbit’s minor axis, respectively, and βi = (−5◦.5303, 59◦.575, 29◦.812)

and λi = (266◦.141,−13◦.3485, 179◦.3212) are the ecliptic latitudes and longitudes of the

(x̂g,ŷg,ẑg) axes, respectively.

The Sun’s ecliptic longitude λ can be expressed as (p. 77 of Ref. [112] and Ref. [111]),

λ = L+ (1◦.915− 0◦.0048T0) sin g + 0◦.020 sin 2g, (G.8)

where L = 281◦.0298+36000◦.77T0+0◦.04107UT is the mean longitude of the Sun corrected

129



for aberration, g = 357◦.9258+35999◦.05T0+0◦.04107UT is the mean anomaly (polar angle

of orbit).

Using Eq. F.9, we can transform from the galactic frame to the equatorial frame, and

using Eq. F.7 we can transform from the equatorial frame to the lab frame (N̂ , Ŵ , Ẑ). Then

we can use Eq. F.3 to write VSolar in terms of the crystal frame coordinates.

Thus, we can compute q̂ ·VEarthRev as

q̂ ·VEarthRev = V⊕(λ)

{[
− cos(t◦lab) sin(λlab)A− sin(t◦lab) sin(λlab)B

+ cos(λlab)C
]
(αXqX + αY qY + αZqZ)

+
[
sin(t◦lab)A− cos(t◦lab)B

]
(βXqX + βY qY + βZqZ)

+
[
cos(t◦lab) cos(λlab)A+ sin(t◦lab) cos(λlab)B

+ sin(λlab)C
]
(γXqX + γY qY + γZqZ)

}
, (G.9)

where

A = (−0.06699) cos β(x) sin(λ− λx) + (0.4927) cos β(y) sin(λ− λy)

+ (−0.8676) cos β(z) sin(λ− λz),

B = (−0.8728) cos β(x) sin(λ− λx) + (−0.4503) cos β(y) sin(λ− λy)

+ (−0.1883) cos β(z) sin(λ− λz),

C = (−0.4835) cos β(x) sin(λ− λx) + (0.7446) cos β(y) sin(λ− λy)

+ (0.4602) cos β(z) sin(λ− λz). (G.10)

Eq. G.9 has a time dependence through t◦lab and λ and would be responsible for any daily

modulation in the rate.

G.4 Earth’s rotation

Finally, we want to compute VEarthRot, the velocity of Earth’s rotation around itself. We

have

VEarthRot = −VRotEq cosλlabŴ , (G.11)
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where VRotEq is the Earth’s rotation speed at the equator, and is defined as VRotEq =

2πR⊕/(1 sidereal day). The Earth’s equatorial radius is R⊕ = 6378.137 km, and one

sidereal day is 23.9344696 hr= 86164 s. therefore V RotEq = 0.465102 km/s.

Using Eq. F.3 to write Ŵ in terms of the crystal frame coordinates, we can easily find

q̂ ·VEarthRot as

q̂ ·VEarthRot = −VRotEq cosλlab (βXqX + βY qY + βZqZ) . (G.12)

There is no time dependence in Eq. G.12, because it is written in the crystal frame, and

both the lab and the crystal are rotating with the Earth.

G.5 Total Velocity

Now we can insert Eqs. G.4, G.6, G.9 and G.12 into Eq. G.1 to compute q̂ ·Vlab. Inserting

the values of V⊕ = 29.8 km/s, ϵ = 23.439◦ and V RotEq = 0.465 km/s, we have (in km/s):

q̂ ·Vlab =

{[
− cos(t◦lab) A+ sin(t◦lab) B

]
sinλlab + C cosλlab

}
(αXqX + αY qY + αZqZ) +

{
sin(t◦lab) A+ cos(t◦lab) B

− 0.465 cosλlab

}
(βXqX + βY qY + βZqZ) +

{[
cos(t◦lab) A

− sin(t◦lab) B

]
cosλlab + C sinλlab

}
(γXqX + γY qY + γZqZ) , (G.13)

where

A = 0.4927 VGalRot − 1.066 km/s + V⊕(λ) A,

B = 0.4503 VGalRot + 16.56 km/s− V⊕(λ) B,

C = 0.7445 VGalRot + 7.077 km/s + V⊕(λ) C. (G.14)
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