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ABSTRACT

A general method to treat internal constraints within the context of mixed finite ele-
ment methods has been presented in previous work. The underlying idea is to constrain
the assumed stress and strain fields to satisfy the homogeneous equilibrium equations in a
weak sense and thus, satisfy a priori the internal constraints. This method is now applied
to generate four-node plane stress/strain elements. For these elements, it is proved that
locking at the nearly incompressible limit (plane strain) is avoided at the element level.
The proposed elements are shown to yield excellent results on a set of standard problems.
Furthermore, excellent stresses are obtained at the element level.
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A UNIFIED APPROACH TO MIXED FINITE ELEMENT
METHODS: APPLICATION TO IN-PLANE PROBLEMS

Shmuel L. Weissman & Robert L. Taylor

Department of Civil Engineering
University of California at Berkeley

1. INTRODUCTION

1.1 Motivation and objective

Over the last two decades much research has been devoted to the design of plane
strain elements that do not lock at the nearly incompressible limit. Numerous methods
have been proposed (see below). Unfortunately, most of these methods are either based on
parameter tuning or cannot be applied to other problems involving internal constraints
(e.g., plate bending).

In this work the method presented by Weissman & Taylor [1990] is applied to gen-
erate assumed stress and strain fields for four-node plane stress/strain elements. In particu-
lar, emphasis is put on proving that the proposed elements do not lock at the nearly
incompressible limit. In totality, the proposed elements should exhibit the following pro-
perties:

e  Resolve locking at the nearly incompressible limit (plain strain) at the element level.

° Recover stresses that are variationally consistent with the formulation used to obtain
the displacement field.

e  Produce reliable stresses at the element level (without recourse to smoothing).

@  Possess correct rank (no spurious energy modes).

e  Have performance independent of coordinate system or user input data.

1.2 Background

Solution of plane strain problems at the nearly incompressible limit have traditionally
posed severe problems in the development of finite element models. This setback is the
result of the failure of finite element models to impose the incompressibility constraint
pointwise (e.g., Hughes [1987]).

Much effort has been directed at producing finite element models that avoid the lock-

ing phenomenon at the nearly incompressible limit. Initial approaches utilized reduced
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integration. However, this approach often results in unstable elements due to the appear-
ance of spurious zero energy modes (Bicanic & Hinton [1979]). To overcome this diffi-
culty, Hughes [1977] used Selective Reduced Integration (SRI). Malkus & Hughes [1978]
showed the SRI scheme to fall within the concept of mixed finite element methods.
Hughes [1980] refined the SRI scheme into a general method, known as the B-bar method.
Simo er al. [1985] showed that the B-bar method can be derived from the Hu-Washizu
variational principle.

Using a projection operator, Flanagan & Belytschko [1981] showed that the usual fin-
ite element approximation can be rewritten in a form that leads to decoupling of the stiff-
ness matrix, which can be written as the sum of the decoupled under-integrated stiffness
matrix and a ‘‘stabilization” stiffness matrix. Following this approach Belytschko &
Bachrach [1986] presented formulations based upon the Hu-Washizu functional. The best
of the elements presented is known as the Quintessential Bending Incompressible (QBI).
This element, however, is not frame invariant (i.e., it is dependent upon the coordinate
system) unless a unique local coordinate system is defined and the element stiffness matrix
and load vector, defined in the local coordinate system, are transformed to the global coor-

dinate system.

Wilson, et al. [1973] took yet another approach. They observed that when the four-
node element (isoparametric displacement formulation) is subjected to pure bending it
deforms in shear rather than in bending. As a result of this anomaly, the element is stiff
in bending. In order to improve the element bending behavior, they introduced a set of
incompatible displacements. It was soon realized, however, that the distorted element did
not pass the constant strain patch test. Taylor, er al. [1976] modified the incompatible
modes element so that the resulting element passed the patch test. In addition to the
improved behavior in bending this element avoids locking at the nearly incompressible
limit (this property was not observed, however, when the elements were first presented).
Conditions for convergence when incompatible modes are used were presented by Strang &
Fix [1973].

Pian & Sumihara [1984] used incompatible displacements to generate an assumed
stress field for a four-node plane stress element, which was formulated via the Hellinger-
Reissner variational principle. This element exhibits excellent characteristics in bending
applications. In addition, its sensitivity to mesh distortion from a parallelogram shape
appears to be among the smallest of four-node elements. Furthermore, when modified to
account for plane strain constitutive relations, it avoids locking at the nearly incompressible
limit. Initially, the formulation required a quadratic perturbation of the element shape.
Recently, Pian & Wu [1988] presented a new formulation that avoids this perturbation. A
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general formulation to generate incompatible element functions was presented by Wu, ez
al. [1987].

Simo & Rifai [1989] presented four-node elements based upon the Hu-Washizu func-
tional which introduced ‘‘enhanced strains.” Results reported for these elements are
almost identical to the results obtained by the element presented by Pian & Sumihara
[1984].

Weissman & Taylor [1990] proposed a general method to generate assumed stress and
strain field in the context of mixed finite element methods. In order to avoid the limita-
tion principle as put forth by Fraeijs de Veubeke [1965], the assumed fields must satisfy the
equilibrium equations at least in a weak sense. Consequently, the assumed fields are con-
structed to satisfy the homogeneous equilibrium equations in a weak sense. As a result,

the internal constraints are satisfied a priori.

1.3 Paper overview

The stress and strain field generation procedure is reviewed in Section 2. The strong
form for the plane stress and plane strain problems is summarized in Section 3. The finite

element approximation is contained in Section 4.

In Section 5 four-node quadrilateral elements formulated via either the Hellinger-
Reissner or the Hu-Washizu functionals are proposed for both the plane stress and plane
strain problems. It is proved that in the case of plane strain the trace of the assumed strain
vanishes, pointwise, as the nearly incompressible limit is approached. Consequently, lock-
ing is avoided.

Numerical examples demonstrating the excellent properties of the proposed elements

are presented in Section 6. Concluding remarks are given in Section 7.

2. SUMMARY OF ASSUMED FIELDS GENERATION PROCEDURE

Internal constraints pose a difficult problem for finite element methods, commonly
manifested by locking. This difficulty was put in the form of a limitation principle by
Fraeijs de Veubeke [1965]. In order to avoid this limitation principle, the assumed stress
and strain fields must satisfy a priori the equilibrium equations and thus, effectively satisfy
the internal constraints. In the context of finite element methods this requirement can be

relaxed, and the equilibrium equations can be satisfied in a weak sense.

Taking advantage of this observation, Weissman & Taylor [1990] presented a general
method to generate assumed stress and strain fields. These fields are constructed to satisfy

in a weak sense the homogeneous equilibrium equations and consequently, the internal
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constraints. This method is formulated within the framework provided by the Hu-Washizu

variational principle, and is summarized below.

Before proceeding to describe the proposed method it is useful to recall the steps
involved in deriving finite elements via the Hu-Washizu functional. To this end let €, o,
and U denote the assumed strain, stress and displacement fields, respectively; L the strain
displacement operator; and D the elastic coefficients matrix. The Hu-Washizu functional,
for the case of small deformations and linear elastic materials (ignoring initial stresses and
strains) is given by:

H,,(cr,e,U):=_fn ;—ETDG-HIT(LU—E) dQ —Tgxr(U) (2.1)

where () is the domain, and Ilgxy is the external work.

The weak, or variational, form may be obtained from the energy functional, Ily, by
making is stationary. This result is obtained by taking the first total variation of I and
equating it to zero. To this end, let d¢, 8¢, and 3U denote virtual strain, stress and dis-

placement fields, respectively. The weak form is given by:
DIl := fﬂ [aeT (De—0c )+ 8c7 (LU —€¢) + (L3U) ¢ —8UTDb ] aQ
- T a =
fa 8UTG?dl =0 (2.2)

where b is the body force vector, ¢® are applied traction boundary conditions, and Ct is

the part of the boundary on which traction boundary conditions are specified.

The finite element model is obtained by approximating the assumed fields. To this

end, let the assumed fields be approximated over each element domain by:

@ Stress field: o=Ss
@ Strain field: e=Ee
@ Displacement field: U=Nd

where S, E, and N are the shape functions for the approximating stress, strain and dis-
placement fields, respectively; and s, e, and d are the vectors of independent stress, strain,

and displacement parameters, respectively.

Substituting the assumed fields into the weak form leads to the following system of

equations (these are the approximated Euler-Lagrange equations):

'H -aAT 0 0
I—A 0 G =[0] (2.3)
f

[0 GT o

e
s
d
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where
H:= anTDEd.Q ;A= fﬂSTEdQ (2.4a)
G:= fnSTBdQ s fi= ande0+ _fa NTo? dT (2.4b)
and B is defined by: B:= LN.
Eliminating the stress and strain coefficients, yields:
Kd=f (2.5)
where K is the element stiffness matrix, given by:
K=GT (AH™AT) G (2.6)

To satisfy stability conditions for every admissible displacement, the following inequalities
must hold (Zienkiewicz, er al. [1986]):

n,+ng=n, ; ng=ny 2.7)

where n,, ng, and n; are the number of strain, stress, and displacement parameters, respec-

tively (ny is equal to the number of nodal degrees-of-freedom).

It is worthwhile noticing that a significant reduction in the computational effort can
be obtained if A is invertible. Henceforth, A is assumed to be invertible. As a result,
n, = n; and consequently, the mixed patch test (Zienkiewicz, et al. [1986]) provides the
minimal number of independent stress and strain parameters. Furthermore, in view of the

desire to minimize computations, this is the optimal number.

As was stated above, the underling idea behind the proposed method is to construct
assumed stress and strain fields so that they satisfy the homogeneous equilibrium equations
in a weak sense. To this end, let the assumed strain field be given as the sum of two

independent fields as follows:

€:=¢& + ¢ (2.8)
and let, for convenience, € be given by:

¢ :=LU (2.9)
where U’ is a displacement field not contained in U*, which is the finite element approxi-
mation of the admissible displacement solution space.

The initially assumed stress, ¢, and compatible strain, é°, fields are constrained so
that the contribution to the energy functional, Il, from the mixed terms containing €/ and
either € or ¢ vanishes in a weak sense over each element’s domain. As a result, the

reduced stress, o, and compatible strain, €, satisfy the homogeneous equilibrium
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equations in a weak sense. Furthermore, it follows from the variational structure that the
incompatible strain, €', is zero pointwise (at the solution). The proposed method is sum-

marized in Box 2.1.

Box 2.1: Proposed Method

1. Select initial assumed (enriched) strain field, €, and stress field,
& (Pascal triangle).

2. Select the incompatible strain field, €, (U° ¢ U*).

3. Reduce the number of independent variables in € and & by

introducing the following constraints:

Juida=0
fne”6d0=0 -0

JTDeda=0 ¢

4. Substitute the reduced fields into the variational principle.

where D is the mean value of D, defined by: D:= fﬂD d.Q/fnd.Q.

D and the constraint equation on U’ are introduced in order to maintain the constant
terms in the initial fields ¢ and &€ decoupled from the non-constant terms also in the
reduced fields (i.e., conserve the ability to pass the constant stress/strain patch test). The
condition U’ ¢ U” (in step 2) is introduced in order to prevent the appearance of spurious

zero energy modes.

Remark: Recall that the Hellinger-Reissner functional can be obtained from the Hu-
Washizu functional by enforcing the stress strain relationship (i.e., o = D€) pointwise. If
this relationship is substituted directly into the Hu-Washizu functional €’ drops out and
consequently, the proposed method cannot be used. However, if the formulation is started
with a Hu-Washizu functional and the constraints enforced there, while taking notice of
the special choice for the strain field, then the same reduced stress field is obtained and €

drops out only after obtaining the desired stress field.
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3. STRONG FORM

The strong, or classical, form for both the plane stress and plane strain problems is
presented. Throughout this section Greek subscripts take the values 1 and 2. Repeated
indices imply the usual summation convention. All quantities are referred to a fixed sys-
tem of rectangular, Cartesian coordinates. A general point in this system is denoted by
(x1,%2,x3).

The domain of interest is a three-dimensional body embedded in an Euclidian three-

space R3. In the undeformed configuration the domain ( is of the following form:

—h , +h -
Q:= {(xl,xz,x3)€R3 |x3€[ (le x2) ’ (le x2) ],(xl,xz) €A CRz}

where h is the thickness in the x3 direction® and A is a closed region bounded by a simple
closed curve C with an outgoing unit normal v. Let Cy and C, be subregions of C such
that (:‘U_L_)—C,—= C and Cy (N C, = ¢, where Cy is the part of C on which displacements
are specified and C, is the part of C on which tractions are specified.

The strong form is summarized in Box 3.1

Box 3.1: Plane stress/strain - Strong Form

Given b, &, and Ug; find U, and o,g such that:

UaB’B'*' bd= O

inA 1 UuB = CGB'YEE'YB

1
| €aB = E(Uu,B+ Uga)

(
on Cy i U,=Us

on C, { VgO,ap = 0g

* In the case of plane strain b = 1.
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where b, are the body forces, o are the specified traction boundary conditions, Ug are
the specified displacement boundary conditions and C g5 is the elastic coefficients tensor,

which for the case of plane strain is given by:

CGBY§:= h [”‘(8117885+ 8a58p,,)+ )\8(‘[3815] (31)
where A and p are the Lamé coefficients, which can be eliminated in favor of Young'’s
modulus, E, and Poisson’s ratio, v, using

vE . E

NG =2y T2+

(3.2)

The plane stress elastic coefficients are obtained by replacing A by X, where \ is given by:

= 2R\ vE
A= = 3.3
A+2p 132 E3)

Note that in the case of plane stress, the strain terms in the x3 direction can be
obtained from the constitutive equations. Similarly, in the case of plane strain, the stress
terms in the x3 directions also can be obtained from the constitutive equations. Conse-
quently, the in-plane stress and strain fields characterize the three-dimensional state for
both problems.

It follows from Box 3.1 that the strain displacement operator L is given by:

S 9
Bxl
d
L=] 0 — 3.4
oxs (3.4)
8_ 9
Laxz Bxl |
and the elastic coefficient matrix, D, is given by:
Eh 1 0 ]
D= 7 (v 1 0 (3.5a)
1-v 1
[o 0 (1-v)
for the case of plane stress, and by:
E 1=v v 0
D v 1-v 0 (4.5b)

T a+v)(1-2v)

for the case of plane strain.
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4 FINITE ELEMENT APPROXIMATION

The method summarized in Section 2 is used to formulate four-node quadrilateral
plane stress and plane strain elements. The initially assumed stress and strain fields as well
as the incompatible displacements used to generate the assumed incompatible strains are
presented. In Section 4.1, the assumed displacement field is introduced. The assumed
stress field is given in Section 4.2, and the assumed compatible strains in Section 4.3. The
incompatible displacements used to generate the assumed incompatible strains are summar-

ized in Section 4.4.

4.1 Assumed displacement field

The assumed displacement field is taken as a standard isoparametric field. The dis-

placements are approximated by:

where N, is the shape function associated with node 7, and d, is the nodal displacement

vector. In the case of four-node quadrilateral elements, the shape functions are given by:

Nygm) = (14 &E) (1+mm) (4.2)

where § and m are the element natural coordinates, on the interval [-1,1], and §; and 7w,

are the values of the natural coordinates at node 1.

4.2 Assumed stress fields

The assumed in-plane stress field is a complete linear field® expressed in the element

natural coordinates as:

‘ s1]
5 e 1£§m000000]]|
6 =|6|=l0001Em000]): (4.3)
G 0000001E€Em||"
S9

Since complete polynomials are used to express the in-plane stresses, equation (4.3)
could be used for ¢ directly. However, the reduction to satisfy the constraints introduced
in Box 2.1 would require selection of different parameters in each element (i.e., there
would be a dependence on element orientation of £ and m with respect to x; and x,). This

dependence may be avoided by using the transformation procedure described below.

* The stress resultant and strain fields are assumed as complete linear fields since this is the best assumption that
may be used in conjunction with a bilinear displacement field.
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The following definitions are introduced:
xs=1—§x 'Jaf=1 x 'xh=1—(§ ) x
4 I > 4“'11 u > 4 Nhxu

1 1 1 '
ys = 4—§,x2, » Y= gy yh = I(ﬁ'ﬂ Di*2u

Following Zienkiewicz & Taylor [1989], the Jacobian of the coordinate transformation

from the (&, m ) space to the (x;,x,) space is given by:

J=Jg+J1E+T,m (4.4)
where,

Jo=xs -yt —xt *ys (4.5a)

Ji=xs -yh —xh -ys (4.5b)

Jo=xh -yt —xt *yh (4.5¢)

The stress field in the physical space is obtained by using the following transforma-
tion:

1 .
Uij= :I—FI'IFkKUIK (46)

where both i and j take the values x; or x,, and both I and J take the values £ or m, and

ox
Fypp™ —l-, etc. However, to maintain the ability to model constant fields (i.e., pass the

13

constant strain patch test), the transformation is performed based on the Jacobian, J, and

‘“‘deformation gradient’, F, at the center of the element.

At the center of the element, F is given by:

Fpg=xs 3 Fypo=xt (4.7a)

Il =
Fx,£ =¥ Fx,'q i (47b)

After redefining the independent coefficients, the assumed stress field is given by:

511
[&11] [1 00 xsz'q xt%  xsk% 1121] 2xsxt § 2xs xxm s;
6=|6n|=1010 y?n y¥% y% yPm 2ysy 2ysym (4.8)
lc’ru] lOlesysn xtytE xsyst xytm AE A s'g'
L

A =xs-yt+xt-ys

1
51= j;(xszs; +xt2s5y + 2xs xt 57)
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§p= ;—(yszs; + yt2s3 + 2ys yt s7)
0

§3= }(—)—(xsyss;+nyts;+A 57)

with
(i,j)é{(4,3),(5,5),(6,2),(7,6),(,8,8),(9,9)}
It is convenient to write ¢ in the following form:
N ] §1]
a lO’1|O’2 521
where,

~T . AT _
s§1 = <S1,5‘2,S3,S4,S5> y S22 = <S6,S7,88,S9>

With the above construction, the parameter set §, may always be selected as the set to be

eliminated in satisfying the constraint equation on the stress field (see Box 2.1).

4.3 Assumed strain fields

The assumed strain field is formulated in the element natural coordinates, and then

transformed into the physical domain. Two types of transformations can be used:
@ The same transformation as used for the corresponding stress fields.
®  The inverse to the transformation used for the corresponding stress fields.

The motivation for the first approach is to have the same ‘‘shape functions,”” or interpola-
tion, for the strain fields as for the corresponding stress fields. The second approach is
motivated by the invariance of the complementary energy (o;;€;;) under coordinate

transformation. Accordingly, the transformation is given by":
eij =J FIE-IFJ;.IE;J (49)
A similar approach was taken by Simo & Rifai [1989].

Following the path established for the assumed stress field, the strain field is assumed
as a complete linear field in the element natural coordinates, and then transformed into the

physical space. Using the transformation given by equation (4.6) yields:

® The transformation is based on the values at the center of the element.
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e1l
[éfll 100 xs2mq 2% xs% x’m 2xsxé 2xsn"r|] L;|
E=1e5]=1010 ys2y 2 ys2%t  ytPm 2ysyt€ 2ysytm l. (4.10a)
& 001 xsysm xtyt€ xsysE xytm AE Anm ’
" el
and using the inverse transformation, equation (4.9), yields:
61]
100 ytz'r] xt2t yt2§ xtz'q —2ytxt§ —2ytxtm ] ey
& = |0 10 ysiq xs 2 ys2E xs?q 2ysxst 2ysxsm| |- (4.10b)
I.OO 1 —ytysm —xtxs& —ytysE —xtxsm At An le']
9

It is convenient to write € in the following form:
.12 ] 1€
€= [€1|€2] [ ]
1°2]
where,
5T _ Y
€1 =<e1,e3,€3,e4,65> ; €3 = <e€g,€7,€8,€9>

With the above construction, the parameter set é, may always be selected as the set to be

eliminated in satisfying the constraint equation on the strain field (see Box 2.1).

4.4 Assumed incompatible displacements

Let the assumed incompatible displacements be given by:

Ui =NiN+ N5, (4.11a)
and

UL =NiAg+ Ny (4.11b)
where Ay, Ay, ...., and A4 are the independent incompatible displacement parameters, and

N! are the incompatible shape functions.

Two options are selected for the incompatible shape functions N i and Ni. The first

set was presented by Wu, er al. [1987]. The functions are given by:

W o g 31 202 4.12
and
20, 2J
Nb =n2+ —=Lg - =2 (4.12b)

3Fg"  3dg



Shmuel L. Weissman & Robert L. Taylor 13

The second set was presented by Taylor, er al. [1986]. In order to obtain a more
compact form, the incompatible modes given below are a linear combination of the modes

originally presented. The functions are given by:
. .’2 Jl .
i=(1==n)(1-8)+ T-E(1-7%) (4.13a)
Jo Jo
and
Ny=(1-7-6)(1-n")+ 7 (1-8) (4.13b)
0 0

Note that the second set of incompatible modes is zero (compatible) at the nodal points

while the first set is not.

5. PROPOSED ELEMENTS

The fields presented in Section 4 are used to generate four-node plane stress/strain
elements. The proposed elements are cataloged in Table 5.1 by the type of formulation,
the incompatible shape functions, and assumed strain field (Hu-Washizu). For all these
elements, the assumed displacement and stress fields are given by equations (4.1) and

(4.8), respectively.

Table 5.1 Proposed Plane Stress/Strain Elements
Element Formulation Incompatible shape Strain field
function equations | representation

PSS1 Hellinger-Reissner (4.12) -

PSS2 Hellinger-Reissner (4.13) -

PSS3 Hu-Washizu (4.12) (4.10a)
PSS4 Hu-Washizu (4.13) (4.10a)
PSS5 Hu-Washizu (4.12) (4.10b)
PSS6 Hu-Washizu (4.13) (4.10b)

The remainder of this section consists of proofs (for the case of plane strain) showing
that as the incompressible limit is approached, the assumed strain vanishes pointwise for
the proposed elements. Consequently, the well-known locking behavior is avoided at the
element level. The proof for elements formulated via the Hellinger-Reissner and Hu-
Washizu variational principles are given in Propositions 5.1 and 5.2, respectively.

Proposition 5.1: The Hellinger-Reissner elements presented above can, in the case of
plane strain, model a state in which the trace of the strain goes to zero, pointwise, as v

goes to 0.57.
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Proof: Recall that in the case of the Hellinger-Reissner variational principle the
assumed strain field is obtained from the assumed independent stress field. Consequently,

in the case of plane strain the strain field e is given by:
€= D_l o : (51)

where D! is given by:

A+2p =\
-\ A+2n

=]

L

I
R |H

(5.2)

'F|9 oo
L ]

with,
a=4p(p+)

As Poisson’s ratio, v, goes to 0.57, A goes to infinity while p remains bounded. It

follows that, at the limit, the following relation is obtained:

D;i'=Dx5'= -Dj' = -Dj! (5.3)

After imposing the constraint equations introduced in Section 3, the assumed stress

field presented in equation (4.8) is reduced to the general form:

fou] [1000m+bﬁa£+bmlkq

52
g = 0‘22|= 01002’1]+b2§ 05§+b51'] I (54)
[12] |0 0 1 agn+ b3t agt+ ben ls.SJ
where ay, ay, ...., and ag, and by, by, ...., and bg are constants to be determined by the

procedure presented in Box 2.1.

Substituting equations (5.2) and (5.4) into equation (5.1) and taking notice of equa-
tion (5.3) yields the desired result. =

Proposition 5.2: The Hu-Washizu elements presented above can, in the case of plane
strain, model a state in which the trace of the strain field goes to zero, pointwise, as the

incompressible limit is approached.

Proof: After constraining the assumed strain field introduced in equations (4.10), the

reduced field is given in a general form by:
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P1
€11 100 am + b1§ a4§ + b41'| [pz

€= (€| = 010 021]+b2§ 05§+b5n *
EIZJ 001 asm + b3§ 06§ + b6‘n | ‘

(5.5)

lPS
The structure imposed by the constraint equations is such that the following relations are
obtained, as v goes to 0.57, between the a4, a,, ...., and ag and by, by, ...., bg coeffi-
cients:
aj+a;=0 ; agqtas=0 (5.6a)
and
b1+ b2=0 5 b4+b5=0 (5.6b)

A formal proof for equations (5.6) can be obtained. This proof, however, is very
cumbersome and tedious, and does not yield a better understanding of the formulation.
For these reasons, a numerical ‘“‘proof’ will be given. To obtain a more compact form, an
equivalent form to equations (5.6) is given. Namely, the values of
(a;j+az)n+ (b1+by)E and (a4+as)E+ (by+ bs)m are reported at the Gauss points.
Since the functions are linear, zero value at all Gauss points implies zero value pointwise.
First, a square element (see Figure 5.1a) is examined. The values for the first Gauss point
are reported in Table 5.2. Values for other Gauss points may be obtained as follows:
given that the value at the first point is v, then at the other points it is - sign(€) * v, where
sign(£) is the sign of the & or m coordinate at the given Gauss point (7 for the first column

and ¢ for the second column).

Table 5.2 Square element
v (ajtaz)n+ | (ag+as)é+
(b1t+b2)E (bat bs)m
0. -0.144338 -0.144338
0.3 -0.082479 -0.082479
0.49 -0.005661 -0.005661
0.499 -0.000577 -0.000577
0.4999 -0.000058 -0.000058

Secondly, an element distorted from a parallelogram shape (see Figure 5.1b) is examined.
In this case the values at the first and second Gauss points are reported. The value for the
third Gauss point is minus the value at the second Gauss point, and the value at the forth
Gauss point is minus the value at the second Gauss point. Results are summarized in
Tables 5.3 and 5.4. The results summarized in Tables 5.1, 5.2 and 5.3 ““prove’’ equations
(5.6).
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Table 5.3 Distorted element
v point (a1+az)n+(by+by)E
PSS3 PSS4 PSS5 PSS6
0. 1 -0.138299 | -0.136318 | -0.239751 | -0.166003
2 -0.142666 | -0.145547 | -0.234665 | -0.224427
0.3 1 -0.074126 | -0.072729 | -0.2255061 | -0.231639
2 -0.077283 | -0.079388 | -0.204323 | -0.169421
0.49 1 -0.004723 | -0.004612 | -0.051700 | -0.037454
2 -0.004982 | -0.005156 | -0.055967 | -0.042924
0.499 1 -0.000479 | -0.000467 | -0.006410 | -0.004384
2 -0.000505 | -0.000523 | -0.006890 | -0.004980
0.4999 1 -0.000048 | -0.000047 | -0.000650 | -0.000446
2 -0.000051 | -0.000052 | -0.000700 | -0.000506
Table 5.4 Distorted element
v point (ag+as)E+ (by+bs)m
PSS3 PS$4 PSS5 PSS6
0. 1 -0.099318 -0.096704 -0.386263 -0.414609
2 +0.102311 | +0.103024 | +0.388999 | +0.420426
0.3 1 -0.053029 -0.051169 -0.692734 -1.013897
2 +0.055193 | +0.055728 | +0.703892 | +1.045209
0.49 1 -0.003365 -0.003215 +0.027529 | +0.021353
2 +0.003542 | +0.003588 | -0.029822 -0.024105
0.499 1 -0.000341 -0.000326 +0.002510 | +0.001978
2 +0.000359 | +0.000364 | -0.002771 -0.002279
0.4999 1 -0.000034 -0.000033 +0.000249 | +0.000197
2 +0.000036 | +0.000036 | -0.000276 -0.000227

16

It follows from equations (4.12) and (4.13) that as v goes to 0.57 the trace of € is

given by:
trace(e)=e1+ ey (5.7)
In order to show that the trace of the strain goes to zero pointwise recall from Section
2 that the stress strain weak relation is given by:
He—-As=0 (5.8)
To simplify notations and without loss of generality, £ and m in the assumed strain field,
equation (5.5), may be replaced by £ and 7, given by:
E=E-& ; M=m-mo

where £, and m are shifts introduced in order to make H" block diagonal. In order to
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obtain this result the following requirements must be met:
fA EdA =0 ; fA ndA =0
The resulting &, and m are given by:

J1 J2

Y AR T

The H matrix is now of the following form:

DA 0
H=| . « (5.9)

where D is given by equation (3.5), A is the element area, and H is the “material” proper-

ties for the linear part of the strains field. Based on results in equations (5.6), He (

el = 1( e4,¢€ 51 ) goes to zero pointwise as the incompressible limit is approached. Hence,
{ )

it remains only to consider the constant part, given by DA.

Combining equations (5.8) and (5.9) yields:

(
€1+ ;1:4— (X+2p).§71—h§-2} (5103)
and
el ;%{()\-FZ;L)S_Z—)\S_I} (5.10b)

where s = Ass.

Substituting equations (5.10) into equation (5.7) yields:

2p(51+53)
trace(e) = — A

(5.11)

As v goes to 0.57, a goes to infinity while p is bounded; hence the desired result is
obtained. =

6. NUMERICAL EXAMPLES

The performance of the plane stress/strain (PSS) elements proposed in Section 5 is
evaluated with several discriminating problems selected from the literature. The purpose of
these evaluations is to test the proposed formulation’s sensitivity to the specific choice of
the incompatible shape functions as well as the overall performance of the proposed ele-

ments.
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First tackled are the constant strain patch tests in Section 6.1. Following these are the
beam problems suggested by MacNeal & Harder [1985] in Section 6.2, sensitivity to mesh
distortion in Section 6.3, the Cook membrane (Cook [1987]) in Section 6.4, the thick
walled cylinder also introduced by MacNeal & Harder [1985] in Section 6.5, and a strip of
finite width with a hole in Section 6.6. |

Convergence of the results obtained by the four-node elements presented in this paper
are compared with other well-known four-node plane stress/strain elements. A listing of

these elements, and the abbreviations used to identify them is given in Table 4.4.

Table 6.1 Reference Elements
Element Description
2X2 Isoparametric plane stress/strain.
P-S Pian & Sumihara [1984], plane stress/strain.
QBI Belytschko & Bachrach [1986], plane stress/strain.

In all the examples given in this paper, identical results are obtained for elements formu-
lated via the Hellinger-Reissner variational principle and the corresponding (i.e., same incom-
patible shape functions) elements formulated via the Hu-Washizu variational principle. Identi-
cal results are also obtained for the two approaches taken to transform the assumed strain

field from the element’s natural space into the physical space.

Convergence is examined in the energy norm (energy norm reported is twice the
internal strain energy) since this is the natural convergence test in the context of finite ele-
ment methods (Strang & Fix [1973]). Convergence of displacement at some characteristic
points is also examined as this is the common practice in the literature. All tables and fig-
ures show the displacement/energy norm as a function of the number of elements (denoted

nel) used in the corresponding mesh.

6.1 Patch test

A rectangular domain is modeled by a single element shown in Figure 6.1a and the
skewed mesh shown in Figure 6.1b. The mesh is subjected to a constant state of

tension/compression. All elements presented pass this test.

6.2 Beam problems: in-plane shear

These problems were suggested by MacNeal & Harder [1985] as standard problems to
evaluate the performance of different elements. The meshes used contain only one row of
six elements for both the straight beams, shown in Figure 6.2, and the curved beam, shown

in Figure 6.3. Geometrical and material properties used are summarized in Table 6.2.
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Table 6.2 Material and Geometrical Properties for Beam Problems
E v thickness length/ width/ arc
inner radius | outer radius
straight beam | 1.0E+7 | 0.3 0.1 6.0 - 0.2 -
curved beam | 1.0E+7 | 0.25 0.1 4.12 4.32 90°

The ‘“‘exact” tip displacement, w, given by beam theory (MacNeal & Harder [1985])
for the case of a straight beam is w = 0.1081 and for the case of a curved beam is
w = 0.08734. The results, normalized with respect to the exact solution, are summarized in
Table 6.3.

Table 6.3 In-plane shear
mesh PSS/P-S 2X2 QBI

straight (a) | 0.9929 | 0.0933 | 0.9929
straight (b) | 0.2208 | 0.0278 | 0.0777
straight (c) | 0.7963 | 0.0348 | 0.0890

curved 0.9782 | 0.0740 | 0.2324

Results obtained for all proposed elements are identical to the results obtained by the
Pian & Sumihara [1984] element. The 2X2 element locks for all meshes. However, if two
rows of elements are used, the 2X2 element yields reasonable results. All elements exhibit
locking when trapezoid-shape elements are used (straight mesh (b)). This is in accordance
with the theorem put forth by MacNeal [1987] regarding the locking of tapered four-node
membrane elements. The QBI element appears to be much more sensitive to mesh distor-
tion than the PSS or P-S elements.

6.3 Beam bending: Sensitivity to mesh distortion

In this standard test, a beam is modeled by two elements. The beam is fixed at one
end and subjected to a bending moment on the other, as shown in Figure 6.4. The
material properties used are: E = 1.0 and v = 0.4999. A state of plane strain is assumed.
The edge separating the two elements is gradually rotated, as shown in the figure, to skew
the mesh. Results, normalized with the exact beam theory solution (w = 562.575), are
shown in Figure 6.5. Results for the 2X2 element are not reported since it exhibits severe
locking.

All proposed elements yield identical results to the Pian & Sumihara [1984] element.

The QBI element exhibits rapid deterioration as A is increased.
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6.4 Cook’s membrane problem

The problem consists of a trapezoidal plate clamped on one end and loaded by a uni-
formly distributed in-plane bending load on the other end, as shown in Figure 6.6. This
problem has a considerable amount of shear deformation. It was suggested by Cook [1987]
as an excellent problem to test membrane elements using skewed meshes. No analytical
solution is available for this problem. The best known solution is given by Cook as: Vo =
0.29 (vertical displacement), o0, = 0.236 (maximum principal stress) and o5 = —0.201
(minimum principal stress). The material properties used are: E = 1.0, v = 1.0/3.0, thick-
ness = 1.0; plane stress assumption was used. The results normalized with respect to these

best known answers are shown in Figures 6.7 (V¢), 6.8 (o) and 6.9 (op).

The results presented for one element are obtained by interpolating the nodal values;
for the finer meshes the nodal values are reported. The results obtained for all proposed
elements yield identical results to the Pian & Sumihara [1984] element. Excellent results
are obtained even for very coarse meshes; about 70% of the vertical displacement and 80%
of the stresses are obtained using only one element. The 2X2 and QBI elements yield poor
results for coarse meshes; less than 50% and 60% of the vertical displacement and stresses
are obtained by the 2X2 and QBI elements, respectively, when a four-element mesh is

used.

6.5 Thick-walled cylinder

This problem was suggested by MacNeal & Harder [1985] as an excellent problem to
test the effect of nearly incompressible material. The mesh used is shown in Figure 6.10.
The material properties are: E = 1.0 and v varies from 0.0 to 0.4999. The exact radial
solution is given by:

_ (1+v)pR{ R}
u—m[7—+(1—2v)r] (6.1)

where p is the internal pressure; R is the inner radius; R, is the outer radius; and r is the

radius where the radial displacement, u, is to be computed.
Results, normalized with respect to the exact solution, are summarized in Table 6.4.

Once again all proposed plane elements yield identical results with the Pian &
Sumihara [1984] element. Almost no deterioration with v is observed, only 0.77% differ-
ence between the two extreme values of v. The QBI element yields almost identical results.

The 2X2 element exhibits the well known locking at the nearly incompressible limit.
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Table 6.4 Thick-Walled Cylinder
v PSS/P-S 2X2 QBI

0. 0.9987 | 0.9964 | 0.9985
0.3 0.9954 | 0.9908 | 0.9952
0.49 0.9913 | 0.8490 | 0.9911
0.499 0.9910 | 0.3606 | 0.9909
0.4999 | 0.9910 | 0.0534 | 0.9908

6.6 Finite strip with a hole

This problem is introduced in order to test the accuracy of the stress distribution
inside the proposed plane elements. A strip of finite width with a hole, of width b, is sub-
jected to uniform tensile stress in the axial direction, as shown in Figure 6.11. The axial

stress along the critical section, line A-B, is investigated.

First, the relatively simple case of plane stress with free upper and lower edges is
investigated in Section 6.6.1. Then, the more challenging case of plane strain, at the nearly
incompressible limit, with the upper and lower edges fixed in the vertical direction, is tack-
led in Section 6.6.2.

6.6.1 Finite strip with a hole: Plane stress

The material properties used are E = 1.0 and v = 0.3. First, convergence in the
energy norm is examined. No analytical solution for the energy is known. Therefore, a
converged finite element solution of 19.37 obtained for the Pian & Sumihara [1984] ele-
ment using 3072 elements is used as the reference solution. Results normalized with
respect to this reference solution are shown in Figure 6.12. The axial stress distribution
along the critical section for the meshes containing 48 and 192 elements is presented in

Figure 6.13. The results are compared with a reference solution given by Savin [1961].

Almost identical results are obtained for the proposed elements and the Pian &
Sumihara element (about 5.0E-3 difference in energy norm for the three-element mesh).
A very small sensitivity to the incompatible shape functions used is observed ( about 2.0E-

3 difference in the energy norm for the three-element mesh).

Excellent results are obtained for both the energy norm, 95.82% of the reference solu-
tion with only three elements, and stress distribution inside the elements. The 2X2 and

QBI elements yield comparable results for this problem.



Shmuel L. Weissman & Robert L. Taylor 22

6.6.2 Finite strip with a hole: Plane strain

The material properties used are E = 1.0 and v = 0.4999. First, convergence in the
energy norm is examined. No analytical solution for the energy is available. Therefore, a
converged finite element solution of 2.389 obtained for the Pian & Sumihara [1984] ele-
ment using 12288 elements is used as the reference solution. Results normalized with
respect to this reference solution are shown in Figure 6.14. The axial stress distribution
along the critical section for the meshes containing 48 and 192 elements is presented in
Figure 6.15. No analytical solution for the stress distribution is available. Therefore, the

smoothed stresses obtained for the 768-element mesh are used as a reference.

The results obtained show the Pian & Sumihara element to exhibit a marginal
superiority over the proposed elements for the coarse meshes, only 0.8% for a twelve-
element mesh. The formulation shows a small sensitivity to the type of incompatible shape

functions used, only 1.3% and 0.04% for three- and twelve-element meshes, respectively.

Excellent results are obtained; with only three elements in the mesh, 69% and 68% of
the reference solution is obtained for the PSS1,3,5 and PSS2,4,6, respectively. Excellent

results are also obtained for the stress distribution inside the elements.

7. CONCLUDING REMARKS
The main objective of this paper is to apply the method proposed by Weissman &

Taylor [1990] to generate assumed fields for four-node quadrilateral plane stress/strain ele-
ments. One of the method’s main goals is to avoid locking, which is commonly observed
in finite element models of problems involving internal constraints. As an illustration of
the treatment of internal constraints, the problem of plane strain at the nearly incompressi-
ble limit is chosen due to the difficulty it presents to finite element methods, and the large

body of work which has been directed toward eliminating this obstacle.

Both elements formulated via the Hellinger-Reissner and Hu-Washizu variational
principle are considered. For both types of formulations, it is proven that as the nearly
incompressible limit is approached (plane strain), the trace of the strain vanishes pointwise
(i.e., the internal constraint is satisfied pointwise). Consequently, locking at the nearly

incompressible limit is avoided.

The proposed elements are subjected to an extensive set of problems reported in the
literature. Excellent results are obtained for all examples. In fact the results are equivalent
to those obtained by the best known elements (e.g., Pian & Sumihara [1984]). Further-
more, the variationally consistent stresses recovered at the element level yield excellent

results.
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Identical results are obtained for elements formulated via the Hellinger-Reissner and
Hu-Washizu functionals, provided the same incompatible functions are used. Also, identi-
cal results are obtained for both approaches taken to transform the assumed strain field
from the element’s natural space into the physical space. Furthermore, results show no

sensitivity to the incompatible shape functions used.
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Figure 5.1: (a) Square element; (b) Element distorted from a parallelogram shape.
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Figure 6.1: Patch test - (a) One-element mesh, (b) Skewed mesh.
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Figure 6.2: Straight cantilever beam. (a) Regular shape elements; (b)
Trapezoid shape elements; (c) Parallelogram shape elements.

Figure 6.3: Curved beam mesh.
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Figure 6.4: Beam bending problem, sensitivity to mesh distortion.
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Figure 6.5: Beam bending, sensitivity to mesh distortion: normalized tip displacement.
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Figure 6.6: Cook's membrane problem.

1.25
1.00 4 Sr——

A = - ‘.)gw

Y -““’

| & ’) P 4

- °
0.75 ] P ..'o

3
o*

- ...
0.50 R4 . m= PSS/P-S

1 °

A === 22

p .;., sssEERI QB|
0257 m— EXACT
0.00 T T T T T

1 4 16 64 256

16.0

nel

Figure 6.7: Cook's membrane problem; vertical displacement at point C.
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Figure 6.8: Cook's membrane problem; maximum principal stress at point A.
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Figure 6.12: Strip with a hole; plane stress; convergence in the energy norm.
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Figure 6.13: Strip with a hole; plane stress; axial stress distribution along the line A-B.
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Figure 6.15: Strip with a hole; plane strain; axial stress distribution along the line A-B.





