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ABSTRACT
Hierarchies are a natural way for people to organize information, as

reflected by the common use of “broader/narrower” term relation

in keyword thesauri. However, different people and organizations

tend to construct different conceptual hierarchies (e.g., contrast Ya-

hoo! with the UseNet news hierarchy), and while there are often

significant commonalities it is in general quite difficult to fully rec-

oncile them. We are particularly interested in the problem of “dock-

ing” a narrower, more focused and refined topical hierarchy into

a broader one, and describe two algorithms for accomplishing this

task. The first matches hierarchies based on a bipartite matching al-

gorithm of (textual) features of nodes without consideration of their

hierarchic organization, and the second is based on an attributed

tree matching algorithm which uses both hierarchic structure and

node features. We present experimental results showing the per-

formance of both algorithms on a set of very different topical hier-

archies, all designed to represent the field of Computer Science.

These show that hierarchic structure does indeed allow more accu-

rate matches than nodes alone.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms,

Trees; H.3.m [Information Storage and Retrieval]: Miscellaneous;

I.5.4 [Computing Methodologies]: Pattern Recognition—Text pro-

cessing

General Terms
Topical hierarchy

Keywords
topical hierarchy, thesaurus matching, hierarchy matching, hierar-

chy docking
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1. INTRODUCTION
Especially within the Western analytic tradition, a central feature of

intellectual progress has been the progressive division of broad top-

ical areas into narrower, more refined ones. Science and technol-

ogy has continued to drive the analytic process into an incredible

breadth of disciplinary specializations. And within each of these

disciplines, generally opaque to outsiders, are even more refined

characterizations of narrower topical areas.

Collectively, these various taxonomic classification systems can be

imagined as a vast tree, with broad topical areas splitting into more

refined branches. The central problem considered in our work is

the docking of one taxonomic system into another when these two

are developed independently. Our system, HierDock, implements

the process of docking one topical hierarchy into another, matching

comparable categories and preserving as much of the structure as

possible.

There is some reason to believe that two hierarchies developed in-

dependently will be organized in a structurally similar way. People

tend to classify things according to a “broader vs. narrower” rela-

tion. Our system leverages the fact that two hierarchies built with

this principle will overlap in some places.

1.1 Motivation
There are a number of alternative goals that motivate this research.

The original motivation grew out of attempts to integrate high-

quality, third-party taxonomic classifications into an over-arching

representation like the Encyclopedia Britannica’s (EB) Propaedia.

For example, early work by Steier and Belew (unpublished) built

on that done by Rose on legal texts [9, 8], especially the Westlaw

Key Number system used to classify it. But as Steier and Belew

moved to work on the EB corpus [10, 11], the question arose how

West’s key numbering system might match into EB’s Propaedia.

More recently, reconciling our Computer Science & Engr. depart-

ment’s curriculum with that of professional organizations like the

Association for Computing Machinery (ACM) and other universi-

ties is proving very useful in our own department’s planning. More

generally, in a wide variety of fields (e.g., bioinformatics) various

investigators and institutions are attempting to classify contents in

shared “ontologies” (e.g., of protein functions) that allow shared

access to common data sets.

In Section 2 we describe the two algorithms that we use in the ex-



periments, a bipartite matching algorithm and a weighted hierar-

chic subtree isomorphism algorithm recently developed by Pelillo

et al. for the purpose of image matching [7]. Section 3 describes

where the data sets came from and how they were collected. In

Section 4 we present preliminary results of the two algorithms on

the data sets, and in Section 5 we discuss some of the observations

and results found in the experiments. Finally we end with some

conclusions, and future direction in Section 6.

2. ALGORITHMS FOR MATCHING HIER­

ARCHIES
A common and natural representation of a topical hierarchy is as

a directed graph (digraph): nodes represent a topical area. We as-

sociate a rubric (short, descriptive textual phrase) with each node

and optionally a collection of longer textual passages that are con-

sidered exemplary of the topical area. Directed arcs encode the

broader-term/narrower-term (BT/NT) relationship between ar-

eas, with directionality running from broader to narrow nodes. A

precise semantics for the BT/NT relation is a topic of ongoing re-

search (cf. Section 3.4), but for now we will assume a form of the

inclusion relation. We shall refer to this representation of a topical

hierarchy as an HGraph.

Given two HGraphs H1 and H2 there are two distinct approaches

to the design of an algorithm for matching them. The first is to

ignore all textual information associated with the graph’s nodes

and focus exclusively on matching the two graphs’ edge structures.

The problem then becomes the well-known but NP-complete prob-

lem of subgraph isomorphism. Fortunately, because the two graphs

are both rooted trees, the complexity of this matching process is

polynomial rather than NP-complete as it is in the general case [4,

Chapter 4.2]. However, given the semantic attachment we have to

the textual features associated with our graph’s nodes, there seems

little practical interest in solutions based exclusively on structural

similarities and so do not consider such methods any further.

The other extreme alternative is to consider only the nodes in the

two graphs, specifically the textual materials associated with them.

The search is then for the pairing of nodes from H1 with those of

H2 such that the cumulative match score across all pairs of nodes is

maximized. This pure formulation becomes the problem of maxi-

mum weighted bipartite matching, considered in more detail in Sec-

tion 2.1.

Between these two extreme approaches, focusing exclusively on

edges vs. nodes contained in the HGraph, are potentially a wide

range of techniques that exploit both sources of information. The

central hypothesis investigated by this work is that the structural

information provided by edges connecting topical nodes provides

more information than that contained in the nodes’ free text alone.

2.1 Maximum Weighted Bipartite Matching
The unweighted bipartite matching problem is a classical network

flow problem [3, Chapter 27.3]. To solve a network flow problem

you start with an empty flow (matching) and continually add “aug-

menting” paths to the flow. An “augmenting” path is a path that will

increase the weight of the matching without making the matching

invalid.

The weighted bipartite matching problem is slightly different, be-

cause with a variation in edge weights it becomes possible to con-

nect one node with more than a single other node with a traditional

network flow approach. This violates the definition of a matching

problem, because in a matching each node can be matched to at

most one other node.

An algorithm was described by Cheng et al. [2] that solves the

maximum weighted bipartite matching problem used successfully

in computer vision to perform image feature matching. The same

general idea is used to solve the weighted bipartite matching prob-

lem, that is, start with an empty matching and at each step add

an augmenting path. It has been proven that if at each step in the

algorithm a maximum augmenting path is added to the matching

then the result will be a maximum weight matching [2]. Details on

how to search efficiently for a maximum augmenting path with re-

spect to a matching, M, are described in a paper by Hao and Kocur,

from the DIMACS implementation challenge on network flows and

matching [6].

2.2 Maximum Weighted Subtree Isomorphism
In a recent paper Pelillo et al. show how to convert an “attributed

tree” (i.e., nodes have attributes over which a similarity measure

has been defined) matching problem into a corresponding Maxi-

mum Weighted Clique problem, such that there is a one to one cor-

respondence between solutions to the Maximum Weighted Clique

problem and solutions to the maximum attributed tree matching

problem [7].

The details of the formulation of this as a continuous quadratic as-

signment problem are beyond the scope of this conference paper,

and only a sketch can be presented here. In brief, matching two

hierarchies H1 and H2 requires the construction of a square matrix

of size n2, where n = |V1|×|V2| and |V1| and |V2| are the number of

nodes in H1 and H2, respectively. Optimization proceeds by locally

optimizing a “characteristic” vector over the standard simplex ℜn.

Pelillo et al. report results using replicator equations to solve this

problem and report that the basins of attraction of optimal or near

optimal solutions are large [7].

Our early experiments were able to use this algorithm successfully

over hierarchies representing topical hierarchies, but only on quite

small examples (e.g., dmoz-nl1 vs. dmoz-nl2, cf. Section 3). On

larger problems this iterative procedure proved to converge very

slowly. In this application we also observed a much greater sen-

sitivity to initial conditions and many sub-optimal local solutions.

For these reasons, all larger examples used an indefinite quadratic

program solver known as QPOPT [5]. On all problems for which

QPOPT and replicator equations were both used, both methods ob-

tained similar results.

3. DATA SETS
As discussed in Section 3.4, the range of sources from which topi-

cal hierarchies can be derived is very broad. In order to focus our

experiments, all data sets were focused on the area of COMPUTER

SCIENCE, a topical area about which the authors are particularly fa-

miliar. The data sets used for the experiments reported here were

gathered from three sources: the Mozilla Open Directory project

(DMOZ), the ACM Computing Reviews taxonomy, and an article

on “Computer Science” produced by Encyclopedia Britannica. A

brief discussion of how each one was collected follows, and their

basic statistics are collected in Table 1.

3.1 DMOZ



Table 1: HierDock data set statistics
Name Description node count max depth vocab size

acm2 ACM collapsed to two levels 12 2 975

acm3 ACM collapsed to three levels 93 3 975

dmoz-nl1 1st half of the Natural Language 8 3 4465

dmoz-nl2 2nd half of the Natural Language 8 3 4173

dmoz-ai1 1st half of the Artificial Intelligence 74 5 17286

dmoz-ai2 2nd half of the Artificial Intelligence 75 5 18570

dmoz-cs Computer Science 137 5 24544

eb extracted from article 50 5 1678

Figure 1: Visual representation of the dmoz-nl data set.

The Mozilla Open Directory project makes their topical hierarchy

readily available.1 For the experiments reported here we extracted

several small subtrees from the full DMOZ hierarchy. The first tree

we used was the subtree rooted at TOP/COMPUTERS/ARTIFICIAL INTELLIGENCE.

The second subtree was rooted at the same node, but all of its chil-

dren were removed except the NATURAL LANGUAGE node; the sec-

ond set is shown in Figure 1.

The DMOZ category pages themselves provide very little text that

can be associated with the topical area: only the anchor text se-

lected by the editor to point to the relevant URL, and a brief de-

scription. In order to provide more extensive textual samples, we

also did a simple, one-level crawl from these pages and used these

pages’ text as well. 2

Pages relevant to a topic and referenced by DMOZ editors are listed

in alphabetic order. The assumption is that while all the pages

at one node are highly semantically-related (since the same edi-

tor chose to classify them identically), the words that happen to be

selected on one page is likely to vary considerably from another,

because they are authored by different sources. Therefore, one rea-

sonable test we can make of our hierarchy matching algorithm is

therefore to use the first and second halves of this reference list

(and the text of the referenced pages) as two alternative character-

izations of the topical area. We will refer to this partitioning of the

data set as dmoz-nl1, dmoz-nl2, dmoz-ai1, and dmoz-ai2 below.

3.2 ACM
The ACM has maintained their own Computing Reviews Taxon-

omy as an indexing resource for decades. 3 This has been most

recently revised in 1998 and contains eleven top level categories.

While it appears possible to go from the ACM CR taxonomy to

the text of ACM papers indexed by these categories, for the exper-

iments in this paper we chose to rely upon only those short text

fields used in the brief description of the categories as the text to

represent each node. This provides fewer keywords per node than

the other data sets and demonstrates some interesting properties for

the ACM data sets.

Two versions of ACM taxonomy are used in the experiments. The

1The data is available in Resource Description Format (RDF) at
DMOZ at http://dmoz.org/rdf/. The version used in these ex-
periments was obtained on 5/24/2000.
2The text was extracted from the web-pages using the lynx web
browser with the ’-dump’ option. We did not use any text from
inside the HTML tags (i. e. META tags). The data was then cleaned
up by deleting error messages (i. e. server not found) , and deleting
nodes that had no pages to describe them.
3This data can be found on the ACM web site at
http://www.acm.org/class/1998/ccs98.txt.



first (which is known as acm2 below) consists of only the top level

node and its 11 direct children. However, to provide additional text

to be associated with each of these children, all the text forming

rubrics for all its descendants are merged into a single textual pas-

sage associated with this category.4 This gives us a tree with 12

nodes and a maximum depth of two.

The second data set from the ACM is constructed similarly, except

that the structure for the top three levels is preserved instead of only

the top two. This time all of the descendants below level three are

promoted to be the text that describes the level three nodes. This

yields a tree with 93 node and a maximum depth of three.

3.3 Encyclopedia Britannica
The data set that we used from Encyclopedia Britannica was taken

from the text of an article written about computer science. The

table of contents and the structure of the article are used to build

the hierarchical information. The article is broken down into sec-

tions, subsections, and sub-subsections, and so on. Each section

and subsection of the article were used as nodes of the HGraph, the

section’s title as the node’s rubric and text from the section as its

textual passage. The hierarchy contained 50 nodes, and had a max-

imum depth of 5. This data set is know as ’eb’ in the experiments.

3.4 Semantics of topical hierarchies
The range of sources from which we have drawn our data sets

– from an encyclopedic survey article, to the a general purpose

Web index (DMOZ) to a journal’s taxonomic classification system

(ACM-CR) – requires us consider the semantics intended by these

very different representations quite carefully.

The Open Directory project is an interesting example of how people

naturally describe information in a hierarchical fashion. Volunteer

editors are responsible for keeping lists of WWW pages that are

about a given topic in which they have particular expertise. The

resulting system of pages creates a hierarchy of topical pages, each

pointing to large numbers of high quality WWW pages.

The general survey prose written in the EB article is designed to

provide a tutorial and foundation for further reading. The biblio-

graphic citations within this text (and not considered further in the

current report) are therefore especially useful.

Some, and traditionally most, hierarchies have been a work of sin-

gle authorship. Rarely is this author a single individual; typically

there is an institution coordinating the activities of a group of (EB

editors) or a specially appointed panel (ACM). One reason that

DMOZ is of special interest in our work is that its “open” approach

to the coordination of independent editors suggests new forms of

consensual activity towards a common framework.

There are also some commonalities across these various sources.

Several special categories, e.g., GENERAL and MISCELLANEOUS, of-

ten appear in taxonomies, and are found in both EB and ACM-CR.

These present special problems for our HierDock procedure, since

these sub-categories appear syntactically interchangeable with other

sub-categories that in fact capture narrower topical scope. Simi-

larly, DMOZ’s PEOPLE, CONFERENCES, and PUBLICATION cate-

gories are used commonly across many categories. None of these

4For example, for the category HARDWARE, the text of its subcate-
gories CONTROL STRUCTURES AND MICROPROGRAMMING, MEMORY
STRUCTURES, ... would be used, as well as the text associated with
subcategories of CONTROL STRUCTURES AND MICROPROGRAMMING

capture the narrower-topical-area semantics we associate with typ-

ical child nodes.

4. RESULTS
In this section we present the results of selected experiments. All

of the experiments were run on a Celeron 850MHz machine with

640M of RAM. The weighted bipartite matching algorithm was im-

plemented in C, and the larger experiments took about one second

to complete. The attributed tree matching algorithm was run in

MATLAB, and the larger experiments took about one minute to

find a solution with the QPOPT optimizer[5].

The simplest match considered is dmoz-nl1 vs. dmoz-nl2, since

both hierarchies have exactly the same structure and the only vari-

ation results in the vocabulary sampling differences brought about

by our arbitrary separation of the classified pages into two sub-

sets. Both the weighted subgraph isomorphism (SI) and weighted

bipartite match (BM) solutions successfully came up with the same

matching, and it is the matching that was expected (Artificial Intelligence

node from both trees, the Natural Language node from both trees,

etc.).

The matching of the dmoz-nl1 subtree against the fuller dmoz-ai2

tree provides a more interesting test. By construction, there is a

known correct structural match that should also yield the high-

est weighted match, but the appropriate “docking point” for the

Natural Language subtree is unknown to the algorithm. Figure

2 shows first the underlying node-pair similarity matrix, then the

matches discovered by the SI and BM solutions. The strong diag-

onal match in columns 10-16 shows that the SI match successfully

matched the subtree, while the BM included several other spuri-

ous pairs because it ignores structure it was free to match nodes in

categories that fall in a different subtree.

A more rigorous test of our system is shown in the experiment of

matching the two versions of the entire dmoz-AI subtrees, dmoz-

ai1 and dmoz-ai2 against one another. While these two trees are al-

most identical, the splitting of the test set resulted in several nodes

in one version that did not have corresponding nodes in the other.

For example, dmoz-ai2 has an extra node Ontologies node (col-

umn 36 in 3) not found in dmoz-ai1; two other similar differences

can be seen in columns 49 and 50. The central result by Figure

3 is that the straightforward pairwise BM method identifies many

spurious node pairings while the SI method identifies exactly the

matching we would expect. The two trees have exactly the same

structure we would expect, except for the three small variations

just mentioned.

Of course using HierDock to match heterogeneous hierarchies, com-

ing from different sources, provides the most realistic test of the

practicality of the method. At the same time, identifying the “cor-

rect” matching between two independently-authored hierarchies also

becomes a matter of opinion. Figure 4 shows the result of matching

two very different types of topical hierarchy, the EB’s encyclopedic

entry on

Computer Science against ACM’s detailed classification of this

same topic. As with the ai1 vs. ai2 match, BM returns a unstruc-

tured, unhelpful series of matching pairs. SI, however, found at

least portions of a match that qualifies as at least interesting; the

details of this match are presented in Appendix A. While large por-

tions of both hierarchies were left unmatched (the largest clique

returned by the SI algorithm contained only 25 nodes), and some

matched rubrics may seem odd (e.g., EB’s RELIABILITY vs. ACM’s



Figure 2: Results from experiment dmoz-nl1 vs. dmoz-ai2. In each of the plots dmoz-nl1 is on the vertical axis, and dmoz-ai2 is on

the horizontal axis. The vertical lines are for ease of comparing the three plots. There are ten nodes between each set of lines. (a)

The similarity score matrix. (b) The results from the attributed tree matching algorithm. (c) The results from the weighted bipartite

matching algorithm. The two algorithms came up with the same match set for this experiment.

database management), others seem very encouraging (e.g., EB’s

THEORY vs. ACM’s mathematics of computing).

5. DISCUSSION
When comparing the general structure of the DMOZ hierarchies to

the structure of the ACM hierarchy, interesting observations can be

made. In the DMOZ structure from the ARTIFICIAL INTELLIGENCE

node on down, many of the nodes have a child called PEOPLE. An-

other node that is fairly common is a node called CONFERENCES

AND EVENTS.5 One reason that DMOZ has evolved to this structure

is that it has a lot of content and it is trying to create a niche for

every piece of content that it has available to classify. The con-

tent that DMOZ deals with consists entirely of web pages. There

are many people who create a home page so, having many PEOPLE

nodes is potentially a good idea for the DMOZ, but does not fit into

the BT/NT relation.

The ACM taxonomy, on the other hand, is the result of a group of

experts defining what computing means. These experts do not have

the handicap of being tied to the content that they have available to

them. The ACM is not as fluid as DMOZ; DMOZ is updated on

a daily basis while, the last classification from the ACM on com-

puting is from 1998. It is important that the ACM experts get the

classification correct, because it will not change for a while. The

ACM experts know that computing will change somewhat over the

course of a few years. They introduced categories like General

Literature and Miscellaneous to allow for the general shift of

interest in computing, between releases of their computing classifi-

cations. Column 54 of Figure 4 (a) is the Conferences node below

the Vision node in the dmoz-ai2 hierarchy. This column is darker

than most other columns, and can be recognized as a node with a

high level-of-treatment. Another example of this is column 17 in

Figure 4 (a); this is the Neural Network node. It is a node that has

many children and it covers neural networks at a high level so it is

shaded darker than most nodes.

More generally, we can expect nodes at higher levels of a topical hi-

5ARTIFICIAL INTELLIGENCE, NEURAL NETWORKS, BELIEF
NETWORKS, and many other nodes have CONFERENCES AND
EVENTS as a child.

erarchy should be about more things. In the similarity plots shown

above, these patterns of aboutness show up as a dark streaks, where

one hierarchies broad term is nearly-uniformly distributed across

another’s narrower subtopics. We believe that this will be able to

help to determine breadth of coverage for a particular topic. The

nodes that are similar to many other nodes of a common topic, are

most likely to be more general nodes. Recognizing patterns like

this could help search engines to retrieve documents that are gen-

eral to a certain topic. It would allow for someone to specify the

level-of-treatment that they desire in a given query.

6. CONCLUSIONS AND FUTURE DIREC­

TIONS
As mentioned in section 2.2 Pelillo et al. report results using repli-

cator equations to optimize the set linear equations, and report that

the basins of attraction of optimal or near optimal solutions are

large [7]. In our experiments the basins of attraction to the opti-

mal solutions do not appear to be extremely large in all cases, and

will be explored further.

The weighted subtree isomorphism algorithm can not return a match-

ing unless that matching is exactly an isomorphism. We are con-

sidering a diverse set of hierarchies, authored by different people.

It is natural to believe that these different hierarchies have differ-

ences in their respective shapes. These differences could lead to

a “best” match that is not a true isomorphism, but something that

might be “perturbed” to produce true isomorphism. We intend to

explore “edit distance” heuristics that “correct” for differences be-

tween authors. (i. e. removing a node from one hierarchy or adding

an extra node to another hierarchy) to yield a higher weight legal

match.

Beyond this direct application of HierDock technology, we have

also become interested in several unanticipated utilities. The gen-

eral variations in language use within and across topical areas has

been a topic studied by Belew for some time [11]. In brief, we have

shown that statistical variations in an a priori identified topical area

are different than those across larger topical domains, and these dif-

ferences can be used to identify better phrasal index items. Belew

has discussed the use of “inside vs. outside” vocabularies as mech-



Figure 3: dmoz-ai1 vs. dmoz-ai2



Figure 4: eb vs. acm3



anisms to mediate search across multiple corpora [1, Sect. 3.3.1].

Our analysis of statistical variations in our topical hierarchies sug-

gests new ways to identify such patterns.

A related goal is to identify level-of-treatment of textual passages.

That is, how might we distinguish a general, overview tutorial from

the union of a set of texts on individual topical periods? As dis-

cussed in Section 5 it may be possible to determine level-of-treatment,

based on statistical analysis.

In summary, when matching two hierarchies the structural informa-

tion inherent in the hierarchies convey meaning beyond that cap-

tured by the nodes considered as independent topical descriptors.

Using an algorithm, such as weighted subtree isomorphism algo-

rithm, that accounts for both hierarchical structure and node simi-

larity, a better matching can be found, than with an algorithm that

ignores this hierarchical structure.

Appendix A: EB vs. ACM3 match
Nodes of the EB and ACM3 hierarchy that were part of the maxi-

mum clique, as they were matched by HierDock. Nodes taken from

the EB are preceded by a 1 and appear in all capitals; correspond-

ing nodes taken from ACM3 are preceded by a 2 and are in lower

case.

1 COMPUTER SCIENCE

2 computing

1 DEVELOPMENT OF COMPUTER SCIENCE

2 general literature

1 ARCHITECTURE

2 information systems

1 BASIC COMPUTER COMPONENTS

2 information interfaces and presentation

1 BASIC COMPUTER OPERATION

2 miscellaneous

1 LOGIC DESIGN AND INTEGRATED CIRCUITS

2 general

1 LINKING PROCESSORS

2 models and principles

1 RELIABILITY

2 database management (e.5)

1 REAL-TIME SYSTEMS

2 information storage and retrieval

1 SOFTWARE

2 computer systems organization

1 SOFTWARE ENGINEERING

2 general

1 PROGRAMMING LANGUAGES

2 processor architectures

1 OPERATING SYSTEMS

2 computer-communication networks

1 INFORMATION SYSTEMS AND DATABASES

2 special-purpose and application-based

1 ARTIFICIAL INTELLIGENCE

2 performance of systems

1 COMPUTER GRAPHICS

2 computer system implementation

1 THEORY

2 mathematics of computing

1 COMPUTATIONAL METHODS AND NUMERICAL ANALYSIS

2 numerical analysis

1 DATA STRUCTURES AND ALGORITHMS

2 miscellaneous
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